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Abstract

Background: Orofacial clefts are common birth defects of complex etiology, with an excess of males among babies with
cleft lip and palate, and an excess of females among those with cleft palate only. Although genes on the X chromosome
have been implicated in clefting, there has been no association analysis of X-linked markers.

Methodology/Principal Findings: We added new functionalities in the HAPLIN statistical software to enable association
analysis of X-linked markers and an exploration of various causal scenarios relevant to orofacial clefts. Genotypes for 48 SNPs
in 18 candidate genes on the X chromosome were analyzed in two population-based samples from Scandinavia (562
Norwegian and 235 Danish case-parent triads). For haplotype analysis, we used a sliding-window approach and assessed
isolated cleft lip with or without cleft palate (iCL/P) separately from isolated cleft palate only (iCPO). We tested three
statistical models in HAPLIN, allowing for: i) the same relative risk in males and females, ii) sex-specific relative risks, and iii)
X-inactivation in females. We found weak but consistent associations with the oral-facial-digital syndrome 1 (OFD1) gene
(formerly known as CXORF5) in the Danish iCL/P samples across all models, but not in the Norwegian iCL/P samples. In sex-
specific analyses, the association with OFD1 was in male cases only. No analyses showed associations with iCPO in either the
Norwegian or the Danish sample.

Conclusions: The association of OFD1 with iCL/P is plausible given the biological relevance of this gene. However, the lack
of replication in the Norwegian samples highlights the need to verify these preliminary findings in other large datasets.
More generally, the novel analytic methods presented here are widely applicable to investigations of the role of X-linked
genes in complex traits.
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Introduction

Orofacial clefts are relatively common craniofacial birth defects,

with a birth prevalence of about 1–2/1000. They require extensive

surgical, nutritional, dental, speech, behavioral and medical

interventions, and thus impose a substantial economic and

personal health burden [1,2]. As with other complex traits,

multiple genetic and environmental risk factors are thought to

underlie these birth defects [3].

Clefts are characterized by a particularly strong genetic

component, as evidenced by studies of familial recurrence risk

and heritability [4]. First-degree relatives of an affected individual

have a 30–40 fold higher recurrence risk compared with the

background population [5,6], and heritability estimates were

recently reported to be as high as 91% for CL/P and 90% for CP

in a large Danish twin study [7].

The strong genetic component to clefting has spurred decade-

long efforts to identify the genes underpinning these complex

birth defects. Increased collaborative efforts coupled with major

advances in high-density SNP genotyping arrays have heralded a

new era of gene discovery for complex traits. For clefts, the first

genome-wide association study (GWAS) identified a strong signal

on chromosome 8q24 in individuals of central European

ancestry. This association was subsequently replicated in three
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independent GWAS [8–10]. In addition to the 8q24 locus, these

studies also identified significant associations with several genes,

including v-maf musculoaponeurotic fibrosarcoma oncogene

homolog B (MAFB), ATP-binding cassette sub-family A member

4 (ABCA4), ventral anterior homeobox 1 (VAX1), paired box 7

(PAX7) and interferon regulatory factor 6 (IRF6) [4]. IRF6 is

particularly noteworthy, being the only gene on this list to be

confirmed as a major player for clefts through approaches other

than GWAS [11–13].

The above studies and virtually all association studies of clefts

(as well as other complex traits) have targeted primarily

autosomal markers, without attention to potential contributions

of X-linked common gene variants. This is partly because most

of the statistical methods originally designed for association

analysis were only targeted towards the analysis of autosomal

markers. The finding that X-linked gene variants may be

implicated in a number of complex traits [14–19] has encour-

aged the development of statistical methods for analyzing X-

linked markers. The majority of these methods are extensions of

the transmission/disequilibrium test (TDT) [20], for example, the

X-linked sibling TDT (XS-TDT) [21], the reconstruction-

combined TDT for X-chromosome markers (XRC-TDT) [22],

Table 1. Review of family-based methods for association analysis of X-chromosome markers.

