
A trigger readout system for the
Forward Calorimeter (FoCal)

by

Joseph Samuel Neyland

Master Thesis

Department of Physics and Technology

University of Bergen

November 2012

Abstract

The University of Bergen, Norway is currently involved in the development and
building of the Forward Calorimeter (FoCal) as an upgrade to the ALICE (A Large
Ion Collider Experiment) detector at CERN (European Organization for Nuclear
Research).

In the case of particle detectors, as at CERN, trigger systems are utilized for
data acquisition (DAQ). Data to be acquired pertains to charged particles passing
through a charged particle detector. However, it is not desirable that data pertaining
to absolutely all such events is data stored for further processing, as this would
waste an incredible amount of memory and time. Therefore, a trigger system in
this context must include a mask which can discard events which are considered
uninteresting so that only relevant data is stored. At the same time, events of
interest must be immediately allowed to be measured and stored. The focus of this
work has been to develop the trigger readout system in the hardware description
language called VHDL. The system allows a user to configure the aforementioned
mask such that only desired events are recorded.

The result of this work is a trigger readout system which functions in simulation,
yet remains to be tested and verified on physical devices.

i

ii

Acknowledgements

The work described in this thesis was carried out within the Microelectronics Re-
search Group at the University of Bergen, Norway between August 2011 and Novem-
ber 2012.

I would first like to thank my supervisor Kjetil Ullaland for his indispensable
assistance and for sharing his knowledge with me throughout my work on this thesis,
as well as being tough but fair.

I would also like to thank those who have assisted me in my work who also are
involved in the development in the Forward Calorimeter: Shiming Yang, Dominik
Fehlker and Johan Alme. They were available and helpful, while motivating me
to learn and adjust to the challenges involved with this work. Thank you also to
Christian Torgersen and Truls Andersen for providing the technical details of the
Trigger Crate Interface.

A special thank you goes to my fellow students in the Microelectronics Research
Group. It was a joy sharing the workspace in room 426 as well as the lecture hall
with Thomas Bjørnsen, Augusta Pithlace, and Vegard Holsen. I wish them luck on
the completion of their own work.

I must also thank Aleksander Simonsen, Thomas Bolstad, and Odne Hellebø,
who were my fellow students from my bachelor studies in physics, who have been
supportive and helpful; offering constructive criticism of my work in addition to
inspiration through intellectually stimulating conversation.

Lastly, I want to thank my wife Sunniva Neyland, who always has supported me
in my work.

Bergen, November 2012 Joseph Samuel Neyland

iii

iv

Contents

1 About This Work 1

2 Introduction to the Proposed Forward Calorimeter (FoCal) Up-
grade to the ALICE Detector 3

2.1 Purpose of FoCal . 3

2.2 Trigger Systems and DAQ . 4

2.3 Conceptual Design of FoCal and the Readout System 4

2.3.1 Scintillators and the Readout Mechanism 7

2.3.2 The Trigger Crate Interface 7

3 Design Approach and System Overview 11

3.1 The Relationship between the Two Units 11

3.2 Challenges Associated with the Master-Master Relationship 12

3.3 Unambiguous and Robust Communication 12

3.4 Error Handling and Performance . 14

3.4.1 Event Word Rate and Event Transmission Performance 14

4 Specific Designed Trigger System 17

4.1 Introduction to the Trigger System 17

4.1.1 Challenges and Obstacles . 18

4.2 18 bit I/O Packet Structure . 18

4.3 The Trigger Register Map . 19

4.4 The Trigger Data Unit . 21

4.4.1 Configuration Interface . 21

4.4.2 Trigger Receiver Function . 21

4.4.3 Trigger protocol module and trigger transmitter functions . . 24

5 The Specific Designed Communications System 25

5.1 Introduction to the Communications System 25

5.2 Register Control Side A . 25

5.3 The Protocol Modules . 26

5.3.1 Protocol Module A Transmitter Function 28

5.3.2 Protocol Module B Receiver Function 30

v

5.3.3 Protocol Module B Transmitter Function 32

5.3.4 Protocol Module A Receiver Function 34

5.4 The ENC/DEC Modules . 36

5.4.1 Parity Encoding/decoding . 37

5.5 8b/10b Encoding/decoding . 39

5.5.1 Disparity . 40

5.5.2 Encoding . 41

5.5.3 S Generation . 42

5.5.4 Decoding . 42

5.6 Serialization, Transmission, and Deserialization 42

6 Test and Verification Strategy 45

6.1 Simulation . 45

6.2 Synthesis and Verification Strategy 45

7 Conclusion 47

Appendix A: 8b/10b encoding and decoding 48

5b/6b Encoding logic . 49

3b/4b Encoding logic . 49

Error Detection . 52

Appendix B: Choice of correction mask for single-bit error correction
in Hamming Decoding for 18 data bits 53

Acronyms and Abbreviations 54

List of Figures 56

List of Tables 57

Bibliography 58

vi

1 About This Work

The Forward Calorimeter (FoCal) is a proposed upgrade to the ALICE (A Large Ion
Collider Experiment) detector. It will be located such that it will detect charged
particles in the region just outside of the time projection chamber and near the
beam axis. Its purpose is to contribute to quark gluon plasma physics and small
x physics. The Forward Calorimeter’s collaboration team includes physicists from
many universities throughout the world. Here, at the University of Bergen Insti-
tute of Physics and Technology, contribution to the development of the Forward
Calorimeter has been carried out by the microelectronics group and the nuclear
physics group. I, as part of the microelectronics group, have been working on the
development of electronics for the calorimeter. I entered the project in autumn 2011
while the physical detector tower was being developed.

The purpose of my work was to design a trigger readout system for the FoCal.
It must be able to read in event data from a trigger detector and be able to be
configured for pin sensitivity by a user. These two purposes result in the design of
two main components which transmit data to each other across a physical serial link.
The configuration mechanism and the readout mechanism must be able to occur
simultaneously, and data must be able to transmitted between both components
simultaneously. The trigger readout system was designed in VHDL. The design
and its submodules were either designed ”from scratch” by myself, or adapted for
the system from Xilinx source code. The modules which I designed myself with
interconnections and simulated are:

• The trigger data unit with all submodules

• The trigger register map

• The register control side A

• The communication protocol modules A and B with all submodules

• The serializing and deserializing components

The modules which were adapted for the trigger system whose source code was
written by Xilinx are:

• The Hamming encoding/decoding modules

• The 8b/10b encoding/decoding modules

1

2

2 Introduction to the Proposed Forward Calorime-

ter (FoCal) Upgrade to the ALICE Detector

2.1 Purpose of FoCal

The Large Hadron Collider (LHC) at CERN buried deep under the ground level in
Geneva, accelerates particles along two beams moving in opposite directions. These
beams collide at four points where detectors are located. These detectors include the
ATLAS, LCHb, the CMS, and ALICE. The proposed Forward Calorimeter would
operate in conjunction with the ALICE detector, which is, as all of the other detector
names, an acronym. This stands for A Large Ion Collider Experiment. The ALICE
experiment aims to recreate the conditions just after the Big Bang in a laboratory
environment through the collision atoms near the speed of light, which is meant to
give physical insight in quark gluon plasma physics [5].

Figure 1: Possible placement of FoCal

The two purposes of the FoCal as an upgrade to the ALICE detector are (1) to
gain further insight into quark gluon plasma physics (QGP) through the detection
of collisions between lead atoms and (2) to contribute to small-x physics through the
collisions of two protons or a proton and a lead atom [22]. Specifically, the FoCal
will contribute to the further understanding of the inner structure of the proton and
the lead nuclei, with special attention given to the Color Glass Condensate (CGC),

3

which is a a component of the hadron wave function [9]. This will be possible to
observe in extremely high energy collisions at LHC. The detector would be placed
near the particle beam axis in the fluid rapidity region outside of the detection
chamber in order to detect particles which, upon scattering, are reflected along or
near the beam axis and back out of the detection chamber (see Figure 1).

2.2 Trigger Systems and DAQ

A trigger system’s purpose is to indicate when relevant data is available when in-
structed to do so by a ”trigger”, which is often a physical event of interest. In
electronics, trigger systems span a variety of uses. One of the most recognizable
of these is that of the oscilloscope. An oscilloscope, which measures voltage as a
function of time, can be set to wait for a certain event to occur within the system
it measures and display that waveform on its output screen. If the oscilloscope is
not configured to trigger on any particular event, it will display all changes in sig-
nals, often resulting in a jumbled waveform from which it can be difficult to gather
information.

The most common and often-used form of triggering is called edge-triggering,
which allows one to observe the basic timing characteristics and amplitude of a
waveform [16]. This, as the name implies, uses a rise or fall in the measured voltage
as a trigger for measurement. Rise and fall correspond to positive edge and negative
edge-triggering. The voltage level at which triggering occurs, called the threshold, is
able to be calibrated by the user. When the threshold is reached on an edge, the os-
cilloscope will display the waveform and the measurements immediately proceeding
on the display screen depending on sensitivity to the positive or negative edge.

In the case of particle detectors, as at CERN, trigger systems are utilized for
DAQ. Their main purpose is to maximize data for processes of interest with minimal
wasted memory or time [10]. In this case, processes of interest are the detection of
charged particles in a detector. However, it is not desired that absolutely all such
events are measured and their relevant data stored for further processing. A trigger
system in this context must include a mask which can discard events which are
considered uninteresting so that less irrelevant data is stored. At the same time,
events of interest must be immediately allowed to be measured and stored. The
trigger detector in conjunction with the trigger readout system achieves this. An
analog signal is detected by a trigger detector and can be calibrated for a threshold
triggering level such that the event becomes a trigger for measurement.

2.3 Conceptual Design of FoCal and the Readout System

The physical Forward Calorimeter detector tower is composed of a sandwich struc-
ture of 24 alternating pairs of silicon and tungsten layers [3]. There are four

4

Figure 2: Physical overview of the FoCal readout system in its entirety [7]

MIMOSA pixel sensors on each silicon layer, giving a total of 96 sensors. Each
pixel sensor contains a square array of 640x640 pixels. The readout electronics for
each set of four Mimosa sensors require the connection of seven twist pair cables
to the readout module. Four of these are for the data output for the four sensors,
while the following three are shared between them: one for JTAG, one for clock
and control, and one for chip reset signal and signal ground. These cables are up
to ten meters in length and are connected to the readout electronics. For a physical
depiction of this system, see Figure 2.

