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Abbreviations 

When applicable, the notation refers to mouse genes. In line with the 

International Committee on Standardized Genetic Nomenclature for Mice 

(Eppig, et al., 2007), gene symbols are italicized and begin with an uppercase 

letter, followed by lowercase letters, whereas protein symbols use all uppercase 

letters, and are not italicized. 

 

Acaca   Acetyl-Coenzyme A carboxylase  

Actb  actin  

AMPK AMP-activated protein kinase 

ANOVA Analysis of variance 

ASPS  Advanced Sleep Phase Syndrome 

B2M  -2 microglobulin 

Bmal1  Brain and muscle aryl hydrocarbon receptor nuclear translocator 

  like 1 (Arntl) 

C6  Rat glioma cell line 

cDNA  complementary DNA 

Clock  Circadian locomotor output cycles kaput 

Cry1  Cryptochrome 1 

Cry2  Cryptochrome 2 

Csnk1  Casein kinase 1,  (Ck1 ) 

Dbp  D site albumin promoter binding protein 

DMSO Dimethyl sulfoxide 

DSPD  Delayed Sleep Phase Disorder 

E4bp4  E4 promoter binding protein 4 (Nfil-3) 

Fads2  Fatty acid desaturase 2 

Fasn  Fatty acid synthase 

FASPS Familial Advanced Sleep Phase Syndrome 

GABA -aminobutyric acid 
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GaMg  Human glioma cell line 

Gapdh  Glyceraldehyde 3-phosphate dehydrogenase 

GRP  Gastrin-releasing peptide 

Gsk-3  Glycogen synthase kinase 3  

GWAS Genome-wide association study 

H-35  Rat hepatoma cell line (Reuber's) 

HepG2 Human hepatoma cell line 

HK-2  Human kidney cell line 

Hlf  Hepatic leukemia factor 

Hmgcr 3-hydroxy-3-methylglutaryl-CoA reductase 

MEQ  Horne-Östberg Morningness Eveningness Questionnaire 

mRNA messenger RNA 

Mvk  Mevalonate kinase 

NIH-3T3 Mouse embryonic fibroblast cell line 

NKA  Na+/K+-ATPase 

Nthy-ori 3-1 Human thyroid cell line 

PACAP Pituitary adenylate cyclase-activating polypeptide 

Per1  Period homolog 1 (Drosophila) 

Per2  Period homolog 2 (Drosophila) 

Per3  Period homolog 3 (Drosophila) 

Pgc-1  Peroxisome proliferator activated receptor  coactivator  

  1  (Ppargc1 ) 

Ppar-  Peroxisome proliferator activated receptor  

Ppar-   Peroxisome proliferator activated receptor  

PS  Preferences Scale 

qRT-PCR Quantitative real-time polymerase chain reaction 

Rev-Erb-  Reverse viral erythroblastis oncogene product  (Nr1d1) 

RHT  Retinohypothalamic tract 

Ror-   Retinoic acid-related orphan receptor  

RORE  Retinoic acid-related orphan receptor response element 

Rplp0  Ribosomal protein, large, P0 
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Scd1  Stearoyl-Coenzyme A desaturase 1 

Scd2  Stearoyl-Coenzyme A desaturase 2 

SCN  Suprachiasmatic nucleus 

shRNA Small hairpin RNA 

SNP  Single-nucleotide polymorphism 

SREBP Sterol regulatory element-binding protein 

SSRI  Selective serotonin reuptake inhibitor 

Tef  Thyrotroph embryonic factor 

VIP  Vasoactive intestinal peptide 

VNTR  Variable number tandem repeat 

VP  Vasopressin  
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Summary 

The sleep-wake cycle, lipid metabolism and hormone levels are examples of 

circadian rhythms, which are endogenously generated cycles that reach both 

maximum and minimum values once in the course of 24 hours. In mammals, 

circadian rhythms are regulated by a set of clock genes that are functionally 

linked, and polymorphisms in these genes may be associated with variations in 

circadian rhythms. Disruption of the circadian clock has been associated with 

poor physical health, including metabolic disturbances such as obesity and 

dyslipidemia, as well as mental illness, including bipolar disorder, a severe 

chronic affective disorder. The mood stabilizer lithium is widely used in the 

pharmacological treatment of bipolar disorder, and has been shown to affect 

circadian rhythms, although its molecular mechanisms of action remain largely 

unknown. 

 

In this study, we investigated cultured mice fibroblasts (NIH-3T3 cells) for 

effects of lithium on the expression of genes that regulate the circadian clock. 

Robust circadian oscillations of rhythmic clock genes were observed in control 

and lithium-treated samples in this model of the circadian clock. A main effect 

of lithium was to differentially alter the amplitude of expression of several 

clock genes, including an increase in the peak amplitude of Per2 and Cry1, and 

a reduction of the maximal amplitude of Per3, Bmal1 and Rev-Erb-  

transcription, indicating a possible role for alteration of oscillation amplitudes 

of clock genes in the mechanisms of lithium action on biological rhythms. 

Additional mood stabilizers, antipsychotics and antidepressants are also used in 

the treatment of bipolar disorder; hence we investigated whether they too affect 

the transcription of key circadian clock genes. Interestingly, clock gene 

expression was differentially up- or down-regulated, such as a reduction of 

Per2 transcription by clozapine and imipramine, and an increase in the 

expression of Rev-Erb-  by clozapine. The observed drug-induced effects 
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could reflect shared regulatory mechanisms that contribute to their 

psychotropic action. Since numerous antipsychotics and antidepressants are 

known to induce lipogenic gene expression, and given the suggested link 

between the circadian clock and lipid metabolism, we also examined their 

effects on lipid metabolism-related genes. The antipsychotics and 

antidepressants increased the transcription levels of lipid metabolism genes 

(which did not oscillate), whereas the mood stabilizers had no such effect, 

indicating that no evident regulatory link between the circadian clock and lipid 

metabolism is present in this model system, although it cannot be excluded. 

 

Genetic factors are likely to influence diurnal preference (chronotype), and in 

search of associations between clock gene variants and chronotype, several 

studies have investigated the role of the clock gene PER3, and found an 

association between a variable number tandem repeat (VNTR) in PER3 and 

diurnal preference. However, conflicting findings have been reported, and our 

replication study on 432 healthy Norwegian students did not confirm the 

association, indicating that variation in the PER3 VNTR does not appear to be 

associated with self-report measures of chronotype in our study sample, and 

suggesting that further studies are needed to clarify the proposed role of PER3. 
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It is not the strongest of the species that survives, nor the most 

intelligent that survives. It is the one that is the most adaptable 

to change. 

 

 

Charles Darwin 
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11  Introduction 

1.1 Circadian rhythms and physiological processes 

Rotation of the earth around its axis creates a repetitive cycle of day and night. 

Most living organisms, spanning from humans and animals to plants, fungi and 

bacteria, anticipate the daily changes in their environment by having circadian 

rhythms, which reflects the strong pressure in natural selection in favoring 

organisms with a built-in clock. The circadian clock is evolutionary conserved 

and is estimated to be around 700 million years old, originating from the time 

when plants diverged from the common lineage with animals and fungi (for 

review, see Dunlap, 1999; Lowrey and Takahashi, 2004; von Schantz, 2008). 

In comparison, Homo sapiens emerged only 200,000 years ago. 

 

The circadian clock is a cellular mechanism that generates rhythmic output, 

with temporal organization, allowing biological processes to occur at the most 

opportune time, while preventing incompatible reactions from taking place 

simultaneously (reviewed by Gachon, et al., 2004). The term circadian derives 

from the Latin circa diem, meaning “about one day”, which is roughly the 

period length of circadian rhythms. Examples of physiological parameters that 

display circadian rhythms include the sleep-wake cycle, feeding behavior, core 

body temperature, hormone levels, blood pressure and metabolism (for reviews 

on circadian rhythms, see Dardente and Cermakian, 2007; Takahashi, et al., 

2008; Hastings, et al., 2008). The human circadian rhythms of core body 

temperature, physical activity and cognitive functions all peak in the afternoon, 

while in contrast triglyceride levels and secretion of the hormone melatonin 

both peak during the subjective night (Redman, et al., 1983; Rajaratnam and 

Arendt, 2001), see Figure 1.1. 
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Figure 1.1. Circadian rhythms of melatonin, triglycerides, core body temperature and 

subjective alertness in human beings. Plasma melatonin and triglyceride levels peak during 

the night. They have similar phases and oscillate in antiphase with core body temperature and 

alertness levels, which reach their minimum values (troughs) at night. The parameters were 

measured in humans kept in controlled conditions, and are given as functions of circadian 

time (in hours). Plasma melatonin level is given in pg/mL, plasma triglycerides in mmol/L, 

body temperature in degrees Celsius and alertness was estimated with a subjective scale (0 = 

not alert and 100 = very alert). Illustration modified from Rajaratnam and Arendt and 

reproduced with permission of the authors (Rajaratnam and Arendt, 2001). 

 

Circadian oscillations are characterized by their period, amplitude and phase. 

The rhythms are endogenously generated, but may be entrained by external 

time cues (Zeitgebers). The most important cue is light, although feeding time 

and ambient temperature may also set the clock (Damiola, et al., 2000; 

Stokkan, et al., 2001; reviewed in Gachon, et al., 2004). Circadian rhythms are 

still existent in the absence of external Zeitgebers and remain invariant within a 

physiological range of temperatures (temperature compensation), even in cell 

culture (Tsuchiya, et al., 2003; Izumo, et al., 2003). 
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1.2 The mammalian circadian pacemaker and peripheral 

clocks 

Since the endogenous period commonly deviates slightly from 24 hours, the 

clock needs continuous adjustment to the external 24-hour cycle. This takes 

place in the circadian pacemaker, which in mammals consists of a population 

of neurons in the suprachiasmatic nuclei (SCN) of the brain. The SCN are 

bilateral structures located in the anterior hypothalamus, situated just above the 

optic chiasm, which in mice consist of around 10,000 neurons each 

(Abrahamson and Moore, 2001). It was demonstrated that bilateral ablation of 

the SCN in rats permanently destroyed their circadian rhythms (Figure 1.2A) 

(Stephan and Zucker, 1972; Moore and Eichler, 1972) and it was later shown 

that surgically implanting intact SCNs in hamsters restored rhythmicity 

(Lehman, et al., 1987). Moreover, functional SCN transplants in genetically 

arrhythmic mice generated a circadian rhythm with a period similar to that of 

the donor animal, and not the host (Ralph, et al., 1990; Sujino, et al., 2003). 
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Figure 1.2A. Ablation of the SCN causes loss of circadian rhythms. The locomotor 

activity recording of a rat kept in a light-dark cycle is depicted on horizontal lines, with two 

days per line. Locomotor activity displays a circadian pattern of activity (black bars) and rest 

(white bars). The data has been double-plotted to facilitate visualization, with each line 

showing the preceding day and the following day. Following bilateral SCN ablation (as 

indicated by the arrow), activity is randomly distributed, indicating loss of circadian rhythms. 