Reference Method Extended name Attributes

Ho and
Bailey-Wilson
[23]

X-TDT X-linkage transmission/
disequilibrium test (TDT)

This is a TDT for linkage on the X chromosome in the presence of linkage disequilibrium (LD). Under
Ho of no linkage between disease and marker, the number of transmissions of the variant allele in n
pairs of heterozygous mothers and their affected children has a binomial distribution with mean n/2
and variance n/4. The test statistic is a Z-score with a continuity correction, and Ho is rejected if Z
departs significantly from 0. As with TDT, X-TDT is readily extended to allow the analysis of
phenotypically discordant sib pairs if parental genotypes are unavailable (suitable for late-onset
diseases). It can also combine sib-pair and case-parent triad analysis to enhance statistical power.

Horvath et al. [21];
Knapp [22]

XS-TDT;
XRC-TDT

X-linked sibling TDT;
Reconstruction-combined
TDT for X-chromosome
markers

As X-TDT above, these are tests for linkage between an X-chromosomal marker and a disease in the
presence of LD. XS-TDT uses the genotypes of discordant sibships if genotypes are not available
from the parents. It divides the siblings into same-sex groups to account for a possible male/female
difference in disease prevalence. XRC-TDT reconstructs parental genotypes from the genotypes of
their offspring and corrects for bias that arise from the reconstruction. Data from families in which
parental genotypes are available are combined with families in which genotypes of unaffected sib
pairs are available.

Ding et al. [24] XPDT;
XMCPDT

X-chromosomal pedigree
disequilibrium test;
Monte Carlo pedigree
disequilibrium
test for X-linked
markers

XPDT tests for LD in the presence of linkage. It can be applied to any pedigree structure. XMCPDT is
an extension of XPDT and infers missing parental genotypes using a Monte Carlo sampling
approach. XPDT is limited to same-sex discordant sib pairs when parental data are missing, resulting
in lower statistical power. XMCPDT on the other hand requires allele frequency estimates to
compensate for missing parental genotypes. XMCPDT appears to have superior power than XSTDT,
XRCTDT or XPDT when there are missing data, but Type 1 errors can be inflated when a large
proportion of parental genotypes are missing.

Chung et al. [25] X-APL A modification of the
‘‘association in the
presence of linkage test
(APL)’’ that accommodates
X-chromosome
markers

Like XPDT, X-APL can use singleton or multiplex families. The APL statistic is based on difference
between the observed versus the expected number of a specific allele in affected siblings
conditional on the parents’ genotypes. X-APL infers missing parental genotypes in linkage regions by
using identity-by-descent (IBD) parameters for affected siblings. X-APL can test individual markers or
haplotypes. For haplotype tests, X-APL assumes no recombination between the markers within the
families in the sample, and the EM algorithm is used for haplotype phase estimation. X-APL can also
perform sex-stratified analyses to account for different penetrance of disease in males versus
females.

Zhang et al. [27] X-LRT A likelihood ratio test of
association for X-linked
markers.

X-LRT is a likelihood-based method and enables estimation of genetic risks. The method is designed
for singleton families but can also allow additional siblings. Missing parental genotypes can be
accounted for using the EM algorithm, and even more efficiently using sibling genotype information
when available. For haplotype relative risk estimation, X-LRT assumes no recombination between
markers, parental mating to be random, and haplotype penetrance to be multiplicative for females.
For sex-specific analysis, separate risk parameters are introduced for males and females in single-
marker analyses, but in haplotype analyses the data are divided into two sets, one containing only
male cases and the other only female cases.

This paper HAPLIN A full likelihood model for
haplotype associations
at autosomal and X-linked
markers.

HAPLIN is a likelihood-based method and enables estimation of genetic risk associated with marker
haplotypes both for autosomal and X-linked markers. It applies to case-parent triad data, possibly
combined with independent controls and/or complete control-parent triads. Missing data are
imputed using the EM algorithm. On the X chromosome, HAPLIN provides a range of model options
depending on haplotype effects in females versus males. A complete sex stratification implies
different haplotype frequencies, different baseline risks and different relative risks between males
and females. Alternatively, haplotype frequencies can be assumed equal, as can haplotype relative
risks. The risk response pattern may depend on the number of risk haplotypes, and X-inactivation in
females can be incorporated.

doi:10.1371/journal.pone.0039240.t001

Table 2. Sample distribution according to cleft type, sex, and
population.