As is the case for trigger systems in general, a trigger-based readout system is
necessary in the scope of the FoCal to be able to conclude exactly when a charged
particle has been detected. This is due to the nature of the operation of the MIMOSA
pixel detectors and their slow response to the presence of a charged particle. The
MIMOSA chip constantly reads its own detector pixels for events using a rolling
shutter mechanism, as explained in [6]. The pixel array is divided into 80 groups
of 8-pixel columns, and each column is checked for events individually in succession
(see Figure 3).

The rolling shutter mechanism begins by reading the column which resides fur-
thest to the right in the pixel array, called”Frame N”, and moves of to the next
columns in succession. When the final column ”Frame N + 79” is read, the shutter
mechanism jumps back to the first column. Each column is ”wiped clean” after
each scan. This is repeated constantly, where the user is informed of the time when
the first column is scanned in each full iteration. When an ionizing particle crosses

5

Figure 3: Diagram of the rolling shutter function in MIMOSA pixel array [6]

the silicon bulk, the generated electrons and holes move within the electric field,
perpendicular to the wafer, toward the nearest electrode, where they are collected
as a current pulse which is used for particle localization, see Figure 4. The readout
frequency of the MIMOSA chip is 160 MHz on four differential pairs. This gives a
line readout time of 1µs and a total readout time per chip of 640µs.

Figure 4: A charged particle passing through the silicon detector [21]

If a charged particle passes through a certain region of the pixel detector, it
will not be registered by the MIMOSA chip until the readout pointer reaches that
frame. The trigger detector, however, is made aware of such an event much more
quickly. Therefore, the trigger detector informs of when an event has occurred and
the MIMOSA pixel detector measures where an event has occurred.

The constant operation of the pixel detectors requires the use of trigger detec-
tors to reduce the amount of data which is stored. As the time spent measuring
no detection of particles is often vastly greater than the time in which events are
measured, there is an equally large ratio of useless data to useful data being read

6

from the MIMOSA pixel detectors. To tackle this, trigger detectors in the form of
scintillator plates are placed at either end of the detector tower. The trigger detector
detects events; allowing the opportunity to process the incurring data by sending
the trigger signals to FPGAs. This will be further described in later sections.

2.3.1 Scintillators and the Readout Mechanism

The scintillators used in this system are the main initiating component in the trigger
readout system. It is therefore necessary to understand the nature of the signals
emitted by the scintillator upon detection of an event in order to configure the
trigger card to respond to these and convey information.

The detecting material of a scintillator can either be organic or inorganic. Upon
an event caused by, for example, a charged particle passing through the scintillator,
it will excite the electrons or the molecules in the material depending on whether the
scintillator is inorganic or organic. These excited states are then slightly reduced in
energy within the scintillator before they fall back to their ground states, emitting
another photon of lower energy. This photon is guided along the material and is
eventually converted into an electrical signal through the photoelectric effect. This
current is amplified before being discharged through a load resistor. An analog
voltage pulse of a few mV is produced for a single photon, which is proportional to
the energy of the incoming particle. This pulse is then widened in the time domain
before it is sent to the trigger card. The trigger card will then receive this signal and
convert it to a digital pulse. The change in analog pulse height can trigger the rise
of the digital signal to logic ’1’ as specified by the user. This can also be configured
to only detect positive change in pulse height, negative change in pulse height, or
both changes in the pulse height. This corresponds to edge-triggering, which serves
as the initiating element the readout mechanism within the scope of this specific
trigger system.

2.3.2 The Trigger Crate Interface

The trigger signals convey the information that there has been an event. The FoCal
detector presently uses a Trigger Crate Interface (TCI). The main task of the trigger
system is not only to inform but to initiate the transfer of data from readout. An
advantage of utilizing a trigger detector is that it responds more quickly than the
pixel detectors do upon the detection of an event. If the data is not found to
be of interest, then it is discarded. event data is transmitted in multiple formats
corresponding to 36 inputs, which are summarized as follows [17]:

• 12 Low-Voltage Differential Signaling (LVDS) inputs

• 8 Emitter-Coupled Logic (ECL) inputs

7

• 8 Nuclear Instrumentation Standard (NIM) inputs

• 8 Positive Emitter-Coupled Logic (PECL) inputs

Figure 5: A charged particle passing through the silicon detector

The output pins of the trigger card convey a digital signal when an event is
detected in the scintillator. The signal output from the scintillator is sent through
the preamplifier/signal conditioning module within the TCI, which provides the
digital signal in the trigger card to be read out through the Focal readout system
(see Figure 5). Within the scope of the trigger system, these pins are configurable
to detect ’0’ to ’1’ transitions, ’1’ to ’0’ transitions, or both transitions. When such
an event is detected, the trigger readout system transmits corresponding data to a
user.

Figure 6: picture of trigger card with inputs and FPGA [17]

8

Figure 7: Overview of trigger card I/O and FPGA [17]

9

10

3 Design Approach and System Overview

The trigger readout system includes two basic units, which are the main unit where
a user can define trigger parameters, and an extended unit where the programmable
trigger interface card resides. These two units are referred to as A and B, respec-
tively. They reside on each end of the the trigger readout system. In order to tackle
the challenges associated with the design of such a system, a systematic design
scheme is necessary. If these two units were adjacent to each other physically, they
would be able to transmit and receive parallel data with minimal delay. However,
the two units A and B will not reside adjacent to each other, but will be connected
by physical links, as mentioned earlier. This corresponds to the physical layer in
the OSI model, which requires the design of a communications system between the
two units. Parallel data will require serialization before being transmitted across
the physical link between units.

The International Organization for Standardization (ISO) Open Systems Inter-
connection (OSI) model serves to describe and define the functions of a communi-
cations system categorized in layers of abstraction. This is called the seven layer
model. In the design discussed in this text, the first three layers of this model were
defined and implemented, and are defined as follows (see for example [13]).

• Level 1: Physical - defines connector and interface specifications and medium
requirements.

• Level 2: Data link - allows a device to access the network to send and receive
messages, offers a physical address so that data can be sent on the network,
interfaces with a device’s networking software, and provides error detection
capability.

• Level 3: Network - provides an end-to-end logical addressing system so that
a packet of data can be routed across several layer 2 networks.

3.1 The Relationship between the Two Units

The relationship between the two systems must be defined in order to determine
how the second and third layers of the seven layer model should be implemented. In
the case of a master-slave relationship, one system commands another, transmitting
commands along the physical link and then receiving a confirmation of transmission
from the slave unit. In the case of this system, unit B sends event data to unit
A upon the detection of an event. Unit A should then send confirmation of suc-
cessful transmission back to unit B. This fits within the framework of master-slave
communication from unit B to unit A.

However, unit A must be able to send configuration parameters to unit B. These
parameters are used to configure the trigger card’s I/O pins to detect specific trig-

11

ger events. Unit B should then send confirmation of successful transmission of these
parameters to unit A. This defines the master-slave relationship from unit A to unit
B. Therefore, it is clear that both units function as masters and slaves simultane-
ously. The nature of the relationship between units A and B is then defined to be
master-master. With this relationship defined, the implementation of levels two and
three of the seven layer model can be more clearly defined.

3.2 Challenges Associated with the Master-Master Rela-
tionship

This sort of relationship presents a number of challenges. One challenge pertains to
the need for the configuration of the trigger card and the transmission of event data
to be able to occur simultaneously. This results in the necessity of an asymmetrical
communications system. To tackle this challenge, a map of registers was designed in
order to store configuration parameters and event data, called the Trigger Register
Map (TRM). It is an array of registers containing 8 bits each. Specific addresses
in the TRM are reserved for pin configuration of the trigger card while others are
reserved for data pertaining to events which are sent by the trigger card to side
A. This allows for the two types of data to be written simultaneously in the same
unit while being organized and categorized by which type it is. The TRM has been
chosen to reside on unit B because that is the side where the trigger card resides,
which is to be configured by way of a neighboring module called the Trigger Data
Unit (TDU). Specific details pertaining to the use of the registers in the TRM will
be discussed later in the text.

Another challenge is to design the system such that they are able to transmit
and receive simultaneously. This is not possible in a half-duplex communications
system. To solve this problem, each unit contains a main communications protocol
module A or B, each of which is divided into transmitter and receiver. Each protocol
module can transmit data across its own dedicated serial link to the opposite protocol
module’s receiver. The transmitters and receivers within each protocol module are
able to operate simultaneously and communicate with each other as well as their
neighboring modules within units A or B.

3.3 Unambiguous and Robust Communication

The two units must be able to interpret which type of data is being sent or received
in order to know what to do with said data. In other words, unambiguous communi-
cation is necessary. The protocol modules transmit the relevant data to each other
in packets of identical length and structure for the sake of simplicity. These packets
allow for unambiguous communication as they contain the following information:

• The type of data being transmitted or received (event data or configuration

12

parameters).

• Whether the data contained in the packet is to be written to a register or if
data is to be read from a register at a specific address.

• Whether the packet contains a first-time command or an acknowledgement of
successful transmission.

As mentioned earlier, data must be sent from one unit to the other across a
physical link. This gives rise to the possibility of bit errors associated with serial
transmission. Thus, the inclusion of modules which can increase the robustness of
data transmission is necessary for the prevention of transmission errors. As a result,
units A and B include identical encoding/decoding (ENC/DEC) modules which are
responsible for data encoding, decoding, serialization, etc. for transmission across
the physical serial link. For a complete block diagram of the trigger system, see
Figure 8.

Figure 8: Block diagram of the specific designed communications system

If a packet is, for example, constructed in the transmitter of protocol module
A, it is then sent to the encoding end of ENC/DEC module A which encodes and
serializes the packet to be sent along the transmission line to ENC/DEC module B
where it is parallelized, decoded, and checked for transmission errors before it is sent
to the receiver end of protocol module B. The protocol module’s receiver, depending
on the detection of transmission errors, handles the packet as commanded before
passing the packet to the transmitter. The transmitter, upon receiving this packet
(now called the acknowledge packet), transmits this back through the ENC/DEC

13

module B back to ENC/DEC module A along the other transmission line where
it is once again parallelized and decoded before being sent to the receiving end of
protocol module A, where acknowledgement is registered and recognized. This is
when the entire data transmission process is completed and terminated.

