
UNIVERSITY OF BERGENFa
ulty of Mathemati
s and Natural S
ien
es
Statisti
al Approa
h to Relatedness Analysisin Large Colle
tions of Geneti
 Pro�lesan Appli
ation to a DNA-Registry of Fin Whales

Stefanía Benónísdóttir
M.S. - Thesis inStatisti
s - Data AnalyseSupervisor: Professor Hans Julius SkaugCo-supervisor: Dr. Christophe PampoulieNovember 2012



Contents
1 Introdu
tion 12 The Fin Whale 43 Pedigree Analysis 63.1 Mendelian Heritan
e Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2 Hardy-Weinberg and Linkage Equilibrium . . . . . . . . . . . . . . . . . . . . . 73.3 Gene Identity by Des
ent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Statisti
al Methods 104.1 The LOD S
ore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.2 Controlling the Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2.1 p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2.2 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.3 Explanatory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.3.3 LOD S
ores: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.3.4 p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.3.5 Interpretation of the Result . . . . . . . . . . . . . . . . . . . . . . . . . 225 Analysis of the Fin Whale Database 235.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.3 Population Allele Frequen
ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4 Appli
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4.1 Half-Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4.2 Parent-O�spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285.4.3 First Cousins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Dis
ussions 47Appendi
es 53

1



A Kinship 
oe�
ients 54A.1 Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54A.2 Half-Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55A.3 First Cousins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56B Relatedness Likelihood Ratios 58B.1 Full Siblings Likelihood Ratio at a Single Lo
us . . . . . . . . . . . . . . . . . . 58B.2 Half-Siblings Likelihood Ratio at a Single Lo
us . . . . . . . . . . . . . . . . . . 60B.3 First Cousins Likelihood Ratio at a Single Lo
us . . . . . . . . . . . . . . . . . 61C R Codes for the Explanatory Example 63C.1 Simulation of Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63C.2 Computation of LOD S
ores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64C.3 Estimation of p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69D R Codes for the Fin Whale Analysis 72D.1 Registration of the Geneti
 Data . . . . . . . . . . . . . . . . . . . . . . . . . . 72D.2 Estimation of Population Allele Frequen
ies . . . . . . . . . . . . . . . . . . . . 72D.3 LOD S
ores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75D.4 Simulation of Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78D.5 Computation of p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78D.6 Exa
t Binomial Con�den
e Interval . . . . . . . . . . . . . . . . . . . . . . . . . 79E Estimated Population Allele Frequen
ies for the Fin Whale Analysis 80

2



List of Tables3.1 Kinship 
oe�
ients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.1 Nr. of ways to inherit 0, 1 and 2 alleles IBD . . . . . . . . . . . . . . . . . . . . 114.2 Evaluation of multiple LOD s
ores . . . . . . . . . . . . . . . . . . . . . . . . . 174.3 DNA pro�les and allele frequen
ies for explanatory example . . . . . . . . . . . 194.4 Pairwise LOD s
ores for parent-o�spring hypothesis . . . . . . . . . . . . . . . . 204.5 Pairwise LOD s
ores for identi
al twins hypothesis . . . . . . . . . . . . . . . . 204.6 Pairwise LOD s
ores for siblings hypothesis . . . . . . . . . . . . . . . . . . . . 214.7 Pairwise LOD s
ores for half-siblings hypothesis . . . . . . . . . . . . . . . . . . 214.8 Pairwise LOD s
ores for �rst 
ousins hypothesis . . . . . . . . . . . . . . . . . . 225.1 50 highest pairwise half-sibling LOD s
ores and their 
orresponding p̂-values . . 275.2 50 highest pairwise half-sibling LOD s
ores and their 
orresponding Bonferroni
orre
ted p̂-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3 50 highest pairwise half-sibling LOD s
ores and their 
orresponding Qr-values . 305.4 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding p̂-values. 325.5 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding Bon-ferroni 
orre
ted p̂-values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.6 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding Qr-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345.7 9 highest pairwise parent-o�spring LOD s
ores, mother-foetus pairs not in-
luded, and their 
orresponding Qr-values . . . . . . . . . . . . . . . . . . . . . 345.8 50 highest pairwise �rst 
ousins LOD s
ores and their 
orresponding p̂-values . 365.9 50 highest pairwise �rst 
ousins LOD s
ores and their Bonferroni 
orre
ted
p̂-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.10 50 highest pairwise �rst 
ousins LOD s
ores and their 
orresponding Qr values 385.11 33 highest pairwise �rst 
ousins LOD s
ores, mother-foetus pairs not in
luded,and their 
orresponding Qr values . . . . . . . . . . . . . . . . . . . . . . . . . 395.12 Results from the FDR pro
edure with q = 0.05 not in
luding non mother-foetuspairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.13 DNA pro�les of F09-091, F09-091F and F10-100 . . . . . . . . . . . . . . . . . 465.14 Dete
ted pairs of relatives within the sample . . . . . . . . . . . . . . . . . . . . 46E.1 Allele frequen
ies at lo
us 1 to 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 80E.2 Allele frequen
ies at lo
us 7 to 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 81E.3 Allele frequen
ies at lo
us 13 to 15 . . . . . . . . . . . . . . . . . . . . . . . . . 813



A
knowledgementsI am very grateful to my supervisor Hans Julius Skaug for his great advi
es, for introdu
ing meto statisti
al methods that I had not learned about before and for making sure that my studywas always on tra
k. Sin
ere thanks to Christophe Pampoulie, my 
o-supervisor in I
eland,for his 
ontributions, support and for explaining geneti
s to me.Many thanks to Bjarki Þór Elvarsson, who made it possible for me to do su�
iently manysimulations with his te
hni
al support and gave me 
ountless advi
e on formatting. Spe
ialthanks to Valérie Chosson.P., who answered any question I had about �n whales and providedestimation of the age and age of maturity of �n whales within the database. The people atthe Marine Resear
h Institute of I
eland are espe
ially thanked for letting me work at theirfa
ilities and providing me with data.

4



Abstra
tThe use of DNA-pro�les for identi�
ation is a matter of statisti
s. In the interpretation ofgeneti
 eviden
e there is always some un
ertainty and this un
ertainty requires estimation.The �n whale, Balaenoptera physalus, is a marine mammal that 
an be found in all of theworld's o
eans (Víkingsson, 2005). Fin whales, like all marine mammals, are by nature dif-�
ult to observe and un
ertainties remain about their geneti
 stru
ture, abundan
e, matingstrategies and migration patterns (Pampoulie et al., 2012, Víkingsson, 2005, Ægisson andHlíðberg, 2010). Introdu
tion of DNA eviden
e at the end of the 1980s opened up many areasof resear
h (Balding, 2005) but many relatedness studies based on geneti
 pro�les have nowbeen 
ondu
ted for various spe
ies of wildlife (Nielsen et al., 2001, Skaug and Oien, 2005,Russell et al., 2009). This pro
edure has been espe
ially useful for spe
ies that are di�
ultto observe be
ause the identi�
ation of biologi
al relationships yields information that 
an beuseful in understanding the dynami
s of spe
ies (Skaug et al., 2010, Pampoulie et al., 2012).I
eland has maintained an individual-based DNA-registry for �n whales for some time. Thepresent study utilized data from this registry by sear
hing for pairs of relatives among 267�n whales and 23 �n whale foetuses. Three kind of relatedness were of interest, half-siblings,parent-o�spring and �rst 
ousins. The LOD s
ore is a 
ommonly used test statisti
 for agiven relatedness hypothesis and 
an be easily 
al
ulated for a pair of DNA pro�les (Skauget al., 2010). The LOD s
ore is the logarithm of the ratio of the probabilities of the dataunder the two mutually ex
lusive hypotheses, H0: Unrelated and H1: Relatedness of interest.Dete
tion of relatives was done by 
omputing pairwise LOD s
ores for the individuals in thesample for ea
h relatedness of interest. The 
orresponding p-values for ea
h LOD s
ore wereestimated by 
omparing the original LOD s
ores with LOD s
ores of unrelated individualssimulated with the same allele frequen
ies as the original dataset. Due to very high number ofpairwise LOD s
ores it was ne
essary to adjust for multiple testing. Two well known multipleadjusting methods were applied and 
ompared, the Bonferroni pro
edure and Benjamini's andHo
hberg's (1995) false dis
overy rate pro
edure, (FDR). The FDR pro
edure was found tobe more suitable for this analysis sin
e the Bonferroni pro
edure was too 
onservative for su
ha high number of LOD s
ores. Eight pairs of relatives were dete
ted within the sample at thefalse dis
overy rate of q = 0.05. When information about estimated age and estimated age ofmaturity had been taken into a

ount, three of those pairs were 
lassi�ed as a parent and ano�spring pair, two of them were 
lassi�ed as either half-siblings or an un
le/aunt-nephew/nie
epair and the remaining three were 
lassi�ed as half-siblings or an un
le/aunt-nephew/nie
epair or a grandparent-grand
hild pair. One of the dete
ted parent-o�spring pairs were a male�n whale and a foetus whi
h were also dete
ted as a father and his o�spring by Pampoulie etal. (2012).



Chapter 1Introdu
tionIn this present paper an I
elandi
 individual-based DNA registry of �n whales is utilized foridentifying pairs of related individuals. The use of DNA-pro�les for identi�
ation is a matterof statisti
s. In the interpretation of geneti
 eviden
e there is always un
ertainty of some kindand this un
ertainty requires estimation and statisti
al modelling. In their book 'InterpretingDNA Eviden
e: Statisti
al Geneti
s for Forensi
 S
ien
e', Evett and Weir (1998) suggestedthat geneti
 eviden
e should be interpreted a

ording to three prin
iples (Weir, 2007):1. To evaluate the un
ertainty for any given proposition it is ne
essary to 
onsider at leastone alternative proposition.2. Interpretation is based on questions of the kind 'What is the probability of the eviden
egiven the proposition?'3. Interpretation is 
onditioned not only by the 
ompeting propositions, but also by theframework of 
ir
umstan
es within whi
h they are to be evaluated.The �rst prin
iple leads to the use of likelihood ratios and the se
ond one entails, in the presentstudy, the question: 'Given that individual i and j are related, what is the probability thattheir DNA-pro�les are as they are?' The third prin
iple addresses the importan
e of takingauxiliary eviden
e into a

ount. The �rst and se
ond prin
iple play a key role in the stru
tureof the test pro
edure in the present analysis. Interpretation of the test results is 
onditionedby the non geneti
 eviden
e, as the third prin
iple suggests, but estimation of age and ageof maturity are used to 
on
lude if parent-o�spring and grandparent-grand
hild relations arepossible. Mother-foetus pairs are present within the DNA registry whi
h is of great value forthe analysis sin
e the performan
e of the test pro
edure 
an be evaluated by it's ability to
lassify those mother-foetus pairs as relatives.The basi
 idea in dete
ting related pairs of individuals based on geneti
 eviden
e, is that rela-tives share more alleles on average than unrelated individuals. To put it as simple as possible:'The more a like the DNA pro�les of individuals are, the higher probability that they arerelated'. It gets more 
ompli
ated when relevant statisti
al geneti
 issues are in
orporatedinto that probability. Population allele frequen
ies have to be a

ounted for. A mat
h of twoindividuals that have DNA pro�les that mainly 
ontain 
ommon allele types does not haveas mu
h statisti
al power as a mat
h of two individuals that have DNA pro�les that 
onsistof rare allele types. In this paper a mat
h refers to �nding a pair of individuals that the test1



pro
edure 
on
ludes to be relatives. There are issues of how the population is to be de�nedand hen
e how the population allele frequen
ies should be estimated. There are also issues ofassuming independen
e between lo
i and independen
e of segregation of alleles. These are allstatisti
al geneti
 issues that will be addressed in 
hapter 3.The LOD s
ore is a well known test statisti
 for testing relatedness (Skaug et al., 2010). TheLOD s
ore is the logarithm, with base 10, of the likelihood ratio
LR =

P (data | related)

P (data | unrelated)The LOD s
ore is used in the present analysis to test the hypothesis of a spe
i�
 relatednessagainst the null hypothesis of unrelatedness and the data refers to DNA-pro�les of a pair of�n whales. A p-value is estimated for ea
h LOD s
ore by simulating unrelated individualsfrom a population with the same allele frequen
ies as the observed sample, 
omputing theirpairwise LOD s
ores and 
omparing them to the LOD s
ores observed in the study.A

ording to the 2012 annual report of the Marine Institute in I
eland, 'Hagrannsóknir nr.163', whale 
ounting survey in 2007 indi
ated that there were about 20 600 �n whales in theEast Greenland/I
eland tribe area (Sigurðsson and Magnússon, 2012). The database utilizedin this study 
onsists of geneti
 pro�les of 267 �n whales and 23 foetuses from that area. Thatis a small fra
tion of the total population, 290
20 600 ≈ 0.0141 whi
h leads to a low probability ofthat both members of pairs of related individuals are within the sample.A sear
h for pair of relatives in a dataset of this size results in the simultaneous evaluation of

289·290
2 = 41 905 pairwise LOD s
ores. This high number of test statisti
s entails a multiple
omparison problem. If the signi�
an
e level α would be used as in the single 
omparison 
asethen the expe
ted number of false dete
tions would be 
onsiderable large or m · α, where mstands for the number of pairwise 
omparisons. In the present study the multiple 
omparisonproblem is a

ounted for by 
omparing two well known adjustment methods, the Bonferroni
orre
tion and the false dis
overy rate pro
edure. The Bonferroni 
orre
tion 
ontrols the upperlevel of the family wise error rate, (FWER), whi
h is de�ned as the probability of one or moretype I error o

urring in the analysis (Pounds et al., 2007). The Bonferroni 
orre
tion entailstesting ea
h individual hypothesis at a level α/m whi
h guarantees that FWER ≤ α. TheBonferroni pro
edure is very stri
t in the 
ase of a high m with the 
ost of an in
rease in thenumber of type II errors1, that is not dete
ting true relatives (Skaug et al., 2010). In 1995Benjamini and Ho
hberg introdu
ed the false dis
overy rate, (FDR), as a method to adjustfor multiple testing. They des
ribed the FDR as an error rate that 
ontrols the expe
tedproportion of false dis
overies but in the present paper dis
overies stands for dete
tion ofdyads of relatives. The FDR pro
edure arranges the estimated p-values for ea
h LOD s
orein an in
reasing order p1 ≤ p2 ≤ .... ≤ pm. q is de�ned as the target false dis
overy rate and

R is de�ned to be the largest value of r for whi
h:
pr ≤

r

m
· qThe �rst R pairs of individuals that are behind the R lowest p-values in the ordered sequen
eare 
lassi�ed as relatives, and the remaining m−R pairs are de
lared as unrelated. Benjamini1Type II error is the error of not reje
ting a false null hypothesis2



and Ho
hberg (1995) showed in their paper that this pro
edure 
ontrols the false dis
overyrate at q for independent test statisti
s and for any 
on�guration of false null hypotheses.The FDR is an appealing method to 
ontrol the error rate in the present analysis of multiplepairwise LOD s
ores. It takes the number of erroneous false dis
overies of relatedness intoa

ount instead of only the question whether any error was made (Benjamini and Ho
hberg,1995). All 
omputations and simulations in this study are done by using the open sour
eprogram R, version 2.14.1, (R Development Core Team, 2011).Chapter 2 
ontains information about �n whales. It is followed by the 
hapter 'PedigreeAnalysis' whi
h provides a brief introdu
tion of the geneti
 
on
epts and theories needed fordeveloping the statisti
al pro
edure used in the present study. The statisti
al pro
edure ispresented in Chapter 4, 'Statisti
al Methods', and appli
ation of that pro
edure to the �nwhale database is in the next 
hapter, 'Analysis of the Fin Whale Data Base'. In the last
hapter 'Dis
ussions', results are reviewed and 
on
lusions drawn about the performan
e ofthe test pro
edure.
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Chapter 2The Fin WhaleThe �n whale, Balaenoptera physalus, is a marine mammal that belongs to the suborder ofbaleen whales. Fin whales are 
onsidered to be the se
ond longest animal in the world and
an be as long as 25-27 meters (Víkingsson, 2005). The �n whale's body is greyish-bla
k orbrownish-bla
k with a white underside. The dorsal �n is about 60 
m high and their spoutis a dire
t 4-15 meters high pole. Fin whales usually don't dive for longer than 3-8 minutesand travel slowly but if they need to, �n whales 
an be underwater for 10-12 minutes and are
apable of swimming as fast as 30 km per hour (Ægisson and Hlíðberg, 2010). Fin whalesbe
ome mature when they are 7-12 years old (Víkingsson, 2005) and the oldest age re
ordknown is 114 years old (Ægisson and Hlíðberg, 2010). Fin whales travel alone or in smallgroups but whale 
ounting in I
elandi
 and adjoining waters resulted in an average group sizeof 1.5 animal. (Víkingsson, 2005)Fin whales 
an be found in all of the world's o
eans. The International Whaling Commissionhas distinguished seven groups of �n whale in the North Atlanti
 but the �n whales aroundI
eland belong to the so 
alled East Greenland/I
eland group, (EGI). This group distin
tion,whi
h is largely based on distribution and development of whaling, o

urren
e during the sum-mer and tagging, has been questioned but at the same time, no better well-founded hypothesisof division is available. In I
elandi
 waters, �n whales are most 
ommonly seen during thesummer and outside the tide land in the west and south-west of the 
ountry. The EGI groupis 
onsidered to be the biggest �n whale group in the North Atlanti
 (Víkingsson, 2005). TheMarine Resear
h Institute of I
eland, in 
ooperation with neighbouring 
ountries in the NorthAtlanti
, has parti
ipated in wide-ranging whale 
ounts in the years 1987, 1989, 1995, 2001and 2007. A

ording to those 
ounts �n whales around I
eland have in
reased 
onsiderablyin number sin
e 1987, espe
ially in the west of I
eland. Surveys from 1987-1989 indi
atedthat there were about 16 000 �n whales in the EGI sto
k area. A

ording to the survey in2001 there were about 23 700 �n whales in all in the EGI sto
k area. The survey in 2007indi
ated that 20 600 �n whales were in the EGI area. This estimate was not signi�
antlydi�erent to that from 2001 but there is some un
ertainty in a 
ounting survey (Sigurðsson andMagnússon, 2012).Fin whales, like all marine mammals, are by nature di�
ult to observe. It is mainly be
ausethey undertake long, annual migrations between high-latitude summer feeding areas and low-latitude winter breeding areas like most of the baleen whales. Little is known about the geneti
4




omposition and biologi
al 
hara
teristi
s of the group of individuals lo
ated at spawninggrounds and available information have only been 
olle
ted at feeding grounds. Therefore,despite that whales in I
elandi
 waters have been resear
hed for 
enturies1 un
ertainties re-main about �n whale's geneti
 stru
ture, abundan
e, mating strategies and migration patterns(Ægisson and Hlíðberg, 2010, Víkingsson, 2005, Pampoulie et al., 2012).The introdu
tion of DNA te
hniques at the end of the 1980s opened up many areas of resear
h(Balding, 2005). Geneti
 data 
an provide information on biologi
al relationships between in-dividuals (Skaug, 2001) but many relatedness studies based on geneti
 pro�les have now been
ondu
ted for various spe
ies of wildlife (Nielsen et al., 2001, Skaug and Oien, 2005, Russellet al., 2009). This approa
h has been very useful for spe
ies that are di�
ult to observe, like�n whales, be
ause the identi�
ation of biologi
al relationships yields information that 
an bevery useful in understanding the dynami
s of spe
ies (Skaug et al., 2010, Pampoulie et al.,2012).I
eland has maintained an individual-based DNA-registry for �n whales in re
ent years, whi
h
omprises 267 geneti
 pro�les 
olle
ted between and during the years 2009 and 2010, and hasbeen obtained for 15 mi
rosatellite lo
i, (neutral geneti
 markers inherited from the parents;see Pampoulie et al. (2012)), the 
ontrol region of mtDNA and a sex-marker, (Bérubé andPalsbøll, 1996). 139 of the 
olle
ted individuals were males. The database also 
ontains infor-mation about the age and age of maturity of the individuals whi
h was estimated by readingtheir ear plugs. 23 females, of the 267 individual samples genotyped, 
arried a foetus for whi
ha geneti
 sample was also obtained (4 in 2009 and 19 in 2010). In the present proje
t, avail-able geneti
 pro�les in the DNA registry of I
eland are examined to investigate if there areany biologi
al relationships present between pairs of individuals within the database. Threerelationships were of interest, half-siblings, parent-o�spring and �rst 
ousins.

1In Konungs Skuggsjá, whi
h was written in Norway in the 12th 
entury, is an extensive des
ription onwhale spe
ies around I
eland. There is no doubt that the author got a
quainted with whales in some waybe
ause some of the des
riptions re
on
iles with what is best known about whales today (Sigurjónsson, 1993).5



Chapter 3Pedigree AnalysisThis 
hapter provides a brief introdu
tion of the geneti
 
on
epts and theories needed fordeveloping the statisti
al pro
edure, used in the present study, for dete
ting relatives.3.1 Mendelian Heritan
e RulesModern geneti
s began when Mendel published his First Law in 1866 on the basis of studies ofpea plants. In his experiments he studied heritable traits in peas and postulated that dis
rete
hara
ters, whi
h are now 
alled genes, pass from parents to o�spring. He suggested that ea
hpea plant 
arries two genes that determine any given 
hara
teristi
. One of the two genes isre
eived from the male parent plant, the other from the female parent plant. In the formationof an o�spring a random one of the two genes is passed on (that is segregates) from parentto o�spring. Di�erent o�springs of the same parent result from independent segregations.Mendel was able to explain his observations with this theory whi
h is often 
alled Mendel'sFirst Law, the law of segregation. Mendel's First Law 
overs mu
h of geneti
s sin
e peas, likemammals, are diploid. That is, they 
arry genes in pairs whi
h 
an therefore segregate in theway des
ribed (Thompson, 1986, Speed and Zhao, 2007).The DNA in a 
ell is divided into 
hromosomes-substrings of the geneti
 material. In theformation of new 
ells it is the 
hromosomes that segregate, rather than individual genes(Thompson, 1986). Chromosomes other than the sex 
hromosomes are 
alled autosomes. Adiploid, whi
h is the organism of interest here, has two 
omplete sets of ea
h autosome. Thereprodu
tive 
ell, sperm in males and egg in females, is 
alled a gamete. Ea
h gamete 
onsistsof a single version of the 
hromosome but a fusion of a male gamete and a female gameteforms a fertilized egg (Hartl and Jones, 1998).A lo
us is a parti
ular position on a 
hromosome. A diploid holds two alleles at ea
h lo
us, onematernally inherited and the other one paternally inherited (Skaug, 2001). Generally, allelesare labelled a

ording to their type. Consider a single lo
us and denote the number of di�erentalleli
 types existing at that lo
us by K. The unordered pair of alleles 
arried by an individualis his genotype. In this 
ase the possible genotypes are (ai, aj) with i, j = 1, ....K. Individualswith two 
opies of one allele are homozygous at that lo
us, but if the two alleles are di�erent,then they are heterozygous. A

ording to Mendelian segregation, a homozygous parent mustpass on the only alleli
 type he/she 
arries to his/her o�spring, while a heterozygous parent6



passes on either one of his/her two allele types, ea
h with probability 0.5. This is the basis ofpedigree analysis (Thompson, 1986).Mendel also 
onsidered two or more heritable traits together and 
arried out experiments todetermine how traits in peas were inherited together. His observations, sometimes known asMendel's Law of Independent Segregation, indi
ated that during a gamete formation, the seg-regation of one gene-pair is independent of the other gene-pairs. That is, when two gene-pairs
(a, b) and (c, d) segregate, ea
h gamete will be equally likely to have genotypes (a, c), (a, d),
(b, c) and (b, d). Mendel's Law of Independent Segregation holds for some but not all pair ofgenes. It turns out that there are many pairs of traits whose genes do not re
ombine freely buttend to sti
k together, in the sense that parent with a genotypes (a, b) and (c, d) at two lo
iwould be more likely to pass on the pairs (a, c) and (b, d) to his/her o�spring than the pairs
(a, d) and (b, c). This non independent segregation is known as linkage (Speed and Zhao, 2007).3.2 Hardy-Weinberg and Linkage EquilibriumHartl and Jones (1998) de�ne population as a group of organism of the same spe
ies livingwithin a pres
ribed geographi
al area. This geographi
al area 
an be of any size but is 
om-monly 
onsidered to be the area in whi
h individuals within the population are likely to �ndmates (Hartl and Jones, 1998). The present study assumes that the �n whales with availablegeneti
 pro�les at the DNA registry, all belong to the same population. However, there's noattempt to de�ne the geographi
al area in whi
h these individuals are likely to �nd mates.The 
omplete set of geneti
 information within a population is 
alled a gene pool but the genepool in
ludes all alleles present in the population (Hartl and Jones, 1998). Allele types o

urwithin di�erent populations with di�erent frequen
ies. A population allele frequen
y is theprobability that a randomly 
hosen gene from a gene pool will be of a spe
i�
 alleli
 type.That is, population allele frequen
ies give information on how 
ommon allele types are withinthe population (Thompson, 1986).Consider S lo
i and denote by Ks the number of di�erent alleli
 types that exist at lo
us swith s = 1, ......S. Assume the existen
e of a population with in�nitely many individuals. TheDNA-pro�le of individual i in the population is denoted by:

Di = {(a
(1)
i,s , a

(2)
i,s ), 1 ≤ s ≤ S} (3.1)

(a
(1)
i,s , a

(2)
i,s ) are unordered values. The population allele frequen
ies are denoted by p(1s), p(2s),

..., p(Ks) with ∑Ks

k=1 p(ks) = 1 but p(ks) is the population frequen
y for allele type ks at lo
us
s. The allele frequen
ies are obtained by dividing the observed number for ea
h allele typeby the total number of alleles in the gene pool (Hartl and Jones, 1998). If the genes 
an beregarded as independently 
hosen from an in�nitely large gene pool with the above frequen
iesthen the probability that the alleles at lo
us s of a randomly 
hosen individual i are of thesame type is:

