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AbstratThe use of DNA-pro�les for identi�ation is a matter of statistis. In the interpretation ofgeneti evidene there is always some unertainty and this unertainty requires estimation.The �n whale, Balaenoptera physalus, is a marine mammal that an be found in all of theworld's oeans (Víkingsson, 2005). Fin whales, like all marine mammals, are by nature dif-�ult to observe and unertainties remain about their geneti struture, abundane, matingstrategies and migration patterns (Pampoulie et al., 2012, Víkingsson, 2005, Ægisson andHlíðberg, 2010). Introdution of DNA evidene at the end of the 1980s opened up many areasof researh (Balding, 2005) but many relatedness studies based on geneti pro�les have nowbeen onduted for various speies of wildlife (Nielsen et al., 2001, Skaug and Oien, 2005,Russell et al., 2009). This proedure has been espeially useful for speies that are di�ultto observe beause the identi�ation of biologial relationships yields information that an beuseful in understanding the dynamis of speies (Skaug et al., 2010, Pampoulie et al., 2012).Ieland has maintained an individual-based DNA-registry for �n whales for some time. Thepresent study utilized data from this registry by searhing for pairs of relatives among 267�n whales and 23 �n whale foetuses. Three kind of relatedness were of interest, half-siblings,parent-o�spring and �rst ousins. The LOD sore is a ommonly used test statisti for agiven relatedness hypothesis and an be easily alulated for a pair of DNA pro�les (Skauget al., 2010). The LOD sore is the logarithm of the ratio of the probabilities of the dataunder the two mutually exlusive hypotheses, H0: Unrelated and H1: Relatedness of interest.Detetion of relatives was done by omputing pairwise LOD sores for the individuals in thesample for eah relatedness of interest. The orresponding p-values for eah LOD sore wereestimated by omparing the original LOD sores with LOD sores of unrelated individualssimulated with the same allele frequenies as the original dataset. Due to very high number ofpairwise LOD sores it was neessary to adjust for multiple testing. Two well known multipleadjusting methods were applied and ompared, the Bonferroni proedure and Benjamini's andHohberg's (1995) false disovery rate proedure, (FDR). The FDR proedure was found tobe more suitable for this analysis sine the Bonferroni proedure was too onservative for suha high number of LOD sores. Eight pairs of relatives were deteted within the sample at thefalse disovery rate of q = 0.05. When information about estimated age and estimated age ofmaturity had been taken into aount, three of those pairs were lassi�ed as a parent and ano�spring pair, two of them were lassi�ed as either half-siblings or an unle/aunt-nephew/nieepair and the remaining three were lassi�ed as half-siblings or an unle/aunt-nephew/nieepair or a grandparent-grandhild pair. One of the deteted parent-o�spring pairs were a male�n whale and a foetus whih were also deteted as a father and his o�spring by Pampoulie etal. (2012).



Chapter 1IntrodutionIn this present paper an Ielandi individual-based DNA registry of �n whales is utilized foridentifying pairs of related individuals. The use of DNA-pro�les for identi�ation is a matterof statistis. In the interpretation of geneti evidene there is always unertainty of some kindand this unertainty requires estimation and statistial modelling. In their book 'InterpretingDNA Evidene: Statistial Genetis for Forensi Siene', Evett and Weir (1998) suggestedthat geneti evidene should be interpreted aording to three priniples (Weir, 2007):1. To evaluate the unertainty for any given proposition it is neessary to onsider at leastone alternative proposition.2. Interpretation is based on questions of the kind 'What is the probability of the evidenegiven the proposition?'3. Interpretation is onditioned not only by the ompeting propositions, but also by theframework of irumstanes within whih they are to be evaluated.The �rst priniple leads to the use of likelihood ratios and the seond one entails, in the presentstudy, the question: 'Given that individual i and j are related, what is the probability thattheir DNA-pro�les are as they are?' The third priniple addresses the importane of takingauxiliary evidene into aount. The �rst and seond priniple play a key role in the strutureof the test proedure in the present analysis. Interpretation of the test results is onditionedby the non geneti evidene, as the third priniple suggests, but estimation of age and ageof maturity are used to onlude if parent-o�spring and grandparent-grandhild relations arepossible. Mother-foetus pairs are present within the DNA registry whih is of great value forthe analysis sine the performane of the test proedure an be evaluated by it's ability tolassify those mother-foetus pairs as relatives.The basi idea in deteting related pairs of individuals based on geneti evidene, is that rela-tives share more alleles on average than unrelated individuals. To put it as simple as possible:'The more a like the DNA pro�les of individuals are, the higher probability that they arerelated'. It gets more ompliated when relevant statistial geneti issues are inorporatedinto that probability. Population allele frequenies have to be aounted for. A math of twoindividuals that have DNA pro�les that mainly ontain ommon allele types does not haveas muh statistial power as a math of two individuals that have DNA pro�les that onsistof rare allele types. In this paper a math refers to �nding a pair of individuals that the test1



proedure onludes to be relatives. There are issues of how the population is to be de�nedand hene how the population allele frequenies should be estimated. There are also issues ofassuming independene between loi and independene of segregation of alleles. These are allstatistial geneti issues that will be addressed in hapter 3.The LOD sore is a well known test statisti for testing relatedness (Skaug et al., 2010). TheLOD sore is the logarithm, with base 10, of the likelihood ratio
LR =

P (data | related)

P (data | unrelated)The LOD sore is used in the present analysis to test the hypothesis of a spei� relatednessagainst the null hypothesis of unrelatedness and the data refers to DNA-pro�les of a pair of�n whales. A p-value is estimated for eah LOD sore by simulating unrelated individualsfrom a population with the same allele frequenies as the observed sample, omputing theirpairwise LOD sores and omparing them to the LOD sores observed in the study.Aording to the 2012 annual report of the Marine Institute in Ieland, 'Hagrannsóknir nr.163', whale ounting survey in 2007 indiated that there were about 20 600 �n whales in theEast Greenland/Ieland tribe area (Sigurðsson and Magnússon, 2012). The database utilizedin this study onsists of geneti pro�les of 267 �n whales and 23 foetuses from that area. Thatis a small fration of the total population, 290
20 600 ≈ 0.0141 whih leads to a low probability ofthat both members of pairs of related individuals are within the sample.A searh for pair of relatives in a dataset of this size results in the simultaneous evaluation of

289·290
2 = 41 905 pairwise LOD sores. This high number of test statistis entails a multipleomparison problem. If the signi�ane level α would be used as in the single omparison asethen the expeted number of false detetions would be onsiderable large or m · α, where mstands for the number of pairwise omparisons. In the present study the multiple omparisonproblem is aounted for by omparing two well known adjustment methods, the Bonferroniorretion and the false disovery rate proedure. The Bonferroni orretion ontrols the upperlevel of the family wise error rate, (FWER), whih is de�ned as the probability of one or moretype I error ourring in the analysis (Pounds et al., 2007). The Bonferroni orretion entailstesting eah individual hypothesis at a level α/m whih guarantees that FWER ≤ α. TheBonferroni proedure is very strit in the ase of a high m with the ost of an inrease in thenumber of type II errors1, that is not deteting true relatives (Skaug et al., 2010). In 1995Benjamini and Hohberg introdued the false disovery rate, (FDR), as a method to adjustfor multiple testing. They desribed the FDR as an error rate that ontrols the expetedproportion of false disoveries but in the present paper disoveries stands for detetion ofdyads of relatives. The FDR proedure arranges the estimated p-values for eah LOD sorein an inreasing order p1 ≤ p2 ≤ .... ≤ pm. q is de�ned as the target false disovery rate and

R is de�ned to be the largest value of r for whih:
pr ≤

r

m
· qThe �rst R pairs of individuals that are behind the R lowest p-values in the ordered sequeneare lassi�ed as relatives, and the remaining m−R pairs are delared as unrelated. Benjamini1Type II error is the error of not rejeting a false null hypothesis2



and Hohberg (1995) showed in their paper that this proedure ontrols the false disoveryrate at q for independent test statistis and for any on�guration of false null hypotheses.The FDR is an appealing method to ontrol the error rate in the present analysis of multiplepairwise LOD sores. It takes the number of erroneous false disoveries of relatedness intoaount instead of only the question whether any error was made (Benjamini and Hohberg,1995). All omputations and simulations in this study are done by using the open soureprogram R, version 2.14.1, (R Development Core Team, 2011).Chapter 2 ontains information about �n whales. It is followed by the hapter 'PedigreeAnalysis' whih provides a brief introdution of the geneti onepts and theories needed fordeveloping the statistial proedure used in the present study. The statistial proedure ispresented in Chapter 4, 'Statistial Methods', and appliation of that proedure to the �nwhale database is in the next hapter, 'Analysis of the Fin Whale Data Base'. In the lasthapter 'Disussions', results are reviewed and onlusions drawn about the performane ofthe test proedure.
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Chapter 2The Fin WhaleThe �n whale, Balaenoptera physalus, is a marine mammal that belongs to the suborder ofbaleen whales. Fin whales are onsidered to be the seond longest animal in the world andan be as long as 25-27 meters (Víkingsson, 2005). The �n whale's body is greyish-blak orbrownish-blak with a white underside. The dorsal �n is about 60 m high and their spoutis a diret 4-15 meters high pole. Fin whales usually don't dive for longer than 3-8 minutesand travel slowly but if they need to, �n whales an be underwater for 10-12 minutes and areapable of swimming as fast as 30 km per hour (Ægisson and Hlíðberg, 2010). Fin whalesbeome mature when they are 7-12 years old (Víkingsson, 2005) and the oldest age reordknown is 114 years old (Ægisson and Hlíðberg, 2010). Fin whales travel alone or in smallgroups but whale ounting in Ielandi and adjoining waters resulted in an average group sizeof 1.5 animal. (Víkingsson, 2005)Fin whales an be found in all of the world's oeans. The International Whaling Commissionhas distinguished seven groups of �n whale in the North Atlanti but the �n whales aroundIeland belong to the so alled East Greenland/Ieland group, (EGI). This group distintion,whih is largely based on distribution and development of whaling, ourrene during the sum-mer and tagging, has been questioned but at the same time, no better well-founded hypothesisof division is available. In Ielandi waters, �n whales are most ommonly seen during thesummer and outside the tide land in the west and south-west of the ountry. The EGI groupis onsidered to be the biggest �n whale group in the North Atlanti (Víkingsson, 2005). TheMarine Researh Institute of Ieland, in ooperation with neighbouring ountries in the NorthAtlanti, has partiipated in wide-ranging whale ounts in the years 1987, 1989, 1995, 2001and 2007. Aording to those ounts �n whales around Ieland have inreased onsiderablyin number sine 1987, espeially in the west of Ieland. Surveys from 1987-1989 indiatedthat there were about 16 000 �n whales in the EGI stok area. Aording to the survey in2001 there were about 23 700 �n whales in all in the EGI stok area. The survey in 2007indiated that 20 600 �n whales were in the EGI area. This estimate was not signi�antlydi�erent to that from 2001 but there is some unertainty in a ounting survey (Sigurðsson andMagnússon, 2012).Fin whales, like all marine mammals, are by nature di�ult to observe. It is mainly beausethey undertake long, annual migrations between high-latitude summer feeding areas and low-latitude winter breeding areas like most of the baleen whales. Little is known about the geneti4



omposition and biologial harateristis of the group of individuals loated at spawninggrounds and available information have only been olleted at feeding grounds. Therefore,despite that whales in Ielandi waters have been researhed for enturies1 unertainties re-main about �n whale's geneti struture, abundane, mating strategies and migration patterns(Ægisson and Hlíðberg, 2010, Víkingsson, 2005, Pampoulie et al., 2012).The introdution of DNA tehniques at the end of the 1980s opened up many areas of researh(Balding, 2005). Geneti data an provide information on biologial relationships between in-dividuals (Skaug, 2001) but many relatedness studies based on geneti pro�les have now beenonduted for various speies of wildlife (Nielsen et al., 2001, Skaug and Oien, 2005, Russellet al., 2009). This approah has been very useful for speies that are di�ult to observe, like�n whales, beause the identi�ation of biologial relationships yields information that an bevery useful in understanding the dynamis of speies (Skaug et al., 2010, Pampoulie et al.,2012).Ieland has maintained an individual-based DNA-registry for �n whales in reent years, whihomprises 267 geneti pro�les olleted between and during the years 2009 and 2010, and hasbeen obtained for 15 mirosatellite loi, (neutral geneti markers inherited from the parents;see Pampoulie et al. (2012)), the ontrol region of mtDNA and a sex-marker, (Bérubé andPalsbøll, 1996). 139 of the olleted individuals were males. The database also ontains infor-mation about the age and age of maturity of the individuals whih was estimated by readingtheir ear plugs. 23 females, of the 267 individual samples genotyped, arried a foetus for whiha geneti sample was also obtained (4 in 2009 and 19 in 2010). In the present projet, avail-able geneti pro�les in the DNA registry of Ieland are examined to investigate if there areany biologial relationships present between pairs of individuals within the database. Threerelationships were of interest, half-siblings, parent-o�spring and �rst ousins.

1In Konungs Skuggsjá, whih was written in Norway in the 12th entury, is an extensive desription onwhale speies around Ieland. There is no doubt that the author got aquainted with whales in some waybeause some of the desriptions reoniles with what is best known about whales today (Sigurjónsson, 1993).5



Chapter 3Pedigree AnalysisThis hapter provides a brief introdution of the geneti onepts and theories needed fordeveloping the statistial proedure, used in the present study, for deteting relatives.3.1 Mendelian Heritane RulesModern genetis began when Mendel published his First Law in 1866 on the basis of studies ofpea plants. In his experiments he studied heritable traits in peas and postulated that disreteharaters, whih are now alled genes, pass from parents to o�spring. He suggested that eahpea plant arries two genes that determine any given harateristi. One of the two genes isreeived from the male parent plant, the other from the female parent plant. In the formationof an o�spring a random one of the two genes is passed on (that is segregates) from parentto o�spring. Di�erent o�springs of the same parent result from independent segregations.Mendel was able to explain his observations with this theory whih is often alled Mendel'sFirst Law, the law of segregation. Mendel's First Law overs muh of genetis sine peas, likemammals, are diploid. That is, they arry genes in pairs whih an therefore segregate in theway desribed (Thompson, 1986, Speed and Zhao, 2007).The DNA in a ell is divided into hromosomes-substrings of the geneti material. In theformation of new ells it is the hromosomes that segregate, rather than individual genes(Thompson, 1986). Chromosomes other than the sex hromosomes are alled autosomes. Adiploid, whih is the organism of interest here, has two omplete sets of eah autosome. Thereprodutive ell, sperm in males and egg in females, is alled a gamete. Eah gamete onsistsof a single version of the hromosome but a fusion of a male gamete and a female gameteforms a fertilized egg (Hartl and Jones, 1998).A lous is a partiular position on a hromosome. A diploid holds two alleles at eah lous, onematernally inherited and the other one paternally inherited (Skaug, 2001). Generally, allelesare labelled aording to their type. Consider a single lous and denote the number of di�erentalleli types existing at that lous by K. The unordered pair of alleles arried by an individualis his genotype. In this ase the possible genotypes are (ai, aj) with i, j = 1, ....K. Individualswith two opies of one allele are homozygous at that lous, but if the two alleles are di�erent,then they are heterozygous. Aording to Mendelian segregation, a homozygous parent mustpass on the only alleli type he/she arries to his/her o�spring, while a heterozygous parent6



passes on either one of his/her two allele types, eah with probability 0.5. This is the basis ofpedigree analysis (Thompson, 1986).Mendel also onsidered two or more heritable traits together and arried out experiments todetermine how traits in peas were inherited together. His observations, sometimes known asMendel's Law of Independent Segregation, indiated that during a gamete formation, the seg-regation of one gene-pair is independent of the other gene-pairs. That is, when two gene-pairs
(a, b) and (c, d) segregate, eah gamete will be equally likely to have genotypes (a, c), (a, d),
(b, c) and (b, d). Mendel's Law of Independent Segregation holds for some but not all pair ofgenes. It turns out that there are many pairs of traits whose genes do not reombine freely buttend to stik together, in the sense that parent with a genotypes (a, b) and (c, d) at two loiwould be more likely to pass on the pairs (a, c) and (b, d) to his/her o�spring than the pairs
(a, d) and (b, c). This non independent segregation is known as linkage (Speed and Zhao, 2007).3.2 Hardy-Weinberg and Linkage EquilibriumHartl and Jones (1998) de�ne population as a group of organism of the same speies livingwithin a presribed geographial area. This geographial area an be of any size but is om-monly onsidered to be the area in whih individuals within the population are likely to �ndmates (Hartl and Jones, 1998). The present study assumes that the �n whales with availablegeneti pro�les at the DNA registry, all belong to the same population. However, there's noattempt to de�ne the geographial area in whih these individuals are likely to �nd mates.The omplete set of geneti information within a population is alled a gene pool but the genepool inludes all alleles present in the population (Hartl and Jones, 1998). Allele types ourwithin di�erent populations with di�erent frequenies. A population allele frequeny is theprobability that a randomly hosen gene from a gene pool will be of a spei� alleli type.That is, population allele frequenies give information on how ommon allele types are withinthe population (Thompson, 1986).Consider S loi and denote by Ks the number of di�erent alleli types that exist at lous swith s = 1, ......S. Assume the existene of a population with in�nitely many individuals. TheDNA-pro�le of individual i in the population is denoted by:

Di = {(a
(1)
i,s , a

(2)
i,s ), 1 ≤ s ≤ S} (3.1)

(a
(1)
i,s , a

(2)
i,s ) are unordered values. The population allele frequenies are denoted by p(1s), p(2s),

..., p(Ks) with ∑Ks

k=1 p(ks) = 1 but p(ks) is the population frequeny for allele type ks at lous
s. The allele frequenies are obtained by dividing the observed number for eah allele typeby the total number of alleles in the gene pool (Hartl and Jones, 1998). If the genes an beregarded as independently hosen from an in�nitely large gene pool with the above frequeniesthen the probability that the alleles at lous s of a randomly hosen individual i are of thesame type is:

P ((ks, ks)) = p(ks)
2 (3.2)7



and the probability that the randomly hosen individual i has the genotype (ks, rs) at lous
s with ks 6= rs is:

P (ks, rs) = 2 · p(ks) · p(rs) (3.3)for 1 ≤ i ≤ ∞ and 1 ≤ s ≤ S. The genotype is an unordered pair, so the ks allele may behosen and then rs or vie versa giving the fator of 2. These frequenies are known as theHardy-Weinberg equilibrium frequenies (Thompson, 1986) but the population is said to bein Hardy Weinberg equilibrium if the alleles a(1)i,s and a
(2)
i,s are independent ∀i (Balding, 2005).The population is said to be in linkage equilibrium if the genotypes (a(1)i,s , a

(2)
i,s ) and (a

(1)
i,s′ , a

(2)
i,s′)are independent for s 6= s′ and ∀i (Skaug, 2001). Hardy-Weinberg and linkage equilibriumrarely hold in real populations sine gene pools are never in�nite. They an however providea good approximation if the population size is large, mating is random and allele frequeniesremain onstant from one generation to the other (Balding, 2005, Hartl and Jones, 1998).The present study is performed under the assumption of Hardy-Weinberg and linkage equilib-rium. That entails the assumptions that the population is large enough, the mating is randomand that major fores that in�uene allele frequenies, mutation, migration and seletion, anbe negleted. In random mating, organisms form mating pairs independently of genotype.Random mating is by far the most prevalent mating system for most speies of animals (Hartland Jones, 1998) and there is nothing that implies that mating among �n whales is an ex-eption to that. Also, even if sexual seletion was the ase among �n whales, that wouldnot neessary result in a Hardy-Weinberg disequilibrium. One important impliation of theHardy-Weinberg equilibrium is that the allele frequenies remain onstant from one generationto the other (Hartl and Jones, 1998). Mutation is de�ned as a random hange of the allelitype when an allele is passed from parent to o�spring (Thompson, 1986). This hange ourswith a very small probability but genes rarely undergo mutation in a single generation (Hartland Jones, 1998). The generation time for �n whales is about 100 years. The geneti databasethat is utilized in this paper is from a lot shorter time span than one generation, 2009-2010,and therefore mutation is regarded as a negligible fore. Seletion is the di�ering viabilityand/or fertility of individuals aording to their genotype. Sine seletion fores an be veryomplex and are seldom known with su�ient auray (Thompson, 1986) those fores willnot be inorporated into the appliation. Migration of individuals, within or between popula-tions, an have substantial e�ets over short periods (Balding, 2005, Thompson, 1986). Thepresent study is the analysis of spei�ed individuals so migration is, in this ase, not relevant.3.3 Gene Identity by DesentThe word relatives refers to individuals with ommon anestors. Individuals will be found tohave ommon anestors if their anestry is traed bak far enough. For the purposes of thisstudy, individuals are onsidered unrelated unless a preise relationship is spei�ed. Everyindividual arries two alleles at eah lous, one inherited from the mother and the other oneinherited from the father. Any given set of individuals may arry the same allele types ata lous sine there are many opies of an allele within a population. However, relatives aremore likely to do so, for they may arry opies of a single gene inherited from one ommonanestor. Genes that are opies of a single gene in a ommon anestor are onsidered to be8



idential by desent, (IBD). Suh idential genes must be of the same alleli type while nonIBD ones may or may not be. The basi idea is that geneti pro�les of relatives are similarbeause they may arry IBD genes. Generally, loser relationships give higher probabilitiesfor genes to be idential (Thompson, 1986).One of the simplest probabilities of gene identity by desent is the lassial kinship oe�ient.The kinship oe�ient, kj , is de�ned as the probability that a pair of individuals has inherited
j alleles at a lous idential by desent given a ertain relatedness. kj = P (j − ibd | H1) with
j = 0, 1, 2. Table 3.1 ontains values of the kinship oe�ients for di�erent stages of related-ness. Table 3.1: Kinship oe�ientsHypothesis k0 k1 k2Unrelated 1 0 0Parent-o�spring 0 1 0Idential twins 0 0 1Siblings 1/4 1/2 1/4Half-siblings 1/2 1/2 0First ousins 3/4 1/4 0Unrelated individuals, by the de�nition in this study, don't have any ommon anestors andtherefore have inherited zero alleles idential by desent with probability 1. An o�spring inher-its one allele from its parent at eah lous no matter what. By de�nition, idential twins inherit2 alleles idential by desent at eah lous with probability 1. It is a little more ompliated to�nd the kinship oe�ients for siblings, half-siblings and �rst ousins but the formulation forthose oe�ients an be found in appendix A. Full siblings are able to inherit 0, 1 or 2 allelesIBD at a lous but the probabilities di�er. Half-siblings and �rst ousins are able to inherit 0or 1 allele IBD under the assumption of no inbreeding. It is impossible to distinguish betweena pair of half-siblings, grandparent-grandhild pair and unle/aunt-nephew/niee pair fromgeneti evidene alone (Weir, 2007). For that reason the term 'half-siblings' refers here to allthose relations unless noted otherwise.
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Chapter 4Statistial MethodsThis hapter introdues the statistial proedure used for identifying pairs of lose relativeswithin the olletion of geneti pro�les available at the �n whale DNA-registry.4.1 The LOD SoreA ommonly used test statisti for a given hypothesis about relatedness is the LOD sore,whih an be easily alulated from a pair of DNA-pro�les (Skaug et al., 2010). Let Di and
Dj be the DNA pro�les of individual i and j and onsider the two mutually exlusive hy-potheses:
H0 : unrelated
H1 : relatedness of interestThe LOD sore is the logarithm of the ratio of the probabilities of the data under the twohypotheses:

LODi,j = log(
P (Di,Dj | H1)

P (Di,Dj | H0)
) (4.1)It does not matter whether it is H1 in numerator and H0 in denominator or vie versa, aslong as it is lear whih has been used. The LOD-value measures the probability of the datagiven H1 relative to the probability of the data given H0 (Balding, 2005). LODi,j > c meansthat the data is more likely under H1 than under H0 where c is some prede�ned ritial value(Skaug et al., 2010). The advantage of using LOD sores instead of just likelihood ratios isthat the nature of the logarithm makes omparison of di�erent relatedness hypothesis verysimple. This is demonstrated in the explanatory example in setion 4.3In the present analysis Hardy-Weinberg and linkage equilibrium are assumed. Linkage equi-librium refers to the independene of inheriting alleles between loi (Skaug, 2001). Thisassumption enables extension of the formulation at a single lous to multi-loi formulation bythe simple at of multipliation. Consider allele information of individuals i and j at S loi.Under linkage equilibrium it is possible to test their relatedness by omputing the likelihoodratio for eah lous separately and then multiply those ratios together and take the logarithmto attain the LOD sore. If LRi,j(s) =

P (Di,s,Dj,s|H1)
P (Di,s,Dj,s|H0)

is the likelihood ratio at lous s then:10



LODi,j = log(LRi,j(1) · LRi,j(2) · ... · LRi,j(S)) (4.2)Under the assumption of Hardy-Weinberg and linkage equilibrium, the probability of two mi-rosatellite based DNA-pro�les, Di and Dj , given the null hypothesis of unrelatedness, an beexpressed as:
P (Di,Dj | unrelated) =

S
∏

s=1

p(a
(1)
i,s ) · p(a

(2)
i,s ) · p(a

(1)
j,s ) · p(a

(2)
j,s ) (4.3)where (a

(1)
i,s , a

(2)
i,s ) is the genotype of individual i at lous s, S is the number of independentmarkers and p(a

(m)
i,s ) is the population frequeny for whatever type allele a(m)

i,s is with m = 1, 2(Skaug, 2001). When unrelated individuals have idential alleles then it is beause there aremany opies of the same allele in a population, not beause they have ommon anestors. Inthis ase there are no random events that require onditioning. Unrelated individuals share 0alleles idential by desent at eah lous and there's only one way for not sharing any allelesat eah lous.The orresponding expression for P (Di,Dj | related) is more ompliated and is formulatedhere by assuming Mendelian segregation. Sine linkage equilibrium is assumed it is possiblefor onveniene sake to put S = 1 and then extend the formulation for one lous to multi loiformulation by the simple at of multipliation. Let Di = (a
(1)
i , a

(2)
i ) and Dj = (a

(1)
j , a

(2)
j ) bethe genotypes of individual i and j. If two alleles are idential and have the same origin aswell, that is are IBD, then: a(m)

i ≡ a
(m)
j , m = 1, 2. If two alleles are not IBD (it doesn't ruleout that they are idential though) then a

(m)
i ≇ a

(m)
j with m = 1, 2. As before (a

(1)
i , a

(2)
i ) areunordered values ∀i and there's no way of knowing whih allele is the mother-allele and whihone is inherited from the father. Denote λs as the number of ways two individuals an inherit

s = 0, 1, 2 alleles IBD at a lous regardless of their relatedness. Table 3.1 ontains the valuesfor lambda. Table 4.1: Nr. of ways to inherit 0, 1 and 2 alleles IBD
λ0 λ1 λ2

1 4 2There's only one way for two individuals to have inherited zero alleles IBD.
a
(1)
i ≇ a

(1)
j ≇ a

(2)
i ≇ a

(2)
jThere are four di�erent ways for two individuals to have inherited one allele IBD.

a
(1)
i ≡ a

(1)
j ∩ a

(2)
i ≇ a

(2)
j

a
(1)
i ≡ a

(2)
j ∩ a

(2)
i ≇ a

(1)
j

a
(2)
i ≡ a

(1)
j ∩ a

(1)
i ≇ a

(2)
j

a
(2)
i ≡ a

(2)
j ∩ a

(1)
i ≇ a

(1)
jThere are two di�erent ways for two individuals to have inherited two alleles IBD.11



a
(1)
i ≡ a

(1)
j ∩ a

(2)
i ≡ a

(2)
j

a
(1)
i ≡ a

(2)
j ∩ a

(2)
i ≡ a

(1)
jThe general formula for P (Di,Dj | H1) is:

P (Di,Dj | H1) =
1

λ0
· P (0− IBD | H1) · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

λ1
· P (1− IBD | H1)

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

λ2
· P (2− IBD | H1)

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

=
1

1
· k0(H1) · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

4
· k1(H1)

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

2
· k2(H1)

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

(4.4)

When relatedness is determined from geneti pro�les, without any auxiliary data, it is impos-sible to know if idential alleles are idential beause they stem from the same origin or if theyare just idential by hane. The kinship oe�ients, kj(H1) = P (j− IBD | H1), inorporatethat unertainty into the formulation but they refer to the probability of two individuals in-heriting j alleles IBD given the hypothesis of relatedness, j = 0, 1, 2. p(a(1)i ) is the populationallele frequeny for whatever allele type a
(1)
i is, p(a(2)i ) is the population allele frequeny forwhatever allele type a

(2)
i is et. If a(1)i = a

(1)
j then those alleles are of the same type andonsequently p(a

(1)
i ) = p(a

(1)
j ). I(a = b) is the identity funtion, that is I(a = b) = 1 if a = band I(a = b) = 0 otherwise. If this formulation is applied to the hypothesis of unrelatednessthen that will result in formula 4.3 with S = 1:12



P (Di,Dj | H0) =
1

1
· 1 · p(a

(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

+
1

4
· 0

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ (p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+
1

2
· 0

· (p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j

⋂

a
(2)
i = a

(2)
j )

+ p(a
(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j

⋂

a
(2)
i = a

(1)
j ))

= p(a
(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )

(4.5)
The omputation of the LOD sore an be time-onsuming. Balding (2005) presents a simpleformulation for the relatedness likelihood ratio on page 126:

LRH1
= k0(H1) + k1(H1) · LRp + k2(H1) · LRid (4.6)

LRp : Likelihood ratio for parent-o�spring relations.
LRid : Likelihood ratio for idential twins relations.
k0, k1 and k2 are relevant kinship oe�ients.Aording to this formula, to test diverse hypothesis of relatedness against the null hypothesisof unrelatedness, only the parent-o�spring likelihood ratio, (LRp), and the identity likelihoodratio, (LRid), have to be omputed. Below is the formulation of LRp and LRid for a singlelous. Having those quantities �xed, various relations an be tested by using the appropriatekinship oe�ients whih an be found in table 3.1.Likelihood ratio for parent-o�spring relations ompares the mutually exlusive hypothesis:
H0 : Individual i and j are unrelated
H1 : Individual i and j are a parent and his/her o�spring.There is one random event that needs onditioning, whih allele was inherited from the motherand whih allele was inherited from the father.
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P (Di,Dj | parent and offspring) = 0

+
1

4
· 1

· (p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(1)
j )

+ p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(1)
j )

+ p(a
(2)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(1)
i = a

(2)
j )

+ p(a
(1)
i ) · p(a

(1)
j ) · p(a

(2)
j ) · I(a

(2)
i = a

(2)
j ))

+ 0

(4.7)
The parent-o�spring likelihood ratio has formula 4.5 in the denominator and formula 4.7 inthe numerator:

LRp =
P (Di,Dj | parent and offspring)

P (Di,Dj | not related)

=
I(a

(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
(1)
i )

+
I(a

(2)
i = a

(1)
j ) + I(a

(2)
i = a

(2)
j )

4 · p(a
(2)
i )

(4.8)The identity likelihood ratio ompares the two mutually exlusive hypothesis:
H0 : Individual i and j are unrelated.
H1 : Individual i and j are idential twinsHere, there is no random event that needs onditioning on.

P (Di,Dj | identical twins) = 0 + 0 +
1

2
· 1

· (p(a
(1)
j ) · p(a

(2)
j ) · (I(a

(1)
i = a

(1)
j )

⋂

I(a
(2)
i = a

(2)
j ))

+ p(a
(1)
j ) · p(a

(2)
j ) · (I(a

(1)
i = a

(2)
j )

⋂

I(a
(2)
i = a

(1)
j )))

(4.9)The identity likelihood ratio is attained by inorporating formulas 4.5 and 4.9 into the likeli-hood ratio:
LRid =

P (Di,Dj | identical twins)

P (Di,Dj | not related)

=
(I(a

(1)
i = a

(1)
j )

⋂

I(a
(2)
i = a

(2)
j )) + (I(a

(1)
i = a

(2)
j )

⋂

I(a
(2)
i = a

(1)
j ))

2 · p(a
(1)
i ) · p(a

(2)
i )

(4.10)Now it is rather basi to alulate the likelihood ratio for other hypothesis of relatedness.
LRsib =

P (Di,Dj | siblings)

P (Di,Dj | not related)

=
1

4
+

1

2
· (

I(a
(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
(1)
i )

+
I(a

(2)
i = a

(1)
j ) + I(a
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(2)
j )

4 · p(a
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⋂
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(2)
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(2)
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⋂

I(a
(2)
i = a

(1)
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(1)
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)

(4.11)
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LRh.sib =
P (Di,Dj | half − siblings)

P (Di,Dj | not related)

=
1

2
+

1

2
· (
I(a

(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
j )

4 · p(a
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+
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(4.12)
LRcous =

P (Di,Dj | first cousins)

P (Di,Dj | not related)

=
3

4
+

1

4
· (

I(a
(1)
i = a

(1)
j ) + I(a

(1)
i = a

(2)
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4 · p(a
(1)
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+
I(a
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(4.13)
Formulation that shows why it is su�ient to use the simple formula from Balding (2005) forthe three likelihood ratios, given by equations 4.11, 4.12 and 4.13, an be found in appendixB.4.2 Controlling the Error Rate
LODi,j > c means that the data is more likely under H1 : Relatedness of interest than under
H0: Unrelated, where c is some prede�ned ritial value. Determining the value of c involves�nding a balane between two goals, maximization of the number of orretly inferred pairsof relatives and minimization of the number of pairs inorretly onluded as relatives(Skauget al., 2010).4.2.1 p-ValueTwo types of error an our in statistial hypothesis testing. A Type I error ours when atrue null hypothesis is rejeted. A type II error is the error of not rejeting a false null hy-pothesis. The signi�ane level of a test, denoted by α, is an upper bound on the probabilityof a Type I error. That means that if the test proedure would be repliated a large numberof times under the onditions of H0 then the observed Type I error rate should be at most
α. An observed value of the test statisti is said to be signi�ant if the test deision basedon that statisti is to rejet the null hypothesis. A p-value is de�ned as the smallest possiblevalue of α suh that the observed test statisti would be signi�ant (Rizzo, 2007).When testing a single pair of hypotheses one usually reports a single p-value with the teststatisti. In the present study, a large value of the LOD sore learly provides evidene againstunrelatedness but then there's an issue of what should be onsidered large enough for the LODsore to be signi�ant. Evaluation of a p-value addresses that issue. For any given test statisti15



there are often several ways to ompute a p-value (Pounds et al., 2007). Here, the p-values areevaluated with a Monte Carlo experiment built on a permutation method that Skaug et al.(2010) performed in the analysis of minke whale data. Let pi,j be the orresponding p-valuefor LODi,j . pi,j is estimated in the following steps:Step 1. r unrelated individuals are simulated with the allele frequenies that were estimatedfrom the original data set.Step 2. The m = r(r−1)
2 pairwise LOD sores of the simulated individuals are omputed.Step 3. The test deisions are reorded:

Ii,jw = 1, LODw ≥ LODi,j

Ii,jw = 0, LODw < LODi,j

(4.14)
LODw stands for the simulated LOD sore with w = 1, 2, ...,m.Step 4. The proportion of simulated LOD-sores that are equal or larger than the original teststatisti LODi,j is alulated to attain the p̂-value.

p̂i,j =
Σm

w=1I
i,j
w

m
(4.15)Step 5. The proedure is repeated until the standard errors of the p̂-values are su�iently small.The p̂-values are binomial distributed so if M is the total number of simulated LODsores then the standard deviation of p̂i,j is:

sd(p̂i,j) =

√

p̂i,j · (1− p̂i,j)

M
(4.16)In the present analysis it is the number of simulated LOD sores that matters, so the seletionof r, the number individuals that are simulated eah time, simply depends on what is the mostonvenient way to attain su�iently large M in the end. In priniple, the above simulationproedure must be repeated for every single pair of individuals within the original dataset.However, to redue omputational burden, the set of M simulated LOD sores are kept �xedaross all pairwise omparisons (Skaug et al., 2010, Rizzo, 2007).4.2.2 Multiple testingA deision to rejet the null hypothesis in a single omparison is usually made by omparingthe p-value to the ustomary signi�ane level. If the signi�ane level is �xed at α = 0.05,on average one in every 20 LOD sores of unrelated individuals will show a p-value below αjust by hane. If the signi�ane level α would be used as in the single omparison ase thenthe expeted number of false detetions in the analysis would be m · α, where m stands forthe number of pairwise omparisons. Due to the large number of omparisons in the presentanalysis this expeted number of false detetions is onsiderable large, espeially when the lowprobability of detetion, due too how small the sample is ompared to the estimated popula-tion size, is taken into aount. For this reason it is important to adjust the estimated p-valuesfor multiple testing (Skaug et al., 2010, Casella and Berger, 2002, Johnson and Wihern, 2007).16



BonferroniTraditional approahes to adjust for multiple testing attempt to ontrol the family wise errorrate. The family wise error rate is de�ned as the probability that one or more Type I errorour in the group of hypothesis tests (Pounds et al., 2007). Benjamini and Hohberg (1995)denoted the family wise error rate by FWER = P (V ≥ 1), where V stands for the numberof falsely rejeted null hypothesis. They pointed out that when m hypothesis are testedindividually at a level α guarantees that E[V/m] ≤ α. The Bonferroni proedure entailstesting eah individual hypothesis at a level α/m whih guarantees that P (V ≥ 1) ≤ α. Inthe present study the Bonferroni adjustment is done by multiplying the unadjusted p-valuesby the number of pairwise omparisons and then ompare them with α (Huber et al., 2007).The Bonferroni proedure is usually onsidered too onservative in the ase of high numbersof test statistis but it is almost impossible to have any rejetions of the null hypothesis withthe Bonferroni orretion in the ontext of thousand pairwise omparisons (Pounds et al.,2007). Sine the present analysis involves a high number of multiple pairwise omparisons,the Bonferroni orretion is probably to strit at the ost of not deteting true relatives.The False Disovery RateIn 1995 Benjamini and Hohberg introdued the False Disovery Rate, (FDR), as a methodto adjust for multiple testing. They desribed the FDR as an error rate that ontrols theexpeted proportion of false disoveries. Consider the problem of evaluating simultaneously
m LOD sores of whih m0 onsist of pairs of unrelated individuals. R is the number ofLOD-sores that result in rejetion of the null hypothesis of unrelatedness.Table 4.2: Evaluation of multiple LOD soresDelared unrelated Delared related TotalTruly unrelated U V m0Truly related T S m−m0Total m−R R m

R is an observable random variable, U , V , S and T are unobservable random variables. Ifeah individual hypothesis pair is tested separately at level α, then R = R(α) is inreasing in
α. The FDR is denoted by:

FDR = E[
V

V + S
] = E[

V

R
] (4.17)That is, the false disovery rate is the expetation of the random variable V

R
. The FDR is anappealing method to ontrol the error rate in the present analysis, with a very high numberof pairwise tests, sine it takes the number of erroneous false disoveries of relatedness intoaount instead of only the question whether any error was made.The FDR proedure arranges the estimated p-values for eah LOD sore in an inreasing order

p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(m). q is the target false disovery rate and R is de�ned to be the largestvalue of r for whih: 17



p̂(r) ≤
r

m
· q (4.18)The �rst R pairs of individuals that are behind the R lowest p̂-values in the ordered sequeneare delared as being related, and the remaining m − R pairs are delared as unrelated.Benjamini and Hoberg (1995) showed in their paper that this proedure ontrols the falsedisovery rate at q for independent test statistis and for any on�guration of false null hy-potheses.In the present analysis not all of the LOD sores are independent of eah other as theBenjamini-Hohberg FDR proedure assumes. In a dataset of n individuals, eah individualmust be involved in (n−1) pairwise tests and those (n−1) LOD sores are not independent ofeah other. Skaug et al. (2010) pointed out that given two individuals i or j, the proportionof pairwise omparisons (among m = n(n − 1)/2) involving either i or j is approximately 4

nand thus beomes negligible when n gets large. They onduted a Monte Carlo simulation toinvestigate how large n has to be for this result to apply. In their ase, n = 100 seemed to belarge enough for the FDR proedure to behave as expeted, even if some pairwise omparisonswere not independent.4.3 Explanatory exampleIn this setion relations between three simulated individuals, A, B and C will be investigatedfor explanatory purposes. The individuals were simulated with given allele frequenies so thatB and C would be siblings and A would be unrelated to B and C. This simple example shoulddemonstrate how the test proedure operates. All omputations and simulations were doneby using the open soure program R (R Development Core Team, 2011) but the odes writtenan be found in appendix C.4.3.1 MethodIf one goes bak far enough in the family tree, possible relations would be endless. In thisexample the following set of relatedness hypothesis will be tested against the null hypothesisof unrelatedness:1. H1: Individual i and individual j have a parent-o�spring relationship, i 6= j,
i, j = A,B,C.2. H1: Individual i and individual j are idential twins, i 6= j, i, j = A,B,C.3. H1: Individual i and individual j are siblings, i 6= j, i, j = A,B,C.4. H1: Individual i and individual j are half-siblings, i 6= j, i, j = A,B,C.5. H1: Individual i and individual j are �rst ousins, i 6= j, i, j = A,B,C.A two step proedure for eah relatedness hypothesis is applied to the data. The appropriatepairwise LOD-sores are omputed, LODi,j for i 6= j in the �rst step. In the seond step

p-values for positive LOD sores are estimated. This is done by simulating 100 unrelatedindividuals with the same allele frequenies that individual A, B and C were simulated with.18



This proedure is repliated 50 times1 resulting in a total of 247 500 simulated LOD sores.The p̂-value, p̂i,j is the proportion of simulated LOD sores that are equal or higher than
LODi,j . The only information available in this example are the geneti pro�les. Reall that itis impossible to distinguish between a pair of half siblings, a pair of grandparent and a grandhild and a pair of unle/aunt and a nephew/niee from geneti evidene alone so the term'half-siblings' refers to all those relations here.4.3.2 DataThe geneti pro�les of three individuals are simulated with frequenies as given in table 3.3.Individual B and C were simulated to be siblings while individual A was simulated to beunrelated to them. The data onsists of information about 10 loi whih are segregated bytwo alleles. The number of possible alleles varies between loi and the alleles are not orderedvalues, that is: a/b = b/a. The population allele frequenies are �xed for eah lous and wereomputed by dividing 1 with the number of possible allele types at that spei� lous.Table 4.3: DNA pro�les and allele frequenies for explanatory exampleLous A B C Allele frequenies1 4/8 8/2 3/2 0.1112 15/6 12/15 5/15 0.0563 8/3 17/11 17/14 0.0504 3/13 4/6 4/3 0.0715 7/10 8/3 6/3 0.1006 8/1 8/8 8/10 0.0837 2/5 11/1 9/8 0.0838 3/9 10/9 10/8 0.0919 6/13 10/2 14/10 0.05910 12/10 13/16 13/9 0.0634.3.3 LOD Sores:The likelihood ratios for eah lous given the DNA data were omputed in R but the LODsore is the logarithm of the multi loi likelihood ratio. The resulting likelihood ratios andLOD sores an be found in tables 3.4, 3.5, 3.6, 3.7 and 3.8. All the numbers have beenrounded to numbers with two deimal plaes:Of the twelve omputed pairwise LOD sores, four of them are larger than zero. For individualB and C there are three non negative LOD sores: LODB,C(sib) = 2.31, LODB,C(h.sib) =
3.06, LODB,C(cous) = 1.93. For individual A and B there is one non negative LOD sore:
LODA,B(cous) = 0.34. All the other LOD sores don't provide evidene against unrelatednesssine LODi,j < 0 means that P (Di,Dj | unrelated) ≥ P (Di,Dj | related).1Here, for simpli�ation, there is no onern for the standard deviation of the p̂-values.
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Table 4.4: Pairwise LOD sores for parent-o�spring hypothesisParent-o�spring A - B A - C B - CLous 1: LR1(p) 2.25 0.00 2.25Lous 2: LR2(p) 4.50 4.50 4.50Lous 3: LR3(p) 0.00 0.00 5.00Lous 4: LR4(p) 0.00 3.50 3.50Lous 5: LR5(p) 0.00 0.00 2.50Lous 6: LR6(p) 6.00 3.00 6.00Lous 7: LR7(p) 0.00 0.00 0.00Lous 8: LR8(p) 2.75 0.00 2.75Lous 9: LR9(p) 0.00 0.00 4.25Lous 10: LR10(p) 0.00 0.00 4.00

LOD(p) = log(
∏10

s=1 LRs(p)) −∞ −∞ −∞Table 4.5: Pairwise LOD sores for idential twins hypothesisIdential twins A - B A - C B - CLous 1: LR1(id) 0.00 0.00 0.00Lous 2: LR2(id) 0.00 0.00 0.00Lous 3: LR3(id) 0.00 0.00 0.00Lous 4: LR4(id) 0.00 0.00 0.00Lous 5: LR5(id) 0.00 0.00 0.00Lous 6: LR6(id) 0.00 0.00 0.00Lous 7: LR7(id) 0.00 0.00 0.00Lous 8: LR8(id) 0.00 0.00 0.00Lous 9: LR9(id) 0.00 0.00 0.00Lous 10: LR10(id) 0.00 0.00 0.00