3.4 Error Handling and Performance

As is the case with all digital systems, there is a certain probability that transmission
errors will occur even after taking steps to prevent them. Therefore, this system must
be able to recognize if a packet contains an error as well as account for unsuccessful
transmission.

The system recognizes successful or unsuccessful transmission by waiting for ac-
knowledgement of transmission. If unit A sends a packet to unit B, then unit A waits
for an acknowledge packet, which confirms transmission. The minimum amount of
time it takes to transmit a packet and register the reception of an acknowledge
packet is 71 clock cycles. If the acknowledge packet does not arrive after 300 clock
cycles, then the waiting unit concludes that there has been an error in transmission,
and it ceases to wait for said acknowledge packet. This timeout error is logged in a
status register, which counts timeout errors. Thus, the unit must send the original
packet again. Both systems, when they transmit packets to each other, wait for
acknowledgement packets for confirmation of successful transmission. However, this
does not limit the word rate of transmission. Unit B, which sends event data, is
able to transmit packets for the first time while simultaneously waiting for acknowl-
edgement packets. Thus, the acknowledgement mechanism is not detrimental to the
system in terms of word rate, but rather serves to verify successful transmission.

The system also is able to recognize bit errors in transmission. When a unit
receives a packet, it simultaneously receives information from the ENC/DEC module
in the form of two bits which indicate parity error. Parity will be discussed in a
later section. If the packet contains parity errors, then the data is assumed to be
corrupted and unable to be used. It must be sent again.

3.4.1 Event Word Rate and Event Transmission Performance

The rate at which event data can be sent is limited by the frequency of the trans-
mission clock and the amount of bits to be transmitted across the physical link. The
frequency of the transmission clock is 100 MHz. Each packet containing event data,
after being encoded in multiple phases, contains 34 bits to be sent over the physical
link. This results in a minimal transmit time of 340 ns per event data packet. The
maximum event word rate is then calculated to be approximately 2.94 MHz.

The arrival of a trigger pulse into the system is a stochastic process. A trigger
pulse may be measured at any time. Thus, a mechanism to tackle the possible rapid

14

successive arrival of event data must be included in this system. Trigger event data
is able to be read at any time, but there are, as discussed, limitations pertaining
to the rate of transmission. In order to tackle this issue, a FIFO, which functions
as a derandomizing buffer, collects all event data and is available at every clock
cycle. This converts the stochastic process into a constant process. The FIFO can
be written to or read from whenever the system requires to. The depth of the FIFO
is chosen such that it can be emptied at a rate which corresponds to 10% of the
time it takes for a MIMOSA chip to scan its entire pixel array, which is 640µs.
10% of the scan time, which is 64µs, is a reasonable worst case scenario for trigger
readout. A FIFO which would require a maximum time of 64µs to empty with 340
ns word-reading intervals should have a maximum depth of 189. Therefore, a FIFO
with a depth of 180 was chosen. To have very few slots in the FIFO would defeat
its purpose, as it would be able to hold too few event data words.

15

16

4 Specific Designed Trigger System

Figure 9: Block diagram of the trigger data unit in its entirety with external and
internal I/O

4.1 Introduction to the Trigger System

As illustrated earlier in Figure 8, the TRM and the trigger data unit (TDU) reside
on unit B. The purpose of the trigger system is to collect and transmit event data
to the user on the opposite end of unit A. Event data is collected through the 36
pins of the trigger card, which are connected to the TDU shown in Figure 9. As
mentioned, the user must also be able to enable, disable, and configure the edge
sensitivity of the of the pins. This mechanism is achieved through the TRM, which
contains these configuration parameters.

The flow of data through the trigger system is divided into two streams depending
on the type of information to be conveyed. These streams can be followed by
observing Figure 9. If data originates from the pins of the trigger card, then this
pertains to event data. This data is read through the trigger receiver before being
passed through the FIFO to the trigger protocol module which organizes each packet
to be transmitted. These words are then passed to the trigger transmitter which
places the data into the TRM. The event data is then accessible to the protocol
module on unit B, which transmits this data across the physical link to the user
on unit A. The other stream pertains to configuration parameters coming from the

17

user on unit A. The configuration interface receives these parameters from the TRM,
before they are organized and passed to the trigger receiver, where these parameters
are implemented. Transmission is complete in this direction when the configuration
parameters reach the trigger receiver. These two streams must be able to occur
simultaneously, which is why there are two separate modules which interface with
the TRM. These operate in parallel such that they do not depend on each other.

4.1.1 Challenges and Obstacles

The pins of the trigger card may convey event information at any moment without
any specific relation to the system clock. However, the internal units of the trigger
system operate synchronously. Therefore, the system must be able to read event
data asynchronously and transmit these signals synchronously with the clock.

Since there are 36 readout pins, it is theoretically possible that every pin may
convey event data at exactly the same time. Although this is highly unlikely, the
trigger system must be able to divide this data into as many words as required
before transmitting them to the user on unit A. At the same time, it is possible,
and much more likely, that only one pin may convey any event data at a given
time. In such a case, only one word is required to be sent. The words cannot be
sent simultaneously over a physical link. They must be sent one after the other.
In addition, there must be 340 ns of dead time between the transmission of each
word in order to avoid congestion of data flow traffic in the trigger system. The
system must be flexible enough to send up to as many as event data words required
depending on the amount of data coming in, while wasting as little time as possible.

Each packet must be able to convey exactly what sort of event has occurred
on a specific pin. The user at unit A must be able to receive a packet and, from
it, conclude which pin or pins have detected a positive edge or negative edge. If
one were to assign each pin two bits which would convey positive or negative edge
events, then each packet would contain 72 bits of data, most of which would contain
zeros; completely irrelevant information. This would be an ineffective solution. The
trigger system, therefore, conveys as much information as possible in as few bits as
is effective with the whole system taken into account.

4.2 18 bit I/O Packet Structure

Figure 10: 18 bit packet structure

Each packet contains 18 bits which include an 8 bit data word, an 8 bit address
location word, a read-not-write bit (RnW), and an acknowledge bit (ACK) (see

18

Figure 10). The inclusion of the two flag bits is a standard practice and is necessary
for the interpretation of the data and address information being transmitted or
received, see for example [14]. The RnW bit serves the simple purpose of informing
unit A or B of that which is to be done with the input data and input address. If
RnW is asserted, then data is to be read or has been read. Otherwise, data is to be
written or has been written. The ACK bit allows the unit to know if transmission
is completed before terminating transmission. Without the ACK bit, the receiving
end of the unit would not be able to interpret whether the packet it receives is a
first-time instruction from the opposite unit or if it is a confirmation of successful
transmission that the opposite unit has sent.

The data and address bits serve a dual purpose depending on whether the packet
is transmitted from unit A or unit B. If this information has been transmitted from
unit A, then it is meant to be used to convey configuration parameters. The data
word can also contain enable information for each pin. In order for the side B to be
able to know which pins are meant to be configured upon the reception of an 18 bit
data packet, the 8 bit address word must carry this information. The address word
serves this purpose, which is discussed in the scope of the TRM below. If an 18
bit packet is transmitted from side B, then it conveys event data, while the address
corresponds to the pins which have detected such events.

4.3 The Trigger Register Map

The TRM is an array of 8 bit registers, with each address corresponding to specific
sets or readout pins. The data and address information work together to be able to
configure each readout pin individually. For the sake of discussion, the three forms
of configuration will be henceforth referred to as enable, positive edge sensitivity
(0 to 1 trigger pulse transitions) and negative edge sensitivity(1 to 0 trigger pulse
transitions), or both, as discussed in Section 2.3.1. The user at unit A is able to write
configuration parameters to or read configuration parameters from each register at
any time.

Only one bit is required to enable a pin. Therefore, enable information for eight
pins is stored in each 8 bit register. Each pin can therefore be given a specific index
in an 8 bit data word read from a specific address in the TRM. Since there are 36
readout pins, five 8 bit registers are required to store all enable information for each
pin. Thus, the enable information is stored in a 5 x 8 bit array where each row and
column combination corresponds to one pin, with the exception of the four most
significant bits in the fifth row. Bit value ’1’ corresponds to an enabled state.

For each pin, two bits are required to configure positive and negative edge sen-
sitivity. This is because each pin can be configured to be sensitive to both changes
as well as each one individually. Therefore, it is only possible for each register to
contain sensitivity parameters for four pins, where each neighboring pair of bits cor-
responds to its own individual pin. As a result, nine registers are required for the

19

Figure 11: A map of the TRM with address locations for configuration parameters
and event data.

configuration of 36 readout pins. The two bits for each pin reside side-by-side, and
if their form is expressed as [S1:S0], then the assertion of S0 will cause a pin to be
sensitive to positive edge transitions and the assertion of S1 will cause a pin to be
sensitive to negative edge transitions. S1 and S0 may be asserted simultaneously.

The final 16 register addresses are reserved for event data being sent from side
B to side A. Event data is expressed in the form of two bits. These two bits can
either be given the value ”01”, which conveys a positive edge transition, ”10”, which
conveys a negative edge transition, and ”00”, which indicates no transition. These
are stored in nine registers which correspond to each pin in a similar fashion as
the sensitivity parameters correspond to each pin. The only difference is that each
address which is designated to contain trigger readout data begins with the four
binary bits ”1111”. The unit A communication protocol module is then able to
use this flag to verify that the 18 bit packet it is receiving contains trigger readout
information.

20

4.4 The Trigger Data Unit

The trigger data unit (TDU) serves a dual purpose. It communicates with the TRM
to receive trigger parameter information from side A and it organizes the readout
information received by each pin on the trigger card. This information is then
prepared into an 8 bit data word and an 8 bit address word before being sent to a
designated location on the TRM, as discussed earlier. These operations are able to
occur simultaneously. The user at unit A will be able to configure anywhere between
one and four adjacent pins simultaneously with one such packet. The discussion of
the TDU will begin with the configuration of readout pins before continuing to the
handling of the event data.

4.4.1 Configuration Interface

The configuration interface (CI) serves the purpose of reading configuration param-
eters from the TRM and conveying this to the trigger receiver. The interface is
informed when new configuration parameters have been written to the TRM along
with the address of the register. After reading the configuration parameters from
the TRM at that address, it uses this this address to decide which pins shall be
configured with these received parameters (see Figure 11).