Modified from Moore (Moore, 1999). 

 

The circadian clock is characterized by three components: input pathways that 

reset the time, a pacemaker that generates the rhythm, and output signals that 

control circadian gene expression to promote circadian physiology and 

behavior (for review, see King and Takahashi, 2000; Lowrey and Takahashi, 

2004). Light is a powerful Zeitgeber, and entrainment of the SCN clock is 

achieved by means of light-sensitive neurons in the retina that project directly 

to the SCN via the retinohypothalamic tract (RHT) (Figure 1.2B) (Moore and 

Lenn, 1972; Sadun, et al., 1984). These retinal ganglion cells express the 

photopigment melanopsin (Gooley, et al., 2001; Hannibal, et al., 2002; Hattar, 
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et al., 2002; Hannibal, et al., 2004). Melanopsin transduces light, and electrical 

signals are sent through the RHT to the SCN where the neurons release the 

transmitters glutamate and pituitary adenylate cyclase-activating polypeptide 

(PACAP) (Hannibal, et al., 2000; reviewed in Reppert and Weaver, 2002; 

Hannibal, 2002), initiating a cascade of reactions that leads to adjustment of the 

circadian clock. 

 

 
 

Figure 1.2B. The retinohypothalamic tract. Light is a powerful Zeitgeber, and is 

transduced into neural signals by specific light-sensitive neurons in the retina of the eye. In 

turn, these retinal ganglion cells project directly to the SCN via the RHT, where they serve to 

entrain the SCN clock. Illustration by Osland TM, with the use of Servier Medical Art. 

 

Distinct cell populations in the SCN contribute to the clock, and based on their 

neurochemical properties they form two functional subregions, where a 

venterolateral core contains neurons expressing several neurotransmitters, 

including vasoactive intestinal peptide (VIP) and gastrin-releasing peptide 

(GRP), whereas a dorsomedial shell is characterized by neurons that express 

vasopressin (VP) (Abrahamson and Moore, 2001; reviewed in Moore, et al., 

2002; Hastings and Herzog, 2004). In addition, in most SCN neurons, the 

above-mentioned neuropeptides are colocalized with -aminobutyric acid 

(GABA) (Moore and Speh, 1993). To adjust the SCN clock by light, retinal 

input entrains the core neurons of the SCN, before the signal is conveyed from 
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the light-induced cells in the core to the rhythmic cells in the shell, which then 

set the clock (reviewed in Antle and Silver, 2005). 

 

Circadian rhythms are found throughout the body, including peripheral organs 

such as lungs, kidneys, liver and skin (Zylka, et al., 1998; Yamazaki, et al., 

2000; Bjarnason, et al., 2001; Yoo, et al., 2004). SCN neurons mainly project 

to neighboring areas in the hypothalamus, but also to the surrounding thalamus 

and other areas of the brain (Berk and Finkelstein, 1981; Abrahamson and 

Moore, 2001). Circadian output signals from the SCN are transmitted via 

neural connections (Ueyama, et al., 1999; la Fleur, et al., 2000; for review, see 

Kalsbeek, et al., 2006) and humoral pathways (Silver, et al., 1996; Oishi, et al., 

1998b; McNamara, et al., 2001) to synchronize local clocks in peripheral 

organs. The pacemaker is self-sustained, whereas the oscillation of peripheral 

clocks will dampen markedly after a few cycles without input from the SCN 

(Yamazaki, et al., 2000; reviewed in Hirota and Fukada, 2004). Circadian 

clocks consist of numerous, autonomous single cell oscillators that are 

synchronized to generate coordinated output (Welsh, et al., 1995), and certain 

cell cultures grown in vitro may also display circadian rhythms (Balsalobre, et 

al., 1998; Akashi and Nishida, 2000; Allen, et al., 2001). Although there is a 

delay of 4-6 hours in the expression patterns of circadian clock genes and 

proteins between the SCN and peripheral clocks (Lopez-Molina, et al., 1997; 

Balsalobre, et al., 1998; Zylka, et al., 1998; Allen, et al., 2001; reviewed in 

Balsalobre, 2002), the clock mechanisms are highly similar (reviewed in Ko 

and Takahashi, 2006), which allows us to use cell culturing as a model for 

peripheral circadian clocks. 
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1.3 Clock genes and molecular mechanisms of the 

mammalian circadian clock 

Clock genes encode proteins that are necessary for the generation or regulation 

of the circadian clock. Numerous clock genes have oscillating expression 

patterns, such as period homolog 1 (Per1), period homolog 2 (Per2), period 

homolog 3 (Per3), cryptochrome 1 (Cry1), cryptochrome 2 (Cry2) and brain 

and muscle aryl hydrocarbon receptor nuclear translocator like 1 (Bmal1) (Tei, 

et al., 1997; Balsalobre, et al., 1998; Oishi, et al., 1998a; Zylka, et al., 1998; 

Fustin, et al., 2009), whereas others are expressed at constant levels, including 

circadian locomotor output cycles kaput (Clock) (Oishi, et al., 1998a; 

Shearman, et al., 1999; Shearman, et al., 2000) (Figure 1.3A). Interestingly, 

mice with a clock gene mutation may have abnormal rhythms or may even be 

arrhythmic (Vitaterna, et al., 1994; Bae, et al., 2001; reviewed in King and 

Takahashi, 2000; Ko and Takahashi, 2006). 
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Figure 1.3A. Gene expression profiles of Per2, Bmal1 and Clock in cultured mouse 

fibroblasts (NIH-3T3) cells following a serum shock. NIH-3T3 cells were transiently 

exposed to a high dose (50%) of serum (serum shock) to synchronize circadian rhythms. 

After an initial surge of transcription, robust oscillations of Per2 (red symbols) and Bmal1 

(blue symbols) expression levels were observed, in antiphase with each other. In contrast, the 

expression of Clock (green symbols) did not oscillate. Cell cultures were serum-shocked at 

time t=0 and the mean value of n=3 replicates is given for each time point. The expression 

values were normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and the value 

at time t=0 was arbitrarily set to 1. Experiment performed by Osland TM. 

 

Clock genes are linked together by several positive and negative 

transcriptional-translational feedback loops, ensuring stable oscillations in the 

levels of both messenger RNAs (mRNAs) of clock genes and their protein 

levels. The causes and effects in the feedback loops are circularly linked, and 

include the proteins CLOCK and BMAL1, forming a heterodimer that binds to 

regulatory sequences (E-boxes) to activate the transcription of several other 

clock genes, including Per1, Per2, Per3, Cry1 and Cry2 (King, et al., 1997; 

Gekakis, et al., 1998; Jin, et al., 1999; Bunger, et al., 2000; reviewed in 

Reppert and Weaver, 2001). Following translation in the cytoplasm, PER and 
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CRY proteins dimerize and enter the nucleus, where the PER-CRY complex 

inhibits the actions of the CLOCK-BMAL1 dimer, thus indirectly repressing 

their own transcription via a negative feedback loop (Kume, et al., 1999; 

Vitaterna, et al., 1999; Griffin, et al., 1999; Shearman, et al., 2000) (Figure 

1.3B). Subsequently, PER and CRY proteins are degraded, and when their 

protein levels are sufficiently low, the cycle is complete and Per and Cry 

mRNA levels may rise again. Another feedback loop involves Bmal1 

transcription, which is positively regulated by retinoic acid-related orphan 

receptor-  (Ror- ) (Sato, et al., 2004), and negatively regulated by reverse 

viral erythroblastis oncogene product  (Rev-Erb- ) (Preitner, et al., 2002), 

where the proteins REV-ERB-  and ROR-  compete to bind at retinoic acid-

related orphan receptor response elements (ROREs) in the promoter of Bmal1 

with opposite effects (Preitner, et al., 2002; Sato, et al., 2004; Guillaumond, et 

al., 2005). In turn, the transcription of both Ror-  and Rev-Erb-  is modified 

by the CLOCK-BMAL1 dimer (Preitner, et al., 2002; Sato, et al., 2004; 

reviewed in Ko and Takahashi, 2006). The interacting feedback loops 

contribute to tight regulation of the clockwork, necessary to maintain a period 

of close to 24 hours. Furthermore, post-translational mechanisms, including 

phosphorylation, dimerization, nuclear import and export, regulation of 

transcriptional activity and chromatin modification all participate in fine-tuning 

the oscillations and contribute to the precision of the clock (Lee, et al., 2001; 

reviewed in Ko and Takahashi, 2006; Dardente and Cermakian, 2007). As an 

example, phosphorylation of PER proteins by casein kinase 1,  (CSNK1 ) 

contributes to regulating protein stability (Vielhaber, et al., 2000; Lowrey, et 

al., 2000; Vanselow, et al., 2006). 
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Figure 1.3B. Gene expression and feedback mechanisms in the mammalian circadian 

clock. The expression of the mammalian clock genes Per, Cry, Rev-Erb- , Ror-  and Bmal1 

is tightly regulated to ensure proper circadian oscillations. The CLOCK-BMAL1 complex 

drives a positive forward loop by binding to E-boxes and promoting transcription of target 

genes, whereas the heterodimer PER-CRY inhibits transcription mediated by CLOCK-

BMAL1. An additional feedback loop involves REV-ERB-  and ROR- , that compete to 

bind to ROREs to regulate the expression of Bmal1 with opposite effects. Illustration by 

Fernø J and Osland TM (modified from Hirota and Fukada, 2004). 

 

The circadian clock regulates the expression of numerous target genes, 

including D site albumin binding protein (Dbp), hepatic leukemia factor (Hlf), 

thyrotroph embryonic factor (Tef) and E4 promoter binding protein 4 (E4bp4). 

