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ABSTRACT 

Despite progress in recent years, prostate cancer continues to be one of the most 

prevalent causes of cancer-related mortality and morbidity in men in Western 

countries. A major clinical challenge of prostate cancer therapy is the current inability 

to readily distinguish between tumors with low and high aggressivity concerning 

ability to further invasion and metastasis. Understanding the mechanism of tumor 

initiation and progression is critical in diagnosis and treatment of prostate cancer 

patients. However, optimal prostate cancer initiation and progression models have 

been lacking. Previous malignantly transformed prostate cells were mainly established 

by exposure of benign prostate cells to strong external carcinogens or introduction of 

oncogenes or viral elements. These kinds of prostate cancer models are not optimal for 

representative studies on prostate carcinogenesis in vivo. Therefore, it is extremely 

valuable to establish a human prostate carcinogenesis model based on more 

physiological conditions. 

The present translational study mainly focuses on the establishment of a stepwise 

prostate carcinogenesis model based upon human primary basal epithelial EP156T 

cells that were derived from prostate benign tissues in a patient following radical 

prostatectomy for prostate cancer.  Paper I established an epithelial to mesenchymal 

transition (EMT) model. EP156T cells were adapted in long-term confluent culture, 

and cells with reduced contact inhibition appeared and had undergone EMT without 

malignant features, the new cells were named EPT1 cells. In Paper II EPT2-D5 cells 

were generated based on focus formation in confluent EPT1 cell monolayers and 

cloning in soft agar. EPT2-D5 cells had acquired in vitro malignant features such as 

focus formation, colony formation in soft agar, higher resistance to apoptosis and 

independence of exogenous growth factors. However, EPT2-D5 cells failed to form 

xenograft tumors in mice. Paper III explored the roles of microRNAs (miRNAs) in 

EMT using the EMT model established in Paper I. Two miRNAs (miR-203 and miR-

182) were found to induce both mesenchymal to epithelial  transition (MET) and self-

sufficiency of growth signals via repressing SNAI2 in prostate cells. Paper IV 

reported the complete malignant transformation of prostate benign epithelial cells. 
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EPT2-D5 cells were adapted in protein free medium and generated prostate spheres 

that efficiently initiated subcutaneous tumors and subsequent large primary prostate 

tumors and metastasis in nude mice. Cells isolated from subcutaneous tumors, primary 

tumors and metastases were named EPT3, EPT3-PT1 and EPT3-M1 cells, respectively. 

Furthermore, a ROS/IL6/STAT3 cascade was found critical in the EPT3 tumor 

initiation and progression.  

The present prostate stepwise carcinogenesis model is unique because all the cells 

were obtained under physiological conditions and cells at different stages harbor 

distinct phenotypes that are commonly utilized as markers for tumor initiation and 

metastasis in vitro and in vivo. An exact passage record has been secured, and the 

EP156T, EPT1, EPT2 and different EPT3 cells of the model can be propagated 

indefinitely as seemingly rather stable cell types in subconfluent cultures. The 

identification of the ROS/IL6/STAT3 cascade in EPT3 tumor initiation and 

progression provides a good opportunity for therapeutic development of anti-cancer 

drug targeting of the ROS/ IL6/STAT3 pathway.  

 

 

 

 

 

 

 

 

 

 

 



 
 

9 

INTRODUCTION 

Prostate and prostate cancer 

Epidemiology 

Prostate cancer (PCa) is the most frequently diagnosed malignancy among adult males 

in Western countries. The lifetime risk of developing prostate cancer is 17% (Prostate 

cancer-UK incidence statistics). Most cases of PCa will go undetected until the person 

dies from unrelated causes at old age (1). In Norway, it is the second leading cause of 

cancer related death (Cancer in Norway, 2010).  

There are at least three major factors contributing to the occurrence of PCa: age, 

heredity and environment. The incidence of PCa increases with age, and it is estimated 

that 80% of men by age 80 have cancer cells in their prostate (Prostate cancer - UK 

incidence statistics). Regarding heredity, it has been shown that different populations 

may carry prostate cancer-susceptibility alleles at different frequencies. The 

environment factors include air, water, food and lifestyle (2). The incidence varies 

dramatically in different countries and more than 2/3 of cases are diagnosed in 

developed countries (Prostate cancer - UK incidence statistics). However, the higher 

incidence found in developed countries is not only caused by the true incidence, it is 

largely based on the wider use of prostate specific antigen (PSA) screening tests and 

biopsy follow-up that began from the 1980s in those regions (Cancer in Norway, 2010). 

A recent examination of age-standardized incidence rates (ASIR) of PCa in Asian 

countries found a clear trend of increasing PCa ASIRs in the four countries examined 

(China, Japan, Korea and Singapore) (3), indicating the increasing world health burden 

posed by this disease. 

Current management of patients diagnosed with PCa is effective. However, cancer 

recurrence with castrate resistant prostate cancer (CRPC) and subsequent metastasis 

lead to poor survival outcome (1). Current therapy consists of removal of the entire 

prostate gland (radical prostatectomy) or radiation toward the gland, but is associated 

with side-effects such as incontinence and impotence that may adversely affect the 

quality of life (4). How to screen for and treat prostate cancer therefore pose difficult 
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dilemmas, suggesting that there is a dire need for novel mechanistic understanding of 

cancer progression and novel prognostic and predictive markers to guide treatment or 

watchful waiting.  

Histology 

The prostate is a male gland and the size increases with age. In young men it is the size 

of a walnut. The prostate is located in front of the rectum and underneath the urinary 

bladder (5). The development of the prostate in man is according to a ductal-acinar 

formation program without discernible lobular structures. To simplify it, the classic 

work of McNeal defined human prostate as having four anatomically and clinically 

distinct zones, corresponding to central, periurethral, transition and peripheral zones, 

together with an anterior fibromuscular stroma (5,6). Up to 70% of prostate 

adenocarcinomas arise in the peripheral zone (PZ), about 20% arise from the 

transitional zone (TZ) and only 1-5% occur in the central zone (CZ) (5,6). 

According to the morphological characteristics, functional significance and relevance 

to carcinogenesis , there are at least three distinct cell types at the histological level 

within the human prostate pseudostratified epithelium: basal, luminal and 

neuroendocrine cells (7-9) (Figure 1). Some researchers also include two other kinds 

of inter-related cell types: stem cells (SCs) and transit amplifying cells (TACs) (9,10).  

The predominant secretary luminal cells form a continuous layer of polarized 

columnar epithelium. They are a kind of differentiated androgen-dependent cells that 

produce prostatic secretary proteins, such as prostate-specific antigen (PSA) and 

prostatic acid phosphatase (PAP). At the molecular level, luminal cells are 

characterized by their expression of androgen receptor (AR), cytokeratin 8 (KRT8) 

and 18 (KRT18) and CD57 (11-13). The second major epithelial cell type is the basal 

cell that is located between luminal cells and the underlying basement membrane. 

Basal cells do not produce PSA and PAP, they express KRT5, KRT14 and CD44, and 

occasionally a low level of AR (11-13). Neuroendocrine cells only make up a small 

percentage of the normal prostatic epithelium. Cytokines secreted by neuroendocrine 

cells play a role in the regulation of epithelial cell proliferation and differentiation (9, 

14). 
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Stem cells (SCs) have tissue-regenerative capacity to replenish prostate cells that are 

continuously shed into the lumen of the gland and are therefore critical for prostate 

homeostasis. SCs isolated from the basal compartment are able to differentiate into 

luminal and neuroendocrine cells, and form whole epithelial structures (15,16). Other 

researchers demonstrated that a population of castration-resistant luminal cells 

expressing the homeobox transcription factor Nkx3.1 (termed CARNs) can generate 

prostatic tissue with basal, luminal and neuroendocrine cells in the castrated mouse 

prostate (16). Cells co-expressing both basal and luminal cell markers, sometimes even 

neuroendocrine cell markers are classified as transit amplifying cells (TACs) or 

intermediate cells (17). TACs probably represent progenitor cells that are in the 

process of differentiation, but not yet completely finished (Figure 1) (9). The features 

of TACs and the luminal compartment are among several remaining unclear issues 

regarding prostate stem cells and their differentiation and maturation. 

 

Figure 1. Three cell types in adult prostate epithelium. Shown are luminal cells 

(orange), basal cells (green) and basement membrane (black) from fluid-filled lumen 

to outside. Neuroendocrine cells (red) are typically found in the basal layer with 

neurite-like extensions that can approach the luminal layer. The figure is adapted from 

(16).  

Most PCa are adenocarcinomas sharing numerous common features with other 

epithelial cancers, e.g. breast cancers. The pathologists diagnose PCa based on 

neoplasia of luminal cells and the absence of basal cell markers, combined with 

impaired underlying basement membranes. Luminal cells have traditionally been 

considered as the main origin of PCa since more than 95% of prostate cancer cells 
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predominantly exhibit luminal cell markers, However, recent experiments show 

evidence that basal cells may be the cell of origin of PCa (18-20).  

Progression of prostate cancer  

It always takes several years to gradually develop prostatic malignant tissues from 

normal tissues. Between the two extreme situations, completely normal and highly 

malignant, there are a broad spectrum of intermediate tissues with different 

morphologies and properties regarding cell markers, metabolism and aggressive 

abilities. Some anthropogenic distinct stopping points along this path have been used 

to depict this long story: normal epithelium, neoplastic, adenocarcinoma and 

metastatic (Figure 2).  