P ((ks, ks)) = p(ks)
2 (3.2)7



and the probability that the randomly 
hosen individual i has the genotype (ks, rs) at lo
us
s with ks 6= rs is:

P (ks, rs) = 2 · p(ks) · p(rs) (3.3)for 1 ≤ i ≤ ∞ and 1 ≤ s ≤ S. The genotype is an unordered pair, so the ks allele may be
hosen and then rs or vi
e versa giving the fa
tor of 2. These frequen
ies are known as theHardy-Weinberg equilibrium frequen
ies (Thompson, 1986) but the population is said to bein Hardy Weinberg equilibrium if the alleles a(1)i,s and a
(2)
i,s are independent ∀i (Balding, 2005).The population is said to be in linkage equilibrium if the genotypes (a(1)i,s , a

(2)
i,s ) and (a

(1)
i,s′ , a

(2)
i,s′)are independent for s 6= s′ and ∀i (Skaug, 2001). Hardy-Weinberg and linkage equilibriumrarely hold in real populations sin
e gene pools are never in�nite. They 
an however providea good approximation if the population size is large, mating is random and allele frequen
iesremain 
onstant from one generation to the other (Balding, 2005, Hartl and Jones, 1998).The present study is performed under the assumption of Hardy-Weinberg and linkage equilib-rium. That entails the assumptions that the population is large enough, the mating is randomand that major for
es that in�uen
e allele frequen
ies, mutation, migration and sele
tion, 
anbe negle
ted. In random mating, organisms form mating pairs independently of genotype.Random mating is by far the most prevalent mating system for most spe
ies of animals (Hartland Jones, 1998) and there is nothing that implies that mating among �n whales is an ex-
eption to that. Also, even if sexual sele
tion was the 
ase among �n whales, that wouldnot ne
essary result in a Hardy-Weinberg disequilibrium. One important impli
ation of theHardy-Weinberg equilibrium is that the allele frequen
ies remain 
onstant from one generationto the other (Hartl and Jones, 1998). Mutation is de�ned as a random 
hange of the alleli
type when an allele is passed from parent to o�spring (Thompson, 1986). This 
hange o

urswith a very small probability but genes rarely undergo mutation in a single generation (Hartland Jones, 1998). The generation time for �n whales is about 100 years. The geneti
 databasethat is utilized in this paper is from a lot shorter time span than one generation, 2009-2010,and therefore mutation is regarded as a negligible for
e. Sele
tion is the di�ering viabilityand/or fertility of individuals a

ording to their genotype. Sin
e sele
tion for
es 
an be very
omplex and are seldom known with su�
ient a

ura
y (Thompson, 1986) those for
es willnot be in
orporated into the appli
ation. Migration of individuals, within or between popula-tions, 
an have substantial e�e
ts over short periods (Balding, 2005, Thompson, 1986). Thepresent study is the analysis of spe
i�ed individuals so migration is, in this 
ase, not relevant.3.3 Gene Identity by Des
entThe word relatives refers to individuals with 
ommon an
estors. Individuals will be found tohave 
ommon an
estors if their an
estry is tra
ed ba
k far enough. For the purposes of thisstudy, individuals are 
onsidered unrelated unless a pre
ise relationship is spe
i�ed. Everyindividual 
arries two alleles at ea
h lo
us, one inherited from the mother and the other oneinherited from the father. Any given set of individuals may 
arry the same allele types ata lo
us sin
e there are many 
opies of an allele within a population. However, relatives aremore likely to do so, for they may 
arry 
opies of a single gene inherited from one 
ommonan
estor. Genes that are 
opies of a single gene in a 
ommon an
estor are 
onsidered to be8



identi
al by des
ent, (IBD). Su
h identi
al genes must be of the same alleli
 type while nonIBD ones may or may not be. The basi
 idea is that geneti
 pro�les of relatives are similarbe
ause they may 
arry IBD genes. Generally, 
loser relationships give higher probabilitiesfor genes to be identi
al (Thompson, 1986).One of the simplest probabilities of gene identity by des
ent is the 
lassi
al kinship 
oe�
ient.The kinship 
oe�
ient, kj , is de�ned as the probability that a pair of individuals has inherited
j alleles at a lo
us identi
al by des
ent given a 
ertain relatedness. kj = P (j − ibd | H1) with
j = 0, 1, 2. Table 3.1 
ontains values of the kinship 
oe�
ients for di�erent stages of related-ness. Table 3.1: Kinship 
oe�
ientsHypothesis k0 k1 k2Unrelated 1 0 0Parent-o�spring 0 1 0Identi
al twins 0 0 1Siblings 1/4 1/2 1/4Half-siblings 1/2 1/2 0First 
ousins 3/4 1/4 0Unrelated individuals, by the de�nition in this study, don't have any 
ommon an
estors andtherefore have inherited zero alleles identi
al by des
ent with probability 1. An o�spring inher-its one allele from its parent at ea
h lo
us no matter what. By de�nition, identi
al twins inherit2 alleles identi
al by des
ent at ea
h lo
us with probability 1. It is a little more 
ompli
ated to�nd the kinship 
oe�
ients for siblings, half-siblings and �rst 
ousins but the formulation forthose 
oe�
ients 
an be found in appendix A. Full siblings are able to inherit 0, 1 or 2 allelesIBD at a lo
us but the probabilities di�er. Half-siblings and �rst 
ousins are able to inherit 0or 1 allele IBD under the assumption of no inbreeding. It is impossible to distinguish betweena pair of half-siblings, grandparent-grand
hild pair and un
le/aunt-nephew/nie
e pair fromgeneti
 eviden
e alone (Weir, 2007). For that reason the term 'half-siblings' refers here to allthose relations unless noted otherwise.

9



Chapter 4Statisti
al MethodsThis 
hapter introdu
es the statisti
al pro
edure used for identifying pairs of 
lose relativeswithin the 
olle
tion of geneti
 pro�les available at the �n whale DNA-registry.4.1 The LOD S
oreA 
ommonly used test statisti
 for a given hypothesis about relatedness is the LOD s
ore,whi
h 
an be easily 
al
ulated from a pair of DNA-pro�les (Skaug et al., 2010). Let Di and
Dj be the DNA pro�les of individual i and j and 
onsider the two mutually ex
lusive hy-potheses:
H0 : unrelated
H1 : relatedness of interestThe LOD s
ore is the logarithm of the ratio of the probabilities of the data under the twohypotheses:

LODi,j = log(
P (Di,Dj | H1)

P (Di,Dj | H0)
) (4.1)It does not matter whether it is H1 in numerator and H0 in denominator or vi
e versa, aslong as it is 
lear whi
h has been used. The LOD-value measures the probability of the datagiven H1 relative to the probability of the data given H0 (Balding, 2005). LODi,j > c meansthat the data is more likely under H1 than under H0 where c is some prede�ned 
riti
al value(Skaug et al., 2010). The advantage of using LOD s
ores instead of just likelihood ratios isthat the nature of the logarithm makes 
omparison of di�erent relatedness hypothesis verysimple. This is demonstrated in the explanatory example in se
tion 4.3In the present analysis Hardy-Weinberg and linkage equilibrium are assumed. Linkage equi-librium refers to the independen
e of inheriting alleles between lo
i (Skaug, 2001). Thisassumption enables extension of the formulation at a single lo
us to multi-lo
i formulation bythe simple a
t of multipli
ation. Consider allele information of individuals i and j at S lo
i.Under linkage equilibrium it is possible to test their relatedness by 
omputing the likelihoodratio for ea
h lo
us separately and then multiply those ratios together and take the logarithmto attain the LOD s
ore. If LRi,j(s) =

P (Di,s,Dj,s|H1)
P (Di,s,Dj,s|H0)

is the likelihood ratio at lo
us s then:10



LODi,j = log(LRi,j(1) · LRi,j(2) · ... · LRi,j(S)) (4.2)Under the assumption of Hardy-Weinberg and linkage equilibrium, the probability of two mi-
rosatellite based DNA-pro�les, Di and Dj , given the null hypothesis of unrelatedness, 
an beexpressed as:
P (Di,Dj | unrelated) =

S
∏

s=1

p(a
(1)
i,s ) · p(a

(2)
i,s ) · p(a

(1)
j,s ) · p(a

(2)
j,s ) (4.3)where (a

(1)
i,s , a

(2)
i,s ) is the genotype of individual i at lo
us s, S is the number of independentmarkers and p(a

(m)
i,s ) is the population frequen
y for whatever type allele a(m)

i,s is with m = 1, 2(Skaug, 2001). When unrelated individuals have identi
al alleles then it is be
ause there aremany 
opies of the same allele in a population, not be
ause they have 
ommon an
estors. Inthis 
ase there are no random events that require 
onditioning. Unrelated individuals share 0alleles identi
al by des
ent at ea
h lo
us and there's only one way for not sharing any allelesat ea
h lo
us.The 
orresponding expression for P (Di,Dj | related) is more 
ompli
ated and is formulatedhere by assuming Mendelian segregation. Sin
e linkage equilibrium is assumed it is possiblefor 
onvenien
e sake to put S = 1 and then extend the formulation for one lo
us to multi lo
iformulation by the simple a
t of multipli
ation. Let Di = (a
(1)
i , a

(2)
i ) and Dj = (a

(1)
j , a

(2)
j ) bethe genotypes of individual i and j. If two alleles are identi
al and have the same origin aswell, that is are IBD, then: a(m)

i ≡ a
(m)
j , m = 1, 2. If two alleles are not IBD (it doesn't ruleout that they are identi
al though) then a

(m)
i ≇ a

(m)
j with m = 1, 2. As before (a

(1)
i , a

(2)
i ) areunordered values ∀i and there's no way of knowing whi
h allele is the mother-allele and whi
hone is inherited from the father. Denote λs as the number of ways two individuals 
an inherit

s = 0, 1, 2 alleles IBD at a lo
us regardless of their relatedness. Table 3.1 
ontains the valuesfor lambda. Table 4.1: Nr. of ways to inherit 0, 1 and 2 alleles IBD
λ0 λ1 λ2

1 4 2There's only one way for two individuals to have inherited zero alleles IBD.
a
(1)
i ≇ a

(1)
j ≇ a

(2)
i ≇ a

(2)
jThere are four di�erent ways for two individuals to have inherited one allele IBD.

a
(1)
i ≡ a

(1)
j ∩ a

(2)
i ≇ a

(2)
j

a
(1)
i ≡ a

(2)
j ∩ a

(2)
i ≇ a

(1)
j

a
(2)
i ≡ a

(1)
j ∩ a

(1)
i ≇ a

(2)
j

a
(2)
i ≡ a

(2)
j ∩ a

(1)
i ≇ a

(1)
jThere are two di�erent ways for two individuals to have inherited two alleles IBD.11



a
(1)
i ≡ a

(1)
j ∩ a

(2)
i ≡ a

(2)
j

a
(1)
i ≡ a

(2)
j ∩ a

(2)
i ≡ a

(1)
jThe general formula for P (Di,Dj | H1) is:

P (Di,Dj | H1) =
1

λ0
· P (0− IBD | H1) · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

λ1
· P (1− IBD | H1)

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

λ2
· P (2− IBD | H1)

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

=
1

1
· k0(H1) · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

4
· k1(H1)

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

2
· k2(H1)

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

(4.4)

When relatedness is determined from geneti
 pro�les, without any auxiliary data, it is impos-sible to know if identi
al alleles are identi
al be
ause they stem from the same origin or if theyare just identi
al by 
han
e. The kinship 
oe�
ients, kj(H1) = P (j− IBD | H1), in
orporatethat un
ertainty into the formulation but they refer to the probability of two individuals in-heriting j alleles IBD given the hypothesis of relatedness, j = 0, 1, 2. p(a(1)i ) is the populationallele frequen
y for whatever allele type a
(1)
i is, p(a(2)i ) is the population allele frequen
y forwhatever allele type a

(2)
i is et
. If a(1)i = a

(1)
j then those alleles are of the same type and
onsequently p(a

(1)
i ) = p(a

(1)
j ). I(a = b) is the identity fun
tion, that is I(a = b) = 1 if a = band I(a = b) = 0 otherwise. If this formulation is applied to the hypothesis of unrelatednessthen that will result in formula 4.3 with S = 1:12



P (Di,Dj | H0) =
1

1
· 1 · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

4
· 0

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

2
· 0

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

= p(a
(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

(4.5)
The 
omputation of the LOD s
ore 
an be time-
onsuming. Balding (2005) presents a simpleformulation for the relatedness likelihood ratio on page 126:

LRH1
= k0(H1) + k1(H1) · LRp + k2(H1) · LRid (4.6)

LRp : Likelihood ratio for parent-o�spring relations.
LRid : Likelihood ratio for identi
al twins relations.
k0, k1 and k2 are relevant kinship 
oe�
ients.A

ording to this formula, to test diverse hypothesis of relatedness against the null hypothesisof unrelatedness, only the parent-o�spring likelihood ratio, (LRp), and the identity likelihoodratio, (LRid), have to be 
omputed. Below is the formulation of LRp and LRid for a singlelo
us. Having those quantities �xed, various relations 
an be tested by using the appropriatekinship 
oe�
ients whi
h 
an be found in table 3.1.Likelihood ratio for parent-o�spring relations 
ompares the mutually ex
lusive hypothesis:
H0 : Individual i and j are unrelated
H1 : Individual i and j are a parent and his/her o�spring.There is one random event that needs 
onditioning, whi
h allele was inherited from the motherand whi
h allele was inherited from the father.
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P (Di,Dj | parent and offspring) = 0

+
1

4
· 1

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+ 0

(4.7)
The parent-o�spring likelihood ratio has formula 4.5 in the denominator and formula 4.7 inthe numerator:

LRp =
P (Di,Dj | parent and offspring)

P (Di,Dj | not related)

=
I(a

(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
(1)
i )

+
I(a

(2)
i = a

(1)
j ) + I(a

(2)
i = a

(2)
j )

4 · p(a
(2)
i )

(4.8)The identity likelihood ratio 
ompares the two mutually ex
lusive hypothesis:
H0 : Individual i and j are unrelated.
H1 : Individual i and j are identi
al twinsHere, there is no random event that needs 
onditioning on.

P (Di,Dj | identical twins) = 0 + 0 +
1

2
· 1

· (p(a
(1)
j ) · p(a

(2)
j ) · (I(a

(1)
i = a

(1)
j )

⋂

I(a
(2)
i = a

(2)
j ))

+ p(a
(1)
j ) · p(a

(2)
j ) · (I(a

(1)
i = a

(2)
j )

⋂

I(a
(2)
i = a

(1)
j )))

(4.9)The identity likelihood ratio is attained by in
orporating formulas 4.5 and 4.9 into the likeli-hood ratio:
LRid =

P (Di,Dj | identical twins)

P (Di,Dj | not related)

=
(I(a

(1)
i = a

(1)
j )

⋂

I(a
(2)
i = a

(2)
j )) + (I(a

(1)
i = a

(2)
j )

⋂

I(a
(2)
i = a

(1)
j ))

2 · p(a
(1)
i ) · p(a

(2)
i )

(4.10)Now it is rather basi
 to 
al
ulate the likelihood ratio for other hypothesis of relatedness.
LRsib =

P (Di,Dj | siblings)

P (Di,Dj | not related)

=
1

4
+

1

2
· (

I(a
(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
(1)
i )

+
I(a

(2)
i = a

(1)
j ) + I(a

(2)
i = a

(2)
j )

4 · p(a
(2)
i )

)

+
1

4
· (
(I(a

(1)
i = a

(1)
j )

⋂

I(a
(2)
i = a

(2)
j )) + (I(a

(1)
i = a

(2)
j )

⋂

I(a
(2)
i = a

(1)
j ))

2 · p(a
(1)
i ) · p(a

(2)
i )

)

(4.11)
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LRh.sib =
P (Di,Dj | half − siblings)

P (Di,Dj | not related)

=
1

2
+

1

2
· (
I(a

(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
(1)
i )

+
I(a

(2)
i = a

(1)
j ) + I(a

(2)
i = a

(2)
j )

4 · p(a
(2)
i )

)

(4.12)
LRcous =

P (Di,Dj | first cousins)

P (Di,Dj | not related)

=
3

4
+

1

4
· (

I(a
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(4.13)
Formulation that shows why it is su�
ient to use the simple formula from Balding (2005) forthe three likelihood ratios, given by equations 4.11, 4.12 and 4.13, 
an be found in appendixB.4.2 Controlling the Error Rate
LODi,j > c means that the data is more likely under H1 : Relatedness of interest than under
H0: Unrelated, where c is some prede�ned 
riti
al value. Determining the value of c involves�nding a balan
e between two goals, maximization of the number of 
orre
tly inferred pairsof relatives and minimization of the number of pairs in
orre
tly 
on
luded as relatives(Skauget al., 2010).4.2.1 p-ValueTwo types of error 
an o

ur in statisti
al hypothesis testing. A Type I error o

urs when atrue null hypothesis is reje
ted. A type II error is the error of not reje
ting a false null hy-pothesis. The signi�
an
e level of a test, denoted by α, is an upper bound on the probabilityof a Type I error. That means that if the test pro
edure would be repli
ated a large numberof times under the 
onditions of H0 then the observed Type I error rate should be at most
α. An observed value of the test statisti
 is said to be signi�
ant if the test de
ision basedon that statisti
 is to reje
t the null hypothesis. A p-value is de�ned as the smallest possiblevalue of α su
h that the observed test statisti
 would be signi�
ant (Rizzo, 2007).When testing a single pair of hypotheses one usually reports a single p-value with the teststatisti
. In the present study, a large value of the LOD s
ore 
learly provides eviden
e againstunrelatedness but then there's an issue of what should be 
onsidered large enough for the LODs
ore to be signi�
ant. Evaluation of a p-value addresses that issue. For any given test statisti
15



there are often several ways to 
ompute a p-value (Pounds et al., 2007). Here, the p-values areevaluated with a Monte Carlo experiment built on a permutation method that Skaug et al.(2010) performed in the analysis of minke whale data. Let pi,j be the 
orresponding p-valuefor LODi,j . pi,j is estimated in the following steps:Step 1. r unrelated individuals are simulated with the allele frequen
ies that were estimatedfrom the original data set.Step 2. The m = r(r−1)
2 pairwise LOD s
ores of the simulated individuals are 
omputed.Step 3. The test de
isions are re
orded:

Ii,jw = 1, LODw ≥ LODi,j

Ii,jw = 0, LODw < LODi,j

(4.14)
LODw stands for the simulated LOD s
ore with w = 1, 2, ...,m.Step 4. The proportion of simulated LOD-s
ores that are equal or larger than the original teststatisti
 LODi,j is 
al
ulated to attain the p̂-value.

p̂i,j =
Σm

w=1I
i,j
w

m
(4.15)Step 5. The pro
edure is repeated until the standard errors of the p̂-values are su�
iently small.The p̂-values are binomial distributed so if M is the total number of simulated LODs
ores then the standard deviation of p̂i,j is:

sd(p̂i,j) =

√

p̂i,j · (1− p̂i,j)

M
(4.16)In the present analysis it is the number of simulated LOD s
ores that matters, so the sele
tionof r, the number individuals that are simulated ea
h time, simply depends on what is the most
onvenient way to attain su�
iently large M in the end. In prin
iple, the above simulationpro
edure must be repeated for every single pair of individuals within the original dataset.However, to redu
e 
omputational burden, the set of M simulated LOD s
ores are kept �xeda
ross all pairwise 
omparisons (Skaug et al., 2010, Rizzo, 2007).4.2.2 Multiple testingA de
ision to reje
t the null hypothesis in a single 
omparison is usually made by 
omparingthe p-value to the 
ustomary signi�
an
e level. If the signi�
an
e level is �xed at α = 0.05,on average one in every 20 LOD s
ores of unrelated individuals will show a p-value below αjust by 
han
e. If the signi�
an
e level α would be used as in the single 
omparison 
ase thenthe expe
ted number of false dete
tions in the analysis would be m · α, where m stands forthe number of pairwise 
omparisons. Due to the large number of 
omparisons in the presentanalysis this expe
ted number of false dete
tions is 
onsiderable large, espe
ially when the lowprobability of dete
tion, due too how small the sample is 
ompared to the estimated popula-tion size, is taken into a

ount. For this reason it is important to adjust the estimated p-valuesfor multiple testing (Skaug et al., 2010, Casella and Berger, 2002, Johnson and Wi
hern, 2007).16



BonferroniTraditional approa
hes to adjust for multiple testing attempt to 
ontrol the family wise errorrate. The family wise error rate is de�ned as the probability that one or more Type I erroro

ur in the group of hypothesis tests (Pounds et al., 2007). Benjamini and Ho
hberg (1995)denoted the family wise error rate by FWER = P (V ≥ 1), where V stands for the numberof falsely reje
ted null hypothesis. They pointed out that when m hypothesis are testedindividually at a level α guarantees that E[V/m] ≤ α. The Bonferroni pro
edure entailstesting ea
h individual hypothesis at a level α/m whi
h guarantees that P (V ≥ 1) ≤ α. Inthe present study the Bonferroni adjustment is done by multiplying the unadjusted p-valuesby the number of pairwise 
omparisons and then 
ompare them with α (Huber et al., 2007).The Bonferroni pro
edure is usually 
onsidered too 
onservative in the 
ase of high numbersof test statisti
s but it is almost impossible to have any reje
tions of the null hypothesis withthe Bonferroni 
orre
tion in the 
ontext of thousand pairwise 
omparisons (Pounds et al.,2007). Sin
e the present analysis involves a high number of multiple pairwise 
omparisons,the Bonferroni 
orre
tion is probably to stri
t at the 
ost of not dete
ting true relatives.The False Dis
overy RateIn 1995 Benjamini and Ho
hberg introdu
ed the False Dis
overy Rate, (FDR), as a methodto adjust for multiple testing. They des
ribed the FDR as an error rate that 
ontrols theexpe
ted proportion of false dis
overies. Consider the problem of evaluating simultaneously
m LOD s
ores of whi
h m0 
onsist of pairs of unrelated individuals. R is the number ofLOD-s
ores that result in reje
tion of the null hypothesis of unrelatedness.Table 4.2: Evaluation of multiple LOD s
oresDe
lared unrelated De
lared related TotalTruly unrelated U V m0Truly related T S m−m0Total m−R R m

R is an observable random variable, U , V , S and T are unobservable random variables. Ifea
h individual hypothesis pair is tested separately at level α, then R = R(α) is in
reasing in
α. The FDR is denoted by:

FDR = E[
V

V + S
] = E[

V

R
] (4.17)That is, the false dis
overy rate is the expe
tation of the random variable V

R
. The FDR is anappealing method to 
ontrol the error rate in the present analysis, with a very high numberof pairwise tests, sin
e it takes the number of erroneous false dis
overies of relatedness intoa

ount instead of only the question whether any error was made.The FDR pro
edure arranges the estimated p-values for ea
h LOD s
ore in an in
reasing order

p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(m). q is the target false dis
overy rate and R is de�ned to be the largestvalue of r for whi
h: 17



p̂(r) ≤
r

m
· q (4.18)The �rst R pairs of individuals that are behind the R lowest p̂-values in the ordered sequen
eare de
lared as being related, and the remaining m − R pairs are de
lared as unrelated.Benjamini and Ho
berg (1995) showed in their paper that this pro
edure 
ontrols the falsedis
overy rate at q for independent test statisti
s and for any 
on�guration of false null hy-potheses.In the present analysis not all of the LOD s
ores are independent of ea
h other as theBenjamini-Ho
hberg FDR pro
edure assumes. In a dataset of n individuals, ea
h individualmust be involved in (n−1) pairwise tests and those (n−1) LOD s
ores are not independent ofea
h other. Skaug et al. (2010) pointed out that given two individuals i or j, the proportionof pairwise 
omparisons (among m = n(n − 1)/2) involving either i or j is approximately 4

nand thus be
omes negligible when n gets large. They 
ondu
ted a Monte Carlo simulation toinvestigate how large n has to be for this result to apply. In their 
ase, n = 100 seemed to belarge enough for the FDR pro
edure to behave as expe
ted, even if some pairwise 
omparisonswere not independent.4.3 Explanatory exampleIn this se
tion relations between three simulated individuals, A, B and C will be investigatedfor explanatory purposes. The individuals were simulated with given allele frequen
ies so thatB and C would be siblings and A would be unrelated to B and C. This simple example shoulddemonstrate how the test pro
edure operates. All 
omputations and simulations were doneby using the open sour
e program R (R Development Core Team, 2011) but the 
odes written
an be found in appendix C.4.3.1 MethodIf one goes ba
k far enough in the family tree, possible relations would be endless. In thisexample the following set of relatedness hypothesis will be tested against the null hypothesisof unrelatedness:1. H1: Individual i and individual j have a parent-o�spring relationship, i 6= j,
i, j = A,B,C.2. H1: Individual i and individual j are identi
al twins, i 6= j, i, j = A,B,C.3. H1: Individual i and individual j are siblings, i 6= j, i, j = A,B,C.4. H1: Individual i and individual j are half-siblings, i 6= j, i, j = A,B,C.5. H1: Individual i and individual j are �rst 
ousins, i 6= j, i, j = A,B,C.A two step pro
edure for ea
h relatedness hypothesis is applied to the data. The appropriatepairwise LOD-s
ores are 
omputed, LODi,j for i 6= j in the �rst step. In the se
ond step

p-values for positive LOD s
ores are estimated. This is done by simulating 100 unrelatedindividuals with the same allele frequen
ies that individual A, B and C were simulated with.18