These transcription factors exhibit circadian cycling in the SCN and peripheral 

tissues (Lopez-Molina, et al., 1997; Balsalobre, et al., 1998; Mitsui, et al., 

2001), and regulate downstream target genes involved in neurotransmitter 

metabolism and fatty acid metabolism (for review, see Staels, 2006). 
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Disruption of the circadian clock may have impact on many aspects of 

physiology and behavior, and has been associated with complications such as 

sleep disturbances, mental illness (including bipolar disorder), metabolic 

complications and cancer (for review, see Gachon, et al., 2004; Lamont, et al., 

2007). 

 

1.4 Diurnal preference and clock genes 

Diurnal preference (chronotype) indicates the preference of an individual for 

morning versus evening. Morning types tend to rise early and are energetic in 

the first part of the day, whereas evening types generally get up later and have 

a correspondingly delayed activity peak. There is large variation in chronotype 

between individuals, also among people living in the same environmental 

conditions (reviewed in Roenneberg, et al., 2007). These differences may be 

described by a scale of morningness-eveningness, as evaluated with standard 

questionnaires such as the Horne-Östberg Morningness Eveningness 

Questionnaire (MEQ, Horne and Ostberg, 1976) and the Preferences Scale (PS, 

Smith, et al., 2002). Circadian rhythm sleep disorders are found at the two 

extremities of the chronotype scale. Subjects with advanced sleep phase 

syndrome (ASPS) suffer from drowsiness in the late afternoon (or early 

evening) followed by persistent early onset of sleep and spontaneous early 

morning awakening, both occurring before the conventional or desired time 

(ICSD-2, American Academy of Sleep Medicine, 2005). Delayed Sleep Phase 

Disorder (DSPD) is found at the other extremity, with subjects typically having 

a stable sleep schedule, with onset of sleep later than preferred (often between 

2 a.m. and 6 a.m.) and great difficulty rising at the desired time in the morning 

(ICSD-2, American Academy of Sleep Medicine, 2005). 

 

Several clock genes have been examined for influence on diurnal preference, 

and an association between a single-nucleotide polymorphism (SNP) in the 
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clock gene CLOCK and chronotype has been found (Katzenberg, et al., 1998), 

but conflicting results have also been reported (Robilliard, et al., 2002; 

Pedrazzoli, et al., 2007). In addition, mutations in PER2 may lead to a heritable 

autosomal dominant subtype of ASPS known as Familial Advanced Sleep 

Phase Syndrome (FASPS) (Toh, et al., 2001). FASPS patients have advanced 

sleep-wake cycles, and their oscillations of core body temperature and 

melatonin are correspondingly advanced by 4-5 hours. Sequence variations of 

the human PER3 gene have been extensively studied for vulnerability to 

circadian rhythm traits, and a variable number tandem repeat polymorphism 

(VNTR) in exon 18 of PER3 was reported to be associated with DSPD 

(Ebisawa, et al., 2001). The VNTR exists as a short allele of 4 tandem repeats 

of 54 base pairs and a long allele of 5 such repeats. The authors found an 

association between DSPD and the short allele in a Japanese population. 

Several replication studies have since been performed in both DSPD patients 

and the general population, with diverging results (Archer, et al., 2003; Pereira, 

et al., 2005; Viola, et al., 2007), indicating a need for additional studies. 

 

1.5 The circadian clock, bipolar disorder and lithium 

1.5.1 Clinical aspects of bipolar disorder and circadian rhythms 

Bipolar disorder is a serious mental illness, characterized by extreme mood 

swings with alternating periods of mania and depression. It is thought that 

circadian rhythms may play a role in the pathophysiology, as irregular sleep 

patterns are commonly seen in bipolar patients (Wehr, et al., 1985; Kasper and 

Wehr, 1992; Klemfuss, 1992; reviewed in Manji and Lenox, 2000; Jackson, et 

al., 2003), and subjects may present with unstable cycling of other circadian 

parameters, e.g. body temperature, blood pressure and melatonin secretion 

(Atkinson, et al., 1975; Kripke, et al., 1978;  or see Lenox, et al., 2002; 

McClung, 2007 for reviews). 
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1.5.2 Clock genes and the heritability of bipolar disorder 

The lifetime risk of bipolar disorder is around 1% (Merikangas, et al., 2007). It 

is a potentially disabling condition with a significantly elevated suicide rate, 

which together with an increased occurrence of cardiovascular disease and 

metabolic disorders, leads to a mortality rate that is 2-3 times higher among 

patients than in the general population (Osby, et al., 2001; Laursen, et al., 

2007; reviewed in Muller-Oerlinghausen, et al., 2002; Fagiolini, et al., 2008). 

Both environmental and genetic factors are thought to be involved in the 

etiology of the condition, with a complex mode of inheritance (reviewed by 

Barnett and Smoller, 2009). Family studies have revealed a markedly higher 

prevalence of bipolar disorder in first-degree relatives of patients, and the 

concordance between monozygotic twins is around 40%, with an estimated 

heritability of around 80% (McGuffin, et al., 2003; Kieseppa, et al., 2004; 

Edvardsen, et al., 2008; Lichtenstein, et al., 2009; reviewed in Barnett and 

Smoller, 2009). Numerous genome-wide association studies (GWAS) have 

been performed to screen for genes involved in the heritability of bipolar 

disorder (Purcell, et al., 2009), and interestingly, several clock genes have been 

implicated in the pathophysiology. Variants in PER2, PER3, CLOCK, BMAL1 

and REV-ERB-  (NR1D1) have been suggested to be associated with bipolar 

disorder, although replication studies have not always confirmed the findings 

(Mansour, et al., 2006; Nievergelt, et al., 2006; Shi, et al., 2008; Mansour, et 

al., 2009; Kishi, et al., 2009). 

 

1.5.3 Pharmacological treatment of bipolar disorder 

Drug therapy of bipolar disorder aims at attenuating mood fluctuations and 

preventing the occurrence of new episodes. The mood stabilizers lithium, 

valproic acid and carbamazepine are cornerstones in the pharmacological 

treatment (for guidelines, see Sachs, et al., 2000; American Psychiatric 

Association, 2000; Baldessarini, et al., 2010), and lithium has long been 



 

 

26 

considered the gold standard drug (Gershon, et al., 2009; Hirschowitz, et al., 

2010; for a review on the history of lithium treatment, see Schou, 2001). 

 

Manic phases of bipolar disorder typically present with elevated or irritable 

mood, distractibility, increased impulsivity and decreased need for sleep 

(American Psychiatric Association, 2000). Acute manic phases may be treated 

with a mood stabilizer, but also antipsychotic drugs such as olanzapine, 

risperidone, quetiapine or haloperidol are effective (reviewed in Fountoulakis 

and Vieta, 2008; Cipriani, et al., 2011). Often a combination of drugs from the 

two categories is used for optimal effect, with an underlying reasoning that the 

drugs have different and potentially complementary mechanisms of action 

(reviewed in Goodwin, et al., 2009). Main features of depressive episodes are 

depressed or irritable mood, apathy, psychomotor retardation and increased 

need for sleep (American Psychiatric Association, 2000). Depressive episodes 

may be treated with antidepressants in addition to a mood stabilizer (Sachs, et 

al., 2007; see consensus guidelines in Sachs, et al., 2000), although the risk of 

switching from depression to mania is present (reviewed in Fountoulakis, et al., 

2008). Being a chronic condition, bipolar disorder may require lifelong 

pharmacological treatment, which underlines the importance of optimizing the 

drug therapy. Lithium is widely used in long-term treatment, even though it has 

several limitations, including a narrow therapeutic window of serum 

concentration of 0.6-1.2 mM, where lower doses are ineffective, and patients 

may experience toxic effects if the serum concentration exceeds 1.5-2.0 mM 

(reviewed in Muller-Oerlinghausen, et al., 2002; Grandjean and Aubry, 2009). 

Another drawback is that not all patients respond to lithium treatment (for 

review, see Grof, et al., 2009). Still, since lithium may be highly effective in 

both acute manic and depressive phases, as well as in long-term prophylaxis, it 

is frequently the drug of choice (reviewed in Coryell, 2009; Gershon, et al., 

2009). 

 



 

 

    27

1.5.4 Lithium and the circadian clock 

It is intriguing that the alkali metal lithium, one of the most efficient drugs in 

the treatment of bipolar disorder, has been shown to modify circadian rhythms 

in humans and animals. Lithium prolonged the circadian rhythms in manic 

depressive patients (Kripke, et al., 1978) and in healthy controls (Johnsson, et 

al., 1983). Interestingly, the volunteers in the latter study were kept under 

constant conditions on the Norwegian island of Spitsbergen during the arctic 

midsummer, with little variation in light intensity and no additional external 

Zeitgebers. They displayed prolonged circadian oscillations of body 

temperature, locomotor activity and sleep-wake cycle with lithium 

administration (Johnsson, et al., 1983). Lithium has also been shown to prolong 

circadian rhythms in rats (McEachron, et al., 1982; Subramanian, et al., 1998) 

and yet other studies have demonstrated that lithium prolonged the locomotor 

activity period in fruit flies (Padiath, et al., 2004; Dokucu, et al., 2005). 

 

The main hypotheses for lithium action include its inhibition of inositol 

monophosphatase activity (the inositol depletion hypothesis) (Hallcher and 

Sherman, 1980; Berridge, et al., 1982; reviewed in Quiroz, et al., 2010) and its 

inhibition of the enzyme glycogen synthase kinase 3  (GSK-3 ) (Klein and 

Melton, 1996; Padiath, et al., 2004; reviewed in O'Brien and Klein, 2009). 

However, the exact underlying mechanisms of lithium action, and in particular 

how it modifies the circadian clock, have yet to be fully established. 