There is a challenge pertaining to the different number of enable bits (four bits)
per four pins, and the number of sensitivity bits (eight bits) per four pins. If enable
information is to be, for example, configured on pins 3 down to 0, this is conveyed
in an 8 bit data word sent to the designated address ”01000001”. These eight bits
correspond to pins 7 down to 0, which include two different groups of pins. The
CI has no way of knowing which half of the data within this register is ”relevant”
in terms of the user’s intention at unit A. In order to avoid the necessity of the
addition of a flag bit to determine which half of the word to send, the CI merely
sends both halves in parallel. If there is no change in, for example, bits 7 down to
4, then there will be no negative consequence. However, if there is a change, then
it must have been the user’s intention to change them, causing no problem. The
configuration of sensitivity words through the CI is simpler because all eight bits
are required to configure one group of four adjacent pins. The CI simply sends these
bits to the corresponding group of pins as specified in the address location of the
register within the TRM.

4.4.2 Trigger Receiver Function

The trigger receiver is organized into nine readout modules to which four adjacent
readout pins are connected. Each module, referred to as a ”trigger module”, contains
four sets of two registers which store the configuration parameters for each pins.
The configuration parameters are received from the configuration interface. As

21

mentioned earlier, these pins deliver a digital pulse, which had been converted from
an analog event pulse from the scintillator. Since these pulses arrive asynchronously,
it is necessary for each pin to be able to be read in events at all times, as long
as they are enabled. Thus, each pin is connected to a trigger sensor, which is
depicted in Figure 12. The trigger sensor is sensitive to the configuration parameters
described earlier, and, in summation, the trigger sensors act as a mask for incoming
trigger pulses. The disabled pins will convey no information, while enabled pins
will convey only the transition(s) to which they are configured to be sensitive. This
is implemented in the AND gates depicted in the schematic. The configuration
parameters are read through the two registers which the trigger receiver had received
from the configuration interface.

The receiver is not only be able to read in event data, but also convey it through
the FIFO and onward toward the trigger protocol module for organization. This
mechanism requires the that the receiver must be ready to pass event information
whenever an event is detected, along with some indicator of the pin which conveyed
the event so that the trigger protocol module may be able to construct an 18 bit
packet which contains this information.

Figure 12: RTL schematic of one trigger sensor, where pin 0 is used as a specific
example.

In order to avoid transmission errors associated with metastability, it is necessary
to include a simple synchronizer; see for example [19]. This includes the first two
clocked registers. Each pin is connected to an AND gate along with an enable bit
before being clocked through two registers, as shown in Figure 12. The edge detector
consists of a block of combinational logic with inputs D0 and D1, collected from the
readout pin through the synchronizer. The detection of an edge corresponds to D0
and D1 having different logical values. A pulse may maintain a logic ’1’ for multiple
clock cycles, and this must not trigger any readout of a transition. Therefore, the
edge detector was designed to block any transmission of D1 and D0 while they have
the same value, even if those values are ’1’ and ’1’. However, if these values differ,
and if that type of transition has been configured to be detected, then these two
values will be transmitted through the combinational logic to Q1 and Q0 with the
assertion of frame out for one clock cycle. The frame out bit is a handshaking signal
that triggers the transmission of the values of Q1 and Q0 to the trigger protocol

22

module. If an edge is detected on any enabled pin, an 8 bit word labeled trig out
composed of a concatenation of each of the four pins’ Q0 and Q1 is transmitted at
that time through the FIFO to the trigger protocol module for processing before
transmission to unit A. There are nine such words corresponding to nine trigger
readout modules.

A minimum of one trig out word and a maximum of nine are able to be trans-
ferred to the FIFO at a time. However, it would be erroneous to transfer, for
example, seven words containing only zeros if two trig out words actually convey
relevant event data. Therefore, only these words containing relevant event data are
sent to the FIFO while the others are not. The trigger protocol module must con-
stantly be able to send the words it receives from the FIFO, and it needs to be able
to know how many words containing event data it needs to send. This is solved by
sending a frame out word which is a concatenation of every frame out bit in one
instance of event data reception. Since each asserted frame out bit corresponds to
a word containing event data, the amount of ones in the frame out word equals the
amount of words to be sent by the trigger protocol module. The amount of words is
calculated in a separate module called ”count words” (see Figure 9). This module
returns an integer value with the number of words to the trigger protocol module.
The trigger protocol module will send as many packets containing event data as the
value it receives from ”count words”. This value can be updated as more triggers
arrive.

Figure 13: Block diagram of the trigger receiver in its entirety.

23

4.4.3 Trigger protocol module and trigger transmitter functions

The trigger protocol module collects the trig out words from the FIFO and prepares
these for transmission before sending each one-by-one until all words are sent toward
unit A. The amount of words it sends depends on the word count received by the
module ”count words”. The reception of such a word with at least one ’1’ in it
triggers the handling and transmission mechanisms. It is not sufficient to merely
pass a trig out word received along to the trigger transmitter. It must be sent
along with its corresponding TRM address so that the user at unit A may be able to
conclude which pin(s) detected an event. This is achieved through a multiplexer-like
function which chooses the address to be sent as a function of the the bit location of
a ’1’ in the frame out word. The pin locations corresponding to event data words to
be sent in the TRM can be seen in Figure 11. After calculation of the address, the
trigger protocol module sends the event data and address to the trigger transmitter.
However, this cannot occur for each clock cycle since this would congest data-flow
traffic. In order to make sure that there is no such congestion, the protocol module
waits for 34 clock cycles (corresponding to 340 ns) between the sending of each word.
When finished sending all of these words, it is ready to receive more event data.

Event data and address are then transmitted to the trigger transmitter by the
protocol module, whose sole purpose is to interface with the TRM for the sake of
simplicity. It activates the TRM for the reception of the event data at the specified
address which it received from the trigger protocol module. The TRM then informs
the communications system that event data is ready to be transmitted across the
system to unit A.

24

5 The Specific Designed Communications System

5.1 Introduction to the Communications System

In oder to transmit configuration parameters or event data from one side of the sys-
tem to the other, a robust communications system is necessary. The communications
system serves three basic purposes, listed below:

• Provide a protocol interface so that the two units can communicate with each
other and interpret data packets.

• Increase the robustness of transmission through multiple encoding/decoding
mechanisms.

• Allow for serial transmission between the two sides A and B.

These three purposes are fulfilled by the three main components within each
unit A and B in the communications system. These three units are the proto-
col modules, the ENC/DEC modules, and the serializer/deserializer modules. The
protocol modules serve the first purpose on the list above. Each protocol module
serves as a mediator between the ENC/DEC modules and their respective outside
units. The ENC/DEC modules provide the robustness of communication, and the
serializer/deserializer modules allow for serial transmission along the physical link.

Since both units have their own master clock, there must be a sampling mecha-
nism on either receiving end of the data transmission lines such that data may be
received with minimal errors. This mechanism will be discussed later in the text.
The register control side A (RCSA), which serves as a bridge between the trigger
data unit and the protocol module on unit B, is also included in the discussion of the
communications system and not the trigger system because it resides on the com-
munication side of the TRM. It mediates the writing and reading of configuration
parameters to/from the TRM as specified by the user on side A.

5.2 Register Control Side A

The RCSA serves to allow for the writing and reading of configuration parameters to
the TRM as specified by the user on side A. The user must be able to both read from
and write to the TRM, as it is possible that the user at side A could somehow lose
or ”forget” the configuration parameters they wrote to it. The writing mechanism
of the RCSA must serve two purposes. It is necessary for it to inform the TDU
that configuration parameters have been written at a specified address in addition
to simply writing to or reading from the TRM. Figure 14 depicts the state machine
which defines the control flow of the RCSA. When the FSM is in the ”ready” state,

25

Figure 14: The FSM for the register control on side A

it waits for read or write instructions from the protocol module B receiver. The
FSM then executes one of these instructions by asserting control signals which the
TRM obeys. If it receives instructions to write, it writes to the TRM in addition to
sending the address to the TDU. Upon completion of reading or writing, the RCSA
raises a done flag which informs the unit B protocol module that it is finished. If
the RCSA received instruction to read from the TRM, it will read and send the 8
bit data contained within the TRM at the specified address along with the done flag
back to the protocol module for transmission to unit A.

5.3 The Protocol Modules

Protocol modules are required in a system such as this to allow for the construction
and deconstruction of data such that the two systems are able to interpret each
other’s commands at the same layer of abstraction, see for example [4]. Since the
protocol modules must be able to send and receive simultaneously, the full-duplex
solution was chosen. Thus, the protocol modules are divided into transmitter and
receiver components with the opportunity for data flow between the two. In order
to fully grasp the functionality of the protocol modules, they must be discussed in
terms of their transmitter and receiver components individually.

The protocol modules require the reception of instructions in order to execute
their purpose. The receiver and transmitter modules within each protocol module

26

Figure 15: A general depiction of the protocol module with I/O signals

receive their instructions individually. The two protocol module transmitters can
receive their instructions from either their immediate neighboring outside unit or the
receiver within the same protocol module. The two protocol module receivers receive
their instructions from the 18 bit packet which they accept from the opposite unit
across the physical link. In order to account for errors in transmission, they are able
to inform their masters of such transmission errors or timeout errors. The protocol
modules A and B are not identical and their specific functionality must therefore be
discussed individually. The following discussion will follow the flow of data through
the two protocol modules by way of their transmitters and receivers. It begins with
the protocol module A transmitter before continuing to protocol module B receiver,
then to the protocol module B transmitter and back to the protocol module A
receiver. Two directions of data flow are simultaneously discussed.

27

5.3.1 Protocol Module A Transmitter Function

The purpose of the transmitter in protocol module A is to organize and transmit
data, address, and instructions to the opposite module as specified by the user on
unit A. As mentioned earlier, the transmitter has four input connections with the
user: an 8 bit address input, an 8 bit data input, a RnW input, and a control input
called transmit. There are also output connections to the user, one of which, called
busy, informs the user that new data and address are not ready to be received by
the protocol module, since it is busy executing other tasks. Apart from these are
the global clock and reset inputs. Lastly, there are four inputs into the transmitter
from its own receiver. See Figure 15 for a diagram of the protocol module with I/O
connections. The two signals which determine what is to be done with the data and
address specified by the user are the RnW and transmit signals. Table 1 describes
the transmitter’s interpretation of the possible commands able to be given by the
user on side A.