This pro
edure is repli
ated 50 times1 resulting in a total of 247 500 simulated LOD s
ores.The p̂-value, p̂i,j is the proportion of simulated LOD s
ores that are equal or higher than
LODi,j . The only information available in this example are the geneti
 pro�les. Re
all that itis impossible to distinguish between a pair of half siblings, a pair of grandparent and a grand
hild and a pair of un
le/aunt and a nephew/nie
e from geneti
 eviden
e alone so the term'half-siblings' refers to all those relations here.4.3.2 DataThe geneti
 pro�les of three individuals are simulated with frequen
ies as given in table 3.3.Individual B and C were simulated to be siblings while individual A was simulated to beunrelated to them. The data 
onsists of information about 10 lo
i whi
h are segregated bytwo alleles. The number of possible alleles varies between lo
i and the alleles are not orderedvalues, that is: a/b = b/a. The population allele frequen
ies are �xed for ea
h lo
us and were
omputed by dividing 1 with the number of possible allele types at that spe
i�
 lo
us.Table 4.3: DNA pro�les and allele frequen
ies for explanatory exampleLo
us A B C Allele frequen
ies1 4/8 8/2 3/2 0.1112 15/6 12/15 5/15 0.0563 8/3 17/11 17/14 0.0504 3/13 4/6 4/3 0.0715 7/10 8/3 6/3 0.1006 8/1 8/8 8/10 0.0837 2/5 11/1 9/8 0.0838 3/9 10/9 10/8 0.0919 6/13 10/2 14/10 0.05910 12/10 13/16 13/9 0.0634.3.3 LOD S
ores:The likelihood ratios for ea
h lo
us given the DNA data were 
omputed in R but the LODs
ore is the logarithm of the multi lo
i likelihood ratio. The resulting likelihood ratios andLOD s
ores 
an be found in tables 3.4, 3.5, 3.6, 3.7 and 3.8. All the numbers have beenrounded to numbers with two de
imal pla
es:Of the twelve 
omputed pairwise LOD s
ores, four of them are larger than zero. For individualB and C there are three non negative LOD s
ores: LODB,C(sib) = 2.31, LODB,C(h.sib) =
3.06, LODB,C(cous) = 1.93. For individual A and B there is one non negative LOD s
ore:
LODA,B(cous) = 0.34. All the other LOD s
ores don't provide eviden
e against unrelatednesssin
e LODi,j < 0 means that P (Di,Dj | unrelated) ≥ P (Di,Dj | related).1Here, for simpli�
ation, there is no 
on
ern for the standard deviation of the p̂-values.
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Table 4.4: Pairwise LOD s
ores for parent-o�spring hypothesisParent-o�spring A - B A - C B - CLo
us 1: LR1(p) 2.25 0.00 2.25Lo
us 2: LR2(p) 4.50 4.50 4.50Lo
us 3: LR3(p) 0.00 0.00 5.00Lo
us 4: LR4(p) 0.00 3.50 3.50Lo
us 5: LR5(p) 0.00 0.00 2.50Lo
us 6: LR6(p) 6.00 3.00 6.00Lo
us 7: LR7(p) 0.00 0.00 0.00Lo
us 8: LR8(p) 2.75 0.00 2.75Lo
us 9: LR9(p) 0.00 0.00 4.25Lo
us 10: LR10(p) 0.00 0.00 4.00

LOD(p) = log(
∏10

s=1 LRs(p)) −∞ −∞ −∞Table 4.5: Pairwise LOD s
ores for identi
al twins hypothesisIdenti
al twins A - B A - C B - CLo
us 1: LR1(id) 0.00 0.00 0.00Lo
us 2: LR2(id) 0.00 0.00 0.00Lo
us 3: LR3(id) 0.00 0.00 0.00Lo
us 4: LR4(id) 0.00 0.00 0.00Lo
us 5: LR5(id) 0.00 0.00 0.00Lo
us 6: LR6(id) 0.00 0.00 0.00Lo
us 7: LR7(id) 0.00 0.00 0.00Lo
us 8: LR8(id) 0.00 0.00 0.00Lo
us 9: LR9(id) 0.00 0.00 0.00Lo
us 10: LR10(id) 0.00 0.00 0.00

LOD(id) = log(
∏10

s=1 LRs(id)) −∞ −∞ −∞4.3.4 p-Value
p-values were estimated for the non negative LOD-s
ores by simulation. First 100 unrelatedindividuals were simulated from a population with the same allele frequen
ies that individualA, B and C were simulated with. Then their 4 950 pairwise LOD-s
ores are 
omputed. Thispro
edure is repli
ated 50 times resulting in 247 500 simulated LOD s
ores for ea
h relatednesshypothesis. The p̂-value is the proportion of simulated LOD s
ores that are equal or higherthan the original LOD-s
ore. The following p̂-values were attained:
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Table 4.6: Pairwise LOD s
ores for siblings hypothesisSiblings A - B A - C B - CLo
us 1: LR1(sib) 1.38 0.25 1.38Lo
us 2: LR2(sib) 2.50 2.50 2.50Lo
us 3: LR3(sib) 0.25 0.25 2.75Lo
us 4: LR4(sib) 0.25 2.00 2.00Lo
us 5: LR5(sib) 0.25 0.25 1.50Lo
us 6: LR6(sib) 3.25 1.75 3.25Lo
us 7: LR7(sib) 0.25 0.25 0.25Lo
us 8: LR8(sib) 1.63 0.25 1.63Lo
us 9: LR9(sib) 0.25 0.25 2.38Lo
us 10: LR10(sib) 0.25 0.25 2.250

LOD(sib) = log(
∏10

s=1 LODs(sib)) −2.35 −3.27 2.30Table 4.7: Pairwise LOD s
ores for half-siblings hypothesisHalf-siblings A - B A - C B - CLo
us 1: LR1(h.sib) 1.63 0.50 1.63Lo
us 2: LR2(h.sib) 2.75 2.75 2.75Lo
us 3: LR3(h.sib) 0.50 0.50 3.00Lo
us 4: LR4(h.sib) 0.50 2.25 2.25Lo
us 5: LR5(h.sib) 0.50 0.50 1.75Lo
us 6: LR6(h.sib) 3.50 2.00 3.50Lo
us 7: LR7(h.sib) 0.50 0.50 0.50Lo
us 8: LR8(h.sib) 1.88 0.50 1.88Lo
us 9: LR9(h.sib) 0.50 0.50 2.63Lo
us 10: LR10(h.sib) 0.50 0.50 2.50

LOD(h.sib) = log(
∏10

s=1 LRs(h.sib)) −0.34 −1.01 3.06

pB,C(sib) =
10 414

247 500
= 4.21 · 10−2

pB,C(h.sib) =
4

247 500
= 1.62 · 10−5

pB,C(cous) =
8

247 500
= 3.23 · 10−5

pA,B(cous) =
24 340

247 500
= 9.83 · 10−2In this example there are only three pairwise 
omparisons for ea
h relatedness hypothesisso there's no need for multiple 
omparison adjustment. H1 : Individual A and individualB are �rst 
ousins is reje
ted at the signi�
an
e level of α = 0.05 while the relatednesshypothesis for individual B and C 
an not be reje
ted at that signi�
an
e level. It is 
learthat the test pro
edure 
lassi�es individual B and C as relatives but in order to 
on
ludeabout a spe
i�
 relatedness, their three di�erent LOD s
ores have to be 
ompared. LODh.sib,

LODp and LODcous 
ompare the probability of the data under the hypothesis of a spe
i�
21



Table 4.8: Pairwise LOD s
ores for �rst 
ousins hypothesisFirst 
ousins A - B A - B B - CLo
us 1: LR1(cous) 1.31 0.75 1.31Lo
us 2: LR2(cous) 1.88 1.88 1.88Lo
us 3: LR3(cous) 0.75 0.75 2.00Lo
us 4: LR4(cous) 0.75 1.63 1.63Lo
us 5: LR5(cous) 0.75 0.75 1.38Lo
us 6: LR6(cous) 2.25 1.50 2.25Lo
us 7: LR7(cous) 0.75 0.75 0.750Lo
us 8: LR8(cous) 1.44 0.75 1.44Lo
us 9: LR9(cous) 0.75 0.75 1.81Lo
us 10: LR10(cous) 0.75 0.75 1.75

LOD(cous) = log(
∏10

s=1 LRs(cous)) 0.34 −0.21 1.93relatedness with the probability of the data under the null hypothesis of unrelatedness. Whatis needed now is to 
ompare the probability of the data under one spe
i�
 relatedness withthe probability of the data under another spe
i�
 relatedness. That 
an be done by simplysubtra
ting one LOD s
ore from the other sin
e log(a
b
) = log(a) − log(b) = log(a

c
)− log( b

c
).

log(
P (data | half − siblings)

P (data | siblings
) = LODh.sib − LODsib

= 3.06 − 2.31 = 0.75

log(
P (data | half − siblings)

P (data | first cousins
) = LODh.sib − LODcous

= 3.06− 1.93 = 1.13The LOD s
ores indi
ate that individual B and C are more likely to be half-siblings thansiblings or �rst 
ousins.4.3.5 Interpretation of the ResultThe pro
edure used in the present study for testing relatedness 
on
luded siblings wronglyto be half-sibling but 
on
luded an unrelated individual rightly as a non-relative. The fa
tthat the pro
edure did not dete
t the right relatedness between individual B and C 
an beexplained by the fa
t that they were simulated, by 
han
e, as siblings that didn't have anidenti
al genotype at any lo
us. The probability for full siblings to not have a single identi
algenotype at 10 lo
i is small or: (34)
10 = 0.0563. Therefore it is logi
al, though not 
orre
t inthis 
ase, that the test pro
edure indi
ated that the individuals were half-siblings rather thanfull siblings.

22



Chapter 5Analysis of the Fin Whale DatabaseThe goal of this analysis is to dete
t pairs of relatives within the I
elandi
 �n whale registry.Three relations are of interest, half-siblings, parent-o�spring and �rst 
ousins.5.1 MethodA three-step pro
edure for ea
h relatedness hypothesis is applied to the �n whale data:1. Pairwise LOD s
ores 
omputed.2. p-value for ea
h LOD s
ore estimated via simulation.3. p̂-values adjusted for multiple testing.In the �rst step the appropriate pairwise LOD s
ores are 
omputed from the dataset. ALOD s
ore is a 
ommonly used test statisti
 to dete
t related individuals within a database(Skaug et al., 2010) but it 
ompares the probabilities of the data under the null hypothesis ofunrelatedness and the alternative hypothesis of relatedness.
LOD = log(

P (data | relatedness of interest)

P (data | unrelated)
)

log stands for the 10th logarithm. Further information about LOD s
ores 
an be found in
hapter 4.1.In the se
ond step the 
orresponding p-values for ea
h LOD s
ore are estimated. There is anegative relationship between a p-value and its LOD s
ore, δpi,j
δLODi,j

< 0, but a high LOD s
oreand a low p-value indi
ate relatedness. To redu
e 
omputational burden, p-values are at �rstonly estimated for the 1000 largest LOD s
ores. If the estimated p-value for the 1000th highestLOD s
ore is high enough for the LOD s
ore to be 
onsidered unsigni�
ant then the 
on
lusionis that all the lower LOD s
ores are unsigni�
ant as well and further estimation is unne
essary.If the p-value for the 1000th highest LOD s
ore is low enough for the LOD s
ore to be 
onsid-ered signi�
ant then the p-values for the next LOD s
ores in line have to be estimated or untilan unsigni�
ant LOD s
ore is found. The p-values are estimated via simulation. 265 unrelatedindividuals are simulated by drawing allele types independently with repla
ement from a genepool with the same allele frequen
ies as the original dataset, ex
luding the foetuses. Then23



their pairwise LOD s
ores are 
omputed. The estimated p-value, p̂i,j , is the proportion ofsimulated LOD s
ores that are equal or higher than the original LOD s
ore, LODi,j . p̂i,j 
anbe des
ribed as the estimated probability of attaining as extreme or more extreme LOD s
orethan the original one, LODi,j , just by 
han
e. The simulation pro
edure is repli
ated at least
60 times or until the standard errors for the p̂-values, sd(p̂) = √

p̂·(1−p̂)
M

, are su�
iently smallbut M is the total number of simulated LOD s
ores. In this 
ase su�
ient means that the
95% 
on�den
e interval for the largest p̂-value in the group of related pairs doesn't 
ollidewith the 95% 
on�den
e interval for the smallest p̂-value in the group of unrelated pairs. Thenumber of individuals simulated ea
h time, 265, and the minimum number of repli
ations ofthe pro
edure, 60, was 
hosen somewhat arbitrarily. It is the number of simulated LOD s
oresthat matters, not the number of simulated individuals, and these numbers were 
onvenient,
omputing time wise, to attain the needed number of simulated LOD s
ores.In the third step a measure is taken to redu
e the multiple 
omparison problem. In thatstep two methods for adjusting for multiple testing are applied and 
ompared, the well knownBonferroni 
orre
tion and Benjamini's and Ho
hberg's (1995) FDR pro
edure. In the Bon-ferroni pro
edure the p̂-values are multiplied with the number of pairwise 
omparisons. Themother-foetus pairs are in
luded in that number sin
e it doesn't 
hange the result for the nonmother-foetus pairs whether they are in
luded or not and it is of interest where the Bonferronipro
edure pla
es the mother-foetus pairs. The null hypothesis of unrelatedness is reje
ted forall pairs for whi
h the Bonferroni adjusted p̂-value is less or equal than α = 0.05. The FDRpro
edure arranges the 
orresponding estimated p-values for ea
h LOD s
ore in an in
reasingorder p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). q is the target false dis
overy rate, n is the number of pairwise
omparisons, and R is de�ned to be the largest value of r for whi
h:

p̂(r) ≤
r

n
· q = QrThe �rst R pairs in this sequen
e are 
lassi�ed as relatives and the remaining pairs are de
laredunrelated. The test pro
edure used in this analysis is based on having a large dataset of indi-viduals of whi
h little is known ex
ept for their DNA information. Therefore the mother-foetuspairs should not be in
luded in the ranking of p̂-values. However, it is of interest to see wherethe FDR pro
edure pla
es the mother-foetus pairs and for that reason the FDR pro
edureis done twi
e, �rst in
luding the mother-foetus pairs in the ranking and then without them.The false dis
overy rate is �xed at the same point as the signi�
an
e level in the Bonferronipro
edure, q = α = 0.05. Having q and α of the same size simpli�es the 
omparison of thetwo pro
edures but 0.05 is 
hosen to mirror the 
ommonly 
hosen signi�
an
e level in thesingle 
omparison 
ase. Prior the result, the FDR pro
edure seems more suitable than theBonferroni 
orre
tion, see 
hapter 4.2.2, due to high number of LOD s
ores. The appli
ationof these two pro
edures, Bonferroni and FDR, should shed light on that.All 
omputations and simulations in the analysis were done by using the open sour
e programR (R Development Core Team, 2011), but the 
odes 
an be found in appendix D
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5.2 DataThe present study utilizes data from the I
elandi
 individual-based DNA registry of �n whaleswhi
h 
ompromises 267 geneti
 pro�les 
olle
ted between and during the years 2009 and 2010and has been obtained for �fteen mi
rosatellite lo
i, (EV001, EV037, GATA028, GATA053,GATA098, GATA417, GT011, GT023, GT195, GT211, GT271, GT310, GT575, TAA023 andGGAA520), the 
ontrol region of mtDNA and a sex-marker. The age and age of maturity ofthe individuals within the database have been estimated by reading their plugs.A total of 23 females, of the 267 indiviuals samples genotyped, 
arried a foetus for whi
h ageneti
 sample was also obtained. Whales 
olle
ted in 2009 were given a name starting withF09 and whales 
olle
ted in 2010 were given a name starting with F10. The foetuses weregiven the same name as their mothers with the letter F applied to it at the end. Of those290 geneti
 pro�les, 265 are used in the present study. Information is missing at some lo
ifor 24 individuals and one foetus so they were omitted from the analysis. One of the omittedindividuals was a female that 
arried a foetus so there are 21 remaining mother-foetus pairsin the sample but 22 foetuses.5.3 Population Allele Frequen
iesThe population allele frequen
ies were estimated dire
tly from the sample, ex
luding the 22foetuses sin
e they 
an not be 
onsidered as part of the population. As was noted in 
hapter
3.2, Hardy-Weinberg and linkage equilibrium are assumed in this analysis and the �n whaleswithin the sample are 
onsidered to belong to the same population. The estimation of theallele frequen
ies was done by dividing the number of times a 
ertain alleli
 type was observedat a lo
us by the total number of alleles at that lo
us: 2 · 243 = 486. The 
omputations weredone in R (R Development Core Team, 2011) but the 
ode 
an be found in appendix D.2.Tables with the estimated population frequen
ies values are in appendix E.5.4 Appli
ation5.4.1 Half-SiblingsSkaug et al. (2010) 
onsidered 'half-siblings' to be a reasonable 
hoi
e for a general test todete
t all types of 
lose 1st- and 2nd order relationships. They pointed out that dete
tionof parent-o�spring dyads is highly sensitive for 
leri
al errors but one typing error results inan in�nitely negative LOD s
ore. In the absen
e of an estimation of the error rate, LODs
ores, based on 2nd-order dyads, were re
ommended for dete
ting both 1st- and 2nd-orderrelationships sin
e they are more robust to typing errors. In the present study no typing errorestimate has been attained and therefore the half-sibling LOD s
ore is a good starting pointto dete
t relatives within the dataset.The half-sibling LOD s
ore tests the hypothesis of half-siblings against the null hypothesis ofunrelatedness:
H0 : Individual i and individual j are unrelated25



H1 : Individual i and individual j are half-siblingsLOD S
oresA total of 34 980 pairwise LOD s
ores for the 265 individuals within the dataset were 
om-puted by using the formula:
LODh.sib =log(

P (Di,Dj | half − siblings)

P (Di,Dj | not related)
)
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)))Of those 34 980 s
ores, 3 731 are larger than zero, eleven are larger than 4 but the largest oneis approximately 6.35.The p-values were estimated by 
omparing LOD s
ores of simulated unrelated individuals withthe original LOD s
ores. In this 
ase it was su�
ient to repli
ate the simulation pro
edure
60 times, resulting in 2 098 800 pair wise LOD s
ores of simulated unrelated individuals. The1000 lowest p̂-values, for the 1000 highest LOD s
ores, all look good in the single 
omparison
ase but the largest p̂-value in that group is 0.031. If multiple testing was not taken intoa

ount one might just think that all of these pairs were dyads of relatives. Adjustment formultiple testing gives another result.Table 5.1 shows the estimated p-values of the 50 highest half-siblings LOD s
ores, of whi
hthere are 19 mother-foetus pairs. The table also shows the standard errors of the estimated
p-values. 95% 
on�den
e intervals were 
omputed by using the standard normal approa
h for
p̂-values for whi
h M · p̂ = 2 098 800 · p̂ ≥ 5. That is su�
ient for this analysis sin
e 
on�den
eintervals are only needed for the two p̂-values on the margin of related pairs and unrelatedpairs of individuals.Two mother-foetus pairs don't make it to the top 50 highest half-sibling LOD s
ore list. Iftheir data is examined it be
omes apparent that F09-070 and F09-070F have not one identi
alallele type at the 6th lo
us and F10-067 and F10-067F do not have one identi
al allele typeat the 14th lo
us. There is no way of knowing if this is be
ause of mutation or be
ause of antyping error when the data was sampled. Due to the high sensitivity of the parent-o�springLOD s
ore it is known by forehand that the test pro
edure will not 
on
lude these two mother-foetus pairs to be a mother and her o�spring.BonferroniThe Bonferroni 
orre
tion is attained by multiplying the p̂-values with the number of pairwiseLOD-s
ores 
omputed from the dataset. Table 5.2 
ontains the 50 highest half-siblings LOD26



Table 5.1: 50 highest pairwise half-sibling LOD s
ores and their 
orresponding p̂-valuesPairs LODh.sib p̂ sd(p̂) 95% 
on�den
e intervalF09-002 and F09-002F 6.34 0.00 0.00 M · p̂ < 5F10-073 and F10-073F 6.27 0.00 0.00 M · p̂ < 5F10-020 and F10-026 5.07 0.00 0.00 M · p̂ < 5F10-035 and F10-035F 4.61 0.00 0.00 M · p̂ < 5F09-073 and F10-062 4.58 0.00 0.00 M · p̂ < 5F10-018 and F10-018F 4.55 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 4.43 0.00 0.00 M · p̂ < 5F10-134 and F10-134F 4.38 0.00 0.00 M · p̂ < 5F09-081 and F10-030 4.34 0.00 0.00 M · p̂ < 5F10-104 and F10-104F 4.30 0.00 0.00 M · p̂ < 5F10-044 and F10-044F 4.27 0.00 0.00 M · p̂ < 5F09-091 and F09-091F 3.94 4.76 · 10−7 4.76 · 10−7 m · p̂ < 5F09-047 and F10-079 3.70 2.38 · 10−6 1.07 · 10−6 (2.94 · 10−7; 4.47 · 10−6)F09-040 and F10-020 3.70 2.86 · 10−6 1.17 · 10−6 (5.71 · 10−7; 5.15 · 10−6)F10-089 and F10-140 3.64 4.29 · 10−6 1.43 · 10−6 (1.49 · 10−6; 7.09 · 10−6)F10-087 and F10-087F 3.62 4.76 · 10−6 1.51 · 10−6 (1.81 · 10−6; 7.72 · 10−6)F10-116 and F10-116F 3.58 4.76 · 10−6 1.51 · 10−6 (1.81 · 10−6; 7.72 · 10−6)F09-075 and F10-123 3.48 6.19 · 10−6 1.72 · 10−6 (2.83 · 10−6; 9.56 · 10−6)F09-091F and F10-100 3.42 7.15 · 10−6 1.85 · 10−6 (3.53 · 10−6; 1.08 · 10−5)F10-085 and F10-085F 3.27 1.10 · 10−5 2.29 · 10−6 (6.48 · 10−6; 1.54 · 10−5)F10-090 and F10-090F 3.26 1.10 · 10−5 2.29 · 10−6 (6.48 · 10−6; 1.54 · 10−5)F10-106 and F10-106F 3.16 1.57 · 10−5 2.74 · 10−6 (1.04 · 10−5; 2.11 · 10−5)F10-052 and F10-052F 3.14 1.62 · 10−5 2.78 · 10−6 (1.08 · 10−5; 2.16 · 10−5)F10-084 and F10-084F 3.11 1.86 · 10−5 2.98 · 10−6 (1.28 · 10−5; 2.44 · 10−5)F09-040 and F10-026 2.88 4.81 · 10−5 4.79 · 10−6 (3.87 · 10−5; 5.75 · 10−5)F09-125 and F10-119 2.84 5.62 · 10−5 5.18 · 10−6 (4.61 · 10−5; 6.64 · 10−5)F09-105 and F10-004 2.72 8.39 · 10−5 6.32 · 10−6 (7.15 · 10−5; 9.62 · 10−5)F09-095 and F09-107 2.72 8.39 · 10−5 6.32 · 10−6 (7.15 · 10−5; 9.62 · 10−5)F10-069 and F10-122F 2.67 9.62 · 10−5 6.77 · 10−6 (8.30 · 10−5; 1.10 · 10−4)F10-037 and F10-037F 2.62 1.13 · 10−4 7.35 · 10−6 (9.90 · 10−5; 1.28 · 10−4)F10-059 and F10-147 2.55 1.48 · 10−4 8.39 · 10−6 (1.31 · 10−4; 1.64 · 10−4)F09-065 and F10-004 2.50 1.81 · 10−4 9.27 · 10−6 (1.62 · 10−4; 1.99 · 10−4)F09-008 and F09-094 2.50 1.82 · 10−4 9.32 · 10−6 (1.64 · 10−4; 2.01 · 10−4)F10-026 and F10-099 2.48 1.90 · 10−4 9.50 · 10−6 (1.71 · 10−4; 2.08 · 10−4)F10-017 and F10-043 2.46 2.05 · 10−4 9.88 · 10−6 (1.86 · 10−4; 2.24 · 10−4)F10-073 and F10-097 2.41 2.46 · 10−4 1.08 · 10−5 (2.25 · 10−4; 2.67 · 10−4)F10-111 and F10-123 2.41 2.48 · 10−4 1.09 · 10−5 (2.26 · 10−4; 2.69 · 10−4)F09-040 and F10-135 2.38 2.73 · 10−4 1.14 · 10−5 (2.50 · 10−4; 2.95 · 10−4)F09-035 and F10-006 2.34 3.08 · 10−4 1.21 · 10−5 (2.85 · 10−4; 3.32 · 10−4)F09-007 and F10-042 2.31 3.36 · 10−4 1.27 · 10−5 (3.12 · 10−4; 3.61 · 10−4)F09-054 and F10-067 2.29 3.66 · 10−4 1.32 · 10−5 (3.41 · 10−4; 3.92 · 10−4)F10-022 and F10-022F 2.23 4.39 · 10−4 1.45 · 10−5 (4.11 · 10−4; 4.68 · 10−4)F09-044 and F10-062 2.23 4.42 · 10−4 1.45 · 10−5 (4.14 · 10−4; 4.71 · 10−4)F10-026 and F10-113 2.21 4.79 · 10−4 1.51 · 10−5 (4.50 · 10−4; 5.09 · 10−4)F10-111 and F10-111F 2.17 5.37 · 10−4 1.60 · 10−5 (5.06 · 10−4; 5.69 · 10−4)F09-081 and F10-106 2.17 5.37 · 10−4 1.60 · 10−5 (5.06 · 10−4; 5.69 · 10−4)F09-100 and F10-135 2.15 5.77 · 10−4 1.66 · 10−5 (5.44 · 10−4; 6.09 · 10−4)F09-021 and F10-086 2.10 6.65 · 10−4 1.78 · 10−5 (6.30 · 10−4; 7.00 · 10−4)F10-060 and F10-125 2.08 7.22 · 10−4 1.85 · 10−5 (6.86 · 10−4; 7.58 · 10−4)F09-116 and F10-111F 2.06 7.60 · 10−4 1.90 · 10−5 (7.23 · 10−4; 7.97 · 10−4)27



s
ores and their Bonferroni 
orre
ted p̂-values. The Bonferroni pro
edure is very stri
t inthe 
ase of large number of pairwise 
omparisons. By using the Bonferroni adjustment andputting α = 0.05, only twelve pairs of 34 980 are 
lassi�ed as relatives. Nine of them aremother-foetus pairs. Twelve mother-foetus pairs are 
on
luded unrelated whi
h demonstrates
learly how stri
t the Bonferroni pro
edure is.FDRThe FDR pro
edure is based on the arrangement of the estimated p-values for ea
h LODs
ore in an in
reasing order p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). Table 5.3 
ontains information aboutthe FDR pro
edure for the half-siblings hypothesis in
luding the mother-foetus pairs in theranking of p̂-values. At q = 0.05, 24 of the pairs are 
on
luded related and, as table 5.1 shows,the 95% 
on�den
e intervals of p̂(24) and p̂(25) don't 
ollide. Sixteen of the related pairs aremother-foetus pairs and eight are non mother-foetus pairs. Five of the mother-foetus pairswithin the dataset are 
on
luded unrelated here while twelve of the mother-foetus pairs are
on
luded unrelated when the Bonferroni 
orre
tion is used. That means that the FDR pro-
edure dete
ts at least seven more pairs of true relatives than the Bonferroni pro
edure. Notin
luding the mother-foetus pairs in the ranking of the p̂-values gives the same result for thenon mother-foetus pairs. The eight pairs with the highest half-sibling LOD s
ores of the
34 959 non mother-foetus pairs are 
on
luded related but the 95% 
on�den
e intervals of p̂(8),(estimated p-value for the half-sibling LOD s
ore of F09-091F and F10-100), and p̂(9), (theestimated p-value for the half-sibling LOD s
ore of F09-040 and F10-026), do not 
ollide.5.4.2 Parent-O�springThe parent-o�spring LOD s
ore 
ompares the hypothesis of parent-o�spring relations againstthe null hypothesis of unrelatedness.LOD S
oresA total of 34 980 parent-o�spring LOD s
ores were 
al
ulated by using the formula:

LODp =log(
P (Di,Dj | parent and offspring)

P (Di,Dj | not related)
)

=log(
15
∏

s=1

I(a
(1)
i,s = a

(1)
j,s ) + I(a

(1)
i,s = a

(2)
j,s )

4 · p(a
(1)
i,s )

+
I(a

(2)
i,s = a

(1)
j,s ) + I(a

(2)
i,s = a

(2)
j,s )

4 · p(a
(2)
i,s )

)Of these 34 980 s
ores, only 28 are not in�nitely negative, there of are 19 mother-foetus pairs.As was mentioned in the half-siblings se
tion, two of the mother-foetus pairs have an in�nitelynegative parent-o�spring LOD s
ores.The p-values were estimated by 
omparing LOD s
ores of simulated unrelated individualswith the original LOD s
ores. The simulation pro
edure was repli
ated 60 times, resulting28



Table 5.2: 50 highest pairwise half-sibling LOD s
ores and their 
orresponding Bonferroni
orre
ted p̂-values Pairs LODh.sib Bonferroni 
orre
ted p̂ De
ision at α = 0.05F09-002 and F09-002F 6.34 0.00 RelatedF10-073 and F10-073F 6.27 0.00 RelatedF10-020 and F10-026 5.07 0.00 RelatedF10-035 and F10-035F 4.61 0.00 RelatedF09-073 and F10-062 4.58 0.00 RelatedF10-018 and F10-018F 4.55 0.00 RelatedF10-122 and F10-122F 4.43 0.00 RelatedF10-134 and F10-134F 4.38 0.00 RelatedF09-081 and F10-030 4.34 0.00 RelatedF10-104 and F10-104F 4.30 0.00 RelatedF10-044 and F10-044F 4.27 0.00 RelatedF09-091 and F09-091F 3.94 0.02 RelatedF09-047 and F10-079 3.70 0.08 UnrelatedF09-040 and F10-020 3.70 0.10 UnrelatedF10-089 and F10-140 3.64 0.15 UnrelatedF10-087 and F10-087F 3.62 0.17 UnrelatedF10-116 and F10-116F 3.58 0.17 UnrelatedF09-075 and F10-123 3.48 0.22 UnrelatedF09-091F and F10-100 3.42 0.25 UnrelatedF10-085 and F10-085F 3.27 0.38 UnrelatedF10-090 andF10-090F 3.26 0.38 UnrelatedF10-106 and F10-106F 3.16 0.55 UnrelatedF10-052 and F10-052F 3.14 0.57 UnrelatedF10-084 and F10-084F 3.11 0.65 UnrelatedF09-040 and F10-026 2.88 1.68 UnrelatedF09-125 and F10-119 2.84 1.97 UnrelatedF09-105 and F10-004 2.72 2.93 UnrelatedF09-095 and F09-107 2.72 2.93 UnrelatedF10-069 and F10-122F 2.67 3.37 UnrelatedF10-037 and F10-37F 2.62 3.97 UnrelatedF10-059 and F10-147 2.55 5.17 UnrelatedF09-065 and F10-004 2.50 6.32 UnrelatedF09-008 and F09-094 2.50 6.38 UnrelatedF10-026 and F10-099 2.48 6.63 UnrelatedF10-017 and F10-043 2.46 7.17 UnrelatedF10-073 and F10-097 2.41 8.60 UnrelatedF10-111 and F10-123 2.41 8.67 UnrelatedF09-040 and F10-135 2.38 9.53 UnrelatedF09-035 and F10-006 2.34 10.78 UnrelatedF09-007 and F10-042 2.31 11.77 UnrelatedF09-054 and F10-067 2.29 12.82 UnrelatedF10-022 and F10-022F 2.23 15.37 UnrelatedF09-044 and F10-062 2.23 15.47 UnrelatedF10-026 and F10-113 2.21 16.77 UnrelatedF10-111 and F10-111F 2.17 18.80 UnrelatedF09-081 and F10-106 2.17 18.80 UnrelatedF09-100 and F10-135 2.15 20.17 UnrelatedF09-021 and F10-086 2.10 23.27 UnrelatedF10-060 and F10-125 2.08 25.25 UnrelatedF09-116 and F10-111F 2.06 26.58 Unrelated29



Table 5.3: 50 highest pairwise half-sibling LOD s
ores and their 
orresponding Qr-valuesPairs LODh.sib p̂ r Qr = (r/n) · q De
ision at q = 0.05F09-002 and F09-002F 6.34 0.00 1 1.43 · 10−6 RelatedF10-073 and F10-073F 6.27 0.00 2 2.86 · 10−6 RelatedF10-020 and F10-026 5.07 0.00 3 4.29 · 10−6 RelatedF10-035 and F10-035F 4.61 0.00 4 5.72 · 10−6 RelatedF09-073 and F10-062 4.58 0.00 5 7.15 · 10−6 RelatedF10-018 and F10-018F 4.55 0.00 6 8.58 · 10−6 RelatedF10-122 and F10-122F 4.43 0.00 7 1.00 · 10−5 RelatedF10-134 and F10-134F 4.38 0.00 8 1.14 · 10−5 RelatedF09-081 and F10-030 4.34 0.00 9 1.29 · 10−5 RelatedF10-104 and F10-104F 4.30 0.00 10 1.43 · 10−5 RelatedF10-044 and F10-044F 4.27 0.00 11 1.57 · 10−5 RelatedF09-091 and F09-091F 3.94 4.76 · 10−7 12 1.72 · 10−5 RelatedF09-047 and F10-079 3.70 2.38 · 10−6 13 1.86 · 10−5 RelatedF09-040 and F10-020 3.70 2.86 · 10−6 14 2.00 · 10−5 RelatedF10-089 and F10-140 3.64 4.29 · 10−6 15 2.14 · 10−5 RelatedF10-087 and F10-087F 3.62 4.76 · 10−6 16 2.29 · 10−5 RelatedF10-116 and F10-116F 3.58 4.76 · 10−6 17 2.43 · 10−5 RelatedF09-075 and F10-123 3.48 6.19 · 10−6 18 2.57 · 10−5 RelatedF09-091F and F10-100 3.42 7.15 · 10−6 19 2.72 · 10−5 RelatedF10-085 and F10-085F 3.27 1.10 · 10−5 20 2.86 · 10−5 RelatedF10-090 andF10-090F 3.26 1.10 · 10−5 21 3.00 · 10−5 RelatedF10-106 and F10-106F 3.16 1.57 · 10−5 22 3.14 · 10−5 RelatedF10-052 and F10-052F 3.14 1.62 · 10−5 23 3.29 · 10−5 RelatedF10-084 and F10-084F 3.11 1.86 · 10−5 24 3.43 · 10−5 RelatedF09-040 and F10-026 2.88 4.81 · 10−5 25 3.57 · 10−5 UnrelatedF09-125 and F10-119 2.84 5.62 · 10−5 26 3.72 · 10−5 UnrelatedF09-105 and F10-004 2.72 8.39 · 10−5 27 3.86 · 10−5 UnrelatedF09-095 and F09-107 2.72 8.39 · 10−5 28 4.00 · 10−5 UnrelatedF10-069 and F10-122F 2.67 9.62 · 10−5 29 4.15 · 10−5 UnrelatedF10-037 and F10-37F 2.62 1.13 · 10−4 30 4.29 · 10−5 UnrelatedF10-059 and F10-147 2.55 1.48 · 10−4 31 4.43 · 10−5 UnrelatedF09-065 and F10-004 2.50 1.81 · 10−4 32 4.57 · 10−5 UnrelatedF09-008 and F09-094 2.50 1.82 · 10−4 33 4.72 · 10−5 UnrelatedF10-026 and F10-099 2.48 1.90 · 10−4 34 4.86 · 10−5 UnrelatedF10-017 and F10-043 2.46 2.05 · 10−4 35 5.00 · 10−5 UnrelatedF10-073 and F10-097 2.41 2.46 · 10−4 36 5.15 · 10−5 UnrelatedF10-111 and F10-123 2.41 2.48 · 10−4 37 5.29 · 10−5 UnrelatedF09-040 and F10-135 2.38 2.73 · 10−4 38 5.43 · 10−5 UnrelatedF09-035 and F10-006 2.34 3.08 · 10−4 39 5.57 · 10−5 UnrelatedF09-007 and F10-042 2.31 3.36 · 10−4 40 5.72 · 10−5 UnrelatedF09-054 and F10-067 2.29 3.66 · 10−4 41 5.86 · 10−5 UnrelatedF10-022 and F10-022F 2.23 4.39 · 10−4 42 6.00 · 10−5 UnrelatedF09-044 and F10-062 2.23 4.42 · 10−4 43 6.15 · 10−5 UnrelatedF10-026 and F10-113 2.21 4.79 · 10−4 44 6.29 · 10−5 UnrelatedF10-111 and F10-111F 2.17 5.37 · 10−4 45 6.43 · 10−5 UnrelatedF09-081 and F10-106 2.17 5.37 · 10−4 46 6.58 · 10−5 UnrelatedF09-100 and F10-135 2.15 5.77 · 10−4 47 6.72 · 10−5 UnrelatedF09-021 and F10-086 2.10 6.65 · 10−4 48 6.86 · 10−5 UnrelatedF10-060 and F10-125 2.08 7.22 · 10−4 49 7.00 · 10−5 UnrelatedF09-116 and F10-111F 2.06 7.60 · 10−4 50 7.15 · 10−5 Unrelated30



in 2 098 800 pairwise simulated LOD s
ores. As would be expe
ted the p̂-values for the in-�nitely negative LOD s
ores were equal to 1. Table 5.4 
ontains information on the 28 pairsthat have a �nite parent-o�spring LOD s
ore. The standard errors of the estimated p-valueshave been 
omputed and the asymptoti
 95% 
on�den
e intervals of the p̂-values for whi
h
p̂ · 2 098 800 ≥ 5.The p̂-values for the parent-o�spring LOD s
ores are very small and if they were evaluated asin the single 
omparison 
ase then the 
on
lusion would be that all the 28 pairs were a parentand his/her o�spring. Adjustment for multiple testing results in fewer reje
tions of the nullhypothesis of unrelatedness.BonferroniThe p̂-values are Bonferroni 
orre
ted by multiplying them with the number of pairwise LOD-s
ores 
omputed from the dataset. Table 5.5 
ontains the Bonferroni adjusted p̂-values for the28 highest parent-o�spring LOD s
ores and the test de
isions based on a signi�
an
e level of
α = 0.05. By using the Bonferroni 
orre
tion 21 of the 28 pairs with a positive LOD s
ore are
lassi�ed as a parent and his/her o�spring. Sixteen of those 21 pairs are mother-foetus pairs.FDRThe FDR pro
edure is based on arranging the 
orresponding estimated p-values for ea
h LODs
ore in in
reasing order p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). Unlike the half-sibling test, in this 
ase theFDR result for the non mother-foetus pairs depends on whether the mother-foetus pairs arein
luded in the ranking of the estimated p-values or not. Table 5.6 
ontains information aboutthe 28 highest parent-o�spring LOD s
ores, their estimated p-values, 
orresponding Qr-valuesand the FDR de
ision whi
h is based on the 
omparison of p̂(r) and Qr. Table 5.7 
ontainsthe same information for the 9 highest parent-o�spring LOD s
ores when the mother-foetuspairs are not in
luded in the ranking.If mother-foetus pairs are in
luded in the ranking, all 28 pairs with LOD s
ores that are notin�nitely negative are 
onsidered to 
onsist of parents and their o�spring at q = 0.05. TheFDR pro
edure would therefore 
orre
tly 
on
lude all the 19 mother-foetus pairs with a �niteLOD s
ore as a parent-o�spring pair if nothing was known about them ex
ept their DNA in-formation. This demonstrates how mu
h stri
ter the Bonferroni pro
edure is but three of themother-foetus pairs with a �nite LODp s
ore were 
on
luded unrelated at α = 0.05 when theestimated p-values were adjusted with the Bonferroni method. By using the FDR pro
edureit be
omes less likely that related individuals are wrongly 
on
luded unrelated.When the mother-foetus pairs are not in
luded in the ranking, then �ve pairs of 34 959are 
lassi�ed as a parent and his/her o�spring. In the ranking without mother-foetus pairs,
p̂(5) is the estimated p-value for the parent-o�spring LOD s
ore of F09-075 and F10-123 and
p̂(6) is the estimated p-value for the parent-o�spring LOD s
ore of F09-125 and F10-119.Sin
e p̂(5) · 2 098 800 < 5, whi
h means that its 
on�den
e interval should not be 
om-puted with the standard normal approa
h, the 95% exa
t binomial 
on�den
e intervals for
p̂(5) and p̂(6) are 
omputed by using the pa
kage binom (Dorai-Raj, 2009) in R, see appendix31



Table 5.4: 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding p̂-values.Pairs LODp p̂ sd(p̂) 95% 
on�den
e intervalF09-002 and F09-002F 8.97 0.00 0.00 M · p̂ < 5F10-073 and F10-073F 8.46 0.00 0.00 M · p̂ < 5F10-020 and F10-026 7.40 0.00 0.00 M · p̂ < 5F10-035 and F10-035F 6.91 0.00 0.00 M · p̂ < 5F10-018 and F10-018F 6.85 0.00 0.00 M · p̂ < 5F09-081 and F10-030 6.68 0.00 0.00 M · p̂ < 5F10-104 and F10-104F 6.48 0.00 0.00 M · p̂ < 5F10-134 and F10-134F 6.48 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 6.38 0.00 0.00 M · p̂ < 5F10-044 and F10-044F 6.33 0.00 0.00 M · p̂ < 5F09-091 and F09-091F 5.95 0.00 0.00 M · p̂ < 5F10-089 and F10-140 5.47 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-087 and F10-087F 5.46 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F09-91F and F10-100 5.43 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F09-075 and F10-123 5.38 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-116 and F10-116F 5.26 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-090 andF10-090F 5.07 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-106 and F10-106F 4.88 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-085 and F10-085F 4.87 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-052 and F10-052F 4.84 9.53 · 10−7 6.74 · 10−7 M · p̂ < 5F10-084 and F10-084F 4.79 1.43 · 10−6 8.25 · 10−7 M · p̂ < 5F10-037 and F10-37F 4.19 7.15 · 10−6 1.85 · 10−6 (3.53 · 10−6; 1.08 · 10−5)F09-125 and F10-119 4.05 9.05 · 10−6 2.08 · 10−6 (4.98 · 10−6; 1.31 · 10−5)F10-022 and F10-022F 3.67 1.57 · 10−5 2.74 · 10−6 (1.04 · 10−5; 2.11 · 10−5)F10-111 and F10-111F 3.42 1.95 · 10−5 3.05 · 10−6 (1.36 · 10−5; 2.55 · 10−5)F09-021 and F10-086 3.15 2.38 · 10−5 3.37 · 10−6 (1.72 · 10−5; 3.04 · 10−5)F09-068 and F10-146 3.10 2.53 · 10−5 3.47 · 10−6 (1.85 · 10−5; 3.21 · 10−5)F10-060 og F10-148 3.10 2.53 · 10−5 3.47 · 10−6 (1.85 · 10−5; 3.21 · 10−5)
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Table 5.5: 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding Bonferroni
orre
ted p̂-values. Names LODp Bonferroni 
orre
ted p̂ De
ision at α = 0.05F09-002 and F09-002F 8.97 0.00 Parent and o�springF10-073 and F10-073F 8.46 0.00 Parent and o�springF10-020 and F10-026 7.40 0.00 Parent and o�springF10-035 and F10-035F 6.91 0.00 Parent and o�springF10-018 and F10-018F 6.85 0.00 Parent and o�springF09-081 and F10-030 6.68 0.00 Parent and o�springF10-104 and F10-104F 6.48 0.00 Parent and o�springF10-134 and F10-134F 6.48 0.00 Parent and o�springF10-122 and F10-122F 6.38 0.00 Parent and o�springF10-044 and F10-044F 6.33 0.00 Parent and o�springF09-091 and F09-091F 5.95 0.00 Parent and o�springF10-089 and F10-140 5.47 0.02 Parent and o�springF10-087 and F10-087F 5.46 0.02 Parent and o�springF09-091F and F10-100 5.43 0.02 Parent and o�springF09-075 and F10-123 5.38 0.02 Parent and o�springF10-116 and F10-116F 5.26 0.02 Parent and o�springF10-090 andF10-090F 5.07 0.02 Parent and o�springF10-106 and F10-106F 4.88 0.02 Parent and o�springF10-085 and F10-085F 4.87 0.02 Parent and o�springF10-052 and F10-052F 4.84 0.03 Parent and o�springF10-084 and F10-084F 4.79 0.05 Parent and o�springF10-037 and F10-037F 4.19 0.25 UnrelatedF09-125 and F10-119 4.05 0.32 UnrelatedF10-022 and F10-022F 3.67 0.55 UnrelatedF10-111 and F10-111F 3.42 0.68 UnrelatedF09-021 and F10-086 3.15 0.83 UnrelatedF09-068 and F10-146 3.10 0.88 UnrelatedF10-060 og F10-148 3.10 0.88 Unrelated
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Table 5.6: 28 highest pairwise parent-o�spring LOD s
ores and their 
orresponding Qr-valuesPairs LODp p̂ r Qr = (r/n) · q De
ision at q = 0.05F09-002 and F09-002F 8.97 0.00 1 1.43 · 10−6 Parent-o�springF10-073 and F10-073F 8.46 0.00 2 2.86 · 10−6 Parent-o�springF10-020 and F10-026 7.40 0.00 3 4.29 · 10−6 Parent-o�springF10-035 and F10-035F 6.91 0.00 4 5.72 · 10−6 Parent-o�springF10-018 and F10-018F 6.85 0.00 5 7.15 · 10−6 Parent-o�springF09-081 and F10-030 6.68 0.00 6 8.58 · 10−6 Parent-o�springF10-104 and F10-104F 6.48 0.00 7 1.00 · 10−5 Parent-o�springF10-134 and F10-134F 6.48 0.00 8 1.14 · 10−5 Parent-o�springF10-122 and F10-122F 6.38 0.00 9 1.29 · 10−5 Parent-o�springF10-044 and F10-044F 6.33 0.00 10 1.43 · 10−5 Parent-o�springF09-091 and F09-091F 5.95 0.00 11 1.57 · 10−5 Parent-o�springF10-089 and F10-140 5.47 4.76 · 10−7 12 1.72 · 10−5 Parent-o�springF10-087 and F10-087F 5.46 4.76 · 10−7 13 1.86 · 10−5 Parent-o�springF09-91F and F10-100 5.43 4.76 · 10−7 14 2.00 · 10−5 Parent-o�springF09-075 and F10-123 5.38 4.76 · 10−7 15 2.14 · 10−5 Parent-o�springF10-116 and F10-116F 5.26 4.76 · 10−7 16 2.29 · 10−5 Parent-o�springF10-090 andF10-090F 5.07 4.76 · 10−7 17 2.43 · 10−5 Parent-o�springF10-106 and F10-106F 4.88 4.76 · 10−7 18 2.57 · 10−5 Parent-o�springF10-085 and F10-085F 4.87 4.76 · 10−7 19 2.72 · 10−5 Parent-o�springF10-052 and F10-052F 4.84 9.53 · 10−7 20 2.86 · 10−5 Parent-o�springF10-084 and F10-084F 4.79 1.43 · 10−6 21 3.00 · 10−5 Parent-o�springF10-037 and F10-37F 4.19 7.15 · 10−6 22 3.14 · 10−5 Parent-o�springF09-125 and F10-119 4.05 9.05 · 10−6 23 3.29 · 10−5 Parent-o�springF10-022 and F10-022F 3.67 1.57 · 10−5 24 3.43 · 10−5 Parent-o�springF10-111 and F10-111F 3.42 1.95 · 10−5 25 3.57 · 10−5 Parent-o�springF09-021 and F10-086 3.15 2.38 · 10−5 26 3.72 · 10−5 Parent-o�springF09-068 and F10-146 3.10 2.53 · 10−5 27 3.86 · 10−5 Parent-o�springF10-060 og F10-148 3.10 2.53 · 10−5 28 4.00 · 10−5 Parent-o�spring
Table 5.7: 9 highest pairwise parent-o�spring LOD s
ores, mother-foetus pairs not in
luded,and their 
orresponding Qr-valuesPairs LODp p̂ r Qr = (r/n) · q De
ision at q = 0.05F10-020 and F10-026 7.40 0.00 1 1.43 · 10−6 Parent-o�springF09-081 and F10-030 6.68 0.00 2 2.86 · 10−6 Parent-o�springF10-089 and F10-140 5.47 4.76 · 10−7 3 4.29 · 10−6 Parent-o�springF09-091F and F10-100 5.43 4.76 · 10−7 4 5.72 · 10−6 Parent-o�springF09-075 and F10-123 5.38 4.76 · 10−7 5 7.15 · 10−6 Parent-o�springF09-125 and F10-119 4.05 9.05 · 10−6 6 8.58 · 10−6 UnrelatedF09-021 and F10-086 3.15 2.38 · 10−5 7 1.00 · 10−5 UnrelatedF98-068 and F10-146 3.10 2.53 · 10−5 8 1.14 · 10−5 UnrelatedF10-060 og F10-148 3.10 2.53 · 10−5 9 1.29 · 10−5 Unrelated
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D.6. The 95% exa
t binomial 
on�den
e intervals for p̂(5), (1.21 · 10−8; 2.65 · 10−6), and p̂(6),
(5.45 · 10−6; 1.41 · 10−5), do not 
ollide.One of those �ve 
lassi�ed parent-o�spring pairs 
onsists of a foetus, F09-091F, and a male�n whale, F10-100. In this spe
i�
 
ase, auxiliary geneti
 data is available, the DNA-pro�le ofthe mother, F09-091. When the pro�le of F09-091 is taken into a

ount there is still a mat
hbetween F09-091F and F10-100. It looks like the father of foetus F09-091F has been found.This will be examined 
loser in the result se
tion.5.4.3 First CousinsThe �rst 
ousins LOD s
ore 
ompares the hypothesis of a �rst 
ousins relations against thenull hypothesis of unrelatedness.LOD s
oresA total of 34 980 �rst 
ousins LOD s
ores were 
al
ulated by using the formula:

LODh.sib = log(
P (Di,Dj | first cousins)

P (Di,Dj | not related)
)
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∏
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)))Of those 34 980 LOD s
ores, 8 238 are larger than zero, 23 are larger than 2 but the largestone is approximately 4.48. The p̂-values for ea
h LOD s
ore were attained by simulating 265unrelated individuals, 
omputing their pair wise �rst 
ousin LOD s
ores and 
omparing themwith the original LOD s
ores. The simulation pro
edure had to be repeated 90 times, resultingin 3 148 200 simulated LOD s
ores, in order to attain su�
iently small 
on�den
e intervalsfor the estimated p-values. Table 5.8 
ontains the �fty highest �rst 
ousins LOD s
ores andtheir 
orresponding p̂-values. Standard deviation was 
omputed for ea
h p̂ as well as 95%asymptoti
 
on�den
e intervals for all p̂ that satisfy M · p̂ ≥ 5.As with the half-sibling test pro
edure, the 1000 lowest p̂-values of the 1000 highest �rst
ousins LOD s
ores all look good in the single 
omparison 
ase but the largest estimated
p-value in that group is approximately 0.031. If the problem with multiple testing was nottaken into a

ount then at least 1000 pairs would be 
lassi�ed as �rst 
ousins at α = 0.05.Adjustment for multiple testing redu
es the number of reje
tions of the null hypothesis.BonferroniThe Bonferroni adjusted p̂ values are simply attained by multiplying the original p̂-valueswith the number of pairwise LOD s
ores, 34 980. The mother-foetus pairs are in
luded inthat number sin
e it doesn't 
hange the result for the non mother-foetus pairs whether theyare in
luded or not. Table 5.9 
ontains the 50 highest �rst 
ousins LOD s
ores and their35