 

1.6 Circadian rhythms, energy metabolism and lipogenesis 

The circadian clock influences a large number of genes both directly and 

indirectly, and global gene expression studies have revealed that 2-10% of the 

mammalian transcriptome oscillates with circadian rhythmicity both in vivo in 

rodent SCN, liver and heart (Ueda, et al., 2002; Storch, et al., 2002; Panda, et 
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al., 2002) and also in vitro in cell cultures (Grundschober, et al., 2001; 

Duffield, et al., 2002). Interestingly, transcriptome studies further demonstrated 

that numerous genes involved in metabolic pathways oscillated (Akhtar, et al., 

2002; Miller, et al., 2007), indicating that the circadian clock participates in 

regulating energy metabolism. In fact, it has been shown that the two processes 

are closely connected, and new links between the circadian clock and lipid 

metabolism are gradually being discovered (reviewed in Staels, 2006; Green, et 

al., 2008). Circadian oscillations of metabolic factors are also observed at the 

functional level, as exemplified by the robust circadian rhythms of serum 

triglyceride levels (Figure 1.1) (Rajaratnam and Arendt, 2001), and the 

circulating amount of the appetite-regulating hormone leptin (Sinha, et al., 

1996; Licinio, et al., 1997). Interestingly, the diurnal rhythm of leptin has been 

shown to be SCN-dependent (Kalsbeek, et al., 2001), even though food intake 

and anticipation of food may influence rhythmicity in metabolic factors, 

including triglycerides and leptin (Ribeiro, et al., 1998; Ahren, 2000). 

 

Triglycerides, phospholipids and cholesterol are essential for energy storage, 

but they are also structural components of cell membranes and act as signaling 

molecules. Lipids are obtained in part from the diet, and in part synthesized 

endogenously de novo (reviewed in Lafontan, 2008). Excess carbohydrates in 

the diet are degraded to pyruvate and converted to fatty acids, which are 

subsequently synthesized to triglycerides. The liver is the main site for 

converting acetyl-CoA (an intermediate in the carbohydrate and lipid 

metabolism) via fatty acids to triglycerides (Figure 1.6), a process known as 

lipogenesis (for reviews, see Lafontan, 2008; Wakil and Abu-Elheiga, 2009; 

Voshol, et al., 2009). 

 

Major regulators of lipid biosynthesis gene transcription are the sterol 

regulatory element-binding proteins (SREBPs) (Figure 1.6) (reviewed in 

Bengoechea-Alonso and Ericsson, 2007; Raghow, et al., 2008). The SREBP 

family consists of three isoforms, SREBP-1a, SREBP-1c and SREBP-2, where 



 

 

    29

the two splice variants SREBP-1a and SREBP-1c are encoded by the same 

gene. To a large extent, the different isoforms of SREBP modulate different 

aspects of lipid synthesis. SREBP-1c preferentially regulates synthesis of 

triglycerides and phospholipids, controlling transcription of genes encoding 

key enzymes in lipogenesis, including acetyl-coenzyme A carboxylase  

(Acaca), fatty acid synthase (Fasn), fatty acid desaturase 2 (Fads2), stearoyl-

Coenzyme A desaturase 1 (Scd1) and stearoyl-Coenzyme A desaturase 2 

(Scd2) (Nakamura, et al., 2004; reviewed in Shimano, 2009). The isoform 

SREBP-2 primarily regulates genes involved in cholesterol synthesis, such as 

3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr) and mevalonate kinase 

(Mvk), whereas the isoform SREBP-1a modifies the transcription of genes in 

both pathways, but primarily promotes fatty acid synthesis (reviewed in 

Bengoechea-Alonso and Ericsson, 2007; Raghow, et al., 2008). 

 

 



 

 

30 

 
 
Figure 1.6. SREBP pathways and synthesis of triglycerides, phospholipids and 

cholesterol. The isoform SREBP-1c preferentially regulates transcription of genes involved 

in the synthesis of triglycerides and phospholipids, whereas SREBP-2 preferentially activates 

genes involved in cholesterol synthesis. SREBP-1a modifies the transcription of genes in both 

pathways. Diagram by Osland TM (modified from Horton, et al., 2002). 

 

1.7 Psychotropic drugs and SREBP activation 

Bipolar patients are vulnerable to weight gain and metabolic disturbances, and 

pharmacological treatment involving drugs associated with weight gain is one 

of the leading explanations for the associated obesity (McElroy, et al., 2002; 

Correll, 2007; for review, see Fagiolini, et al., 2008). Many antipsychotic 

drugs, such as clozapine and olanzapine, as well as some antidepressants, 
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including imipramine, have been shown to stimulate transcription of 

cholesterol and triglyceride genes in vitro in cell cultures (Ferno, et al., 2006; 

Raeder, et al., 2006b; Yang, et al., 2007) and in vivo in rats (Minet-Ringuet, et 

al., 2007; Ferno, et al., 2009). These genes are controlled by SREBP 

transcription factors (reviewed in Shimano, 2009; Sato, 2010), and the SREBP 

system has been proposed to be involved in the weight gain often associated 

with antipsychotics and antidepressants (Le Hellard, et al., 2009). The degree 

of SREBP activation varies between the drugs, and among the potent SREBP 

activators we find the antipsychotics clozapine, olanzapine and haloperidol, 

and the antidepressants imipramine and amitriptyline (Ferno, et al., 2006), 

whereas among the weaker SREBP activators we find the antipsychotic 

ziprasidone. The mood stabilizers lithium, valproic acid and carbamazepine 

appear not to activate SREBP (Ferno, et al., 2006; Raeder, et al., 2006a; 

Raeder, et al., 2006b). 

 

Schizophrenia is a major mental illness, characterized by positive symptoms, 

such as delusions, hallucinations (auditory or visual) and disorganization of 

speech, as well as negative symptoms, which include flattening of affect and 

poverty of speech or thought (reviewed in Freedman, 2003; Tamminga and 

Holcomb, 2005; American Psychiatric Association, 2000). Patients may also 

present with cognitive dysfunction, including impairment of memory, 

executive function and motor skills (Bilder, et al., 2000). Antipsychotics are 

considered the cornerstone of schizophrenia treatment, and include first-

generation antipsychotics, which mainly act by reducing positive symptoms, 

such as haloperidol, and second-generation antipsychotics, including clozapine 

and olanzapine, that may improve both positive and negative symptoms 

(reviewed in Freedman, 2003). In the clinical setting, clozapine has been 

associated with substantial weight gain and dyslipidemia (Cohen, et al., 1990; 

Leadbetter, et al., 1992) and severely low white blood cell count 

(agranulocytosis) (Alvir, et al., 1993). In vitro, clozapine causes pronounced 

SREBP activation with subsequent lipogenesis (Ferno, et al., 2005; Raeder, et 
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al., 2006b). Despite the possible complications of the drug, it remains a potent 

antipsychotic that may be effective in treatment-resistant schizophrenia (Kane, 

et al., 1988; reviewed in McIlwain, et al., 2011). Noteworthy, clozapine may 

also be used to improve symptoms of bipolar disorder (for review, see Ertugrul 

and Meltzer, 2003). 

 

Imipramine was the first tricyclic antidepressant to be developed in the 1950s 

(Azima and Vispo, 1958). It is a potent drug, but has to a large extent been 

replaced by newer classes of antidepressants, in particular selective serotonin 

reuptake inhibitors (SSRIs) that are better tolerated and have fewer side effects 

(reviewed in Wood, et al., 2002). Nevertheless, it remains an important tool for 

the investigation of antidepressant drugs. Imipramine has been associated with 

marked weight gain in patients (Berken, et al., 1984; Fernstrom, et al., 1986), 

and in cell culture it causes pronounced activation of the SREBP system, 

followed by lipogenesis (Raeder, et al., 2006a; Raeder, et al., 2006b). A meta-

analysis reported that although imipramine prevents depressive episodes in 

bipolar patients, it is little used in the clinic due to its side effects (Beynon, et 

al., 2009).  
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22  Aims of the study 

The overall aim of this study was to explore the role of clock genes in 

psychotropic drug effects and on selected biological functions (lipid 

metabolism and sleep). Specifically, we had the following objectives: 

1. Use a cell culture model of the circadian clock to explore the 

rhythmicity of clock gene expression, and investigate the effects of the 

mood stabilizer lithium on the transcription of clock genes (paper I) 

2. Identify and compare the effects of different psychotropic drugs, 

including the antipsychotic clozapine and the antidepressant 

imipramine, on the transcription of genes involved in the control of 

circadian rhythms and lipid metabolism (paper II) 

3. Examine and genotype a population of Norwegian students to 

investigate the influence of a VNTR in the clock gene PER3 on diurnal 

preference (paper III) 
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44  Summary of results 

4.1 Paper I 

We used an in vitro model of the circadian clock to perform a comprehensive 

study of the gene expression profiles of the clock genes Per1, Per2, Per3, 

Cry1, Cry2, Bmal1, Clock, Rev-Erb- , Ror- , Gsk-3 , Csnk1 , E4bp4 and Dbp 

for three consecutive days. Serum-shocked cultures of mouse fibroblasts (NIH-

3T3 cells) displayed rhythmic gene expression patterns of clock genes with a 

variety of phases and amplitudes, with peaks of expression levels distributed 

throughout the cycle. We examined the effects of lithium on clock gene 

expression, and found that lithium increased the peak amplitude of expression 

of Per2 and Cry1, whereas the peak amplitudes of expression of Per3, Cry2, 

Bmal1, E4bp4, Rev-Erb-  and Ror-  were reduced. Moreover, the period of 

Per2 was apparently prolonged by lithium. In light of the proposed role of 

circadian rhythm disturbances in bipolar disorder, these differential effects on 

clock gene expression could reflect a mechanism for the effects of lithium on 

circadian rhythms that may be relevant for its therapeutic effects in the 

treatment of bipolar disorder. 

 

4.2 Paper II 

The effects of lithium on the circadian clock have been suggested to be 

therapeutically relevant for the treatment of bipolar disorder. Additional mood 

stabilizing agents, antidepressants and antipsychotics have also been implicated 

in the pharmacological treatment; hence we explored and compared their 

effects on clock gene transcription. Since several antipsychotics and 

antidepressants are known to induce lipogenic gene expression, and given the 

accumulating evidence for a link between the circadian clock and lipid 

metabolism, we also investigated drug effects on the expression of lipid 
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biosynthesis genes. Lithium, imipramine and clozapine were investigated for 

effects on serum-shocked NIH-3T3 cells in a time course experiment. Clock 

genes displayed robust circadian rhythms, in contrast to lipid biosynthesis 

genes, suggesting that circadian oscillations in clock genes were not conveyed 

to the lipid metabolism genes in this model system. The effects of clozapine 

and imipramine differed partly from the effects of lithium, including reduced 

expression of Per2 by imipramine and clozapine, and increased Rev-Erb-  

expression levels by clozapine, indicating that the drugs act on the circadian 

clock via different mechanisms. Lithium had no effect on the expression of 

lipid metabolism genes, in contrast to the marked up-regulation caused by 

imipramine and clozapine. A panel of additional psychotropic drugs was 

examined at one time point in a separate experiment. The investigated 

antipsychotics and antidepressants had similar effects to clozapine and 

imipramine, suggesting drug class effects. The observed drug effects could 

reflect some shared regulatory mechanisms that contribute to their psychotropic 

action. 