RnW control description

0 1 Write the configuration parameters to the specified address on the
TRM

1 1 Read the configuration parameters from the specified address on the
TRM

X 0 Do nothing

Table 1: A summary of the possible transmitter functions when commanded by the
user at unit A

Upon the assertion of the transmit signal by the user, the protocol module accepts
the RnW value, the data, and the address. The protocol module then assembles
the 18 bit packet to be transmitted through the ENC/DEC modules. When data
and address are received by the protocol module, it asserts the busy signal which
will remain asserted until the entire course of transmission is complete and acknowl-
edgement of successful transmission is received. After this initial transmission, the
transmitter shifts to the ”wait w” or ”wait r” state depending on the value of the
RnW bit (see Figure 16). The transmitter will remain in this state until it receives
confirmation that the word was transmitted to the TRM. However, if for any reason
confirmation of successful transmission is not received after a configurable amount
of clock cycles, the protocol module interprets this as a timeout error and the user
is informed of unsuccessful transmission. The timeout error flag is raised, and the
protocol module reverts to the ”ready” state, with busy set to zero.

Confirmation of successful transmission is conveyed by the protocol module’s own
receiver unit by returning the original transmitted packet along with the assertion
of the aforementioned ACK bit, which is found in bit position 16 in an 18 bit
packet. The packet received, which is now called the ”acknowledge packet” should
be exactly the same as the packet transmitted with this one difference. If the value
of the RnW bit of the acknowledge packet is ’1’, it is interpreted as having been of
a read command. Therefore, the 8 bit data within the acknowledge packet contains

28

the configuration parameters which were read from the TRM at the earlier-specified
address. These configuration parameters passed to the user by the transmitter
along with the assertion of the control signal done reading for one clock cycle before
shifting back to the ”ready” state. If the acknowledge packet has an RnW bit of
value ’0’, then this is considered to be a write receipt. In this case, the transmitter
asserts the done writing for one clock cycle to inform the user of successful writing
to the TRM before returning to the ready state. When back in the ”ready” state,
the entire transmission process has been completed and the busy signal falls back to
zero; informing the user that it is ready to receive new data and address information.

Figure 16: FSM diagram of the protocol module A transmitter

The transmitter may also receive its commands from its own receiver. This
corresponds to the command to send an acknowledge packet to protocol module
B. This is the case when the received packet originated in unit B. The transmitter
must be available to transmit an acknowledge packet at all times in order to avoid
unnecessary timeout errors at unit B. Therefore, when the transmitter has already

29

sent a packet from the user and is waiting for an acknowledge packet (corresponding
to the wait w or wait r state as depicted in Figure 16), it is available to transmit an
acknowledge packet to unit B if the receiver indicates that one is stable and ready to
be sent. Acknowledge packets are conveyed to the transmitter and the transmitter
is commanded to transmit such a packet by way of the the assertion of the control
signal ack ready for one clock cycle by the receiver. The acknowledge packet, having
been accepted by the transmitter, is then transmitted back to protocol module B.
After this transmission, the transmitter continues to wait for an acknowledge packet
corresponding to the original packet sent by the user.

bit[17]:RnW bit[16]:ACK description

0 1 Send writing done acknowledge packet to protocol
module B

1 1 Send read done acknowledge packet to protocol module
B

Table 2: A summary of the possible protocol module A transmitter functions de-
pending on the values of the received RnW when ACK is equal to ’1’

5.3.2 Protocol Module B Receiver Function

Now the discussion shifts across the physical link to the protocol module on unit B.
The purpose of the protocol module B is not only to receive configuration parameters
being transmitted from the user on unit A, but also to convey these parameters to
the neighboring TRM through the RCSA. It receives its instructions exclusively
from the RnW and ACK bits from the 18 bit packet it receives. In a similar fashion
as the transmitter, the receiver has four possible instructions determined by these
bits.

The receiver is sensitive to a handshake signal called done in the same way that
the transmitter is sensitive to the control signal transmit. It is generated by the
neighboring ENC/DEC module when an 18 bit packet is ready to be passed to the
receiver. Upon the assertion of done, the receiver collects the transmitted packet as
well as a two bit word which indicates parity error. Parity will be discussed later in
the text. After the transmitted packet is received, the protocol module interprets
17 and 16 as the RnW and ACK bits.

It is simplest for the sake of discussion to first describe the receiver function for
first-time reception, namely when the ACK bit is equal to ’0’. In this case, the
receiver will then shift its state to ”write to” or ”fetch” depending on whether the
RnW is equal to ’0’ or ’1’, respectively (see Figure 17). In each of these states,
corresponding instructions are sent to the TRM through the RCSA. The ”write to”
state conveys the configuration parameters to the TRM to be written at the specified
address along with the assertion of the control signal write to. The ”fetch” state
sends the address and the control signal read from to the RCSA and waits for the it
to provide the configuration parameters from the specified register address. Upon

30

Figure 17: FSM diagram of the protocol module B receiver

completion of either one of these states, the state machine shifts to another state in
which the newly concatenated acknowledge packet is passed to the transmitter with
the assertion of the ack ready signal to be processed as described earlier. After this
is completed, the state reverts to ”ready” and more 18 bit packets can be received.

If the ACK bit within the packet received is equal to ’1’, then the packet being
received is the acknowledge packet corresponding to a packet which already had been
sent by the trigger system earlier. Depending on the value of the RnW signal, the
packet is processed by way of the ”ack w rcvd” or the ”error” state before returning
to the ”ready” state. It is not possible for the protocol module B receiver to receive
an acknowledge packet pertaining to successful reading from unit A. This is because
there simply is nothing to be read from unit A. Therefore, if the acknowledge packet
received contains RnW and ACK bits which are both asserted, the protocol module
state machine will interpret this as a result of a parity error. The instructions

31

within a received packet are interpreted by the receiving end of the protocol module
as listed in Table 3.

bit[17]:RnW bit[16]:ACK description

0 0 Write the received configuration parameters to specified
address in the TRM. Assert ACK bit and pass the
acknowledge packet to the transmitter.

0 1 Finished writing to the trigger FIFO neighboring
protocol module A. Check parity and inform transmitter
that writing is complete.

1 0 Fetch data from received address in the TRM and wait
until finished. Assert ACK bit afterwards and pass the
acknowledge packet containing configuration parameters
to the transmitter.

1 1 ERROR: it is not possible within the logic of the system
to receive the flag bits ”11” as it is not possible for unit
B to read from unit A.

Table 3: A summary of the four possible protocol module B receiver functions
depending on the values of RnW and ACK

5.3.3 Protocol Module B Transmitter Function

The protocol module B transmitter differs in multiple ways from the transmitter
in protocol module A. For the simplicity of this discussion, its function will be
explained for event data transmission and acknowledge packets separately. Upon
the transmission of event data and address information, which it receives from the
TRM, the RnW bit will never be asserted, as side B never has the need or possibility
to read any data from side A. Thus, protocol module B will never be given the
command to read data from protocol module A, but will only write event data and
address information to the user on side A through the aforementioned trigger FIFO
connected to protocol module A.

The transmitter may also send send an acknowledge packet back to side A.
There are two types of such packets that it may send, depending on the instructions
it originally received from unit A. If protocol module B’s receiver was commanded
to write configuration parameters to the TRM, then it will send an acknowledge
packet whose purpose is to communicate that the parameters have been successfully
or unsuccessfully written. If successful, it will contain exactly the same bits as the
originally sent packet with along with the assertion of the ACK bit. If the receiver
was instructed to read from the TRM, then the acknowledge packet will contain the
configuration parameters which were read from the TRM along with the address
specified by the user at unit A. The reading and writing mechanism is, however,
overseen by protocol module B’s receiver. Therefore, the transmitter merely sends
the acknowledgement packets it receives from its own receiver. As a result, the
instruction set in this transmitter does not depend on any received RnW value from

32

Figure 18: FSM diagram of the protocol module B transmitter

the outside, as is the case with protocol module A, but rather upon the control
signals transmit and ack ready. The response of the transmitter to these signals is
summarized in Table 4.

As is the case with the protocol module A transmitter, the B transmitter asserts
the busy signal after having sent event data and address to the trigger FIFO. busy
will fall back to zero when the transmitter receives confirmation that the trans-
mission is complete. This is communicated through the acknowledge packet in the
same fashion as in protocol module A. If an acknowledge packet does not return
after a certain number of clock cycles, then it is assumed that there were systematic
errors which interrupted transmission of data. Thus, the timeout error flag is raised
for one clock cycle before returning to the ”init” state. The busy signal has the
same function as in A, but not the same purpose. Event data may be sent through
the protocol module B transmitter even while the busy signal is asserted. This is

33

transmit ack ready description

1 0 Write event data and address to the trigger FIFO.

0 1 Send the read configuration parameters along with address or
the writing done acknowledge packet to protocol module A.

Table 4: A summary of the two possible protocol module B transmitter functions
depending on the values of transmit and ACK

to accommodate the fact that event data may be measured and ready to be sent
with short intervals. Thus, the busy signal in protocol module B serves a different
purpose; namely to indicate to the interested user when transmission is currently
occurring.

In order to allow for the transmission of acknowledge packets at any time, the
”wait” state, as pictured in Figure 18, serves a similar purpose as the wait states
in the protocol module A transmitter. It waits for an acknowledge packet before
reverting to the ”init” state. However, it is also able to shift to the ”inter ack”
state such that acknowledge packets may be sent at any time; even while waiting
for an acknowledge packet from the transmission of event data. However, there is a
difference between protocol module A and B in terms of the function of the ”wait”
state. Since event data can arrive at any time, it is necessary that the transmitter
be able to send such event data as often as possible. It cannot send event data on
every clock cycle, as this would congest the traffic of data flow. It can, however, send
event data after a minimum wait time of 14 clock cycles. This value was found in
simulation. Thus, within the ”wait” state, a clock cycle counter begins and, when it
reaches 14, is able to shift to the ”trig write” state, where event data is transmitted
to unit A.

5.3.4 Protocol Module A Receiver Function

The protocol module A receiver has already been discussed in part while describing
the protocol module A transmitter. It receives its instructions from the RnW and
ACK bits of the received packet in the same way that protocol module B receiver
does. The instructions to the protocol module A receiver are summarized in Table
5.