Norway Denmark

Cleft type Males Females Males Females

iCL/P 202 109 114 52

iCPO 54 60 33 36

doi:10.1371/journal.pone.0039240.t002
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the X-linkage TDT (X-TDT) [23], and the X-chromosome

pedigree disequilibrium test (XPDT) [24]. Two additional tests

compare observed versus expected distributions of a specific allele

or haplotype in affected siblings, conditional on the parental

genotypes. These are the 1) association in the presence of linkage

(APL) test that accommodates X-chromosome markers (X-APL)

[25], and 2) X-linked quantitative trait loci linkage mapping (X-

QTL) [26]. Despite several attractive attributes of these methods

(summarized in Table 1), an important limitation is that they

can only provide a p-value for association, but not estimates of

genetic risk. The exception is the likelihood ratio test (LRT)

developed by Zhang and co-workers (X-LRT) [27].

An exploration of X-linked variants is particularly relevant

when a complex trait is more common in one sex – as is seen for

the two main types of orofacial clefts. For this study, we

implemented new functionalities in the HAPLIN software [28] to

enable X-chromosome marker analysis and an estimation of

relative risks associated with either a single or double dose of an

allele or haplotype. We considered various model parameteriza-

tions that address a range of causal scenarios relevant to an X-

linked disease locus. This included allowing for different baseline

risks for males and females (to reflect the higher prevalence of

CL/P in males), and accounting for X-inactivation in females

(where one of the two copies of the X chromosome is inactivated

in each cell to ensure similar gene dosage across the two sexes

[29]).

We applied this new method to a collection of 48 SNPs in 18

cleft candidate genes on the X chromosome and used data from

two national cleft studies in Scandinavia – one of the largest

collections of orofacial cleft triads available. To our knowledge, no

previous study has explored the role of X-linked genes in the

etiology of orofacial clefts using association.

Materials and Methods

Study Populations, Candidate Genes and SNPs
From a population-based case-control study of orofacial clefts in

Norway (1996–2001), 311 iCL/P and 114 iCPO case-parent

triads were available for the current analysis. As a replication

sample, we had a further 166 iCL/P and 69 iCPO case-parent

triads from a population-based study of orofacial clefts in Denmark

(1991–2001). The sample distribution according to cleft type, sex,

and population is provided in Table 2. Details regarding study

design and participants have been provided elsewhere [30,31].

The 18 X-linked genes and 48 SNPs for the current analysis derive

from a larger candidate-gene based study in which we examined

357 candidate genes in the same study populations [32]. A detailed

description of these 18 X-linked genes and 48 SNPs is provided in

the online Table S1.

Statistical Analysis
The HAPLIN software. The statistical software HAPLIN

[28] was specifically designed to analyze genetic and environmen-

tal risk factors in offspring-parent triads and case-control

collections. It is based on log-linear modeling as originally

described [33–41] and implements a full maximum-likelihood

model for estimation. HAPLIN computes explicit estimates of

relative risks with asymptotic standard errors and confidence

intervals. It uses the expectation-maximization (EM) algorithm to

impute genotypes that are missing at ‘‘random’’ (e.g. due to failed

genotyping) and those missing by ‘‘design’’ (e.g. if DNA from a

family member was not available for genotyping). The EM

algorithm can also reconstruct unknown haplotype phase for

haplotype analysis, but on the X chromosome this is not needed

since phase can be deduced directly when data are non-missing.

Central to HAPLIN is a generalized linear model (glm) being

estimated from the observed genotype frequencies–the M-step of

the EM algorithm. The E-step consists of all three imputations

described above, performed in a single step. The algorithm then

alternates between the M-step and E-step until convergence is

achieved. The results obtained from the EM algorithm correspond

to the maximum-likelihood estimates of the model, which include

gene frequencies and all relative risk parameters. However, to

obtain the correct standard errors, confidence intervals and

likelihood ratio test (LRT) for the models, HAPLIN corrects for

the fact that imputation has taken place. If the imputed data were

used uncorrected, they would seem to contain more information

than what is actually available in the raw data.

X-linked haplotype analysis using HAPLIN. HAPLIN

allows a range of X-chromosome models to be estimated,

depending on assumptions made about allele effects in males

versus females. The following models, summarized in Table 3,

are examples of risk parameterizations provided by HAPLIN:

N Model 1: A shared baseline risk for males and females; a

shared relative risk for males and females; no X-inactivation; a

multiplicative dose-response relationship in females (1 risk

parameter to be estimated).