 

4.3 Paper III 

Polymorphisms in clock genes could be associated with differences in 

circadian rhythms, and interest in their impact on circadian parameters, 

including diurnal preference, is growing due to potential relevance for physical 

and mental health. For instance, the circadian clock heavily influences timing 

of sleep, and associations between sleep and various complications have been 

reported, including obesity and psychiatric disorders. Several studies have 

investigated the role of a VNTR in the clock gene PER3, where the short allele 

of the VNTR has been associated with diurnal preference and with DSPD, but 

conflicting findings have also been reported. We performed a replication study 

to explore the role of this PER3 polymorphism on diurnal preference in a 

sample of 432 Norwegian university students. The widely used Horne-Östberg 
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Morningness Eveningness Questionnaire (MEQ) and the Preferences Scale 

(PS) were used to assess chronotype. We found no association between the 

PER3 VNTR and diurnal preference, indicating that the proposed role of PER3 

needs further clarification. 
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It is the theory which decides what we can observe. 

 

 

 

 

Albert Einstein 
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55  Discussion 

5.1 Selected methodological aspects 

5.1.1 Serum-shocking of cultured cells 

In this study, we explored circadian rhythms by examining the transcription of 

selected clock genes in cell culture. Circadian rhythms in cultured cells may be 

entrained by several factors, including exposure to a high dose (50%) of horse 

serum for two hours (serum shock) (Balsalobre, et al., 1998; Allen, et al., 

2001), the glucocorticoid hormone dexamethasone (Balsalobre, et al., 2000a), 

tissue plasminogen activator (Akashi and Nishida, 2000) and forskolin (Yagita 

and Okamura, 2000), indicating that various pathways are involved in the 

synchronization of circadian rhythms in peripheral clocks (Balsalobre, et al., 

2000b). We chose to use serum-shocking for entrainment, as serum contains a 

large number of signaling factors, and might be thought to stimulate several of 

the involved pathways for circadian entrainment. 

 

 It has been shown that a serum shock may synchronize the circadian rhythms 

in several cell lines, including Reuber's rat hepatoma cells (H-35) and mouse 

fibroblasts (NIH-3T3) (Balsalobre, et al., 1998; Akashi and Nishida, 2000). 

Nevertheless, we screened numerous cell types in search of an additional cell 

line (derived from a target organ of lithium treatment) which might be more 

relevant for bipolar disorder and the known side effects of lithium, including 

human glioma cells (GaMg), human hepatoma cells (HepG2), human kidney 

cells (HK-2), human thyroid cells (Nthy-ori 3-1), rat glioma cells (C6), H-35 

and NIH-3T3 cells. However, only the latter two cell lines displayed robust 

oscillations in clock gene expression after serum-shocking (Osland, et al., 

unpublished data), in agreement with previous studies (Balsalobre, et al., 1998; 

Akashi and Nishida, 2000). In contrast to the H-35 cells, NIH-3T3 cells were 

highly contact-inhibited, which is essential in serum shock experiments to 
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avoid potential biases caused by cell division; hence we chose the latter cell 

line for our studies. 

 

Circadian rhythms of NIH-3T3 cells were synchronized by serum-shocking 

confluent cultures. As predicted from the literature, robust oscillations were 

generated of rhythmic clock genes (e.g. Per2, Cry1 and Rev-Erb- ) with a 

variety of different phases (Balsalobre, et al., 1998; Oishi, et al., 1998a; Mitsui, 

et al., 2001; reviewed in Hastings and Herzog, 2004), whereas other clock 

genes were expressed at constant levels (e.g. Clock, Csnk1  and Ror- ) 

(Shearman, et al., 1999; Shearman, et al., 2000; Preitner, et al., 2002; 

Maywood, et al., 2003; Guillaumond, et al., 2005; for review, see Ko and 

Takahashi, 2006). In line with previous studies, we found a gradual damping 

over time of the oscillations (Yamazaki, et al., 2000; reviewed in Hirota and 

Fukada, 2004), which was attributed to lack of feedback, causing the cells to 

gradually fall out of phase with each other. This may, at least in part, be due to 

the individual cells containing autonomous clocks, each with their own period, 

causing the cells to require continuous entrainment in order to remain 

synchronized to one another. The damping effect limited the observation time, 

but nevertheless we observed robust oscillations for three consecutive days (i.e. 

three full circadian cycles). We observed only minor biological and technical 

variation, such as effects of the number of times the cells had been subcultured 

(passage number), and on the whole we found relatively little variation 

between the experiments. In summary, cell culturing provided a simplified and 

robust model to study clock gene expression, and the model could provide 

results that are relevant for circadian clocks in vivo. 

 

5.1.2 Selection of psychotropic drugs and dosage 

NIH-3T3 cell cultures were exposed to psychotropic drugs in order to 

investigate potential effects on the expression of genes involved in the 

circadian clock or lipid biosynthesis. We aimed at using drug doses that were 
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sufficiently high to produce effects in vitro on the target genes in question, but 

not so high as to cause cell toxicity. Hence, the investigated drug doses often 

markedly exceeded relevant serum concentrations in patients, but it is common 

to study high drug doses in vitro (Iitaka, et al., 2005; Kaladchibachi, et al., 

2007; Wu, et al., 2007). Lithium is known to affect the circadian clock by 

mechanisms that remain largely unknown, and we therefore studied its effects 

on clock gene expression. As mentioned in the Introduction, lithium has a 

narrow therapeutic plasma concentration range of 0.6-1.2 mM in humans 

(reviewed in Muller-Oerlinghausen, et al., 2002; for review on lithium toxicity, 

see McKnight, et al., 2012), although much higher drug concentrations (20 

mM) are tolerated in vitro in cell culture (Iitaka, et al., 2005; Yin, et al., 2006; 

Wu, et al., 2007). Since we found dose-dependent effects of lithium on clock 

genes, with no significant toxicity up to 20 mM lithium chloride as determined 

by flow cytometry, we used this latter concentration to obtain pronounced 

effects of the drug (paper I and paper II). 

 

In addition to mood stabilizers, antipsychotics and antidepressants are effective 

in the treatment of bipolar episodes (Goodwin, et al., 2009; Cipriani, et al., 

2011), and we therefore explored their effects on the transcription of clock 

genes. Antipsychotic and antidepressant drugs have often been associated with 

weight gain, dyslipidemia and type 2 diabetes (reviewed in Allison, et al., 

2009; Raedler, 2010). Since new links between the circadian clock and lipid 

metabolism are continuously emerging (reviewed in Asher and Schibler, 2011), 

we also studied drug effects on the transcription of lipid biosynthesis genes, 

and whether drug-induced effects on clock genes and lipogenic genes 

corresponded (paper II). We investigated effects of imipramine, a prototypical 

tricyclic antidepressant, and the second-generation antipsychotic clozapine, 

both potent SREBP activators (Ferno, et al., 2005; Raeder, et al., 2006a) that 

have been associated with substantial weight gain in patients (Berken, et al., 

1984; Fernstrom, et al., 1986; Cohen, et al., 1990; Leadbetter, et al., 1992; 

Lamberti, et al., 1992; for review, see Allison, et al., 1999; Asenjo Lobos, et 



 

 

42 

al., 2010). We examined the effects of 15 M imipramine, which is within the 

range of concentrations where activation of the SREBP system is expected, 

without toxic drug effects in the cells (Sukma, et al., 2003; Raeder, et al., 

2006a; Vik-Mo, et al., 2009). Correspondingly, based on previous studies 

(Ferno, et al., 2006; reviewed in Ferno, et al., 2011), we exposed the cell 

cultures to 30 M clozapine. The selected concentrations are considerably 

higher than the recommended target plasma concentrations in patients (0.6-1.1 

M imipramine and 1.1-1.8 M clozapine) (Baumann, et al., 2004), but the use 

of high doses may in part be justified by the lipophilic properties of the drugs, 

which cause them to have large volumes of distribution in the body, with a 

tendency towards drug-accumulation in the brain and adipose tissues. In line 

with this, the concentration of clozapine has been found to be over 15 times 

higher in the rat brain than in serum (Weigmann, et al., 1999). 

 

To explore whether the transcriptional changes observed for lithium, 

imipramine and clozapine on circadian gene expression could be generalized to 

hold for their respective psychotropic drug classes, we investigated a panel of 

representative mood stabilizers, antidepressants and antipsychotics for effects 

on clock genes and lipid metabolism genes. The mood stabilizers valproic acid 

and carbamazepine, the antidepressants amitriptyline (tricyclic antidepressant) 

and fluoxetine (SSRI), the first-generation antipsychotic haloperidol, and the 

second-generation antipsychotic drugs clozapine, olanzapine, quetiapine, 

aripiprazole and ziprasidone were included in the panel. Hence, both potent 

activators of the SREBP system, such as clozapine, olanzapine and haloperidol, 

along with drugs with low lipogenic potential, including aripiprazole and 

ziprasidone, were represented in the panel. We investigated drug effects at one 

time point, 24 hours after a serum shock, based on the time course experiments 

with lithium, imipramine and clozapine, since several clock genes are expected 

to peak at that time point, and drug effects should also be around their maxima 

(Ferno, et al., 2005; Raeder, et al., 2006a). We used a fixed concentration of 25 

M of each drug, which based on earlier studies was expected to be well 
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tolerated in cell culture, and be sufficiently high to produce effects (Koch, et 

al., 2003; Ferno, et al., 2005; Levkovitz, et al., 2005; Raeder, et al., 2006a; 

Kato, et al., 2008; Vik-Mo, et al., 2009; Lauressergues, et al., 2010). Of note, 

these drugs have very different target plasma concentrations in patients, but we 

used a single drug concentration to make a simple comparison between the 

agents. Drug effects on gene expression levels were compared to the effects of 

20 mM lithium chloride, which had previously been studied comprehensively 

(paper I). We used 0.05% dimethyl sulfoxide (DMSO) as a solvent due to the 

low solubility of certain psychotropics, and although it might have stimulated 

lipogenesis due to its lipophilic compound and influenced our results, we found 

no significant difference between controls with or without DMSO (data not 

shown). 

