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Abstract

Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic
Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the
bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a
bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2

depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and
showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax
are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface
to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which
facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure.
Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a
broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of
O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2

demand due to aerobic heterotrophic endosymbionts.
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Introduction

The unique bone-eating organism, Osedax (Siboglinidae, Annel-

ida) was first described in 2004 from a whale fall located at 2891 m

depth in Monterey Bay, Pacific Ocean [1]. Since its first discovery

it has been found on multiple whale falls in the Pacific and Atlantic

Oceans, artificially deployed cow bones [2] as well as on other

vertebrate bones such as those of teleost [3]. There are five

formally described species, with at least a further 12 species known

from genetic evidence [4,5]. In addition, convincing fossil traces of

Osedax have been found in Oligocene and Pliocene mammal bones

[6,7].

Evidence suggests that Osedax females utilize the complex

organic compounds of the bone through endosymbiotic aerobic

heterotrophic bacteria (Oceanospirillales) located in bacteriocytes

in a root system that is embedded in the bone matrix [8,9]. The

O2 microenvironment around the embedded root system of Osedax

has not been studied, yet this knowledge is crucial for

understanding the function of Osedax in its natural habitat. The

O2 supply within the bone matrix is presumably strongly diffusion

limited, and with whale bone lipid content reaching 45% in Sei

whales (closely related to Minke whales) [10] the bone interior may

become O2 depleted due to high heterotrophic microbial activity,

including sulphur-reducing bacterial processes that generate

sulphide, further reducing O2 below the bone surface. External

O2 supply to the roots of Osedax via the bone matrix is thus highly

unlikely. Yet, symbiosis with detoxifying sulphide-oxidizing

bacteria has so far not been proven, though Osedax has been

observed along with sulphophilic species and mats of white

Beggiatoa-resembling bacteria (Figure 1) or bones exhibiting ferrous

sulphide precipitation [11–14]. The highly folded epidermis of the

root structure of Osedax ‘green palp’ has recently been shown to

lack a cuticle and possess an extensive microvillous border [15],

potentially facilitating the uptake of organic substrates, but also

facilitating interaction with sulphide from the root surroundings.

In the methane seep-dwelling vestimentiferan Lamellibrachia the

sediment-embedded posterior body region (also called root) is

actually the main source of hydrogen sulphide uptake, and is used

for maintaining the chemoautotrophic endosymbionts [16,17].

Respiratory features in other siboglinids involve ciliary or
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muscular ventilation of the chitinous tube and expanded branchial

structures with extensive blood vascular systems and large

respiratory surface areas [16,18–20]. Whereas the tube of Osedax

is gelatinous and only covers the trunk, the vascularized and

pinnulated palps of Osedax are believed to have a similar function

as the anterior branchial plumes of Vestimentifera [21]. However,

neither these structures nor the blood vascular system have been

examined in detail, nor has the O2 consumption been measured

previosly in any Osedax species.

Osedax and Vestimentifera are tubicolous species and apart from

the ability to retract into their tubes when disturbed, they show

very little motile activity. However, Riftia pachyptila has been shown

to metabolize much faster than other resting annelids (e.g. double

the O2 demand of Arenicola marina Lamarck, 1801) [22]. Moreover,

Childress et al. [22] apparently measured the O2 uptake without

the presence of sulphide, thereby underestimating the O2

consumption of chemosynthetic endosymbionts. Later, Girguis &

Childress [23] showed that O2 uptake was reduced significantly

(from 14.3561.23 mmol O2 g21 wet wt h21 to 2.8860.89 mmol

O2 g21 wet wt h21) when the activity of endosymbionts was

restricted by blocking sulphide supply. This clearly demonstrated

that the metabolism of the endosymbionts of R. pachyptila

contribute significantly to its O2 consumption. Experiments by

Freytag et al. [17] further confirms this as an increase in O2

consumption of ,42% was seen when Lamellibrachia cf. luymesi was

exposed to hydrogen sulphide at the root area. The increase in O2

consumption is a result of the activation of the metabolism of

chemoautotrophic endosymbionts. Since Osedax also carries

aerobic endosymbionts and furthermore is hypothesised to be

partly exposed to hypoxia or anoxia, knowledge of the O2 uptake

of Osedax as compared to R. pachyptila and other annelids is relevant

for enhancing our understanding of the respiratory systems and

physiology of Osedax.

The shallow water species Osedax mucofloris Glover, Källström,

Smith, Dahlgren, 2005, has been found at 30 m and 125 m water

depth off the coast of Tjärnö, Sweden [12,13], and at 120 m depth

in Bjørnafjord, Norway [24]. Currently these are the only records

of Osedax from the Atlantic, though other species are found in

shallow waters in both the East and West Pacific [4,25]. The

125 m deep locality near Tjärnö is characterized by stable oceanic

salinity (34–35%), temperature (5–7uC) and dissolved O2

concentration ranging from 4.6 to 6.3 ml O2 l21 [13].

In the present study we investigated whether Osedax mucofloris is

exposed to an inhospitable hypoxic or anoxic microenvironment

by measuring the O2 distribution surrounding the embedded root

system. We assessed possible morphological and/or physiological

adaptations to the environmental conditions through detailed

morphological studies of the respiratory surfaces and the blood

vascular system as well as respiratory measurements of O2

consumption. The results are discussed in relation to the unique

environment, endosymbionts, and embedded root structure of

Osedax as well as compared with studies of related annelids.

Results

Ventilating mechanisms
Ciliary bands and sensory structures (anti acetylated a-

tubulin staining and histology). In the description below, we

use a dorsal-ventral definition opposite to the one used by Rouse et

al. [1,21], based on a new interpretation (Rouse & Worsaae,

unpublished).

