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Abstract. Exploded views are often used in illustration to overcome the
problem of occlusion when depicting complex structures. In this paper,
we propose a volume visualization technique inspired by exploded views
that partitions the volume into a number of parallel slabs and shows
them apart from each other. The thickness of slabs is driven by the simi-
larity between partitions. We use an information-theoretic technique for
the generation of exploded views. First, the algorithm identifies the view-
point from which the structure is the highest. Then, the partition of the
volume into the most informative slabs for exploding is obtained using
two complementary similarity-based strategies. The number of slabs and
the similarity parameter are freely adjustable by the user.

1 Introduction

Volume visualization aims at gaining insight into volumetric data using inter-
active graphics and imaging techniques. Current volume data sets generated by
scientific domains contain a large amount of data of complex structures. Effec-
tive visualization of such data sets that clearly shows all contained structures is
challenging.

Illustrative visualization enhances the expressiveness of volume rendering
by applying hand-crafted illustrative techniques. Cut-aways, exploded views or
high-level abstraction strategies, amongst others, are used to reveal insights and
represent essential structures of the volume in a clear way while less important
details are subjugated. To employ these techniques, certain controlling mecha-
nisms based on data or higher semantical levels (e.g. segmentation into objects
from the domain perspective and the assigning of object importance based on
the given domain scenario) are required. These mechanisms vary from fully in-
teractive steered by user (e.g. voxel-by-voxel segmentation) to fully automatic
techniques (e.g. shape analysis of the acquired data based on higher-order deriva-
tives). To explore unclassified data sets, automatic controlling mechanisms for
steering expressive visualization are useful, and possibly can be combined with
interactive techniques that fine-tune the first automatic educated guess.

Our interest is focused on exploded views, which partition the volume into
different parts that are translated away from each other as if there had been a
small controlled explosion emanating from the focus of interest. Exploded views



thus enable to see details of otherwise overlapping structures, exploiting the
observer’s understanding of original spatial arrangement of structures. In this
paper, a new partitioning approach for automatic generation of exploded views
is presented. This method divides the data set into a set of slabs defined by par-
allel planes, combining in this way the advantages of 2D and 3D views. While 3D
visualization provides a global view of the entire model, the 2D cross sectional
views reveal insights. To partition the volume, two alternative strategies are pro-
posed. The first one starts with the entire volume and partitions it recursively
guided by a maximum dissimilarity criterion. The second one considers initially
all individual slices and groups them together according to a similarity criterion.
In both cases, the controlling mechanism is the similarity value that is computed
automatically using information-theoretic measures. The only necessary interac-
tion of the user with the data is a single threshold parameter which determines
when the partitioning (or grouping) has to stop. An important advantage of this
approach is that no a-priori information or pre-processing of the data is required.
This is suitable, especially, for computer-guided exploration of histology data.

2 Related Work

The main limiting factor when exploring volume data is the occlusion between
structures. For complex volumetric data sets is difficult to achieve a visual rep-
resentation that not only shows all the internal structures but also preserves
the global representation of the model. To enhance volume data interpretation
Rheingans and Ebert [1] introduced the volume illustration approach, combining
the familiarity of a physics-approximated illumination model with the ability to
enhance important features using non-photorealistic rendering techniques. Vol-
ume illustration techniques enhance the perception of structure, shape, orienta-
tion, and depth relationships in a volume model. Although they cannot totally
solve the occlusion problem, the good performance of these techniques led to the
development of new volume rendering methods.

Clipping away or removing away parts of the data to eliminate occlusion
is a well-known and extensively used approach. The loss of context due to re-
moved parts is the main limiting factor of such a technique. To overcome this
limitation, strategies with more complex clipping geometry have been proposed.
Wang et al. [2] introduced volume sculpting as a flexible approach to explore
data. Weiskopf et al. [3] proposed several interactive clipping techniques that
are capable of using complex clip geometries. Konrad-Verse et al. [4] described
a method which is based on a deformable cutting plane for virtual resection.
Viola et al. [5] presented an importance-driven approach capable of enhancing
important features while preserving the necessary context by generating cut-
away views and ghosted images from volumetric data. Bruckner et al. [6] pro-
posed an alternative to conventional clipping techniques in order to avoid loss
of context. Their context-preserving volume rendering model uses a function of
shading intensity, gradient magnitude, distance to the eye point, and previously



accumulated opacity to selectively reduce the opacity in less important data
regions.