 

5.1.3 Quantitative real-time PCR 

Quantitative real-time polymerase chain reaction (qRT-PCR) is a sensitive 

technique to quantify mRNA levels of specific genes. In complementary DNA 

(cDNA) synthesis, mRNA is reverse transcribed to cDNA, before targeted 

DNA strands are repeatedly amplified and quantified in qRT-PCR. The 

procedure is widely used, as it only requires small amounts of test material and 

yields reproducible results. TaqMan chemistry or the fluorescent dye SYBR 

Green may be used in the qRT-PCR to measure fluorescence intensity (in real-

time) after each PCR cycle. SYBR Green detects all double-stranded DNA, 

meaning it can be used with any given primer pair, but it may create false 

positive signals due to nonspecific amplification products. On the other hand, 

TaqMan probes only detect specific amplicons, but a different probe is required 

for each primer pair. Since we obtained consistent results for our primer pairs 

with SYBR Green, and since TaqMan chemistry is far more expensive, we 

preferentially used SYBR Green, although TaqMan probes were used for some 

of the assays. 
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The mRNA levels of the genes of interest are usually normalized to the amount 

of one or more endogenous reference genes (so-called housekeeping genes) in 

the same sample. However, in our experiments we observed that one of the 

reference genes was affected by the serum shock ( -actin (Actb)), and others 

were sensitive to drug exposure (Gapdh and -2 microglobulin (B2M)). Drug 

response was observed when cell cultures were exposed to clozapine or 

imipramine, hence to remedy for this, we used the mean of several endogenous 

controls (ribosomal protein, large, P0 (Rplp0), Actb and B2M) for 

normalization in the experiments involving antipsychotics and antidepressants 

(paper II). It is difficult to find appropriate reference genes that remain 

invariant to all aspects of experimental conditions, but in support of our 

selection, none of the used reference genes displayed circadian oscillations, and 

moreover, the results were highly similar with and without normalization to the 

reference genes. 

 

The qRT-PCR data was analyzed using both the standard curve method and the 

comparative  Ct method. A dilution series of cDNA lies at the base for 

quantification of the samples with the standard curve method. Alternatively, 

corresponding dilutions at the RNA level may be used to create a standard 

curve, but high RNA concentrations might cause inhibition during cDNA 

synthesis, which would result in a flattening of the standard curve, and could 

bias the results. For the comparative  Ct method, no standard curve is 

needed, but it is required that the amplification efficiencies of the primers for 

the gene of interest and the reference gene are similar. Both methods calculate 

the fold change in expression of a gene of interest relative to a reference gene, 

in a treated sample compared to one or several calibrator samples (generally 

controls or untreated samples are used). Moreover, both methods assume that 

the amplification efficiency remains constant for each PCR cycle and in all 

samples. However, this may not always be the case and could influence the 

outcome. We observed minor differences in the results using the two methods 

of analysis, with the standard curve method estimating slightly greater 



 

 

    45

differences between controls and drug-exposed samples, compared to the  Ct 

method. Nevertheless, the two methods essentially coincided, and we switched 

from the standard curve method (paper I) to the  Ct method for the 

experiments with antipsychotics and antidepressants (paper II), due to the large 

sample size in paper I, since the  Ct method minimizes the number of 

reactions required, as a standard curve is not necessary for each run. However, 

results at the gene expression level cannot be extrapolated directly to functional 

effects, and confirmation of the results at the protein level would have been 

valuable for the interpretation. 

 

5.1.4 Mathematical and statistical analysis 

We applied several methods to describe the circadian oscillations and analyze 

drug effects. In the experimental setup in paper I, with serum-shocked cells 

exposed to lithium or vehicle, a squared sine function was used to approximate 

the oscillations and detect changes in gene expression caused by lithium. 

Parameters such as period, amplitude and phase were calculated, and we found 

significant effects of lithium on several genes, mainly on the amplitude of 

expression. In addition to approximating the data with the mathematical model, 

we performed a two-way analysis of variance (ANOVA) for each gene, with 

main effects for time and treatment (drug versus control), along with an 

interaction term between the two. The mathematical model was more 

restrictive than ANOVA and the two techniques did not always give fully 

concordant results. Discrepancies were attributed to limitations of the model in 

describing the observed oscillations. Due to the large variation in the ability of 

the functions in the mathematical model to approximate the oscillations, we 

based our conclusions on two-way ANOVA results for the data from the time 

course experiments comparing effects of lithium, imipramine and clozapine 

(paper II). In cases where the interaction term was significant in addition to the 

main effects, it was less straightforward to interpret drug effects, and the 

analysis was followed up with Dunnett's post-hoc test. Treatment groups were 
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subsequently compared using one-way ANOVA at each single time point, 

followed by Dunnett's post-hoc test of pairwise comparison of the treated 

samples with the controls. Finally, to examine individual time points for 

significant effects in the drug panel experiment, we performed t-tests (paper II). 

 

5.2 Circadian rhythms in clock genes and lipid metabolism 

genes 

5.2.1 Circadian oscillations in clock gene expression 

Exposing confluent cell cultures of mouse fibroblasts (NIH-3T3 cells) to a 

serum shock, represents a useful technique for studying peripheral circadian 

clocks in vitro. The serum shock generated robust circadian oscillations of 

approximately 24 hours in the transcription levels of the majority of the clock 

genes we investigated. The rhythmic clock genes displayed a variety of phases 

and amplitudes, and were in agreement with previous reports (Balsalobre, et 

al., 1998; Mitsui, et al., 2001; for review, see Hastings and Herzog, 2004). For 

instance, Per2 expression peaked around 24 and 48 hours, and was in antiphase 

with Bmal1 (Oishi, et al., 1998a; reviewed in Hirota and Fukada, 2004), that 

peaked around 36 and 64 hours (Figure 1.3A). We did not detect oscillations in 

the expression patterns of some of the clock genes, such as Clock, Csnk1  and 

Ror- , in line with previous studies reporting that they are constitutively 

expressed (Shearman, et al., 1999; Shearman, et al., 2000; Maywood, et al., 

2003; Guillaumond, et al., 2005; reviewed in Ko and Takahashi, 2006). Taken 

together, the observed expression patterns support the validity of this model 

system of a peripheral circadian clock. 
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5.2.2 Links between the circadian clock and lipid metabolism 

Obesity represents a major health challenge worldwide, and has become the 

most common health disorder among young people in Europe (Obesity: 

preventing and managing the global epidemic, 2000; Doak, et al., 2012; 

reviewed in Oster, 2010). In light of the numerous proposed links between the 

circadian clock and lipid metabolism (reviewed in Froy, 2011; Huang, et al., 

2011; Delezie and Challet, 2011), it is highly interesting that short sleep is 

associated with obesity, diabetes and the metabolic syndrome (Grandner, et al., 

2011; for review, see Knutson, et al., 2007; Oster, 2010). Furthermore, shift 

workers have an increased incidence of obesity and diabetes (Karlsson, et al., 

2001; reviewed in Huang, et al., 2011). The SCN is entrained by light, but not 

by food, hence shifts in feeding (as seen in shift workers) may rapidly uncouple 

peripheral clocks (such as the liver clock) from the SCN clock (Damiola, et al., 

2000; Stokkan, et al., 2001), leading to misalignments that may pave the way 

for metabolic disturbances (reviewed in Delezie and Challet, 2011; Albrecht, 

2012). Further emphasizing the impact of food on regulating circadian 

rhythms, a recent global gene expression study demonstrated that in the 

absence of food, the number of rhythmic transcripts dropped markedly in 

mouse liver, while feeding restored cyclic transcription of several hundreds of 

genes (Vollmers, et al., 2009). In addition to being modified by food intake, the 

peripheral clock in the liver is synchronized centrally by the SCN. In fact, the 

circadian clock and lipid metabolism reciprocally influence each other (Figure 

5.2.2) (Vollmers, et al., 2009; reviewed in Staels, 2006; Green, et al., 2008). 

 

It has been shown that mutations of the clock genes Clock and Bmal1 lead to 

adverse metabolic effects in mice, including obesity, diabetes and dyslipidemia 

(Turek, et al., 2005; Shimba, et al., 2011). Also Per2 (Yang, et al., 2009a) and 

Rev-Erb-  (Raspe, et al., 2002) have been implicated in the development of 

metabolic disturbances, emphasizing the crucial role of the circadian clock in 

lipid homeostasis.  Further suggesting a reciprocal link between the circadian 
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clock and lipid metabolism, obese rats with a mutation in the leptin receptor 

(Zucker rats) have phase-advances of activity, feeding and body temperature 

rhythms, and the amplitudes of these circadian oscillations are attenuated 

(Fukagawa, et al., 1992; Murakami, et al., 1995; Mistlberger, et al., 1998). 

 

The mechanisms that couple these two processes are poorly understood, but 

numerous genes have been implicated in the interaction at the molecular level 

(for review, see Green, et al., 2008; Bass and Takahashi, 2010; Asher and 

Schibler, 2011). Various clock genes contribute to modifying lipid metabolism, 

such as Per2 regulating peroxisome proliferator activated receptor  (Ppar- ) 

function (Grimaldi, et al., 2010; Schmutz, et al., 2010), Rev-Erb-  modulating 

SREBP target genes (Anzulovich, et al., 2006; Le Martelot, et al., 2009), and 

Bmal1 has been implied in glucose and lipid metabolism (Rudic, et al., 2004; 

Shimba, et al., 2005). Also downstream transcription factors of the circadian 

clock, such as Dbp, Hlf and Tef are involved in lipid metabolism (reviewed in 

Staels, 2006). Conversely, several metabolic regulators influence the circadian 

clock, including AMP-activated protein kinase (AMPK) that modulates 

circadian rhythms by phosphorylating the clock component CRY1 (Lamia, et 

al., 2009; reviewed in Fan, et al., 2012), Ppar-  regulating Bmal1 transcription 

(Wang, et al., 2008; reviewed in Kawai and Rosen, 2010) and peroxisome 

proliferator activated receptor  coactivator 1  (Pgc-1 ) promoting 

transcription of Bmal1 and  Rev-Erb-  (Liu, et al., 2007). 
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Figure 5.2.2. Interaction between the circadian clock and lipid metabolism. Light 

synchronizes the pacemaker in the SCN to the environment, whereas circulating hormones 

and food intake contribute to modifying peripheral oscillators. Output signals from the clock 

may influence metabolism, and for instance the transcription factors Rev-Erb- , Dbp, Hlf and 

Tef are among the targets of the circadian clock that in turn regulate metabolism. Reproduced 

from Staels with permission of the author (Staels, 2006). 