LOD(id) = log(
∏10

s=1 LRs(id)) −∞ −∞ −∞4.3.4 p-Value
p-values were estimated for the non negative LOD-sores by simulation. First 100 unrelatedindividuals were simulated from a population with the same allele frequenies that individualA, B and C were simulated with. Then their 4 950 pairwise LOD-sores are omputed. Thisproedure is repliated 50 times resulting in 247 500 simulated LOD sores for eah relatednesshypothesis. The p̂-value is the proportion of simulated LOD sores that are equal or higherthan the original LOD-sore. The following p̂-values were attained:
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Table 4.6: Pairwise LOD sores for siblings hypothesisSiblings A - B A - C B - CLous 1: LR1(sib) 1.38 0.25 1.38Lous 2: LR2(sib) 2.50 2.50 2.50Lous 3: LR3(sib) 0.25 0.25 2.75Lous 4: LR4(sib) 0.25 2.00 2.00Lous 5: LR5(sib) 0.25 0.25 1.50Lous 6: LR6(sib) 3.25 1.75 3.25Lous 7: LR7(sib) 0.25 0.25 0.25Lous 8: LR8(sib) 1.63 0.25 1.63Lous 9: LR9(sib) 0.25 0.25 2.38Lous 10: LR10(sib) 0.25 0.25 2.250

LOD(sib) = log(
∏10

s=1 LODs(sib)) −2.35 −3.27 2.30Table 4.7: Pairwise LOD sores for half-siblings hypothesisHalf-siblings A - B A - C B - CLous 1: LR1(h.sib) 1.63 0.50 1.63Lous 2: LR2(h.sib) 2.75 2.75 2.75Lous 3: LR3(h.sib) 0.50 0.50 3.00Lous 4: LR4(h.sib) 0.50 2.25 2.25Lous 5: LR5(h.sib) 0.50 0.50 1.75Lous 6: LR6(h.sib) 3.50 2.00 3.50Lous 7: LR7(h.sib) 0.50 0.50 0.50Lous 8: LR8(h.sib) 1.88 0.50 1.88Lous 9: LR9(h.sib) 0.50 0.50 2.63Lous 10: LR10(h.sib) 0.50 0.50 2.50

LOD(h.sib) = log(
∏10

s=1 LRs(h.sib)) −0.34 −1.01 3.06

pB,C(sib) =
10 414

247 500
= 4.21 · 10−2

pB,C(h.sib) =
4

247 500
= 1.62 · 10−5

pB,C(cous) =
8

247 500
= 3.23 · 10−5

pA,B(cous) =
24 340

247 500
= 9.83 · 10−2In this example there are only three pairwise omparisons for eah relatedness hypothesisso there's no need for multiple omparison adjustment. H1 : Individual A and individualB are �rst ousins is rejeted at the signi�ane level of α = 0.05 while the relatednesshypothesis for individual B and C an not be rejeted at that signi�ane level. It is learthat the test proedure lassi�es individual B and C as relatives but in order to onludeabout a spei� relatedness, their three di�erent LOD sores have to be ompared. LODh.sib,

LODp and LODcous ompare the probability of the data under the hypothesis of a spei�21



Table 4.8: Pairwise LOD sores for �rst ousins hypothesisFirst ousins A - B A - B B - CLous 1: LR1(cous) 1.31 0.75 1.31Lous 2: LR2(cous) 1.88 1.88 1.88Lous 3: LR3(cous) 0.75 0.75 2.00Lous 4: LR4(cous) 0.75 1.63 1.63Lous 5: LR5(cous) 0.75 0.75 1.38Lous 6: LR6(cous) 2.25 1.50 2.25Lous 7: LR7(cous) 0.75 0.75 0.750Lous 8: LR8(cous) 1.44 0.75 1.44Lous 9: LR9(cous) 0.75 0.75 1.81Lous 10: LR10(cous) 0.75 0.75 1.75

LOD(cous) = log(
∏10

s=1 LRs(cous)) 0.34 −0.21 1.93relatedness with the probability of the data under the null hypothesis of unrelatedness. Whatis needed now is to ompare the probability of the data under one spei� relatedness withthe probability of the data under another spei� relatedness. That an be done by simplysubtrating one LOD sore from the other sine log(a
b
) = log(a) − log(b) = log(a

c
)− log( b

c
).

log(
P (data | half − siblings)

P (data | siblings
) = LODh.sib − LODsib

= 3.06 − 2.31 = 0.75

log(
P (data | half − siblings)

P (data | first cousins
) = LODh.sib − LODcous

= 3.06− 1.93 = 1.13The LOD sores indiate that individual B and C are more likely to be half-siblings thansiblings or �rst ousins.4.3.5 Interpretation of the ResultThe proedure used in the present study for testing relatedness onluded siblings wronglyto be half-sibling but onluded an unrelated individual rightly as a non-relative. The fatthat the proedure did not detet the right relatedness between individual B and C an beexplained by the fat that they were simulated, by hane, as siblings that didn't have anidential genotype at any lous. The probability for full siblings to not have a single identialgenotype at 10 loi is small or: (34)
10 = 0.0563. Therefore it is logial, though not orret inthis ase, that the test proedure indiated that the individuals were half-siblings rather thanfull siblings.
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Chapter 5Analysis of the Fin Whale DatabaseThe goal of this analysis is to detet pairs of relatives within the Ielandi �n whale registry.Three relations are of interest, half-siblings, parent-o�spring and �rst ousins.5.1 MethodA three-step proedure for eah relatedness hypothesis is applied to the �n whale data:1. Pairwise LOD sores omputed.2. p-value for eah LOD sore estimated via simulation.3. p̂-values adjusted for multiple testing.In the �rst step the appropriate pairwise LOD sores are omputed from the dataset. ALOD sore is a ommonly used test statisti to detet related individuals within a database(Skaug et al., 2010) but it ompares the probabilities of the data under the null hypothesis ofunrelatedness and the alternative hypothesis of relatedness.
LOD = log(

P (data | relatedness of interest)

P (data | unrelated)
)

log stands for the 10th logarithm. Further information about LOD sores an be found inhapter 4.1.In the seond step the orresponding p-values for eah LOD sore are estimated. There is anegative relationship between a p-value and its LOD sore, δpi,j
δLODi,j

< 0, but a high LOD soreand a low p-value indiate relatedness. To redue omputational burden, p-values are at �rstonly estimated for the 1000 largest LOD sores. If the estimated p-value for the 1000th highestLOD sore is high enough for the LOD sore to be onsidered unsigni�ant then the onlusionis that all the lower LOD sores are unsigni�ant as well and further estimation is unneessary.If the p-value for the 1000th highest LOD sore is low enough for the LOD sore to be onsid-ered signi�ant then the p-values for the next LOD sores in line have to be estimated or untilan unsigni�ant LOD sore is found. The p-values are estimated via simulation. 265 unrelatedindividuals are simulated by drawing allele types independently with replaement from a genepool with the same allele frequenies as the original dataset, exluding the foetuses. Then23



their pairwise LOD sores are omputed. The estimated p-value, p̂i,j , is the proportion ofsimulated LOD sores that are equal or higher than the original LOD sore, LODi,j . p̂i,j anbe desribed as the estimated probability of attaining as extreme or more extreme LOD sorethan the original one, LODi,j , just by hane. The simulation proedure is repliated at least
60 times or until the standard errors for the p̂-values, sd(p̂) = √

p̂·(1−p̂)
M

, are su�iently smallbut M is the total number of simulated LOD sores. In this ase su�ient means that the
95% on�dene interval for the largest p̂-value in the group of related pairs doesn't ollidewith the 95% on�dene interval for the smallest p̂-value in the group of unrelated pairs. Thenumber of individuals simulated eah time, 265, and the minimum number of repliations ofthe proedure, 60, was hosen somewhat arbitrarily. It is the number of simulated LOD soresthat matters, not the number of simulated individuals, and these numbers were onvenient,omputing time wise, to attain the needed number of simulated LOD sores.In the third step a measure is taken to redue the multiple omparison problem. In thatstep two methods for adjusting for multiple testing are applied and ompared, the well knownBonferroni orretion and Benjamini's and Hohberg's (1995) FDR proedure. In the Bon-ferroni proedure the p̂-values are multiplied with the number of pairwise omparisons. Themother-foetus pairs are inluded in that number sine it doesn't hange the result for the nonmother-foetus pairs whether they are inluded or not and it is of interest where the Bonferroniproedure plaes the mother-foetus pairs. The null hypothesis of unrelatedness is rejeted forall pairs for whih the Bonferroni adjusted p̂-value is less or equal than α = 0.05. The FDRproedure arranges the orresponding estimated p-values for eah LOD sore in an inreasingorder p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). q is the target false disovery rate, n is the number of pairwiseomparisons, and R is de�ned to be the largest value of r for whih:

p̂(r) ≤
r

n
· q = QrThe �rst R pairs in this sequene are lassi�ed as relatives and the remaining pairs are delaredunrelated. The test proedure used in this analysis is based on having a large dataset of indi-viduals of whih little is known exept for their DNA information. Therefore the mother-foetuspairs should not be inluded in the ranking of p̂-values. However, it is of interest to see wherethe FDR proedure plaes the mother-foetus pairs and for that reason the FDR proedureis done twie, �rst inluding the mother-foetus pairs in the ranking and then without them.The false disovery rate is �xed at the same point as the signi�ane level in the Bonferroniproedure, q = α = 0.05. Having q and α of the same size simpli�es the omparison of thetwo proedures but 0.05 is hosen to mirror the ommonly hosen signi�ane level in thesingle omparison ase. Prior the result, the FDR proedure seems more suitable than theBonferroni orretion, see hapter 4.2.2, due to high number of LOD sores. The appliationof these two proedures, Bonferroni and FDR, should shed light on that.All omputations and simulations in the analysis were done by using the open soure programR (R Development Core Team, 2011), but the odes an be found in appendix D
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5.2 DataThe present study utilizes data from the Ielandi individual-based DNA registry of �n whaleswhih ompromises 267 geneti pro�les olleted between and during the years 2009 and 2010and has been obtained for �fteen mirosatellite loi, (EV001, EV037, GATA028, GATA053,GATA098, GATA417, GT011, GT023, GT195, GT211, GT271, GT310, GT575, TAA023 andGGAA520), the ontrol region of mtDNA and a sex-marker. The age and age of maturity ofthe individuals within the database have been estimated by reading their plugs.A total of 23 females, of the 267 indiviuals samples genotyped, arried a foetus for whih ageneti sample was also obtained. Whales olleted in 2009 were given a name starting withF09 and whales olleted in 2010 were given a name starting with F10. The foetuses weregiven the same name as their mothers with the letter F applied to it at the end. Of those290 geneti pro�les, 265 are used in the present study. Information is missing at some loifor 24 individuals and one foetus so they were omitted from the analysis. One of the omittedindividuals was a female that arried a foetus so there are 21 remaining mother-foetus pairsin the sample but 22 foetuses.5.3 Population Allele FrequeniesThe population allele frequenies were estimated diretly from the sample, exluding the 22foetuses sine they an not be onsidered as part of the population. As was noted in hapter
3.2, Hardy-Weinberg and linkage equilibrium are assumed in this analysis and the �n whaleswithin the sample are onsidered to belong to the same population. The estimation of theallele frequenies was done by dividing the number of times a ertain alleli type was observedat a lous by the total number of alleles at that lous: 2 · 243 = 486. The omputations weredone in R (R Development Core Team, 2011) but the ode an be found in appendix D.2.Tables with the estimated population frequenies values are in appendix E.5.4 Appliation5.4.1 Half-SiblingsSkaug et al. (2010) onsidered 'half-siblings' to be a reasonable hoie for a general test todetet all types of lose 1st- and 2nd order relationships. They pointed out that detetionof parent-o�spring dyads is highly sensitive for lerial errors but one typing error results inan in�nitely negative LOD sore. In the absene of an estimation of the error rate, LODsores, based on 2nd-order dyads, were reommended for deteting both 1st- and 2nd-orderrelationships sine they are more robust to typing errors. In the present study no typing errorestimate has been attained and therefore the half-sibling LOD sore is a good starting pointto detet relatives within the dataset.The half-sibling LOD sore tests the hypothesis of half-siblings against the null hypothesis ofunrelatedness:
H0 : Individual i and individual j are unrelated25



H1 : Individual i and individual j are half-siblingsLOD SoresA total of 34 980 pairwise LOD sores for the 265 individuals within the dataset were om-puted by using the formula:
LODh.sib =log(

P (Di,Dj | half − siblings)

P (Di,Dj | not related)
)

=log(
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)))Of those 34 980 sores, 3 731 are larger than zero, eleven are larger than 4 but the largest oneis approximately 6.35.The p-values were estimated by omparing LOD sores of simulated unrelated individuals withthe original LOD sores. In this ase it was su�ient to repliate the simulation proedure
60 times, resulting in 2 098 800 pair wise LOD sores of simulated unrelated individuals. The1000 lowest p̂-values, for the 1000 highest LOD sores, all look good in the single omparisonase but the largest p̂-value in that group is 0.031. If multiple testing was not taken intoaount one might just think that all of these pairs were dyads of relatives. Adjustment formultiple testing gives another result.Table 5.1 shows the estimated p-values of the 50 highest half-siblings LOD sores, of whihthere are 19 mother-foetus pairs. The table also shows the standard errors of the estimated
p-values. 95% on�dene intervals were omputed by using the standard normal approah for
p̂-values for whih M · p̂ = 2 098 800 · p̂ ≥ 5. That is su�ient for this analysis sine on�deneintervals are only needed for the two p̂-values on the margin of related pairs and unrelatedpairs of individuals.Two mother-foetus pairs don't make it to the top 50 highest half-sibling LOD sore list. Iftheir data is examined it beomes apparent that F09-070 and F09-070F have not one identialallele type at the 6th lous and F10-067 and F10-067F do not have one idential allele typeat the 14th lous. There is no way of knowing if this is beause of mutation or beause of antyping error when the data was sampled. Due to the high sensitivity of the parent-o�springLOD sore it is known by forehand that the test proedure will not onlude these two mother-foetus pairs to be a mother and her o�spring.BonferroniThe Bonferroni orretion is attained by multiplying the p̂-values with the number of pairwiseLOD-sores omputed from the dataset. Table 5.2 ontains the 50 highest half-siblings LOD26



Table 5.1: 50 highest pairwise half-sibling LOD sores and their orresponding p̂-valuesPairs LODh.sib p̂ sd(p̂) 95% on�dene intervalF09-002 and F09-002F 6.34 0.00 0.00 M · p̂ < 5F10-073 and F10-073F 6.27 0.00 0.00 M · p̂ < 5F10-020 and F10-026 5.07 0.00 0.00 M · p̂ < 5F10-035 and F10-035F 4.61 0.00 0.00 M · p̂ < 5F09-073 and F10-062 4.58 0.00 0.00 M · p̂ < 5F10-018 and F10-018F 4.55 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 4.43 0.00 0.00 M · p̂ < 5F10-134 and F10-134F 4.38 0.00 0.00 M · p̂ < 5F09-081 and F10-030 4.34 0.00 0.00 M · p̂ < 5F10-104 and F10-104F 4.30 0.00 0.00 M · p̂ < 5F10-044 and F10-044F 4.27 0.00 0.00 M · p̂ < 5F09-091 and F09-091F 3.94 4.76 · 10−7 4.76 · 10−7 m · p̂ < 5F09-047 and F10-079 3.70 2.38 · 10−6 1.07 · 10−6 (2.94 · 10−7; 4.47 · 10−6)F09-040 and F10-020 3.70 2.86 · 10−6 1.17 · 10−6 (5.71 · 10−7; 5.15 · 10−6)F10-089 and F10-140 3.64 4.29 · 10−6 1.43 · 10−6 (1.49 · 10−6; 7.09 · 10−6)F10-087 and F10-087F 3.62 4.76 · 10−6 1.51 · 10−6 (1.81 · 10−6; 7.72 · 10−6)F10-116 and F10-116F 3.58 4.76 · 10−6 1.51 · 10−6 (1.81 · 10−6; 7.72 · 10−6)F09-075 and F10-123 3.48 6.19 · 10−6 1.72 · 10−6 (2.83 · 10−6; 9.56 · 10−6)F09-091F and F10-100 3.42 7.15 · 10−6 1.85 · 10−6 (3.53 · 10−6; 1.08 · 10−5)F10-085 and F10-085F 3.27 1.10 · 10−5 2.29 · 10−6 (6.48 · 10−6; 1.54 · 10−5)F10-090 and F10-090F 3.26 1.10 · 10−5 2.29 · 10−6 (6.48 · 10−6; 1.54 · 10−5)F10-106 and F10-106F 3.16 1.57 · 10−5 2.74 · 10−6 (1.04 · 10−5; 2.11 · 10−5)F10-052 and F10-052F 3.14 1.62 · 10−5 2.78 · 10−6 (1.08 · 10−5; 2.16 · 10−5)F10-084 and F10-084F 3.11 1.86 · 10−5 2.98 · 10−6 (1.28 · 10−5; 2.44 · 10−5)F09-040 and F10-026 2.88 4.81 · 10−5 4.79 · 10−6 (3.87 · 10−5; 5.75 · 10−5)F09-125 and F10-119 2.84 5.62 · 10−5 5.18 · 10−6 (4.61 · 10−5; 6.64 · 10−5)F09-105 and F10-004 2.72 8.39 · 10−5 6.32 · 10−6 (7.15 · 10−5; 9.62 · 10−5)F09-095 and F09-107 2.72 8.39 · 10−5 6.32 · 10−6 (7.15 · 10−5; 9.62 · 10−5)F10-069 and F10-122F 2.67 9.62 · 10−5 6.77 · 10−6 (8.30 · 10−5; 1.10 · 10−4)F10-037 and F10-037F 2.62 1.13 · 10−4 7.35 · 10−6 (9.90 · 10−5; 1.28 · 10−4)F10-059 and F10-147 2.55 1.48 · 10−4 8.39 · 10−6 (1.31 · 10−4; 1.64 · 10−4)F09-065 and F10-004 2.50 1.81 · 10−4 9.27 · 10−6 (1.62 · 10−4; 1.99 · 10−4)F09-008 and F09-094 2.50 1.82 · 10−4 9.32 · 10−6 (1.64 · 10−4; 2.01 · 10−4)F10-026 and F10-099 2.48 1.90 · 10−4 9.50 · 10−6 (1.71 · 10−4; 2.08 · 10−4)F10-017 and F10-043 2.46 2.05 · 10−4 9.88 · 10−6 (1.86 · 10−4; 2.24 · 10−4)F10-073 and F10-097 2.41 2.46 · 10−4 1.08 · 10−5 (2.25 · 10−4; 2.67 · 10−4)F10-111 and F10-123 2.41 2.48 · 10−4 1.09 · 10−5 (2.26 · 10−4; 2.69 · 10−4)F09-040 and F10-135 2.38 2.73 · 10−4 1.14 · 10−5 (2.50 · 10−4; 2.95 · 10−4)F09-035 and F10-006 2.34 3.08 · 10−4 1.21 · 10−5 (2.85 · 10−4; 3.32 · 10−4)F09-007 and F10-042 2.31 3.36 · 10−4 1.27 · 10−5 (3.12 · 10−4; 3.61 · 10−4)F09-054 and F10-067 2.29 3.66 · 10−4 1.32 · 10−5 (3.41 · 10−4; 3.92 · 10−4)F10-022 and F10-022F 2.23 4.39 · 10−4 1.45 · 10−5 (4.11 · 10−4; 4.68 · 10−4)F09-044 and F10-062 2.23 4.42 · 10−4 1.45 · 10−5 (4.14 · 10−4; 4.71 · 10−4)F10-026 and F10-113 2.21 4.79 · 10−4 1.51 · 10−5 (4.50 · 10−4; 5.09 · 10−4)F10-111 and F10-111F 2.17 5.37 · 10−4 1.60 · 10−5 (5.06 · 10−4; 5.69 · 10−4)F09-081 and F10-106 2.17 5.37 · 10−4 1.60 · 10−5 (5.06 · 10−4; 5.69 · 10−4)F09-100 and F10-135 2.15 5.77 · 10−4 1.66 · 10−5 (5.44 · 10−4; 6.09 · 10−4)F09-021 and F10-086 2.10 6.65 · 10−4 1.78 · 10−5 (6.30 · 10−4; 7.00 · 10−4)F10-060 and F10-125 2.08 7.22 · 10−4 1.85 · 10−5 (6.86 · 10−4; 7.58 · 10−4)F09-116 and F10-111F 2.06 7.60 · 10−4 1.90 · 10−5 (7.23 · 10−4; 7.97 · 10−4)27



sores and their Bonferroni orreted p̂-values. The Bonferroni proedure is very strit inthe ase of large number of pairwise omparisons. By using the Bonferroni adjustment andputting α = 0.05, only twelve pairs of 34 980 are lassi�ed as relatives. Nine of them aremother-foetus pairs. Twelve mother-foetus pairs are onluded unrelated whih demonstrateslearly how strit the Bonferroni proedure is.FDRThe FDR proedure is based on the arrangement of the estimated p-values for eah LODsore in an inreasing order p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). Table 5.3 ontains information aboutthe FDR proedure for the half-siblings hypothesis inluding the mother-foetus pairs in theranking of p̂-values. At q = 0.05, 24 of the pairs are onluded related and, as table 5.1 shows,the 95% on�dene intervals of p̂(24) and p̂(25) don't ollide. Sixteen of the related pairs aremother-foetus pairs and eight are non mother-foetus pairs. Five of the mother-foetus pairswithin the dataset are onluded unrelated here while twelve of the mother-foetus pairs areonluded unrelated when the Bonferroni orretion is used. That means that the FDR pro-edure detets at least seven more pairs of true relatives than the Bonferroni proedure. Notinluding the mother-foetus pairs in the ranking of the p̂-values gives the same result for thenon mother-foetus pairs. The eight pairs with the highest half-sibling LOD sores of the
34 959 non mother-foetus pairs are onluded related but the 95% on�dene intervals of p̂(8),(estimated p-value for the half-sibling LOD sore of F09-091F and F10-100), and p̂(9), (theestimated p-value for the half-sibling LOD sore of F09-040 and F10-026), do not ollide.5.4.2 Parent-O�springThe parent-o�spring LOD sore ompares the hypothesis of parent-o�spring relations againstthe null hypothesis of unrelatedness.LOD SoresA total of 34 980 parent-o�spring LOD sores were alulated by using the formula:
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)Of these 34 980 sores, only 28 are not in�nitely negative, there of are 19 mother-foetus pairs.As was mentioned in the half-siblings setion, two of the mother-foetus pairs have an in�nitelynegative parent-o�spring LOD sores.The p-values were estimated by omparing LOD sores of simulated unrelated individualswith the original LOD sores. The simulation proedure was repliated 60 times, resulting28