Table 5.8: 50 highest pairwise �rst 
ousins LOD s
ores and their 
orresponding p̂-valuesPairs LODcous p̂ sd(p̂) 95% 
on�den
e intervalF10-073 and F10-073F 4.48 0.00 0.00 M · p̂ < 5F09-002 and F09-002F 4.30 0.00 0.00 M · p̂ < 5F10-020 and F10-026 3.28 0.00 0.00 M · p̂ < 5F09-073 and F10-062 3.00 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 2.90 6.35 · 10−7 4.49 · 10−7 M · p̂ < 5F10-035 and F10-035F 2.87 9.53 · 10−7 5.50 · 10−7 M · p̂ < 5F10-018 and F10-018F 2.86 9.53 · 10−7 5.50 · 10−7 M · p̂ < 5F10-134 and F10-134F 2.78 1.27 · 10−6 6.35 · 10−7 M · p̂ < 5F09-047 and F10-079 2.78 1.27 · 10−6 6.35 · 10−7 M · p̂ < 5F10-044 and F10-044F 2.70 2.22 · 10−6 8.40 · 10−7 (5.76 · 10−7; 3.87 · 10−6)F10-104 and F10-104F 2.68 2.54 · 10−6 8.98 · 10−7 (7.80 · 10−7; 4.30 · 10−6)F09-081 and F10-030 2.65 2.86 · 10−6 9.53 · 10−7 (9.91 · 10−7; 4.73 · 10−6)F09-040 and F10-020 2.59 3.81 · 10−6 1.10 · 10−6 (1.66 · 10−6; 5.97 · 10−6)F09-091 and F09-091F 2.45 6.99 · 10−6 1.49 · 10−6 (4.07 · 10−6; 9.91 · 10−6)F10-116 and F10-116F 2.31 1.49 · 10−5 2.18 · 10−6 (1.07 · 10−5; 1.92 · 10−5)F10-089 and F10-140 2.28 1.91 · 10−5 2.46 · 10−6 (1.42 · 10−5; 2.39 · 10−5)F10-087 and F10-087F 2.22 2.22 · 10−5 2.66 · 10−6 (1.70 · 10−5; 2.74 · 10−5)F09-105 and F10-004 2.14 3.43 · 10−5 3.30 · 10−6 (2.78 · 10−5; 4.08 · 10−5)F09-075 and F10-123 2.13 3.49 · 10−5 3.33 · 10−6 (2.84 · 10−5; 4.15 · 10−5)F10-069 and F10-122F 2.10 4.16 · 10−5 3.64 · 10−6 (3.45 · 10−5; 4.87 · 10−5)F09-040 and F10-026 2.10 4.16 · 10−5 3.64 · 10−6 (3.45 · 10−5; 4.87 · 10−5)F10-085 and F10-085F 2.05 4.96 · 10−5 3.97 · 10−6 (4.18 · 10−5; 5.73 · 10−5)F09-91F and F10-100 2.00 6.35 · 10−5 4.49 · 10−6 (5.47 · 10−5; 7.23 · 10−5)F10-090 andF10-090F 1.95 8.29 · 10−5 5.13 · 10−6 (7.28 · 10−5; 9.30 · 10−5)F10-052 and F10-052F 1.92 9.18 · 10−5 5.40 · 10−6 (8.12 · 10−5; 1.02 · 10−4)F09-095 and F09-107 1.91 9.66 · 10−5 5.54 · 10−6 (8.57 · 10−5; 1.07 · 10−4)F10-106 and F10-106F 1.91 9.66 · 10−5 5.54 · 10−6 (8.57 · 10−5; 1.07 · 10−4)F10-084 and F10-084F 1.85 1.38 · 10−4 6.62 · 10−6 (1.25 · 10−4; 1.51 · 10−4)F09-125 and F10-119 1.81 1.75 · 10−4 7.46 · 10−6 (1.60 · 10−4; 1.90 · 10−4)F10-026 and F10-099 1.75 2.33 · 10−4 8.59 · 10−6 (2.16 · 10−4; 2.49 · 10−4)F10-059 and F10-147 1.68 3.32 · 10−4 1.03 · 10−5 (3.12 · 10−4; 3.52 · 10−4)F09-065 and F10-004 1.67 3.47 · 10−4 1.05 · 10−5 (3.27 · 10−4; 3.68 · 10−4)F10-027 and F10-142 1.64 3.83 · 10−4 1.10 · 10−5 (3.61 · 10−4; 4.05 · 10−4)F09-035 and F10-006 1.62 4.37 · 10−4 1.18 · 10−5 (4.14 · 10−4; 4.60 · 10−4)F09-103 and F10-017 1.61 4.43 · 10−4 1.19 · 10−5 (4.20 · 10−4; 4.66 · 10−4)F10-073 and F10-097 1.60 4.68 · 10−4 1.22 · 10−5 (4.44 · 10−4; 4.92 · 10−4)F10-111 and F10-123 1.59 4.85 · 10−4 1.24 · 10−5 (4.60 · 10−4; 5.09 · 10−4)F09-044 and F10-062 1.58 5.21 · 10−4 1.29 · 10−5 (4.96 · 10−4; 5.46 · 10−4)F09-008 and F09-094 1.56 5.56 · 10−4 1.33 · 10−5 (5.30 · 10−4; 5.82 · 10−4)F10-017 and F10-043 1.55 5.97 · 10−4 1.38 · 10−5 (5.70 · 10−4; 6.24 · 10−4)F10-037 and F10-37F 1.53 6.50 · 10−4 1.44 · 10−5 (6.22 · 10−4; 6.78 · 10−4)F09-040 and F10-135 1.51 7.05 · 10−4 1.50 · 10−5 (6.76 · 10−4; 7.35 · 10−4)F09-069 and FF10-006 1.49 7.84 · 10−4 1.58 · 10−5 (7.53 · 10−4; 8.15 · 10−4)F09-054 and F10-067 1.48 8.19 · 10−4 1.61 · 10−5 (7.87 · 10−4; 8.50 · 10−4)F09-011 and F09-124 1.48 8.19 · 10−4 1.61 · 10−5 (7.87 · 10−4; 8.50 · 10−4)F10-034 and F10-115 1.48 8.22 · 10−4 1.62 · 10−5 (7.91 · 10−4; 8.54 · 10−4)F10-059 and F10-078 1.47 8.73 · 10−4 1.66 · 10−5 (8.40 · 10−4; 9.05 · 10−4)F09-050 and F09-100 1.45 9.27 · 10−4 1.72 · 10−5 (8.93 · 10−4; 9.60 · 10−4)F10-026 and F10-113 1.45 9.34 · 10−4 1.72 · 10−5 (9.00 · 10−4; 9.68 · 10−4)F09-038 and F09-050 1.44 9.72 · 10−4 1.76 · 10−5 (9.38 · 10−4; 1.01 · 10−3)36



Table 5.9: 50 highest pairwise �rst 
ousins LOD s
ores and their Bonferroni 
orre
ted p̂-valuesNames LODcous Bonferroni 
orre
ted p̂ De
ision at α = 0.05F10-073 and F10-073F 4.48 0.00 First 
ousinsF09-002 and F09-002F 4.30 0.00 First 
ousinsF10-020 and F10-026 3.28 0.00 First 
ousinsF09-073 and F10-062 3.00 0.00 First 
ousinsF10-122 and F10-122F 2.90 0.02 First 
ousinsF10-035 and F10-035F 2.87 0.03 First 
ousinsF10-018 and F10-018F 2.86 0.03 First 
ousinsF10-134 and F10-134F 2.78 0.04 First 
ousinsF09-047 and F10-079 2.78 0.04 First 
ousinsF10-044 and F10-044F 2.70 0.08 UnrelatedF10-104 and F10-104F 2.68 0.09 UnrelatedF09-081 and F10-030 2.65 0.10 UnrelatedF09-040 and F10-020 2.59 0.13 UnrelatedF09-091 and F09-091F 2.45 0.24 UnrelatedF10-116 and F10-116F 2.31 0.52 UnrelatedF10-089 and F10-140 2.28 0.67 UnrelatedF10-087 and F10-087F 2.22 0.78 UnrelatedF09-105 and F10-004 2.14 1.20 UnrelatedF09-075 and F10-123 2.13 1.22 UnrelatedF10-069 and F10-122F 2.10 1.46 UnrelatedF09-040 and F10-026 2.10 1.46 UnrelatedF10-085 and F10-085F 2.05 1.73 UnrelatedF09-91F and F10-100 2.00 2.22 UnrelatedF10-090 andF10-090F 1.95 2.90 UnrelatedF10-052 and F10-052F 1.92 3.21 UnrelatedF09-095 and F09-107 1.91 3.38 UnrelatedF10-106 and F10-106F 1.91 3.38 UnrelatedF10-084 and F10-084F 1.85 4.82 UnrelatedF09-125 and F10-119 1.81 6.12 UnrelatedF10-026 and F10-099 1.75 8.13 UnrelatedF10-059 and F10-147 1.68 11.61 UnrelatedF09-065 and F10-004 1.67 12.14 UnrelatedF10-027 and F10-142 1.64 13.40 UnrelatedF09-035 and F10-006 1.62 15.28 UnrelatedF09-103 and F10-017 1.61 15.50 UnrelatedF10-073 and F10-097 1.60 16.38 UnrelatedF10-111 and F10-123 1.59 16.96 UnrelatedF09-044 and F10-062 1.58 18.22 UnrelatedF09-008 and F09-094 1.56 19.46 UnrelatedF10-017 and F10-043 1.55 20.87 UnrelatedF10-037 and F10-37F 1.53 22.74 UnrelatedF09-040 and F10-135 1.51 24.68 UnrelatedF09-069 and FF10-006 1.49 27.43 UnrelatedF09-054 and F10-067 1.48 28.63 UnrelatedF09-011 and F09-124 1.48 28.63 UnrelatedF10-034 and F10-115 1.48 28.77 UnrelatedF10-059 and F10-078 1.47 30.52 UnrelatedF09-050 and F09-100 1.45 32.42 UnrelatedF10-026 and F10-113 1.45 32.67 UnrelatedF09-038 and F09-050 1.44 34.00 Unrelated37



Table 5.10: 50 highest pairwise �rst 
ousins LOD s
ores and their 
orresponding Qr valuesPairs LODcous p̂ r Qr = (r/n) · q De
ision at q = 0.05F10-073 and F10-073F 4.48 0.00 1 1.43 · 10−6 First 
ousinsF09-002 and F09-002F 4.30 0.00 2 2.86 · 10−6 First 
ousinsF10-020 and F10-026 3.28 0.00 3 4.29 · 10−6 First 
ousinsF09-073 and F10-062 3.00 0.00 4 5.72 · 10−6 First 
ousinsF10-122 and F10-122F 2.90 6.35 · 10−7 5 7.15 · 10−6 First 
ousinsF10-035 and F10-035F 2.87 9.53 · 10−7 6 8.58 · 10−6 First 
ousinsF10-018 and F10-018F 2.86 9.53 · 10−7 7 1.00 · 10−5 First 
ousinsF10-134 and F10-134F 2.78 1.27 · 10−6 8 1.14 · 10−5 First 
ousinsF09-047 and F10-079 2.78 1.27 · 10−6 9 1.29 · 10−5 First 
ousinsF10-044 and F10-044F 2.70 2.22 · 10−6 10 1.43 · 10−5 First 
ousinsF10-104 and F10-104F 2.68 2.54 · 10−6 11 1.57 · 10−5 First 
ousinsF09-081 and F10-030 2.65 2.86 · 10−6 12 1.72 · 10−5 First 
ousinsF09-040 and F10-020 2.59 3.81 · 10−6 13 1.86 · 10−5 First 
ousinsF09-091 and F09-091F 2.45 6.99 · 10−6 14 2.00 · 10−5 First 
ousinsF10-116 and F10-116F 2.31 1.49 · 10−5 15 2.14 · 10−5 First 
ousinsF10-089 and F10-140 2.28 1.91 · 10−5 16 2.29 · 10−5 First 
ousinsF10-087 and F10-087F 2.22 2.22 · 10−5 17 2.43 · 10−5 First 
ousinsF09-105 and F10-004 2.14 3.43 · 10−5 18 2.57 · 10−5 UnrelatedF09-075 and F10-123 2.13 3.49 · 10−5 19 2.72 · 10−5 UnrelatedF10-069 and F10-122F 2.10 4.16 · 10−5 20 2.86 · 10−5 UnrelatedF09-040 and F10-026 2.10 4.16 · 10−5 21 3.00 · 10−5 UnrelatedF10-085 and F10-085F 2.05 4.96 · 10−5 22 3.14 · 10−5 UnrelatedF09-91F and F10-100 2.00 6.35 · 10−5 23 3.29 · 10−5 UnrelatedF10-090 andF10-090F 1.95 8.29 · 10−5 24 3.43 · 10−5 UnrelatedF10-052 and F10-052F 1.92 9.18 · 10−5 25 3.57 · 10−5 UnrelatedF09-095 and F09-107 1.91 9.66 · 10−5 26 3.72 · 10−5 UnrelatedF10-106 and F10-106F 1.91 9.66 · 10−5 27 3.86 · 10−5 UnrelatedF10-084 and F10-084F 1.85 1.38 · 10−4 28 4.00 · 10−5 UnrelatedF09-125 and F10-119 1.81 1.75 · 10−4 29 4.15 · 10−5 UnrelatedF10-026 and F10-099 1.75 2.33 · 10−4 30 4.29 · 10−5 UnrelatedF10-059 and F10-147 1.68 3.32 · 10−4 31 4.43 · 10−5 UnrelatedF09-065 and F10-004 1.67 3.47 · 10−4 32 4.57 · 10−5 UnrelatedF10-027 and F10-142 1.64 3.83 · 10−4 33 4.72 · 10−5 UnrelatedF09-035 and F10-006 1.62 4.37 · 10−4 34 4.86 · 10−5 UnrelatedF09-103 and F10-017 1.61 4.43 · 10−4 35 5.00 · 10−5 UnrelatedF10-073 and F10-097 1.60 4.68 · 10−4 36 5.15 · 10−5 UnrelatedF10-111 and F10-123 1.59 4.85 · 10−4 37 5.29 · 10−5 UnrelatedF09-044 and F10-062 1.58 5.21 · 10−4 38 5.43 · 10−5 UnrelatedF09-008 and F09-094 1.56 5.56 · 10−4 39 5.57 · 10−5 UnrelatedF10-017 and F10-043 1.55 5.97 · 10−4 40 5.72 · 10−5 UnrelatedF10-037 and F10-37F 1.53 6.50 · 10−4 41 5.86 · 10−5 UnrelatedF09-040 and F10-135 1.51 7.05 · 10−4 42 6.00 · 10−5 UnrelatedF09-069 and FF10-006 1.49 7.84 · 10−4 43 6.15 · 10−5 UnrelatedF09-054 and F10-067 1.48 8.19 · 10−4 44 6.29 · 10−5 UnrelatedF09-011 and F09-124 1.48 8.19 · 10−4 45 6.43 · 10−5 UnrelatedF10-034 and F10-115 1.48 8.22 · 10−4 46 6.58 · 10−5 UnrelatedF10-059 and F10-078 1.47 8.73 · 10−4 47 6.72 · 10−5 UnrelatedF09-050 and F09-100 1.45 9.27 · 10−4 48 6.86 · 10−5 UnrelatedF10-026 and F10-113 1.45 9.34 · 10−4 49 7.00 · 10−5 UnrelatedF09-038 and F09-050 1.44 9.72 · 10−4 50 7.15 · 10−5 Unrelated38



Table 5.11: 33 highest pairwise �rst 
ousins LOD s
ores, mother-foetus pairs not in
luded,and their 
orresponding Qr valuesPairs LODcous p̂ r Qr = (r/n) · q De
ision at q = 0.05F10-020 and F10-026 3.28 0.00 1 1.43 · 10−6 First 
ousinsF09-073 and F10-062 3.00 0.00 2 2.86 · 10−6 First 
ousinsF09-047 and F10-079 2.78 1.27 · 10−6 3 4.29 · 10−6 First 
ousinsF09-081 and F10-030 2.65 2.86 · 10−6 4 5.72 · 10−6 First 
ousinsF09-040 and F10-020 2.59 3.81 · 10−6 5 7.15 · 10−6 First 
ousinsF10-089 and F10-140 2.28 1.91 · 10−5 6 8.58 · 10−6 UnrelatedF09-105 and F10-004 2.14 3.43 · 10−5 7 1.00 · 10−5 UnrelatedF09-075 and F10-123 2.13 3.49 · 10−5 8 1.14 · 10−5 UnrelatedF10-069 and F10-122F 2.10 4.16 · 10−5 9 1.29 · 10−5 UnrelatedF09-040 and F10-026 2.10 4.16 · 10−5 10 1.43 · 10−5 UnrelatedF09-91F and F10-100 2.00 6.35 · 10−5 11 1.57 · 10−5 UnrelatedF09-095 and F09-107 1.91 9.66 · 10−5 12 1.72 · 10−5 UnrelatedF09-125 and F10-119 1.81 1.75 · 10−4 13 1.86 · 10−5 UnrelatedF10-026 and F10-099 1.75 2.33 · 10−4 14 2.00 · 10−5 UnrelatedF10-059 and F10-147 1.68 3.32 · 10−4 15 2.15 · 10−5 UnrelatedF09-065 and F10-004 1.67 3.47 · 10−4 16 2.29 · 10−5 UnrelatedF10-027 and F10-142 1.64 3.83 · 10−4 17 2.43 · 10−5 UnrelatedF09-035 and F10-006 1.62 4.37 · 10−4 18 2.57 · 10−5 UnrelatedF09-103 and F10-017 1.61 4.43 · 10−4 19 2.72 · 10−5 UnrelatedF10-073 and F10-097 1.60 4.68 · 10−4 20 2.86 · 10−5 UnrelatedF10-111 and F10-123 1.59 4.85 · 10−4 21 3.00 · 10−5 UnrelatedF09-044 and F10-062 1.58 5.21 · 10−4 22 3.15 · 10−5 UnrelatedF09-008 and F09-094 1.56 5.56 · 10−4 23 3.29 · 10−5 UnrelatedF10-017 and F10-043 1.55 5.97 · 10−4 24 3.43 · 10−5 UnrelatedF09-040 and F10-135 1.51 7.05 · 10−4 25 3.58 · 10−5 UnrelatedF09-069 and FF10-006 1.49 7.84 · 10−4 26 3.72 · 10−5 UnrelatedF09-054 and F10-067 1.48 8.19 · 10−4 27 3.86 · 10−5 UnrelatedF09-011 and F09-124 1.48 8.19 · 10−4 28 4.00 · 10−5 UnrelatedF10-034 and F10-115 1.48 8.22 · 10−4 29 4.15 · 10−5 UnrelatedF10-059 and F10-078 1.47 8.73 · 10−4 30 4.29 · 10−5 UnrelatedF09-050 and F09-100 1.45 9.27 · 10−4 31 4.43 · 10−5 UnrelatedF10-026 and F10-113 1.45 9.34 · 10−4 32 4.58 · 10−5 UnrelatedF09-038 and F09-050 1.44 9.72 · 10−4 33 4.72 · 10−5 UnrelatedBonferroni 
orre
ted p̂ values.By using the Bonferroni adjustment and putting α = 0.05 only nine pairs in the total datasetare 
on
luded as �rst 
ousins. Six of those nine are mother-foetus pairs.FDRThe FDR pro
edure arranges the p̂ values for ea
h LOD s
ore in in
reasing order p̂(1) ≤ p̂(2) ≤
..... ≤ p̂(n). The target false dis
overy rate is q = 0.05. Here the result for the non mother-foetus pairs depends on whether the mother-foetus pairs are in
luded in the ranking of the
p̂-values or not. For that reason the FDR pro
edure was 
arried out twi
e, �rst in
luding themother-foetus pairs, see result in table 5.10, and then without in
luding the mother-foetuspairs, see result in table 5.11. 39



When the mother-foetus pairs are in
luded in the ranking, 17 pairs of individuals are 
on
ludedto be �rst 
ousins, 11 of them are mother-foetus pairs. Not in
luding the mother-foetus pairsresults in one less dis
overies of �rst 
ousins among the non mother-foetus pairs or �ve intotal. The 95% 
on�den
e intervals of p̂(5), (the estimated p-value for the �rst 
ousins LODs
ore of F09-040 and F10-020), and p̂(6), (the estimated p-value for the �rst 
ousins LOD s
oreof F10-089 and F10-140), do not 
ollide as 
an be seen in table 5.8.5.5 ResultsIt is evident that the FDR pro
edure with the false dis
overy rate �xed at q = 0.05 does abetter job than the Bonferroni pro
edure at a signi�
an
e level of α = 0.05 at allo
ating themother-foetus pairs in the related group where they should be. The fa
t the FDR pro
edurefailed to 
on
lude three mother-foetus pairs that had a �nite LODp s
ore as relatives, givesreason to wonder whether the false dis
overy rate should be �xed at a higher point than
q = 0.05 in order to dete
t all types of �rst and se
ond order relatives with the half-siblingLOD s
ore. q would have to be raised to 0.42 so that all the mother-foetus pairs with �nite
LODp s
ores would be 
on
luded as related and as high as 0.69 so that the two mother-foetuspairs with an in�nitely negative LODp s
ore would be 
lassi�ed as relatives as well.The FDR pro
edure 
orre
tly 
on
ludes all of the 19 mother-foetus pairs with a �nite LODps
ore to be a parent and an o�spring while the Bonferroni pro
edure misses three of those 19pairs. As was expe
ted, the Bonferroni pro
edure seems to be too stri
t for this large numberof pairwise 
omparisons and that results in 
lassifying true relatives as unrelated. For thisreason 
on
lusions of relatedness will be drawn from the results of the FDR pro
edure butnot the Bonferroni pro
edure.Table 5.12 summarizes the pairs that were 
lassi�ed as relatives by the FDR pro
edure, not in-
luding the mother-foetus pairs. The half-sibling LOD s
ore, whi
h Skaug et al (2010) pointedout was a good general test statisti
 to dete
t all types of �rst and se
ond order relatives, de-te
ted eight pairs of relatives at q = 0.05. The parent-o�spring LOD s
ore dete
ted �ve ofthose eight pairs as a parent and an o�spring. The �rst 
ousins LOD s
ore dete
ted �ve pairsof �rst 
ousins but LODh.sib 
lassi�ed all those pairs as relatives at q = 0.05.In order to 
ome to a 
on
lusion about a spe
i�
 relatedness for ea
h pair, non geneti
 evi-den
e, the estimation of their age and age of maturity, has to be taken into a

ount. Re
allthat �n whales be
ome mature when they're 7-12 years old (Víkingsson, 2005). If the agedi�eren
e between two �n whales is smaller than the older whale's age of maturity then the
on
lusion is that it is impossible for them to be a parent and his/her o�spring. It is hard tomake statements about when �n whales stop being fertile and for that reason there will be noupper limit on the possible age di�eren
e between a parent and an o�spring in this analysis.The oldest females (they were two) 
arrying a foetus in this sample were estimated to be 41.5years old whi
h shows that there are females that are fertile until they rea
h that age at least.When the estimated age has been a

ounted for, the LOD s
ores for the remaining possiblerelations have to be 
ompared. LODh.sib, LODp and LODcous 
ompare the probability ofthe data under the hypothesis of a spe
i�
 relatedness with the probability of the data under40



Table 5.12: Results from the FDR pro
edure with q = 0.05 not in
luding non mother-foetuspairs Pairs Related LODh.sib Parent-o�spring LODp First 
ousins LODcousF10-020 and F10-026 Yes 5.07 Yes 7.40 Yes 3.28F09-073 and F10-062 Yes 4.58 No −∞ Yes 3.00F09-081 and F10-030 Yes 4.34 Yes 6.68 Yes 2.65F09-047 and F10-079 Yes 3.70 No −∞ Yes 2.78F09-040 and F10-020 Yes 3.70 No −∞ Yes 2.59F10-089 and F10-140 Yes 3.64 Yes 5.47 No 2.28F09-075 and F10-123 Yes 3.48 Yes 5.38 No 2.13F09-91F and F10-100 Yes 3.42 Yes 5.43 No 2.00the null hypothesis of unrelatedness. At this point a 
omparison of the probability of thedata under one spe
i�
 relatedness with the probability of the data under another spe
i�
relatedness is needed. This may be done by simply subtra
ting one LOD s
ore from the othersin
e log(a
c
)− log( b

c
) = log(a) − log(c) − log(b) + log(c) = log(a)− log(b) = log(a

b
).If the �nal 
on
lusion for a pair is that they are half-siblings, their estimated age has to be
onsidered again. Re
all that it is impossible to distinguish between a pair of half-siblings,grandparent-grand
hild pair and un
le/aunt-nephew/nie
e pair from geneti
 eviden
e alone.Information about age 
an help with that. If the age di�eren
e between two �n whales issmaller than the estimated maturity age of the older �n whale plus seven years, the 
on
lu-sion in this analysis will be that it is impossible for them to be a grandparent and his/hergrand
hild. There will be no upper limit on the possible age di�eren
e between a grandpar-ent and his/her grand
hild for the same reason there is no upper limit on the possible agedi�eren
e between a parent and his/her o�spring. Information on the age of the females 
ar-rying a foetus in this sample, implies that the age di�eren
e between a grandmother and hergrand
hild 
an be at least as big as 83 years.F10-020 and F10-026The �n whales F10-020, a 39.5 years old female that be
ame mature when she was 10 yearsold, and F10-026, a 25 years old male, are 
on
luded related from the half-sibling LOD s
oreat q = 0.05. They are also 
on
luded as a mother and her son from LODp and as �rst 
ousinsfrom LODcous. Sin
e their age di�eren
e doesn't ex
lude that they are a mother and son pairthe probability of the data under these spe
i�
 relatedness hypothesis have to be 
ompared:

log(
P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 5.07 − 7.40 = −2.33F10-020 and F10-026 are more likely to be a parent and an o�spring pair than half-siblings.
log(

P (data | parent and offspring)

P (data | first cousins)
) = LODp − LODcous

= 7.40− 3.28 = 4.12F10-020 and F10-026 are more likely to be a parent and her o�spring than �rst 
ousins. The
on
lusion is therefore that F10-020 and F10-026 are a mother and her son.41



F09-073 and F10-062The individual whales F09-073, a 14.5 years old male, and F10-062, a 37.5 years old malewith an estimated maturity age of 10.5 years, are 
on
luded related from the half-sibling LODs
ore at q = 0.05. They are also 
on
luded as �rst 
ousins from LODcous. The probability ofthe data under these spe
i�
 relatedness hypothesis have to be 
ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 4.58− 3.00 = 1.58F09-073 and F10-062 are more likely to be half-siblings, a grandfather and his grandson or anun
le and his nephew than to be �rst 
ousins. Sin
e their age di�eren
e is 22 years (F10-062was 36.5 years old in 2009) it is impossible to draw further 
on
lusions about their relatedness.F09-081 and F10-030The individual whales F09-081, a 15 years old female, and F10-030, a 45 years old femalewith an estimated maturity age of 11 years, are 
on
luded related from their half-sibling LODs
ore at q = 0.05. They are also 
on
luded as a mother and a daughter from LODp andas �rst 
ousins from LODcous. Sin
e their age di�eren
e doesn't ex
lude mother-daughterrelations the probability of the data under these three spe
i�
 relatedness hypothesis have tobe 
ompared:
log(

