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Abstract

Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human
carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still
uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes
throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of
non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that
hypermethylation at stem cell PolyComb Group Target genes (PCGTs) occurs in cytologically normal cells three years in
advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are
heavily Methylated in Embryonic Stem Cells (MESCs) and increases significantly with cancer invasion in both the epithelial
and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly
from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally,
we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in
cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of
systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.
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Introduction

Aberrant DNA methylation is one of the most important cancer

hallmarks [1], yet its precise role in carcinogenesis and clinical

prognosis remains ill-defined [2]. Indeed, the dynamical changes

in DNA methylation that happen during carcinogenesis, in

particular those prior to morphological changes, have not yet

been explored in detail. Moreover, no study has so far reported a

DNA methylation signature capable of predicting prognosis across

multiple human cancers, unlike gene expression and DNA copy

number where such prognostic signatures have been described

[3,4].

Both hyper and hypomethylation are commonly observed in

cancer [1]. In contrast to hypomethylation, which seems to target

large inter-genic satellite repeat regions, hypermethylation appears

to happen locally, preferentially targeting the promoters of genes.

Several studies have reported that a statistically high fraction of

these promoters map to stem cell PolyComb Group Target genes

(PCGTs) [5,6], many of which encode transcription factors needed

for differentiation, and which are normally suppressed in

embryonic stem cells through a reversible mechanism mediated

by the Polycomb Repressive Complex (PRC2) [7]. This preferen-

tial hypermethylation at PCGTs in cancer supports the view that

the reversible gene repression of PCGTs in stem cells may be

replaced by permanent silencing in cancer, potentially impairing

the differentiation capacity of cells [1,5,6]. Although there is no

causal functional data linking PCGT methylation to carcinogen-

esis yet, there is accumulating evidence that factors which lead to
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cancer, for instance age or oxidative damage, are causally involved

in DNA methylation at PCGTs [8–11].

Another feature of the epigenetic landscape characterising

human embryonic stem cells (hESC) was described by Lister et al

[12]. Specifically, using single-base-resolution DNA methylation

maps, they demonstrated that a substantial fraction of CpGs is

heavily (.80%) Methylated in human Embryonic Stem Cells

(MESC) (see Materials and Methods for the precise definition of

MESC CpGs and Table S1 for the complete list of MESC CpGs

on the 27 k array). However, it is unknown at present what role

MESCs may play throughout carcinogenesis. Thus, which

epigenetic stem cell features are retained or changed in human

cancer and even more importantly at which stage during human

carcinogenesis these epigenetic changes occur, is still unclear.

Motivated by these outstanding questions, we decided to (i)

explore the dynamics of epigenetic changes at stem cell loci

(PCGTs and MESCs) throughout all stages of human carcino-

genesis and (ii) to investigate their potential role in predicting poor

prognosis.

To address our first aim, we used as a model the uterine cervix,

since screening programs in place allow easy access to this organ,

and cervical carcinogenesis is also one of the few scenarios in

humans where DNA methylation changes in the actual cell of

origin and occurring throughout disease progression can be

analyzed. Specifically, we measured DNA methylation at over

27,000 CpGs in cervical cells and at three different stages: (a) three

years before onset of dysplastic changes, (b) at the stage of non-

invasive dysplasia, and (c) at the stage of invasive cervical cancer.

To address our second aim we analysed DNA methylation data

from 5 independent cohorts encompassing a total of 1,026 tumour

samples in 4 different gynaecological cancers. In total, we analysed

DNA methylation data from 10 independent studies, encompass-

ing normal and cancer tissue from 5 different tissue types,

including metastases (Table 1).

Using these data we here report four major novel aspects of

cancer epigenetics: (i) Hypermethylation at PCGT stem cell loci

occurs up to three years before the first signs of morphological

transformation, (ii) hypomethylation at MESC stem cell loci is a

hallmark of cancer invasion, affecting both epithelial and stromal

compartments, and increases further in metastases, (iii) hypo-

methylation instability at MESCs defines a stem cell DNA

methylation signature that predicts poor prognosis in multiple

human cancers independently of standard prognostic factors, and

(iv) expression of TET enzymes [13–17] is strongly associated with

MESC hypomethylation.

Results

All methylation data in this study were generated with the

Illumina Infinium Human Methylation27 beadchip array (Mate-

rials and Methods), which assesses the DNA methylation status of

27,578 CpG sites located in the promoter regions of 14,495 genes

as described previously [18]. Among these CpGs, 3,465 map to

PCGTs, whilst 5,943 map to MESC CpGs (Materials and

Methods, Table S1 and Table S2). We also made a distinction

between CpGs located within Partially Methylated Domains

(PMDs) (a total of 4,750 CpGs on the array mapped to PMDs),

and those that are not (termed non-PMDs). PMDs demonstrate

reduced methylation levels in more differentiated embryonic tissue

compared to embryonic stem cells, and consist of focally

hypermethylated elements (corresponding overwhelmingly to

CpG islands), concentrated within regions of long-range hypo-

methylation [12]. PMDs were recently described also in cancer

[19]. For precise definitions see Text S1.

To investigate the dynamics of DNA methylation in human

carcinogenesis we designed a study with samples from three

different phases reflecting cervical carcinogenesis: (1) ‘Before

Dysplasia (BDy)’: normal cervical epithelial cells collected within

the ARTISTIC trial [20,21] (n = 152) of which 75 developed a

cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) after three

years (cases), whereas the other 77 remained normal (controls).

These samples were matched for age and HPV status. (2)

‘Dysplasia (Dy)’: age-matched non-invasive dysplastic epithelial

cells (CIN2/3) (n = 18, all HPV+) and normal cervical epithelial

cells (n = 30, 19 HPV2 and 11 HPV+) collected within screening

programs [22], and (3) ‘Invasive Cancer (CA)’: invasive cervical

cancer tissue (n = 48) and normal cervical tissue (n = 15) collected

within a clinical setting. Further details of the samples are

described in Text S1 (see also Table 1).