Table 5.2: 50 highest pairwise half-sibling LOD sores and their orresponding Bonferroniorreted p̂-values Pairs LODh.sib Bonferroni orreted p̂ Deision at α = 0.05F09-002 and F09-002F 6.34 0.00 RelatedF10-073 and F10-073F 6.27 0.00 RelatedF10-020 and F10-026 5.07 0.00 RelatedF10-035 and F10-035F 4.61 0.00 RelatedF09-073 and F10-062 4.58 0.00 RelatedF10-018 and F10-018F 4.55 0.00 RelatedF10-122 and F10-122F 4.43 0.00 RelatedF10-134 and F10-134F 4.38 0.00 RelatedF09-081 and F10-030 4.34 0.00 RelatedF10-104 and F10-104F 4.30 0.00 RelatedF10-044 and F10-044F 4.27 0.00 RelatedF09-091 and F09-091F 3.94 0.02 RelatedF09-047 and F10-079 3.70 0.08 UnrelatedF09-040 and F10-020 3.70 0.10 UnrelatedF10-089 and F10-140 3.64 0.15 UnrelatedF10-087 and F10-087F 3.62 0.17 UnrelatedF10-116 and F10-116F 3.58 0.17 UnrelatedF09-075 and F10-123 3.48 0.22 UnrelatedF09-091F and F10-100 3.42 0.25 UnrelatedF10-085 and F10-085F 3.27 0.38 UnrelatedF10-090 andF10-090F 3.26 0.38 UnrelatedF10-106 and F10-106F 3.16 0.55 UnrelatedF10-052 and F10-052F 3.14 0.57 UnrelatedF10-084 and F10-084F 3.11 0.65 UnrelatedF09-040 and F10-026 2.88 1.68 UnrelatedF09-125 and F10-119 2.84 1.97 UnrelatedF09-105 and F10-004 2.72 2.93 UnrelatedF09-095 and F09-107 2.72 2.93 UnrelatedF10-069 and F10-122F 2.67 3.37 UnrelatedF10-037 and F10-37F 2.62 3.97 UnrelatedF10-059 and F10-147 2.55 5.17 UnrelatedF09-065 and F10-004 2.50 6.32 UnrelatedF09-008 and F09-094 2.50 6.38 UnrelatedF10-026 and F10-099 2.48 6.63 UnrelatedF10-017 and F10-043 2.46 7.17 UnrelatedF10-073 and F10-097 2.41 8.60 UnrelatedF10-111 and F10-123 2.41 8.67 UnrelatedF09-040 and F10-135 2.38 9.53 UnrelatedF09-035 and F10-006 2.34 10.78 UnrelatedF09-007 and F10-042 2.31 11.77 UnrelatedF09-054 and F10-067 2.29 12.82 UnrelatedF10-022 and F10-022F 2.23 15.37 UnrelatedF09-044 and F10-062 2.23 15.47 UnrelatedF10-026 and F10-113 2.21 16.77 UnrelatedF10-111 and F10-111F 2.17 18.80 UnrelatedF09-081 and F10-106 2.17 18.80 UnrelatedF09-100 and F10-135 2.15 20.17 UnrelatedF09-021 and F10-086 2.10 23.27 UnrelatedF10-060 and F10-125 2.08 25.25 UnrelatedF09-116 and F10-111F 2.06 26.58 Unrelated29



Table 5.3: 50 highest pairwise half-sibling LOD sores and their orresponding Qr-valuesPairs LODh.sib p̂ r Qr = (r/n) · q Deision at q = 0.05F09-002 and F09-002F 6.34 0.00 1 1.43 · 10−6 RelatedF10-073 and F10-073F 6.27 0.00 2 2.86 · 10−6 RelatedF10-020 and F10-026 5.07 0.00 3 4.29 · 10−6 RelatedF10-035 and F10-035F 4.61 0.00 4 5.72 · 10−6 RelatedF09-073 and F10-062 4.58 0.00 5 7.15 · 10−6 RelatedF10-018 and F10-018F 4.55 0.00 6 8.58 · 10−6 RelatedF10-122 and F10-122F 4.43 0.00 7 1.00 · 10−5 RelatedF10-134 and F10-134F 4.38 0.00 8 1.14 · 10−5 RelatedF09-081 and F10-030 4.34 0.00 9 1.29 · 10−5 RelatedF10-104 and F10-104F 4.30 0.00 10 1.43 · 10−5 RelatedF10-044 and F10-044F 4.27 0.00 11 1.57 · 10−5 RelatedF09-091 and F09-091F 3.94 4.76 · 10−7 12 1.72 · 10−5 RelatedF09-047 and F10-079 3.70 2.38 · 10−6 13 1.86 · 10−5 RelatedF09-040 and F10-020 3.70 2.86 · 10−6 14 2.00 · 10−5 RelatedF10-089 and F10-140 3.64 4.29 · 10−6 15 2.14 · 10−5 RelatedF10-087 and F10-087F 3.62 4.76 · 10−6 16 2.29 · 10−5 RelatedF10-116 and F10-116F 3.58 4.76 · 10−6 17 2.43 · 10−5 RelatedF09-075 and F10-123 3.48 6.19 · 10−6 18 2.57 · 10−5 RelatedF09-091F and F10-100 3.42 7.15 · 10−6 19 2.72 · 10−5 RelatedF10-085 and F10-085F 3.27 1.10 · 10−5 20 2.86 · 10−5 RelatedF10-090 andF10-090F 3.26 1.10 · 10−5 21 3.00 · 10−5 RelatedF10-106 and F10-106F 3.16 1.57 · 10−5 22 3.14 · 10−5 RelatedF10-052 and F10-052F 3.14 1.62 · 10−5 23 3.29 · 10−5 RelatedF10-084 and F10-084F 3.11 1.86 · 10−5 24 3.43 · 10−5 RelatedF09-040 and F10-026 2.88 4.81 · 10−5 25 3.57 · 10−5 UnrelatedF09-125 and F10-119 2.84 5.62 · 10−5 26 3.72 · 10−5 UnrelatedF09-105 and F10-004 2.72 8.39 · 10−5 27 3.86 · 10−5 UnrelatedF09-095 and F09-107 2.72 8.39 · 10−5 28 4.00 · 10−5 UnrelatedF10-069 and F10-122F 2.67 9.62 · 10−5 29 4.15 · 10−5 UnrelatedF10-037 and F10-37F 2.62 1.13 · 10−4 30 4.29 · 10−5 UnrelatedF10-059 and F10-147 2.55 1.48 · 10−4 31 4.43 · 10−5 UnrelatedF09-065 and F10-004 2.50 1.81 · 10−4 32 4.57 · 10−5 UnrelatedF09-008 and F09-094 2.50 1.82 · 10−4 33 4.72 · 10−5 UnrelatedF10-026 and F10-099 2.48 1.90 · 10−4 34 4.86 · 10−5 UnrelatedF10-017 and F10-043 2.46 2.05 · 10−4 35 5.00 · 10−5 UnrelatedF10-073 and F10-097 2.41 2.46 · 10−4 36 5.15 · 10−5 UnrelatedF10-111 and F10-123 2.41 2.48 · 10−4 37 5.29 · 10−5 UnrelatedF09-040 and F10-135 2.38 2.73 · 10−4 38 5.43 · 10−5 UnrelatedF09-035 and F10-006 2.34 3.08 · 10−4 39 5.57 · 10−5 UnrelatedF09-007 and F10-042 2.31 3.36 · 10−4 40 5.72 · 10−5 UnrelatedF09-054 and F10-067 2.29 3.66 · 10−4 41 5.86 · 10−5 UnrelatedF10-022 and F10-022F 2.23 4.39 · 10−4 42 6.00 · 10−5 UnrelatedF09-044 and F10-062 2.23 4.42 · 10−4 43 6.15 · 10−5 UnrelatedF10-026 and F10-113 2.21 4.79 · 10−4 44 6.29 · 10−5 UnrelatedF10-111 and F10-111F 2.17 5.37 · 10−4 45 6.43 · 10−5 UnrelatedF09-081 and F10-106 2.17 5.37 · 10−4 46 6.58 · 10−5 UnrelatedF09-100 and F10-135 2.15 5.77 · 10−4 47 6.72 · 10−5 UnrelatedF09-021 and F10-086 2.10 6.65 · 10−4 48 6.86 · 10−5 UnrelatedF10-060 and F10-125 2.08 7.22 · 10−4 49 7.00 · 10−5 UnrelatedF09-116 and F10-111F 2.06 7.60 · 10−4 50 7.15 · 10−5 Unrelated30



in 2 098 800 pairwise simulated LOD sores. As would be expeted the p̂-values for the in-�nitely negative LOD sores were equal to 1. Table 5.4 ontains information on the 28 pairsthat have a �nite parent-o�spring LOD sore. The standard errors of the estimated p-valueshave been omputed and the asymptoti 95% on�dene intervals of the p̂-values for whih
p̂ · 2 098 800 ≥ 5.The p̂-values for the parent-o�spring LOD sores are very small and if they were evaluated asin the single omparison ase then the onlusion would be that all the 28 pairs were a parentand his/her o�spring. Adjustment for multiple testing results in fewer rejetions of the nullhypothesis of unrelatedness.BonferroniThe p̂-values are Bonferroni orreted by multiplying them with the number of pairwise LOD-sores omputed from the dataset. Table 5.5 ontains the Bonferroni adjusted p̂-values for the28 highest parent-o�spring LOD sores and the test deisions based on a signi�ane level of
α = 0.05. By using the Bonferroni orretion 21 of the 28 pairs with a positive LOD sore arelassi�ed as a parent and his/her o�spring. Sixteen of those 21 pairs are mother-foetus pairs.FDRThe FDR proedure is based on arranging the orresponding estimated p-values for eah LODsore in inreasing order p̂(1) ≤ p̂(2) ≤ .... ≤ p̂(n). Unlike the half-sibling test, in this ase theFDR result for the non mother-foetus pairs depends on whether the mother-foetus pairs areinluded in the ranking of the estimated p-values or not. Table 5.6 ontains information aboutthe 28 highest parent-o�spring LOD sores, their estimated p-values, orresponding Qr-valuesand the FDR deision whih is based on the omparison of p̂(r) and Qr. Table 5.7 ontainsthe same information for the 9 highest parent-o�spring LOD sores when the mother-foetuspairs are not inluded in the ranking.If mother-foetus pairs are inluded in the ranking, all 28 pairs with LOD sores that are notin�nitely negative are onsidered to onsist of parents and their o�spring at q = 0.05. TheFDR proedure would therefore orretly onlude all the 19 mother-foetus pairs with a �niteLOD sore as a parent-o�spring pair if nothing was known about them exept their DNA in-formation. This demonstrates how muh striter the Bonferroni proedure is but three of themother-foetus pairs with a �nite LODp sore were onluded unrelated at α = 0.05 when theestimated p-values were adjusted with the Bonferroni method. By using the FDR proedureit beomes less likely that related individuals are wrongly onluded unrelated.When the mother-foetus pairs are not inluded in the ranking, then �ve pairs of 34 959are lassi�ed as a parent and his/her o�spring. In the ranking without mother-foetus pairs,
p̂(5) is the estimated p-value for the parent-o�spring LOD sore of F09-075 and F10-123 and
p̂(6) is the estimated p-value for the parent-o�spring LOD sore of F09-125 and F10-119.Sine p̂(5) · 2 098 800 < 5, whih means that its on�dene interval should not be om-puted with the standard normal approah, the 95% exat binomial on�dene intervals for
p̂(5) and p̂(6) are omputed by using the pakage binom (Dorai-Raj, 2009) in R, see appendix31



Table 5.4: 28 highest pairwise parent-o�spring LOD sores and their orresponding p̂-values.Pairs LODp p̂ sd(p̂) 95% on�dene intervalF09-002 and F09-002F 8.97 0.00 0.00 M · p̂ < 5F10-073 and F10-073F 8.46 0.00 0.00 M · p̂ < 5F10-020 and F10-026 7.40 0.00 0.00 M · p̂ < 5F10-035 and F10-035F 6.91 0.00 0.00 M · p̂ < 5F10-018 and F10-018F 6.85 0.00 0.00 M · p̂ < 5F09-081 and F10-030 6.68 0.00 0.00 M · p̂ < 5F10-104 and F10-104F 6.48 0.00 0.00 M · p̂ < 5F10-134 and F10-134F 6.48 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 6.38 0.00 0.00 M · p̂ < 5F10-044 and F10-044F 6.33 0.00 0.00 M · p̂ < 5F09-091 and F09-091F 5.95 0.00 0.00 M · p̂ < 5F10-089 and F10-140 5.47 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-087 and F10-087F 5.46 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F09-91F and F10-100 5.43 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F09-075 and F10-123 5.38 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-116 and F10-116F 5.26 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-090 andF10-090F 5.07 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-106 and F10-106F 4.88 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-085 and F10-085F 4.87 4.76 · 10−7 4.76 · 10−7 M · p̂ < 5F10-052 and F10-052F 4.84 9.53 · 10−7 6.74 · 10−7 M · p̂ < 5F10-084 and F10-084F 4.79 1.43 · 10−6 8.25 · 10−7 M · p̂ < 5F10-037 and F10-37F 4.19 7.15 · 10−6 1.85 · 10−6 (3.53 · 10−6; 1.08 · 10−5)F09-125 and F10-119 4.05 9.05 · 10−6 2.08 · 10−6 (4.98 · 10−6; 1.31 · 10−5)F10-022 and F10-022F 3.67 1.57 · 10−5 2.74 · 10−6 (1.04 · 10−5; 2.11 · 10−5)F10-111 and F10-111F 3.42 1.95 · 10−5 3.05 · 10−6 (1.36 · 10−5; 2.55 · 10−5)F09-021 and F10-086 3.15 2.38 · 10−5 3.37 · 10−6 (1.72 · 10−5; 3.04 · 10−5)F09-068 and F10-146 3.10 2.53 · 10−5 3.47 · 10−6 (1.85 · 10−5; 3.21 · 10−5)F10-060 og F10-148 3.10 2.53 · 10−5 3.47 · 10−6 (1.85 · 10−5; 3.21 · 10−5)
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Table 5.5: 28 highest pairwise parent-o�spring LOD sores and their orresponding Bonferroniorreted p̂-values. Names LODp Bonferroni orreted p̂ Deision at α = 0.05F09-002 and F09-002F 8.97 0.00 Parent and o�springF10-073 and F10-073F 8.46 0.00 Parent and o�springF10-020 and F10-026 7.40 0.00 Parent and o�springF10-035 and F10-035F 6.91 0.00 Parent and o�springF10-018 and F10-018F 6.85 0.00 Parent and o�springF09-081 and F10-030 6.68 0.00 Parent and o�springF10-104 and F10-104F 6.48 0.00 Parent and o�springF10-134 and F10-134F 6.48 0.00 Parent and o�springF10-122 and F10-122F 6.38 0.00 Parent and o�springF10-044 and F10-044F 6.33 0.00 Parent and o�springF09-091 and F09-091F 5.95 0.00 Parent and o�springF10-089 and F10-140 5.47 0.02 Parent and o�springF10-087 and F10-087F 5.46 0.02 Parent and o�springF09-091F and F10-100 5.43 0.02 Parent and o�springF09-075 and F10-123 5.38 0.02 Parent and o�springF10-116 and F10-116F 5.26 0.02 Parent and o�springF10-090 andF10-090F 5.07 0.02 Parent and o�springF10-106 and F10-106F 4.88 0.02 Parent and o�springF10-085 and F10-085F 4.87 0.02 Parent and o�springF10-052 and F10-052F 4.84 0.03 Parent and o�springF10-084 and F10-084F 4.79 0.05 Parent and o�springF10-037 and F10-037F 4.19 0.25 UnrelatedF09-125 and F10-119 4.05 0.32 UnrelatedF10-022 and F10-022F 3.67 0.55 UnrelatedF10-111 and F10-111F 3.42 0.68 UnrelatedF09-021 and F10-086 3.15 0.83 UnrelatedF09-068 and F10-146 3.10 0.88 UnrelatedF10-060 og F10-148 3.10 0.88 Unrelated
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Table 5.6: 28 highest pairwise parent-o�spring LOD sores and their orresponding Qr-valuesPairs LODp p̂ r Qr = (r/n) · q Deision at q = 0.05F09-002 and F09-002F 8.97 0.00 1 1.43 · 10−6 Parent-o�springF10-073 and F10-073F 8.46 0.00 2 2.86 · 10−6 Parent-o�springF10-020 and F10-026 7.40 0.00 3 4.29 · 10−6 Parent-o�springF10-035 and F10-035F 6.91 0.00 4 5.72 · 10−6 Parent-o�springF10-018 and F10-018F 6.85 0.00 5 7.15 · 10−6 Parent-o�springF09-081 and F10-030 6.68 0.00 6 8.58 · 10−6 Parent-o�springF10-104 and F10-104F 6.48 0.00 7 1.00 · 10−5 Parent-o�springF10-134 and F10-134F 6.48 0.00 8 1.14 · 10−5 Parent-o�springF10-122 and F10-122F 6.38 0.00 9 1.29 · 10−5 Parent-o�springF10-044 and F10-044F 6.33 0.00 10 1.43 · 10−5 Parent-o�springF09-091 and F09-091F 5.95 0.00 11 1.57 · 10−5 Parent-o�springF10-089 and F10-140 5.47 4.76 · 10−7 12 1.72 · 10−5 Parent-o�springF10-087 and F10-087F 5.46 4.76 · 10−7 13 1.86 · 10−5 Parent-o�springF09-91F and F10-100 5.43 4.76 · 10−7 14 2.00 · 10−5 Parent-o�springF09-075 and F10-123 5.38 4.76 · 10−7 15 2.14 · 10−5 Parent-o�springF10-116 and F10-116F 5.26 4.76 · 10−7 16 2.29 · 10−5 Parent-o�springF10-090 andF10-090F 5.07 4.76 · 10−7 17 2.43 · 10−5 Parent-o�springF10-106 and F10-106F 4.88 4.76 · 10−7 18 2.57 · 10−5 Parent-o�springF10-085 and F10-085F 4.87 4.76 · 10−7 19 2.72 · 10−5 Parent-o�springF10-052 and F10-052F 4.84 9.53 · 10−7 20 2.86 · 10−5 Parent-o�springF10-084 and F10-084F 4.79 1.43 · 10−6 21 3.00 · 10−5 Parent-o�springF10-037 and F10-37F 4.19 7.15 · 10−6 22 3.14 · 10−5 Parent-o�springF09-125 and F10-119 4.05 9.05 · 10−6 23 3.29 · 10−5 Parent-o�springF10-022 and F10-022F 3.67 1.57 · 10−5 24 3.43 · 10−5 Parent-o�springF10-111 and F10-111F 3.42 1.95 · 10−5 25 3.57 · 10−5 Parent-o�springF09-021 and F10-086 3.15 2.38 · 10−5 26 3.72 · 10−5 Parent-o�springF09-068 and F10-146 3.10 2.53 · 10−5 27 3.86 · 10−5 Parent-o�springF10-060 og F10-148 3.10 2.53 · 10−5 28 4.00 · 10−5 Parent-o�spring
Table 5.7: 9 highest pairwise parent-o�spring LOD sores, mother-foetus pairs not inluded,and their orresponding Qr-valuesPairs LODp p̂ r Qr = (r/n) · q Deision at q = 0.05F10-020 and F10-026 7.40 0.00 1 1.43 · 10−6 Parent-o�springF09-081 and F10-030 6.68 0.00 2 2.86 · 10−6 Parent-o�springF10-089 and F10-140 5.47 4.76 · 10−7 3 4.29 · 10−6 Parent-o�springF09-091F and F10-100 5.43 4.76 · 10−7 4 5.72 · 10−6 Parent-o�springF09-075 and F10-123 5.38 4.76 · 10−7 5 7.15 · 10−6 Parent-o�springF09-125 and F10-119 4.05 9.05 · 10−6 6 8.58 · 10−6 UnrelatedF09-021 and F10-086 3.15 2.38 · 10−5 7 1.00 · 10−5 UnrelatedF98-068 and F10-146 3.10 2.53 · 10−5 8 1.14 · 10−5 UnrelatedF10-060 og F10-148 3.10 2.53 · 10−5 9 1.29 · 10−5 Unrelated
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D.6. The 95% exat binomial on�dene intervals for p̂(5), (1.21 · 10−8; 2.65 · 10−6), and p̂(6),
(5.45 · 10−6; 1.41 · 10−5), do not ollide.One of those �ve lassi�ed parent-o�spring pairs onsists of a foetus, F09-091F, and a male�n whale, F10-100. In this spei� ase, auxiliary geneti data is available, the DNA-pro�le ofthe mother, F09-091. When the pro�le of F09-091 is taken into aount there is still a mathbetween F09-091F and F10-100. It looks like the father of foetus F09-091F has been found.This will be examined loser in the result setion.5.4.3 First CousinsThe �rst ousins LOD sore ompares the hypothesis of a �rst ousins relations against thenull hypothesis of unrelatedness.LOD soresA total of 34 980 �rst ousins LOD sores were alulated by using the formula:
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)))Of those 34 980 LOD sores, 8 238 are larger than zero, 23 are larger than 2 but the largestone is approximately 4.48. The p̂-values for eah LOD sore were attained by simulating 265unrelated individuals, omputing their pair wise �rst ousin LOD sores and omparing themwith the original LOD sores. The simulation proedure had to be repeated 90 times, resultingin 3 148 200 simulated LOD sores, in order to attain su�iently small on�dene intervalsfor the estimated p-values. Table 5.8 ontains the �fty highest �rst ousins LOD sores andtheir orresponding p̂-values. Standard deviation was omputed for eah p̂ as well as 95%asymptoti on�dene intervals for all p̂ that satisfy M · p̂ ≥ 5.As with the half-sibling test proedure, the 1000 lowest p̂-values of the 1000 highest �rstousins LOD sores all look good in the single omparison ase but the largest estimated
p-value in that group is approximately 0.031. If the problem with multiple testing was nottaken into aount then at least 1000 pairs would be lassi�ed as �rst ousins at α = 0.05.Adjustment for multiple testing redues the number of rejetions of the null hypothesis.BonferroniThe Bonferroni adjusted p̂ values are simply attained by multiplying the original p̂-valueswith the number of pairwise LOD sores, 34 980. The mother-foetus pairs are inluded inthat number sine it doesn't hange the result for the non mother-foetus pairs whether theyare inluded or not. Table 5.9 ontains the 50 highest �rst ousins LOD sores and their35