 

Figure 2. Model of human prostate cancer initiation and progression. Stages of 

progression are shown. The figure is adapted  from (1). 

In prostate cancer, the early pre-malignancy stage appears to be associated with the 

dysplasia state which starts with proliferative inflammatory atrophy (PIA). Some of 

the cases may stop here while others may progress to prostatic intraepithelial neoplasia 

(PIN). These early lesions may be initiated by exposure to various inflammatory and 

carcinogenic agents, oxidative stress and DNA damage (1,21,22). When cancer 

suppressor proteins become lost at later stages, prostate primary cancer appears. The 

worst clinical situation typically is bone metastasis (23). 

The treatment of PCa can be prostatectomy or irradiation.  Most PCa are androgen-

dependent and respond to androgen-ablation therapy. However, some cancers finally 

become “castration resistant” and progress despite anti-androgen therapy. PCa develop 

into this stage via multiple mechanisms: most involving the AR and others bypassing 

it. Therapy for disseminated anti-androgen-resistant PCa is palliative and does not 
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increase survival. Currently the clinical treatment options are limited to chemotherapy, 

steroids, radiation and the new radixin therapy against bone metastasis (24). 

Prostate tumor initiating cells and cancer stem cells 

It has been known for long time that cancer cells in a tumor are not equally 

contributing to the tumor formation and have different potential to reconstitute the 

tumor upon transplantation (25-28), which gave rise to the  concept of cancer stem 

cells (CSCs), that a tumor is hierarchically organized with a distinct fraction of 

tumorigenic CSCs generating the bulk of the non-tumorigenic cells (29).  The concept 

of CSCs is often used interchangeably with tumor initiating cells (TICs) in the 

literature, but distinctions have been defined: CSCs are able to reconstitute a tumor 

that is identical to the parental tumor from which they were isolated and can be serially 

xenotransplanted indefinitely, while the most important feature of TICs is ability to 

regrow the tumor from which they were isolated,  it is not necessary for TICs to 

generate a hierarchically organized tumor (15). Yet another concept is the cell of 

origin of cancer that represents the normal cell type from which malignant cells were 

derived.  

In prostate, luminal cells were traditionally considered as the origin of PCa. Korsten et 

al. reported this for a subset of luminal cells expressing the progenitor markers Trop2 

and Sca-1 (30). Murine castration-resistant Nkx3.1-expressing cells efficiently 

initiated prostate carcinoma following androgen-mediated regeneration upon deletion 

of Pten gene (20). On the other hand, independent evidence supports that PCa arise 

from normal basal AR- stem cells. For example, putative basal CSCs with a 

CD44+α2β1integrinhighCD133+ phenotype have been isolated from human PCa 

biopsies (31) . Goldstein et al. showed that basal cells with CD49fhiTrop2hi isolated 

from human primary prostate tissue can recapitulate the histological and molecular 

features of human PCa by cooperation with AKT/ERG/AR signaling (32).  Liao et al. 

reported that basal Lin-Sca-1highCD49fhigh cells have the capacity to form tumor 

spheres in vitro and xenograft tumors in vivo (33). Additionally, a small population of 

TRA-1-60+ CD151+ CD166+ TICs expressed basal cell markers and did not express 

the luminal marker AR (34). 
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There is therefore not yet consensus regarding the origin of human prostate cancer and 

CSCs. Actually, it is not necessary to have only one cell-of-origin of prostate cancer 

and CSCs since different genetic alterations may simultaneously transform different 

target cells and different clinical sub-types of cancer may arise from different cell 

types (35) . 

Prostate cancer models 

One big obstacle in prostate cancer research is the lack of relevant preclinical models 

to understand the mechanism of prostate carcinogenesis and to develop effective 

preventive and therapeutic interventions. Currently, the prostate cancer models mainly 

include human cancer cell lines, human prostate malignant transformation models and 

transgenic mouse models. 

Human prostate cancer cell lines 

To represent in vitro models of prostate cancer at different stages, numerous attempts 

have been done to establish cell lines from human prostate carcinomas. Although cells 

from prostate carcinomas have proven to be one of the most difficult cell types to 

establish as stable cell lines, there are approximately 30 putative human prostate cell 

lines that have been isolated from different stages of PCa. An overview of site of 

origin and molecular patterns of the 15 most used prostate cancer cell lines and 

references is summarized in Table 1. Among these cell lines, 22Rv1, CWR-R1 and 

PC-346C were derived from a primary tumor (36,37). LNCaP and LAPC-4 were 

established from lymph node metastases (38,39), while MDA PCa 2a, MDA PCa 2b, 

PC-3 and VCaP were isolated from bone metastases (40-42) and DuCaP and DU145 

from brain metastases (43, 44).  

Whilst these prostate cancer cell lines have greatly promoted the field of prostate 

cancer research, it is difficult to examine the multistep development process of cancer 

in xenografts since most of these cell lines were isolated from metastatic lesions and 

represent the histology and metastatic patterns of human cancers at an advanced stage. 

Most importantly, the lack of benign counterparts of these cancer cells limits the use in 

studying the mechanism of prostate cancer initiation. 
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Human prostate malignant transformation models 

Considering the disadvantages of human cancer cell lines described above, several 

malignant transformations of human prostate primary epithelial cells  were established 

by radiation (50) or chemical treatment, such as cadmium (51,52), N-nitroso-N-

methylurea (51,52),  or introduction of virus elements, such as the SV40 early region 

(53), HPV-18 and v-Ki-ras (54,55). However, most incidences of prostate cancer 

patients are not likely due to exposure to such strong external carcinogens considering 

it is mainly a disease of aging. 

Transgenic mouse models 

Except for the human prostate cancer cell lines described above, laboratory mice 

afford one of the best models for studying human cancer due to many advantages. 

Firstly, mice are as susceptible to cancer as humans (56). Secondly, most of the 

cancer-related genes with essential functions in carcinogenesis are structurally 

homologous in mouse and humans and are easy to manipulate (57). Finally, the 

relatively short gestation period and lifespan of mice favors establishment and 

passaging of new models.  

Regarding prostate cancer, a number of transgenic mice models have been developed 

by genetic engineering, such as targeted gene deletions, mutations or insertions, which 

have provided a unique opportunity to study the function of manipulated genes in 

prostate carcinogenesis. Generally, gain of function models need to insert oncogenes 

to get overexpression, and loss of function models need complete or conditional 

genetic knockout of tumor suppressors. The manipulated genes in these models can be 

single or multiple, and the protein products can be hormone receptors, growth factors 

and receptors or key components involved in cell cycle, signaling pathways or 

genomic instability. The prostate phenotypes can be hyperplasia, prostate 

intraepithelial neoplasia (PIN), high-grade prostate intraepithelial neoplasia (HGPIN), 

locally invasive adenocarcinoma or metastatic carcinoma. A summary of the 

transgenic mouse models is shown in Table 2.  
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Table 2 Transgenic models of prostate cancer. The table is adapted from (58) .          

Phenotype Models Genetic disruptions Ref 

Hyperplasia 

PB-FGF7 (PKS) FGF7 (59) 
C3(1)-bcl-2 Bcl-2 (60) 
PSA-CRExNkx3.1f/f Nkx3.1 (61) 
PB-FGFRiiib FGFRiiib (59) 
C3(1)-Polyoma virus Middle T Polyomavirus middle T gene (62) 
MMTV-wap Whey acidic protein gene (63) 
PB-Cre+/Rbloxp/loxP Retinoblastoma (64) 

PIN 

ARR2PB-FGFR1 FGF receptor 1 (65) 
BK5-IGF1 IGF-1 (66) 
ARR2PB-myc-PAI Myc (67) 
MPAKT model Akt1 (68) 
PSA-Cre+x Nkx3.1+/flox Nkx3.1 (61) 
PB-RAS H-Ras (69) 
PB-Cre4x Ptenloxp/loxp PTEN (70) 
PB-EcoRI ECO:RI (71) 
LPB-Tag/PB-Hepsin Hepsin, p53, Rb (72) 
TRAMP p53, Rb (73) 
LADY p53,Rb (74) 

HGPIN 

PB-mAR Androgen receptor (75) 
ARR2PB-FGF8b FGF8b (76) 
PB-Cre4x Ptenloxp/loxp Pten (70) 
MMTV-Crex PTENloxp/loxp Pten (77) 

Locally invasive 
adenocarcinoma 

C3(1)-SV40 T/t p53,Rb (78) 
PB-Cre+x APCflox/flox APC (79) 
PB/Neu HER-2/Neu (80) 

Metastatic 
carcinoma 

PSP-KIMAP p53,Rb (81) 
Cryptidin-2/SV40 T p53,Rb (82) 
Fetal Gγ-globin p53,Rb (83) 
TRAMP p53,Rb (73) 
PTEN+/−/TRAMP Pten, p53, RB (84) 
P53−/−/Rb−/− p53, Rb (85) 
Nkx3.1−/−/Pten+/− Nkx3.1, Pten (86) 
Pten+/−/FGF8b Pten, FGF8b (87) 

Despite the advantages mentioned above, limitations of mouse models in human 

cancer research should be noted. There are many differences between mouse and 

human, such as anatomy and structure of the prostate and other organs, 

immortalization kinetics and patterns of carcinogenesis, additionally, the origin of 

cancer is mainly mesenchymal cells in mice, but mostly epithelial cells in human 
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cancers (88). Therefore, mouse models should be used to complement rather than 

replace human studies, and a careful interpretation of findings obtained in mouse 

models is needed to better understand cancer pathogenesis in human (58) .   