The ACK bit determines whether the packet being received contains event data
or if it is an acknowledge packet. If it is an acknowledge packet, then the outputs
of the protocol module differ according to whether the RnW bit is equal to ’1’ or
’0’. If RnW has value ’1’, then the packet contains configuration parameters read
from the TRM. This data is sent out to the user along with the assertion of the
done reading flag for one clock cycle and transmission is terminated.. If RnW is not
asserted then the packet is considered to contain confirmation of successful writing to
the TRM without containing any more valuable information to the user. Thus, the
done writing flag is raised for one clock cycle and transmission is terminated. In both

34

Figure 19: FSM diagram of the protocol module A receiver

cases, the protocol module’s transmitter is informed of successful transmission with
the assertion of a tell trs done flag if there are no parity errors detected. Otherwise,
the parity error information is passed to the user and the . This triggers the protocol
module transmitter’s transition back to the ”ready” state. Lastly, if the protocol
module receives instructions to write to the trigger FIFO, then it does so before
asserting the ACK bit in the received packet and passing it to the transmitter.

35

bit[17]:RnW bit[16]:ACK description

0 0 Write event data and received address to the trigger
FIFO. Assert ACK bit and pass the acknowledge packet
to the transmitter.

0 1 Finished writing to the TRM. Check parity and inform
transmitter that writing is complete.

1 0 ERROR: it is not possible within the logic of the system
to receive the flag bits ”01” as it is not possible for unit
B to read from unit A.

1 1 Finished reading from the TRM. The received packet
contains configuration parameters and address
information. Check parity and inform the transmitter
that reading is done.

Table 5: A summary of the two possible protocol module A receiver functions de-
pending on the values of RnW and ACK

5.4 The ENC/DEC Modules

Figure 20: The two identical communication modules and their components

The ENC/DEC modules increase the robustness of transmission by allowing for
the correction of bit errors and the prevention errors which can associated with serial
transmission. These two purposes are achieved through the use of the a Hamming
parity encoder/decoder module and 8b/10b encoding/decoding modules (see Figure
20).

Bit errors are known to occur digital systems. Some of the most common types
of bit errors in digital circuits include [1]:

• Gaussian bit errors: Errors resulting from random noise in a circuit.

36

• Pattern sensitive bit errors: Certain bit positions of the word being trans-
mitted or stored have more errors than other positions within the word.

• Systematic bit errors: Similar to pattern sensitive bit errors, but can be
correlated to a physical event, such as intervalled power supply noise.

• Systematic burst errors: Similar to systematic bit errors, but these can
occur over multiple bits in a row.

These types of errors cannot be completely prevented, but the bit-error rate
(BER) can be greatly reduced by including error-correcting code and 8b/10b encod-
ing/decoding.

5.4.1 Parity Encoding/decoding

When data is transferred along a transmission line, there is a certain probability
that errors may occur in one or more bits, changing their value. In order to combat
this problem and decrease the BER in transmission, an error-correcting code called
Hamming Code was utilized and implemented in the design using firmware designed
by Xilinx, see [15], adapted to encode/decode 18 data bits. This code allows for
the correction of single bit errors and the detection of double bit errors through the
addition of parity bits to the original data packet, as illustrated in [8]. This sort
of code is called SECDED, or ”single-error correcting double-error detecting”. The
concept of parity, in this context, refers to the even or odd number of ’1’s in a word
composed of bits. A parity value ’0’ of a set of bits implies that the set contains an
even number of ’1’s, while there are an odd number of ’1’s in a set of bits with parity
’1’. The correct amount of parity bits for single error correction is determined by
the use of the equations below [18],

totalbits = 2c − 1 (1)

databits = 2c − c− 1 (2)

paritybits = c (3)

where c is the amount of parity bits required for single error detection and
correction. If an extra bit is added, then the code can also detect double errors.

A whole number of parity bits c gives the possibilities of 7, 15, 31, etc. total
bits for c = 3, 4, or 5. In the case at hand, there are 18 data bits, which does not
conform to a whole number c. The choice of the number of parity bits for single
error detection is then chosen to be the lowest amount that gives the possibility of
more than 18 data bits. This is fulfilled by choosing c = 5. 5 parity bits for single
error detection allows for 31 data bits, while a choice of 4 parity bits would only
allow for 15 data bits, which is less than 18 and thus cannot be used. Lastly, in

37

order to allow for the detection of double errors, one extra parity bit is added to
the 5 already selected, giving 6 total parity bits and a new word size of 24 bits after
parity encoding.

A central concept for the understanding of the mechanics of Hamming encoding
is that of the ”Hamming distance” between two words. Hamming distance is defined
to be the number of bits that differ between two words. For example, ”1101” and
”1011” have a Hamming distance of two because two bits differ. Notice that position
is relevant. It is the bits in their specific positions which are compared pertaining
to Hamming distance. A single bit error corresponds to a hamming distance of one
between the transmitted word and the received word. The addition of parity bits to
the word serves to increase the minimum Hamming distance between valid words.
Such a code as is implemented in this communications system results in a minimum
Hamming distance of four between valid words, which allows for the correction of a
single bit error and the detection, but not correction, of double bit errors.

The values of these parity bits are evaluated by first arranging the data bits D0
to D17 in ascending order. Then, the parity bits P0 to P4 are added in position
numbers which are powers of two, see below. Notice that the parity bits are placed
in positions 1, 2, 4, 8, and 16 from the left, if one begins counting positions with
one instead of zero.

P0, P1, D0, P2, D1, D2, D3, P3, D4, D5, D6, D7, D8, D9, D10, P4, D11, D12, D13, D14, D15, D16, D17

(4)

Notice that the parity bits are placed in positions 1, 2, 4, 8, and 16 from the left,
if one begins counting positions with one instead of zero. This arrangement allows
one to organize the data bits for parity calculation. Each parity bit is evaluated by
way of specific data bits. Parity bit P0 will use every other bit starting with D0 and
excluding other parity bits. P1 will use every two bits starting with D0, excluding
parity bits. P2 will use every four bits starting with D1, P3 will use every eight bits
starting with D4, and P4 will use ”every 16” bits starting with D11. These data
bits can be arranged using a parity-check matrix, as shown in equation 5.

D17 D15 D13 D11 D10 D8 D6 D4 D3 D1 D0

D17 D15 D13 D12 D10 D9 D6 D5 D3 D2 D0

D17 D16 D15 D14 D10 D9 D8 D7 D3 D2 D1

D10 D9 D8 D7 D6 D5 D4

D17 D16 D15 D14 D13 D12 D11

D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

(5)

Each parity bit is evaluated by executing the XOR boolean logic operation be-
tween bits. The first row is used to evaluate P0, the second row is used to evaluate
P1, etc. These six parity bits are added to the 18 bit transmission packet in the

38

first six bit positions 0 to 5, while all of the other 18 bits occupy locations 6 to 23
such that the new transmission word contains 24 bits.

The decoding mechanism involves the calculation of a ”syndrome”, which is
used to generate a mask which is XOR’ed with the 18 bit received packet upon the
detection of a single-bit error. The syndrome is calculated first by evaluating the
parity of the data bits in the same fashion as described earlier. If there is a single-bit
error, then these bits will contain some different values than the original parity bits.
The syndrome is then used to select the correct mask, as shown in Figure 21. See
Appendix B for the specific choice of correction mask.

Figure 21: mask selection and single-bit error correction

If a bit error is detected, the Hamming ENC/DEC must inform the user of
this. This is done through the protocol module, as mentioned earlier. The protocol
module receives a two-bit word which indicates parity error, as shown in Table 6.
The protocol module receives this word and communicates it to its master unit.

parity error word[1] parity error word[0] description

0 0 no error and no data corrected

0 1 single-bit error detected and corrected

1 0 double-bit error detected

1 1 single parity checkbit error

Table 6: A summary of the interpretation of the parity error word

5.5 8b/10b Encoding/decoding

Today, the 8b/10b data transmission method has become the standard for high-
speed serial links [11]. It translates byte-wide data into a 10-bit data packet with
the purpose of eliminating the unwanted DC component in data transmission after
serialization [20]. The presence of a DC component gives rise to unwanted energy loss
and can lead to transmission errors. In order for this component to be eliminated,
the binary logic levels ’1’ and ’0’ must be positive and negative voltages of equal
magnitude, which is referred to as a non-return-to-zero (NRZ) line code. There must

39

be an equal amount of transitions between logic high(’1’) and logic low(’0’) within
the scope of transmission. The equal amount of ’1’s and ’0’s prevents the aforemen-
tioned unwanted DC effects, preventing these potential transmission problems and
improving the robustness of transmission.

Within the system, this component consists of three 8b/10 encoding/decoding
blocks which were designed by Xilinx, see [2]. These were modified for interconnec-
tion within the system and assigned to the three bytes in the 24 bit word which
it receives from the parity encoder. These three bytes are encoded separately into
10 bits each and are concatenated to form one 30 bit encoded output word which
is passed along to the serializer (see Figure 24). There are multiple mechanisms
involved with 8b/10b encoding, which are discussed below.

Figure 22: A single block 8b/10b encoder
with internal modules

Figure 23: A single block 8b/10b decoder
with internal modules

5.5.1 Disparity

In order to grasp the 8b/10b encoding scheme, the concept of ”disparity” must be
understood, as this is the fundamental concept associated with 8b/10b encoding.
Disparity, whose root word is ”parity”, is a measurement of the difference between
the amount of ones and zeros which have been transmitted, the purpose of which is
to attain balance between these values. For example, a 10 the bit word ”0100110001”
has disparity ”-2” because it contains two more zeros than ones. A word containing
an equal number of ones and zeros is described to have ”0” disparity. As there
is an event amount of bits in an encoded 10 bit word, it is only possible for each
word to have disparity ”±2” or ”0”. It is then conceivable that it is possible for
a complete 30 bit output word to have disparity ”±6”, which would give rise to a
DC component and thus defeat the purpose of 8b/10b encoding. This is however
solved by the passing of the first disparity value to the next encoding block and
the next disparity value to the final encoding block (see Figure 24). Each block
takes the disparity output from the previous block into account with the purpose
of maintaining DC balance. For example, if the first 8b/10b ENC module gives an
output word with disparity ”+2”, then the next word, if originally encoded to have

40

Figure 24: Block diagram of the VHDL implementation and interconnections be-
tween the three 8b/10b encoding modules. Clock inputs are at the triangles on the
top of each module

a value of ”0110111010”, will invert the values of the six least significant bits. The
final encoded word in that 8b/10b ENC module would then be ”0110000101”, which
has disparity ”-2”. This results in the net disparity ”0” for the first two words. The
disparity of each word is calculated in the submodule ”dis gen” (see Figure 22).