Exploded views and deformations are a common strategy for communicating
the structure of complex 3D objects that are composed of many subparts. De-
formation metaphors for browsing structures in volumetric data were introduced
in volume visualization by McGuffin et al. [7]. They presented a volume explo-
ration based on deformations that allows us to cut into and open up, spread
apart, or peel-away layers of the volume while still retaining the surrounding
context. The explosion of the parts is set manually. Bruckner et al. [6] went
one step further by automating the explosion. Their method uses a fuzzy degree
of interest function to distinguish between focus and context and is capable of
re-arranging the parts dynamically based on the viewpoint. In these techniques,
a priori knowledge of the volume data to define the layers or to set the focus
of interest is assumed. The definition of data partitioning has been explicitely
defined by user, in contrast to our approach where partitioning is defined by
computed similarity measures.

On the other hand, good viewpoint selection is also crucial for an effective
focus of attention [5]. Different information-theoretic measures for viewpoint
evaluation have been presented. Vàzquez et al. [8] have introduced the view-
point entropy as a measure for viewpoint quality evaluation, where the best
viewpoint is defined as the one that has maximum entropy. Designed for polygo-
nal data, this measure has been extended to volumetric scalar data [9, 10]. Viola
et al. [11] have presented the viewpoint mutual information from the definition
of an information channel between a set of viewpoints and a set of objects of
a volumetric data set. This measure provides representative views and is very
robust with respect to the resolution of the model.

3 Similarity-Steered Visualization

To automatically obtain the partitioning planes for the exploded views, we pro-
pose a two-step process. First, we select the view of the model along which the
organs or components will be better separated. This view is called the most
structured view of the model. Second, we calculate the partitions of the model
along the most structured view. Such partitions will be obtained using two com-
plementary approaches: a top-down strategy that divides the model according
to the maximum information gain and a bottom-up method that joins the slices
according to a similarity criterion. Then, the explosion of the model is visualized
in the interactive system VolumeShop [12]. The two steps of the method are
described below.

1. Selection of splitting axis
The goal of this step is to obtain the most structured view of the model.
To reach this objective a viewpoint measure able to capture the structure of
the volumetric dataset along any view axis is used. In information theory,
entropy rate is defined as a measure of the irreducible randomness of an



object or the degree of unpredictability of a sequence of values. Since a high
randomness corresponds to a low structure and vice versa, we can use the
entropy rate to quantify the degree of structure or predictability of a model.
We proceed as illustrated in Figure 1. First of all, the model is centered in
a sphere built from the recursive discretisation of an icosahedron (Figure
1(a)). Then, for each viewpoint the entropy rate is computed as described in
Section 4 (Figure 1(b,c)). Finally, we identify the lowest entropy rate value
which corresponds to the most structured view of the model (Figure 1(d)).
This direction is used as axis to which similarity-based partitioning planes
are perpendicular to.

Fig. 1. Main steps of the selection of the most structured view. (a) Sphere of viewpoints,
(b) sampling process for one viewpoint, (c) samples considered for the entropy rate
computation, (d) colored sphere representing the values of the viewpoint entropy rate.

2. Volume partitioning
The second task consists in selecting the optimal partitions of the model from
the most structured view. To carry out this process two different strategies
are presented:

(a) Top-down approach. Initially, the entire model is considered and par-
titioning planes are taken perpendicular to the most structured view
(Figure 2(i.a)). To divide the dataset into different parts, we use a greedy
algorithm which successively selects the partition that provides us with
the maximum gain of information. According to the information bot-
tleneck method [13, 14], the information gain can be calculated using
the Jensen-Shannon divergence between two parts of the model (Figure
2(i.b)). This measure can be interpreted as the degree of dissimilarity be-
tween the parts and tries to divide the model into homogeneous regions
(Figure 2(i.c)). A more detailed description of this approach is given in
Section 5.1.