We found two previously unreported broad longitudinal ciliary

bands dorso-laterally on each side of the oviduct on the anterior

part of the trunk (Figure 2A, B, E). The ciliary bundles of the

bands consist of multi ciliated cells, appearing pillow-like with

numerous, conspicuously short cilia (,10 mm long) projecting

outwards from the centre of the elliptical bundles (Figure 2C). The

bundles are organized in an anterior-dorsal diagonal pattern

within the longitudinal bands (Figure 2B). The ciliary bands

narrow toward the posterior part of the trunk and are replaced by

single tufts of cilia scattered basally across the trunk surface

(Figure 2A). The short cilia appeared immotile, and with several

longitudinal nerves running beneath, (Worsaae & Rouse, unpub-

lished) their function may be sensory rather than ventilatory.

Two dense ciliary bands are found on each palp along their

epidermal longitudinal lobes on each lateral side, as previously

reported [12] (Figures 3A, B, E, 4C, 5A, F, G). The bands consist

of multi ciliated cells with 70–90 mm long cilia (Figure 3E). The

ciliary bands extend from near the basal part of the palps to the

distal tip, beating in metachronal waves.

Two nerves, originating at the anterior part of the brain,

innervate each palp. One nerve runs abfrontally, between the two

lateral ciliary bands and the other nerve runs laterally underneath

one of the ciliary bands (Figure 5A). Further details on the female

Osedax nervous system will be described elsewhere (Worsaae &

Rouse, unpublished).

Pinnules (up to 100 mm wide) project perpendicularly from the

frontal palp surface between the lateral ciliary bands, with a

density of approximately eight pinnules across the palp per 50 mm

palp length (Figures 3A, 5F, G). At the proximal end of the palps,

pinnules are less developed than at the distal end, seemingly

growing in length (up to 170 mm) synchronously with the growth

of the palp (Figure 3A). A sensory cell extends through the centre

of the pinnule with a distal perikaryon and a few external,

presumably sensory, cilia (Figure 4C, D). Its axon seems to connect

with one of the two major longitudinal palp nerves, possibly the

Figure 1. Osedax mucofloris penetrating a bacterial mat
resembling Beggiatoa. Beggiatoa live in the restricted interface
between hydrogen sulphide presence and oxygenated water [51]. O.
mucofloris must therefore be in contact with toxic sulphide concentra-
tions. Photographer: Helena Wiklund, Department of Zoology,
Göteborg University, Sweden.
doi:10.1371/journal.pone.0035975.g001

The Respiratory System of Osedax mucofloris
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Figure 2. Confocal laser scanning microscopy (CLSM) of the trunk of Osedax mucofloris females. A: Dorso-lateral view of a complete
specimen, lateral ciliary bands occupies half the length of the trunk. B: Dorsal view of the anterior part of the trunk, elliptical shaped cilia bundles are
directed anteriorly from the lateral part of the trunk. C: Depth coded z-stack, the elliptical shaped cilia bundles constituting the lateral ciliary band are
formed by ciliary tufts. D: Close-up of transverse section of a trunk. E: Transverse section of a trunk, note the muscularized dorsal blood vessel. F:
Single z-stack image of the trunk musculature, longitudinal muscles beneath circular and diagonal muscles. Abbreviations: ciliary tufts (ct), circular
muscles (cm), diagonal muscles (dm), elliptical ciliary bundles (ecb), lateral ciliary band (lcb), longitudinal muscles (lm), muscular gap (mg), palp (p),
root structure (r), torn ovisac (to), trunk (t), dorsal blood vessel (dbv).
doi:10.1371/journal.pone.0035975.g002
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one running more laterally beneath the ciliary band. This is

supported by similar findings in Osedax ‘‘yellow-collar’’ (Figure 4E).

Musculature (F-actin, phalloidin staining). The

longitudinal muscles run along the entire length of the trunk

(Figure 2A), originating posteriorly at the trunk basis, and inserting

anteriorly at the base of the four palps (Figure 3D). In one

individual, it was possible to detect clustering of longitudinal

muscles into 14–16 bundles of .20 muscle strands in the posterior

part of the trunk, anterior to the root structure (Figure 4A). Along,

and around the entire trunk, the muscles are distributed in a dense

cylindrical formation with an average of six strands per 50 mm

(Figures 2D, E, 3D). The musculature is slightly separated

internally to the oviduct (possibly by the nerve cords), as well as

randomly along the trunk, creating minor gaps most likely for

mucus gland exits or nerves (Figures 2A, 3D). Anteriorly, a gap in

the musculature is found ventrally at the position of the brain, as

well as at each of the four insertion points of the palps. At each of

these four points, the longitudinal musculature divides into two

bundles (of each 20–30 strands), encircling the insertion point of

the palp (Figure 3D). The longitudinal palp muscles originate at

the base and run along the entire length of the palps to their tips,

separated by a smaller frontal and a larger abfrontal gap

(Figures 3C, D, 5A). No longitudinal musculature was detected

in the pinnules.

Around the ovisac and anterior root structure the longitudinal

musculature divides, and together with the circular muscles,

creates a mesh-like structure (Figure 4A). The musculature extends

posteriorly along the roots in a cylindrical formation, supporting

the tissue penetrating the bone.

Thin circular muscles are found peripheral to the longitudinal

muscles along the entire trunk, with 24 strands per 50 mm

(Figure 2D). The circular muscles are most dominant in the

posterior part of the trunk and continue into the root structure

(Figure 4A). Notably, much thicker diagonal muscle strands were

found beneath the circular musculature, but peripheral to the

longitudinal muscles (Figure 2F). Attached at the mid-dorsal line,

the strands run diagonally around the trunk in an anterior

direction and attach at the mid-ventral line. The diagonal muscles

are distributed along the entire length of the trunk, lying further

Figure 3. CLSM (A–D) and differential interference contrast (DIC) light micrographs (E) of the anterior palps and pinnules of O.
mucofloris females. A: Lateral view of palps, pinnules increasing in length and development along the palp. B: Abfrontal view of the midsection of a
palp, ciliary bands on each side. C: Close-up of palp musculature. D: Lateral view of the muscular palp-trunk connection. E: Close-up of the lateral
ciliary band of a palp. Abbreviations: circular muscles (cm), lateral ciliary band (lcb), longitudinal muscles (lm), muscular bundles (bu), muscular gap
(mg), oviduct (od), pinnules (pin).
doi:10.1371/journal.pone.0035975.g003
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apart (35–70 mm) in the posterior end than along the rest of the

trunk (5–10 mm).