Table 5.8: 50 highest pairwise �rst ousins LOD sores and their orresponding p̂-valuesPairs LODcous p̂ sd(p̂) 95% on�dene intervalF10-073 and F10-073F 4.48 0.00 0.00 M · p̂ < 5F09-002 and F09-002F 4.30 0.00 0.00 M · p̂ < 5F10-020 and F10-026 3.28 0.00 0.00 M · p̂ < 5F09-073 and F10-062 3.00 0.00 0.00 M · p̂ < 5F10-122 and F10-122F 2.90 6.35 · 10−7 4.49 · 10−7 M · p̂ < 5F10-035 and F10-035F 2.87 9.53 · 10−7 5.50 · 10−7 M · p̂ < 5F10-018 and F10-018F 2.86 9.53 · 10−7 5.50 · 10−7 M · p̂ < 5F10-134 and F10-134F 2.78 1.27 · 10−6 6.35 · 10−7 M · p̂ < 5F09-047 and F10-079 2.78 1.27 · 10−6 6.35 · 10−7 M · p̂ < 5F10-044 and F10-044F 2.70 2.22 · 10−6 8.40 · 10−7 (5.76 · 10−7; 3.87 · 10−6)F10-104 and F10-104F 2.68 2.54 · 10−6 8.98 · 10−7 (7.80 · 10−7; 4.30 · 10−6)F09-081 and F10-030 2.65 2.86 · 10−6 9.53 · 10−7 (9.91 · 10−7; 4.73 · 10−6)F09-040 and F10-020 2.59 3.81 · 10−6 1.10 · 10−6 (1.66 · 10−6; 5.97 · 10−6)F09-091 and F09-091F 2.45 6.99 · 10−6 1.49 · 10−6 (4.07 · 10−6; 9.91 · 10−6)F10-116 and F10-116F 2.31 1.49 · 10−5 2.18 · 10−6 (1.07 · 10−5; 1.92 · 10−5)F10-089 and F10-140 2.28 1.91 · 10−5 2.46 · 10−6 (1.42 · 10−5; 2.39 · 10−5)F10-087 and F10-087F 2.22 2.22 · 10−5 2.66 · 10−6 (1.70 · 10−5; 2.74 · 10−5)F09-105 and F10-004 2.14 3.43 · 10−5 3.30 · 10−6 (2.78 · 10−5; 4.08 · 10−5)F09-075 and F10-123 2.13 3.49 · 10−5 3.33 · 10−6 (2.84 · 10−5; 4.15 · 10−5)F10-069 and F10-122F 2.10 4.16 · 10−5 3.64 · 10−6 (3.45 · 10−5; 4.87 · 10−5)F09-040 and F10-026 2.10 4.16 · 10−5 3.64 · 10−6 (3.45 · 10−5; 4.87 · 10−5)F10-085 and F10-085F 2.05 4.96 · 10−5 3.97 · 10−6 (4.18 · 10−5; 5.73 · 10−5)F09-91F and F10-100 2.00 6.35 · 10−5 4.49 · 10−6 (5.47 · 10−5; 7.23 · 10−5)F10-090 andF10-090F 1.95 8.29 · 10−5 5.13 · 10−6 (7.28 · 10−5; 9.30 · 10−5)F10-052 and F10-052F 1.92 9.18 · 10−5 5.40 · 10−6 (8.12 · 10−5; 1.02 · 10−4)F09-095 and F09-107 1.91 9.66 · 10−5 5.54 · 10−6 (8.57 · 10−5; 1.07 · 10−4)F10-106 and F10-106F 1.91 9.66 · 10−5 5.54 · 10−6 (8.57 · 10−5; 1.07 · 10−4)F10-084 and F10-084F 1.85 1.38 · 10−4 6.62 · 10−6 (1.25 · 10−4; 1.51 · 10−4)F09-125 and F10-119 1.81 1.75 · 10−4 7.46 · 10−6 (1.60 · 10−4; 1.90 · 10−4)F10-026 and F10-099 1.75 2.33 · 10−4 8.59 · 10−6 (2.16 · 10−4; 2.49 · 10−4)F10-059 and F10-147 1.68 3.32 · 10−4 1.03 · 10−5 (3.12 · 10−4; 3.52 · 10−4)F09-065 and F10-004 1.67 3.47 · 10−4 1.05 · 10−5 (3.27 · 10−4; 3.68 · 10−4)F10-027 and F10-142 1.64 3.83 · 10−4 1.10 · 10−5 (3.61 · 10−4; 4.05 · 10−4)F09-035 and F10-006 1.62 4.37 · 10−4 1.18 · 10−5 (4.14 · 10−4; 4.60 · 10−4)F09-103 and F10-017 1.61 4.43 · 10−4 1.19 · 10−5 (4.20 · 10−4; 4.66 · 10−4)F10-073 and F10-097 1.60 4.68 · 10−4 1.22 · 10−5 (4.44 · 10−4; 4.92 · 10−4)F10-111 and F10-123 1.59 4.85 · 10−4 1.24 · 10−5 (4.60 · 10−4; 5.09 · 10−4)F09-044 and F10-062 1.58 5.21 · 10−4 1.29 · 10−5 (4.96 · 10−4; 5.46 · 10−4)F09-008 and F09-094 1.56 5.56 · 10−4 1.33 · 10−5 (5.30 · 10−4; 5.82 · 10−4)F10-017 and F10-043 1.55 5.97 · 10−4 1.38 · 10−5 (5.70 · 10−4; 6.24 · 10−4)F10-037 and F10-37F 1.53 6.50 · 10−4 1.44 · 10−5 (6.22 · 10−4; 6.78 · 10−4)F09-040 and F10-135 1.51 7.05 · 10−4 1.50 · 10−5 (6.76 · 10−4; 7.35 · 10−4)F09-069 and FF10-006 1.49 7.84 · 10−4 1.58 · 10−5 (7.53 · 10−4; 8.15 · 10−4)F09-054 and F10-067 1.48 8.19 · 10−4 1.61 · 10−5 (7.87 · 10−4; 8.50 · 10−4)F09-011 and F09-124 1.48 8.19 · 10−4 1.61 · 10−5 (7.87 · 10−4; 8.50 · 10−4)F10-034 and F10-115 1.48 8.22 · 10−4 1.62 · 10−5 (7.91 · 10−4; 8.54 · 10−4)F10-059 and F10-078 1.47 8.73 · 10−4 1.66 · 10−5 (8.40 · 10−4; 9.05 · 10−4)F09-050 and F09-100 1.45 9.27 · 10−4 1.72 · 10−5 (8.93 · 10−4; 9.60 · 10−4)F10-026 and F10-113 1.45 9.34 · 10−4 1.72 · 10−5 (9.00 · 10−4; 9.68 · 10−4)F09-038 and F09-050 1.44 9.72 · 10−4 1.76 · 10−5 (9.38 · 10−4; 1.01 · 10−3)36



Table 5.9: 50 highest pairwise �rst ousins LOD sores and their Bonferroni orreted p̂-valuesNames LODcous Bonferroni orreted p̂ Deision at α = 0.05F10-073 and F10-073F 4.48 0.00 First ousinsF09-002 and F09-002F 4.30 0.00 First ousinsF10-020 and F10-026 3.28 0.00 First ousinsF09-073 and F10-062 3.00 0.00 First ousinsF10-122 and F10-122F 2.90 0.02 First ousinsF10-035 and F10-035F 2.87 0.03 First ousinsF10-018 and F10-018F 2.86 0.03 First ousinsF10-134 and F10-134F 2.78 0.04 First ousinsF09-047 and F10-079 2.78 0.04 First ousinsF10-044 and F10-044F 2.70 0.08 UnrelatedF10-104 and F10-104F 2.68 0.09 UnrelatedF09-081 and F10-030 2.65 0.10 UnrelatedF09-040 and F10-020 2.59 0.13 UnrelatedF09-091 and F09-091F 2.45 0.24 UnrelatedF10-116 and F10-116F 2.31 0.52 UnrelatedF10-089 and F10-140 2.28 0.67 UnrelatedF10-087 and F10-087F 2.22 0.78 UnrelatedF09-105 and F10-004 2.14 1.20 UnrelatedF09-075 and F10-123 2.13 1.22 UnrelatedF10-069 and F10-122F 2.10 1.46 UnrelatedF09-040 and F10-026 2.10 1.46 UnrelatedF10-085 and F10-085F 2.05 1.73 UnrelatedF09-91F and F10-100 2.00 2.22 UnrelatedF10-090 andF10-090F 1.95 2.90 UnrelatedF10-052 and F10-052F 1.92 3.21 UnrelatedF09-095 and F09-107 1.91 3.38 UnrelatedF10-106 and F10-106F 1.91 3.38 UnrelatedF10-084 and F10-084F 1.85 4.82 UnrelatedF09-125 and F10-119 1.81 6.12 UnrelatedF10-026 and F10-099 1.75 8.13 UnrelatedF10-059 and F10-147 1.68 11.61 UnrelatedF09-065 and F10-004 1.67 12.14 UnrelatedF10-027 and F10-142 1.64 13.40 UnrelatedF09-035 and F10-006 1.62 15.28 UnrelatedF09-103 and F10-017 1.61 15.50 UnrelatedF10-073 and F10-097 1.60 16.38 UnrelatedF10-111 and F10-123 1.59 16.96 UnrelatedF09-044 and F10-062 1.58 18.22 UnrelatedF09-008 and F09-094 1.56 19.46 UnrelatedF10-017 and F10-043 1.55 20.87 UnrelatedF10-037 and F10-37F 1.53 22.74 UnrelatedF09-040 and F10-135 1.51 24.68 UnrelatedF09-069 and FF10-006 1.49 27.43 UnrelatedF09-054 and F10-067 1.48 28.63 UnrelatedF09-011 and F09-124 1.48 28.63 UnrelatedF10-034 and F10-115 1.48 28.77 UnrelatedF10-059 and F10-078 1.47 30.52 UnrelatedF09-050 and F09-100 1.45 32.42 UnrelatedF10-026 and F10-113 1.45 32.67 UnrelatedF09-038 and F09-050 1.44 34.00 Unrelated37



Table 5.10: 50 highest pairwise �rst ousins LOD sores and their orresponding Qr valuesPairs LODcous p̂ r Qr = (r/n) · q Deision at q = 0.05F10-073 and F10-073F 4.48 0.00 1 1.43 · 10−6 First ousinsF09-002 and F09-002F 4.30 0.00 2 2.86 · 10−6 First ousinsF10-020 and F10-026 3.28 0.00 3 4.29 · 10−6 First ousinsF09-073 and F10-062 3.00 0.00 4 5.72 · 10−6 First ousinsF10-122 and F10-122F 2.90 6.35 · 10−7 5 7.15 · 10−6 First ousinsF10-035 and F10-035F 2.87 9.53 · 10−7 6 8.58 · 10−6 First ousinsF10-018 and F10-018F 2.86 9.53 · 10−7 7 1.00 · 10−5 First ousinsF10-134 and F10-134F 2.78 1.27 · 10−6 8 1.14 · 10−5 First ousinsF09-047 and F10-079 2.78 1.27 · 10−6 9 1.29 · 10−5 First ousinsF10-044 and F10-044F 2.70 2.22 · 10−6 10 1.43 · 10−5 First ousinsF10-104 and F10-104F 2.68 2.54 · 10−6 11 1.57 · 10−5 First ousinsF09-081 and F10-030 2.65 2.86 · 10−6 12 1.72 · 10−5 First ousinsF09-040 and F10-020 2.59 3.81 · 10−6 13 1.86 · 10−5 First ousinsF09-091 and F09-091F 2.45 6.99 · 10−6 14 2.00 · 10−5 First ousinsF10-116 and F10-116F 2.31 1.49 · 10−5 15 2.14 · 10−5 First ousinsF10-089 and F10-140 2.28 1.91 · 10−5 16 2.29 · 10−5 First ousinsF10-087 and F10-087F 2.22 2.22 · 10−5 17 2.43 · 10−5 First ousinsF09-105 and F10-004 2.14 3.43 · 10−5 18 2.57 · 10−5 UnrelatedF09-075 and F10-123 2.13 3.49 · 10−5 19 2.72 · 10−5 UnrelatedF10-069 and F10-122F 2.10 4.16 · 10−5 20 2.86 · 10−5 UnrelatedF09-040 and F10-026 2.10 4.16 · 10−5 21 3.00 · 10−5 UnrelatedF10-085 and F10-085F 2.05 4.96 · 10−5 22 3.14 · 10−5 UnrelatedF09-91F and F10-100 2.00 6.35 · 10−5 23 3.29 · 10−5 UnrelatedF10-090 andF10-090F 1.95 8.29 · 10−5 24 3.43 · 10−5 UnrelatedF10-052 and F10-052F 1.92 9.18 · 10−5 25 3.57 · 10−5 UnrelatedF09-095 and F09-107 1.91 9.66 · 10−5 26 3.72 · 10−5 UnrelatedF10-106 and F10-106F 1.91 9.66 · 10−5 27 3.86 · 10−5 UnrelatedF10-084 and F10-084F 1.85 1.38 · 10−4 28 4.00 · 10−5 UnrelatedF09-125 and F10-119 1.81 1.75 · 10−4 29 4.15 · 10−5 UnrelatedF10-026 and F10-099 1.75 2.33 · 10−4 30 4.29 · 10−5 UnrelatedF10-059 and F10-147 1.68 3.32 · 10−4 31 4.43 · 10−5 UnrelatedF09-065 and F10-004 1.67 3.47 · 10−4 32 4.57 · 10−5 UnrelatedF10-027 and F10-142 1.64 3.83 · 10−4 33 4.72 · 10−5 UnrelatedF09-035 and F10-006 1.62 4.37 · 10−4 34 4.86 · 10−5 UnrelatedF09-103 and F10-017 1.61 4.43 · 10−4 35 5.00 · 10−5 UnrelatedF10-073 and F10-097 1.60 4.68 · 10−4 36 5.15 · 10−5 UnrelatedF10-111 and F10-123 1.59 4.85 · 10−4 37 5.29 · 10−5 UnrelatedF09-044 and F10-062 1.58 5.21 · 10−4 38 5.43 · 10−5 UnrelatedF09-008 and F09-094 1.56 5.56 · 10−4 39 5.57 · 10−5 UnrelatedF10-017 and F10-043 1.55 5.97 · 10−4 40 5.72 · 10−5 UnrelatedF10-037 and F10-37F 1.53 6.50 · 10−4 41 5.86 · 10−5 UnrelatedF09-040 and F10-135 1.51 7.05 · 10−4 42 6.00 · 10−5 UnrelatedF09-069 and FF10-006 1.49 7.84 · 10−4 43 6.15 · 10−5 UnrelatedF09-054 and F10-067 1.48 8.19 · 10−4 44 6.29 · 10−5 UnrelatedF09-011 and F09-124 1.48 8.19 · 10−4 45 6.43 · 10−5 UnrelatedF10-034 and F10-115 1.48 8.22 · 10−4 46 6.58 · 10−5 UnrelatedF10-059 and F10-078 1.47 8.73 · 10−4 47 6.72 · 10−5 UnrelatedF09-050 and F09-100 1.45 9.27 · 10−4 48 6.86 · 10−5 UnrelatedF10-026 and F10-113 1.45 9.34 · 10−4 49 7.00 · 10−5 UnrelatedF09-038 and F09-050 1.44 9.72 · 10−4 50 7.15 · 10−5 Unrelated38



Table 5.11: 33 highest pairwise �rst ousins LOD sores, mother-foetus pairs not inluded,and their orresponding Qr valuesPairs LODcous p̂ r Qr = (r/n) · q Deision at q = 0.05F10-020 and F10-026 3.28 0.00 1 1.43 · 10−6 First ousinsF09-073 and F10-062 3.00 0.00 2 2.86 · 10−6 First ousinsF09-047 and F10-079 2.78 1.27 · 10−6 3 4.29 · 10−6 First ousinsF09-081 and F10-030 2.65 2.86 · 10−6 4 5.72 · 10−6 First ousinsF09-040 and F10-020 2.59 3.81 · 10−6 5 7.15 · 10−6 First ousinsF10-089 and F10-140 2.28 1.91 · 10−5 6 8.58 · 10−6 UnrelatedF09-105 and F10-004 2.14 3.43 · 10−5 7 1.00 · 10−5 UnrelatedF09-075 and F10-123 2.13 3.49 · 10−5 8 1.14 · 10−5 UnrelatedF10-069 and F10-122F 2.10 4.16 · 10−5 9 1.29 · 10−5 UnrelatedF09-040 and F10-026 2.10 4.16 · 10−5 10 1.43 · 10−5 UnrelatedF09-91F and F10-100 2.00 6.35 · 10−5 11 1.57 · 10−5 UnrelatedF09-095 and F09-107 1.91 9.66 · 10−5 12 1.72 · 10−5 UnrelatedF09-125 and F10-119 1.81 1.75 · 10−4 13 1.86 · 10−5 UnrelatedF10-026 and F10-099 1.75 2.33 · 10−4 14 2.00 · 10−5 UnrelatedF10-059 and F10-147 1.68 3.32 · 10−4 15 2.15 · 10−5 UnrelatedF09-065 and F10-004 1.67 3.47 · 10−4 16 2.29 · 10−5 UnrelatedF10-027 and F10-142 1.64 3.83 · 10−4 17 2.43 · 10−5 UnrelatedF09-035 and F10-006 1.62 4.37 · 10−4 18 2.57 · 10−5 UnrelatedF09-103 and F10-017 1.61 4.43 · 10−4 19 2.72 · 10−5 UnrelatedF10-073 and F10-097 1.60 4.68 · 10−4 20 2.86 · 10−5 UnrelatedF10-111 and F10-123 1.59 4.85 · 10−4 21 3.00 · 10−5 UnrelatedF09-044 and F10-062 1.58 5.21 · 10−4 22 3.15 · 10−5 UnrelatedF09-008 and F09-094 1.56 5.56 · 10−4 23 3.29 · 10−5 UnrelatedF10-017 and F10-043 1.55 5.97 · 10−4 24 3.43 · 10−5 UnrelatedF09-040 and F10-135 1.51 7.05 · 10−4 25 3.58 · 10−5 UnrelatedF09-069 and FF10-006 1.49 7.84 · 10−4 26 3.72 · 10−5 UnrelatedF09-054 and F10-067 1.48 8.19 · 10−4 27 3.86 · 10−5 UnrelatedF09-011 and F09-124 1.48 8.19 · 10−4 28 4.00 · 10−5 UnrelatedF10-034 and F10-115 1.48 8.22 · 10−4 29 4.15 · 10−5 UnrelatedF10-059 and F10-078 1.47 8.73 · 10−4 30 4.29 · 10−5 UnrelatedF09-050 and F09-100 1.45 9.27 · 10−4 31 4.43 · 10−5 UnrelatedF10-026 and F10-113 1.45 9.34 · 10−4 32 4.58 · 10−5 UnrelatedF09-038 and F09-050 1.44 9.72 · 10−4 33 4.72 · 10−5 UnrelatedBonferroni orreted p̂ values.By using the Bonferroni adjustment and putting α = 0.05 only nine pairs in the total datasetare onluded as �rst ousins. Six of those nine are mother-foetus pairs.FDRThe FDR proedure arranges the p̂ values for eah LOD sore in inreasing order p̂(1) ≤ p̂(2) ≤
..... ≤ p̂(n). The target false disovery rate is q = 0.05. Here the result for the non mother-foetus pairs depends on whether the mother-foetus pairs are inluded in the ranking of the
p̂-values or not. For that reason the FDR proedure was arried out twie, �rst inluding themother-foetus pairs, see result in table 5.10, and then without inluding the mother-foetuspairs, see result in table 5.11. 39



When the mother-foetus pairs are inluded in the ranking, 17 pairs of individuals are onludedto be �rst ousins, 11 of them are mother-foetus pairs. Not inluding the mother-foetus pairsresults in one less disoveries of �rst ousins among the non mother-foetus pairs or �ve intotal. The 95% on�dene intervals of p̂(5), (the estimated p-value for the �rst ousins LODsore of F09-040 and F10-020), and p̂(6), (the estimated p-value for the �rst ousins LOD soreof F10-089 and F10-140), do not ollide as an be seen in table 5.8.5.5 ResultsIt is evident that the FDR proedure with the false disovery rate �xed at q = 0.05 does abetter job than the Bonferroni proedure at a signi�ane level of α = 0.05 at alloating themother-foetus pairs in the related group where they should be. The fat the FDR proedurefailed to onlude three mother-foetus pairs that had a �nite LODp sore as relatives, givesreason to wonder whether the false disovery rate should be �xed at a higher point than
q = 0.05 in order to detet all types of �rst and seond order relatives with the half-siblingLOD sore. q would have to be raised to 0.42 so that all the mother-foetus pairs with �nite
LODp sores would be onluded as related and as high as 0.69 so that the two mother-foetuspairs with an in�nitely negative LODp sore would be lassi�ed as relatives as well.The FDR proedure orretly onludes all of the 19 mother-foetus pairs with a �nite LODpsore to be a parent and an o�spring while the Bonferroni proedure misses three of those 19pairs. As was expeted, the Bonferroni proedure seems to be too strit for this large numberof pairwise omparisons and that results in lassifying true relatives as unrelated. For thisreason onlusions of relatedness will be drawn from the results of the FDR proedure butnot the Bonferroni proedure.Table 5.12 summarizes the pairs that were lassi�ed as relatives by the FDR proedure, not in-luding the mother-foetus pairs. The half-sibling LOD sore, whih Skaug et al (2010) pointedout was a good general test statisti to detet all types of �rst and seond order relatives, de-teted eight pairs of relatives at q = 0.05. The parent-o�spring LOD sore deteted �ve ofthose eight pairs as a parent and an o�spring. The �rst ousins LOD sore deteted �ve pairsof �rst ousins but LODh.sib lassi�ed all those pairs as relatives at q = 0.05.In order to ome to a onlusion about a spei� relatedness for eah pair, non geneti evi-dene, the estimation of their age and age of maturity, has to be taken into aount. Reallthat �n whales beome mature when they're 7-12 years old (Víkingsson, 2005). If the agedi�erene between two �n whales is smaller than the older whale's age of maturity then theonlusion is that it is impossible for them to be a parent and his/her o�spring. It is hard tomake statements about when �n whales stop being fertile and for that reason there will be noupper limit on the possible age di�erene between a parent and an o�spring in this analysis.The oldest females (they were two) arrying a foetus in this sample were estimated to be 41.5years old whih shows that there are females that are fertile until they reah that age at least.When the estimated age has been aounted for, the LOD sores for the remaining possiblerelations have to be ompared. LODh.sib, LODp and LODcous ompare the probability ofthe data under the hypothesis of a spei� relatedness with the probability of the data under40