As expected, PCGTs were highly enriched among CpGs

hypermethylated in invasive cervical cancer (Figure 1A and 1C).

In contrast, CpGs that become hypomethylated in invasive

cervical cancer are to a large extent MESCs (Figure 1B and

1D). Most importantly, PCGTs were hypermethylated three years

prior to any cytological changes (Figure 1C, OR = 2.44;

95%CI = 2.27–2.63; p,102100), especially for those PCGT CpGs

located within PMDs (OR = 4.81; 95%CI = 4.19–5.52;

p,102100). We verified that PCGT enrichment was also

independent of HPV status (P,0.005 for HPV+ and HPV2).

Notably, the frequency of hypermethylation remained fairly

constant throughout the phases from non-invasive dysplasia to

invasive cancer (Figure 2A and Figures S1, S2, S3, S4).

In contrast to PCGT methylation, MESC hypomethylation

appears as a progressive process towards invasive cancer: whereas

we observed a substantial enrichment of MESCs in the normal

samples three years prior to the dysplastic changes (OR = 5.69 and

9.55 for PMD and nonPMD respectively), non-invasive dysplastic

samples had an increased MESC enrichment in hypomethylated

CpGs (OR = 7.62 and 12.30 for PMD and nonPMD, respectively)

and eventually MESC CpGs contributed most significantly to

Author Summary

DNA methylation is an important chemical modification of
DNA that can affect and regulate the activity of genes in
human tissue. Abnormal DNA methylation and its subse-
quent effects on gene activity are a hallmark of cancer, yet
when precisely these DNA methylation changes occur and
how they contribute to the development of cancer
remains largely unexplored. In this work we measure the
methylation state of DNA at over 14,000 genes in over
1,475 samples, including normal and benign cells, invasive
cancers, and metastatic cancer tissue. Using cervical cancer
as a model, we show that gain of abnormal methylation at
genes typically un-methylated in stem cells can be
detected up to 3 years in advance of the appearance of
pre-cancerous cells, while those genes typically methylat-
ed in stem cells lose this methylation progressively
throughout cancer development. Furthermore, we discov-
er that this process of methylation loss during cancer
progression is a marker of poor disease outcome common
to all four major women-specific cancers: breast, ovarian,
endometrial, and cervical cancers. Finally we demonstrate
the relationship between loss of methylation and cancer-
specific over-production of a specific protein known to
play an active role in removing methylation from DNA.
Taken together these findings highlight the complex
nature of DNA methylation dynamics in cancer develop-
ment as well as their potential exploitation for clinical gain.

DNA Methylation at Stem Cell Gene Loci in Cancer
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hypomethylated CpGs in invasive cancer (OR = 18.84 and 26.85

for PMD and nonPMD respectively; Figure 1D, Figure 2A, and

Figures S1, S2, S3, S4). In order to check that these enrichments

are not just a consequence of the baseline methylation levels (i.e.

the levels in normal tissue), we estimated the enrichment relative to

other CpGs with specific baseline methylation levels (CpGs with

mean b-values in normal cervical tissue samples of ,0.2 and

.0.4). This confirmed that the observed PCGT and MESC

enrichment was independent of the initial methylation levels in

normal tissue, and that this was particularly true for PCGT/

MESC CpGs within PMDs (Figure S5). Thus, MESC CpGs that

showed reduced methylation levels (,80%) in normal tissue

compared to their levels in hESCs (.80%) were still more likely to

exhibit further hypomethylation in dysplasia and cancer than a

control set of CpGs with similar methylation levels in normal tissue

(Figure S5).

To test if PCGT and MESC methylation changes are also

present in cells which are not immediately involved in carcino-

genesis we studied white blood cell DNA from women who carry

BRCA1 mutations and who are therefore at an 80% lifetime risk of

developing breast and/or ovarian cancer. Whereas MESC

methylation was not altered, we observed that PCGTs were

highly enriched among CpGs hypermethylated in blood cells from

BRCA1 mutation carriers (Figures S6 and S7).

Next, we asked if the progressive hypomethylation of MESCs

towards invasive cancer is a generic feature of tumour biology. We

analysed DNA methylation profiles of breast, endometrial,

colorectal and lung cancer (Text S1; Figure 2B and Figures S1,

S2, S6, S7), and in all cancer types we observed a significant loss of

methylation at MESC CpGs, concurrent with the expected

hypermethylation of PCGT CpGs.

As demonstrated in Figure 2A and 2B, PCGT methylation

enrichment exists prior to and at the stage of non-invasive

dysplasia when analyzing only epithelial cells without stroma and

remains constant when studying invasive cancer tissue which

contains some stromal components. In contrast, MESC enrich-

ment doubles in the hypomethylated fraction when comparing

invasive cancer to non-invasive dysplastic cells. This pronounced

enrichment could be contributed by MESC hypomethylation in

the cancer-associated stromal component. To test this, we

analyzed those PCGTs and MESCs that are enriched in the

hyper- and hypomethylated fractions in lung cancer and asked if

these CpGs are also enriched in lung cancer associated fibroblasts

compared to normal lung fibroblasts [23]. Interestingly, while

there was no enrichment of PCGTs (Figure 2C), there was a clear

enrichment of lung cancer MESCs among PMD CpGs that are

hypomethylated in lung cancer fibroblasts (Figure 2D). This

further supports the view that MESC hypomethylation is an

important characteristic of cancer invasion, and that it may

therefore be a molecular determinant of clinical outcome.