The circular musculature of the palps encircles the longitudinal

musculature as a cylinder with ,18 muscle strands per 50 mm and

is evenly distributed along the entire palp (Figure 3C). Fine

circular muscles enclose each vessel of the pinnular loop

(Figure 4C, D); they were likewise visible in the semi-thin sections

on the outside of the pinnular loop and along the midline of each

pinnule (Figure 5F, arrow tips), with a spacing corresponding to

those shown with phalloidin staining (Figure 4C, D).

Blood vascular system
The trunk of Osedax mucofloris encloses two major longitudinal

blood vessels (Figures 2E, 6A, B). The dorsal vessel is highly

muscularized with circular musculature throughout its length

(Figure 2D, E). No lateral connecting vessels between the major

longitudinal vessels or epidermal capillaries were found in the

trunk. From the trunk, the two blood vessels continue posteriorly

into the root structure and increase in diameter (Figure 6A, B).

When studied under the light microscope, the muscularized dorsal

vessel is visible as a defined tube along the trunk, and continues

into the anterior root structure, curling up in the centre anterior to

the ovisac. The curling configuration is most likely caused by

contraction of the basal part of the trunk. The exact further path

of the vessel was difficult to determine. The Confocal Laser

Scanning Microscope (CLSM) studies also showed the continua-

tion of the dorsal blood vessel around the ovisac, revealing

cylindrical musculature at the ovisac, corresponding in diameter to

the musculature of the dorsal blood vessel of the trunk (Figure 4B).

The ventral blood vessel also continues into the root structure,

but as a narrower and less defined vessel, the path of which was

even more difficult to determine, than that of the dorsal vessel.

Blood vessels of different sizes, as well as multiple obvious

capillaries within the root tissue were observed (Figure 6B–E).

Larger vessels extend out from the area of the ovisac and divide

into thinner vessels (diameter: 7–30 mm). Capillaries were detected

in the periphery of the root tissue (Figure 6E), with distances

between the detected capillaries ranging from 65–220 mm.

Anteriorly, each palp encloses a pair of blood vessels created by

invaginations of the inner lamina of the basement membrane of

the epidermis (Figures 5F, G, 7C). Imaging of live specimens

Figure 4. CLSM of the root system and pinnules of Osedax mucofloris females. A: Single z-stack image of the ‘trunk-root system’ connection,
note the bundles of longitudinal muscles. B: Musculature located by the ovisac, assumed to be the posterior end of the longitudinal dorsal blood
vessel. C: Single z-stack image of pinnules, circular musculature encircling the pinnular loop, note the distal perikaryon and sensory cilia. D: Single z-
stack image showing a longitudinal section of the pinnule in C, note the internal nerve. E: Depth coded z-stack, pinnule nerves in Osedax ‘yellow-
collar’. Abbreviations: cilia (ci), circular muscles (cm), lateral ciliary band (lcb), longitudinal muscles (lm), nerve (n), perikaryon (pe).
doi:10.1371/journal.pone.0035975.g004
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confirmed the presence of two blood vessels, running along the

entire length of the palps.

The pinnules are largely filled by a blood cavity lined with a

membrane, which fuses in between the two blood cavities along

most of the pinnule length, thereby creating the pinnular loop

(Figures 5B–G, 7C). The palps of the histological sections were

,300 mm in diameter at the base and the palp epidermis was

,50–75 mm thick. The palp diameter and the thickness of the

Figure 5. Diagram of a transverse section of the basal part of palps (A), DIC light micrographs of benzidine stained palps (B–D) and
transverse 1.2 mm sections of O. mucofloris palps stained with toluidine blue (E–G). A: Diagram of a transverse section at the basal part of
the palp region. Circular musculature (continued green lines) encircles the longitudinal musculature (green broken lines) in a cylinder formation. Two
gaps separate the longitudinal muscle bands. Black lines illustrate the motile lateral ciliary bands and two main palp nerves run along each palp as
shown (blue dots). B: Pinnular loop filled with blood. C: Pinnular loops, broken lines and arrows indicate the assumed direction of blood flow. D:
Midsection of palp, longitudinal blood vessels and pinnular loops visible. E: Transverse section of a pinnule, the pinnular loop enclosed by a
membrane fusing in the centre. F: Transverse section of the distal part of a palp, arrow tips shows circular musculature. G: transverse section of the
distal part of a palp, the two longitudinal blood vessels obvious. Abbreviations: circular muscles (cm), epidermis (ep), lateral ciliary band (lcb), left
dorsal palp nerve (ldpn), left ventral palp nerve (lvpn), membrane fusion (mf), musculature (m), palp blood vessel (pbv), pinnule (pin), pinnular loop
(pl), right dorsal palp nerve (rdpn), right ventral palp nerve (rvpn).
doi:10.1371/journal.pone.0035975.g005
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epidermis were both found to decrease towards the distal end of

the palp.

Pinnules vary in diameter along their length and along the palp,

with a median diameter of ,406100 mm for the pinnules and

,20–40 mm for each blood vessel. The diffusion distance across

the pinnule epithelium was measured on the semi-thin sections to

be 1–2 mm, and for the epidermis of the distal part of the palps, the

diffusion distance was measured to be ,30 mm.

Oxygen consumption
When corrected for background respiration, the measured O2

consumption (MO2) of O. mucofloris ranged almost across a factor

of ten from 220693 mg O2 g21 h21 to 205361950 mg O2

g21 h21 (Table 1), depending on the approach used for

measurement. MO2 measured on O. mucofloris inhabiting sectioned

bone pieces (B1–B3) vs. MO2 measured O. mucofloris inhabiting

bones in cuvettes (C1, C2), resulted in two distinctly different

ranges of MO2. The MO2 of C1 and C2 was 220693 mg O2

g21 h21 and 238629 mg O2 g21 h21, respectively, while the MO2

of B1–B3 range from 9766201 mg O2 g21 h21 to 205361950 mg

O2 g21 h21. Methods and ranges are commented further in the

discussion.