N Model 2: Different baseline risks for males and females; a

shared relative risk for males and females; no X-inactivation; a

multiplicative dose-response relationship in females (2 risk

parameters to be estimated)

N Model 3: Different baseline risks for males and females;

different relative risks for males and females; no X-inactiva-

tion; a multiplicative dose-response relationship in females

(3 risk parameters to be estimated)

N Model 4: Different baseline risks for males and females; a

shared relative risk for males and females; X-inactivation; a

multiplicative dose-response relationship in females (2 risk

parameters to be estimated)

N Model 5: Different baseline risks for males and females;

different relative risks for males and females; no assumption of

multiplicative risks. We refer to this as the ‘‘free model’’, with

Table 3. Assorted parameterization models for analysis of X-
linked gene variants using the HAPLIN software.

Model Male case Female case

X1 X2 X1X1 X1X2 X2X2

Model 1 B B*RR B B*RR B*RR2

Model 2 BM BM*RR BF BF*RR BF*RR2

Model 3 BM BM*RRM BF BF*RRF BF*RRF
2

Model 4 BM BM*RR BF 1/2*BF*(1+RR) BF*RR

Model 5 BM BM*RRM BF BF*RRF1 BF*RRF2

X1 denotes the common allele and X2 the variant or target allele for a given
SNP; ‘*’ denotes the product term; B represents the shared baseline risk for
males and females; BM is the baseline risk for males only; BF is the baseline risk
for females only; RR is the shared relative risk for males and females; RRM is the
relative risk for males only; and RRF is the relative risk for females only. In Model
4, the risk for an X1X2 female is the average of the two homozygotes; i.e.
(BF+BF*RR)/2 = BF(1+RR)/2. As this is not a log-linear model, HAPLIN replaces the
heterozygous risk with BF!RR, i.e. the geometric mean of the two homozygous
risks. Models 3 and 5 can be estimated assuming equal or unequal haplotype
frequencies between males and females.
doi:10.1371/journal.pone.0039240.t003
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the highest number of parameters to be estimated (4 risk

parameters).

With fewer parameters, more assumptions are needed but

power is improved (provided the model is correct). The log-linear

model implemented in HAPLIN extends the X-LRT approach

described by Zhang and colleagues [27], which essentially

estimates Model 5 for single SNP markers, although with a

different parameterization. Even though stratifying the case-parent

triads by sex may reduce the statistical power to detect an

association, we performed sex-specific analyses to verify whether

there is a stronger gene effect in one sex versus the other. Model
1, with the assumption of equal baselines, is less relevant to our

data. Models 3 and 5 can be estimated assuming equal allele

frequencies between males and females, or by completely

stratifying on sex. All models have natural extensions from single

SNP markers to testing multiple haplotypes.

Sliding windows and multiple testing. Our study com-

prised one of the largest collections of case-parent triads for clefts

from two population-based sources. Even so, it is unlikely that

gene-effects are large enough that a single gene would remain

significant after a full Bonferroni correction, even when the two

sexes are analyzed together. The stringent requirement of ensuring

an overall Type 1 error rate of #5% will be overly conservative,

especially in a study such as this one where the candidate genes

had been selected a priori for their potential roles in clefting.

To adequately deal with the multiple-testing issue, we followed a

two-part approach. First, all p-values computed from single SNPs

or haplotypes within a gene were summarized into a single p-value

for that gene, corrected for within-gene multiple testing. Second,

the single gene p-values were plotted together in a quantile-

quantile (QQ) plot, which would reveal p-values more significant

than what would be expected by chance given the number of

genes being tested.