Table 5.12: Results from the FDR proedure with q = 0.05 not inluding non mother-foetuspairs Pairs Related LODh.sib Parent-o�spring LODp First ousins LODcousF10-020 and F10-026 Yes 5.07 Yes 7.40 Yes 3.28F09-073 and F10-062 Yes 4.58 No −∞ Yes 3.00F09-081 and F10-030 Yes 4.34 Yes 6.68 Yes 2.65F09-047 and F10-079 Yes 3.70 No −∞ Yes 2.78F09-040 and F10-020 Yes 3.70 No −∞ Yes 2.59F10-089 and F10-140 Yes 3.64 Yes 5.47 No 2.28F09-075 and F10-123 Yes 3.48 Yes 5.38 No 2.13F09-91F and F10-100 Yes 3.42 Yes 5.43 No 2.00the null hypothesis of unrelatedness. At this point a omparison of the probability of thedata under one spei� relatedness with the probability of the data under another spei�relatedness is needed. This may be done by simply subtrating one LOD sore from the othersine log(a
c
)− log( b

c
) = log(a) − log(c) − log(b) + log(c) = log(a)− log(b) = log(a

b
).If the �nal onlusion for a pair is that they are half-siblings, their estimated age has to beonsidered again. Reall that it is impossible to distinguish between a pair of half-siblings,grandparent-grandhild pair and unle/aunt-nephew/niee pair from geneti evidene alone.Information about age an help with that. If the age di�erene between two �n whales issmaller than the estimated maturity age of the older �n whale plus seven years, the onlu-sion in this analysis will be that it is impossible for them to be a grandparent and his/hergrandhild. There will be no upper limit on the possible age di�erene between a grandpar-ent and his/her grandhild for the same reason there is no upper limit on the possible agedi�erene between a parent and his/her o�spring. Information on the age of the females ar-rying a foetus in this sample, implies that the age di�erene between a grandmother and hergrandhild an be at least as big as 83 years.F10-020 and F10-026The �n whales F10-020, a 39.5 years old female that beame mature when she was 10 yearsold, and F10-026, a 25 years old male, are onluded related from the half-sibling LOD soreat q = 0.05. They are also onluded as a mother and her son from LODp and as �rst ousinsfrom LODcous. Sine their age di�erene doesn't exlude that they are a mother and son pairthe probability of the data under these spei� relatedness hypothesis have to be ompared:

log(
P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 5.07 − 7.40 = −2.33F10-020 and F10-026 are more likely to be a parent and an o�spring pair than half-siblings.
log(

P (data | parent and offspring)

P (data | first cousins)
) = LODp − LODcous

= 7.40− 3.28 = 4.12F10-020 and F10-026 are more likely to be a parent and her o�spring than �rst ousins. Theonlusion is therefore that F10-020 and F10-026 are a mother and her son.41



F09-073 and F10-062The individual whales F09-073, a 14.5 years old male, and F10-062, a 37.5 years old malewith an estimated maturity age of 10.5 years, are onluded related from the half-sibling LODsore at q = 0.05. They are also onluded as �rst ousins from LODcous. The probability ofthe data under these spei� relatedness hypothesis have to be ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 4.58− 3.00 = 1.58F09-073 and F10-062 are more likely to be half-siblings, a grandfather and his grandson or anunle and his nephew than to be �rst ousins. Sine their age di�erene is 22 years (F10-062was 36.5 years old in 2009) it is impossible to draw further onlusions about their relatedness.F09-081 and F10-030The individual whales F09-081, a 15 years old female, and F10-030, a 45 years old femalewith an estimated maturity age of 11 years, are onluded related from their half-sibling LODsore at q = 0.05. They are also onluded as a mother and a daughter from LODp andas �rst ousins from LODcous. Sine their age di�erene doesn't exlude mother-daughterrelations the probability of the data under these three spei� relatedness hypothesis have tobe ompared:
log(

P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 4.34 − 6.68 = −2.34

log(
P (data | parent and offspring)

P (data | first cousins)
) = LODp − LODcous

= 6.68− 2.65 = 4.03The onlusion is that F10-030 and F09-081 are a mother and her daughter.F09-047 and F10-079The individual whales F09-047, a 39 years old male with an estimated maturity age of 10years, and F10-079, a 22 years old male, are onluded related from the half-sibling LODsore at q = 0.05. They are also onluded as �rst ousins from LODcous. The probability ofthe data under these spei� relatedness hypothesis have to be ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 3.70− 2.78 = 0.92F09-047 and F10-079 are onluded as half-siblings or a grandfather and his grandson or anunle and his nephew. Their age di�erene is 18 years (note that F10-079 was 21 years old in2009) so no further onlusions an be drawn about their relatedness.42



F09-040 and F10-020The individual whales F09-040, a 20 years old female, and F10-020, a 39.5 years old femalewith an estimated maturity age of 10 years, are onluded related from the half-sibling LODsore at q = 0.05. They are also onluded as �rst ousins from LODcous. The probability ofthe data under these spei� relatedness hypothesis have to be ompared:
log(

P (data | half − siblings)

P (data | first cousins)
) = LODh.sib − LODcous

= 3.70− 2.59 = 1.11F10-020 and F09-040 are onluded as half-siblings or a grandmother and her granddaughteror an aunt and her nie. Their age di�erene is 18.5 years (F10-020 was 38.5 years old in2009) so no further onlusions an be drawn about their relatedness.F10-089 and F10-140The individual whales F10-089, a 47 years old male with an estimated maturity age of 11years, and F10-140, a 37.5 years old female, are onluded related from the half-sibling LODsore at q = 0.05. They are also onluded as a father and his daughter from LODp. Sinetheir age di�erene is less than 11 years then it is impossible for F10-089 to be the father ofF10-140.
log(

P (data | half − siblings)

P (data | parent and offspring)
) = LODh.sib − LODp

= 3.64 − 5.47 = −1.83Here it beomes evident how important it is to take non geneti evidene into aount butomparison of the LOD sores indiates that these two whales are more likely to be a fatherand his daughter than half-siblings. Sine the estimation of their age indiates that it isimpossible, the onlusion is that F10-089 and F10-140 are either half-siblings or an unle andhis niee (or an aunt and her nephew) but grandfather and granddaughter relations an beruled out beause of the age di�erene.F09-075 and F10-123The individual whales F09-075, a 22 years old female with an estimated maturity age of 12years, and F10-123, a 18.5 years old female, are onluded related from the half-sibling LODsore at q = 0.05. They are also onluded as a mother and her daughter from LODp. Theirage di�erene is only four and a half year whih exludes the probability of them being amother and her daughter.
log(

P (data | half − siblings)

P (data | parent and offspring
) = LODh.sib − LODp

= 3.48 − 5.38 = −1.9Here, as in the ase of F10-089 and F10-140, the geneti evidene indiates that these two �nwhales are more likely to be a mother and her daughter than half-siblings. Sine the estimationof their age shows that it is impossible, the onlusion is that F09-075 and F10-123 are eitherhalf-sisters or an aunt and her niee. Grandmother and granddaughter relations an be ruledout beause of the age di�erene. 43



F09-091F and F10-100The foetus F09-091F and F10-100, a 35.5 years old male with a maturity age of 11 years, areonluded related by the half-sibling LOD sore at q = 0.05. They are also onluded as aparent and an o�spring by LODp. Sine the age of F10-100 doesn't exlude him from beingthe father of F09-091F the probability of the data under these spei� relatedness hypothesishave to be ompared:
log(

P (data | half − siblings)

P (data | parent and offspring
) = LODh.sib − LODp

= 3.42 − 5.43 = −2.1F10-100 and F09-091F are more likely to be a father and his o�spring than to be half-siblings.In this ase, further auxiliary data is available, the DNA pro�le of F09-091. A paternity likeli-hood ratio an be omputed for F10-100 and F09-091F sine the mother of F09-091F is known.The di�erene between the parent-o�spring likelihood ratio and the paternity likelihood ratiois that the latter one aounts for the mothers pro�le while the other one doesn't. Balding(2005) provides a good desription of the omputation of paternity likelihood ratios.At 13 of 15 loi, the genotype of F09-091 su�es to determine the paternal allele of F09-091F,either beause F09-91F is homozygous1 at those loi or beause F09-091F shares exatly oneallele with F09-091. At those loi, F10-100 would be exluded from being the father of F09-091F if the paternal allele type was not present in his genotype at one lous or more. That isnot the ase here, but nothing in the geneti pro�le of F09-091 exludes F10-100 from beingthe father of F09-091F. The single lous paternity likelihood ratios for F10-100 and F09-091F,at the loi where the paternal allele is known and F10-100 is homozygous, are omputed inthe following way:
LR =

P (Cp = ai | F = (ai, ai) is the father of C)

P (Cp = ai | Z is the father of C)

=
1

p(ai)

(5.1)
Cp stands for the paternal allele of individual C. The numerator is 1 sine a father withgenotype (ai, ai) passes ai to his o�spring with a probability of 1. The denominator is theprobability that an allele drawn from Z, some male other than F , is ai. Sine the genetipro�le of Z is unavailable, this probability is regarded here as p(ai), the proportion of ai allelesin the population of potential fathers. The single lous paternity likelihood ratios for F10-100and F09-091F, at the loi where the paternal allele is known and F10-100 is heterozygous2,are omputed in the following way:

LR =
P (Cp = ai | F = (ai, aj) is the father of C)

P (Cp = ai | Z is the father of C)

=
0.5

p(ai)

=
1

2 · p(ai)

(5.2)1Has two opies of the same allele at that lous.2Has two di�erent allele types at that lous. 44



The numerator is 0.5 sine a father with genotype (ai, aj) passes ai to his o�spring with aprobability of 0.5. At 2 of 15 loi, F09-091 and F091F have an idential heterozygous genotypewhile the genotype of F10-100 is homozygous and ontains one of F09-091F allele types. Atthese loi it is not lear whih allele of F09-91F is the maternal allele and whih one is thepaternal allele. The single lous paternity likelihood ratios for F10-100 and F09-091F, at theloi where the paternal allele is unknown and F10-100 is homozygous, are omputed in thefollowing way:
LR =

P (C = (ai, aj) | M = (ai, aj), F = (aj , aj) is the father of C)

P (C = (ai, aj) | M = (ai, aj), Z is the father of C)

=
0.5 · 1

(0.5 · p(ai) + 0.5 · p(aj))

=
1

p(ai) + p(aj)

(5.3)The mother is denoted here with M . The numerator takes value 0.5 sine a father with geno-type (aj , aj) passes aj to his o�spring with probability 1 while a mother with genotype (ai, aj)passes ai to her o�spring with probability 0.5. If F is not the father of C then the two possibletransmissions from M to C have to be onsidered with the proportion of ai and aj alleles inthe population of potential fathers. That gives the denominator of: (0.5 · p(ai) + 0.5 · p(aj))(Balding, 2005).When the 15 single lous paternity likelihood ratios have been omputed for F10-100 andF09-091F, then their paternity LOD sore is attained by multipliation and taking the 10thlogarithm of the result:
LODpaternity = log(

1

2 · p1(159)
·

1

p2(193)
·

1

2 · p3(125)
·

1

2 · p4(125)

·
1

2 · p5(169)
·

1

p6(116)
·

1

p7(114) + p7(118)
·

1

p8(106) + p8(112)

·
1

2 · p9(154)
·

1

2 · p10(215)
·

1

2 · p11(270)
·

1

2 · p12(96)

·
1

2 · p13(269)
·

1

2 · p14(207)
·

1

p15(86)
)

= 8.17

ps(ai) is the estimated population allele frequeny of ai at lous s.The paternity LOD sore of F10-100 and F09-091F is higher than their parent-o�spring LODsore by: 8.17 − 5.43 = 2.74. By onsidering F10-100, F09-091 and F09-091F jointly asa parent-pair and their o�spring, F10-100 an now be lassi�ed as the father of F09-091Fwith greater determination than when F10-100 and F09-091F were examined pairwise. The�nal onlusion here is that F10-100 is the father of F09-091F but that is the same result asPampoulie et al. (2012) attained when they searhed for fathers of the foetuses in this samesample.
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Table 5.13: DNA pro�les of F09-091, F09-091F and F10-100Lous F09-091 F09-91F F10-100EV001 157/163 159/163 159/171EV037 193/193 193/193 193/193GT011 127/131 125/131 117/125GT023 127/129 125/129 125/129GT195 161/175 161/169 169/173GT211 120/120 116/120 116/116GT271 114/118 114/118 118/118GT310 106/112 106/112 112/112GT575 154/156 154/154 152/154GATA028 199/219 199/215 215/227GATA053 262/262 262/270 258/270GATA098 100/100 96/100 96/108GATA417 269/277 269/269 269/285GGAA520 201/223 207/223 207/219TAA023 86/86 86/86 86/86Table 5.14: Deteted pairs of relatives within the samplePairs ConlusionF10-020 and F10-026 Mother and sonF10-062 and F09-073 Half-brothers/grandfather and grandson/unle and nephewF10-030 and F09-081 Mother and daughterF09-047 and F10-079 Half-brothers/grandfather and grandson/unle and nephewF10-020 and F09-040 Half-sisters/grandmother and granddaughter/aunt and nieeF10-089 and F10-140 Half-siblings/unle and niee/aunt and nephewF09-075 and F10-123 Half-sisters/niee and auntF10-100 and F09-91F Father and o�springThe �nal result of the analysis has been summarized in table 5.14. The test proedure de-teted all in all eight pairs of related individuals within the dataset of 34 959 pairs. Threeof those related pairs were lassi�ed as a parent and his/her o�spring, three were lassi�edas half-siblings or a grandparent-grandhild pair or an unle/aunt-nephew/niee pair and twowere lassi�ed as half-siblings or an unle/aunt-niee/nephew pair.
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Chapter 6DisussionsVery little is known about the seond biggest marine mammal in the world, the �n whale.Fin whales are very di�ult to observe so unertainties remain about their geneti struture,abundane, mating strategies and migration patterns (Ægisson and Hlíðberg, 2010, Víkings-son, 2005, Pampoulie et al., 2012). Several geneti studies of this speies have been performedover the last few deades in order to �nd out more about their migration patterns but theresults were so far inonlusive. Sighting surveys indiate that �n whales are most ommonlyseen alone or in pairs and relatedness analyses on�rmed that related individuals more om-monly our at the same feeding loation (Pampoulie et al., 2012).Ieland has maintained an individual-based DNA-registry for �n whales for some time. Thepresent study used data from this registry by using a general statistial proedure for detetingpairs of relatives. Three types of relatedness were of interest, half-siblings, parent-o�springand �rst ousins relations. Relatedness was tested among 265 individuals whih means that
265·264

2 = 34 980 pairwise relations were examined. 21 known mother-foetus pairs were presentin the sample. These pairs were very bene�ial for the analysis sine assumptions about thequality of the test proedure ould be drawn from the ability to detet their relatedness. Hardy-Weinberg and linkage equilibrium were assumed and the population allele frequenies wereestimated diretly from the dataset exluding the foetuses. Detetion of relatives was done byomputing pairwise LOD sores for the 265 individuals in the sample for eah relatedness ofinterest. If Di and Dj were the geneti pro�les of individuals i and j than the LOD sore fortheir relatedness would be denoted with (Skaug et al., 2010):
LODi,j = log(

P (Di,Dj | H1 : related)

P (Di,Dj | H0 : unrelated)
)A high LOD sore indiates relatedness but that entails an issue of what should be onsideredto be high enough. That issue was aounted for by reporting a single p-value with eah LODsore. The p-values were attained via simulation. 265 unrelated individuals were simulatedwith the same population allele frequenies as the ones estimated from the dataset and thentheir pairwise LOD sores were omputed. This proedure was repliated at least 60 times.The p-values were omputed by omparing the original LOD sores with the simulated onesbut pi,j an be desribed as the probability of attaining as extreme or more extreme LODsore than LODi,j just by hane. All omputations and simulations were done by using theopen soure program R (R Development Core Team, 2011), and the odes written an be47



found in appendix D.Relatedness was tested for every possible pair in the dataset. The high number of pairwiseomparisons raised a well known statistial issue, the problem of multiple testing. The prob-lem of multiple testing was addressed by omparing two multiple adjustment methods, theBonferroni orretion and the FDR proedure. The Bonferroni orretion ontrols the familywise error rate while the FDR proedure ontrols the false disovery rate. The Bonferroniorretion is known to be very onservative when the number of multiple test is high. TheFDR proedure is more �exible sine it takes the number of erroneous false disoveries of re-latedness into aount instead of only the question of whether any error was made (Benjaminiand Hohberg, 1995).In this study, onlusions about relatedness are drawn from the result of the FDR proeduresine it performed better than the Bonferroni orretion at alloating the mother-foetus pairsin the related group. The FDR proedure, with the false disovery rate �xed at q = 0.05,orretly onluded all of the 19 mother-foetus pairs with a �nite LODp sore1 to be a motherand her o�spring while the Bonferroni proedure, at a signi�ane level of α = 0.05, missedthree of those 19 pairs. As was expeted, the Bonferroni proedure was too strit for this largenumber of simultaneous pairwise omparisons with the ost of not deteting true relatives.At q = 0.05, eight pairs of relatives were deteted in the sample2. Three of those pairs werelassi�ed as a parent and an o�spring pair, three pairs were lassi�ed as half-siblings or agrandparent-grandhild pair or an unle/aunt-nephew/niee pair and the remaining two ofthose eight pairs were lassi�ed as half-siblings or an unle/aunt-nephew/nie pair. No �rstousins were deteted within the dataset. The result might have been di�erent if the genetipro�les ontained information about more loi. There is of ourse a possibility, that all theeight mathes of relatives were inidental and due to low number of loi employed but there'salso a possibility that information about more loi would have resulted in an inreased rateof deteted relatives.In their paper 'Deteting dyads of related individuals in large olletions of DNA-pro�les byontrolling the false disovery rate', Skaug et al. (2010) onsidered 'half-siblings' to be a rea-sonable hoie for a general test to detet all types of lose 1st- and 2nd order relationships.The results of this study are some what in harmony with that reommendation. At q = 0.05the half-sibling LOD sore deteted all the pairs that LODp onluded as a parent and ano�spring as well as all the pairs that LODcous lassi�ed as �rst ousins. However LODh.sibfailed to detet �ve mother-foetus pairs as relatives, thereof three with a �nite LODp sore.That indiates that, in order for the half-sibling LOD sore to detet all relatives of 1st-order,the false disovery rate has to be �xed at a higher level than q = 0.05. q had to be raised to
0.42 so that LODh.sib would have deteted all mother-foetus pairs with a �nite LODp and ashigh as 0.69 so that the two mother-foetus pairs with an in�nitely negative LODp sore wouldhave been lassi�ed as relatives as well.1The mother-foetus pairs are 21 in the sample but two of those pairs don't have mathing alleles at onelous due to mutation or a typing error whih results in an in�nitely negative parent-hild LOD sore.2Mother-foetus pairs exluded. 48



In 'A note on a mother-foetus pair and alleged father math in the Atlanti �n whale (Bal-aenoptera physalus) o� Ieland' Pampoulie et al. (2012) analysed the same Ielandi �n whaleregistry that is used in the present study. They did so by statistially omparing the genotypepro�les of the 23 mother-foetus pairs to that of the 139 potential fathers within the database.The software WHICHPARENTS (available at: http://www-bml.udavis.edu/whihparents.html)was used to assess potential rosses among mother-foetus and alleged father, using 0-4 poten-tial misses. The exlusion program WHICHPARENTS revealed the presene of one possibleross between a mother-foetus pair and an alleged father when run with 0 miss proedure,i.e. a 100% math. Additional analyses of this possible family, involving the mother F09-091,her foetus F09-091F and the alleged father F10-100, was performed in the software PATCANv1.2 (available on request to J.A. Rianho; Rianho and Zarrabeitia (2003)) to assess thepaternity probability of the potential father. It revealed a high likelihood and probabilityassoiated with the hypothesis that the alleged father was the true biologial father of thefoetus F09-091F. Pampoulie et al. point out that their math might be inidental and due tothe low number of loi employed. They argue that at least two hypothesis an be onsideredto explain the observed trio-math:1. The deteted mating pair ourring at the same mating loation exhibited a similarmigration habit during the winter.2. The deteted mating pair may originally belong to two di�erent populations (or matingloations) among whih gene �ow may not be restrited, whih might indiate thatindividual �n whale from di�erent mating loation may roam aross the North Atlantiduring the winter feeding migration.F10-100, F09-091 and F09-091F were also lassi�ed as a parent-pair and their o�spring inthe present analysis. LODh.sib deteted F10-100 and F09-091F as relatives at q = 0.05 and
LODp lassi�ed them as a parent and an o�spring. After the pro�les of F10-100, F09-091 andF09-091F had been examined jointly by omputing the paternity LOD sore for F10-100 andF09-091F, this trio was onluded as a parent-pair and their o�spring.The aim of relatedness detetion studies varies. Here, the main interest was the performaneof the statistial proedure. The mother-foetus pairs within the Ielandi �n whale registrywere extremely valuable from that perspetive. The test proedures seemed to operate wellat deteting relatives and lassifying their relatedness. It's ability to detet the mother-foetuspairs as a parent and o�spring was very good, and it's ability to onlude them as related,by using the half-sibling LOD sore, was also good if one would be ontent with a high falsedisovery rate.Of ourse, the assumptions made, in the proess of designing the test proedure, limit its per-formane, but no statistial test an take into aount the omplexity of organims-life yle.Hardy-Weinberg and linkage equilibrium are assumed and, sine the true population allelefrequenies of �n whales in the EGI area are unknown, the allele frequenies were estimateddiretly from the dataset. Another limitation of the test proedure, sine it is based on pair-wise omparisons, is that it only takes two individuals into aount at a time and that anlead to inonsistent pedigree results. For example, it is possible, in the ase of simultaneouspairwise omparisons, that individuals A and B are lassi�ed as full siblings and that B and C49



are lassi�ed as full sibling but at the same time A and C are lassi�ed as half-siblings3 (Fer-nández and Toro, 2006). Also in parentage analysis, it is possible that A and C are lassi�edas a father and his o�spring and that B and C are lassi�ed as a mother and her o�spring inpairwise omparisons, but, when onsidered jointly, this family might be inompatible with aparent-pair and o�spring relationship (Jones and Wang, 2009).The present analysis had very few mathes of relatives so it was pretty straight forward to hekfor inonsistent pedigree results. F10-020 has two deteted relatives within the database. Shewas lassi�ed as the mother of F10-026 as well as a half-sister/grandmother/aunt of F09-040but those relations do obviously not result in an inonsistent pedigree. F10-100 was detetedas the father of the foetus F09-91F. In that ase, F10-100, F09-091 and F09-091F had tobeen onsidered jointly as a family. That was done by omputing the paternity LOD sorefor F10-100 and F09-091F whih revealed that the trio was ompatible with a parent-pairand o�spring relationship. In some ases it might be more di�ult to hek for inonsistentresults, suh as in the ase of studies that result in a high number of deteted dyads of rela-tives. It might then be more suitable to use an alternative omputer program like COLONY(available at: https://www.zsl.org/siene/researh-projets/software/olony,1154,AR.html)that implements full-pedigree likelihood methods to simultaneously infer sibship and parent-age among individuals, with likelihood onsidered over the entire pedigree on�guration (Jonesand Wang, 2009).There are many possibilities for further work with the present proedure. Regarding the �nwhale data, it would be interesting to test if there are any full siblings within the dataset.Disovery of �rst ousins would have implied that there are full sibling �n whales out there(sine �rst ousins are hildren of full siblings), but no �rst ousins were deteted within thepresent dataset. The study ould be used to evaluate eologial information of �n whalesin Ielandi waters. For example, the disoveries of relatives ould be regarded as a mark-reapture experiment and used for abundane estimation (Skaug and Oien, 2005). The odesgiven in appendix D an be used for testing for relatedness within other geneti datasets, theonly requirement is that the geneti data is on matrix form. Developing the odes into a moreuser-friendly mode, for example as a R pakage, might be of interest for relatedness analysisof researh fousing on mark-reapture geneti studies using non-lethal tehniques (biopsy).If one were to use the statistial proedure, presented in this paper, to detet many di�erenttypes of relatives within a large database, the following steps are reommended:1. Compute all pairwise half-sibling LOD sores2. Divide the pairs into two groups, 'Related group of pairs' and 'Unrelated group of pairs'based on how the FDR proedure lassi�es the pairs at a rather high q, for example
q = 0.53. The 'Related group of pairs' is searhed for parent-o�spring pairs, �rst ousins, siblingsand half-siblings at a lower qSine the 'Related group of pairs' should be onsiderably smaller than the original group ofpairs, following those steps, instead of omputing di�erent LOD for eah relatedness hypoth-esis, ould save a lot of omputing time in the ase of very large datasets.3It beame lear in the explanatory example in hapter 4.3 that the test proedure onludes full siblingsto be half-siblings if they don't have an idential genotype at any lous.50
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Appendix AKinship oe�ientsOne of the simplest probabilities of gene identity by desent is the lassial kinship oe�ient.The kinship oe�ient, kj , between two individuals is de�ned as the probability that theyhave inherited j alleles at a lous idential by desent given a ertain relatedness.A.1 SiblingsFull siblings an share 0, 1 or 2 alleles at a lous but the probabilities di�er. In order to �ndthe appropriate relatedness oe�ients for siblings the following question has to be answered:For j = 0, 1, 2, given that two individuals are siblings, whose parents have alleles (a, b) and
(c, d) at a given lous, what is the probability that they have inherited j alleles IBD at thatlous?