Hallmarks of cancer 

To rationalize this complex process of cancer, Hanahan D and Weinberg RA tried to 

define the essential functional capabilities that normal cells must acquire to evolve 

progressively into malignant cells as the hallmarks of cancer (Figure 3) (89). Only if 

cancer cells acquire these hallmarks, they can maintain their deregulated survival, 

proliferation and dissemination, in another word, to become carcinogenic and 

ultimately invasive and metastatic (89). 

 

Figure 3. Schematic diagram of the hallmarks of cancer as proposed by Hanahan and 

Weinberg. The figure is adapted  from (89). 

Sustaining proliferative signaling 

Cancer initiation as well as subsequent steps of cancer progression usually correspond 

to unlimited cell proliferation which depends on sustained proliferative signaling 
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(typically including EGF, IGF, TGF and VEGF) (90-92). Cancer cells can obtain this 

hallmark via different mechanisms: some cancer cells can produce growth factors 

(GFs) by themselves and display autocrine proliferative stimulation (93); some cancer 

cells possess elevated amounts of or structurally altered receptor proteins. Both can 

boost signal capacity or facilitate GF ligand independent activation. As a result, cancer 

cells become masters of their own fate, proliferate infinitely and finally become 

malignant (89). 

Evading growth suppressors and resisting cell death  

To maintain tissue homeostasis, organisms must keep the balance between survival 

and death. Deregulated proliferation alone is not sufficient for malignancy, while too 

little death may lead to cancer formation (94). Apoptosis is programmed cell death and 

can exclude the damaged cells and serves as a main barrier against cancer (95-97). 

TP53 works as the master guardian of apoptosis. When cells encounter a variety of 

physiologic stress such as anoxia and damage to the genome, functional TP53 can 

sensor the DNA damage and promote cell cycle arrest, apoptosis or senescence (98).  

Enabling replicative immortality    

Cells in most normal cell lineages can only pass through a pre-determined and limited 

number of division cycles, and then irreversibly enter into replicate senescence.  Such 

kind of “cell generational clock” is an anti-cancer mechanism and determined by 

telomerase activity (1). Telomeres are located at the end of chromosomes and prevent 

end-to-end fusion of chromosomes. In non-immortalized cells, telomeres will be 

progressively shorter and eventually tend to malfunction after repeated DNA 

replication (99,100). Telomerase, a specialized DNA polymerase adding telomere 

repeat segments to the ends of telomeric DNA, is almost absent in normal 

differentiated cells but at functionally significant levels in many cancer cells. Cancer 

cells with functional telomerase manage to maintain telomeric DNA at lengths which 

are sufficient to escape senescence or apoptosis (89, 101,102).  
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Inducing angiogenesis  

Cancer propagation and progression require high density of vessels to supply nutrients 

and oxygen and to evacuate waste products (103). The cancer-associated de novo 

vasculature formation termed angiogenesis satisfies these needs. Cancer angiogenesis 

differs from the physiologic angiogenesis by the aberrant vascular structure, altered 

endothelial and pericyte interaction, abnormal blood flow, increased permeability and 

delayed maturation (2,103,104,105). The onset of angiogenesis is under the control of 

the so-called “angiogenic-switch”, which depends on the balance of the pro-

angiogenic and anti-angiogenic factors (106,107). Previous work has identified sets of 

pro-angiogenic (VEGF, VEGF receptors PAI-1, PDGF-B, TIE-2 receptor and MMPs) 

and anti-angiogenic molecules (endostatin, TNFα, TGFβ and TP53) (103,106-110). 

Activating invasion and metastasis  

Invasion and metastasis are responsible for more than 90% of solid cancer associated 

mortality. At the time of death the majority of cancer cells are found in metastases 

rather than in the primary tumor (2).  The invasion-metastasis cascade involves series 

of linked sequential steps: “seeds” in primary location weaken cellular adhesion and 

acquire increased motility, local invasion, intravasation (entry into and survival in the 

circulation), transport, extravasation (exit from the circulation), micrometastasis 

formation, colonization and new cancer initiation in distant organs (111,112). The 

primary tumor releases millions of cells but only a tiny minority of these cells have the 

capacity to initiate metastatic cancer. It only happens when certain cells of the primary 

cancer (”the seed”) adapt to the environment in certain secondary organs (the “soil”). 

This non-random pattern of metastasis depends on cross-talk between selected cancer 

cells and specific microenvironments (111, 113-115).  

Genome instability and mutation  

Genome instability and mutations are considered to be both the reasons and results of 

cancer.  Mutations and damages within the genome happen spontaneously during the 

life span. Normal cells have an extraordinary DNA-maintenance machinery to detect 

and resolve defects so the accumulated mutations are usually very low during each 

generation. Cells with unrepaired mutations may enter into a state of quiescence or 
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apoptosis. Cancer cells with unstable genomes generate random mutations at much 

higher frequency, including chromosomal rearrangements and deletions. Such genetic 

changes can affect the DNA-maintenance machinery (e.g.TP53 and RB) or activate 

telomerase and imprinted genes. It may precipitate the rest of hallmark capabilities 

(116). 

Reprogramming energy metabolism 

Normal cells process glucose mainly via glycolysis under anaerobic conditions but not 

under aerobic conditions. Different from this, cancer cells utilize glycolysis for their 

glucose metabolism in both conditions and produce much more energy all the time 

(117,118). Such reprogramming of energy metabolism in cancer cells fuels the 

enormous augmentation of energy requirement needed  for accelerated cell growth and 

division and makes cancer progression possible (89). 

Cancer-promoting inflammation and evading immune destruction  

Cancer has been considered as “wounds that do not heal” (119). Epidemiology data 

showed that up to 20% of cancers are linked to chronic inflammation (120). In healthy 

organisms the immune system works as a significant barrier to cancer formation and 

progression by destructing and eliminating transformed cells. Cancer cells can evade 

such immune destruction by disabling key components which are dispatched by the 

immune system (121,122). An inflammatory microenvironment can elevate both the 

genomic mutation rates and the proliferation rates of mutated cells, through affecting 

the production of cytokines, chemokines, GFs, prostaglandins, reactive oxygen and 

nitrogen species. Some target genes of these products are well-known key mediators of 

cancer progression, such as Bcl2, TP53, cyclin D1 and D2, as well as c-Myc (123). 

During the late metastasis stage, inflammation can promote the intravasation by 

increasing the vascular permeability, and lots of inflammatory factors participate in the 

pre-establishment of localized and colonized microenvironment (123). 

Epithelial to mesenchymal transition 

The majority of human tumors arise from epithelial tissues. Epithelial cells are tightly 

connected laterally by specialized membrane junction structures such as tight junctions, 
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desmosomes, gap junctions and adherens junctions and form an aligned apical–

basolateral polarized layer through their association with basement membranes. 

Epithelial cells can only move away from their nearest neighbors along the basal 

surface by assistance of the locally distributed adhesion molecules including certain 

cadherins and integrins, but they do not detach and move away from the epithelial 

layer and do not invade into the extracellular matrix (ECM) under normal conditions 

(124,125). In cell culture epithelial cells grow as clusters in a cobblestone-like 

monolayer that maintain tight cell–cell adhesions with their neighbors. 

Different from epithelial cells that typically exert tissue specific functions, 

mesenchymal cells play a supporting role in epithelial tissue (126). They do not 

express the same kinds of strong cell surface adhesion molecules as epithelial cells, so 

they usually exhibit a front-back end polarity. Mesenchymal cells rarely contact the 

neighboring cells directly and have higher motility. If contacts exist between 

neighboring mesenchymal cells, they are focal and transient, and are not typically 

associated with a basal lamina.  In cell culture, mesenchymal cells have spindle-shaped, 

fibroblast-like morphology and tend to be highly mobile and migrate individually or 

together (127,128).  

Epithelial to mesenchymal transition (EMT) refers to a cellular program by which cells 

shed their epithelial features and acquire mesenchymal features (Figure 4) (129). 

Epithelial cells may be plastic and thus able to move back and forth between epithelial 

and mesenchymal states via EMT and the reverse process MET (130-134). EMT was 

first described in three-dimensional culture of corneal epithelial cells in the laboratory 

of Elizabeth Hay in 1982 and has since been implicated in numerous embryonic states 

and pathologies including fibrotic disease and carcinogenesis (135). In mammals, 

experimental work on epithelial cell plasticity mainly follows the trail of two broad 

interests, metaplasia and EMT (136).   
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Figure 4. A model of functional transition of polarized epithelial cells into mobile 

mesenchymal cells. Several widely accepted epithelial and mesenchymal cell markers 

are shown. Cells that have passed only partly through an EMT and harbor both 

distinct markers are defined as an intermediate phenotype of EMT. The figure is 

adapted from (126). 