P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 4.34 − 6.68 = −2.34

log(
P (data | parent and offspring)

P (data | first cousins)
) = LODp − LODcous

= 6.68− 2.65 = 4.03The 
on
lusion is that F10-030 and F09-081 are a mother and her daughter.F09-047 and F10-079The individual whales F09-047, a 39 years old male with an estimated maturity age of 10years, and F10-079, a 22 years old male, are 
on
luded related from the half-sibling LODs
ore at q = 0.05. They are also 
on
luded as �rst 
ousins from LODcous. The probability ofthe data under these spe
i�
 relatedness hypothesis have to be 
ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 3.70− 2.78 = 0.92F09-047 and F10-079 are 
on
luded as half-siblings or a grandfather and his grandson or anun
le and his nephew. Their age di�eren
e is 18 years (note that F10-079 was 21 years old in2009) so no further 
on
lusions 
an be drawn about their relatedness.42



F09-040 and F10-020The individual whales F09-040, a 20 years old female, and F10-020, a 39.5 years old femalewith an estimated maturity age of 10 years, are 
on
luded related from the half-sibling LODs
ore at q = 0.05. They are also 
on
luded as �rst 
ousins from LODcous. The probability ofthe data under these spe
i�
 relatedness hypothesis have to be 
ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 3.70− 2.59 = 1.11F10-020 and F09-040 are 
on
luded as half-siblings or a grandmother and her granddaughteror an aunt and her ni
e. Their age di�eren
e is 18.5 years (F10-020 was 38.5 years old in2009) so no further 
on
lusions 
an be drawn about their relatedness.F10-089 and F10-140The individual whales F10-089, a 47 years old male with an estimated maturity age of 11years, and F10-140, a 37.5 years old female, are 
on
luded related from the half-sibling LODs
ore at q = 0.05. They are also 
on
luded as a father and his daughter from LODp. Sin
etheir age di�eren
e is less than 11 years then it is impossible for F10-089 to be the father ofF10-140.
log(

P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 3.64 − 5.47 = −1.83Here it be
omes evident how important it is to take non geneti
 eviden
e into a

ount but
omparison of the LOD s
ores indi
ates that these two whales are more likely to be a fatherand his daughter than half-siblings. Sin
e the estimation of their age indi
ates that it isimpossible, the 
on
lusion is that F10-089 and F10-140 are either half-siblings or an un
le andhis nie
e (or an aunt and her nephew) but grandfather and granddaughter relations 
an beruled out be
ause of the age di�eren
e.F09-075 and F10-123The individual whales F09-075, a 22 years old female with an estimated maturity age of 12years, and F10-123, a 18.5 years old female, are 
on
luded related from the half-sibling LODs
ore at q = 0.05. They are also 
on
luded as a mother and her daughter from LODp. Theirage di�eren
e is only four and a half year whi
h ex
ludes the probability of them being amother and her daughter.
log(

P (data | half − siblings)

P (data | parent and offspring
) = LODh.sib − LODp

= 3.48 − 5.38 = −1.9Here, as in the 
ase of F10-089 and F10-140, the geneti
 eviden
e indi
ates that these two �nwhales are more likely to be a mother and her daughter than half-siblings. Sin
e the estimationof their age shows that it is impossible, the 
on
lusion is that F09-075 and F10-123 are eitherhalf-sisters or an aunt and her nie
e. Grandmother and granddaughter relations 
an be ruledout be
ause of the age di�eren
e. 43



F09-091F and F10-100The foetus F09-091F and F10-100, a 35.5 years old male with a maturity age of 11 years, are
on
luded related by the half-sibling LOD s
ore at q = 0.05. They are also 
on
luded as aparent and an o�spring by LODp. Sin
e the age of F10-100 doesn't ex
lude him from beingthe father of F09-091F the probability of the data under these spe
i�
 relatedness hypothesishave to be 
ompared:
log(

P (data | half − siblings)

P (data | parent and offspring
) = LODh.sib − LODp

= 3.42 − 5.43 = −2.1F10-100 and F09-091F are more likely to be a father and his o�spring than to be half-siblings.In this 
ase, further auxiliary data is available, the DNA pro�le of F09-091. A paternity likeli-hood ratio 
an be 
omputed for F10-100 and F09-091F sin
e the mother of F09-091F is known.The di�eren
e between the parent-o�spring likelihood ratio and the paternity likelihood ratiois that the latter one a

ounts for the mothers pro�le while the other one doesn't. Balding(2005) provides a good des
ription of the 
omputation of paternity likelihood ratios.At 13 of 15 lo
i, the genotype of F09-091 su�
es to determine the paternal allele of F09-091F,either be
ause F09-91F is homozygous1 at those lo
i or be
ause F09-091F shares exa
tly oneallele with F09-091. At those lo
i, F10-100 would be ex
luded from being the father of F09-091F if the paternal allele type was not present in his genotype at one lo
us or more. That isnot the 
ase here, but nothing in the geneti
 pro�le of F09-091 ex
ludes F10-100 from beingthe father of F09-091F. The single lo
us paternity likelihood ratios for F10-100 and F09-091F,at the lo
i where the paternal allele is known and F10-100 is homozygous, are 
omputed inthe following way:
LR =

P (Cp = ai | F = (ai, ai) is the father of C)

P (Cp = ai | Z is the father of C)

=
1

p(ai)

(5.1)
Cp stands for the paternal allele of individual C. The numerator is 1 sin
e a father withgenotype (ai, ai) passes ai to his o�spring with a probability of 1. The denominator is theprobability that an allele drawn from Z, some male other than F , is ai. Sin
e the geneti
pro�le of Z is unavailable, this probability is regarded here as p(ai), the proportion of ai allelesin the population of potential fathers. The single lo
us paternity likelihood ratios for F10-100and F09-091F, at the lo
i where the paternal allele is known and F10-100 is heterozygous2,are 
omputed in the following way:

LR =
P (Cp = ai | F = (ai, aj) is the father of C)

P (Cp = ai | Z is the father of C)

=
0.5

p(ai)

=
1

2 · p(ai)

(5.2)1Has two 
opies of the same allele at that lo
us.2Has two di�erent allele types at that lo
us. 44



The numerator is 0.5 sine a father with genotype (ai, aj) passes ai to his o�spring with aprobability of 0.5. At 2 of 15 lo
i, F09-091 and F091F have an identi
al heterozygous genotypewhile the genotype of F10-100 is homozygous and 
ontains one of F09-091F allele types. Atthese lo
i it is not 
lear whi
h allele of F09-91F is the maternal allele and whi
h one is thepaternal allele. The single lo
us paternity likelihood ratios for F10-100 and F09-091F, at thelo
i where the paternal allele is unknown and F10-100 is homozygous, are 
omputed in thefollowing way:
LR =

P (C = (ai, aj) | M = (ai, aj), F = (aj , aj) is the father of C)

P (C = (ai, aj) | M = (ai, aj), Z is the father of C)

=
0.5 · 1

(0.5 · p(ai) + 0.5 · p(aj))

=
1

p(ai) + p(aj)

(5.3)The mother is denoted here with M . The numerator takes value 0.5 sin
e a father with geno-type (aj , aj) passes aj to his o�spring with probability 1 while a mother with genotype (ai, aj)passes ai to her o�spring with probability 0.5. If F is not the father of C then the two possibletransmissions from M to C have to be 
onsidered with the proportion of ai and aj alleles inthe population of potential fathers. That gives the denominator of: (0.5 · p(ai) + 0.5 · p(aj))(Balding, 2005).When the 15 single lo
us paternity likelihood ratios have been 
omputed for F10-100 andF09-091F, then their paternity LOD s
ore is attained by multipli
ation and taking the 10thlogarithm of the result:
LODpaternity = log(

1

2 · p1(159)
·

1

p2(193)
·

1

2 · p3(125)
·

1

2 · p4(125)

·
1

2 · p5(169)
·

1

p6(116)
·

1

p7(114) + p7(118)
·

1

p8(106) + p8(112)

·
1

2 · p9(154)
·

1

2 · p10(215)
·

1

2 · p11(270)
·

1

2 · p12(96)

·
1

2 · p13(269)
·

1

2 · p14(207)
·

1

p15(86)
)

= 8.17

ps(ai) is the estimated population allele frequen
y of ai at lo
us s.The paternity LOD s
ore of F10-100 and F09-091F is higher than their parent-o�spring LODs
ore by: 8.17 − 5.43 = 2.74. By 
onsidering F10-100, F09-091 and F09-091F jointly asa parent-pair and their o�spring, F10-100 
an now be 
lassi�ed as the father of F09-091Fwith greater determination than when F10-100 and F09-091F were examined pairwise. The�nal 
on
lusion here is that F10-100 is the father of F09-091F but that is the same result asPampoulie et al. (2012) attained when they sear
hed for fathers of the foetuses in this samesample.
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Table 5.13: DNA pro�les of F09-091, F09-091F and F10-100Lo
us F09-091 F09-91F F10-100EV001 157/163 159/163 159/171EV037 193/193 193/193 193/193GT011 127/131 125/131 117/125GT023 127/129 125/129 125/129GT195 161/175 161/169 169/173GT211 120/120 116/120 116/116GT271 114/118 114/118 118/118GT310 106/112 106/112 112/112GT575 154/156 154/154 152/154GATA028 199/219 199/215 215/227GATA053 262/262 262/270 258/270GATA098 100/100 96/100 96/108GATA417 269/277 269/269 269/285GGAA520 201/223 207/223 207/219TAA023 86/86 86/86 86/86Table 5.14: Dete
ted pairs of relatives within the samplePairs Con
lusionF10-020 and F10-026 Mother and sonF10-062 and F09-073 Half-brothers/grandfather and grandson/un
le and nephewF10-030 and F09-081 Mother and daughterF09-047 and F10-079 Half-brothers/grandfather and grandson/un
le and nephewF10-020 and F09-040 Half-sisters/grandmother and granddaughter/aunt and nie
eF10-089 and F10-140 Half-siblings/un
le and nie
e/aunt and nephewF09-075 and F10-123 Half-sisters/nie
e and auntF10-100 and F09-91F Father and o�springThe �nal result of the analysis has been summarized in table 5.14. The test pro
edure de-te
ted all in all eight pairs of related individuals within the dataset of 34 959 pairs. Threeof those related pairs were 
lassi�ed as a parent and his/her o�spring, three were 
lassi�edas half-siblings or a grandparent-grand
hild pair or an un
le/aunt-nephew/nie
e pair and twowere 
lassi�ed as half-siblings or an un
le/aunt-nie
e/nephew pair.
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Chapter 6Dis
ussionsVery little is known about the se
ond biggest marine mammal in the world, the �n whale.Fin whales are very di�
ult to observe so un
ertainties remain about their geneti
 stru
ture,abundan
e, mating strategies and migration patterns (Ægisson and Hlíðberg, 2010, Víkings-son, 2005, Pampoulie et al., 2012). Several geneti
 studies of this spe
ies have been performedover the last few de
ades in order to �nd out more about their migration patterns but theresults were so far in
on
lusive. Sighting surveys indi
ate that �n whales are most 
ommonlyseen alone or in pairs and relatedness analyses 
on�rmed that related individuals more 
om-monly o

ur at the same feeding lo
ation (Pampoulie et al., 2012).I
eland has maintained an individual-based DNA-registry for �n whales for some time. Thepresent study used data from this registry by using a general statisti
al pro
edure for dete
tingpairs of relatives. Three types of relatedness were of interest, half-siblings, parent-o�springand �rst 
ousins relations. Relatedness was tested among 265 individuals whi
h means that
265·264

2 = 34 980 pairwise relations were examined. 21 known mother-foetus pairs were presentin the sample. These pairs were very bene�
ial for the analysis sin
e assumptions about thequality of the test pro
edure 
ould be drawn from the ability to dete
t their relatedness. Hardy-Weinberg and linkage equilibrium were assumed and the population allele frequen
ies wereestimated dire
tly from the dataset ex
luding the foetuses. Dete
tion of relatives was done by
omputing pairwise LOD s
ores for the 265 individuals in the sample for ea
h relatedness ofinterest. If Di and Dj were the geneti
 pro�les of individuals i and j than the LOD s
ore fortheir relatedness would be denoted with (Skaug et al., 2010):
LODi,j = log(

P (Di,Dj | H1 : related)

P (Di,Dj | H0 : unrelated)
)A high LOD s
ore indi
ates relatedness but that entails an issue of what should be 
onsideredto be high enough. That issue was a

ounted for by reporting a single p-value with ea
h LODs
ore. The p-values were attained via simulation. 265 unrelated individuals were simulatedwith the same population allele frequen
ies as the ones estimated from the dataset and thentheir pairwise LOD s
ores were 
omputed. This pro
edure was repli
ated at least 60 times.The p-values were 
omputed by 
omparing the original LOD s
ores with the simulated onesbut pi,j 
an be des
ribed as the probability of attaining as extreme or more extreme LODs
ore than LODi,j just by 
han
e. All 
omputations and simulations were done by using theopen sour
e program R (R Development Core Team, 2011), and the 
odes written 
an be47



found in appendix D.Relatedness was tested for every possible pair in the dataset. The high number of pairwise
omparisons raised a well known statisti
al issue, the problem of multiple testing. The prob-lem of multiple testing was addressed by 
omparing two multiple adjustment methods, theBonferroni 
orre
tion and the FDR pro
edure. The Bonferroni 
orre
tion 
ontrols the familywise error rate while the FDR pro
edure 
ontrols the false dis
overy rate. The Bonferroni
orre
tion is known to be very 
onservative when the number of multiple test is high. TheFDR pro
edure is more �exible sin
e it takes the number of erroneous false dis
overies of re-latedness into a

ount instead of only the question of whether any error was made (Benjaminiand Ho
hberg, 1995).In this study, 
on
lusions about relatedness are drawn from the result of the FDR pro
eduresin
e it performed better than the Bonferroni 
orre
tion at allo
ating the mother-foetus pairsin the related group. The FDR pro
edure, with the false dis
overy rate �xed at q = 0.05,
orre
tly 
on
luded all of the 19 mother-foetus pairs with a �nite LODp s
ore1 to be a motherand her o�spring while the Bonferroni pro
edure, at a signi�
an
e level of α = 0.05, missedthree of those 19 pairs. As was expe
ted, the Bonferroni pro
edure was too stri
t for this largenumber of simultaneous pairwise 
omparisons with the 
ost of not dete
ting true relatives.At q = 0.05, eight pairs of relatives were dete
ted in the sample2. Three of those pairs were
lassi�ed as a parent and an o�spring pair, three pairs were 
lassi�ed as half-siblings or agrandparent-grand
hild pair or an un
le/aunt-nephew/nie
e pair and the remaining two ofthose eight pairs were 
lassi�ed as half-siblings or an un
le/aunt-nephew/ni
e pair. No �rst
ousins were dete
ted within the dataset. The result might have been di�erent if the geneti
pro�les 
ontained information about more lo
i. There is of 
ourse a possibility, that all theeight mat
hes of relatives were in
idental and due to low number of lo
i employed but there'salso a possibility that information about more lo
i would have resulted in an in
reased rateof dete
ted relatives.In their paper 'Dete
ting dyads of related individuals in large 
olle
tions of DNA-pro�les by
ontrolling the false dis
overy rate', Skaug et al. (2010) 
onsidered 'half-siblings' to be a rea-sonable 
hoi
e for a general test to dete
t all types of 
lose 1st- and 2nd order relationships.The results of this study are some what in harmony with that re
ommendation. At q = 0.05the half-sibling LOD s
ore dete
ted all the pairs that LODp 
on
luded as a parent and ano�spring as well as all the pairs that LODcous 
lassi�ed as �rst 
ousins. However LODh.sibfailed to dete
t �ve mother-foetus pairs as relatives, thereof three with a �nite LODp s
ore.That indi
ates that, in order for the half-sibling LOD s
ore to dete
t all relatives of 1st-order,the false dis
overy rate has to be �xed at a higher level than q = 0.05. q had to be raised to
0.42 so that LODh.sib would have dete
ted all mother-foetus pairs with a �nite LODp and ashigh as 0.69 so that the two mother-foetus pairs with an in�nitely negative LODp s
ore wouldhave been 
lassi�ed as relatives as well.1The mother-foetus pairs are 21 in the sample but two of those pairs don't have mat
hing alleles at onelo
us due to mutation or a typing error whi
h results in an in�nitely negative parent-
hild LOD s
ore.2Mother-foetus pairs ex
luded. 48



In 'A note on a mother-foetus pair and alleged father mat
h in the Atlanti
 �n whale (Bal-aenoptera physalus) o� I
eland' Pampoulie et al. (2012) analysed the same I
elandi
 �n whaleregistry that is used in the present study. They did so by statisti
ally 
omparing the genotypepro�les of the 23 mother-foetus pairs to that of the 139 potential fathers within the database.The software WHICHPARENTS (available at: http://www-bml.u
davis.edu/whi
hparents.html)was used to assess potential 
rosses among mother-foetus and alleged father, using 0-4 poten-tial misses. The ex
lusion program WHICHPARENTS revealed the presen
e of one possible
ross between a mother-foetus pair and an alleged father when run with 0 miss pro
edure,i.e. a 100% mat
h. Additional analyses of this possible family, involving the mother F09-091,her foetus F09-091F and the alleged father F10-100, was performed in the software PATCANv1.2 (available on request to J.A. Rian
ho; Rian
ho and Zarrabeitia (2003)) to assess thepaternity probability of the potential father. It revealed a high likelihood and probabilityasso
iated with the hypothesis that the alleged father was the true biologi
al father of thefoetus F09-091F. Pampoulie et al. point out that their mat
h might be in
idental and due tothe low number of lo
i employed. They argue that at least two hypothesis 
an be 
onsideredto explain the observed trio-mat
h:1. The dete
ted mating pair o

urring at the same mating lo
ation exhibited a similarmigration habit during the winter.2. The dete
ted mating pair may originally belong to two di�erent populations (or matinglo
ations) among whi
h gene �ow may not be restri
ted, whi
h might indi
ate thatindividual �n whale from di�erent mating lo
ation may roam a
ross the North Atlanti
during the winter feeding migration.F10-100, F09-091 and F09-091F were also 
lassi�ed as a parent-pair and their o�spring inthe present analysis. LODh.sib dete
ted F10-100 and F09-091F as relatives at q = 0.05 and
LODp 
lassi�ed them as a parent and an o�spring. After the pro�les of F10-100, F09-091 andF09-091F had been examined jointly by 
omputing the paternity LOD s
ore for F10-100 andF09-091F, this trio was 
on
luded as a parent-pair and their o�spring.The aim of relatedness dete
tion studies varies. Here, the main interest was the performan
eof the statisti
al pro
edure. The mother-foetus pairs within the I
elandi
 �n whale registrywere extremely valuable from that perspe
tive. The test pro
edures seemed to operate wellat dete
ting relatives and 
lassifying their relatedness. It's ability to dete
t the mother-foetuspairs as a parent and o�spring was very good, and it's ability to 
on
lude them as related,by using the half-sibling LOD s
ore, was also good if one would be 
ontent with a high falsedis
overy rate.Of 
ourse, the assumptions made, in the pro
ess of designing the test pro
edure, limit its per-forman
e, but no statisti
al test 
an take into a

ount the 
omplexity of organims-life 
y
le.Hardy-Weinberg and linkage equilibrium are assumed and, sin
e the true population allelefrequen
ies of �n whales in the EGI area are unknown, the allele frequen
ies were estimateddire
tly from the dataset. Another limitation of the test pro
edure, sin
e it is based on pair-wise 
omparisons, is that it only takes two individuals into a

ount at a time and that 
anlead to in
onsistent pedigree results. For example, it is possible, in the 
ase of simultaneouspairwise 
omparisons, that individuals A and B are 
lassi�ed as full siblings and that B and C49



are 
lassi�ed as full sibling but at the same time A and C are 
lassi�ed as half-siblings3 (Fer-nández and Toro, 2006). Also in parentage analysis, it is possible that A and C are 
lassi�edas a father and his o�spring and that B and C are 
lassi�ed as a mother and her o�spring inpairwise 
omparisons, but, when 
onsidered jointly, this family might be in
ompatible with aparent-pair and o�spring relationship (Jones and Wang, 2009).The present analysis had very few mat
hes of relatives so it was pretty straight forward to 
he
kfor in
onsistent pedigree results. F10-020 has two dete
ted relatives within the database. Shewas 
lassi�ed as the mother of F10-026 as well as a half-sister/grandmother/aunt of F09-040but those relations do obviously not result in an in
onsistent pedigree. F10-100 was dete
tedas the father of the foetus F09-91F. In that 
ase, F10-100, F09-091 and F09-091F had tobeen 
onsidered jointly as a family. That was done by 
omputing the paternity LOD s
orefor F10-100 and F09-091F whi
h revealed that the trio was 
ompatible with a parent-pairand o�spring relationship. In some 
ases it might be more di�
ult to 
he
k for in
onsistentresults, su
h as in the 
ase of studies that result in a high number of dete
ted dyads of rela-tives. It might then be more suitable to use an alternative 
omputer program like COLONY(available at: https://www.zsl.org/s
ien
e/resear
h-proje
ts/software/
olony,1154,AR.html)that implements full-pedigree likelihood methods to simultaneously infer sibship and parent-age among individuals, with likelihood 
onsidered over the entire pedigree 
on�guration (Jonesand Wang, 2009).There are many possibilities for further work with the present pro
edure. Regarding the �nwhale data, it would be interesting to test if there are any full siblings within the dataset.Dis
overy of �rst 
ousins would have implied that there are full sibling �n whales out there(sin
e �rst 
ousins are 
hildren of full siblings), but no �rst 
ousins were dete
ted within thepresent dataset. The study 
ould be used to evaluate e
ologi
al information of �n whalesin I
elandi
 waters. For example, the dis
overies of relatives 
ould be regarded as a mark-re
apture experiment and used for abundan
e estimation (Skaug and Oien, 2005). The 
odesgiven in appendix D 
an be used for testing for relatedness within other geneti
 datasets, theonly requirement is that the geneti
 data is on matrix form. Developing the 
odes into a moreuser-friendly mode, for example as a R pa
kage, might be of interest for relatedness analysisof resear
h fo
using on mark-re
apture geneti
 studies using non-lethal te
hniques (biopsy).If one were to use the statisti
al pro
edure, presented in this paper, to dete
t many di�erenttypes of relatives within a large database, the following steps are re
ommended:1. Compute all pairwise half-sibling LOD s
ores2. Divide the pairs into two groups, 'Related group of pairs' and 'Unrelated group of pairs'based on how the FDR pro
edure 
lassi�es the pairs at a rather high q, for example
q = 0.53. The 'Related group of pairs' is sear
hed for parent-o�spring pairs, �rst 
ousins, siblingsand half-siblings at a lower qSin
e the 'Related group of pairs' should be 
onsiderably smaller than the original group ofpairs, following those steps, instead of 
omputing di�erent LOD for ea
h relatedness hypoth-esis, 
ould save a lot of 
omputing time in the 
ase of very large datasets.3It be
ame 
lear in the explanatory example in 
hapter 4.3 that the test pro
edure 
on
ludes full siblingsto be half-siblings if they don't have an identi
al genotype at any lo
us.50



BibliographyÆgisson, S. and Hlíðberg, J.B. Hvalir. JPV-Forlagid, 2010.Balding, D.J. Weight-of-eviden
e for Forensi
 DNA Pro�les. John Wiley & Sons Hoboken,NJ, 2005.Benjamini, Y. and Ho
hberg, Y. Controlling the false dis
overy rate: a pra
ti
al and powerfulapproa
h to multiple testing. Journal of the Royal Statisti
al So
iety. Series B (Method-ologi
al), pages 289�300, 1995.Bérubé, M. and Palsbøll, P.J. Identi�
ation of sex in 
eta
eans by multiplexing with three zfxand zfy spe
i�
 primers. Mole
ular E
ology, 5(2):283�287, 1996.Casella, G. and Berger, R. Statisti
al Inferen
e. Duxbury, 2 edition, 2002.Dorai-Raj, S. binom: Binomial Con�den
e Intervals For Several Parameterizations, 2009.URL http://CRAN.R-proje
t.org/pa
kage=binom. R pa
kage version 1.0-5.Dyer, R.J. gstudio: Geneti
Studio pa
kages for R., 2012. URLhttp://CRAN.R-proje
t.org/pa
kage=gstudio. R pa
kage version 0.8.Fernández, J. and Toro, MA. A new method to estimate relatedness from mole
ular markers.Mole
ular E
ology, 15(6):1657�1667, 2006.Hartl, D.L. and Jones, E.W. Geneti
s: Prin
iples and Analysis. Jones and Bartlett publishers,4 edition, 1998.Huber, W.; von Heydeber
k, A., and Vingron, M. Handbook of Statisti
al Geneti
s, volume 1,
hapter Analysis of Mi
roarray Gene Expression Data, pages 203�230. Wiley-Inters
ien
e,3 edition, 2007.Johnson, R.A. and Wi
hern, D.W. Applied Multivariate Statisti
al Analysis. Pearson Edu
a-tion International, 6 edition, 2007.Jones, O.R. and Wang, J. Colony: a program for parentage and sibship inferen
e frommultilo
us genotype data. Mole
ular E
ology Resour
es, 10(3):551�555, 2009.Nielsen, R.; Mattila, D.K.; Clapham, P.J., and Palsbøll, P.J. Statisti
al approa
hes to pater-nity analysis in natural populations and appli
ations to the north atlanti
 humpba
k whale.Geneti
s, 157(4):1673�1682, 2001.
51