 

To explore the links between the circadian clock and lipid metabolism, we 

investigated the transcription of several lipid biosynthesis genes and compared 

them to expression profiles of clock genes. In vivo, it has been shown that the 

expression levels of numerous lipid metabolism genes oscillate, such as 

peroxisome proliferator activated receptor  (Ppar- ) in rats (Lemberger, et 

al., 1996), or Fasn, Hmgcr and Ppar-  in mice (Patel, et al., 2001; Oishi, et al., 

2005). However, in our model system, a serum shock with subsequent clock 

gene oscillations was not sufficient to entrain circadian rhythms in the lipid 

metabolism genes Fads2, Hmgr, Scd1 or Scd2. Our results are in agreement 

with previous studies in NIH-3T3 cells under similar experimental conditions, 

where a serum shock was not sufficient to induce circadian metabolic activity 

(Allen, et al., 2001; Hughes, et al., 2009). The observed lack of rhythmicity in 

vitro could at least partly be due to the absence of additional factors 

(Zeitgebers) present in vivo, such as hormones or nutritional status, and it 
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would appear that the mechanisms required for oscillation of clock genes and 

lipid metabolism genes are independent of each other in this model system. In 

addition, microarray studies have demonstrated that rhythmicity is highly 

tissue-specific, with large variation in the set of genes that oscillate in the 

different tissues, and minimal overlap from study to study (Panda, et al., 2002; 

Storch, et al., 2002; Zvonic, et al., 2006; Menger, et al., 2007; Miller, et al., 

2007), which was proposed to be caused by applying different algorithms to 

detect oscillation (see Doherty and Kay, 2010 for review). This tissue-specific 

rhythmicity could also in part explain the lack of rhythmicity in our 

experimental set-up. 

 

5.3 Psychotropic drug effects on clock genes and lipid 

metabolism genes 

5.3.1 Psychotropic drugs differentially alter the amplitudes of clock 

gene expression 

We investigated the effects of lithium on circadian rhythms in an established in 

vitro model of the circadian clock. Lithium differentially changed the 

amplitude of several clock genes, including an increase in the oscillation 

amplitude of Per2 and Cry1 expression, whereas the amplitudes of Per3, Cry2, 

Bmal1, Rev-Erb- , Ror-  and E4bp4 were reduced (paper I). In previous 

studies on lithium, the focus has mainly been on its lengthening effect on 

circadian rhythms in humans (Kripke, et al., 1978; Johnsson, et al., 1983) and 

animals (McEachron, et al., 1982; Subramanian, et al., 1998; Klemfuss, et al., 

1992; Padiath, et al., 2004), although lithium has also been reported to reduce 

the oscillation amplitudes of neurotransmitter receptors (Kafka, et al., 1982). 

However, only the period of Per2 was apparently prolonged by lithium in our 

experimental setup (paper I). In line with our results, a recent study 
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demonstrated that lithium increased the oscillation amplitude of both gene 

expression levels and protein amount in mice, in addition to a prolonged period 

of Per2 expression in vivo and in vitro (Li, et al., 2012). Moreover, another 

study found no alteration in the period of gene expression, and only altered 

amplitudes of the oscillations were reported, including reduced amplitudes of 

BMAL1, DBP and REV-ERB-  expression in fibroblasts from bipolar patients 

compared to controls (Yang, et al., 2009b). Along with our findings, these 

studies provided new leads for the association between bipolar disorder and 

circadian rhythms, and suggest a possible role for the oscillation amplitudes of 

clock genes in the pathophysiology of bipolar disorder. This is further 

supported by studies demonstrating that subjects suffering from depression (a 

disorder with many similarities to bipolar disorder) have blunted amplitudes of 

circadian parameters, including body temperature and plasma melatonin levels, 

and moreover, the deficient amplitudes are restored in remission (Souetre, et 

al., 1989; Szuba, et al., 1997). 

 

Additional mood stabilizers, antidepressants and antipsychotics have also been 

implicated in the treatment of bipolar disorder, and we investigated whether 

such psychotropic drugs also affect the transcription of key circadian clock 

genes. Interestingly, we found that clozapine and imipramine also affected the 

transcription levels of various clock genes, including a down-regulation of 

Per2 by both drugs, and an up-regulation of Rev-Erb-  expression by clozapine 

(paper II). Moreover, several other psychotropics and antidepressants also had 

significant effects on clock gene expression, indicating that alteration of clock 

gene transcription is not specific for lithium, and may be a common feature of 

several psychotropic drugs. In fact, it has been reported by others that valproic 

acid increased Per2 and Cry1 expression in mouse and human fibroblasts 

(Johansson, et al., 2011), fluoxetine differentially augmented or reduced the 

expression levels of Clock, Bmal1, Per1, Per2 and Cry2 in the mouse brain 

(Uz, et al., 2005) and haloperidol increased Per1 expression in mouse SCN 

(Viyoch, et al., 2005), suggesting that modification of circadian rhythms could 
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represent shared regulatory mechanisms that are relevant for their therapeutic 

effects. 

 

5.3.2 Transcriptional effects of psychotropic drugs on clock genes 

and lipid metabolism genes 

Although imipramine and clozapine had effects on clock genes, the 

transcriptional patterns differed from lithium (paper II). This suggests drug-

specific regulation of clock genes, which is emphasized by other differences 

between the drugs, such as the activation of lipogenic gene transcription by 

clozapine and imipramine, not observed by lithium. Examination of additional 

mood stabilizers (the antiepileptics valproic acid and carbamazepine), 

antidepressants (amitriptyline and fluoxetine) and antipsychotics (olanzapine, 

haloperidol, quetiapine, aripiprazole and ziprasidone) at one time point (24 

hours) following a serum shock, revealed similar drug effects to what had been 

observed for lithium, imipramine and clozapine, respectively, suggesting drug 

class effects (paper II). In contrast to the antipsychotics and antidepressants, the 

mood stabilizers only had minor effects on lipid metabolism genes, and it 

would appear that mood-stabilizing agents regulate clock genes independently 

of lipid metabolism genes (at least in vitro). This indicates that no evident 

regulatory link between the circadian clock and lipid metabolism is present in 

this model system, although it cannot be excluded. We found no significant 

effects by valproic acid or carbamazepine on any gene, and previous studies on 

the action of these mood stabilizers on circadian rhythms have been few and 

contradictory (Klemfuss and Kripke, 1995; Dokucu, et al., 2005). It is possible 

that higher drug concentrations would have had effect on the circadian clock, 

as has recently been reported for 1 mM valproic acid (Johansson, et al., 2011). 

However, in support of our negative finding for valproic acid on clock genes, 

no effect on lipid metabolism genes was found at this concentration either 

(Raeder, et al., 2006a). 
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5.3.3 Post-transcriptional modifications of clock proteins 

Our main focus on drug effects on the circadian clock has been at the gene 

expression level, and even though we found several interesting leads to pursue, 

future experiments should include protein and functional studies, since it has 

been suggested that post-transcriptional mechanisms represent important 

circadian control points (Lee, et al., 2001). As an example, the hepatic 

proteome of mice was examined for rhythmicity. It was demonstrated that 20% 

of the proteome oscillated, and moreover, for around half of the rhythmic 

proteins, the levels of the corresponding mRNAs did not display circadian 

oscillations (Reddy, et al., 2006). 

 

The kinase GSK-3  has been associated with the circadian clock (Padiath, et 

al., 2004; Kaladchibachi, et al., 2007), and the phosphorylation level of GSK-

3  is cyclic, as opposed to the protein amount (Iitaka, et al., 2005), suggesting 

that important regulation of the circadian clock occurs by post-translational 

modification. GSK-3  has is a known target of lithium (Klein and Melton, 

1996; Stambolic, et al., 1996), and it was recently demonstrated that 

overexpression of Gsk-3  rescued behavioral effects of lithium-treated mice 

(O'Brien, et al., 2011). We found that lithium treatment did not alter the 

transcription levels of Gsk-3  (paper I), whereas a significant difference at the 

phosphorylation level was observed (Osland, et al., unpublished data), with 

lithium augmenting the phosphorylation status of GSK-3 , in line with a 

previous report (Iitaka, et al., 2005). These authors found that overexpression 

of GSK-3  caused a phase advance of clock gene expression, whereas 

inhibition gave a phase delay, and proposed that GSK-3  might contribute to 

modulating circadian rhythms by regulating the nuclear entry of PER2, since 

GSK-3  phosphorylates and activates PER2 (Iitaka, et al., 2005). Lithium 

inhibits GSK-3  by phosphorylation, and could thus delay nuclear 

translocation of PER2, and consequently prolong the period. In support of this 

role for PER2 in determining the length of circadian rhythms, it has been 
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shown that phosphorylation of PER2 at different phosphorylation sites may be 

used to prolong or shorten the period length in oscillating cell cultures 

(Vanselow, et al., 2006). The observed effects of lithium on the 

phosphorylation status of GSK-3  illustrate the value of confirming gene 

expression results at the functional level. However, for several clock proteins, 

the available commercial antibodies gave unsatisfactory western blots, and we 

could not confirm our qRT-PCR findings at the protein level. 

 

5.4 Association of a VNTR polymorphism in PER3 with 

chronotype 

It has been suggested that a main effect of the clock gene PER3 is to regulate 

sleep mechanisms (Archer, et al., 2008; Viola, et al., 2007; reviewed in Dijk 

and Archer, 2010), and a VNTR in PER3 has been proposed a role in 

determining chronotype (Archer, et al., 2003; Pereira, et al., 2005). The short 

PER3 allele has been associated with eveningness in healthy controls (Archer, 

et al., 2003; Pereira, et al., 2005; Lazar, et al., 2012) and in DSPD patients 

(Ebisawa, et al., 2001; Archer, et al., 2003) (Table 5.4). However, conflicting 

results have also been reported, such as an association between the long PER3 

allele and DSPD (Pereira, et al., 2005). Finally, several recent studies have 

reported no association between chronotype and the PER3 VNTR 

polymorphism in healthy controls (Viola, et al., 2007; Goel, et al., 2009; 

Barclay, et al., 2011) (Table 5.4). We performed a replication study in a sample 

of 432 Norwegian university students, but were not able to confirm previous 

findings of an association between the VNTR in PER3 and diurnal preference 

(paper III). 
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Table 5.4. Overview over association studies of the VNTR in PER3 and diurnal 
preference or DSPD. 
 