(b) Bottom-up approach. All the slices of the volume, perpendicular to
the most structured view, are considered as the initial slabs (see Figure
2(ii.a)). Neighboring slabs are iteratively grouped (2(ii.b)) when mutual



information between them is higher than a given threshold (see Figure
2(ii.c)). Dealing with similarity between slabs instead of individual slices,
we avoid an incorrect grouping due, for instance, to smooth changes
along many consecutive slices. The grouping process is further described
in Section 5.2.

Fig. 2. (i) Top-down volume partition: (i.a) partitioning planes are taken perpendic-
ular to the most structured view, (i.b) dissimilarity between subvolumes is given by
the Jensen-Shannon divergence and (i.c) examples showing two different partitions. (ii)
Bottom-up volume partition: (ii.a) slices are taken perpendicular to the most struc-
tured view direction, (ii.b) similarity between slices or slabs is computed using mutual
information and (ii.c) two examples resulting from the grouping process.

4 Selection of Structured Views

To quantify the degree of structure of a volumetric data set along a given viewing
direction, we will estimate the entropy rate of the sequence of values (intensities)
obtained by casting a bundle of parallel lines along that direction. These lines
act as probes to sample the intensity of the model. The view with the lowest
entropy rate will correspond to the most structured view.

The definitions of both Shannon entropy and entropy rate [15] are now re-
viewed. The notation used is inspired by the work of Feldman and Crutch-
field [16]. Let X be a finite set and X a random variable taking values x in X
with probability distribution p(x) = Pr[X = x]. The Shannon entropy H(X) of
a random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (1)



The Shannon entropy measures the average uncertainty of random variable X.
If the logarithms are taken in base 2, entropy is expressed in bits.

Given a sequence X1X2 . . . of random variables Xi taking values in X , a
block of L consecutive random variables is denoted by XL = X1 . . . XL. The
probability that the particular L-block xL occurs is denoted by joint probability
p(xL) = p(xi+1, . . . , xi+L). The joint entropy of a block of L consecutive symbols
or L-block entropy is defined by

H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (2)

where the sum runs over all possible L-blocks.
The entropy rate or entropy density is defined by

h = lim
L→∞

H(XL)
L

(3)

and measures the average amount of information per symbol x [15]. It can also
be rewritten as

h = lim
L→∞

(H(XL)−H(XL−1)). (4)

The entropy rate of a sequence of symbols is a measure of its uncertainty, ran-
domness or unpredictability. The entropy rate is also a measure of the compress-
ibility of a sequence: the higher the uncertainty, the lower the compressibility.
For instance, in a text, if there are strong correlations between letters (or words),
knowledge of all previous letters (or words) will significantly decrease our uncer-
tainty about the next one [16].

How to compute the entropy rate for a given viewpoint is now shown. Con-
sider the scheme in Figure 1. For each viewpoint, a sequence of samples (intensity
values) to compute the measure is obtained performing a ray casting from a plane
centered at the viewpoint. We proceed as follows:

– From the plane at each viewpoint, parallel rays with a regular horizontal
and vertical spacing x are cast. Along the ray within the volume, equidistant
samples at distance y are taken.

– To build the two joint histograms of XL and XL−1 required for the entropy
rate computation, we take into account all possible groups of consecutive
samples of length L and L− 1, respectively. For example, with the samples
shown in Figure 1(c), we can form three blocks of length 3 (x0x1x2, x1x2x3

and x2x3x4) and four of length 2 (x0x1, x1x2, x2x3 and x3x4) for X3 and
X2 histograms, respectively.

– From the joint histograms of XL and XL−1, the joint probability distribu-
tions p(xL) and p(xL−1) are estimated and then the joint entropies H(XL)
and H(XL−1) are calculated.

– Due to the potentially high dimensionality of the histograms and, conse-
quently, the high number of components, a trade-off between the number of



symbols (intensities) and the length L of the blocks has to be considered.
Note that the size (number of entries) of the highest histogram is O(NL),
where N is the number of different property values and L is the length of
the blocks. Usually voxel models have property values of 8 bits or more, so
this problem is untreatable even with short blocks. As entropy rate is a limit
quantity (4), its computation would require an infinite number of elements
and blocks infinitely long. It has to be approximated using a block of finite
length. From the two possible approximations coming from (2) and (4), we
have selected the last one because it approximates more accurately the en-
tropy rate for low values of L. In our experiments, we have taken L = 3. We
have also reduced the number of symbols of X intensity bins in the histogram
to 32, rescaling the intensity bins.