Molecular signatures, and in particular gene expression

signatures, involving stem cell genes have been associated with

poor prognosis in several cancers [24,25]. Therefore, given the

fundamental role of PCGT and MESC CpGs in the dynamics of

DNA methylation in human cancer, as just described, it is natural

to ask if DNA methylation changes at these stem cell loci can

predict clinical outcome. In particular, we posited that epigenetic

instability, as measured by DNA methylation changes from a

normal reference, might indicate clinical outcome. To test this

idea, we devised an Epigenetic Instability Index (EpI) to evaluate

instability for each tumour sample as the fraction of significant

DNA methylation changes relative to a corresponding normal

reference profile (Materials and Methods). The instability index

was divided into 4 types according to the baseline normal

reference methylation (0 = unmethylated, 1 = hemimethylated,

2 = methylated) and the nature of DNA methylation changes

(0R1/2, 1R2, 1R0, 2R0/1) observed in cancer (Materials and

Methods, Figure 3A and 3B). In addition, we considered the EpI

restricted to PCGT and MESC stem cell loci, and since very few

PCGT CpGs were observed to be methylated (1 or 2) in normal

tissue, this resulted in 3 stem cell EpI indices: PCGT (0R1/2),

MESC (1R0), MESC (2R0/1). Remarkably, we observed that

the demethylation instability index (DeMI) at MESCs (2R0/1)

was associated with poor prognosis in endometrial, breast, ovarian,

Table 1. Data sets used in this study.

Data set Sample size Normal Cancer Cell type Age range (yr) Reference

BDy 152 152 0 LBC 19–55 GSE30760

Dy 48 30 18 LBC 26–43 GSE20080

Cvx CA 63 15 48 tissue 24–91 GSE30760

BC 60 37 23 tissue 19–75 GSE32393

BC (JHU) 118 15 103 tissue 20–96 GSE31979

EC 87 64 23 tissue 32–90 Salvesen,H.B. et al.

EC (Meta) 17 0 17 tissue 43–93 GSE33422

OvC 177 0 177 tissue 24–88 Teschendorff, A.E. et al.

OvC (TCGA) 378 0 378 tissue 34–89 TCGA

ColC 154 29 125 tissue NA GSE25062

LC 151 24 127 tissue NA TCGA

LC (Fibro) 10 5 5 fibroblast 58–77 GSE22874

BRCA1 60 60 0 WBC 50–80 GSE32396

Cervical cells collected three years before half of the patients developed dysplasia (BDy), normal versus dysplastic cervical cells (Dy), normal cervical tissue and invasive
cervical cancer (Cvx CA), non-neoplastic breast tissue and breast cancer (BC), normal endometrium and endometrial cancer (EC) and metastatic endometrial cancer (EC
(Meta)), ovarian cancer tissue (OvC; The Cancer Genome Atlas, TCGA), colon cancer tissue (ColC), lung cancer tissue (LC) and normal and cancer associated lung
fibroblasts (LC Fibro), and white blood cell (WBC) samples from BRCA1 mutation carriers and controls (BRCA1). The number of samples, their distribution in terms of
normal and cancer, cell-type, age-range (years) and reference to data access is given. GSE numbers are GEO accessions. NA, not available.
doi:10.1371/journal.pgen.1002517.t001

DNA Methylation at Stem Cell Gene Loci in Cancer
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and cervical cancers (Figure 4). In multivariate analysis, the DeMI

was a predictor of poor prognosis in all cancers independently of

other prognostic factors (Table 2 and Table S3), demonstrating the

clinical potential of this DNA methylation stem cell signature. In

contrast, the methylation instability index defined at PCGTs only

correlated with clinical outcome in ovarian cancer (Table S3).

Survival analysis at individual CpG level further demonstrated the

consistent enrichment of MESC CpGs among prognostic CpGs

hypomethylated in poor outcome samples in all 4 invasive cancers,

whereas PCGT CpGs were not consistently enriched in either the

hyper or hypomethylated prognostic component (Table S4). There

was also substantial overlap between the MESC CpGs which have

stable methylation levels in normal tissue and which become

hypomethylated in cancer, and prognostic MESC CpGs that are

hypomethylated in poor outcome tumour samples (Table S5).

To further demonstrate that MESC hypomethylation is an

important determinant of poor outcome in human cancer, we

tested if these epigenetic changes progress further in metastatic

cancer. Thus, we compared DNA methylation profiles of primary

endometrial cancers to extra-uterine metastases of endometrial

cancer. Importantly, the DeMI index was higher in metastatic

cancer compared to primary tumours, but not so for the

hypermethylation instability index at PCGTs (Figure 5A). In fact,

the DeMI index demonstrates clinical potential for discriminating

primaries that may be destined to metastasize (Figure 5B). From

these data we can therefore conclude that while PCGT

hypermethylation is an important event in early oncogenesis,

which persists at later stages, MESC hypomethylation is a

progressive process and a key characteristic of more malignant

cancers (Figure 3B).

Figure 1. Methylation profile of PCGTs and MESCs in cervix data. Scatter plots of mean b-values in normal cervical tissue (x-axes) vs. cervical
cancer tissue (y-axes) of (A) all CpGs with PCGTs highlighted in brown and (B) all CpGs with MESCs highlighted in purple. (C) is the bar chart indicating
the enrichment odds ratios (OR) and P-values (Fisher-test), testing for enrichment of PCGTs among CpGs unmethylated in normal cervix (mean b-
value,0.2) and with a higher mean b-value in (i) normal samples which develop dysplasia (BDy), (ii) non-invasive dysplastic samples (Dy), and (iii)
invasive cervical cancer (CA); (D) the bar chart indicating the enrichment of MESCs among those CpGs methylated in the normal cervix (mean b-
value.0.4) and with a lower mean b-value in tissue representing the three stages of cervical carcinogenesis (BDy, Dy, and CA).
doi:10.1371/journal.pgen.1002517.g001

DNA Methylation at Stem Cell Gene Loci in Cancer

PLoS Genetics | www.plosgenetics.org 4 February 2012 | Volume 8 | Issue 2 | e1002517



Figure 2. Differential dynamics of hypermethylated and hypomethylated PCGTs and MESCs. Bar charts representing percentages of
significantly hypermethylated (blue) and hypomethylated (orange) PCGT and MESC CpGs in (A) each stage of cervical carcinogenesis: Cervix ‘Before
Dysplasia’, ‘Dysplasia’, and ‘Invasive Cancer’, all relative to normal cervical cells or tissue; and in (B) ‘Breast CA’, ‘Endo CA’, ‘Colon CA’, and ‘Lung CA’, all