For the first part, HAPLIN includes the function haplinSlide

(for details, see http://www.uib.no/smis/gjessing/genetics/

software/haplin/or the HAPLIN help pages in R), which

automates the analysis of a long sequence of single SNPs, or

alternatively a sequence of overlapping sliding-windows with

haplotypes. Overlapping sliding-windows will in principle increase

the chance of ‘‘bracketing’’ a causal variant by having a haplotype

with SNPs on each side of the variant. However, estimating

haplotypes entails a certain loss of power due to the higher number

of alleles taken into account and the unknown phase of the

haplotypes. It is a priori not obvious whether a single-SNP

approach or a sliding-window haplotype approach would have

the best chance of detecting an association; therefore, we

performed both single-marker and haplotype analyses on the

current data. We restricted HAPLIN to use up to 4 SNPs in a

sliding-window haplotype analysis, which typically ensures brack-

eting causal variants with two SNPs on each side. Using more than

4 SNPs in a haplotype would most likely entail an unnecessary loss

of power. With longer haplotypes, the number of possible

haplotypes increases exponentially, and any given haplotype will

be found in very few individuals (if any), making effect estimation

difficult. After running a sliding-window analysis, the results were

summarized in the form of a single, overall p-value associated with

each gene. This is done by choosing the smallest p-value from the

series of windows. If the tests from each window were

independent, this p-value could be adjusted with a standard

Bonferroni or Šidák correction. However, when analyzing SNPs in

strong LD, and in particular when analyzing overlapping windows

of length four haplotypes (which share three SNPs with the

neighboring haplotype), there is a strong correlation between

results obtained from nearby SNPs or windows, and a Bonferroni

correction would be far too strict. The suest function in HAPLIN

corrects the minimum p-value for the dependencies in an optimal

manner. This is achieved by first saving the individual (family)

score contributions from each window estimation. Under the null

hypothesis of no disease association with the haplotypes within a

window, the score contributions in that window follow an

approximate multivariate normal distribution with mean zero

and a covariance matrix which can be computed from the

estimated individual score contributions. This allows computing

the standard score p-value for that window using a chi-squared test

statistic [42]. Then, over a series of windows, the combined score

contributions from each window follow approximately a multi-

variate normal distribution with mean zero and an (empirical)

covariance matrix computed from the combined score values. This

allows computing the theoretical null distribution of the minimum

p-value and thus in calibrating (correcting) the observed minimum

p-value. This approach is closely related to the principle of

‘‘seemingly unrelated estimation’’, as implemented in the statistical

package Stata [43].

For the second part, QQ plots were used to inspect visually

whether our analyses produced more significant results than what

would be expected by chance. The rationale behind the procedure

is that if no genes have an effect, the computed p-values should

derive from a uniform distribution and thus follow the straight

diagonal in the QQ plot. If some genes have an effect (with

correspondingly lower p-values), their p-values are likely to show

up in the QQ plot as a clear deviation from the diagonal,

exhibiting a higher significance than expected by chance under the

null hypothesis. We generated QQ plots for each cleft type (iCL/P

and iCPO) after combining p-values from the Norwegian and

Danish HAPLIN analyses using Fisher’s method [44]. The pQQ

function in HAPLIN includes confidence bands to assess the size of

any deviations from the diagonal. The confidence bands are

computed under the null hypothesis of no association between

genes and disease. In that case, the order statistic of the sorted p-

values will follow a beta distribution with parameters determined

by the number of assessed p-values, and the 2.5 and 97.5

percentiles from the corresponding beta distribution provide lower

and upper limits, respectively.

Software. HAPLIN version 4.1 is implemented in the

publicly available R statistical package [45] and is freely

downloadable from our web site at http://www.uib.no/smis/

gjessing/genetics/software/haplin. A user-friendly graphical user

interface (GUI), which includes some (but not all) of the HAPLIN

functionalities, is also freely available at http://haplin.fhi.no.

Study Approval
Clinicopathological information from all participating families

and biologic specimens for DNA extraction were obtained with the

written informed consent of the mothers and fathers. The study

Figure 1. Single-marker analyses of 48 SNPs in 18 X-linked cleft candidate genes. These analyses are based on Model 2 in which we
assume different baseline risks for males and females, a shared relative risk for males and females, and no X-inactivation. Quantile-quantile (QQ) plots
of p-values for iCL/P (left-hand side) and iCPO (right-hand side). Top panels: Norwegian and Danish samples, respectively. Bottommost panels: Fisher
combined p-values. Shaded areas represent 95% confidence interval bands and dotted lines indicate the expected ranked p-value of 0.05. Note that
the oral-facial-digital syndrome 1 gene (OFD1) was formerly known as CXORF5.
doi:10.1371/journal.pone.0039240.g001
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Figure 2. Haplotype analyses using up to 4 SNPs per sliding-window, Model 2.
doi:10.1371/journal.pone.0039240.g002
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was approved by the Norwegian Data Inspectorate, the Regional

Committee on Research Ethics for Western Norway, and the

respective Institutional Review Boards of the US National Institute

of Environmental Health Sciences (NIH/NIEHS) and the

University of Iowa. For the Danish orofacial clefts study, study

approval was obtained from the regional scientific-ethical com-

mittee. All aspects of this research are in compliance with the

tenets of the Declaration of Helsinki for human research (http://

www.wma.net).