Characterizations of EMT  

The morphological changes during EMT include abolishment of epithelial cell polarity 

and acquirement of fibroblast-like shape and motility. In cell cultures we can find the 

switch from tightly connected cobblestone-like monolayer of epithelial cells to 

spindle-shapes of mesenchymal cells with migratory protrusions (126, 134, 136). 

At the molecular markers level, functional loss of the adherens junction protein (E-

cadherin) is considered to be the hallmark of EMT. There exists a direct correlation 

between loss of E-cadherin expression and loss of epithelial phenotype, but E-cadherin 

loss alone is not sufficient for EMT (137-139). Loss of cytokeratin (intermediate 

filament) expression, while acquiring weakly mesenchymal intercellular adherens (N-

cadherin) and gain of the mesenchymal marker vimentin (intermediate filament), 

PDGF receptor and integrin αVβ6, as well as the secretion of proteases (MMP2 and 

MMP9) (126, 136,140-142) are additional but variable requirements.  A number of 

transcription factors, including SNAILs, TWISTs, ZEBs, FOXC2 and Goosecoid are 

identified as EMT markers via regulating E-cadherin, N-cadherin and integrins 

directly or indirectly (141,143,146,147). Interestingly, these transcription factors all 

induce the mesenchymal phenotype, while the investigation of epithelial inducing 

transcription factors has lagged behind, although some, such as GRHL2, ELF3, ELF5 
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and p63, have been discovered (148). The functional changes of EMT associate with 

transition from the stationary epithelial cells to the motile mesenchymal cells. The 

reorganization of cytoskeletal proteins and production of ECM-degrading enzymes 

together enable mesenchymal cells to migrate individually and invade underlying 

ECM. Some of them acquire a heightened resistance to apoptosis partially based on the 

mesenchymal stem cell features (141). 

EMT and cancer invasion and metastasis  

The relevance of EMT to human physiological processes in vivo was long debated 

(125,149-152). However, human cancer pathological specimens have provided 

accumulating evidence for its relevance to carcinogenesis (153,154). The last step of 

cancer progression is invasion and metastasis. During the invasion and metastasis 

cascade, some epithelial cancer cells from the primary location must modify their 

phenotypic features to overcome all the barriers and survive, and finally initiate 

secondary cancer formation.  Some researchers consider EMT as the first step of 

metastasis (155). When transformed epithelial cancer cells activate embryonic 

programs of epithelial plasticity and acquire access to EMT, they generate various 

mesenchymal derivatives that have enhanced invasive and migratory abilities through 

three main intrinsic modifications: weakened cell to cell cohesion,  enhanced ability to 

degrade ECM and facilitated cell motility due to modified cytoskeleton (Figure 5) 

(155). Relying on these acquired abilities mesenchymal cells  leave  primary cancer 

nodules and invade into surrounding stroma, some of them intravasate  to become 

circulating tumor cells (CTCs) (131, 137,155) . 
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Figure 5. EMT and cancer progression. Normal epithelia can give rise to a local 

adenoma. Further transformation leads to carcinoma in situ, and further local 

dissemination of carcinoma cells can be induced by EMT. The EMT transformed cells 

can move into the circulation and be transported to distant organs. At secondary sites, 

a new carcinoma can be formed through MET. The figure is adapted from (137). 

EMT and resistance to cell death and senescence  

When cancer cells enter into the vascular bed and tend to be CTCs, they will meet a lot 

of strong apoptotic inducing signals such as deficiency of cell adhesion, physical stress 

and immune cell interaction (155). EMT provides cancer cells with the ability to 

conquer these barriers and evade cell death and senescence. Constitutive expression of 

EMT inducers can maintain the mesenchymal and invasive phenotype while ensuring 

the survival of micrometastatic cells by suppressing two safeguard mechanisms against 

cancer: premature senescence and apoptosis. For example, Snail can down-regulate 

caspases directly and antagonize TP53 (156); Twist can antagonize Myc, abrogate 

TP53 and RB or inhibit p16/ink4a and p21/cip (157, 158),  Zeb1 also protects mouse 

embryonic fibroblasts from senescence (159). This suggests that abrogation of 

apoptosis and senescence may be general EMT associated mechanisms.  
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EMT and resistance to chemotherapy and immunotherapy  

Cancers undergoing EMT may resist conventional chemotherapy. For example, colon 

and ovarian carcinoma cell lines that underwent EMT are resistant to oxaliplatin and 

paclitaxel (154,160,161). Over-expressed Twist in human cancer cell lines confers 

resistance to paclitaxel, taxol and vincristine (162,163). Moreover, Twist depletion 

partially reversed multi-drug resistance in breast cancer cells and cisplatin resistance in 

lung cancer (164,165). Similarly, Snail1 and Snail2 provide mammary tumors and 

melanoma with resistance to paclitaxel, adriamycin and radiation (156,166).  

EMT and prostate cancer  

Metastases have lethal consequences in PCa and are associated with EMT. The 

Gleason grading system is used to evaluate the malignant degree and is the basis for 

clinical treatment. Increasing Gleason score is associated with EMT related 

morphology and biomarker changes, including progressive loss of epithelial cells and 

gain of mesenchymal cells (139). There is evidence that transformed epithelial and 

mesenchymal cells co-exist in prostate phyllodes tumor and carcinosarcomas (167, 

168). However, many aspects of EMT in human prostate cancer remain unsettled on 

the basis of pathologic examination, due to the lack of unambiguous markers, possible 

stromal staining leading to misinterpretation and the lack of longitudinal evaluation 

(139) . 

On the other hand, a number of studies have reported EMT in prostate cancer cell lines. 

For example, overexpression of CAV1 and ID1 or MMP14 induced EMT in LNCaP 

cells (169,170). EGF treatment induced EMT in DU145 cells (171). Depletion of 

PDEF (Prostate-derived ETS factor) or treatment by BMP7 induced EMT in PC3 cells 

(172). However, there are some contradictory observations among these studies, such 

as both EMT and MET induction were reported in PC3 cells (172-174).  

MicroRNAs 

MicroRNAs (miRNAs) are evolutionary conserved tiny non-coding RNAs that target 

mRNAs (175). They are 18–25 nucleotides in length and regulate gene expression 

using a sequence-specific fashion defined by Watson–Crick complementarities. The 
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targeted mRNA sequences will be degraded when miRNA–mRNA complementarity is 

perfect, and with imperfect complementarity translation of target mRNAs will be 

blocked. Regardless of which event occurs, the result is a decrease in  proteins made 

from the targeted mRNA (176).   

MiRNAs and cancer progression  

MiRNAs work as cancer oncogenes or suppressors and mutations of these miRNAs 

are also associated with carcinogenesis (177-179). During cancer initiation, anomalous 

miRNAs are involved in excessive proliferation and apoptosis prevention. For 

example, let-7 negatively regulates RAS and MYC and acts as a cancer suppressor 

(180-184). Regarding angiogenesis, mir-125 and mir-17/20/106 regulate VEGF-A and 

VEGFR1/HIF-1A, respectively (185,186). MiRNAs also act as master regulators 

during invasion and metastasis (187). The deregulated miRNAs in metastatic cancers 

are referred to as metastamir (187,188).  

MiRNAs and EMT  

MiRNAs contribute to cancer also through regulating EMT and MET programs by 

direct or indirect effects on EMT related factors (187).  MiR-9 may initiate EMT in 

breast cancer by targeting E-cadherin (189). MiR-200 family members (miR-200a, 

miR-200b, miR-200c, miR-141 and miR-429) and miR-205 regulate EMT by directly 

targeting the mRNA of ZEB1/ZEB2 or TGF-β (190-192). Aberrant miR-103/107 is 

associated with metastasis and poor outcomes in breast cancer patients (193). 

Additionally, EMT related miRNAs are verified to contribute to therapy resistance:  

reintroduction of miR-200c, a negative regulator of EMT, restores chemotherapeutic 

sensitivity in ovarian cells (155,194). 

Reactive oxygen species and oxidative stress 

Reactive oxygen species (ROS) are chemically reactive molecules naturally produced 

during cellular metabolism of oxygen (195). Increased ROS has traditionally been 

associated with pathological conditions involved in infection or aging due to tissue 

injury or DNA damage. Thus, excessive production of ROS or decreased ability to 

detoxify the reactive intermediates can cause the cell to experience oxidative stress and 
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the elevated ROS may play a role in many diseases, including cancer (196). Recent 

studies reveal an essential role of ROS in processes associated with proliferation, 

apoptosis and senescence resulting from the activation of signaling pathways (197).  

ROS include a wide range of molecules. Superoxide, hydrogen peroxide and hydroxyl 

radicals are the most well studied ROS in cancer. Increasing evidence has shown  that 

ROS participate in multiple steps of cancer progression: (1) promote cellular 

transformation by generating gene mutations and structure alterations in initiated cell 

populations; (2) increase cell proliferation and/or decrease cell apoptosis and introduce 

further DNA mutations (196,197); (3) contribute to uncontrolled cancer cell survival 

and proliferation by influencing lots of key signaling cascades involved in  cell 

survival, proliferation, apoptosis and cycle progression (197-199); (4) strengthen 

cancer metastasis by increasing the migration and invasion of cancer cells, as well as 

angiogenesis (195).  