Oxygen levels around Osedax
Micro sensor measurements of O2 concentrations in proximity

to the bone interface were conducted, through agar-filled holes, on

Osedax-colonized bone fragments in cuvettes. The obtained profiles

of O2 concentration from the aerated seawater, and inwards

showed steep O2 gradients towards both the bone and tissue

surface (Figure 8A, B). Anoxic conditions or very low O2 levels

were found at the bone surface, within the bone, and in proximity

to the embedded root tissue of O. mucofloris (Table 2). The average

Figure 6. DIC light micrographs of benzidine stained Osedax mucofloris. A: Sketch of the path of the longitudinal trunk vessels into the root
structure, drawn from the light microscope with a camera lucida of a benzidine stained O. mucofloris female. Trunk twisted in midsection. B: DIC light
micrograph of a benzidine stained O. mucofloris female. Lateral view, trunk twisted in midsection. Ventral and dorsal blood vessels continues, folded,
into the anterior part of the ovisac/root system. C: close up of blood vessels near ovisac. D: close up of blood vessels supplying more distally placed
capillaries. E: Capillaries supplying tissue and endosymbionts. Abbreviations: blood traces (b), blood vessel (bv), capillaries (cap), dorsal blood vessel
(dbv), egg cluster (ec), oviduct (od), ovisac (os), palp (p), root structure (r), trunk (t), ventral blood vessel (vbv).
doi:10.1371/journal.pone.0035975.g006
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O2 flux at the bone and tissue interface was 0.02860.0024 nmol

O2 cm22 s21 (n = 5) and 0.02960.0040 nmol O2 cm22 s21

(n = 3), respectively.

Micro sensor measurements of O2 distribution in one mucus

tube showed a ,50% decrease in the O2 concentration in the

centre of the mucus tube wall as compared to outside the tube

(Table 3). Direct measurements within the tube were not possible

due to disturbance by the worm. Measurements of the O2

microenvironment surrounding the palps showed a strong

decrease in O2 concentrations, when a palp approached the

microelectrode measuring tip. At the base and middle of the palp,

the O2 levels were almost zero showing the O2 uptake to be high

in these areas (Table 3). At the distal end of the palp the O2

concentration was only reduced to approximately 50% atmo-

spheric saturation, possibly due to decaying palp tips.

Discussion

Ventilation and branchial structures
The presence of highly vasculated palps and pinnules, the

former densely ciliated showed that the anterior crown is the main

site for O2 uptake (Figure 7A–C). Uptake of O2 over the trunk

surface is possible, but a thicker epidermis, short and seemingly

immotile ciliary bands and no obvious respiratory structures

suggest that the trunk is a minor site of O2 uptake. Oxygen does, to

some extent, diffuse from the surrounding water into the mucus

tube, thereby supplying the dwarf males.

The well-developed longitudinal musculature of the trunk serves

to retract the trunk and palps into the tube and bone, presumably

as protection from predators. As no regular retraction patterns of

trunk musculature were detected, retraction into the tube is not

considered a significant mode of ventilation for required O2.

Furthermore, the tube only surrounds the trunk, tightly fitting to

the base of the trunk and the surface of the bone, preventing any

water exchange to the ovisac and roots from the bone surface. The

longitudinal musculature is moreover able to stretch the extensive

branchial structures (palps) into the aerated water in order to

increase the O2 uptake.

The circular trunk musculature in O. mucofloris is weakly

developed, as found in several other annelids [26,27]. The

diagonal musculature revealed in the present study, may

compensate for the weak circular musculature by having a similar

supportive function. Diagonal musculature has most likely been

mistaken for circular musculature in several annelids [26,27],

including previous studies of Osedax [15,21].

Our study demonstrates the respiratory challenges faced by

Osedax, as no oxygen was measured in the bone matrix as well as in

the immediate vicinity of root structures and ovisac. Furthermore,

we found no ventilating structures such as ciliary bands on the root

epidermis, nor dense capillaries beneath the epidermis. Therefore,

the epidermis of the embedded root structure is unlikely to

facilitate ventilation or local O2 supply to the Osedax root system.

The O2 necessary to maintain the metabolism and heterotrophic

endosymbionts of the roots may instead primarily be transported

via the blood vascular system from uptake at the aerated palps

(Figure 7A). However, the microvillar root epidermis in Osedax

does constitute a large surface area to volume ratio, which besides

uptake of organic compounds may also facilitate uptake of e.g.,

hydrogen sulphide in the bone matrix. This is the case for the

‘root’ surface of the vestimentiferan Lamellibrachia, where hydrogen

sulphide is absorbed and then transported via the circulatory

system to the chemoautotrophic endosymbionts in the trophosome

[16,17,28].

Previous studies of other close relatives of Osedax such as

Vestimentifera and Sabellidae have shown anterior branchial

structures to be of vital importance when tube-bound tissue is not

Figure 7. Schematic illustration of O2 distribution in the
internal and external environments of Osedax mucofloris. A:
Osedax mucofloris extend its palps and pinnules, with large respiratory
surfaces, into the overlying O2-rich water in order to uptake O2. O2 is
then distributed to the buried root system through the extensive blood
vascular system also supplying the heterotrophic endosymbionts. The
O2 distribution to the root system is crucial as local uptake is not
possible in the anoxic bone environment. The anoxic environment is
partly produced by intense bacterial processes (green arrows) utilizing
O2 at the bone surface. Hydrogen sulphide is produced by anoxic
bacterial processes within the bone matrix during decomposition of
organic content using sulphate. B: Schematic illustration of assumed
blood flow in palp and pinnules, longitudinal section. Blue vessels
carrying venous blood through afferent vessels, red vessels carrying
arterial blood through efferent vessels. C: Schematic illustration of
assumed blood flow in palp and pinnules, transverse section. Likewise
blue vessels carries venous blood through afferent vessels, red vessels
carries arterial blood through efferent vessels. Note that the palp blood
vessels are created by an invagination of the basement membrane.
Green indicates musculature.
doi:10.1371/journal.pone.0035975.g007

Table 1. Weight specific O2 consumption (MO2) of Osedax
mucofloris.