Reference Allele Association Tool for assessment 

of chronotype in 

healthy controls 

Geographic 

location 

(Ebisawa, et al., 2001) short DSPD not applicable Japan 

(Archer, et al., 2003) short 

short 

DSPD 

eveningness 

not applicable 

MEQ 

Great Britain 

(Pereira, et al., 2005) long 

long 

DSPD 

morningness 

not applicable 

MEQ 

Brazil 

(Viola, et al., 2007)  no association sleep-wake cycle, 

melatonin and cortisol 

rhythms 

Great Britain 

 

(Goel, et al., 2009)  no association Composite Scale U.S.A. 

(Viola, et al., 2011) long morningness activity, melatonin 

rhythm 

Switzerland 

and France 

(Barclay, et al., 2011)  no association MEQ Great Britain 

(Lazar, et al., 2012) long morningness MEQ and Munich 

Chronotype 

Questionnaire 

Ireland 

 

 

 

There may be several explanations for our negative finding. Chronotype has 

been shown to depend on age, where young adults are often associated with 

eveningness, and augmenting age is associated with increasing morningness 

(Carrier, et al., 1997; reviewed in Roenneberg, et al., 2007). In agreement with 

earlier studies (Archer, et al., 2003; Pereira, et al., 2005), a recent report 

demonstrated an association between the long allele and a phase advance of 

certain circadian parameters including melatonin in a sample of older people 

(Viola, et al., 2011). A limitation of our study was that the sample only 

consisted of young adults, which could have biased our results. However, the 

instrument scores for both questionnaires were normally distributed in our 

study population (paper III). Also, our sample had the advantage of being 

relatively homogeneous with respect to demographic variables such as age, 
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education and social environment, and although we did not specifically register 

the ethnic background of the participants, we estimated that the large majority 

of the volunteers were ethnically Norwegian. In support of this assumption, the 

observed genotype frequencies corresponded well with a previous report of 

PER3 VNTR genotypes on Norwegians (Nadkarni, et al., 2005). Another 

possible contributing factor could be the latitude of the geographic locations 

where the studies were performed, since the latitude varied markedly from 

study to study (Table 5.4) and many factors, such as temperature, daylight 

length and intensity vary greatly with latitude; hence it was proposed that 

latitude and ethnicity might have influenced the associations (Pereira, et al., 

2005). However, two studies found no evidence for natural selection of clock 

gene variants based on latitude (Nadkarni, et al., 2005; Ciarleglio, et al., 2008). 

It could also be that the role of PER3 is smaller than previously assumed, 

which is supported by a recent report on the VNTR in PER3 having no effect 

on circadian period (Hasan, et al., 2012), and the question of the role of PER3 

is left unanswered.  
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66  Concluding remarks and future perspectives 

We demonstrated that a main effect of lithium on clock gene expression was to 

differentially alter the oscillation amplitudes (paper I). Identifying molecular 

targets of lithium is highly valuable for understanding the pathophysiology 

underlying bipolar disorder and the molecular mechanisms of lithium action. 

Animal models of depression and mania may be useful to this purpose, and 

models of depression have long been established in rodents, such as the forced 

swim test (Porsolt, et al., 1978) and the tail suspension test (Steru, et al., 1985). 

Recently, novel animal models of bipolar mania have been proposed, including 

a model where disruption of the gene Clock causes behavior comparable to 

what is seen in manic patients (Roybal, et al., 2007). This is highly interesting 

in light of numerous studies demonstrating associations between 

polymorphisms in clock genes and bipolar disorder (Benedetti, et al., 2003; 

Nievergelt, et al., 2006; Kripke, et al., 2009). Although contradictory and 

negative findings have been reported (Mansour, et al., 2009; Kishi, et al., 

2009), recent efforts at the genome-wide level still support such an association 

(McCarthy, et al., 2012). Furthermore, based on studies linking bipolar 

disorder with the expression of the sodium pump Na+/K+-ATPase (NKA) in the 

brain, such as postmortem findings in brain tissue from patients (Rose, et al., 

1998) as well as association studies (Goldstein, et al., 2009), a novel model for 

mania was recently proposed, involving inactivation of neuron-specific NKA 

in mice (Kirshenbaum, et al., 2011). In line with the behavioral deficits in 

animal models of depression being lithium-sensitive (extensively reviewed in 

O'Donnell and Gould, 2007), lithium also rescued behavioral effects in both 

models of mania (Roybal, et al., 2007; Kirshenbaum, et al., 2011). In addition 

to elucidating the pathophysiology of bipolar disorder, such animal models 

open for the possibility to extensively monitor and manipulate parameters of 

the circadian clock, for further investigation of the action of lithium and other 

psychotropic drugs. 
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In addition to studying the effects of lithium on clock gene expression, we 

demonstrated that various psychotropic drugs with diverse pharmacological 

actions, including clozapine and imipramine, also influenced the levels of clock 

gene transcripts in NIH-3T3 cells, which could be relevant for their therapeutic 

effects (paper II). This is intriguing since the investigated drugs have main 

areas of use in distinct, although partly overlapping psychiatric illnesses 

(reviewed in Craddock, et al., 2006; Lin and Mitchell, 2008; Fountoulakis and 

Vieta, 2008). The various drugs had diverse effects, indicating that they act on 

the circadian clock via different mechanisms. However, they may have 

common targets relevant for their effects on circadian rhythms, and glycogen 

synthase kinase 3  (GSK-3 ) would be a good candidate, as antipsychotics, 

antidepressants and mood stabilizers have all been shown to regulate GSK-3 

(Sutton and Rushlow, 2011; Amar, et al., 2011; Park, et al., 2011; reviewed in 

Gould and Manji, 2005; Freyberg, et al., 2010), and since GSK-3  has been 

linked to the circadian clock (Iitaka, et al., 2005; Yin, et al., 2006). 

 

Obesity in the general population represents a major health issue, and even 

more so in psychiatric patients (McElroy, et al., 2002; Goldstein, et al., 2011; 

reviewed in Allison, et al., 2009), and metabolic side effects such as weight 

gain and dyslipidemia represent major concerns in drug-treatment (reviewed in 

Nasrallah, 2008; Lett, et al., 2011). We confirmed previous findings from our 

laboratory, demonstrating that antipsychotics and antidepressants increased the 

transcription of lipogenic genes in cell culture, which may have clinical 

relevance since these drugs are known to cause weight gain in the clinical 

setting (Berken, et al., 1984; Fernstrom, et al., 1986; Cohen, et al., 1990; 

Leadbetter, et al., 1992; reviewed in Allison, et al., 2009; Serretti and 

Mandelli, 2010), and the SREBP system has been implied in inducing marked 

weight gain in patients on antipsychotic drugs (Le Hellard, et al., 2009; 

reviewed in Ferno, et al., 2011). For clozapine and imipramine, we cannot rule 

out that the effects on clock genes are linked to their effects on lipid 

biosynthesis genes, even though our data does not clearly indicate this. 
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However, results from cell culture studies must be interpreted with caution, and 

animal studies and ultimately clinical trials are required to provide more 

definitive answers. Nevertheless, in vitro studies may provide useful clues for 

understanding the underlying mechanisms and may generate interesting leads 

to pursue further. Numerous clock genes and lipid metabolism genes have been 

proposed as possible mediators for the interplay between the circadian clock 

and lipid metabolism at the molecular level, including Per2, Bmal1, Rev-Erb-

, Ror- , Ppar-  and Pgc-1  (Shimba, et al., 2005; Liu, et al., 2007; Le 

Martelot, et al., 2009; Grimaldi, et al., 2010; Schmutz, et al., 2010). To provide 

new insight into the underlying molecular mechanisms of the interaction, the 

technique of using small hairpin RNA (shRNA) to selectively knock down 

these genes could be very valuable (Paddison, et al., 2004; Sliva and Schnierle, 

2010). Correspondingly, exploring downstream effects after constitutively 

activating the expression of a given gene in vivo in animals and in vitro in cell 

culture could also provide new leads. 

 

The mechanisms by which the circadian clock influences sleep and diurnal 

preference, have been an increasing focus of attention (Leloup and Goldbeter, 

2008; for review, see von Schantz, 2008) since associations between sleep and 

a range of complications have been reported, including obesity and increased 

body mass index (Taheri, et al., 2004; Grandner, et al., 2011; Baron, et al., 

2011; reviewed in Knutson, et al., 2007; Oster, 2010) and psychiatric disorders 

(reviewed in Lamont, et al., 2010; Dallaspezia and Benedetti, 2011). 

Interestingly, it has been shown that bipolar patients are more likely to have a 

preference for evening compared to healthy controls (Mansour, et al., 2005; 

Giglio, et al., 2010). Of note, an association between evening chronotype and 

obesity in bipolar patients has also been reported (Soreca, et al., 2009). Taken 

together, these findings further highlight the close relationship between the 

circadian clock, bipolar disorder and lipid metabolism. We studied the impact 

of the clock gene PER3 in influencing diurnal preference in healthy students, 

but could not confirm a significant association between the VNTR 
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polymorphism in PER3 and self-report measures of the morningness-

eveningness dimension in our study sample (paper III). It seems improbable 

that a single genetic variant in one gene should be responsible for determining 

chronotype, and in fact, it has been proposed that several clock genes could 

each make minor contributions to determining chronotype, whereas specific 

combinations of these polymorphisms are required to produce a significant 

association (Pedrazzoli, et al., 2010). In agreement with this, a recent study 

found relevant effects of several polymorphisms in clock genes on chronotype 

and adaptation to shift-work (Gamble, et al., 2011). Hence, in future 

association studies, it would be interesting to explore the effects of 

combinations of multiple variants on diurnal preference. Of note, the same 

mechanism might in part explain the hidden heritability of bipolar disorder. It 

has been suggested that multiple genetic variants could each make minor 

contributions towards disease vulnerability, which taken together might 

represent a substantial risk for bipolar disorder (reviewed in Gershon, et al., 

2011). Hence, also here it could be interesting to explore the synergy of several 

genes in conferring risk for bipolar disorder.  
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