ROS and prostate cancer are tightly associated because prostate cancer is mainly an 

age-related malignancy and multiple epidemiological and clinical studies indicate 

oxidative stress as one of the major aging-associated influences on prostate 

carcinogenesis (196,200). In addition, high ROS status is found critical for the 

malignant phenotype of PC3 and DU145 prostate cancer cell lines (201). A number of 

molecular links have been found among oxidative stress, aging and inflammation 

(202). However, direct evidence and the mechanism of ROS-mediated oxidative stress 

involved in prostate initiation and progression remain to be elucidated (196). 

IL6/STAT3 signaling 

Inflammation is a widely accepted important factor in cancer (89). Among the many 

putative inflammation-related factors, pro-inflammatory cytokines, especially 

interleukin-6 (IL6), have many physiologic roles and have been implicated in a 

number of types of cancer (203).  

IL6 is elevated in the sera of patients with metastatic prostatic carcinoma and it is a 

widely recognized marker of prostate cancer (203-205). Serum levels of IL6 were 

significantly elevated in patients with clinically evident hormone refractory disease 
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comparing the IL6 levels to those in normal controls, prostatitis, benign prostatic 

hyperplasia (BPH) and localized and recurrent disease, suggesting that IL6 may be a 

surrogate marker of the androgen independent phenotype (204,205). In a study of 

incidence of abnormal circulating levels of IL6 in patients with well-characterized, 

advanced, hormone refractory prostate cancer prior to suramin therapy, a direct 

comparison of the high and low serum IL6 groups show that elevated IL6 levels are 

strongly correlated with objective measures of morbidity including decreased 

hematocrit, hemoglobin, and serum cholesterol, and increased white blood cell count 

and serum lactate dehydrogenase levels, all without clinical infection (204,205).  

IL6 belongs to the ‘‘IL6 type cytokine’’ family including leukemia inhibitory factor 

(LIF), IL11, ciliary neurotrophic factor (CNTF), cardiotrophin-1(CTF1) and oncostatin 

M (OSM) (203). They exert multifunctional actions via the signal transducer gp130, 

LIF receptor and OSM receptor. Signal transducer and activator of transcription 3 

(STAT3) is the central mediator of IL6 type cytokine signaling pathway and executes 

most of the proliferative and survival effects (206). They mediate tumorigenesis by 

protecting cells from apoptosis and promoting cell cycle progression (G1 and G2/M) 

(207). They also regulate angiogenesis and cancer induced immunosuppressive 

functions (208). Extensive studies have demonstrated the central role of STAT3 in 

IL6-type cytokine signaling in prostate cancer (209-211), suggesting a potential role of 

the IL6/STAT3 cascade in prostate cancer progression.  
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BACKGROUND AND AIMS  

Background 

Understanding the mechanisms of tumor initiation and progression is critical in 

diagnosis and treatment of prostate cancer patients with metastases. Though multiple 

factors and processes have been implicated in prostate cancer progression (1), the 

trigger for initiation of prostate malignancy is still a topic of debate, which is partially 

due to the situation that  good cancer initiation and progression models of this cancer 

type have been lacking. Previous human prostate carcinogenesis models were mainly 

established by exposure of benign prostate cells to strong external carcinogens or 

introduction of oncogenes or viral elements. However, most of the clinical prostate 

cancers have developed without exposure to such kinds of strong external carcinogens, 

and these kinds of prostate cancer models are therefore likely to lack important aspects 

of prostate carcinogenesis in vivo. Therefore, it is extremely valuable to establish a 

prostate carcinogenesis model based on more physiological conditions. 

The EP156T cell line is a successfully immortalized prostate epithelial cell line 

achieved by transduction of human telomerase reverse transcriptase (hTERT) without 

over-expression of viral oncogenes or other exogenous oncogenes (212,213). The 

EP156T cell line exhibits a significant pattern of authentic prostate epithelial cell 

specific features.  In Matrigel 3-dimensional cultures it is able to differentiate into 

glandular buds that closely resemble the structures formed by primary prostate 

epithelial cells in vivo (212,213). The EP156T cell line may serve as a unique 

experimental platform to perform several studies, including cell-cell interactions in an 

authentic prostate microenvironment, prostate epithelial cell differentiation, and most 

importantly, the complex multistep process leading to prostate cell transformation 

towards cancer (212, 213). 

General aims 

In this study, the main aim was to develop a prostate cancer initiation and progression 

model based on physiological adaptation and selection without exposure to external 

carcinogens or introduction of oncogenes or virus elements.  The second aim was the 
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systematic characterization of the model including functional abilities, gene expression, 

microRNA expression and genetic profiling. The final and most important aim was to 

identify key regulators and factors in prostate cancer initiation and progression, thus 

providing targets for therapeutic development of anti-cancer drugs. 

Specific aims 

Paper I 

The aim was to establish a prostate malignant transformation model based on EP156T 

cells. EP156T cells are human prostate primary epithelial cells with basal cell features, 

and they were isolated from benign tissue of a patient and immortalized by 

overexpression of hTERT in collaborator Professor Varda Rotter’s group. The strategy 

was to adapt EP156T cells in long-term confluent culture and select cells with loss of 

contact inhibition. 

Paper II 

We wanted to promote malignant features of the EPT1 cells established in Paper I.  

EPT1 cells were derived from EP156T following epithelial to mesenchymal transition 

(EMT) but without additional malignant features. The strategy was to adapt EPT1 cells 

in long-term confluent culture and to select cells with the ability to override 

quiescence and form focus in monolayer culture. 

Paper III 

The aim was to understand the roles of miRNAs in EMT and its reversal (MET). The 

strategy was to profile the differentially expressed miRNAs in epithelial EP156T cells 

and mesenchymal EPT1 cells by miRNA microarrays and examine the roles of the 

most significantly changed microRNAs by loss of function and gain of function in 

EP156T cells and EPT1 cells. 

Paper IV 

We wanted to achieve full malignant transformation of the EPT2 cells established in 

paper II.  EPT2 cells had obtained the abilities to form foci in confluent monolayer 

culture, to form robust colonies in soft agar, to be more resistant to apoptosis and to be 
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independent of exogenous growth signals. However, EPT2 cells failed to form tumors 

in immunodeficient mice, suggesting that full transformation had not been achieved. 

The strategy was to adapt EPT2 cells in protein free medium and test the 

tumorigenicity of cells that are growing independently of exogenous growth factors. 

Furthermore, it was an aim to start to define the critical molecular mechanisms 

associated with tumorigenicity and metastasis. 
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METHODOLOGICAL CONSIDERATIONS  

Cell culture, cell selection and adaption  

EP156T, EPT1 and EPT2 cells were cultured in MCDB153 medium supplemented 

with MEM non-essential amino acids solution, hydrocortisone, triiodothyronine, 

insulin, transferrin, sodium selenite, testosterone, EGF, bovine pituitary extract and 

fetal calf serum (FCS). EPT3, EPT3-PT1 and EPT3-M1 cells were grown in Hams 

F12 medium containing 5% FCS. Prostate cancer PC3 and DU145 cell lines were 

grown in Hams F12 medium and DMEM medium containing 10% FCS, respectively. 

All cells were grown in a humidified atmosphere containing 5% CO2 at 37°C.  

To select cells with loss of contact inhibition, EP156T cells were allowed to grow to 

full confluence at passage 43 (p43) in 96-well plates. Cells were maintained in the 

same plates and the medium was changed every 3 days until distinct morphological 

changes appeared at around twelve weeks later. We chose loss of contact inhibition as 

the phenotype in selection of malignant cells because it is a widely accepted property 

to distinguish cancerous cells from normal cells. Contact inhibition is the natural 

process of ceasing growth once normal epithelial cells abut on each other or reach 

confluence in culture. Immortalized cell lines are still subject to contact inhibition 

even when they are able to proliferate indefinitely. This process is tightly regulated by 

cell communication and it is a mechanism to prevent uncontrolled growth and 

maintain tissue homeostasis (214), while cancer cells typically demonstrate loss of 

contact inhibition and continue to grow even when they reach confluence (215). To 

select cells with the ability to form focus in monolayer culture, EPT1 were kept 

growing at full confluence in standard culture medium. The medium was changed 

every third day without trypsinization until foci formed 8 weeks later. After reaching 

confluence, EPT1 cells continue dividing for 2 weeks and enter a resting state referred 

to as quiescence. Overriding quiescence indicates the ability of cells to undergo 

uncontrolled proliferation and give rise to tumors (216). To adapt EPT2-D5 cells in 

protein free medium, the complete medium was replaced with basic Hams F12 

medium without serum (protein free medium). The protein free medium was changed 
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every 3 days until spheres were generated. The ability to grow in protein free medium 

indicates self-sufficiency of growth signals, which is the first of the ten hallmarks of  

cancer (89). Collectively, we chose these simple but useful physiological selection and 

adaption strategies in this study. 

Functional assays for malignant features in vitro 

In this study, assays for in vitro malignant features included cell proliferation, cell 

migration, cell invasion, foci formation, anchorage independent growth and self-

sufficiency of growth signals.  Cell proliferation assay is a colorimetric method for 

determining the number of viable cells in proliferation using a tetrazolium compound 

Assay (MTS). For confluent culture, the viable cells were determined by cell counting 

since MTS assay is dependent on cellular metabolic activity and not suitable for 

quiescent cells in confluent culture. Cell migration and invasion were determined in 

chamber assays utilizing basement membrane-coated inserts to assay the migrative or 

invasive properties of examined cells. Wound healing assay was also used to 

determine cell migration. Foci formation was examined in confluent monolayer culture. 