Numbers of
individuals

Fixed weight
(g)

MO2 (mg O2

g21 h21) SDa Nb

B1 4 0.081 976 201 3

B2 4 0.044 1292 650 6

B3 1 0.017 2053 1950 3

C1 2 0.054 220 93 5

C2 3 0.11 238 29 7

MO2 was determined in sea water at 100% atmospheric saturation and carried
out on O. mucofloris inhabiting sectioned cow bone (B1–B3) and cow bone in
cuvettes (C1–C2).
aStandard deviation.
bnumbers of measuring sequences on which MO2 is based.
doi:10.1371/journal.pone.0035975.t001
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ventilated [29–31]. Likewise, the anterior branchial structures of

O. mucofloris seem morphologically adapted to facilitate efficient O2

uptake form the surrounding water. As with the branchial plume

of Vestimentifera [31,32], the anterior palps and pinnules of O.

mucofloris have a large surface area to volume ratio and short

diffusion distances. Furthermore, O2 uptake is optimized by the

two ventilating ciliary bands on each palp, a feature also seen in

other Siboglinidae and in Sabellida in general [20,31,33].

A rough estimate was made of the surface area of the anterior

crown, calculated from palp length given by Glover et al. [12], and

the dimensions of palps and pinnules of O. mucofloris found in the

present study. This results in a weight specific branchial surface

area (SBSA) of ,22 cm2 g21 fixed mass, which is similar to the

SBSA of Riftia pachyptila and higher than the SBSA of fish, crabs

and other annelids [31]. This is especially obvious when compared

to the SBSA of e.g., Arenicola marina (4.00 cm2 g21) [34], although

this species can also take up O2 across its general epidermis.

The estimated diffusion distance in O. mucofloris (pinnule

epidermis 1–2 mm, palp epidermis ,30 mm) is furthermore

comparable to what has been found for R. pachyptila (pinnules

,2.00 mm; branchial filaments ,25 mm) and Ridgeia piscesae

(pinnules ,1.00 mm; branchial filaments ,17 mm) [31,32].

Interestingly, the present study showed that each pinnule is

equipped with a distal sensory cell and external sensory cilia.

These structures may sense disturbance in the water to avoid

predators, as Osedax need not sense food items or reproductive

indicators in the water [1,8,35]. Additionally, sensing of currents

may also be beneficial in order to orientate the palps e.g., for

optimal uptake of dissolved O2. Riftia pachyptila does not have

sensory structures on the pinnules, but does have long, separate

sensory filaments that lack ciliary bands and pinnules. These

structures, with unknown function, are placed between pinnulated

filaments [33].

Figure 8. Experimental setups of micro sensor measurements and O2 profiles towards bone and tissue surfaces. A: Depth profile of O2

towards bone surface, blue: agar, red: cuvette wall, green: bone surface. B: Depth profil of O2 towards tissue surface, blue: agar, red: cuvette wall,
green: tissue surface. C: Schematic drawing of the micro sensor measuring path through the cuvette wall. D: Placement of measuring site on WB1,
note the blackened areas indicating presence of ferrous sulphide. E: Close-up of measuring sites on WB1.
doi:10.1371/journal.pone.0035975.g008
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Blood vascular system
The quantity and complexity of capillaries in the root structure

of O. mucofloris reflects the high O2 demand of Osedax, presumably

for the metabolism of its heterotrophic endosymbionts and

production and development of eggs. Similar capillaries are visible

on the exposed ovisac of O. frankpressi (figure 2F in [1]) and O. roseus

(figure 4E in [21]), while the present study shows the presence of

capillaries supplying the more distally placed root tissue and

bacteriocytes. However, the extent of capillaries does not match

the extensive capillary network of the trophosome in other

Siboglinidae [20,33]. This is in accordance with the original

description [1] mentioning the lack of a discrete trophosome, the

Osedax trophosome instead being diffuse and beneath the

epidermis of the embedded tissue.

The present study supports the basic histological findings with

regard to the circulatory system of the palps in O. roseus [21]. The

increased level of detail in the present study suggests similarities

with some previous siboglinid studies [31,32,36]. The pinnular

loop is most likely lined by an extension of the outer lamella of the

basement membrane, which is in accordance with the findings of

Nørrevang [36]. No indication of a capillary plexus between the

two elements of the loop was observed, as otherwise seen in Riftia

pachyptila and Ridgeia piscesae [31–33]. In accordance with

Nørrevang’s [36] observations of blood flow in Siboglinum, the

blood of Osedax flows through an afferent vessel into the palp,

through the pinnular loops and back through an efferent palp

vessel (Figures 7B–C). This circulatory system carries oxygenated

blood to the trunk and root system. In the present study of O.

mucofloris and previous studies of Osedax [1,21] the main trunk

blood vessel has been shown to be muscularized, and is now

regarded as dorsal (Rouse & Worsaae, unpublished). This is in

accordance with other annelids [37] and siboglinids [20,33], where

the muscularized dorsal vessel, possibly assisted by a heart, create

blood flow in an anterior direction in the dorsal trunk vessel and

posterior in the ventral trunk vessel. Rouse et al. [1] reported an

anterior lying dorsal heart in the original description of the genus,

not noted in any descriptions since and would now appear to be an

error (Rouse, pers. obs.).

The main blood flow within the palp vessels may be generated

by the circular body wall musculature of the palp. However, the

thin circular musculature of the pinnules surrounding each branch

of the looped blood vessel (Figure 4C, D) most likely assists local

blood flow, as suggested for the tentacular vessels of Riftia pachyptila

[22]. Musculature in anterior appendages has been found in

several Vestimentifera, in the form of sphincter muscles located in

the branchial lamella and filament vessels [33].