Results

Figures 1 and 2 display the QQ plots for the analysis of 48

SNPs in 18 cleft candidate genes on the X chromosome, without

stratification by sex. We first tested a multiplicative model

assuming the same relative risk for males and females and no X-

inactivation (Model 2 in Table 3). The analyses in Figure 1
were performed one SNP at a time, whereas Figure 2 shows the

results of the sliding-window haplotype analysis of up to 4 SNPs

per window. Overall, the QQ plots show only weak evidence of an

association with the oral-facial-digital syndrome 1 gene (OFD1,

formerly known as CXORF5) on chr Xp22 in the Danish iCL/P

samples. This association was not replicated in the Norwegian

iCL/P samples. For iCPO, there was no evidence of association in

either population.

To assess for different gene-effects in males versus females, with

effects more evident in one sex stratum than the other, we

repeated the analyses for males and females separately. Figures 3
and 4 show the results of haplotype analysis using a sliding-

window of up to 4 SNPs. These analyses correspond to Model 3
in Table 3, in which we assume a multiplicative model with

different baseline risks for males and females, different relative

risks for males and females, and no X-inactivation. The

corresponding single-marker analyses for female and male cases

are provided in the online Figures S1 and S2, respectively. The

association with OFD1 is now only observed in the Danish iCL/P

males, with a relative risk of 2.2 (95% confidence interval: 1.3–3.7;

p-value: 3.661023) with one copy of the variant (minor) allele at

the OFD1 SNP rs2285635 when compared with the reference

(major) allele.

Lastly, we tested Model 4 in which we assume different

baseline risks for males and females, a shared relative risk for males

and females, and X-inactivation in females. The results of

haplotype analysis are depicted in Figure 5 and the correspond-

ing single-marker analyses are shown in the online Figure S3.

Again, the only notable association is with OFD1 in the Danish

iCL/P sample only.

Discussion

Our study was strongly motivated by the unequal sex

distribution observed in the two main types of clefts (CL/P and

CPO) as well as previous findings of a strong link between X-

linked genes and orofacial clefts. X-linked genes have been

identified primarily in syndromic forms of clefting and include

midline 1 (MID1) on chr Xp22, T-box 22 (TBX22) on chr Xq21.1,

PHD finger protein 8 (PHF8) on chr Xp11.22, and RNA binding

motif protein 10 (RBM10) on chr Xp11.23. Mutations in MID1

cause the X-linked Opitz GBBB syndrome (OSX, MIM 300000),

a congenital midline malformation syndrome characterized by

clefting of the lip/palate and a variety of other pathologies [46].

An association between specific haplotypes in MID1 and isolated

CL/P was later reported in an Italian population [19]. Mutations

in TBX22 cause the rare X-linked syndrome ‘cleft palate with

ankyloglossia’ (CPX; MIM 303400) [47]. TBX22 belongs to the T-

box family of genes that are evolutionarily highly conserved and

recognized for playing key roles in early vertebrate development.

Consistent with the CPX phenotype in humans [47–49], the

expression of Tbx22 in mice is localized to the developing palatal

shelves and the base of the tongue. Further, a genome-wide

linkage analysis of families with iCL/P identified a susceptibility

locus near TBX22, suggesting that the linkage signal may emanate

from this gene [50]. Mutations in TBX22 have also been identified

in patients with isolated CPO [51,52]. As to PHF8, mutations in

this gene cause the X-linked mental retardation syndrome Siderius

that includes cleft palate as a common phenotypic feature [53,54].

PHF8 is a histone lysine transcription activator expected to have a

wide range of functions. Finally, deep sequencing of exons on the

X chromosome identified RBM10 as the gene causing TARP

(MIM 311900), a syndromic form of cleft palate [55].