Anchorage independent growth is a classic malignant feature in vitro and it was 

evaluated by culturing cells in soft agar. Self-sufficiency of growth signals was 

measured by adapting cells in protein free medium, the dependence of cells on extra 

growth factors was represented as the relative proliferation of the test group (in protein 

free medium) compared with the control group (in complete medium). 

Functional assays for malignant features in vivo 

Generation of tumor and metastasis in mice model is the gold standard for fully 

transformed malignant cells. The malignant capacity in vivo was evaluated by 

xenograft tumor formation in mice. The cells were tested in subcutaneous tumor 

growth and subsequently in orthotopic xenograft tumor formation. The metastasis was 

tracked by bioluminescence images employing Optix® MX2 Time-Domain Molecular 

Imager or In Vivo MS FX PRO. The development and progression of tumors were 

monitored by bioluminescent imaging. All experiments were approved by the 
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Norwegian Animal Research Authority and conducted according to The European 

Convention for the Protection of Vertebrates Used for Scientific Purposes.  

Gene expressing analysis 

Gene expression was analyzed at the mRNA and protein levels. At the mRNA level, 

the methods included genome wide profiling using the Agilent DNA microarray 

platform and real-time quantitative PCR using TaqMan assays. DNA microarray is a 

powerful technique that provides an overview of transcriptional patterns of all the 

genes in the cells. It is extremely advantageous in looking for critical regulators in 

certain processes. At the protein level, methods included immunoblotting (Western 

blot) to quantify the expression level, immunofluorescence and immunohistochemistry 

to visualize the expression and location of proteins in cells and tissue sections. For 

secreted proteins, we used proteomic analysis and enzyme-linked immunosorbent 

assay (ELISA) techniques to detect or measure the proteins in cell culture supernatants. 

For miRNAs expression, the methods were genome-wide miRNA microarray 

techniques combined with real-time qPCR using using the TaqMan MicroRNA 

Reverse Transcription Kit (Applied Biosystems). MiRNA microarrays detected the 

expression of all the registered miRNAs and provided a list of the significantly 

changed miRNAs in certain experiments. The TaqMan MicroRNA Assays used 

miRNA-specific looped RT primer and miRNA-specific forward PCR primer to 

accurately detect mature miRNAs. 

Genetic profiling 

A serious problem in cell culture experiments is cross-contamination and cell line 

misidentification (217) . We verified the genetic identity of the cell lines in this study 

by various genetic characterizations, such as karyotyping, DNA microsatellite and 

DNA copy number analysis. Chromosome karyotyping was performed by the standard 

Giemsa staining procedure and metaphase spreads were analyzed. DNA fingerprinting 

was performed using the AmpFlSTR Profiler Plus PCR Amplification Kit (Applied 

Biosystems). Samples were run and allele sizes were interpreted on an ABI 3100 

Genetic Analyzer with Gene Mapper v3.7 software. DNA copy number analysis was 
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performed using Affymetrix Genome-Wide human SNP arrays to examine acquired 

genomic copy number changes and loss of heterozygosity of all the cell lines.  

Loss of function and gain of function analysis 

We characterized the roles of regulators or signaling pathways by loss of function and 

gain of function assays. For loss of function analysis, we used RNA interference 

technique to knock down the mRNA expression (Paper III). By RNAi technique, the 

mRNAs of target gene are destroyed by the designed small RNAs that are perfectly 

complementary to the target mRNAs (218). We introduced the small RNAs to cells by 

transduction of lentiviral vectors carrying the small RNA coding sequences. Three 

small RNA expression clones were used for each target mRNAs. RNAi is a simple and 

widely used knock-down technique, the limitation is that less significant knock-down 

phenotypes may occur due to remaining undestroyed mRNAs. To evaluate the 

function of IL6, a neutralizing antibody was used to block the interaction between IL6 

and IL6 receptor (Paper IV). To block STAT3 signaling pathway, several chemical 

inhibitors that have been demonstrated in the literatures were used for loss of function 

analysis (Paper IV).  

For gain of function analysis, we overexpressed the interesting genes using third 

generation lentiviral systems.  The advantages of lentiviral vectors include high 

transduction rate and efficient integration into the host genome. The positive 

transduced cells were purified by the expression of fluorescent protein encoded by the 

vectors. To examine gain of function of IL6, we used conditioned medium of D5HS 

cells with high secretion of IL6. A limitation of this conditioned medium is the short 

time that it can be used (usually 1 day) because it has been used for 3 days already in 

D5HS cells to accumulate the high IL6 level.        

Characterization of EMT 

We characterized EMT features in multiple aspects: 1) Morphological observation. In 

monolayer culture, epithelial cells have a very clear and round boundary with 

individual cells abutting on each other in a uniform array, while mesenchymal cells 

have a much longer and irregularly scattered cell shape and varied in composition and 
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density. In three dimensional cultures epithelial cells form spheroids with lumen-like 

structures, mesenchymal cells grow as loose cell clusters and migrate as individual 

cells within the gel. 2) Functional assays, such as trans-well migration and invasion 

assay, wounding healing assay. Compared to epithelial cells, mesenchymal cells have 

higher abilities of migration and invasion. 3) Examination of molecular markers of 

EMT by DNA microarray, real-time qPCR and immunoblotting. The EMT markers 

include epithelial cell markers (e.g. E-cadherin and P-cadherin), mensenchymal cell 

markers (e.g. FN1 and FBN1), as well as EMT regulators such as SNAI11/2, ZEB1/2 

and TWIST1/2. EMT can be considered when all the morphological changes, 

functional changes and molecular markers are evidenced.   

Identification of target genes of miRNAs 

For the most highly repressed targets of miRNAs, mRNA destabilization usually 

comprises the major component of repression (219). The strategy for identification of 

miRNA targets included bioinformatics prediction, reporter assay and loss of function 

assay. 1) The candidate targets of miRNAs were firstly identified by computational 

miRNA target prediction combined with the repressed genes by overexpression of 

miRNAs. 2) Direct interaction of miRNAs and target mRNAs was evaluated using 

luciferase reporter assays. The predicted target sequences were linked to the firefly 

luciferase gene in a reporter vector. Following co-transfection of miRNA expression 

vectors and reporter vectors into HEK293T cells, the direct interaction of miRNA and 

target sequences can be measured based on the activity of firefly luciferase in cells. To 

further demonstrate the targeting, point mutations were made in the predicted sequence 

in the reporter vector, a rescue of the firefly luciferase activity will verify the 

sequence-mediated miRNA targeting. 3) Functional targeting of miRNAs was verified 

by comparison of the phenotypes and affected genes in cells following knock-down of 

the target mRNAs and in cells overexpressing miRNAs. The phenotypes induced by 

overexpression of miRNAs should be phenocopied by knock-down of the target 

mRNA using RNAi technique. If the target mRNAs encode transcription factors, the 

changed gene expression patterns by over-expression of miRNAs should have 

significant overlap with the changed genes by knock-down of target mRNAs. 
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Measurement of ROS/IL6/STAT3 levels 

Production of cellular ROS was measured using membrane permeable fluorescent dye 

2’,7’,-dichlorofluorescin diacetate (DCFDA) followed by fluorescent microscopy or 

flow cytometry. It is important to have the same incubation time and interval time 

before examination of ROS in different experiments because the DCFDA intensities 

varied with different incubation time and decreased in time course after the dye was 

removed. ROS encompass a wide range of molecules including hydroxyl radicals, 

peroxides and superoxides. DCFDA is mainly sensitive to hydrogen peroxide (220), 

future work will examine the role of other reactive oxygen species. 

The level of autocrine IL6 was detected by enzyme-linked immunosorbent assay 

(ELISA) and proteomic analysis of the secreted proteins in the culture supernatant. For 

ELISA, it is important to have cells in similar density and culture time to have 

comparable data among different experiments because the secreted IL6 levels depend 

on the cell number and the culture time. The STAT3 signaling activity was tracked by 

a green fluorescent protein (GFP) based pathway reporter. A tandem STAT3 targeting 

DNA motif was linked to the mini-promoter of GFP. When the reporter was 

transduced in cells, the activity of STAT3 signaling in the cells was reflected by the 

GFP expression that can be measured by fluorescent microscopy and flow cytometry. 

The STAT3 signaling activity was also determined by immunoblotting technique using 

an antibody against the STAT3 protein phosphorylated on Y705 (pSTAT3). STAT3 is 

activated by phosphorylation at tyrosine 705 (Y705) in response to IL6, which induces 

dimerization, nuclear translocation and DNA binding of STAT3 proteins (221,222). 

An antibody against total STAT3 was used as control to show that the detected STAT3 

by pSTAT3 antibody is due to tyrosine phosphorylation. 