DNA Methylation at Stem Cell Gene Loci in Cancer

PLoS Genetics | www.plosgenetics.org 5 February 2012 | Volume 8 | Issue 2 | e1002517



The ability of the DeMI index to predict clinical outcome in

multiple cancers indicates that a core set of MESC CpGs may be

involved. To investigate this we ranked the MESC CpGs

according to the frequency of hypomethylation in each of the

cancers considered. Many CpGs were observed to be hypomethy-

lated in large fractions of tumours (Figure 6 and Table S6). While

there were 6 MESC CpGs (FCGR3B, FLJ27255, FCN2, KRT82,

CDH13, KRTAP8-1 on chromosome 1, 6, 9, 12, 16 and 21

respectively) commonly hypomethylated at a frequency of at least

10% in all four cancers (P,1024), there were substantially larger

overlaps between related cancers such as ovarian and endometrial

cancer (overlap of 98 CpGs, OR = 134, 95%CI = (89–205),

P = 3.26102124). Gene Set Enrichment Analysis (GSEA) [26] of

the hypomethylated MESCs in each cancer also revealed a striking

overlap of enriched terms, especially between endometrial and

ovarian cancer where we observed widespread hypomethylation at

20q11 and 9q34 (Table S7).

Up until recently it has been assumed that DNA demethylation

in cancer is a passive event, occurring as a result of absent re-

methylation during DNA replication, with a consequent dilution of

this covalent DNA modification. This view has now been

substantially challenged by the identification of TET (ten eleven

translocation) dioxygenases, which can convert 5-methylcytosine

into 5-hydroxymethylcytosine and 5-carboxylcytosine, which thus

constitutes a pathway for active DNA demethylation [13–17,27].

In particular, it has been demonstrated that TET3-mediated DNA

relative to their respective normal controls. The significance of the binomial test assessing skew of hypermethylated versus hypomethylated is
indicated by ‘*’, ‘**’, and ‘***’ for P-value,0.05, 0.01, and 0.001 respectively. (C) and (D) are the scatterplots of the age-adjusted linear regression t-
statistics against their corresponding 2log10(P-values) testing the association with the normal and lung cancer fibroblasts on the colon-PMD PCGTs
and colon-PMD MESCs respectively.
doi:10.1371/journal.pgen.1002517.g002

Figure 3. Definition of epigenetic instability indices and dynamics of PCGT and MESC methylation in cancer. (A) Definition of
epigenetic instability indices. Shown are the six possible DNA methylation changes between normal and cancer tissue. Thresholds used to define
unmethylated (yellow), hemimethylated (skyblue) and fully methylated (blue) CpGs are described in Materials and Methods. Stable MESC (or PCGT)
CpGs are defined by MESC (or PCGT) CpGs, which have the same methylation state in all normal samples. The Epigenetic Instability Index (EpI) is then
defined as the fraction of stable CpGs altered in cancer. We defined 4 separate indices to describe the transitions: 0R1/2, 1R2, 1R0, 2R1/0. The
index describing alterations from a fully methylated to either a hemi or unmethylated state is called the Demethylation instability index (DeMI). (B)
Dynamics of PCGT and MESC DNA methylation in cancer. Diagram illustrates the differential dynamics of PCGT and MESC CpG DNA methylation in
cancer. Most PCGTs start out unmethylated (white lolly-pops) in normal cells but acquire DNA methylation (black lolly-pops) in normal cells 3 years
before the emergence of dysplasia (BDy). PCGT hypermethylation increases further with Dysplasia (Dy) and cancer, but is not a strong determinant of
invasion or poor outcome (metastasis). In contrast, most MESCs start out either fully or hemi methylated in normal cells, and gradually lose
methylation during the progressive stages of cancer, with hypomethylation at MESCs a key determinant of metastases and poor outcome.
doi:10.1371/journal.pgen.1002517.g003

DNA Methylation at Stem Cell Gene Loci in Cancer
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hydroxylation is involved in epigenetic reprogramming of the

zygotic paternal DNA following natural fertilization and that this

may also contribute to somatic cell nuclear reprogramming during

animal cloning [16]. We therefore analysed mRNA expression of

TET1 and two isoforms of TET2, and TET3 (see Text S1 for

primer information), to test whether hypomethylation is associated

with TET expression. We observed a strong correlation between

high TET, in particular TET3 expression, and hypomethylation,

specifically at MESC CpGs (Figure 7 and Figure S8). We checked

that the anti-correlation of TET expression with MESC CpG

methylation was independent of the level of methylation in normal

tissue (Figure S9). Although this observation is purely correlative, it

Figure 4. Survival analysis of the MESCs demethylation instability index in various cancers. Kaplan-Meier survival curves between the
upper (blue) and lower (green) tertiles of the demethylation instability index (DeMI) at MESCs in (A) Endometrial cancer, (B) Ovarian cancer, (C)
Cervical cancer, and (D–E) two Breast Cancer cohorts. The hazard ratio (HR), 95% confidence interval (CI) and P-values are from the multivariate Cox
regression model, with ‘‘n’’ denoting the number of samples in cohort. Clinical endpoint used is indicated on the y-axis (OS = overall survival,
RFS = relapse free survival).
doi:10.1371/journal.pgen.1002517.g004

Table 2. Survival analysis results of the PCGTs and MESCs Epigenetic Instability Index (EpI) in women’s cancers.