(a) (b) (c) (d)

Fig. 3. Different models (first row) and their corresponding most structured views
(second row). From left to right: (a) a synthetic model, (b) a CT-scan of a patient with
an hemorrhage, (c) a CT-scan of a tooth and (d) a CT-scan of the human body.

The strategy for the selection of the most structured view has been applied
to different volume data sets. The obtained results are illustrated in Figure 3
where the first row represents the original model and the second row the most
structured view. From left to right, the proposed models correspond to: (a) a
synthetic model, created considering six different materials (each one represented
with a different color) which follow a diagonal distribution through the volume,
(b) a CT-scan of a patient with an hemorrhage, (c) a CT-scan of a tooth and
(d) a CT-scan of the human body. Observe how the best views of the second



row show the maximum of structure in the model. This is specially noticeable
in the phantom model where the different regions have an inclination relative to
the cube axis.

5 Evaluating Similarity

To obtain the optimal partitions for the explosion of a 3D data set, two different
strategies are presented. First, we analyze a top-down approach which partitions
the model using a criterion of maximum gain of information. Second, a bottom-
up strategy that groups the slices according to a similarity measure between
them is studied.

5.1 Model Partitioning

Once the most structured direction of the model has been selected, a sequence
of perpendicular partitions in that direction can be obtained using a simple
greedy algorithm. This is a top-down hierarchical application of the information
bottleneck method [13, 14] which permits us to measure the gain of information
when a model is divided into different slabs. This gain of information is measured
with the Jensen-Shannon divergence.

The Jensen-Shannon divergence [17] between probability distributions p1, p2,
. . . , pN with prior probabilities or weights π1, π2, . . . , πN is defined by

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) ≡ H

(
N∑

i=1

πipi

)
−

N∑
i=1

πiH(pi), (5)

where
∑N

i=1 πi = 1. The JS-divergence measures how far the probabilities pi

are from their likely joint source
∑N

i=1 πipi and equals zero if and only if all the
pi are equal.

From [14], it can be seen that the gain in information when a dataset is
divided into two slabs is given by

∆I =
v1 + v2

vT
JS(

v1

v1 + v2
,

v2

v1 + v2
; p1, p2), (6)

where v1 and v2 are, respectively, the volumes of slabs 1 and 2, vT is the total
volume of the 3D dataset, p1 and p2 are, respectively, the normalized intensity
histograms of slabs 1 and 2, and JS( v1

v1+v2
, v2

v1+v2
; p1, p2) is the Jensen-Shannon

divergence between p1 and p2 with the corresponding weights v1
v1+v2

and v2
v1+v2

.
The gain of information when a model is divided into two parts is given

by the dissimilarity measured by JS between them weighted by their relative
volume. Note that a slab highly structured along a given direction will have all
possible partitions very similar and thus will not need to be partitioned.



Fig. 4. (a) The volume partitioning and (b) the slice grouping approaches applied to
a CT scan of the human body.

5.2 Slice Grouping

Given a viewing direction, the slices perpendicular to it can be grouped using a
similarity measure. In this paper, the normalized mutual information is used to
quantify the degree of similarity between individual slices or groups of adjacent
slices (slabs). In medical imaging, many successful automatic image registration
methods are based on the maximization of mutual information. This method,
introduced by Viola [18] and Maes et al. [19], is based on the conjecture that the
correct registration corresponds to the maximum mutual information between
the overlap areas of the two images. Later, Studholme et al. [20] proposed to
use the normalized mutual information as it is more robust than solely mutual
information due to its greater independence of the overlap area.