Given these strong links between X-linked genes and syndromic

clefts, we examined whether variants in X-linked genes might also

be relevant for isolated forms of clefting. To enable X-linked gene

analysis, we first developed a method that can i) perform both

single-marker and haplotype analyses, ii) generate relevant relative

risk estimates with confidence intervals, and iii) assess several

etiological models relevant to an X-linked disease locus. The

higher prevalence/penetrance for CL/P in males compared with

females may be due to hemizygosity for an X-linked disease locus

[19]. Therefore, we first analyzed males and females together to

account for the possibility that an X-linked disease locus might

contribute to clefting risk in both sexes, followed by sex-stratified

analyses to investigate whether the X-linked disease locus affects

one sex in particular. X-chromosome inactivation in females was

also taken into account in the models by treating a heterozygous

female (X1X2) as the average of the two homozygotes (X1X1 and

X2X2).

Overall we found only weak associations with OFD1 in the

Danish iCL/P sample, with no replication in the Norwegian iCL/

P sample. As noted in our previous analyses of fetal gene-effects in

the same study samples [32], the genotype call rates for the

Norwegian sample (DNA extracted from blood) and Danish

sample (DNA extracted from buccal swabs) were 99.6% and

99.1% respectively. Hence, the lack of replication of the OFD1

association in the Norwegian iCL/P samples cannot be ascribed to

differences in DNA source. Moreover, different genotype

frequencies do not imply differences in gene effects on the

phenotype.

In sex-stratified analyses, the association of OFD1 in the Danish

iCL/P sample was confined to males only, suggesting a possible

sex-specific effect as previously reported for several loci when only

males were analyzed [56]. Separate analyses for males and females

can be potentially more powerful than a pooled analysis if the X-

linked disease locus affects only one sex [25]. An alternative

explanation for the apparent sex-specific effect in our data is the

potentially higher statistical power to detect an effect of OFD1 in

males due to the larger number of male iCL/P cases available for

analysis.

Mutations in OFD1 underlie the X-linked dominant oral-facial-

digital syndrome type 1 (OFD1, MIM 311200), which is

characterized by malformations of the face, oral cavity and digits,

as well as lethality in the vast majority of affected males [57].

Featuring prominently among the orofacial abnormalities are

median cleft lip, clefts of alveolar ridge at the area of lateral

incisors, and cleft palate [58]. To our knowledge, however, no

genetic association with this gene has previously been reported in

isolated clefts.

For haplotype analysis of X-chromosome markers, the standard

log-linear approach needs some modification. First, many diseases
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Figure 3. Haplotype analyses of female cases only using up to 4 SNPs per sliding-window. These sex-specific analyses are based on
Model 3 in which we assume different baseline risks for males and females, different relative risks for males and females, and no X-inactivation.
doi:10.1371/journal.pone.0039240.g003
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Figure 4. Haplotype analyses of male cases only using up to 4 SNPs per sliding-window, Model 3.
doi:10.1371/journal.pone.0039240.g004
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Figure 5. Haplotype analyses using up to 4 SNPs per sliding-window and taking X-inactivation into account. These analyses are based
on Model 4 in which we assume different baseline risks for males and females, a shared relative risk for males and females, and X-inactivation.
doi:10.1371/journal.pone.0039240.g005

X-Linked Genes and Orofacial Clefting

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39240



show markedly different birth prevalences in males versus females,

as is the case for orofacial clefts, with higher prevalence of CL/P in

males and higher prevalence of CPO in females [59]. This

difference may be due to causes other than the effect of the

particular locus under study, such as loci differentially expressed

between males and females. To avoid confounding of the genetic

risk estimation by the sex effect, separate baseline risks should be

assumed for males and females; i.e. in males the effect of an allele

A2 should be measured relative to the reference allele A1 in males,

whereas in females the effects of A1A2 and A2A2 should be

measured relative to A1A1 in females (Table 3). Second, it is not

clear a priori whether a single dose of A2 in males has an effect

comparable to a single dose in females (A1A2) or to a double dose

(A2A2), or is entirely different from the effect in females. This is

aptly illustrated by craniofrontonasal syndrome (CFNS; MIM

304110), an X-linked developmental disorder that paradoxically

affects heterozygous females more severely than hemizygous males

[60]. In addition, there is the usual question of the relationship

between A1A2 and A2A2 in females; i.e. whether there is a dose-

response relationship, a dominant relationship etc. Third, the basic

log-linear model in HAPLIN assumes the same allele frequencies

for males and females in the background population. While this is

a relatively robust assumption for autosomal markers, it is less

obvious for X-linked markers. For populations that are genetically

relatively homogeneous (like the Danes and Norwegians), howev-

er, this assumption seems to be reasonable.