Pampoulie, C.; Ólafsdóttir, G.; Hauksdóttir, S.; Skírnisdóttir, S.; Ólafsson, K.; Magnúsdóttir,S.; Chosson, V.; Halldórsson, S.D.; Ólafsdóddir, D.; Gunnlaugsson, T.; Daníelsdóttir, A.K.,and Víkingsson, G.A. A note on a mother-foetus pair and alleged father mat
h in theatlanti
 �n whale (Balaenoptera physalus) o� i
eland. Journal of Ceta
ean Resear
h andManagement, 2012.Pounds, S.B.; Cheng, C., and Onar, A. Handbook of Statisti
al Geneti
s, volume 1, 
hapterStatisti
al Inferen
e for Mi
roarray Studies, pages 231�266. Wiley-Inters
ien
e, 3 edition,2007.R Development Core Team, . R: A Language and Environment for Statisti
al Com-puting. R Foundation for Statisti
al Computing, Vienna, Austria, 2011. URLhttp://www.R-proje
t.org/. ISBN 3-900051-07-0.Rian
ho, J.A. and Zarrabeitia, M.T. A windows-based software for 
ommon paternity andsibling analyses. Forensi
 s
ien
e international, 135(3):232�234, 2003.Rizzo, M.L. Statisti
al 
omputing with R. Chapman & Hall/CRC, 2007.Russell, J.C.; Abdelkrim, J., and Fewster, R.M. Early 
olonisation population stru
ture of anorway rat island invasion. Biologi
al Invasions, 11(7):1557�1567, 2009.Sigurjónsson, J. Villt íslensk spendýr, 
hapter Hvalrannsóknir við Ísland, pages 103�146. HiðÍslenska náttúrufræðifélag-Landvernd, 1993.Sigurðsson, Þ. and Magnússon, Á., editors. volume 163. Marine Resear
h Institute of I
eland,2012.Skaug, H.J. Allele-sharing methods for estimation of population size. Biometri
s, 57(3):750�756, 2001.Skaug, H.J. and Oien, N. Geneti
 tagging of male north atlanti
 minke whales through 
om-parison of maternal and foetal dna-pro�les. Journal of Ceta
ean Resear
h and Management,7(2):113�117, 2005.Skaug, H.J.; Berube, M., and Palsbøll, P.J. Dete
ting dyads of related individuals in large 
ol-le
tions of dna-pro�les by 
ontrolling the false dis
overy rate. Mole
ular E
ology Resour
es,10(4):693�700, 2010.Speed, T.P. and Zhao, H. Handbook of Statisti
al Geneti
s, volume 1, 
hapter ChromosomeMaps, pages 3�39. Wiley-Inters
ien
e, 3 edition, 2007.Thompson, E.A. Pedigree Analysis in Human Geneti
s. Johns Hopkins University PressBaltimore, 1986.Víkingsson, G.A. Íslensk spendýr, 
hapter Langreyður, pages 204�211. Vaka-Helgafell, 2005.Weir, B.S. Handbook of Statisti
al Geneti
s, volume 2, 
hapter Forensi
s, pages 1368�1390.Wiley-Inters
ien
e, 3 edition, 2007.
52



Appendi
es

53



Appendix AKinship 
oe�
ientsOne of the simplest probabilities of gene identity by des
ent is the 
lassi
al kinship 
oe�
ient.The kinship 
oe�
ient, kj , between two individuals is de�ned as the probability that theyhave inherited j alleles at a lo
us identi
al by des
ent given a 
ertain relatedness.A.1 SiblingsFull siblings 
an share 0, 1 or 2 alleles at a lo
us but the probabilities di�er. In order to �ndthe appropriate relatedness 
oe�
ients for siblings the following question has to be answered:For j = 0, 1, 2, given that two individuals are siblings, whose parents have alleles (a, b) and
(c, d) at a given lo
us, what is the probability that they have inherited j alleles IBD at thatlo
us?

k0 = P (0− ibd | siblings)

= P (indi = (a, c)
⋂

indj = (b, d) | siblings)

+ P (indi = (b, d)
⋂

indj = (a, c) | siblings)

+ P (indi = (a, d)
⋂

indj = (b, c) | siblings)

+ P (indi = (b, c)
⋂

indj = (a, d) | siblings)

= 2 · (
1

2
·
1

2
·
1

2
·
1

2
) + 2 · (

1

2
·
1

2
·
1

2
·
1

2
)

=
4

16
=

1

4

(A.1)
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k1 = P (1− ibd | siblings)

= P (indi = (a, c)
⋂

indj = (a, d) | siblings)

+ P (indi = (a, d)
⋂

indj = (a, c) | siblings)

+ P (indi = (b, c)
⋂

indj = (b, d) | siblings)

+ P (indi = (b, d)
⋂

indj = (b, c) | siblings)

+ P (indi = (c, b)
⋂

indj = (c, a) | siblings)

+ P (indi = (c, a)
⋂

indj = (c, b) | siblings)

+ P (indi = (d, a)
⋂

indj = (d, b) | siblings)

+ P (indi = (d, b)
⋂

indj = (d, a) | siblings)

= 2 · (
1

2
·
1

2
·
1

2
·
1

2
) + 2 · (

1

2
·
1

2
·
1

2
·
1

2
)

+ 2 · (
1

2
·
1

2
·
1

2
·
1

2
) + 2 · (

1

2
·
1

2
·
1

2
·
1

2
)

=
8

16
=

1

2

(A.2)

k2 = P (2− ibd | siblings)

= P (indi = (a, c)
⋂

indj = (a, c) | siblings)

+ P (indi = (a, d)
⋂

indj = (a, d) | siblings)

+ P (indi = (b, c)
⋂

indj = (b, c) | siblings)

+ P (indi = (b, d)
⋂

indj = (b, d) | siblings)

=
1

2
·
1

2
·
1

2
·
1

2
+

1

2
·
1

2
·
1

2
·
1

2

+
1

2
·
1

2
·
1

2
·
1

2
+

1

2
·
1

2
·
1

2
·
1

2

=
4

16
=

1

4

(A.3)
A.2 Half-SiblingsHalf-siblings1 have one parent in 
ommon and 
an therefore inherit 0 or 1 alleles IBD butnever 2.For j = 0, 1, 2, given that two individuals are half-siblings, whose 
ommon parent has alleles
(a, b) at a lo
us, what is the probability that they have inherited j alleles IBD at that lo
us?1The kinship 
oe�
ients for grandparent-grand
hild relations and un
le/aunt-nephew/nie
e relations arethe same as for half-siblings. 55



k0 = P (0− ibd | half siblings)

= P (indi = (a)
⋂

indj = (b) | half − siblings)

+ P (indi = (b)
⋂

indj = (a) | half − siblings)

=
1

2
·
1

2
+

1

2
·
1

2
=

1

2

(A.4)
k1 = P (1− ibd | half siblings)

= P (indi = (a)
⋂

indj = (a) | half − siblings)

+ P (indi = (b)
⋂

indj = (b) | half − siblings)

=
1

2
·
1

2
+

1

2
·
1

2
=

1

2

(A.5)
k2 = P (2− ibd | half − siblings) = 0 (A.6)A.3 First CousinsFirst 
ousins have one set of grand-parents pair in 
ommon. They 
an therefore inherit 0 or 1alleles IBD at a lo
us but never 2 (assuming there is no inbreeding). The kinship 
oe�
ientsare attained by answering the following question:For j = 0, 1, 2, given that two individuals are �rst 
ousins, whose 
ommon pair of grand-parents have alleles (a, b) and (c, d) at a lo
us, what is the probability that they have inherited

j alleles IBD at that lo
us?
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k0 = P (0− ibd | 1st.cousins)

= P (indi = (a)
⋂

indj = (b) | 1st.cousins)

+ P (indi = (b)
⋂

indj = (a) | 1st.cousins)

+ P (indi = (a)
⋂

indj = (c) | 1st.cousins)

+ P (indi = (c)
⋂

indj = (a) | 1st.cousins)

+ P (indi = (a)
⋂

indj = (d) | 1st.cousins)

+ P (indi = (d)
⋂

indj = (a) | 1st.cousins)

+ P (indi = (b)
⋂

indj = (c) | 1st.cousins)

+ P (indi = (c)
⋂

indj = (b) | 1st.cousins)

+ P (indi = (b)
⋂

indj = (d) | 1st.cousins)

+ P (indi = (d)
⋂

indj = (b) | 1st.cousins)

+ P (indi = (c)
⋂

indj = (d) | 1st.cousins)

+ P (indi = (d)
⋂

indj = (c) | 1st.cousins)

= 2 ·
1

4
·
1

4
+ 2 ·

1

4
·
1

4
+ 2 ·

1

4
·
1

4

+ 2 ·
1

4
·
1

4
+ 2 ·

1

4
·
1

4
+ 2 ·

1
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·
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4

=
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16
=
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(A.7)

k1 = P (1− ibd | 1st.cousins)

= P (indi = (a)
⋂

indj = (a) | 1st.cousins)

+ P (indi = (b)
⋂

indj = (b) | 1st.cousins)

+ P (indi = (c)
⋂

indj = (c) | 1st.cousins)

+ P (indi = (d)
⋂

indj = (d) | 1st.cousins)

=
1

4
·
1

4
+

1

4
·
1

4
+

1

4
·
1

4
+

1

4
·
1

4

=
4

16
=

1

4

(A.8)
k2 = P (2− ibd | 1st.cousins) = 0 (A.9)
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Appendix BRelatedness Likelihood RatiosConsider allele information of individuals i and j at S lo
i. Under the assumption of linkageequilibrium it is possible to test their relatedness by 
omputing the likelihood ratio for ea
hlo
us separately and then multiply those ratios together and take the logarithm to get theLOD s
ore.
LRi,j(s) =

P (Di,s,Di,s|H1)
P (Di,s,Dj,s|H0)is the likelihood ratio at lo
us s. The 
omputations in the present study are done under theassumption of Hardy-Weinberg- and linkage equilibrium. At a single lo
us, the probability oftwo mi
rosatellite based DNA-pro�les, Di and Dj , given the null hypothesis of unrelatedness,is:

P (Di,Dj | unrelated) = p(a
(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )where (a

(1)
i,s , a

(2)
i,s ) is the genotype of individual i at lo
us s and p(a

(m)
i,s ) is the populationfrequen
y for whatever type allele a

(m)
i,s is with m = 1, 2. This probability is used in thefollowing 
omputation of likelihood ratios.B.1 Full Siblings Likelihood Ratio at a Single Lo
us

H0 : Individual i and j are siblings.
H1 : Individual i and j are unrelatedThere are three random events that need 
onditioning:1. How many alleles are shared IBD: 0,1 or 2.2. Whi
h allele was inherited from the mother, whi
h allele was inherited from the father.3. Given 2), did individuals i and j inherit the same allele from the same parent.
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B.2 Half-Siblings Likelihood Ratio at a Single Lo
us
H0 : Individual i and j are half-siblings
H1 : Individual i and j are unrelatedThere are three random events that need 
onditioning:1. How many alleles are shared IBD: 0 or 1.2. Whi
h allele was inherited from the shared parent.3. Given 2), did individuals i and j inherit the same allele from their shared parent.
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B.3 First Cousins Likelihood Ratio at a Single Lo
us
H0 : Individual i and j are �rst 
ousins.
H1 : Individual i and j are unrelatedThere are three random events that need 
onditioning:1. How many alleles are shared IBD: 0 or 1.2. Whi
h allele was inherited from their shared pair of grand-parents.3. Given 2), did individual i and j inherit the same allele from their shared pair of grand-parents.
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Appendix CR Codes for the Explanatory ExampleThis se
tions in
ludes the 
odes that were used in the explanatory example in 
hapter 4.3. All
omputations were done by using the open sour
e program R, version 2.14.1, (R DevelopmentCore Team, 2011).C.1 Simulation of IndividualsThe three individuals were simulated by the following 
ode written by Hans Julius Skaug. Twoof them were simulated to be full siblings while the third one was simulated to be unrelatedto them. Here individuals A, B and C are referred to as individuals 1, 2 and 3.S<-NULLS=
(9,18,20,14,10,12,12,11,17,16) # Number of alleles per lo
us i.n = 3 # Number of individualsm = 10 # Number of lo
iA = NULLB = NULLfor(i in 1:m){ A = 
bind(A,sample(x=1:S[i℄,size=n,repla
e=T))B = 
bind(B,sample(x=1:S[i℄,size=n,repla
e=T))}# Makes individual 2 and 3 be siblingsind = sample(
(F,T),size=m,repla
e=T)A[2,ind℄ = A[3,ind℄ind = sample(
(F,T),size=m,repla
e=T)B[2,ind℄ = B[3,ind℄AB = matrix(paste(A,B,sep="/"),n
ol=m,byrow=F)
olnames(AB)=1:mrownames(AB)=paste("Individ",1:n,sep="")63



C.2 Computation of LOD S
oresThe following 
ode shows the 
omputation of the parent-o�spring LOD s
ore, LODp, theidentity LOD s
ore, LODid and the full siblings LOD s
ore, LODsib, for individuals 1 and 2.The data was registered as geneti
 data by using 
ommands from the pa
kage gstudio (Dyer,2012), available in R.#Genteti
 data registeredrequire(gstudio) #The pa
kage gstudio 
ontains the fun
tion Lo
us()alo
1<-(Lo
us(
(4,8),phased=FALSE))alo
2<-(Lo
us(
(15,6),phased=FALSE))alo
3<-(Lo
us(
(8,3),phased=FALSE))alo
4<-(Lo
us(
(3,13),phased=FALSE))alo
5<-(Lo
us(
(7,10),phased=FALSE))alo
6<-(Lo
us(
(8,1),phased=FALSE))alo
7<-(Lo
us(
(2,5),phased=FALSE))alo
8<-(Lo
us(
(3,9),phased=FALSE))alo
9<-(Lo
us(
(6,13),phased=FALSE))alo
10<-(Lo
us(
(12,10),phased=FALSE))blo
1<-(Lo
us(
(8,2),phased=FALSE))blo
2<-(Lo
us(
(12,15),phased=FALSE))blo
3<-(Lo
us(
(17,11),phased=FALSE))blo
4<-(Lo
us(
(4,6),phased=FALSE))blo
5<-(Lo
us(
(8,3),phased=FALSE))blo
6<-(Lo
us(
(8,8),phased=FALSE))blo
7<-(Lo
us(
(11,1),phased=FALSE))blo
8<-(Lo
us(
(10,9),phased=FALSE))blo
9<-(Lo
us(
(10,2),phased=FALSE))blo
10<-(Lo
us(
(13,16),phased=FALSE))#The geneti
 profiles of Individual 1 and 2:Ind_1<-
(alo
1,alo
2,alo
3,alo
4,alo
5,alo
6,alo
7,alo
8,alo
9,alo
10)Ind_2<-
(blo
1,blo
2,blo
3,blo
4,blo
5,blo
6,blo
7,blo
8,blo
9,blo
10)#Allele frequen
iesfreq1<-0.11111111freq2<-0.05555556freq3<-0.05000000freq4<-0.07142857freq5<-0.10000000freq6<-0.08333333freq7<-0.08333333freq8<-0.09090910freq9<-0.05882353freq10<-0.0625000 64



After the geneti
 data has been registered then parent-o�spring LOD s
ore is 
omputed:#H1: Ind_1 and Ind_2 are a parent and his/her offspringLRP_1<-0 #Parent-offspring likelihood ratio for lo
us 1LRP_1= (0.25*((if(alo
1[1℄==blo
1[1℄){1}else{0})+(if(alo
1[2℄==blo
1[1℄){1}else{0})+(if(alo
1[1℄==blo
1[2℄){1}else{0})+(if(alo
1[2℄==blo
1[2℄){1}else{0})))/freq1LRP_2<-0 #Parent-offspring likelihood ratio for lo
us 2LRP_2=(0.25*((if(alo
2[1℄==blo
2[1℄){1}else{0})+(if(alo
2[2℄==blo
2[1℄){1}else{0})+(if(alo
2[1℄==blo
2[2℄){1}else{0})+(if(alo
2[2℄==blo
2[2℄){1}else{0})))/freq2LRP_3<-0 #Parent-offspring likelihood ratio for lo
us 3LRP_3=0.25*(((if(alo
3[1℄==blo
3[1℄){1}else{0})+(if(alo
3[2℄==blo
3[1℄){1}else{0})+(if(alo
3[1℄==blo
3[2℄){1}else{0})+(if(alo
3[2℄==blo
3[2℄){1}else{0})))/freq3LRP_4<-0 #Parent-offspring likelihood ratio for lo
us 4LRP_4=0.25*(((if(alo
4[1℄==blo
4[1℄){1}else{0})+(if(alo
4[2℄==blo
4[1℄){1}else{0})+(if(alo
4[1℄==blo
4[2℄){1}else{0})+(if(alo
4[2℄==blo
4[2℄){1}else{0})))/freq4LRP_5<-0 #Parent-offspring likelihood ratio for lo
us 5LRP_5=0.25*(((if(alo
5[1℄==blo
5[1℄){1}else{0})+(if(alo
5[2℄==blo
5[1℄){1}else{0})+(if(alo
5[1℄==blo
5[2℄){1}else{0})+(if(alo
5[2℄==blo
5[2℄){1}else{0})))/freq5LRP_6<-0 #Parent-offspring likelihood ratio for lo
us 6LRP_6=0.25*(((if(alo
6[1℄==blo
6[1℄){1}else{0})+(if(alo
6[2℄==blo
6[1℄){1}else{0})+(if(alo
6[1℄==blo
6[2℄){1}else{0})+(if(alo
6[2℄==blo
6[2℄){1}else{0})))/freq6LRP_7<-0 #Parent-offspring likelihood ratio for lo
us 7LRP_7=0.25*(((if(alo
7[1℄==blo
7[1℄){1}else{0})+(if(alo
7[2℄==blo
7[1℄){1}else{0})+(if(alo
7[1℄==blo
7[2℄){1}else{0})+(if(alo
7[2℄==blo
7[2℄){1}else{0})))/freq7LRP_8<-0 #Parent-offspring likelihood ratio for lo
us 865



LRP_8=0.25*(((if(alo
8[1℄==blo
8[1℄){1}else{0})+(if(alo
8[2℄==blo
8[1℄){1}else{0})+(if(alo
8[1℄==blo
8[2℄){1}else{0})+(if(alo
8[2℄==blo
8[2℄){1}else{0})))/freq8LRP_9<-0 #Parent-offspring likelihood ratio for lo
us 9LRP_9=0.25*(((if(alo
9[1℄==blo
9[1℄){1}else{0})+(if(alo
9[2℄==blo
9[1℄){1}else{0})+(if(alo
9[1℄==blo
9[2℄){1}else{0})+(if(alo
9[2℄==blo
9[2℄){1}else{0})))/freq9LRP_10<-0 #Parent-offspring likelihood ratio for lo
us 10LRP_10=0.25*(((if(alo
10[1℄==blo
10[1℄){1}else{0})+(if(alo
10[2℄==blo
10[1℄){1}else{0})+(if(alo
10[1℄==blo
10[2℄){1}else{0})+(if(alo
10[2℄==blo
10[2℄){1}else{0})))/freq10LOD_p<-0 #Parent-offspring LOD s
ore 
omputedLOD_p=log(LRP_1*LRP_2*LRP_3*LRP_4*LRP_5*LRP_6*LRP_7*LRP_8*LRP_9*LRP_10,base=10)The identity LOD s
ore is 
omputed in the following way:#H1: Ind_1 and Ind_2 are identi
al twins.LRid_1<-0 #Identity likelihood ratio for lo
us 1LRid_1= 0.5*(freq1)^(-2)*(((if(alo
1[1℄==blo
1[1℄){1}else{0})*(if(alo
1[2℄==blo
1[2℄){1}else{0}))+((if(alo
1[1℄==blo
1[2℄){1}else{0})*(if(alo
1[2℄==blo
1[1℄){1}else{0})))LRid_2<-0 #Identity likelihood ratio for lo
us 2LRid_2=0.5*(freq2)^(-2)*(((if(alo
2[1℄==blo
2[1℄){1}else{0})*(if(alo
2[2℄==blo
2[2℄){1}else{0}))+((if(alo
2[1℄==blo
2[2℄){1}else{0})*(if(alo
2[2℄==blo
2[1℄){1}else{0})))LRid_3<-0 #Identity likelihood ratio for lo
us 3LRid_3=0.5*(freq3)^(-2)*(((if(alo
3[1℄==blo
3[1℄){1}else{0})*(if(alo
3[2℄==blo
3[2℄){1}else{0}))+((if(alo
3[1℄==blo
3[2℄){1}else{0})*(if(alo
3[2℄==blo
3[1℄){1}else{0})))LRid_4<-0 #Identity likelihood ratio for lo
us 466



LRid_4=0.5*(freq4)^(-2)*(((if(alo
4[1℄==blo
4[1℄){1}else{0})*(if(alo
4[2℄==blo
4[2℄){1}else{0}))+((if(alo
4[1℄==blo
4[2℄){1}else{0})*(if(alo
4[2℄==blo
4[2℄){1}else{0})))LRid_5<-0 #Identity likelihood ratio for lo
us 5LRid_5=0.5*(freq5)^(-2)*(((if(alo
5[1℄==blo
5[1℄){1}else{0})*(if(alo
5[2℄==blo
5[2℄){1}else{0}))+((if(alo
5[1℄==blo
5[2℄){1}else{0})*(if(alo
5[2℄==blo
5[1℄){1}else{0})))LRid_6<-0 #Identity likelihood ratio for lo
us 6LRid_6=0.5*(freq6)^(-2)*(((if(alo
6[1℄==blo
6[1℄){1}else{0})*(if(alo
6[2℄==blo
6[1℄){1}else{0}))+((if(alo
6[1℄==blo
6[2℄){1}else{0})*(if(alo
6[2℄==blo
6[2℄){1}else{0})))LRid_7<-0 #Identity likelihood ratio for lo
us 7LRid_7=0.5*(freq7)^(-2)*(((if(alo
7[1℄==blo
7[1℄){1}else{0})*(if(alo
7[2℄==blo
7[2℄){1}else{0}))+((if(alo
7[1℄==blo
7[2℄){1}else{0})*(if(alo
7[2℄==blo
7[1℄){1}else{0})))LRid_8<-0 #Identity likelihood ratio for lo
us 8LRid_8=0.5*(freq8)^(-2)*(((if(alo
8[1℄==blo
8[1℄){1}else{0})*(if(alo
8[2℄==blo
8[2℄){1}else{0}))+((if(alo
8[1℄==blo
8[2℄){1}else{0})*(if(alo
8[2℄==blo
8[1℄){1}else{0})))LRid_9<-0 #Identity likelihood ratio for lo
us 9LRid_9=0.5*(freq9)^(-2)*(((if(alo
9[1℄==blo
9[1℄){1}else{0})*(if(alo
9[2℄==blo
9[2℄){1}else{0}))+(if(alo
9[1℄==blo
9[2℄){1}else{0})*(if(alo
9[2℄==blo
9[1℄){1}else{0}))LRid_10<-0 #Identity likelihood ratio for lo
us 10LRid_10=0.5*(freq10)^(-2)*(((if(alo
10[1℄==blo
10[1℄){1}else{0})*(if(alo
10[2℄==blo
10[2℄){1}else{0}))+((if(alo
10[1℄==blo
10[2℄){1}else{0})*(if(alo
10[2℄==blo
10[1℄){1}else{0})))67



LOD_id<-0 #Identity LOD s
ore 
omputedLOD_id=log(LRid_1*LRid_2*LRid_3*LRid_4*LRid_5*LRid_6*LRid_7*LRid_8*LRid_9*LRid_10,base=10)When LODp and LODid have been 
omputed then 
omputing the LOD s
ores for otherrelatedness hypothesis, H1, is a simple task by using formula 4.6:
LRH1

= k0(H1) + k1(H1) · LRp + k2(H1) · LRid

k0, k1 and k2 are kinship 
oe�
ients given the relatedness that is being tested, (see table:
3.1):#H1: Ind_1 and Ind_2 are siblingsLRsib_1<-0 #Siblings likelihood ratio for lo
us 1LRsib_1=1/4+1/2*(LRP_1)+1/4*(LRid_1)LRsib_2<-0 #Siblings likelihood ratio for lo
us 2LRsib_2=1/4+1/2*(LRP_2)+1/4*(LRid_2)LRsib_3<-0 #Siblings likelihood ratio for lo
us 3LRsib_3=1/4+1/2*(LRP_3)+1/4*(LRid_3)LRsib_4<-0 #Siblings likelihood ratio for lo
us 4LRsib_4=1/4+1/2*(LRP_4)+1/4*(LRid_4)LRsib_5<-0 #Siblings likelihood ratio for lo
us 5LRsib_5=1/4+1/2*(LRP_5)+1/4*(LRid_5)LRsib_6<-0 #Siblings likelihood ratio for lo
us 6LRsib_6=1/4+1/2*(LRP_6)+1/4*(LRid_6)LRsib_7<-0 #Siblings likelihood ratio for lo
us 7LRsib_7=1/4+1/2*(LRP_7)+1/4*(LRid_7)LRsib_8<-0 #Siblings likelihood ratio for lo
us 8LRsib_8=1/4+1/2*(LRP_8)+1/4*(LRid_8)LRsib_9<-0 #Siblings likelihood ratio for lo
us 9LRsib_9=1/4+1/2*(LRP_9)+1/4*(LRid_9)LRsib_10<-0 #Siblings likelihood ratio for lo
us 10LRsib_10=1/4+1/2*(LRP_10)+1/4*(LRid_10)LOD_sib<-0 #Siblings LOD s
ore 
omputedLOD_sib=log(LRsib_1*LRsib_2*LRsib_3*LRsib_4*LRsib_5*LRsib_6*LRsib_7*LRsib_8*LRsib_9*LRsib_10,base=10)68