Univariate Multivariate

PCGT EpI HR (95%CI) P n HR (95%CI) P n

Endo CA 0.80 (0.48–1.33) 0.385 64 0.90 (0.53–1.54) 0.71 63

Ovarian CA 1.34 (1.13–1.59) 7.00E-04 177 1.54 (1.24–1.92) 9.00E-05 161

Cervical CA 0.75 (0.48–1.19) 0.222 48 0.96 (0.59–1.56) 0.878 47

Breast CA 0.99 (0.76–1.29) 0.949 113 0.93 (0.70–1.25) 0.645 107

MESC EpI (DeMI) HR (95%CI) P n HR (95%CI) P n

Endo CA 1.96 (1.30–2.96) 0.001 64 2.18 (1.24–3.83) 0.007 63

Ovarian CA 1.27 (1.05–1.54) 0.015 177 1.40 (1.09–1.79) 0.008 161

Cervical CA 1.42 (0.95–2.14) 0.086 48 1.47 (0.95–2.28) 0.085 47

Breast CA 1.53 (1.24–1.89) 5.00E-05 113 1.51 (1.20–1.89) 5.00E-04 107

Univariate and multivariate Cox regression results for the PCGT EpI and MESC EpI (DeMI) in endometrial, ovarian, cervical and breast cancer with number of samples (n),
Hazard ratio (HR), 95% confidence interval (CI), and P-value (P). Overall survival was used for endometrial, ovarian and breast cancer, relapse free survival for cervical
cancer.
doi:10.1371/journal.pgen.1002517.t002

DNA Methylation at Stem Cell Gene Loci in Cancer
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is consistent with the view that TET3 overexpression (Figure S10)

in cancer contributes to reprogramming of cancer cells via active

DNA demethylation.

Discussion

Epithelial cells of the uterine cervix offer a unique opportunity

to study epigenetic alterations throughout carcinogenesis. Our first

key result is the demonstration that normal cells of origin acquire

methylation changes at least three years in advance of the first

morphological changes. Specifically, our data demonstrate that

PCGT hypermethylation and MESC hypomethylation are major

contributors to early cervical carcinogenesis. This is independent

of human papillomavirus (HPV) infection as our study was

matched for HPV status, and since PCGT enrichment was

observed in both HPV+ and HPV2 samples. Importantly, the

observed enrichments were also independent of the levels of

methylation in normal tissue. That is, MESCs which showed full

methylation (i.e. b-value.0.8) or hemi-methylation (i.e. 0.3,b-

value,0.7) were preferentially hypomethylated in dysplasia and

cancer in comparison to control sets of CpGs with same

methylation levels in normal tissue.

The role of PCGT methylation as a very early event is further

supported by our finding that PCGTs were highly enriched among

CpGs which were hypermethylated in blood cells from BRCA1

mutation carriers, suggesting that BRCA1 is an important regulator

of the DNA methylome and that aberrant BRCA1 function could

lead to increased predisposition to cancer through increased

methylation at PCGT loci. The fact that BRCA1 mutation carriers

showed increased PCGT methylation in their blood cells but are at

no substantial increased risk to develop blood-borne cancers

suggests that PCGT hypermethylation refers a substantial risk but

that there are additional factors required (e.g. endocrine, paracrine

or viral triggers).

Our second key result is that MESC hypomethylation occurs in

both the epithelial and stromal components of cancer and that this

is a progressive process, increasing significantly towards invasion

and metastatic cancer. This in turn suggests that the level of

MESC hypomethylation in primary tumours may be an important

determinant of clinical outcome.

Indeed, our third key result is the report of a stem cell (MESC)

DNA hypomethylation signature that can predict clinical outcome

in multiple human cancers, independently of known prognostic

factors. To the best of our knowledge this constitutes the first

Figure 5. Methylation changes between normal, primary, and metastatic endometrial cancer. (A) Boxplots comparing the frequency of
PCGT (0R1/2) DNA methylation changes, and the frequency of combined MESC (1R0) and MESC (2R0/1) DNA methylation changes (‘‘combined
DeMI index’’), between normal endometrium (N), primary endometrial cancer (C), and between normal endometrium and metastatic endometrial
cancers (MET). One-tailed Wilcoxon rank sum test P-values for the instability indices between cancer and metastases are indicated. (B) Receiver
operating characteristic (ROC) curves measuring the dissimilarity in the combined DeMI index between primary and metastatic endometrial cancers
with corresponding Area Under Curve (AUC) and 95% CI.
doi:10.1371/journal.pgen.1002517.g005
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report of a common prognostic signature in cancer that is based on

DNA methylation, and is therefore an epigenetic analogue to the

prognostic genomic instability signature presented in [3].

Besides the key distinction of PCGT and MESC CpGs, we also

observed that the localisation of CpGs in relation to PMDs was

another important facet of the pattern of DNA methylation

changes. Specifically, PCGT hypermethylation was observed

preferentially within PMDs, while the progressive MESC

hypomethylation in cancer was equally strong in PMDs and

non-PMDs. We point out that while the PMDs considered here

were defined for colon cancer cells, that these broad regions of

partial methylation overlap significantly between colon tissue and

fibroblasts, suggesting that these regions may be largely similar also

between different tissues.

The similarities between normal developmental and cancer

epigenetic programming are intriguing. While embryonic stem

cells suppress differentiation-inducing genes reversibly via pro-

moter occupancy of PRC2, cancer cells suppress these same genes

much more robustly via covalent DNA modification. Even more

interestingly, trophoblast cells whose core function is to invade the

maternal tissue and form the placenta, are relatively more

hypomethylated compared with the inner cell mass, which will

differentiate into the embryo [28], supporting the view that

hypomethylation may be associated with the capacity to invade

neighbouring tissue such as the maternal endometrium. Similarly,

the observed correlation between MESC hypomethylation and the

malignant potential of cancers suggests that fully methylated

MESCs may provide a protective mechanism against invasion.

Thus, the fact that the great majority of MESCs exhibit similar

high methylation levels in stem cells and normal tissues, means

that high MESC methylation may be viewed as an intrinsic

property of any normal cell, regardless of whether it is a stem cell

or a mature differentiated one. In this model then, hypomethyla-

tion at MESCs would lead to a transformed cellular phenotype

that is more prone to invasion. In this context however, it is worth

pointing out that the observed MESC hypomethylation could also

be reflecting changes in the stromal cell content of the tumours.

Indeed, the observation that cancer fibroblasts show similar

hypomethylation changes at MESC loci suggests that the more

frequent MESC hypomethylation in invasive cancers could be

partly due to increased numbers of cancer fibroblasts.