Let X and Y be two random variables taking values x and y in finite sets X
and Y with probability distributions p(x) = Pr[X = x] and p(y) = Pr[Y = y],
respectively. The mutual information (MI) between X and Y is defined by

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y))
p(x)p(y)

, (7)

where p(x, y) = Pr[X = x, Y = y] is the joint probability. MI is a measure of
the shared information or the degree of dependence between X and Y . MI is
zero only if the two random variables are strictly independent. The normalized
mutual information (NMI) is defined by

NMI(X, Y ) =
I(X, Y )
H(X, Y )

, (8)

where
H(X, Y ) = −

∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (9)



is the joint entropy of X and Y . NMI takes values in the range [0,1].
An explanation is now given to compute the NMI measure between slices

and the algorithm to group them. Given two slices A and B of the dataset, with
associated random variables X and Y , the joint probability distribution p(x, y)
can be estimated by simple normalization of the joint histogram h(x, y) of both
slices, which is obtained from the intensities of each pair (a, b) of corresponding
voxels, where a ∈ A and b ∈ B. Once the joint histogram has been calculated,
the joint probability distribution and the marginal probability distributions of
X and Y can be estimated: p(x, y) = h(x,y)∑

x∈X

∑
y∈Y

h(x,y)
, p(x) =

∑
y∈Y h(x, y)

and p(y) =
∑

x∈X h(x, y). The similarity measure NMI is then evaluated.
The similarity between two slices can be extended to the similarity between

two slabs Â = {A1, . . . , An} and B̂ = {B1, . . . , Bm}. The random variables X̂

and Ŷ , associated with both slabs, represent the grouping of a set of random
variables {X1, . . . , Xn} and {Y1, . . . , Ym}, respectively. Their joint frequency his-
togram is obtained from the intensities of each pair of corresponding voxels
(ai, bj), where ai ∈ Ai and bj ∈ Bj ∀i, j. As mentioned above, the joint and
marginal probability distributions can be estimated and thus the NMI measure
is obtained.

Given the similarity measure NMI, the algorithm proceeds by joining the two
adjacent slabs with maximum similarity. This process stops when the similarity
between them is above a user-defined threshold or number of slabs has been
reached. At the beginning, every slab consists of only one slice. Then, the most
similar slabs are progressively joined. To group n slices, the algorithm proceeds
as follows:

– Assign n slabs such that each slab contains exactly one slice.
– Compute NMI for each pair of consecutive slabs.
– Find the two closest consecutive slabs, i.e., with maximum NMI. If the sim-

ilarity between them is higher than the given threshold, then create a new
slab î by combining i and i + 1 and recalculate NMI for the neighbor slabs
of î. This step stops when the similarity between each pair of consecutive
slabs is lower than a fixed threshold or a number of slabs is achieved.

5.3 Results

These proposed approaches have been implemented and integrated into the Vol-
umeShop framework [12]. To test the methods, different synthetic and real data
sets have been considered. In all the tests a sphere of 42 viewpoints has been
used and the stopping criterion has been fixed by the number of slabs entered
by the user.

For the first tests, the CT scan of the human body of Figure 4 has been
used. The results obtained with the model partitioning approach for 2, 4 and 8
partitions are illustrated in Figure 4(a).

In Figure 4(b) the partitions obtained with the slice grouping approach us-
ing the same user parameters are shown. In Figures 5(a) and (b) we illustrate



the results obtained applying the model partitioning and the slice grouping ap-
proaches on a CT scan of a patient with a brain hemorrhage. Observe that the
damaged region is located in the second slab from top to bottom.

In Figures 5(c) and (d), the results obtained with the volume partitioning
and the slice grouping approaches applied to an histologic data model are shown.
It is important to emphasize that these techniques have been applied without
prior pre-processing. As some of the strengths of our model are most visible
in animated viewing, several video sequences are available as supplementary
material (http://www.gametools.org/smartgraphics/).

Fig. 5. (a) The model partitioning and (b) the slice grouping approaches applied to a
CT-scan of a patient with a brain hemorrhage. An histological data model decomposed
with the (c) volume partitioning and (d) slice grouping methods.

6 Conclusions

New partitioning techniques for volumetric data decomposition and visulaization
using exploded views have been introduced. These techniques use an information-
theoretic two-step approach to automatically partition the model. First, the view
with the highest structure is identified and, then, the model is divided along this
view following two alternative similarity-based methods. The presented tech-
niques provide us an efficient tool for volume data exploration without neither
a priori knowledge nor pre-processing of the data.
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