The most extreme solution to the problems raised above is to

run separate analyses on males and females. HAPLIN has a special

option for doing this, which allows several different response

patterns in females to be explored, whereas males are obviously

restricted to single-dose effects. To increase statistical power,

HAPLIN allows joint analyses of males and females, which reduce

the number of parameters to be estimated. The analyses all assume

the same allele/haplotype frequencies but different baseline risks

for males and females. In addition, various response patterns can

be specified.

Another important consideration is X-inactivation in females

which may produce a special relationship between male and

female allele effects. In females, one X allele in each cell is

inactivated (except for a very few second X chromosomes that

escape inactivation). A deleterious X-linked allele would be

expected to be more detrimental to males than females because

males have no chance of compensation by a corresponding normal

allele [61]. Because X-inactivation in women occurs in early

embryogenesis, women will tend to have a mixture of cells

expressing either their mother’s or father’s X-linked genes

(mosaicism). This heterogeneity can have different consequences

on a female’s disease response depending on how the two X

chromosomes are distributed among tissues [61]. The normal

expectation would be an equal distribution of the two cell types

[61]. However, there may be ‘‘founder’’ effects due to the

relatively small number of cells in the embryo at the time of X-

inactivation, or differential cellular reproduction rates, leading to

an imbalance between the two cell types.

If the risk associated with allele A2 in females is RRF, genotypes

A1A1 and A2A2 will produce risks BF and BFRRF, respectively.

Assuming a 50:50 cell type distribution, the risk associated with

genotype A1A2 will be an average of the two homozygotes, i.e.

(BF+BF RRF)/2 = BF(1+RRF)/2 (Model 4 in Table 3). Techni-

cally speaking this is not a log-linear model, so HAPLIN replaces

the heterozygous risk with BF!RRF–the geometric mean of the two

homozygous risks. This results in a log-linear model, and as long as

RRF is neither very small nor very large, the approximation is

reasonable. For males, the single-dose effect is then assumed equal

to female homozygotes, i.e. RRM = RRF (denoted simply as RR in

Model 4). HAPLIN also provides an extension of this model to

accommodate an unbalanced cell type distribution.

The basic likelihood models in X-LRT [27] and HAPLIN are

similar; for a single SNP, X-LRT uses zero-dose males as reference

and estimates relative risks for single-dose males, and zero-, single-,

and double-dose females independently. This corresponds to

Model 5 in HAPLIN, and in this special case the results are

identical, except that HAPLIN chooses reference levels differently.

In addition, HAPLIN provides a number of other modeling

options on the X-chromosome, and the software provides a full

framework for autosomal and X-linked haplotype association

analyses in a candidate-gene or GWAS setting.

To summarize, this is the first candidate-gene based study to

investigate the role of X-linked genes in orofacial clefting.

Although OFD1 is a highly plausible gene for clefts, the lack of

replication in the Norwegian iCL/P sample highlights the need to

confirm these preliminary findings in other datasets. The novel

methods presented here address several scenarios relevant to an X-

disease locus and can easily be adapted to explore the role of X-

linked genes in other complex disorders.

Supporting Information

Figure S1 Single-marker analyses of female cases only.
These sex-specific analyses are based on Model 3 in which we

assume different baseline risks for males and females, different

relative risks for males and females, and no X-inactivation.

(TIF)

Figure S2 Single-marker analyses of male cases only,
Model 3.

(TIF)

Figure S3 Single-marker analyses taking X-inactivation
into account. These analyses are based on Model 4 in which we

assume different baseline risks for males and females, a shared

relative risk for males and females, and X-inactivation.

(TIF)

Table S1 Summary of the 18 X-linked cleft candidate
genes and 48 SNPs analyzed in this study.

(DOC)
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