It could also be argued that the other DNA methylation changes

we have reported here are the result of changes in the stromal and

immune cell compartments of the tumours. However, we verified

using Principal Components Analysis (PCA) and GSEA analysis

[26] on normal liquid based cytology (LBC) samples and

separately on age-matched cervical dysplasias (Table 1, ‘‘Dy’’-

study) that the components of variation associated with stromal

and immune cell markers were very similar between normal and

dysplasia, in stark contrast to PCGTs which showed a dramatic

Figure 6. Heatmap of the top 50 most frequently hypomethylated MESCs in cancers. The CpGs show stable fully methylated states across
all normal samples. Methylation values: blue = high methylation (b-value.0.7), skyblue = hemi methylation (0.25,b-value,0.7), yellow = low
methylation (b-value,0.25). Sample labels at the top of the heatmaps: normal (grey) and cancer (black).
doi:10.1371/journal.pgen.1002517.g006
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difference with comparatively no variation in normal tissue but

representing the dominant component of variation in dysplasia

(manuscript in preparation). Thus, the DNA methylation changes

at PCGT loci reported here are unlikely to be due to changes in

the stromal cell composition of tumours.

Finally, the crucial role of TET3 in DNA demethylation and

early development, its overexpression in cancer, and the observed

correlation with MESC hypomethylation, supports the view that

aberrant developmental programs leading to reprogramming of

the epigenome in adult cells may be critical for carcinogenesis.

Interfering with these aberrant programs may therefore lead to

novel ways to treat cancer.

In summary, our findings suggest that epigenetic deregulation of

two distinct sets of genes, both important for stem cell integrity,

impact carcinogenesis in different ways: one process involves gain

of methylation and is a hallmark of de-differentiation and early

oncogenesis, while the other involves loss of methylation and is a

key determinant of invasion and clinical outcome.

Materials and Methods

Definition of MESC
A recent study used bisulfite sequencing to map, at single-base-

resolution, DNA methylation throughout the majority of the

human genome in both embryonic stem cells and fibroblasts [12].

For each CpG site, the number of C and T reads covering each

methyl cytosine on both forward and reverse strands were

provided [12]. The multiple reads covering each methyl cytosine

can be used as readout of the fraction of sequences within the

sample that are methylated at that particular site (i.e. C reads/

Figure 7. Anti-correlation between the TET mRNA expression level and methylation b-value. Heatmap of the 250 most (upper half) and
least (lower half) anti-correlated hypomethylated CpGs in cervical cancer samples ranked according to their TET3 mRNA expression levels from the
lowest (green) to the highest (red) with the indication of MESCs (purple) and nonMESCs (white). The odds ratio (OR) and P-value (P) are obtained from
Fisher’s exact test estimating the enrichment of MESCs among hypomethylated CpGs that are significantly anti-correlated with TET3 mRNA
expression level.
doi:10.1371/journal.pgen.1002517.g007
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C+T reads) [29], and hence, referred as the methylation level of

the site. In this study, Methylated in human Embryonic Stem Cells

(MESC) CpGs are the CpG sites that were covered by at least 5

reads on both forward and reverse strands (i.e. the total number of

C and T reads on both strands . = 5) and the overall mean

methylation levels (i.e. the average methylation level of both the

forward and reverse strands) is greater than 80%. MESC CpGs

were then mapped to those present on the Illumina 27 k array

(Table S1). Functional annotation (gene assignment) of the MESC

CpGs present on the array was obtained from Illumina and

Bioconductor annotation packages.

Definition of PCGTs
PolyComb Group Target genes (PCGTs) were defined as CpGs

which are occupied by SUZ12 and/or EeD and/or are

trimethylated at Lysine 27 on histone H3 in human embryonic

stem cells (Table S2, annotation file kindly provided by Benjamin

P. Berman and Peter W. Laird) [19].

DNA Methylation Assay
DNA extraction. DNA from LBC samples and tissues was

isolated using the Qiagen DNeasy Blood and Tissue Kit (Qiagen

Ltd, UK, 69506) and quantified via spectrophotometry

(Nanodrop, Thermo Scientific Ltd UK) with 600 ng DNA from

each sample. DNA from whole blood was extracted using a

chloroform based extraction method from 400 mL of blood. All

DNA samples were bisulphite modified using the EZ DNA

Methylation Kit D5004/8 (Zymo Research, Orange, CA, USA)

according to the manufacturer’s instructions.

DNA methylation profiling. The genome wide methylation

analyses were performed using the validated Illumina Infinium

Human Methylation27 BeadChip (Illumina Inc USA, WG-311-

1201) [18]. During the assay, bisulphite (BS) converted DNA is

amplified, fragmented and hybridised to the BeadChip arrays

(each chip accommodates 12 samples as designated by Sentrix

positions A–L). A single base extension is then performed using

labelled DNP- and biotin labelled dNTPs. The arrays were

imaged using a BeadArray Reader. Image processing and

intensity data extraction were performed according to

Illumina’s instructions. Each interrogated locus is represented

by specific oligomers linked to two bead types: one representing

the sequence for methylated DNA (M) and the other for

unmethylated DNA (U). For each specific CpG site, the

methylation status is calculated from the intensity of the M and

U alleles, as the ratio of the fluorescent signals b= Max(M,0)/

[Max(M,0)+Max(U,0)+100]. Hence, DNA methylation b-values

are continuous variables between 0 (absent methylation) and 1

(completely methylated) representing the ratio of the methylated

allele to the combined locus intensity.

TET expression. Total RNA was isolated as previously

described [30]. Reverse transcription of RNA was performed using

M-MLV Reverse Transcriptase (Promega) according to the

manufacturer’s instructions. Primers and probes for the TET

genes were designed using Primer Express (Applied Biosystems,

Foster City, CA, USA). Samples in which TET was not amplified

by real-time PCR after 45 cycles were classified as TET negative.

Statistical Methods
Quality control and inter-array normalisation. Quality

control procedures and intra-array normalisation were run on all

data except the ‘Colon CA’, ‘Lung CA’, and ‘Ovarian CA’ sets, for

which the intra-array normalised data was downloaded directly

from Gene Expression Omnibus (GEO) and The Cancer Genome

Atlas (TCGA) databases. Background corrected U and M values,

b-values (as generated from the Beadstudio software) and built-in

controls were used to evaluate the quality of individual arrays.