Evaluation of tumor initiating cells 

Tumor-initiating cell (TIC) is assumed to be a small fraction of the cancer cell 

population driving cancer initiation, maintenance and metastasis formation. We 

defined TICs in this study by xenograft tumor implantation. Firstly, D5HS spheres, 

EPT2-D5 cells in complete medium and EPT2-D5 cells in protein free medium for 

three days were tested in parallel. Only mice injected with D5HS spheres formed 
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tumors, indicating the enrichment of TICs in D5HS spheres. Secondly, small 

populations of EPT3-M1 cells with high and low STAT3 activities were tested for 

tumorigenicity in serially diluted cell numbers, much fewer cells were needed for 

STAT3high cells than STAT3low cells to generate tumor  and metastasis, demonstrating  

higher enrichment of TICs in EPT3-M1 cells with high STAT3 activity. 
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RESULTS 

In Paper I we have established an EMT model in prostate cells. In selecting for cells 

with loss of contact inhibition, the prostate primary epithelial EP156T cells were 

observed to undergo EMT accompanied by loss of contact inhibition after about 12 

weeks in confluent culture. The changed new cells were named EPT1. EMT of EPT1 

was characterized by striking morphological changes and increased invasion and 

migration compared with the original EP156T cells. Gene expression profiling showed 

extensively decreased epithelial markers and increased mesenchymal markers in EPT1 

cells, as well as pronounced gene expression switches of modules involved in cell 

adhesion and attachment. However, EPT1 cells were sensitive to serum or growth 

factor withdrawal and not able to grow in an anchorage-independent way in soft agar, 

suggesting lack of several malignant features in vitro. 

In Paper II we maintained cells in saturation density cultures to select for cells 

overriding quiescence. Foci formed repeatedly following around 3 - 8 weeks in 

confluent EPT1 monolayers. Cells picked from the foci were named EPT2 and were 

cloned in soft agar. Cells derived from a clone with name EPT2-D5 was used as 

representative in further studies. EPT2-D5 cells formed robust colonies in soft agar, a 

malignant feature present neither in EP156T nor in EPT1 cells. EPT2-D5 cells showed 

additional malignant traits in vitro, including higher ability to proliferate following 

confluence, higher resistance to apoptosis and lower dependence on exogenous growth 

factors than EP156T and EPT1 cells. Microarray profiling revealed a set of cell 

junction modules that changed stepwise from EP156T to EPT1 and to EPT2-D5 cells. 

These findings provide a novel cell model in which EMT emerges independently of 

transformation and is associated with subsequent accumulation of malignant features 

in prostate cells.  

In Paper III we profiled miRNA expression and found that miR-203 and miR-182 

were highly expressed in EP156T cells and became completely repressed in the 

progeny EPT1 cells following EMT without malignant transformation. Forced re-

expression of miR-203 or miR-182 in EPT1 cells induced MET features including 

increased epithelial traits in both two and three dimensional cultures and decreased 
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ability of migration and invasion. Simultaneously, miR-203 and miR-182 made EPT1 

cells resistant to apoptosis induced by growth factor withdrawal and provided cells 

with the ability of self-sufficiency of growth signals, a well-recognized oncogenic 

feature. Gene expression profiling showed high overlap of the affected genes by miR-

203 and miR-182. Many up-regulated epithelial genes and down-regulated 

mesenchymal genes were found in both EPT1-203 and EPT1-182 cells. SNAI2 was 

identified as the common target of miR-203 and miR-182. Knock-down of SNAI2 in 

EPT1 cells mimicked the phenotypes of re-expression of miR-203 or miR-182 

regarding both MET and self-sufficiency of growth signals. Furthermore, considerable 

overlaps were found between the changed genes following miR-203 or miR-182 

expression and those affected by knock-down of SNAI2. P-cadherin was identified as 

the downstream target of SNAI2. We conclude that miR-203 and miR-182 induce both 

MET and growth factor independent growth via repressing SNAI2 in prostate cells. 

In Paper IV we achieved fully malignant transformed prostate cells and identified a 

ROS/IL6/STAT3 cascade critical to prostate cancer initiation and progression. When 

premalignant EPT2-D5 cells were adapted in protein-free medium, numerous tight 

spheres were generated in monolayer culture. In contrast to EPT2-D5 cells, the 

prostate spheres (D5HS) efficiently formed large subcutaneous tumors and subsequent 

metastasis in vivo, thus verifying the ability of tumor initiation of D5HS.  Gene 

expression profiling revealed that a number of growth factors and cytokines, especially 

the pro-inflammatory cytokine IL6, were significantly activated in D5HS. The 

essential roles of IL6 and the downstream STAT3 signaling were confirmed by 

neutralizing antibody, chemical inhibitors and pathway reporter. Additionally, elevated 

ROS, so called oxidative stress, were produced upon protein depletion and were 

required for the activation of IL6/STAT3 in D5HS. Importantly, a positive feedback 

loop was found between ROS and IL6. The association of ROS/IL6/STAT3 in tumor 

initiation was further demonstrated by examination of xenograft tumors and tumor 

derived cells and diluted cell implantation. Consistently, inflammation signatures were 

found in tumor spheres and metastasis cells, indicating a causal role of inflammation in 

prostate progression.  
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In this study, for the first time, we demonstrated the intrinsic association of ROS and 

IL6/STAT3 in prostate carcinogenesis. The high levels of ROS/IL6/STAT3 cascade in 

this carcinogenesis model will benefit understanding of the mechanism of prostate 

cancer initiation and progression as well as therapeutic development of anti-cancer 

drug targeting of the IL6/STAT3 pathway. 
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DISCUSSION 

Prostate carcinogenesis model 

A barrier in prostate cancer research is the lack of a good carcinogenesis model of this 

cancer type. Previously, malignant  transformation of human prostate cells were 

established by radiation (50) or chemical treatment (51,52) or introduction of virus 

elements (54,55). However, most incidences of prostate cancer patients are not likely 

due to the exposure to such strong external carcinogens considering it is mainly a 

disease of aging, and these kinds of prostate cancer models may not be representative 

of prostate cancer in vivo. 

In contrast to above models based on such strong external carcinogens, this study 

presents an in vitro carcinogenesis model based on biological adaption and selection in 

long-term saturation density culture and protein free medium culture without addition 

of any external inducers. EPT1 cells were generated by selection of cells with loss of 

contact inhibition (Paper I). Contact inhibition is a natural process of ceasing growth 

when cells abut on each other or reach confluence in culture (215).  Loss of contact 

inhibition is associated with decrease of cell to cell junctions and is required for 

increased invasion and migration of metastatic cells (223). EPT2-D5 cells were 

generated by selection of cells with increased ability to override quiescence in 

confluent culture (Paper II). Overriding quiescence is considered as an important 

mechanism of cancer initiation in vivo (216), which represents a proliferative 

advantage and favors selection of tumor cells (216). Finally, EPT3 tumors were 

initiated from tumor spheres that were produced by adapting EPT2-D5 cells in protein 

free medium (Paper IV). Growth in protein free medium, also called self-sufficiency 

of growth signals, is the first of six capacities of cancer cells (89).  Most importantly, 

the increased ROS in protein free culture  has a well-recognized major aging-

associated influence on prostate carcinogenesis (200). Collectively, the stepwise 

establishment of this prostate carcinogenesis model based on such kinds of 

physiological adaption has generated a unique and attractive model for prostate cancer 

research. 
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Hallmarks of the carcinogenesis model  

There are 10 hallmarks of cancer according to Hanahan’s and Weinberg’s hypothesis: 

(I) sustaining proliferative signaling, (II) evading growth suppressors, (III) resisting 

cell death, (IV) enabling replicative immortality, (V) inducing angiogenesis, (VI) 

activating invasion and metastasis, (VII) genome instability and mutation, (VIII) 

reprogramming energy metabolism, (IX) cancer-promoting inflammation and (X) 

evading immune destruction (89). In this study, EPT3 tumors were generated by tumor 

spheres cultured in protein free medium. The ability to  grow in protein free medium 

indicates self-sufficiency in growth signals (hallmark I), resistance to cell death 

induced by protein deprivation (hallmark III) and reprogrammed energy metabolism 

(hallmark IX);  the serial passaging of the tumor spheres in vitro and xenograft tumor 

in vivo in long-term suggests the evasion of growth suppression (hallmark II) and 

replicative immortality (hallmark V); formation of large subcutaneous tumors 

demonstrates the ability to induce angiogenesis (hallmark VI); generation of 

extensive abdominal metastases following orthotopical injection of  EPT3 cells 

suggests the activation of invasion and metastasis (hallmark VII); the increased 

genetic aberrations in EPT3-PT1 and EPT3-M1 cells suggest genomic instability and 

mutation (hallmark VII); the enrichment of inflammatory process in changed genes in 

tumor spheres and metastatic tumors indicates the cancer-promoting inflammation 

(hallmark X). The ability of the EPT3 tumor to evade immune destruction remains 

undetermined since the host mice are immunodeficient. Collectively, this prostate 

carcinogenesis model harbors 9 of the 10 hallmarks of cancer, thus it is a 

comprehensive cancer model and suitable for further prostate cancer research. 

EMT in prostate cells 

This work is the first report of an EMT model based on prostate primary epithelial 

cells. In prostate cancer cells, EMT has been described, including over-expression of 

CAV1 and ID1 or MMP14 in LNCaP cells (169,170), EGF treatment of DU145 cells 

(171), depletion of PDEF (173) or BMP7 treatment of PC3 cells (172). However, some 

of these studies cannot easily be reconciled, such as reports of both EMT and MET 

induction in PC3 cells (172-174). Long-term passages of these cell lines in different 
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laboratories may cause them to differ significantly from the original patient cells, and 

new models closer to prostate tissue are desirable. 