As with the trunk of O. mucofloris, the anterior vestimentum of

Vestimentifera lacks branching vessels between the ventral and the

muscularized dorsal vessel [33]. The resemblance between the

blood vascular systems adds new evidence to the hypothesis that

the trunk of Osedax and the vestimentum of Vestimentifera are

homologous regions [21].

Oxygen consumption
The present study shows that Osedax mucofloris has a higher

weight specific O2 consumption (MO2) than other resting annelids

(Figure 9) [18]. This may reflect an elevated demand of the

embedded tissue due to presence of heterotrophic aerobic

endosymbionts, which have a higher metabolism than regular

tissue. The measured MO2 actually corresponds to that found for

Riftia pachyptila [22,23] (Figure 9), possessing a vast amount of

chemoautotrophic bacteria in their trophosome. Furthermore, a

high MO2 may also reflect oxidative sulphide detoxification. The

high MO2 corresponds well with the large SBSA and elaborate

branchial structures, which are both usually associated with

animals exhibiting a high O2 demand. This correlation is also

found in Arenicola marina with smaller SBSA and lower MO2 (red

square, Figure 9).

Our data show that O. mucofloris inhabiting bone in cuvettes

(purple and yellow dots, Figure 9) have a lower MO2 than O.

mucofloris inhabiting sectioned cow bone (green, blue, red dots,

Figure 9). Along with high standard deviations, this highlights the

difficulties of measuring O2 consumption on these embedded

worms. The variations are most likely caused by the difference in

blind respiration measurements and the large biological activity

present on decaying bone, which was difficult to quantify. Future

studies should thus be carried out to more precisely determine the

Table 2. O2 concentration measured by micro sensors at the
bone or tissue surface of Osedax mucofloris inhabiting whale
bone in two cuvettes, WB1 and WB2.

Bone surface O2 concentration (mmol l21)

Site 1 0.00

Site 2 0.00

WB 1 Site 4 0.00

Site 5 0.00

Site 6 0.00

Site 1 0.00

WB 2 Site 2 0.00

Site 5 3.44

Tissue surface

WB 1 Site 3 0.00

WB 2 Site 3 0.00

Site 4 0.67

doi:10.1371/journal.pone.0035975.t002

Table 3. O2 concentration measured by micro sensors in a mucus tube wall and at the epidermis of palps of Osedax mucofloris.

Mucus tube wall Palp

Site O2 concentration (mmol l21) Site O2 concentration (mmol l21)

Free water 297.86 Base I 0.00

Surface 221.94 Base II 0.57

Breached tube 122.65 Middle 5.73

Centre 170.54 Tip 148.99

doi:10.1371/journal.pone.0035975.t003
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MO2 of O. mucofloris and the contribution of other O2-consuming

surfaces.

Osedax adaptations to the bone environment
The bone matrix exhibited strong O2 depletion with anoxic or

low O2 levels at its surface and with areal O2 consumption rates

comparable to in situ diffusive O2 uptakes measured in sediments

proximate to whale falls [38]. The respiratory and circulatory

system of Osedax is well suited to these environmental challenges.

The elaborate branchial structures of the palp and pinnules of

Osedax mucofloris facilitate a high O2 uptake from the surrounding

seawater that, in combination with the blood vascular system,

apparently enables sufficient oxygenation of the embedded tissue

and endosymbionts. A similar, well-developed respiratory system is

also found in other members of Siboglinidae (for review see [39]),

also exhibiting high surface area to volume ratio in the branchial

structures in particular. Based on these morphological and

functional similarities among several siboglinids it seems possible

that a well-developed anterior branchial structure may be a

plesiomorphic condition among siboglinids and possibly a

prerequisite for housing aerobic symbionts while dwelling in

anoxic habitats. This respiratory system may therefore very well be

a preadaptation present in the common ancestors of Osedax and

other siboglinids, responsible for the successful colonization and

evolution of Osedax in the unique bone environment.

An extended root surface (and high area to volume ratio) is

likewise found in both Lamellibrachia (e.g., [16]) and Osedax (yet

branched). However, the main function has so far been interpreted

as very different. Whereas the Osedax root surface is suggested to

mainly facilitate uptake of organic compounds (with less focus on

the possible congruent uptake of sulphide) [9], the root of

Lamellibrachia is found to be the main respiratory surface of

hydrogen sulphide necessary for the chemosynthesis of the

symbionts [16,17,28].

The measured O2 depleted bone environment as well as ferrous

sulphide precipitations (Figure 8E) supports the suggested

exposure of Osedax to sulphide. Furthermore the large root surface

in the related Lamellibrachia is highly efficient in hydrogen sulphide

uptake [17]. Since the main trophic source of Osedax compared to

other siboglinids (including Lamellibrachia) seems to be heterotro-

phic bacteria rather than sulphide-detoxifying chemoautotrophic

bacteria [8], Osedax may instead possess physiological adaptations

to detoxify sulphide.

Though beyond the scope of the present paper, microanalytical

approaches such as microsensors [40,41] and functional imaging

techniques [42] could yield a more complete mapping of the

chemical microenvironment of Osedax, including the exact levels of

sulphide exposure and spatio-temporal dynamics of O2 in the root

system. It would also be interesting to know whether Osedax have

sulphide-binding properties of their haemoglobin as found in

Vestimentifera [43,44], as they might use them to transport toxic

sulphides from the area surrounding the root structure to e.g., the

palps, somehow releasing the toxic compounds to oxygenated

seawater or detoxifying them.