5.5.2 Encoding

The 8b/10b encoding scheme follows an algorithm which changes any 8 bit word
into a 10 bit word with a maximum disparity of ±2 and a possible disparity zero.
An 8 bit ”ABCDEFGH” word is first partitioned into two words ”ABCDE” and
”FGH” before they are separately encoded into 6 bit and 4 bit words ”abcdei” and
”fghj”, respectively. This is referred to as 5b/6b encoding and 3b/4b encoding.
Each word can have a of maximum two possible values zero or opposite disparities,
as mentioned earlier. For example, if a 3 bit word is encoded into ”0010” then it
has the possibility of being changed to its opposite value ”1101” for the purpose of
disparity balance. This is made possible by the S signal which is described below. A
3 bit word which would be encoded to a 4 bit word with an equal amount of ’1’s and
’0’s need not have an opposite value because there would be no change in disparity
upon transition. These words are finally concatenated together to build the encoded
10 bit word. The encoding logic allows for any byte value to be encoded into a 10

41

bit word of disparity ”0” or ”±2”. See Appendix A for a description of the 8b/10b
encoding logic.

5.5.3 S Generation

S is a control signal utilized in the 8b/10b encoding logic (see Appendix A for
detailed description of its generation through encoding logic). Its purpose is to
assist in the determination of the 3b/4b encoding by using the running disparity
information from each 8b/10b encoding block which would have been determined
earlier in the encoding process. The 5b/6b encoding does not utilize the S signal. Its
generation occurs within a submodule of the 8b/10b encoding block called ”s gen”
(see Figure 22). The flexible 3b/4b encoded word is chosen to contain the number
of ’1’s and ’0’s in order to achieve DC balance with the use of the S signal.

5.5.4 Decoding

The encoded 30-bit word, after being transmitted serially to the opposite unit, is
then decoded through three 8b/10b decoder blocks, the structure of each block is
shown in figure 23. The 10-bit word to be decoded is, in a similar fashion as the
encoder, broken up into two words of 6-bit and 4-bit length before being decoded
back into the original 5-bit and 3-bit words, respectively. These are then concate-
nated into bytes and the three decoded bytes are concatenated to form the orignal
24 bit word. The decoding logic is the complement to the encoding logic described
in Appendix A. The decoding logic does not depend on disparity, but only an error
detector, which is embedded in each 8b/10b decoding module. Since the 8b/10b
encoding mechanism is so specific, there are multiple errors that can be detected by
the decoder by simply checking if there are illegal combinations of ones and zeros,
depending on position of these bits within the word. The method for finding illegal
combinations is also described in Appendix A.

5.6 Serialization, Transmission, and Deserialization

The innermost units in each ENC/DEC module are the serializer and deserializer.
These reside on the outputs and inputs of both modules, such that data may be
serialized, transmitted, deserialized and handled subsequently. First, parallel data is
received by the serializer, which fills a shift register when informed by the serializer’s
FSM that parallel data is available.

Data may be sent sporadically and the units must be able to receive data at
any time. In addition, it is assumed that the serial line will be most often inactive,
transmitting nothing. Therefore, no clock will be transmitted from one unit to
another across any serial link. This gives rise to the necessity of a mechanism which

42

allows for each unit to receive serialized packets at any time with minimal error
without receiving any clock. Each unit’s own on-board clock must be used. There
are multiple schemes which fulfill such a purpose. Some of these include:

• Embedding the clock into the serial data by the utilization of

Phase Encoding (PE)

Pulse-width modulation (PWM)

• Sampling the data at a higher frequency and letting the majority of sampled
values determine the bit values of the serial data.

The application of PE and PWM would require an encoding scheme other than
the 8b/10b encoding which was used within the scope of this design. PE, which
uses NRZ encoding where the bit values change on every clock cycle, is realizable
through the use of, for example, Manchester Encoding. The change on every clock
cycle embeds the clock into the code itself. PWM embeds the clock into the code
by giving each value, including zero, a pulse width which increases with the value
to be sampled. This is most often utilized when many values, not just one and zero,
are to be transmitted and interpreted. The method of sampling the data at a higher
frequency to capture incoming data was utilized in this system.

The clock frequency of the transmission each way is configured to be at 100
MHz. Each unit A and B has its own transmission clock at that frequency, but
there these clocks are separated from one another and are not configurable to be in
phase within this system. This presents the possibility that the receiving clock may
not sample the incoming data in the correct place in relation to the data’s waveform,
causing transmission errors. As each unit has its own clock, there is no need for
transmission of any master clock over a physical link. Therefore, there must be a
sampling mechanism such that the data being transmitted across the physical link
can be received with minimal chance of failure.

To achieve this, start bits ”10” are placed at two new bit locations which become
the least significant bits of the word to be transmitted. The stop bits ”01” are placed
at the back end of each word in similar fashion. After serialization and addition of
start and stop bits, the data is transmitted serially at 100 MHz. On the receiving
end, a sampling clock at frequency 300 MHz waits for the start bits ”10” incoming
data. When these arrive, they are sampled at this sampling frequency, giving three
values for each ’0’ and ’1’. A maximum of three of these values can be correct for each
of these bits and minimum two can be correct. Such is also the case with the rest of
the bits as the reception register is filled (see Figure 25). After each bit is sampled
three times, the three values are passed to a majority gate, where the correct value
of each bit is the one which receives at least two ”votes”. These values are passed
to their own registers and concatenated into one parallel word. Deserialization is
then complete and the data moves forward through the unit synchronized with the
unit’s own generated clock.

43

Figure 25: RTL diagram of the sampling mechanism [12]

44

6 Test and Verification Strategy

6.1 Simulation

The testing and verification of a system such as this must occur in two steps. First,
simulation in software, then synthesis to hardware implementation. The purpose
of simulation is to test the behavioral functionality of the design. In this case, the
ModelSim by Mentor Graphics was utilized for simulation. The system, which was
designed in VHDL, describes the behavior of an idealized device. Both behavioral
and structural descriptions are included in the code. This design consists of many
units with sub-modules which in turn include other submodules and so on.

Basic simulation requires the design of a VHDL ”testbench”. The VHDL test-
bench functions as ”the outside world”, and treats the system as a device with input
and output pins. The user is able to structurally construct the system to be simu-
lated using VHDL code and generate a clock and input vectors. When simulated, it
is possible to view output as well as input waveforms. The basic simulation strategy
employed in the design and development of the discussed trigger readout system was
to first design the system in VHDL, design a testbench for the system and, lastly,
simulate the behavior through the testbench by applying input test vectors.

6.2 Synthesis and Verification Strategy

In order to verify the behavior of the VHDL design on hardware, synthesis must
be performed. Synthesis is performed on the Xilinx ISE environment. In the first
stage, the entire system (which includes both units A and B), was synthesized on
one FPGA, where the physical links were merely modeled by a connection between
the two units. This verified the basic functionality of the entire system and assist in
the debugging of simple errors in the translation from simulation to synthesis. The
test scheme included the configuration of four pins through the TRM from ”unit
A”. Then, after configuration, input vectors on these four pins were asserted. The
TDU transmitted trigger event packets back through unit B to unit A.

The next stage has not yet been implemented. The plan is outlined as follows.
The entire system will be programmed, once again, on the same FPGA, the only
difference being that the physical links between unit A and unit B will be a wire
connecting an output pin from unit A to an input pin on unit B and vice-versa. This
will test the aforementioned sampling mechanism on each deserializer, but only to
a certain extent, as the FPGA will generate one clock to be shared by both units.
Thus, the two units will have the exact same frequency and phase. The errors
associated with serial transmission will be able to be measured and subsequent
adjustments in the system can be made. The test scheme for the configuration of
pins will remain the same as in the first test phase.

45

Lastly, unit A and unit B will be synthesized on their own individual FPGAs
with serial links connecting them. Unit A will be synthesized on the Xilinx virtex 6
FPGA in the FoCal readout electronics box and unit B will be synthesized on the
Actel ProAsic FPGA attached to the trigger card. After synthesis on these FPGAs,
one readout pin on the trigger card will be chosen to verify functionality. This pin
will be configured from unit A done as earlier, and a real stimulus will be applied
to the chosen pin on side B. The trigger event information will be read from unit
A, verifying functionality. In addition, this testing scheme will completely verify
the sampling mechanism for the reception of serial data across the physical links, as
each FPGA will need to generate their own clock.

Eventually, the trigger system ought to be verified for functionality in connection
with the actual FoCal detector tower with readout electronics and DAQ with stimuli
at regular intervals and then stimuli in random intervals to test the robustness of the
system. This would be the final step in the verification process and would determine
complete functionality.

46

7 Conclusion

The purpose of this thesis was to develop a trigger readout system for the Forward
Calorimeter. This system is able to collect event data from the trigger readout
pins and organize it for transmission across a physical link to the user residing on
the other side. The user is also able to configure the output pins to be enabled
and edge-sensitive by transmitting configuration parameters to the pins across a
physical link. The master-master relationship between the two individual units
separated by the transmission lines is resolved, and they are able to transmit and
receive relevant information between each other simultaneously. The design remains
to be completely verified through synthesis and testing, as explained in Section 6.
The maximum event data word rate was calculated to be 2.9 MHz with a 100MHz
transmission clock.

This system, although it meets the general purpose of a trigger readout system,
can be built upon such that it can be more sophisticated and user-friendly. One
possibility it to develop a graphical user interface (GUI) for the user on side A. The
user would be able to utilize this GUI to configure trigger parameters and enable
pins visually through keyboard commands or mouse-clicking. A diagram would be
able to display visually which pins are activated or deactivated, making it more
simple for the user to keep track of the status of the system on the other end.
Instead of having to manually construct the data and address information for each
pin, the user would simply choose a pin/pins and the three possible configuration
options for it/them. The 18 bit word to be transmitted for configuration would then
automatically be sent to the protocol module on unit A for transmission.

47

48

Appendix A: 8b/10b encoding and decoding

8b/10b encoding is separated into two processes: the 5b/6b encoding process and
the 3b/4b encoding process. These are discussed separately.