k0 = P (0− ibd | siblings)

= P (indi = (a, c)
⋂

indj = (b, d) | siblings)
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k1 = P (1− ibd | siblings)

= P (indi = (a, c)
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k2 = P (2− ibd | siblings)
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A.2 Half-SiblingsHalf-siblings1 have one parent in ommon and an therefore inherit 0 or 1 alleles IBD butnever 2.For j = 0, 1, 2, given that two individuals are half-siblings, whose ommon parent has alleles
(a, b) at a lous, what is the probability that they have inherited j alleles IBD at that lous?1The kinship oe�ients for grandparent-grandhild relations and unle/aunt-nephew/niee relations arethe same as for half-siblings. 55



k0 = P (0− ibd | half siblings)

= P (indi = (a)
⋂

indj = (b) | half − siblings)
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k1 = P (1− ibd | half siblings)
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(A.5)
k2 = P (2− ibd | half − siblings) = 0 (A.6)A.3 First CousinsFirst ousins have one set of grand-parents pair in ommon. They an therefore inherit 0 or 1alleles IBD at a lous but never 2 (assuming there is no inbreeding). The kinship oe�ientsare attained by answering the following question:For j = 0, 1, 2, given that two individuals are �rst ousins, whose ommon pair of grand-parents have alleles (a, b) and (c, d) at a lous, what is the probability that they have inherited

j alleles IBD at that lous?
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k0 = P (0− ibd | 1st.cousins)
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k2 = P (2− ibd | 1st.cousins) = 0 (A.9)
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Appendix BRelatedness Likelihood RatiosConsider allele information of individuals i and j at S loi. Under the assumption of linkageequilibrium it is possible to test their relatedness by omputing the likelihood ratio for eahlous separately and then multiply those ratios together and take the logarithm to get theLOD sore.
LRi,j(s) =

P (Di,s,Di,s|H1)
P (Di,s,Dj,s|H0)is the likelihood ratio at lous s. The omputations in the present study are done under theassumption of Hardy-Weinberg- and linkage equilibrium. At a single lous, the probability oftwo mirosatellite based DNA-pro�les, Di and Dj , given the null hypothesis of unrelatedness,is:

P (Di,Dj | unrelated) = p(a
(1)
i ) · p(a

(2)
i ) · p(a

(1)
j ) · p(a

(2)
j )where (a

(1)
i,s , a

(2)
i,s ) is the genotype of individual i at lous s and p(a

(m)
i,s ) is the populationfrequeny for whatever type allele a

(m)
i,s is with m = 1, 2. This probability is used in thefollowing omputation of likelihood ratios.B.1 Full Siblings Likelihood Ratio at a Single Lous

H0 : Individual i and j are siblings.
H1 : Individual i and j are unrelatedThere are three random events that need onditioning:1. How many alleles are shared IBD: 0,1 or 2.2. Whih allele was inherited from the mother, whih allele was inherited from the father.3. Given 2), did individuals i and j inherit the same allele from the same parent.
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B.2 Half-Siblings Likelihood Ratio at a Single Lous
H0 : Individual i and j are half-siblings
H1 : Individual i and j are unrelatedThere are three random events that need onditioning:1. How many alleles are shared IBD: 0 or 1.2. Whih allele was inherited from the shared parent.3. Given 2), did individuals i and j inherit the same allele from their shared parent.
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B.3 First Cousins Likelihood Ratio at a Single Lous
H0 : Individual i and j are �rst ousins.
H1 : Individual i and j are unrelatedThere are three random events that need onditioning:1. How many alleles are shared IBD: 0 or 1.2. Whih allele was inherited from their shared pair of grand-parents.3. Given 2), did individual i and j inherit the same allele from their shared pair of grand-parents.
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P (Di,Dj | first cousins) =
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Appendix CR Codes for the Explanatory ExampleThis setions inludes the odes that were used in the explanatory example in hapter 4.3. Allomputations were done by using the open soure program R, version 2.14.1, (R DevelopmentCore Team, 2011).C.1 Simulation of IndividualsThe three individuals were simulated by the following ode written by Hans Julius Skaug. Twoof them were simulated to be full siblings while the third one was simulated to be unrelatedto them. Here individuals A, B and C are referred to as individuals 1, 2 and 3.S<-NULLS=(9,18,20,14,10,12,12,11,17,16) # Number of alleles per lous i.n = 3 # Number of individualsm = 10 # Number of loiA = NULLB = NULLfor(i in 1:m){ A = bind(A,sample(x=1:S[i℄,size=n,replae=T))B = bind(B,sample(x=1:S[i℄,size=n,replae=T))}# Makes individual 2 and 3 be siblingsind = sample((F,T),size=m,replae=T)A[2,ind℄ = A[3,ind℄ind = sample((F,T),size=m,replae=T)B[2,ind℄ = B[3,ind℄AB = matrix(paste(A,B,sep="/"),nol=m,byrow=F)olnames(AB)=1:mrownames(AB)=paste("Individ",1:n,sep="")63



C.2 Computation of LOD SoresThe following ode shows the omputation of the parent-o�spring LOD sore, LODp, theidentity LOD sore, LODid and the full siblings LOD sore, LODsib, for individuals 1 and 2.The data was registered as geneti data by using ommands from the pakage gstudio (Dyer,2012), available in R.#Genteti data registeredrequire(gstudio) #The pakage gstudio ontains the funtion Lous()alo1<-(Lous((4,8),phased=FALSE))alo2<-(Lous((15,6),phased=FALSE))alo3<-(Lous((8,3),phased=FALSE))alo4<-(Lous((3,13),phased=FALSE))alo5<-(Lous((7,10),phased=FALSE))alo6<-(Lous((8,1),phased=FALSE))alo7<-(Lous((2,5),phased=FALSE))alo8<-(Lous((3,9),phased=FALSE))alo9<-(Lous((6,13),phased=FALSE))alo10<-(Lous((12,10),phased=FALSE))blo1<-(Lous((8,2),phased=FALSE))blo2<-(Lous((12,15),phased=FALSE))blo3<-(Lous((17,11),phased=FALSE))blo4<-(Lous((4,6),phased=FALSE))blo5<-(Lous((8,3),phased=FALSE))blo6<-(Lous((8,8),phased=FALSE))blo7<-(Lous((11,1),phased=FALSE))blo8<-(Lous((10,9),phased=FALSE))blo9<-(Lous((10,2),phased=FALSE))blo10<-(Lous((13,16),phased=FALSE))#The geneti profiles of Individual 1 and 2:Ind_1<-(alo1,alo2,alo3,alo4,alo5,alo6,alo7,alo8,alo9,alo10)Ind_2<-(blo1,blo2,blo3,blo4,blo5,blo6,blo7,blo8,blo9,blo10)#Allele frequeniesfreq1<-0.11111111freq2<-0.05555556freq3<-0.05000000freq4<-0.07142857freq5<-0.10000000freq6<-0.08333333freq7<-0.08333333freq8<-0.09090910freq9<-0.05882353freq10<-0.0625000 64



After the geneti data has been registered then parent-o�spring LOD sore is omputed:#H1: Ind_1 and Ind_2 are a parent and his/her offspringLRP_1<-0 #Parent-offspring likelihood ratio for lous 1LRP_1= (0.25*((if(alo1[1℄==blo1[1℄){1}else{0})+(if(alo1[2℄==blo1[1℄){1}else{0})+(if(alo1[1℄==blo1[2℄){1}else{0})+(if(alo1[2℄==blo1[2℄){1}else{0})))/freq1LRP_2<-0 #Parent-offspring likelihood ratio for lous 2LRP_2=(0.25*((if(alo2[1℄==blo2[1℄){1}else{0})+(if(alo2[2℄==blo2[1℄){1}else{0})+(if(alo2[1℄==blo2[2℄){1}else{0})+(if(alo2[2℄==blo2[2℄){1}else{0})))/freq2LRP_3<-0 #Parent-offspring likelihood ratio for lous 3LRP_3=0.25*(((if(alo3[1℄==blo3[1℄){1}else{0})+(if(alo3[2℄==blo3[1℄){1}else{0})+(if(alo3[1℄==blo3[2℄){1}else{0})+(if(alo3[2℄==blo3[2℄){1}else{0})))/freq3LRP_4<-0 #Parent-offspring likelihood ratio for lous 4LRP_4=0.25*(((if(alo4[1℄==blo4[1℄){1}else{0})+(if(alo4[2℄==blo4[1℄){1}else{0})+(if(alo4[1℄==blo4[2℄){1}else{0})+(if(alo4[2℄==blo4[2℄){1}else{0})))/freq4LRP_5<-0 #Parent-offspring likelihood ratio for lous 5LRP_5=0.25*(((if(alo5[1℄==blo5[1℄){1}else{0})+(if(alo5[2℄==blo5[1℄){1}else{0})+(if(alo5[1℄==blo5[2℄){1}else{0})+(if(alo5[2℄==blo5[2℄){1}else{0})))/freq5LRP_6<-0 #Parent-offspring likelihood ratio for lous 6LRP_6=0.25*(((if(alo6[1℄==blo6[1℄){1}else{0})+(if(alo6[2℄==blo6[1℄){1}else{0})+(if(alo6[1℄==blo6[2℄){1}else{0})+(if(alo6[2℄==blo6[2℄){1}else{0})))/freq6LRP_7<-0 #Parent-offspring likelihood ratio for lous 7LRP_7=0.25*(((if(alo7[1℄==blo7[1℄){1}else{0})+(if(alo7[2℄==blo7[1℄){1}else{0})+(if(alo7[1℄==blo7[2℄){1}else{0})+(if(alo7[2℄==blo7[2℄){1}else{0})))/freq7LRP_8<-0 #Parent-offspring likelihood ratio for lous 865



LRP_8=0.25*(((if(alo8[1℄==blo8[1℄){1}else{0})+(if(alo8[2℄==blo8[1℄){1}else{0})+(if(alo8[1℄==blo8[2℄){1}else{0})+(if(alo8[2℄==blo8[2℄){1}else{0})))/freq8LRP_9<-0 #Parent-offspring likelihood ratio for lous 9LRP_9=0.25*(((if(alo9[1℄==blo9[1℄){1}else{0})+(if(alo9[2℄==blo9[1℄){1}else{0})+(if(alo9[1℄==blo9[2℄){1}else{0})+(if(alo9[2℄==blo9[2℄){1}else{0})))/freq9LRP_10<-0 #Parent-offspring likelihood ratio for lous 10LRP_10=0.25*(((if(alo10[1℄==blo10[1℄){1}else{0})+(if(alo10[2℄==blo10[1℄){1}else{0})+(if(alo10[1℄==blo10[2℄){1}else{0})+(if(alo10[2℄==blo10[2℄){1}else{0})))/freq10LOD_p<-0 #Parent-offspring LOD sore omputedLOD_p=log(LRP_1*LRP_2*LRP_3*LRP_4*LRP_5*LRP_6*LRP_7*LRP_8*LRP_9*LRP_10,base=10)The identity LOD sore is omputed in the following way:#H1: Ind_1 and Ind_2 are idential twins.LRid_1<-0 #Identity likelihood ratio for lous 1LRid_1= 0.5*(freq1)^(-2)*(((if(alo1[1℄==blo1[1℄){1}else{0})*(if(alo1[2℄==blo1[2℄){1}else{0}))+((if(alo1[1℄==blo1[2℄){1}else{0})*(if(alo1[2℄==blo1[1℄){1}else{0})))LRid_2<-0 #Identity likelihood ratio for lous 2LRid_2=0.5*(freq2)^(-2)*(((if(alo2[1℄==blo2[1℄){1}else{0})*(if(alo2[2℄==blo2[2℄){1}else{0}))+((if(alo2[1℄==blo2[2℄){1}else{0})*(if(alo2[2℄==blo2[1℄){1}else{0})))LRid_3<-0 #Identity likelihood ratio for lous 3LRid_3=0.5*(freq3)^(-2)*(((if(alo3[1℄==blo3[1℄){1}else{0})*(if(alo3[2℄==blo3[2℄){1}else{0}))+((if(alo3[1℄==blo3[2℄){1}else{0})*(if(alo3[2℄==blo3[1℄){1}else{0})))LRid_4<-0 #Identity likelihood ratio for lous 466



LRid_4=0.5*(freq4)^(-2)*(((if(alo4[1℄==blo4[1℄){1}else{0})*(if(alo4[2℄==blo4[2℄){1}else{0}))+((if(alo4[1℄==blo4[2℄){1}else{0})*(if(alo4[2℄==blo4[2℄){1}else{0})))LRid_5<-0 #Identity likelihood ratio for lous 5LRid_5=0.5*(freq5)^(-2)*(((if(alo5[1℄==blo5[1℄){1}else{0})*(if(alo5[2℄==blo5[2℄){1}else{0}))+((if(alo5[1℄==blo5[2℄){1}else{0})*(if(alo5[2℄==blo5[1℄){1}else{0})))LRid_6<-0 #Identity likelihood ratio for lous 6LRid_6=0.5*(freq6)^(-2)*(((if(alo6[1℄==blo6[1℄){1}else{0})*(if(alo6[2℄==blo6[1℄){1}else{0}))+((if(alo6[1℄==blo6[2℄){1}else{0})*(if(alo6[2℄==blo6[2℄){1}else{0})))LRid_7<-0 #Identity likelihood ratio for lous 7LRid_7=0.5*(freq7)^(-2)*(((if(alo7[1℄==blo7[1℄){1}else{0})*(if(alo7[2℄==blo7[2℄){1}else{0}))+((if(alo7[1℄==blo7[2℄){1}else{0})*(if(alo7[2℄==blo7[1℄){1}else{0})))LRid_8<-0 #Identity likelihood ratio for lous 8LRid_8=0.5*(freq8)^(-2)*(((if(alo8[1℄==blo8[1℄){1}else{0})*(if(alo8[2℄==blo8[2℄){1}else{0}))+((if(alo8[1℄==blo8[2℄){1}else{0})*(if(alo8[2℄==blo8[1℄){1}else{0})))LRid_9<-0 #Identity likelihood ratio for lous 9LRid_9=0.5*(freq9)^(-2)*(((if(alo9[1℄==blo9[1℄){1}else{0})*(if(alo9[2℄==blo9[2℄){1}else{0}))+(if(alo9[1℄==blo9[2℄){1}else{0})*(if(alo9[2℄==blo9[1℄){1}else{0}))LRid_10<-0 #Identity likelihood ratio for lous 10LRid_10=0.5*(freq10)^(-2)*(((if(alo10[1℄==blo10[1℄){1}else{0})*(if(alo10[2℄==blo10[2℄){1}else{0}))+((if(alo10[1℄==blo10[2℄){1}else{0})*(if(alo10[2℄==blo10[1℄){1}else{0})))67



LOD_id<-0 #Identity LOD sore omputedLOD_id=log(LRid_1*LRid_2*LRid_3*LRid_4*LRid_5*LRid_6*LRid_7*LRid_8*LRid_9*LRid_10,base=10)When LODp and LODid have been omputed then omputing the LOD sores for otherrelatedness hypothesis, H1, is a simple task by using formula 4.6:
LRH1

= k0(H1) + k1(H1) · LRp + k2(H1) · LRid

k0, k1 and k2 are kinship oe�ients given the relatedness that is being tested, (see table:
3.1):#H1: Ind_1 and Ind_2 are siblingsLRsib_1<-0 #Siblings likelihood ratio for lous 1LRsib_1=1/4+1/2*(LRP_1)+1/4*(LRid_1)LRsib_2<-0 #Siblings likelihood ratio for lous 2LRsib_2=1/4+1/2*(LRP_2)+1/4*(LRid_2)LRsib_3<-0 #Siblings likelihood ratio for lous 3LRsib_3=1/4+1/2*(LRP_3)+1/4*(LRid_3)LRsib_4<-0 #Siblings likelihood ratio for lous 4LRsib_4=1/4+1/2*(LRP_4)+1/4*(LRid_4)LRsib_5<-0 #Siblings likelihood ratio for lous 5LRsib_5=1/4+1/2*(LRP_5)+1/4*(LRid_5)LRsib_6<-0 #Siblings likelihood ratio for lous 6LRsib_6=1/4+1/2*(LRP_6)+1/4*(LRid_6)LRsib_7<-0 #Siblings likelihood ratio for lous 7LRsib_7=1/4+1/2*(LRP_7)+1/4*(LRid_7)LRsib_8<-0 #Siblings likelihood ratio for lous 8LRsib_8=1/4+1/2*(LRP_8)+1/4*(LRid_8)LRsib_9<-0 #Siblings likelihood ratio for lous 9LRsib_9=1/4+1/2*(LRP_9)+1/4*(LRid_9)LRsib_10<-0 #Siblings likelihood ratio for lous 10LRsib_10=1/4+1/2*(LRP_10)+1/4*(LRid_10)LOD_sib<-0 #Siblings LOD sore omputedLOD_sib=log(LRsib_1*LRsib_2*LRsib_3*LRsib_4*LRsib_5*LRsib_6*LRsib_7*LRsib_8*LRsib_9*LRsib_10,base=10)68



The half-sibling LOD sore and the �rst ousin LOD sore are omputed in the same way asthe full sibling LOD sore, only with di�erent kinship oe�ients:LRh-sib_1<-0 #Half-siblings likelihood ratio for lous 1LRh-sib_1=1/2+1/2*(LRP_1)+0*(LRid_1)LRous_1<-0 #First ousins likelihood ratio for lous 1LRous_1=3/4+1/4*(LRP_1)+0*(LRid_1)C.3 Estimation of p-ValuesThe p-values are estimated by simulating 100 unrelated individuals with the same ode as anbe found in C.1 withn = 100and without the ommand that makes individual 2 and 3 be siblings. The geneti data isregistered a little bit di�erent here. Genotype (A,B) at lous s for individual i is denoted by:A[i,s℄ #Allele A at lous s for individual iB[i,s℄ #Allele B at lous s for individual iWhen the individuals have been simulated then their pairwise LOD sores are omputed in amatrix. The sibling LOD matrix for the simulated individuals is omputed in the followingway:simLOD_sib<-NULLsimLOD_sib=matrix(nol=100,nrow=100)for(i in 1:nol(simLOD_sib)){for(j in 1:nrow(simLOD_sib)){simLOD_sib[i,j℄=log(((0.25+0.5*(((if(A[i,1℄==A[j,1℄){1}else{0})+(if(A[i,1℄==B[j,1℄){1}else{0})+(if(B[i,1℄==A[j,1℄){1}else{0})+(if(B[i,1℄==B[j,1℄){1}else{0}))/(4*freq[1℄))+(0.25*(((if(A[i,1℄==A[j,1℄){1}else{0})*(if(B[i,1℄==B[j,1℄){1}else{0}))+((if(B[i,1℄==A[j,1℄){1}else{0})+(if(A[i,1℄==B[j,1℄){1}else{0})))/(2*freq[1℄*freq[1℄)))*(0.25+0.5*(((if(A[i,2℄==A[j,2℄){1}else{0})+(if(A[i,2℄==B[j,2℄){1}else{0})+(if(B[i,2℄==A[j,2℄){1}else{0})+(if(B[i,2℄==B[j,2℄){1}else{0}))/(4*freq[2℄))+(0.25*(((if(A[i,2℄==A[j,2℄){1}else{0})*(if(B[i,2℄==B[j,2℄){1}else{0}))+((if(B[i,2℄==A[j,2℄){1}else{0})+(if(A[i,2℄==B[j,2℄){1}else{0})))/(2*freq[2℄*freq[2℄))) 69