Samples with low BS conversion efficiency (BS control intensity

values ,4000) were excluded, as well as other outliers that we

detected using boxplots of total intensity I = U+M values and

histograms of b-values. Samples were filtered further according to

CpG coverage, using the Beadstudio P-values of detection of signal

above background.

Enrichment analysis. Enrichment analysis was performed

using a two-tailed Fisher’s exact test. Odds ratios (OR) and 95%

confidence intervals (CI) of enrichment were also computed and

their corresponding significance levels estimated. Enrichment

analysis was performed with a range of thresholds to check for

robustness and using the Infinium 27 k array as reference to avoid

array-specific bias.

Supervised analysis. A linear regression approach was used

to model the association between disease status (cases or controls)

and the CpG b-value methylation profile. Adjustment for age and

experimental factors (e.g. bisulphite conversion) was performed by

inclusion of these factors in the model as covariates. Chip effects

were observed, and in this study all data were adjusted by either

applying the ‘‘ComBat’’ method (a method that is robust to

outliers and that allows for adjustment in cases where sample sizes

per chip are small) [31] or using the chip as a covariate in the

linear model. The linear model was adopted over a non-linear

logistic or probit model as the linear model performed better in

capturing profiles with larger effect sizes.

Skewness analysis. Given the two disease-status-associated

CpG lists (hyper- or hypomethylated) obtained from the

supervised analysis, the two-tailed binomial test was used to

detect the skewness of the methylation in various categories (i.e.

colon-PMD PCGTs, colon-PMD MESCs, nonPMD PCGTs, and

nonPMD MESCs) of the CpGs (Figure 2, Figures S1 and S2).

Epigenetic instability analysis. We devised an Epigenetic

Instability Index (EpI) for each tumour sample as follows. First,

CpG readings were defined as unmethylated (0) (b-value,0.25),

hemimethylated (1) (0.25#b-value#0.7), and methylated (2) (b-

value.0.7). Next, we selected CpGs with stable methylation

profiles in normal tissue, defined as those CpGs with the same

methylation state in all normal samples corresponding to the given

tissue. These stable CpGs can undergo four types of DNA

methylation changes in cancer: 0-.1/2, 1-.2, 1-.0 and 2-.0/1.

Therefore, for each tumour sample, we computed four different

‘‘instability’’ indices, reflecting the fraction of stable CpGs

undergoing the specific types of DNA methylation changes

shown. When computing these indices, and to ensure their

robustness to the choice of methylation thresholds above, we also

required at least a 10% change in b-values for calling DNA

methylation differences between normal and cancer tissue. This

buffering therefore avoids calling potentially small differences in b-

values (,10%), which nevertheless may trespass the methylation

thresholds (0.25, 0.7) used. The EpI indices were also computed by

restricting the set of stable CpGs to those mapping to PCGT and

MESC stem cell loci. Since the great majority of PCGT CpGs

were observed to be stably unmethylated (0) in normal tissue, this

resulted in 3 ‘‘stem cell EpI’’ indices: PCGT (0-.1/2), MESC (1-

.0), MESC (2-.0/1). We call the latter index the Demethylation

instability index (DeMI).

Survival analysis. Univariate and multivariate Cox

regression models were used for the survival analysis. In the

multivariate analysis, besides DNA methylation b-values (or the

EpI index), those clinical and histological factors, which were

associated with survival in univariate analysis were also included as

covariates.
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Supporting Information

Figure S1 Differential dynamics of hypermethylated and

hypomethylated PMD PCGTs and PMD MESCs. Bar charts

representing percentages of significantly hypermethylated (blue)

and hypomethylated (orange) PMD PCGT and PMD MESC

CpGs in (A) each stage of cervical carcinogenesis: Cervix ‘Before

Dysplasia’, ‘Dysplasia’, and ‘Invasive Cancer’, all relative to

normal cervix tissue; and in (B) ‘Breast CA’, ‘Endo CA’, ‘Colon

CA’, and ‘Lung CA’, all relative to their respective normal

controls. The significance of the binomial test assessing skew of

hypermethylated versus hypomethylated (Figure S3 and S4) is

indicated by ‘*’, ‘**’, and ‘***’ for P-value,0.05, 0.01, and 0.001

respectively.

(TIF)

Figure S2 Differential dynamics of hypermethylated and

hypomethylated nonPMD PCGTs and nonPMD MESCs. Bar

charts of the percentages between the disease (or mutation) status

associated hypermethylated (blue) and hypomethylated (orange)

for nonPMD polycomb group target gene (PCGT) CpGs and

nonPMD methylated in human embryonic stem cells (MESC)

CpGs that pass their corresponding significance level thresholds

(the same notation as in Figure S1).

(TIF)

Figure S3 Statistical output from linear regression model

estimating the association of the PMD PCGT and PMD MESC

CpGs to the outcomes of the three stages of cervical carcinogen-

esis. Scatterplots of the linear regression fitted (adjusted for age,

chip and bisulphite conversion) t-statistics against their corre-

sponding 2log10(P-values) that test the association with the cases

and controls of the cervix ‘Before Dysplasia’ (CIN2/3 status),

‘Dysplasia’ (CIN2/3 status), and ‘Invasive Cancer’ (cancer status)

on the PMD PCGT (left column) and PMD MESC (right column)

CpGs. Green vertical lines denote the significant level thresholds

of P-value = 0.1 for ‘Before Dysplasia’ and ‘Dysplasia’, and 0.001

for ‘Invasive Cancer’. The overall numbers of CpGs that are

hypermethylated (blue) and hypomethylated (orange) with their

associated two-sided Binomial test P-value are given on the left

hand side of the P-value threshold lines and the number of CpGs

that are hypermethylated (blue) and hypomethylated (orange) pass

the corresponding P-value threshold with their Binomial test P-

value on the right.