EMT is not easily observed in histological examination of cancer tissue sections, even 

by experienced pathologists (224,225). An explanation may be that EMT may be 

transient during cancer progression (143) or occur only in a small subpopulation of the 

tumor cells, such as cells at the invasive front (150, 226-229) or cancer stem cells (152, 

230,231). The successful establishment of an EMT model based on primary prostate 

cells with many traits of the prostate basal cell phenotype is important in light of a 

recent report on the significance of EMT in prostate cancer (232). 

EMT and malignant transformation 

EMT has been considered an event following malignant transformation to endow 

cancer cells with invasive and metastatic competence (125,233). EMT being the first 

step in the present prostate carcinogenesis model suggests that EMT can not only 

promote more aggressive cell biological traits in malignant cells, but also facilitate 

malignant features of benign prostate epithelial cells, which is supported by two 

observations that metastatic dissemination is a distinct early step in cancer progression, 

and the hypothesis was proposed that premalignant cells can enter the systemic 

circulation during these early stages and become sources of later metastatic tumors 

(143, 225).  

The promotion of malignant features by EMT is also hinted to by studies of stem cells. 

Recent work demonstrated that EMT not only generates epithelial stem-like cells from 

normal epithelial cells, but also promotes the tumorigenicity of transformed cells in 

animals by inducing TICs (227,228), indicating crucial roles of EMT in the 

tumorigenic process. Our present study represents a distinct stepwise model in which 

cells first underwent EMT from untransformed cells and subsequently changed to cells 

with many malignant features and subsequently TICs, thus providing an alternative 

mechanism to explain carcinogenesis in vivo, since EMT is widely observed in body 

development and other physiological processes (234).  
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Dual roles of miRNAs in cancer-related processes 

In Paper III, we found dual functions of miR-182 and miR-203 in EPT1 cells. MiR-

182 and miR-203 were completely repressed during EMT from prostate epithelial 

EP156T cells to the progeny mesenchymal non-transformed EPT1 cells. Re-expression 

of miR-182 or miR-203 in EPT1 cells induced MET features and generated the ability 

to self-sufficiency of growth signals, a well-recognized oncogenic feature. 

Furthermore, SNAI2 was identified as a common target of miR-182 and miR-203. 

Knock-down of SNAI2 in EPT1 cells phenocopied EPT1-182 and EPT1-203 cells 

regarding both MET and self-sufficiency of growth signals.  

It is interesting to find dual roles of miR-182 and miR-203 when they were re-

expressed in EPT1 cells. Enforcing the epithelial phenotype and inhibition of 

migration and invasion suggest that both miRNAs are likely to suppress metastasis in 

tumor progression (151). Obtaining self-sufficiency of growth signals suggests 

oncogenic potential (89). Tumorigenesis is a multistep process, a certain factor can 

show different and even contradictory roles in different aspects of tumorigenesis, e.g. 

exemplified when miR-200s suppress early steps of metastasis by hindering tumor cell 

migration and invasion into the circulation from primary tumors, but enhance the late 

step of metastasis by promoting metastatic colonization at second sites (235).  Both 

miR-203 and miR-200s were shown to be highly expressed in localized tumors and 

down-regulated in metastases, defining a dynamic two-stage model of miRNA 

expression (236,237). Additionally, knock-down of the key EMT regulators SNAI1, 

ZEB1 or TWIST2 in mesenchymal-like prostate cancer PC3 cells induced typical 

epithelial program and increased tumorigenicity of these cells (238), which fits with 

our findings that over-expression of miR-182/203 or knock-down of SNAI2 induced 

not only epithelial features but also an oncogenic property. The dual functions of these 

kinds of miRNAs and EMT regulators strongly indicate their complex mechanisms in 

tumor progression.   

Adaption of cells in protein free medium 

EPT3 tumor initiating cells were obtained by adapting pre-malignant EPT2 cells in 

protein free medium (Paper IV). Chemically defined serum-free medium is widely 
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used to culture tumor spheres or cancer initiating cells (239-241). However, these 

media are often supplemented  with growth factors such as EGF/FGF and all cells are 

non-adherent in the cultures (239-241). In the current study, EPT2-D5 cells efficiently 

generated tumor spheres in medium completely free of serum and any other growth 

factor, suggesting an even higher independence of exogenous growth stimulation. 

Additionally, generation of D5HS spheres from single adherent cells provides a unique 

model to study the cell division and metabolism of tumor initiating cells. 

Growth in protein free medium, so called self-sufficiency of growth signals, is the first 

of six capabilities required to convert a normal somatic cell into a cancer cell 

according to Hanahan’s and Weinberg’ outline (89). Although independence of 

exogenous growth factors is an inherent feature of EPT2 cells, comprehensive 

reprogramming was triggered when cells were adapted in protein free medium, as 

demonstrated by strikingly altered gene expression patterns, sphere formation, and 

most importantly, the ability to initiate tumorigenesis.  

ROS/IL6/STAT3 and prostate cancer 

Though multiple factors and processes have been implicated in prostate cancer 

progression (1), the trigger for initiation of malignancy is still a topic of debate. 

Prostate cancer is a mainly an age-related malignancy and multiple epidemiological 

and clinical studies indicated oxidative stress, caused by the imbalance of reactive 

oxygen species (ROS), as one of the major aging-associated influences on prostate 

carcinogenesis (196,200). In paper IV, the indispensable role of ROS in initiation of 

EPT3 tumor further supports the association of oxidative stress and prostate tumor 

progression.  

IL6 is elevated in the sera of patients with metastatic prostatic carcinoma and it is a 

widely recognized marker of prostate cancer (203,204). Extensive studies have 

demonstrated the central role of STAT3 in IL6-type cytokine signaling in prostate 

cancer (209,210). In Paper IV, we confirmed the essential roles of IL6 and the 

downstream STAT3 signaling in tumor sphere formation and tumor initiation and 

progression.  
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As discussed above, there are abundant epidemiological and clinical studies indicating 

the correlation of prostate cancer to ROS and IL6/STAT3 signaling, respectively.  In 

this study, for the first time, we demonstrated the intrinsic association of ROS and 

IL6/STAT3 in prostate carcinogenesis. Importantly, we observed a positive feedback 

loop between ROS and IL6 although the detailed mechanism is to be elucidated in 

future work.  
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CONCLUSIONS 

In this study, we have established a complete and stepwise carcinogenesis model of 

prostate by physiological cell selection and adaption. The stepwise model consists of 

the prostate primary epithelial EP156T cells, mesenchymal non-transformed EPT1 

cells, premalignant EPT2 cells, primary tumor derived EPT3-PT1 and metastasis 

derived EPT3-M1 cells. The common origin of these cell lines has been verified by 

DNA microsatellite and DNA copy number analysis. We have demonstrated the 

critical role of a ROS/IL6/STAT3 cascade in prostate cancer initiation and progression. 

Additionally, a positive feedback loop between ROS and IL6 has been found during 

prostate tumor sphere formation in protein free culture. Finally, miR-182 and miR-203 

have been found to induce mesenchymal to epithelial transition features and self-

sufficiency of growth signals via targeting the transcriptional suppressor SNAI2.    
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FUTURE PERSPECTIVES 

In the present stepwise prostate carcinogenesis model, cells in each stage harbor 

distinct phenotypes that are commonly utilized as markers for cancer progression in 

vitro. EMT is a well-defined trait of cancer metastasis (125,137,150,224,234,242,243), 

while the ability to anchorage-independent growth has been connected with cancer cell 

aggressiveness and metastatic potential in vivo (244,245). Apoptosis is also important 

among multiple barriers to metastasis (246). Furthermore, growth autonomy and 

growth factor independent proliferation are additional characteristics of tumor 

metastasis in vivo (247). In this model, EPT1 cells have undergone complete EMT 

without the abilities to either anchorage-independent growth or growth factor 

independent proliferation. EPT2 cells have all of the above in vitro features, but still 

were unable to efficient carcinogenesis.  EPT3-PT1 and EPT3-M1 cells are primary 

tumor and metastases derived cells and therefore represent the two important in vivo 

malignant features. Altogether, this study provides a unique model to study the 

mechanisms of these different properties of tumor metastasis in vitro and in vivo. 

A ROS/IL6/STAT3 cascade has been found critical to cancer initiation and 

progression in this model. Both ROS and IL6 play central roles in inflammation 

networks (195).  Indeed, inflammation signatures were found in both D5HS and 

metastatic EPT3-M1 cells in this carcinogenesis model, which provides a unique 

model for the study of the inflammation process and prostate carcinogenesis. 

Additionally, for the first time, we linked the intrinsic association of ROS and 

IL6/STAT3 in prostate carcinogenesis. Importantly, we observed a positive feedback 

loop between ROS and IL6. Future work will elucidate the detailed mechanism and the 

clinical implication of the ROS/IL6 loop. Finally, compared to prostate PC3 and 

DU145 cells, the higher levels of autocrine IL6 and phosphorylation of STAT3 in 

EPT3-M1 cells make this model attractive for therapeutic development of drug 

targeting the IL6/STAT3 pathway. 
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