*(0.25+0.5*(((if(A[i,3℄==A[j,3℄){1}else{0})+(if(A[i,3℄==B[j,3℄){1}else{0})+(if(B[i,3℄==A[j,3℄){1}else{0})+(if(B[i,3℄==B[j,3℄){1}else{0}))/(4*freq[3℄))+(0.25*(((if(A[i,3℄==A[j,3℄){1}else{0})*(if(B[i,3℄==B[j,3℄){1}else{0}))+((if(B[i,3℄==A[j,3℄){1}else{0})+(if(A[i,3℄==B[j,3℄){1}else{0})))/(2*freq[3℄*freq[3℄)))*(0.25+0.5*(((if(A[i,4℄==A[j,4℄){1}else{0})+(if(A[i,4℄==B[j,4℄){1}else{0})+(if(B[i,4℄==A[j,4℄){1}else{0})+(if(B[i,4℄==B[j,4℄){1}else{0}))/(4*freq[4℄))+(0.25*(((if(A[i,4℄==A[j,4℄){1}else{0})*(if(B[i,4℄==B[j,4℄){1}else{0}))+((if(B[i,4℄==A[j,4℄){1}else{0})+(if(A[i,4℄==B[j,4℄){1}else{0})))/(2*freq[4℄*freq[4℄)))*(0.25+0.5*(((if(A[i,5℄==A[j,5℄){1}else{0})+(if(A[i,5℄==B[j,5℄){1}else{0})+(if(B[i,5℄==A[j,5℄){1}else{0})+(if(B[i,5℄==B[j,5℄){1}else{0}))/(4*freq[5℄))+(0.25*(((if(A[i,5℄==A[j,5℄){1}else{0})*(if(B[i,5℄==B[j,5℄){1}else{0}))+((if(B[i,5℄==A[j,5℄){1}else{0})+(if(A[i,5℄==B[j,5℄){1}else{0})))/(2*freq[5℄*freq[5℄)))*(0.25+0.5*(((if(A[i,6℄==A[j,6℄){1}else{0})+(if(A[i,6℄==B[j,6℄){1}else{0})+(if(B[i,6℄==A[j,6℄){1}else{0})+(if(B[i,6℄==B[j,6℄){1}else{0}))/(4*freq[6℄))+(0.25*(((if(A[i,6℄==A[j,6℄){1}else{0})*(if(B[i,6℄==B[j,6℄){1}else{0}))+((if(B[i,6℄==A[j,6℄){1}else{0})+(if(A[i,6℄==B[j,6℄){1}else{0})))/(2*freq[6℄*freq[6℄)))*(0.25+0.5*(((if(A[i,7℄==A[j,7℄){1}else{0})+(if(A[i,7℄==B[j,7℄){1}else{0})+(if(B[i,7℄==A[j,7℄){1}else{0})+(if(B[i,7℄==B[j,7℄){1}else{0}))/(4*freq[7℄))+(0.25*(((if(A[i,7℄==A[j,7℄){1}else{0})*(if(B[i,7℄==B[j,7℄){1}else{0}))+((if(B[i,7℄==A[j,7℄){1}else{0})+(if(A[i,7℄==B[j,7℄){1}else{0})))/(2*freq[7℄*freq[7℄)))*(0.25+0.5*(((if(A[i,8℄==A[j,8℄){1}else{0})+(if(A[i,8℄==B[j,8℄){1}else{0})+(if(B[i,8℄==A[j,8℄){1}else{0})+(if(B[i,8℄==B[j,8℄){1}else{0}))/(4*freq[8℄))+(0.25*(((if(A[i,8℄==A[j,8℄){1}else{0})*(if(B[i,8℄==B[j,8℄){1}else{0}))+((if(B[i,8℄==A[j,8℄){1}else{0})+(if(A[i,8℄==B[j,8℄){1}else{0})))/(2*freq[8℄*freq[8℄)))*(0.25+0.5*(((if(A[i,9℄==A[j,9℄){1}else{0})+(if(A[i,9℄==B[j,9℄){1}else{0})+(if(B[i,9℄==A[j,9℄){1}else{0})+(if(B[i,9℄==B[j,9℄){1}else{0}))/(4*freq[9℄))+(0.25*(((if(A[i,9℄==A[j,9℄){1}else{0})*(if(B[i,9℄==B[j,9℄){1}else{0}))+((if(B[i,9℄==A[j,9℄){1}else{0})+(if(A[i,9℄==B[j,9℄){1}else{0})))70



/(2*freq[9℄*freq[9℄)))*(0.25+0.5*(((if(A[i,10℄==A[j,10℄){1}else{0})+(if(A[i,10℄==B[j,10℄){1}else{0})+(if(B[i,10℄==A[j,10℄){1}else{0})+(if(B[i,10℄==B[j,10℄){1}else{0}))/(4*freq[10℄))+(0.25*(((if(A[i,10℄==A[j,10℄){1}else{0})*(if(B[i,10℄==B[j,10℄){1}else{0}))+((if(B[i,10℄==A[j,10℄){1}else{0})+(if(A[i,10℄==B[j,10℄){1}else{0})))/(2*freq[10℄*freq[10℄)))),base=10)}}LOD sore matries for other relatedness hypothesis are obtained in the same way just withdi�erent kinship oe�ients. The matrix ontains eah LOD sore twie, that is LOD(i, j) and
LOD(j, i) that are equal, and all LOD sores on the diagonal, LOD(i, i), are just omputedLOD sores for the hypothesis that a individual is related to him/her self. Vetor ontainingthe relevant LOD sores an be attained by:simLOD_hsib_vetor<-simLOD_hsib[upper.tri(simLOD_hsib)℄The p-value for the sibling LOD sore for individual 1 and 2 is omputed by omparing thesimulated LOD sores with their observed LOD sore:PP<-numeri(4950)for(j in 1:length(PP)){PP[j℄=if(simLOD_sib_ve[j℄<LOD_sib){0}else{1}}p_value=sum(PP)/4950
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Appendix DR Codes for the Fin Whale AnalysisThis setion onludes the odes that were used in the analysis of the �n whale registry. Allomputations were done by using the program R, version 2.14.1, (R Development Core Team,2011).D.1 Registration of the Geneti DataThe �n whale data is arranged in a matrix, with 266 rows and 31 olumns. The �rst olumnontains the names of the �n whales while the �rst row ontains the names of the loi. Eahrow ontains geneti information about one �n whale, and eah olumn ontains informationabout one allele at a ertain lous. The genotype (A,B) for individual i at lous s would bedenoted with:data[i,2s℄ #Allele A at lous s for individual idata[i,2s+1℄ #Allele B at lous s for individual iD.2 Estimation of Population Allele FrequeniesThe allele frequenies are estimated from the dataset, exluding the 22 foetuses. The olumnshave been named after their lous name, (EV001, EV037, GATA028, GATA053, GATA098,GATA417, GT011, GT023, GT195, GT211, GT271, GT310, GT575, TAA023 and GGAA520),but information at lous 1 is denoted with:EV1A=dat[,2℄EV1B=dat[,3℄The frequenies are estimated by using the funtion:Frequenies()from the R pakage gstudio (Dyer, 2012), but that requires that the data is registered asgeneti pro�les by using the funtion:Lous()The estimated allele frequenies are simply the proportion of how many times a ertain alleletypes appears in the sample. 72



require(gstudio)EV1<-list(NULL)for(i in 1:length(EV1A)){EV1[i℄=Lous((EV1A[i℄,EV1B[i℄))}freqs_1<-Frequenies((EV1))EV37<-list(NULL)for(i in 1:length(EV37A)){EV37[i℄=Lous((EV37A[i℄,EV37B[i℄))}freqs_2<-Frequenies((EV37))GT011<-list(NULL)for(i in 1:length(GT011A)){GT011[i℄=Lous((GT011A[i℄,GT011B[i℄))}freqs_3<-Frequenies((GT011))GT023<-list(NULL)for(i in 1:length(GT023A)){GT023[i℄=Lous((GT023A[i℄,GT023B[i℄))}freqs_4<-Frequenies((GT023))GT195<-list(NULL)for(i in 1:length(GT195A)){GT195[i℄=Lous((GT195A[i℄,GT195B[i℄))}freqs_5<-Frequenies((GT195))GT211<-list(NULL)for(i in 1:length(GT211A)){GT211[i℄=Lous((GT211A[i℄,GT211B[i℄))}freqs_6<-Frequenies((GT211))GT271<-list(NULL)for(i in 1:length(GT271A)) 73



{GT271[i℄=Lous((GT271A[i℄,GT271B[i℄))}freqs_7<-Frequenies((GT271))GT310<-list(NULL)for(i in 1:length(GT310A)){GT310[i℄=Lous((GT310A[i℄,GT310B[i℄))}freqs_8<-Frequenies((GT310))GT575<-list(NULL)for(i in 1:length(GT575A)){GT575[i℄=Lous((GT575A[i℄,GT575B[i℄))}freqs_9<-Frequenies((GT575))GATA028<-list(NULL)for(i in 1:length(GATA028A)){GATA028[i℄=Lous((GATA028A[i℄,GATA028B[i℄))}freqs_10<-Frequenies((GATA028))GATA053<-list(NULL)for(i in 1:length(GATA053A)){GATA053[i℄=Lous((GATA053A[i℄,GATA053B[i℄))}freqs_11<-Frequenies((GATA053))GATA098<-list(NULL)for(i in 1:length(GATA098A)){GATA098[i℄=Lous((GATA098A[i℄,GATA098B[i℄))}freqs_12<-Frequenies((GATA098))GATA417<-list(NULL)for(i in 1:length(GATA417A)){GATA417[i℄=Lous((GATA417A[i℄,GATA417B[i℄))}freqs_13<-Frequenies((GATA417)) 74



GTAA520<-list(NULL)for(i in 1:length(GTAA520A)){GTAA520[i℄=Lous((GTAA520A[i℄,GTAA520B[i℄))}freqs_14<-Frequenies((GTAA520))TAA023<-list(NULL)for(i in 1:length(TAA023A)){TAA023[i℄=Lous((TAA023A[i℄,TAA023B[i℄))}freqs_15<-Frequenies((TAA023))D.3 LOD SoresThe following ode shows the omputation of the LOD matrix for half-siblings hypothesis in
R. Eah frequeny matrix has two olumns, the �rst olumn ontains the allele name whilethe seond olumn ontains the orresponding estimated frequeny for that allele. The valueof the estimated population allele frequeny for allele A at lous s for individual i is obtainedby the ommand:freqs[math(data[i,2s℄,freqs[,1℄),2℄The half-sibling LOD sore matrix is omputed in the following way:LOD<-NULLLOD=matrix(nol=265,nrow=265)for(i in 1:nol(LOD)){for(j in 1:nrow(LOD)){(LOD[i,j℄=log((((0.5)+(0.5*0.25)*((((if(data[i,2℄==data[j,2℄){1}else{0})+(if(data[i,2℄==data[j,3℄){1}else{0}))/(freq1[math(data[i,2℄,freq1[,1℄),2℄))+(((if(data[i,3℄==data[j,2℄){1}else{0})+(if(data[i,3℄==data[j,3℄){1}else{0}))/(freq1[math(data[i,3℄,freq1[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,4℄==data[j,4℄){1}else{0})+(if(data[i,4℄==data[j,5℄){1}else{0}))/(freq2[math(data[i,4℄,freq2[,1℄),2℄))+(((if(data[i,5℄==data[j,4℄){1}else{0})+(if(data[i,5℄==data[j,5℄){1}else{0}))75



/(freq2[math(data[i,5℄,freq2[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,6℄==data[j,6℄){1}else{0})+(if(data[i,6℄==data[j,7℄){1}else{0}))/(freq3[math(data[i,6℄,freq3[,1℄),2℄))+(((if(data[i,7℄==data[j,6℄){1}else{0})+(if(data[i,7℄==data[j,7℄){1}else{0}))/(freq3[math(data[i,7℄,freq3[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,8℄==data[j,8℄){1}else{0})+(if(data[i,8℄==data[j,9℄){1}else{0}))/(freq4[math(data[i,8℄,freq4[,1℄),2℄))+(((if(data[i,9℄==data[j,8℄){1}else{0})+(if(data[i,9℄==data[j,9℄){1}else{0}))/(freq4[math(data[i,9℄,freq4[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,10℄==data[j,10℄){1}else{0})+(if(data[i,10℄==data[j,11℄){1}else{0}))/(freq5[math(data[i,10℄,freq5[,1℄),2℄))+(((if(data[i,11℄==data[j,10℄){1}else{0})+(if(data[i,11℄==data[j,11℄){1}else{0}))/(freq5[math(data[i,11℄,freq5[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,12℄==data[j,12℄){1}else{0})+(if(data[i,12℄==data[j,13℄){1}else{0}))/(freq6[math(data[i,12℄,freq6[,1℄),2℄))+(((if(data[i,13℄==data[j,12℄){1}else{0})+(if(data[i,13℄==data[j,13℄){1}else{0}))/(freq6[math(data[i,13℄,freq6[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,14℄==data[j,14℄){1}else{0})+(if(data[i,14℄==data[j,15℄){1}else{0}))/(freq7[math(data[i,14℄,freq7[,1℄),2℄))+(((if(data[i,15℄==data[j,14℄){1}else{0})+(if(data[i,15℄==data[j,15℄){1}else{0}))/(freq7[math(data[i,15℄,freq7[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,16℄==data[j,16℄){1}else{0})+(if(data[i,16℄==data[j,17℄){1}else{0}))/(freq8[math(data[i,16℄,freq8[,1℄),2℄))+(((if(data[i,17℄==data[j,16℄){1}else{0})+(if(data[i,17℄==data[j,17℄){1}else{0}))/(freq8[math(data[i,17℄,freq8[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,18℄==data[j,18℄){1}else{0})+(if(data[i,18℄==data[j,19℄){1}else{0}))76



/(freq9[math(data[i,18℄,freq9[,1℄),2℄))+(((if(data[i,19℄==data[j,18℄){1}else{0})+(if(data[i,19℄==data[j,19℄){1}else{0}))/(freq9[math(data[i,19℄,freq9[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,20℄==data[j,20℄){1}else{0})+(if(data[i,20℄==data[j,21℄){1}else{0}))/(freq10[math(data[i,20℄,freq10[,1℄),2℄))+(((if(data[i,21℄==data[j,20℄){1}else{0})+(if(data[i,21℄==data[j,21℄){1}else{0}))/(freq10[math(data[i,21℄,freq10[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,22℄==data[j,22℄){1}else{0})+(if(data[i,22℄==data[j,23℄){1}else{0}))/(freq11[math(data[i,22℄,freq11[,1℄),2℄))+(((if(data[i,23℄==data[j,22℄){1}else{0})+(if(data[i,23℄==data[j,23℄){1}else{0}))/(freq11[math(data[i,23℄,freq11[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,24℄==data[j,24℄){1}else{0})+(if(data[i,24℄==data[j,25℄){1}else{0}))/(freq12[math(data[i,24℄,freq12[,1℄),2℄))+(((if(data[i,25℄==data[j,24℄){1}else{0})+(if(data[i,25℄==data[j,25℄){1}else{0}))/(freq12[math(data[i,25℄,freq12[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,26℄==data[j,26℄){1}else{0})+(if(data[i,26℄==data[j,27℄){1}else{0}))/(freq13[math(data[i,26℄,freq13[,1℄),2℄))+(((if(data[i,27℄==data[j,26℄){1}else{0})+(if(data[i,27℄==data[j,27℄){1}else{0}))/(freq13[math(data[i,27℄,freq13[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,28℄==data[j,28℄){1}else{0})+(if(data[i,28℄==data[j,29℄){1}else{0}))/(freq14[math(data[i,28℄,freq14[,1℄),2℄))+(((if(data[i,29℄==data[j,28℄){1}else{0})+(if(data[i,29℄==data[j,29℄){1}else{0}))/(freq14[math(data[i,29℄,freq14[,1℄),2℄))))*((0.5)+(0.5*0.25)*((((if(data[i,30℄==data[j,30℄){1}else{0})+(if(data[i,30℄==data[j,31℄){1}else{0}))/(freq15[math(data[i,30℄,freq15[,1℄),2℄))+(((if(data[i,31℄==data[j,30℄){1}else{0})+(if(data[i,31℄==data[j,31℄){1}else{0}))/(freq15[math(data[i,31℄,freq15[,1℄),2℄))))),base=10))} 77



}The parent-o�spring and �rst ousins LOD matries are omputed in the same way just withdi�erent kinship oe�ients.D.4 Simulation of IndividualsThe following ode was used to simulate 265 unrelated individuals with the allele frequeniesthat were estimated from the dataset. It is built on the ode from C.1 that Hans Julius Skaugwrote. Before the simulation, the matrix that was used to estimated the population allelefrequenies, was rearranged by aligning alleles A and B at lous s in the same olumn. Thatresulted in a matrix alled S, that has 15 olumns, one for eah lous, and 486 rows, one foreah allele that ours in the dataset (exluding the foetuses). The 265 unrelated individualswere simulated by drawing independently from this matrix with replaement.n = 265 # Number of individualsm = 15 # Number of loiA = NULLB = NULLfor(i in 1:m){ A= bind(A,sample(S[,i℄,size=n,replae=T))B = bind(B,sample(S[,i℄,size=n,replae=T))}AB = matrix(paste(A,B,sep="/"),nol=m,byrow=F)olnames(AB)=1:mrownames(AB)=paste("Individ",1:n,sep="")D.5 Computation of p-ValuesThe LOD sores for the simulated individuals are omputed in the same way as the LODmatries for the real individuals. The matries ontain eah LOD sore twie, LOD(i, j)and LOD(j, i), and all LOD sores on the diagonal of those matries, LOD(i, i), are simplyomputed LOD sore for the hypothesis that an individual is related to him/her self. Vetorsontaining the relevant LOD sores an be attained by:#Vetor ontaining the LOD sores omputed from the fin whale datasetLOD_real<-LOD[upper.tri(LOD)℄#Vetor ontaining LOD sores omputed from the simulated datasetLOD_sim<-simLOD[upper.tri(simLOD)℄The p-values for eah LOD sore are omputed in the following way:78



PP<-NULLPP=matrix(nrow=length(LOD_sim),nol=length(LOD_real))for(j in 1:nrow(PP)){for(i in 1:nol(PP)){PP[j,i℄=if(LOD_sim[j℄<LOD_real[i℄){0}else{1}}}p_values<-NULLp_values=matrix(nol=length(LOD_real),nrow=2)p_values[1,℄=LOD_real #In order to have the LOD sore value with the p-valuefor(i in 1:nol(p_values)){p_values[2,i℄=sum(PP[,i℄)/34980}D.6 Exat Binomial Con�dene IntervalThe exat on�dene intervals are omputed here by using the pakage binom (Dorai-Raj,2009), available in R.require(binom) #Pakage available in R#Computes exat 95% onfidene interval for the estimated p-value#of the parent-offspring LOD sore of F09-075 and F10-123binom.onfint(1,2098800,onf.level=0.95,methods="exat")#Computes exat 95% onfidene interval for the estimated p-value# of the parent-offspring LOD sore of F09-125 and F10-119binom.onfint(19,2098800,onf.level=0.95,methods="exat")
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Appendix EEstimated Population AlleleFrequenies for the Fin WhaleAnalysis
Table E.1: Allele frequenies at lous 1 to 6EV001 EV037 GT011 GT023 GT195 GT211157: 0.3436 187: 0.0782 119: 0.0988 123: 0.0576 161: 0.2058 116: 0.2037169: 0.2202 193: 0.2901 129: 0.2222 127: 0.1749 169: 0.0905 118: 0.0494171: 0.0761 189: 0.0021 117: 0.1317 131: 0.0329 171: 0.1934 120: 0.3272163: 0.1358 191: 0.1255 131: 0.0947 125: 0.1296 179: 0.0288 122: 0.0556175: 0.0556 179: 0.0021 125: 0.1379 129: 0.3436 173: 0.2654 114: 0.0741159: 0.0720 181: 0.0247 123: 0.0823 133: 0.1399 175: 0.1276 106: 0.0988143: 0.0041 183: 0.1214 127: 0.2305 135: 0.0247 177: 0.0576 112: 0.1440155: 0.0082 197: 0.1770 133: 0.0021 143: 0.0144 167: 0.0226 108: 0.0103165: 0.0412 199: 0.0658 121: 0.0576 163: 0.0062 126: 0.0021173: 0.0165 201: 0.0226 109: 0.0144 181: 0.0021 110: 0.0123161: 0.0062 195: 0.0617 141: 0.0082 124: 0.0226177: 0.0021 207: 0.0041 97: 0.0021145: 0.0041 211: 0.0082167: 0.0123 185: 0.0103153: 0.0021 205: 0.0021213: 0.0021215: 0.0021
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Table E.2: Allele frequenies at lous 7 to 12GT271 GT310 GT575 GATA028 GATA053 GATA098114: 0.2222 110: 0.1955 146: 0.0741 191: 0.0782 246: 0.3848 104: 0.2860116: 0.4588 112: 0.4588 154: 0.4074 211: 0.0617 266: 0.1070 116: 0.0412122: 0.0329 114: 0.0329 160: 0.0473 207: 0.1379 260: 0.1276 108: 0.1687118: 0.1358 122: 0.0309 150: 0.0247 227: 0.2243 270: 0.1111 96: 0.2531120: 0.0535 126: 0.1584 158: 0.1008 223: 0.0926 262: 0.2016 100: 0.1728128: 0.0206 124: 0.0700 152: 0.2778 219: 0.0823 258: 0.0226 112: 0.0658108: 0.0658 130: 0.0021 156: 0.0638 215: 0.0535 250: 0.0309 92: 0.0062112: 0.0062 120: 0.0309 168: 0.0041 203: 0.0556 274: 0.0103 120: 0.0062126: 0.0021 106: 0.0185 231: 0.0988 278: 0.0041110: 0.0021 118: 0.0021 235: 0.0638199: 0.0350239: 0.0123195: 0.0041
Table E.3: Allele frequenies at lous 13 to 15GATA417 GGAA520 TAA023269: 0.2675 217: 0.0267 95: 0.3889281: 0.0535 223: 0.1235 101: 0.1667273: 0.1152 207: 0.1379 86: 0.2510285: 0.0761 227: 0.0576 92: 0.0350229: 0.0494 203: 0.0514 98: 0.0802209: 0.0062 211: 0.1523 104: 0.0761213: 0.0453 215: 0.1152 89: 0.0021261: 0.0556 209: 0.0329225: 0.0638 201: 0.0309237: 0.0123 219: 0.1646277: 0.0556 205: 0.0741265: 0.1111 231: 0.0226217: 0.0391 213: 0.0041241: 0.0062 199: 0.0062289: 0.0165257: 0.0021221: 0.0165233: 0.0062297: 0.0021
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