Materials and Methods

Sampling and aquarium setup
In January 2009, 3 replicate experimental sampling devices,

using cow and whale bone, for recruitment of female O. mucofloris

(Figure 10) were placed at 125 m depth off the coast of Tjärnö,

Sweden (58u52.976N; 11u05.715E) in close vicinity to a minke

whale carcass sunk in October 2003 [13]. One device for

morphological and reproductive studies was successfully retrieved

in May 2009. A second device was retrieved in November 2009 for

in vivo studies (respirometry and microsensor analysis) and

additional morphological studies. Additionally, a piece of cetacean

Figure 9. O2 consumption of O. mucofloris females set in
relation to O2 consumption of resting annelids as well as
recent data of O2 consumption of R. pachyptila. Graph modified
from Cammen [18], the regression line (log R = 21.682+0.850 * log W)
calculated from measurements of resting nonventilating annelids only.
Dots: B1 (red), B2 (blue), B3 (green), C1 (purple), C2 (yellow).
Triangles: Previous measured O2 consumption of R. pachyptila. No
sulphide present in water when measuring: Red, blue [22] and green
[23]; sulphide present in water during measurement: Purple [23]. Red
Square: O2 consumption of resting Arenicola marina [52].
doi:10.1371/journal.pone.0035975.g009

Figure 10. Overview of bone types in experimental sampling
device for recruitment of Osedax. The experimental sampling
devices were placed at 125 m depth off the coast of Tjärnö, Sweden
(58u52.976N; 11u05.715E) in close vicinity to a minke whale carcass sunk
in October 2003 [13].
doi:10.1371/journal.pone.0035975.g010
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bone deposited at 123 m in the same area in May 2008 was

retrieved in January 2009 and used for preliminary investigations

and for designing experimental setups. In January 2009, the

bottom water had a salinity of 34.6%, a temperature of 8.4uC, and

an O2 content of 78.7% atmospheric saturation.

Placement and retrieval were carried out with a remotely

operated vehicle (ROV, Sperre Subfighter, Norway) operated

from the R/V Lophelia (Sven Lovén Centre for Marine Science,

University of Gothenburg, Sweden). Upon retrieval, the sampling

device was placed in a cooling box with ambient aerated water and

transported to the Marine Biological Section, University of

Copenhagen within 8 hours. In the laboratory bones were kept

in aerated seawater under in situ conditions, in aquariums (Vol

60 litre) with aeration, protein skimmers and a recirculating

pumping system. The Osedax ‘‘yellow-collar’’ shown as comparison

in Figure 4 was sampled in November 2009 in Monterey Bay,

California at 385 m from a Grey whale skeleton and stained in

accordance to the protocol described below. All necessary permits

were obtained for the described whale fall experiment; received

from Karin Pettersson at the County Administrative Board Västra

Götalands Län, Oct. 2003. The field studies did not involve

endangered or protected species.

Fixation
Specimens were carefully dissected from the bone and fixed for

immunohistochemistry, benzidine staining and histology. Prior to

dissection, Osedax mucofloris were anesthetized for 5–10 minutes in

a 1:1 solution of seawater and MgCl2 (isotonic to seawater).

Anaesthetized animals were gently dissected with scalpels and

fixed at 4uC over night in 4% paraformaldehyde in 0.15 M

phosphate-buffered saline (PBS) with 5% sucrose, pH 7.4.

Subsequently, the animals were rinsed 4–6 times for 30 min in

PBS with 5% sucrose and were then stored at 4uC in PBS with

0.05% sodium azide (NaN3).

Immunohistochemistry
Four specimens were stained following the protocol of Worsaae

& Rouse [45]. First staining included the primary antibodies

monoclonal mouse anti-acetylated a-tubulin (Sigma T6793, 1:200)

& polyclonal rabbit anti-serotonin (Sigma: S5545; 1:100/1:400) or

monoclonal mouse anti-acetylated a-tubulin & Anti-FMRFamide

(ImmunoStar: 20091, 1:100). This was complimented by second-

ary antibodies; anti-mouse CY5 (Jackson ImmunoResearch: 115-

175-062, 1:400) and anti-rabbit TRITC (Sigma T5268, 1:200/

1:400). Hereafter specimens were incubated for 60 min in

phalloidin conjugated with FITC or Alexa Flour 488 (Sigma

F5282 or Invitrogen A12379, 0.17 or 0.33 mmol l21 phalloidin in

PBS). Specimens were mounted in 100% VectashieldH containing

DAPI (Vector Laboratories inc., California, USA) and stored at

218uC. The specificity of primary antibody binding versus e.g.,

autoflourescence was tested by omitting one of the primary

antibodies, but otherwise treating specimens as described.

Specimens were studied using a Leica TCS SP5 confocal laser

scanning microscope (CLSM) (University of Copenhagen, Faculty

of Health Science, courtesy of M. Givskov and T. Bjarnsholt).

Leica LASAF computer software or ImarisH x64 6.0.0 (Bitplane

AG, Zurich, Switzerland) was used to produce projections of z-

stacks of CLSM images, while further analyses of z-stack series

were performed with ImarisH x64 6.0.0. Computed 2D images of

muscles, nerve and cilia with relation to respiration and palp

morphology were further optimized with Adobe Photoshop CS3

and Adobe Illustrator (Adobe System Incorporated) for presenta-

tion.

Histology
One specimen was embedded in epon and used for histological

analysis. Semi-thick 1.2 mm sections were cut on a microtome (EM

UC6, Leica, Wetzlar Germany) with a diamond knife (Diatome;

Biel, Switzerland). A small amount of Pattex contact adhesive

(Pattex Compact; Henkel KGaA, Düsseldorf, Germany) was

diluted with a few drops of xylene in an Eppendorf tube and

applied to the side of the epon block to make serial sectioning of

ribbons possible following the protocol of Henry [46] and

Ruthensteiner [47]. Bands of ,20 sections were stained with

toluidine blue and mounted in EntellanH (Electron Microscopy

Sciences, Pennsylvania, USA). Sections were studied and photo-

graphed using light microscopy (BX50 microscope; DP71 camera;

CellF software; Olympus, Japan).