The half-sibling LOD s
ore and the �rst 
ousin LOD s
ore are 
omputed in the same way asthe full sibling LOD s
ore, only with di�erent kinship 
oe�
ients:LRh-sib_1<-0 #Half-siblings likelihood ratio for lo
us 1LRh-sib_1=1/2+1/2*(LRP_1)+0*(LRid_1)LR
ous_1<-0 #First 
ousins likelihood ratio for lo
us 1LR
ous_1=3/4+1/4*(LRP_1)+0*(LRid_1)C.3 Estimation of p-ValuesThe p-values are estimated by simulating 100 unrelated individuals with the same 
ode as 
anbe found in C.1 withn = 100and without the 
ommand that makes individual 2 and 3 be siblings. The geneti
 data isregistered a little bit di�erent here. Genotype (A,B) at lo
us s for individual i is denoted by:A[i,s℄ #Allele A at lo
us s for individual iB[i,s℄ #Allele B at lo
us s for individual iWhen the individuals have been simulated then their pairwise LOD s
ores are 
omputed in amatrix. The sibling LOD matrix for the simulated individuals is 
omputed in the followingway:simLOD_sib<-NULLsimLOD_sib=matrix(n
ol=100,nrow=100)for(i in 1:n
ol(simLOD_sib)){for(j in 1:nrow(simLOD_sib)){simLOD_sib[i,j℄=log(((0.25+0.5*(((if(A[i,1℄==A[j,1℄){1}else{0})+(if(A[i,1℄==B[j,1℄){1}else{0})+(if(B[i,1℄==A[j,1℄){1}else{0})+(if(B[i,1℄==B[j,1℄){1}else{0}))/(4*freq[1℄))+(0.25*(((if(A[i,1℄==A[j,1℄){1}else{0})*(if(B[i,1℄==B[j,1℄){1}else{0}))+((if(B[i,1℄==A[j,1℄){1}else{0})+(if(A[i,1℄==B[j,1℄){1}else{0})))/(2*freq[1℄*freq[1℄)))*(0.25+0.5*(((if(A[i,2℄==A[j,2℄){1}else{0})+(if(A[i,2℄==B[j,2℄){1}else{0})+(if(B[i,2℄==A[j,2℄){1}else{0})+(if(B[i,2℄==B[j,2℄){1}else{0}))/(4*freq[2℄))+(0.25*(((if(A[i,2℄==A[j,2℄){1}else{0})*(if(B[i,2℄==B[j,2℄){1}else{0}))+((if(B[i,2℄==A[j,2℄){1}else{0})+(if(A[i,2℄==B[j,2℄){1}else{0})))/(2*freq[2℄*freq[2℄))) 69



*(0.25+0.5*(((if(A[i,3℄==A[j,3℄){1}else{0})+(if(A[i,3℄==B[j,3℄){1}else{0})+(if(B[i,3℄==A[j,3℄){1}else{0})+(if(B[i,3℄==B[j,3℄){1}else{0}))/(4*freq[3℄))+(0.25*(((if(A[i,3℄==A[j,3℄){1}else{0})*(if(B[i,3℄==B[j,3℄){1}else{0}))+((if(B[i,3℄==A[j,3℄){1}else{0})+(if(A[i,3℄==B[j,3℄){1}else{0})))/(2*freq[3℄*freq[3℄)))*(0.25+0.5*(((if(A[i,4℄==A[j,4℄){1}else{0})+(if(A[i,4℄==B[j,4℄){1}else{0})+(if(B[i,4℄==A[j,4℄){1}else{0})+(if(B[i,4℄==B[j,4℄){1}else{0}))/(4*freq[4℄))+(0.25*(((if(A[i,4℄==A[j,4℄){1}else{0})*(if(B[i,4℄==B[j,4℄){1}else{0}))+((if(B[i,4℄==A[j,4℄){1}else{0})+(if(A[i,4℄==B[j,4℄){1}else{0})))/(2*freq[4℄*freq[4℄)))*(0.25+0.5*(((if(A[i,5℄==A[j,5℄){1}else{0})+(if(A[i,5℄==B[j,5℄){1}else{0})+(if(B[i,5℄==A[j,5℄){1}else{0})+(if(B[i,5℄==B[j,5℄){1}else{0}))/(4*freq[5℄))+(0.25*(((if(A[i,5℄==A[j,5℄){1}else{0})*(if(B[i,5℄==B[j,5℄){1}else{0}))+((if(B[i,5℄==A[j,5℄){1}else{0})+(if(A[i,5℄==B[j,5℄){1}else{0})))/(2*freq[5℄*freq[5℄)))*(0.25+0.5*(((if(A[i,6℄==A[j,6℄){1}else{0})+(if(A[i,6℄==B[j,6℄){1}else{0})+(if(B[i,6℄==A[j,6℄){1}else{0})+(if(B[i,6℄==B[j,6℄){1}else{0}))/(4*freq[6℄))+(0.25*(((if(A[i,6℄==A[j,6℄){1}else{0})*(if(B[i,6℄==B[j,6℄){1}else{0}))+((if(B[i,6℄==A[j,6℄){1}else{0})+(if(A[i,6℄==B[j,6℄){1}else{0})))/(2*freq[6℄*freq[6℄)))*(0.25+0.5*(((if(A[i,7℄==A[j,7℄){1}else{0})+(if(A[i,7℄==B[j,7℄){1}else{0})+(if(B[i,7℄==A[j,7℄){1}else{0})+(if(B[i,7℄==B[j,7℄){1}else{0}))/(4*freq[7℄))+(0.25*(((if(A[i,7℄==A[j,7℄){1}else{0})*(if(B[i,7℄==B[j,7℄){1}else{0}))+((if(B[i,7℄==A[j,7℄){1}else{0})+(if(A[i,7℄==B[j,7℄){1}else{0})))/(2*freq[7℄*freq[7℄)))*(0.25+0.5*(((if(A[i,8℄==A[j,8℄){1}else{0})+(if(A[i,8℄==B[j,8℄){1}else{0})+(if(B[i,8℄==A[j,8℄){1}else{0})+(if(B[i,8℄==B[j,8℄){1}else{0}))/(4*freq[8℄))+(0.25*(((if(A[i,8℄==A[j,8℄){1}else{0})*(if(B[i,8℄==B[j,8℄){1}else{0}))+((if(B[i,8℄==A[j,8℄){1}else{0})+(if(A[i,8℄==B[j,8℄){1}else{0})))/(2*freq[8℄*freq[8℄)))*(0.25+0.5*(((if(A[i,9℄==A[j,9℄){1}else{0})+(if(A[i,9℄==B[j,9℄){1}else{0})+(if(B[i,9℄==A[j,9℄){1}else{0})+(if(B[i,9℄==B[j,9℄){1}else{0}))/(4*freq[9℄))+(0.25*(((if(A[i,9℄==A[j,9℄){1}else{0})*(if(B[i,9℄==B[j,9℄){1}else{0}))+((if(B[i,9℄==A[j,9℄){1}else{0})+(if(A[i,9℄==B[j,9℄){1}else{0})))70



/(2*freq[9℄*freq[9℄)))*(0.25+0.5*(((if(A[i,10℄==A[j,10℄){1}else{0})+(if(A[i,10℄==B[j,10℄){1}else{0})+(if(B[i,10℄==A[j,10℄){1}else{0})+(if(B[i,10℄==B[j,10℄){1}else{0}))/(4*freq[10℄))+(0.25*(((if(A[i,10℄==A[j,10℄){1}else{0})*(if(B[i,10℄==B[j,10℄){1}else{0}))+((if(B[i,10℄==A[j,10℄){1}else{0})+(if(A[i,10℄==B[j,10℄){1}else{0})))/(2*freq[10℄*freq[10℄)))),base=10)}}LOD s
ore matri
es for other relatedness hypothesis are obtained in the same way just withdi�erent kinship 
oe�
ients. The matrix 
ontains ea
h LOD s
ore twi
e, that is LOD(i, j) and
LOD(j, i) that are equal, and all LOD s
ores on the diagonal, LOD(i, i), are just 
omputedLOD s
ores for the hypothesis that a individual is related to him/her self. Ve
tor 
ontainingthe relevant LOD s
ores 
an be attained by:simLOD_hsib_ve
tor<-simLOD_hsib[upper.tri(simLOD_hsib)℄The p-value for the sibling LOD s
ore for individual 1 and 2 is 
omputed by 
omparing thesimulated LOD s
ores with their observed LOD s
ore:PP<-numeri
(4950)for(j in 1:length(PP)){PP[j℄=if(simLOD_sib_ve
[j℄<LOD_sib){0}else{1}}p_value=sum(PP)/4950
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Appendix DR Codes for the Fin Whale AnalysisThis se
tion 
on
ludes the 
odes that were used in the analysis of the �n whale registry. All
omputations were done by using the program R, version 2.14.1, (R Development Core Team,2011).D.1 Registration of the Geneti
 DataThe �n whale data is arranged in a matrix, with 266 rows and 31 
olumns. The �rst 
olumn
ontains the names of the �n whales while the �rst row 
ontains the names of the lo
i. Ea
hrow 
ontains geneti
 information about one �n whale, and ea
h 
olumn 
ontains informationabout one allele at a 
ertain lo
us. The genotype (A,B) for individual i at lo
us s would bedenoted with:data[i,2s℄ #Allele A at lo
us s for individual idata[i,2s+1℄ #Allele B at lo
us s for individual iD.2 Estimation of Population Allele Frequen
iesThe allele frequen
ies are estimated from the dataset, ex
luding the 22 foetuses. The 
olumnshave been named after their lo
us name, (EV001, EV037, GATA028, GATA053, GATA098,GATA417, GT011, GT023, GT195, GT211, GT271, GT310, GT575, TAA023 and GGAA520),but information at lo
us 1 is denoted with:EV1A=dat[,2℄EV1B=dat[,3℄The frequen
ies are estimated by using the fun
tion:Frequen
ies()from the R pa
kage gstudio (Dyer, 2012), but that requires that the data is registered asgeneti
 pro�les by using the fun
tion:Lo
us()The estimated allele frequen
ies are simply the proportion of how many times a 
ertain alleletypes appears in the sample. 72



require(gstudio)EV1<-list(NULL)for(i in 1:length(EV1A)){EV1[i℄=Lo
us(
(EV1A[i℄,EV1B[i℄))}freqs_1<-Frequen
ies(
(EV1))EV37<-list(NULL)for(i in 1:length(EV37A)){EV37[i℄=Lo
us(
(EV37A[i℄,EV37B[i℄))}freqs_2<-Frequen
ies(
(EV37))GT011<-list(NULL)for(i in 1:length(GT011A)){GT011[i℄=Lo
us(
(GT011A[i℄,GT011B[i℄))}freqs_3<-Frequen
ies(
(GT011))GT023<-list(NULL)for(i in 1:length(GT023A)){GT023[i℄=Lo
us(
(GT023A[i℄,GT023B[i℄))}freqs_4<-Frequen
ies(
(GT023))GT195<-list(NULL)for(i in 1:length(GT195A)){GT195[i℄=Lo
us(
(GT195A[i℄,GT195B[i℄))}freqs_5<-Frequen
ies(
(GT195))GT211<-list(NULL)for(i in 1:length(GT211A)){GT211[i℄=Lo
us(
(GT211A[i℄,GT211B[i℄))}freqs_6<-Frequen
ies(
(GT211))GT271<-list(NULL)for(i in 1:length(GT271A)) 73



{GT271[i℄=Lo
us(
(GT271A[i℄,GT271B[i℄))}freqs_7<-Frequen
ies(
(GT271))GT310<-list(NULL)for(i in 1:length(GT310A)){GT310[i℄=Lo
us(
(GT310A[i℄,GT310B[i℄))}freqs_8<-Frequen
ies(
(GT310))GT575<-list(NULL)for(i in 1:length(GT575A)){GT575[i℄=Lo
us(
(GT575A[i℄,GT575B[i℄))}freqs_9<-Frequen
ies(
(GT575))GATA028<-list(NULL)for(i in 1:length(GATA028A)){GATA028[i℄=Lo
us(
(GATA028A[i℄,GATA028B[i℄))}freqs_10<-Frequen
ies(
(GATA028))GATA053<-list(NULL)for(i in 1:length(GATA053A)){GATA053[i℄=Lo
us(
(GATA053A[i℄,GATA053B[i℄))}freqs_11<-Frequen
ies(
(GATA053))GATA098<-list(NULL)for(i in 1:length(GATA098A)){GATA098[i℄=Lo
us(
(GATA098A[i℄,GATA098B[i℄))}freqs_12<-Frequen
ies(
(GATA098))GATA417<-list(NULL)for(i in 1:length(GATA417A)){GATA417[i℄=Lo
us(
(GATA417A[i℄,GATA417B[i℄))}freqs_13<-Frequen
ies(
(GATA417)) 74



GTAA520<-list(NULL)for(i in 1:length(GTAA520A)){GTAA520[i℄=Lo
us(
(GTAA520A[i℄,GTAA520B[i℄))}freqs_14<-Frequen
ies(
(GTAA520))TAA023<-list(NULL)for(i in 1:length(TAA023A)){TAA023[i℄=Lo
us(
(TAA023A[i℄,TAA023B[i℄))}freqs_15<-Frequen
ies(
(TAA023))D.3 LOD S
oresThe following 
ode shows the 
omputation of the LOD matrix for half-siblings hypothesis in
R. Ea
h frequen
y matrix has two 
olumns, the �rst 
olumn 
ontains the allele name whilethe se
ond 
olumn 
ontains the 
orresponding estimated frequen
y for that allele. The valueof the estimated population allele frequen
y for allele A at lo
us s for individual i is obtainedby the 
ommand:freqs[mat
h(data[i,2s℄,freqs[,1℄),2℄The half-sibling LOD s
ore matrix is 
omputed in the following way:LOD<-NULLLOD=matrix(n
ol=265,nrow=265)for(i in 1:n
ol(LOD)){for(j in 1:nrow(LOD)){(LOD[i,j℄=log((((0.5)+(0.5*0.25)*((((if(data[i,2℄==data[j,2℄){1}else{0})+(if(data[i,2℄==data[j,3℄){1}else{0}))/(freq1[mat
h(data[i,2℄,freq1[,1℄),2℄))+(((if(data[i,3℄==data[j,2℄){1}else{0})+(if(data[i,3℄==data[j,3℄){1}else{0}))/(freq1[mat
h(data[i,3℄,freq1[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,4℄==data[j,4℄){1}else{0})+(if(data[i,4℄==data[j,5℄){1}else{0}))/(freq2[mat
h(data[i,4℄,freq2[,1℄),2℄))+(((if(data[i,5℄==data[j,4℄){1}else{0})+(if(data[i,5℄==data[j,5℄){1}else{0}))75



/(freq2[mat
h(data[i,5℄,freq2[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,6℄==data[j,6℄){1}else{0})+(if(data[i,6℄==data[j,7℄){1}else{0}))/(freq3[mat
h(data[i,6℄,freq3[,1℄),2℄))+(((if(data[i,7℄==data[j,6℄){1}else{0})+(if(data[i,7℄==data[j,7℄){1}else{0}))/(freq3[mat
h(data[i,7℄,freq3[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,8℄==data[j,8℄){1}else{0})+(if(data[i,8℄==data[j,9℄){1}else{0}))/(freq4[mat
h(data[i,8℄,freq4[,1℄),2℄))+(((if(data[i,9℄==data[j,8℄){1}else{0})+(if(data[i,9℄==data[j,9℄){1}else{0}))/(freq4[mat
h(data[i,9℄,freq4[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,10℄==data[j,10℄){1}else{0})+(if(data[i,10℄==data[j,11℄){1}else{0}))/(freq5[mat
h(data[i,10℄,freq5[,1℄),2℄))+(((if(data[i,11℄==data[j,10℄){1}else{0})+(if(data[i,11℄==data[j,11℄){1}else{0}))/(freq5[mat
h(data[i,11℄,freq5[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,12℄==data[j,12℄){1}else{0})+(if(data[i,12℄==data[j,13℄){1}else{0}))/(freq6[mat
h(data[i,12℄,freq6[,1℄),2℄))+(((if(data[i,13℄==data[j,12℄){1}else{0})+(if(data[i,13℄==data[j,13℄){1}else{0}))/(freq6[mat
h(data[i,13℄,freq6[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,14℄==data[j,14℄){1}else{0})+(if(data[i,14℄==data[j,15℄){1}else{0}))/(freq7[mat
h(data[i,14℄,freq7[,1℄),2℄))+(((if(data[i,15℄==data[j,14℄){1}else{0})+(if(data[i,15℄==data[j,15℄){1}else{0}))/(freq7[mat
h(data[i,15℄,freq7[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,16℄==data[j,16℄){1}else{0})+(if(data[i,16℄==data[j,17℄){1}else{0}))/(freq8[mat
h(data[i,16℄,freq8[,1℄),2℄))+(((if(data[i,17℄==data[j,16℄){1}else{0})+(if(data[i,17℄==data[j,17℄){1}else{0}))/(freq8[mat
h(data[i,17℄,freq8[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,18℄==data[j,18℄){1}else{0})+(if(data[i,18℄==data[j,19℄){1}else{0}))76



/(freq9[mat
h(data[i,18℄,freq9[,1℄),2℄))+(((if(data[i,19℄==data[j,18℄){1}else{0})+(if(data[i,19℄==data[j,19℄){1}else{0}))/(freq9[mat
h(data[i,19℄,freq9[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,20℄==data[j,20℄){1}else{0})+(if(data[i,20℄==data[j,21℄){1}else{0}))/(freq10[mat
h(data[i,20℄,freq10[,1℄),2℄))+(((if(data[i,21℄==data[j,20℄){1}else{0})+(if(data[i,21℄==data[j,21℄){1}else{0}))/(freq10[mat
h(data[i,21℄,freq10[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,22℄==data[j,22℄){1}else{0})+(if(data[i,22℄==data[j,23℄){1}else{0}))/(freq11[mat
h(data[i,22℄,freq11[,1℄),2℄))+(((if(data[i,23℄==data[j,22℄){1}else{0})+(if(data[i,23℄==data[j,23℄){1}else{0}))/(freq11[mat
h(data[i,23℄,freq11[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,24℄==data[j,24℄){1}else{0})+(if(data[i,24℄==data[j,25℄){1}else{0}))/(freq12[mat
h(data[i,24℄,freq12[,1℄),2℄))+(((if(data[i,25℄==data[j,24℄){1}else{0})+(if(data[i,25℄==data[j,25℄){1}else{0}))/(freq12[mat
h(data[i,25℄,freq12[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,26℄==data[j,26℄){1}else{0})+(if(data[i,26℄==data[j,27℄){1}else{0}))/(freq13[mat
h(data[i,26℄,freq13[,1℄),2℄))+(((if(data[i,27℄==data[j,26℄){1}else{0})+(if(data[i,27℄==data[j,27℄){1}else{0}))/(freq13[mat
h(data[i,27℄,freq13[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,28℄==data[j,28℄){1}else{0})+(if(data[i,28℄==data[j,29℄){1}else{0}))/(freq14[mat
h(data[i,28℄,freq14[,1℄),2℄))+(((if(data[i,29℄==data[j,28℄){1}else{0})+(if(data[i,29℄==data[j,29℄){1}else{0}))/(freq14[mat
h(data[i,29℄,freq14[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,30℄==data[j,30℄){1}else{0})+(if(data[i,30℄==data[j,31℄){1}else{0}))/(freq15[mat
h(data[i,30℄,freq15[,1℄),2℄))+(((if(data[i,31℄==data[j,30℄){1}else{0})+(if(data[i,31℄==data[j,31℄){1}else{0}))/(freq15[mat
h(data[i,31℄,freq15[,1℄),2℄))))),base=10))} 77



}The parent-o�spring and �rst 
ousins LOD matri
es are 
omputed in the same way just withdi�erent kinship 
oe�
ients.D.4 Simulation of IndividualsThe following 
ode was used to simulate 265 unrelated individuals with the allele frequen
iesthat were estimated from the dataset. It is built on the 
ode from C.1 that Hans Julius Skaugwrote. Before the simulation, the matrix that was used to estimated the population allelefrequen
ies, was rearranged by aligning alleles A and B at lo
us s in the same 
olumn. Thatresulted in a matrix 
alled S, that has 15 
olumns, one for ea
h lo
us, and 486 rows, one forea
h allele that o

urs in the dataset (ex
luding the foetuses). The 265 unrelated individualswere simulated by drawing independently from this matrix with repla
ement.n = 265 # Number of individualsm = 15 # Number of lo
iA = NULLB = NULLfor(i in 1:m){ A= 
bind(A,sample(S[,i℄,size=n,repla
e=T))B = 
bind(B,sample(S[,i℄,size=n,repla
e=T))}AB = matrix(paste(A,B,sep="/"),n
ol=m,byrow=F)
olnames(AB)=1:mrownames(AB)=paste("Individ",1:n,sep="")D.5 Computation of p-ValuesThe LOD s
ores for the simulated individuals are 
omputed in the same way as the LODmatri
es for the real individuals. The matri
es 
ontain ea
h LOD s
ore twi
e, LOD(i, j)and LOD(j, i), and all LOD s
ores on the diagonal of those matri
es, LOD(i, i), are simply
omputed LOD s
ore for the hypothesis that an individual is related to him/her self. Ve
tors
ontaining the relevant LOD s
ores 
an be attained by:#Ve
tor 
ontaining the LOD s
ores 
omputed from the fin whale datasetLOD_real<-LOD[upper.tri(LOD)℄#Ve
tor 
ontaining LOD s
ores 
omputed from the simulated datasetLOD_sim<-simLOD[upper.tri(simLOD)℄The p-values for ea
h LOD s
ore are 
omputed in the following way:78



PP<-NULLPP=matrix(nrow=length(LOD_sim),n
ol=length(LOD_real))for(j in 1:nrow(PP)){for(i in 1:n
ol(PP)){PP[j,i℄=if(LOD_sim[j℄<LOD_real[i℄){0}else{1}}}p_values<-NULLp_values=matrix(n
ol=length(LOD_real),nrow=2)p_values[1,℄=LOD_real #In order to have the LOD s
ore value with the p-valuefor(i in 1:n
ol(p_values)){p_values[2,i℄=sum(PP[,i℄)/34980}D.6 Exa
t Binomial Con�den
e IntervalThe exa
t 
on�den
e intervals are 
omputed here by using the pa
kage binom (Dorai-Raj,2009), available in R.require(binom) #Pa
kage available in R#Computes exa
t 95% 
onfiden
e interval for the estimated p-value#of the parent-offspring LOD s
ore of F09-075 and F10-123binom.
onfint(1,2098800,
onf.level=0.95,methods="exa
t")#Computes exa
t 95% 
onfiden
e interval for the estimated p-value# of the parent-offspring LOD s
ore of F09-125 and F10-119binom.
onfint(19,2098800,
onf.level=0.95,methods="exa
t")
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Appendix EEstimated Population AlleleFrequen
ies for the Fin WhaleAnalysis
Table E.1: Allele frequen
ies at lo
us 1 to 6EV001 EV037 GT011 GT023 GT195 GT211157: 0.3436 187: 0.0782 119: 0.0988 123: 0.0576 161: 0.2058 116: 0.2037169: 0.2202 193: 0.2901 129: 0.2222 127: 0.1749 169: 0.0905 118: 0.0494171: 0.0761 189: 0.0021 117: 0.1317 131: 0.0329 171: 0.1934 120: 0.3272163: 0.1358 191: 0.1255 131: 0.0947 125: 0.1296 179: 0.0288 122: 0.0556175: 0.0556 179: 0.0021 125: 0.1379 129: 0.3436 173: 0.2654 114: 0.0741159: 0.0720 181: 0.0247 123: 0.0823 133: 0.1399 175: 0.1276 106: 0.0988143: 0.0041 183: 0.1214 127: 0.2305 135: 0.0247 177: 0.0576 112: 0.1440155: 0.0082 197: 0.1770 133: 0.0021 143: 0.0144 167: 0.0226 108: 0.0103165: 0.0412 199: 0.0658 121: 0.0576 163: 0.0062 126: 0.0021173: 0.0165 201: 0.0226 109: 0.0144 181: 0.0021 110: 0.0123161: 0.0062 195: 0.0617 141: 0.0082 124: 0.0226177: 0.0021 207: 0.0041 97: 0.0021145: 0.0041 211: 0.0082167: 0.0123 185: 0.0103153: 0.0021 205: 0.0021213: 0.0021215: 0.0021
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Table E.2: Allele frequen
ies at lo
us 7 to 12GT271 GT310 GT575 GATA028 GATA053 GATA098114: 0.2222 110: 0.1955 146: 0.0741 191: 0.0782 246: 0.3848 104: 0.2860116: 0.4588 112: 0.4588 154: 0.4074 211: 0.0617 266: 0.1070 116: 0.0412122: 0.0329 114: 0.0329 160: 0.0473 207: 0.1379 260: 0.1276 108: 0.1687118: 0.1358 122: 0.0309 150: 0.0247 227: 0.2243 270: 0.1111 96: 0.2531120: 0.0535 126: 0.1584 158: 0.1008 223: 0.0926 262: 0.2016 100: 0.1728128: 0.0206 124: 0.0700 152: 0.2778 219: 0.0823 258: 0.0226 112: 0.0658108: 0.0658 130: 0.0021 156: 0.0638 215: 0.0535 250: 0.0309 92: 0.0062112: 0.0062 120: 0.0309 168: 0.0041 203: 0.0556 274: 0.0103 120: 0.0062126: 0.0021 106: 0.0185 231: 0.0988 278: 0.0041110: 0.0021 118: 0.0021 235: 0.0638199: 0.0350239: 0.0123195: 0.0041
Table E.3: Allele frequen
ies at lo
us 13 to 15GATA417 GGAA520 TAA023269: 0.2675 217: 0.0267 95: 0.3889281: 0.0535 223: 0.1235 101: 0.1667273: 0.1152 207: 0.1379 86: 0.2510285: 0.0761 227: 0.0576 92: 0.0350229: 0.0494 203: 0.0514 98: 0.0802209: 0.0062 211: 0.1523 104: 0.0761213: 0.0453 215: 0.1152 89: 0.0021261: 0.0556 209: 0.0329225: 0.0638 201: 0.0309237: 0.0123 219: 0.1646277: 0.0556 205: 0.0741265: 0.1111 231: 0.0226217: 0.0391 213: 0.0041241: 0.0062 199: 0.0062289: 0.0165257: 0.0021221: 0.0165233: 0.0062297: 0.0021
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