5b/6b Encoding Logic

Figure 26: 5b/6b encoding function signals

Before the 8b/10b encoding can take place, multiple function signals must be
generated in order for the logic to take the number of ’1’s and ’0’s in the input word
into account. These are generated in the logic pictured in figure 26. Notice that
only the first four bits in the 5b word to be encoded are utilized in this logic. The
names of the encoding functions include the letter L and two numbers. The number
to the left indicates the amount of ’1’s and the number to the right indicates the
amount of ’0’s in the word. +L31 has, for example, three ’1’s and one ’0’. Each of
the five ”L” encoding functions receives a value before they are used in final 5b/6b
encoding logic shown in figure 27.

3b/4b Encoding Logic

Similar to the 5b/6b encoding logic, the 3b/4b encoding logic requires the generation
of multiple encoding functions before final encoding can take place. The difference
is that these functions do not only depend on the input word’s structure but also
on the disparity information. This information is found as illustrated in figure 28
while other functions dependent on the word structure are found in figure 29. After
this logic is executed, the S signal can then be generated as shown in figure 30.

49

Figure 27: final 5b/6b encoding

Figure 28: disparity classification signals

50

Figure 29: 3b/4b function signal generation

Figure 30: S signal generation

Figure 31: 3b/4b encoding scheme

51

Error Detection

The 8b/10b decoder detects transmission errors in the error check module by com-
paring the word received to the 8b/10b encoding rules. A tool which is utilized for
the decoding is the called the preliminary bit classification decoding functions [2].
These are similar to the encoding functions, which were denoted with the letter L.
In the case of decoding, the letter P denotes a decoding function. Following the
letter P are two numbers, the first of which represents the number of ’1’s in the four
least significant bits of the word to be decoded. The second number represents the
number of ’0’s in the same four bits. For example, the assertion of P13 implies that
the four least significant bits of the word to be decoded contains one ’1’ and three
’0’s. A list of rules which, when broken, are interpreted to be errors is shown below
[2].

• All 6b and 4b subblocks of a packet must have either positive, negative, or
zero disparity (difference between ”1s” and ”0s”).

• The disparity out of nonzero disparity blocks must alternate in polarity (pos-
itive and negative).

• All data bytes must follow the disparity rules.

• The following conditions also apply to coding rules and are attributed to errors:

a = b = c = d (6)

P13 · e · i (7)

P31 · e · i (8)

f = g = h = j (9)

e = i = f = g = h (10)

i 6= e = g = h = j (11)

(e = i 6= g = h = j) · (c = d = e) (12)

P31 · e · i · g ·h · j (13)

P13 · e · i · g ·h · j (14)

52

Appendix B: Choice of correction mask for single-

bit error correction in Hamming decoding for 18

data bits

The Hamming decoding scheme involves correction of single-bit errors through the
XOR operation between the error word and the correction mask. The mask is
chosen according to the calculated syndrome. The value of the syndrome in base-
10, discluding the ’1’ in the most significant position, denotes the location of the
bit error to be corrected. Since the syndrome ”000000” implies no error, the bit
location is equal to the aforementioned base-10 value of the syndrome minus one.
Some values, however, are not included in this scheme. This is because the parity
checkbits reside at these positions. As a result, the base-10 values 1,2,4,8 and 16 are
not included in the syndrome/mask decoding scheme. See Table 7 for details.

syndrome databit position in 17b word correction mask

100011 0 000000000000000001

100101 1 000000000000000010

100110 2 000000000000000100

100111 3 000000000000001000

101001 4 000000000000010000

101010 5 000000000000100000

101011 6 000000000001000000

101100 7 000000000010000000

101101 8 000000000100000000

101110 9 000000001000000000

101111 10 000000010000000000

110001 11 000000100000000000

110010 12 000001000000000000

110011 13 000010000000000000

110100 14 000100000000000000

110101 15 001000000000000000

110110 16 010000000000000000

110111 17 100000000000000000

others 000000000000000000

Table 7: mask choice based on syndrome value

53

Acronyms and abbreviations

ACK Acknowledge

ALICE A Large Ion Collider Experiment

ASIC Application Specific Integrated Circuit

ATLAS A Toroidal LHC Apparatus

BER Bit-Error Rate

CERN European Organization for Nuclear Reasearch

CI Configuration Interface

CMS Compact Muon Solenoid

CPLD Complex Programmable Logic Device

CTP Central Trigger Processor

ECL Emitter-coupled Logic

ENC/DEC Encoder/Decoder

FEE Front End Electronics

FIFO First In First Out

FoCal Forward Calorimeter

FPGA Field Programmable Gate Array

FSM Finite State Machine

GUI Graphical User Interface

HDL Hardware Description Language

ISO International Organization for Standardization

LHC Large Hadron Collider

LHCb LHC-beauty

LVDS Low Voltage Differential Signaling

NIM Nuclear Instrumentation Standard

NRZ Non Return to Zero

MIMOSA Minimum Ionizing Particle Metal Oxide Semiconductor Active pixel
sensor

54

OSI Open Systems Interconnection

RnW Read-not-Write

RTL Register-Transfer Level

SECDED Single-error correcting, Double-error detecting

TCI Trigger Crate Interface

TDU Trigger Data Unit

TP Trigger Protocol

PE Phase Encoding

PECL Positive Emitter-Coupled Logic

PWM Pulse-Width Modulation

RCSA Register Control Side A

TRM Trigger Register Map

VHDL Very high speed integrated circuit Hardware Description Language

XOR Exclusive OR

55

List of Figures

1 Possible placement of FoCal . 3

2 Physical overview of the FoCal readout system in its entirety [7] . . . 5

3 Diagram of the rolling shutter function in MIMOSA pixel array [6] . . 6

4 A charged particle passing through the silicon detector [21] 6

5 A charged particle passing through the silicon detector 8

6 picture of trigger card with inputs and FPGA [17] 8

7 Overview of trigger card I/O and FPGA [17] 9

8 Block diagram of the specific designed communications system 13

9 Block diagram of the trigger data unit in its entirety with external
and internal I/O . 17

10 18 bit packet structure . 18

11 A map of the TRM with address locations for configuration parame-
ters and event data. 20

12 RTL schematic of one trigger sensor, where pin 0 is used as a specific
example. 22

13 Block diagram of the trigger receiver in its entirety. 23

14 The FSM for the register control on side A 26

15 A general depiction of the protocol module with I/O signals 27

16 FSM diagram of the protocol module A transmitter 29

17 FSM diagram of the protocol module B receiver 31

18 FSM diagram of the protocol module B transmitter 33

19 FSM diagram of the protocol module A receiver 35

20 The two identical communication modules and their components . . . 36

21 mask selection and single-bit error correction 39

22 A single block 8b/10b encoder with internal modules 40

56

23 A single block 8b/10b decoder with internal modules 40

24 Block diagram of the VHDL implementation and interconnections
between the three 8b/10b encoding modules. Clock inputs are at the
triangles on the top of each module 41

25 RTL diagram of the sampling mechanism [12] 44

26 5b/6b encoding function signals . 49

27 final 5b/6b encoding . 50

28 disparity classification signals . 50

29 3b/4b function signal generation . 51

30 S signal generation . 51

31 3b/4b encoding scheme . 51

List of Tables

1 A summary of the possible transmitter functions when commanded
by the user at unit A . 28

2 A summary of the possible protocol module A transmitter functions
depending on the values of the received RnW when ACK is equal to ’1’ 30

3 A summary of the four possible protocol module B receiver functions
depending on the values of RnW and ACK 32

4 A summary of the two possible protocol module B transmitter func-
tions depending on the values of transmit and ACK 34

5 A summary of the two possible protocol module A receiver functions
depending on the values of RnW and ACK 36

6 A summary of the interpretation of the parity error word 39

7 mask choice based on syndrome value 53

57

References

[1] An introduction to error location analysis, Agilent Technologies: Test and Mea-
surement, literature.agilent.com/litweb/pdf/5980-0648E.pdf, Application note
1550-2.

[2] Design of a 16b/20b encoder/decoder using a coolrunner-ii CPLD, Tech. Report
XAPP391, Xilinx, 2006.

[3] Technical design report for a nosecone calorimeter for the PHENIX experiment,
Tech. report, Brookhaven National Laboratory, 2007.

[4] P. Buis, The ISO layering model, Computer Science Department, Ball State
University, September 1996.

[5] ALICE Collaboration, The ALICE experiment at the CERN LHC, Journal of
Instrumentation 2008 JINST 3 S08002 (2008).

[6] A. Himmi et al, PHASE-1 user manual, Tech. report, Institut de Recherches
Subatomiques IN2P3-CNRS / ULP, Strasbourg, France, 2008.

[7] D. Fehlker et al, Highly segmented electromagnetic calorimeter prototype, Uni-
versity of Bergen, October 2011.

[8] R. Hamming, Error detecting and error correcting codes, Bell Systems Technical
Journal 29 (1950), 147–160.

[9] E. Iancu, Gluon saturation at small x, (2001).

[10] L. Babukhadia, S. Dasu, and G. Punzi, Triggering in particle physics experi-
ments, IEEE Nuclear Science Symposium, November 2002.

[11] C. Loberg, Troubleshoot and verify 8b/10b encoded signals with a real-time os-
cilloscope, Tektronix, July 2012.

[12] M. Munkejord, Development of the ALICE busy box, Master’s thesis, Univerity
of Bergen, 2007.

[13] P. Simoneau, The OSI model: Understanding the seven layers of computer
networks, Expert Reference Series of White Papers, Global Knowledge, 2006.

[14] W. Stallings, Computer organization and architecture, eighth ed., Pearson,
2010.

[15] S. Tam, Single error detection and double error correction, Tech. Report
XAPP645, Xilinx, 2006.

[16] Tektronix, Fundabemtals of triggering, 2011.

[17] C. Torgersen and T. Andersen, Trigger crate interface, Tech. report, Bergen
University College, 2012.

58

[18] J. Wakerly, Digital design principles and practices, vol. 3, Prentice Hall, 2001.

[19] N. West and D. Harris, Integrated circuit design, ch. 9, pp. 373–374, Addison-
Wesley, 2011.

[20] A.X. Widmer and P.A. Franasazek, A DC-Balanced , partioned-block, 8b/10b
transmission code, IBM J. Res. Develop. 27 (1983), no. 5.

[21] M. Winter, Introduction to CMOS pixel sensors, CERN, 2011.

[22] Y. Hori, H. Hamagaki, and T. Gunji, Simulation study for forward calorimater
in LHC-ALICE experiment, Journal of Physics: Conference Series 293 (2011).

59