Benzidine staining of haemoglobin
Using a modified version of the benzidine staining method by

Knox [48], haemoglobin was stained in four fixed specimens. A

100% saturated benzidine solution was prepared by adding

benzidine to distilled water. The solution was stirred for two

hours. Fixed specimens were rinsed in running tap water in the

same time period. Specimens were subsequently incubated in the

filtered benzidine solution for 1 hour, also under stirring. Next,

3% hydrogen peroxide was added drop by drop until blood vessels

turned dark blue. Specimens were either mounted in glycerol

directly or dehydrated in a series of alcohol acidified with drops of

0.1% acetic acid, where after tissues were cleared in xylene and

mounted in D.P.X between two cover slips. Specimens were

analyzed and photographed under a light microscope (BX50

microscope; Dp71 camera; CellF software; Olympus, Japan).

Oxygen consumption measurements
O2 consumption was measured in seawater kept at ,100%

atmospheric saturation using intermittent respirometry in accor-

dance with Vismann and Hagerman [49]. The experimental setup

was placed in a constant temperature room at 6uC. Each

experiment encompassed 3–8 measuring sequences consisting of

a flushing period of 10–30 min and a measuring period of 30–

45 min. The set-up had a chamber flushing rate of 30 ml min21

and a shunt water flow of 8 ml min21 past the O2 electrode

(E5046, Radiometer Medical ApS, Brønshøj, Denmark).

The O2 electrode was connected to a blood/gas monitor

(PHM73, Radiometer Medical ApS, Brønshøj, Denmark) and

measuring signals were acquired continuously on a PC via data

acquisition software (Labtech Notebook Pro version 12.1,

Laboratory Technologies Corporation, USA). Prior to each

experiment, the O2 electrode was calibrated in 0% O2 solution

(saturated solution of sodium sulphite in borax) and 100%

atmospheric O2 solution. The O2 consumption (MO2, mg O2

g21 h21) was calculated according to the equation:

MO2~
pO2

100 � ww
� a

� �
� b � v

where pO2 = the O2 partial pressure at full saturation (kPa),

ww = wet weight of fixed specimen rinsed for mucus tube (g) (tissue

fixed in 4% parafomaldehyde and stored in PBS is assumed to

have similar weight as unfixed tissue), a= slope of regression line

for O2 decrease (% h21), b= O2 solubility (mg O2 l21 kPa21) and

v = volume of the respiration chamber (l).

O2 consumption was measured on O. mucofloris inhabiting three

sectioned cow bone pieces (B1, B2 and B3) and bones in two

cuvettes (C1 and C2). Measurements were either initiated directly
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after the annelids protracted subsequent to the disturbance of

being moved (C1, C2, B1) or after one night of acclimatization

(B2, B3). All measurements were corrected for background

respiration. For B2 and B3 the background respiration was

measured using the same water and bones (after dissection and

48 hours of acclimation to restore biological activity). For C1, C2

and B1 the background respiration was the mean value of

measurements using new water, bones in two cuvettes and three

sectioned bone pieces without O. mucofloris. Different respiration

chambers were used for sliced bone pieces (volume: 186 ml) and

cuvettes (volume: 51 ml).

Microscale O2 measurements
O2 concentration profiles were measured in vertical steps of

100 mm with Clark-type O2 microelectrodes with a guard cathode

[50] (OX-10 Unisense A/S, Aarhus, Denmark) mounted on a

manually operated micromanipulator (Märtzhäuser, Wetzlar,

Germany) and connected to a picoammeter (PA2000, Unisense

A/S, Aarhus, Denmark) and a strip chart recorder (BD25,

Kipp&Zonen, Delft, Netherlands). The microelectrodes had a

measuring tip diameter of 10 mm, a stirring sensitivity of ,1–2%

and a 90% response time of ,1 second. Linear calibration of the

electrode was done from electrode readings in seawater at 100%

atmospheric saturation and in anoxic seawater (by addition of

sodium dithionite). The O2 concentration ([O2], mmol O2 l21) at

each measuring position was calculated according to the equation;

O2½ �~
xn

x0
� Csat

Where xn = O2 reading at depth n (pA), x0 = O2 reading at 100%

atmospheric O2 saturation (pA) and Csat = O2 concentration at

100% atmospheric O2 saturation (mmol O2 l21). We measured O2

concentration profiles from the mixed aerated seawater, across the

diffusive boundary layer (DBL) and towards the surface of O.

mucofloris roots in minke whale bone kept in cuvettes (WB1 and

WB2) (Table 2). Prior to these measurements, manually drilled

holes (diameter: ,340 mm) on the side of the plastic cuvettes

(Figure 8D, E) were covered with agar (1.5% w/w in seawater) and

the cuvettes were left to acclimatize for 2–3 days in order to restore

the environment prior to disturbance. The O2 concentration was

measured through the holes of the cuvette wall towards the

enclosed bone surface and further into the bone (Figure 8C).

Measurements are given for seven sites on WB1 and five sites on

WB2.

The area specific O2 flux (J, nmol O2 cm22 sec21) at the bone

surface was calculated from linear parts of the O2 concentration

profiles in the DBL and agar plug according to Fick’s first law:

J~D0 �
dC

dz

Where dC/dz = the change in O2 concentration (dC, nmol O2

cm23) with distance (dz, cm), D0 = the molecular diffusion

coefficient of O2 (cm2 sec21). We applied a diffusion coefficient

of 1.3382 * 1025 cm2 sec21, corrected for experimental temper-

ature and salinity.

Additional microscale O2 measurements were performed

through the mucus tube wall and at the surface of the palps of

the individual on WB1. On the mucus tube, the O2 concentration

was measured from outside the tube and half way into the mucus

tube wall. Undisturbed measurements could not be obtained

within the centre hole of the tube due to contractions of the worm.

On the palps, the O2 concentration was measured by keeping the

electrode measuring-tip at a fixed position, while the palps

approached the tip position as the annelid protracted after being

left undisturbed.
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41. Kühl M (2005) Optical microsensors for analysis of microbial communities.
Meth Enzymol 397: 166–199.
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