(TIF)

Figure S4 Statistical output from linear regression model

estimating the association of the nonPMD PCGT and nonPMD

MESC CpGs to the outcomes of the three stages of cervical

carcinogenesis. Scatterplots of three cervical sets, similar to Figure

S3, but based on the nonPMD PCGT (left column) and nonPMD

MESC (right column) CpGs.

(TIF)

Figure S5 Enrichment analysis of PMD PCGTs and PMD

MESCs in the hyper- and hypomethylated cervical cancer CpGs.

Cumulative enrichment analysis (Fisher’s exact tests ORs and P-

values) of PCGTs among CpGs unmethylated (mean b-value,0.2

in normal cervix) in normal cervix and which become hyper-

methylated in (i) normal samples three years prior to dysplasia

(BDy), (ii) non-invasive dysplastic samples (Dy), and (iii) invasive

cervical cancer (CA) in PMDs (A) and nonPMDs (B) respectively.

Similarly, enrichment of MESCs among CpGs methylated (mean

b-value.0.4 in normal cervix) in normal cervix and that become

hypomethylated in cases in PMDs (C) and nonPMDs (D)

respectively.

(TIF)

Figure S6 Statistical output from linear regression models

estimating the association of the PMD PCGTs and PMD MESC

CpGs to outcomes in five cohorts. Scatterplots of the linear regression

fitted (adjusted for age, chip and bisulfite conversion) t-statistics

against their corresponding 2log10(P-values) testing the association

with the cases and controls of ‘Breast CA’ (cancer status), ‘Endo CA’

(cancer status), ‘Colon CA’ (cancer status), ‘Lung CA’ (cancer status),

and ‘BRCA1 MUT’ (BRCA1 status) on the PMD PCGT and PMD

MESC CpGs. Green vertical lines denote the significant level

thresholds of P-value = 0.1 for ‘BRCA1 MUT’ and 0.001 for all the

others. The overall number of CpGs that are hypermethylated (blue)

and hypomethylated (orange) with their associated two-sided

Binomial test P-value are given on the left hand side of the P-value

threshold lines. The number of CpGs that are hypermethylated (blue)

and hypomethylated (orange) pass the corresponding P-value

threshold with their Binomial test P-values on the right.

(TIF)

Figure S7 Statistical output from linear regression models

estimating the association of the nonPMD PCGT and nonPMD

MESC CpGs to the outcomes in five cohorts. Scatterplots of five

cohorts, similar to Figure S6, based on the nonPMD PCGT (left

column) and nonPMD MESC (right column) CpGs.

(TIF)

Figure S8 Magnitude of the anti-correlation between hypo-

methylated cervical cancer CpGs and TET mRNA. Hypomethy-

lated MESCs are significantly higher anti-correlated with TET2

and TET3 mRNA expression levels than the hypomethylated

nonMESCs in the cervical cancer samples. P-values are obtained

from the Wilcoxon one-sided test.

(TIF)

Figure S9 Magnitude of the anti-correlation between hypo-

methylated cervical cancer CpGs (grouped) and TET mRNA.

Higher anti-correlated signature with TET2 and TET3 mRNA

expression levels among hypomethylated MESCs than hypo-

methylated nonMESCs in the cervical cancer samples indepen-

dent from the chosen baselines of the methylated and hemi-

methylated CpGs (mean b-value in normals .0.4). P-values are

obtained from the Wilcoxon one-sided test.

(TIF)

Figure S10 TET mRNA expression level comparison between

the normal cervix and cervical cancers. Boxplots of TET1,

TET2.1, TET2.2 and TET3 mRNA expression levels of the

normal cervix and cervical cancers. P-values are obtained from the

Wilcoxon two-sided test.

(TIF)

Table S1 The MESC CpGs mapped to 27 k Infinium array.

List of the 5,943 MESC CpGs that mapped to the Illumina

Infinium Human Methylation27 beadchip array with the

information of their IlluminaID, geneID, gene symbol, MapInfo,

and chromosome.

(XLS)

Table S2 The PCGT CpGs mapped to 27 k Infinium array.

Similar to Table S1, the list of the 3,465 PCGT CpGs that mapped

to Illumina Infinium Human Methylation27 beadchip array.

(XLS)

Table S3 Summary tables of the uni- and multivariate Cox

regression model analysis of the PCGTs and MESCs Epigenetic

Instability Index (EpI) in endometrial, breast, ovarian, and cervical

cancers. Univariate (UV) and multivariate (MV) Cox regression

results for the PCGTs and MESCs EpI in endometrial, breast,

ovarian and cervical cancer overall survival (OS) and relapse free
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survival (REL) with number of samples (n), Hazard ratio (HR),

95% confident interval, and P-value (P).

(XLS)

Table S4 PCGT and MESC enrichment analysis amongst

hypermethylated and hypomethylated cancer prognostic CpGs.

Enrichment analysis (Fisher’s exact tests odds ratios (OR), 95%

confidence intervals (CI) and P-values (P)) of PCGTs (colon-PMD

and nonPMD) and MESCs (colon-PMD and nonPMD) among

the top 500 hypermethylated and hypomethylated cancer

(cervical, breast, endometrial, and ovarian cancers respectively)

prognostic CpGs.

(XLS)

Table S5 Overlap between MESC CpGs with stable methyla-

tion levels in normal tissue and that become hypomethylated in

cancer with the top ranked 1,000 prognostic MESC CpGs that are

hypomethylated in poor outcome samples in endometrial, breast,

ovarian, and cervical cancers.

(XLS)

Table S6 MESC CpGs according to the frequency of hypo-

methylation (cancer vs normal) as defined by the demethylation (2-

.0/1) instability index (DeMI) in the endometrial, breast, ovarian,

and cervical cancers.

(XLS)

Table S7 GSEA results of MESC CpGs with a frequency of

hypomethylation (defined by DeMI index) in cancer of at least 5%

(endometrial, breast, and ovarian cancer) and of at least 10% in

cervical cancer.

(XLS)

Text S1 A detailed description of the definitions, study

population, materials, and primers used in this study is provided.

(DOC)
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