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Abstract

In this thesis, using daily returns from 18 stocks, oil price, exchange rates and the main
index of the Oslo Stock Exchange over a period of 5 years, we investigate how the Local
Gaussian Correlation can be used to describe the change in the relationship between stocks
and the market and how it can extend already established theory in �nance.

Topics covered in this thesis are; risk estimation by conventional risk measures and a
method based on Local Gaussian Correlation, the Capital Asset Pricing Model (CAPM),
copulas and GARCH as a description of volatility and as a description of the marginal
distributions for copulas.

Value at Risk and Expected Shortfall are well established risk measurements in �nance.
They are dependent on a good description for the distribution in the tail, which can be
challenging. These measures only provide one single number as a description of the risk,
this might be appealing, but does not really provide detailed information.

By using the theory of CAPM there has been some attempt to describe the change in
risk by using the so-called conditional moments of the observations. This approach might
be biased, as the conditional moment fails to describe the constant correlation and variances
of the Gaussian distribution. By rather using the local parameters found when calculating
the Local Gaussian Correlation as a local description of the beta on our data, there seem
to be higher risk in the upper tail and the lower than in the middle. However, what di�ers
from the results found by the previously mentioned approach is that the risk in the upper
tail seems to be higher than in the lower. This might be explained by very large gains for
the stock market might be followed by a possible stock market downturn or even a crash
(bubble), while negative values for the market is less likely to resolve in a sudden positive
boost for the market.
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Chapter 1

Introduction

The fact that correlation is not necessarily constant between factors in �nance is observed
in articles like Patton (2004) and Silvapulle & Granger (2001).

In Patton (2004), the authors investigate the dependence on stock markets, and �nds
evidence suggesting that models based on non-constant correlation between indices is a
better description than models where the correlation is assumed to be constant.

In Silvapulle & Granger (2001), the authors group their data into three di�erent cate-
gories, the lower tail, the middle and the upper tail. By conditioning on the group of the
observations, they get di�erent values for the variance and the correlation in these groups.

These di�erent values for the variance and correlation are then used as a description of how
the risk is changing between the groups. However, as pointed out in Boyer et al. (1997),
the approach of conditional correlation is biased. The method fails to give a constant value
for the correlation in a bivariate Gaussian distribution, thereby violating the de�nition of
the Gaussian correlation.

As for calculation on the Norwegian market, there has been done some analysis of the
in�uence of factors like oil price, examples of this are Bjørnland (2009) and Gjerde & Saet-
tem (1999) which both use a vector autoregression model in analysis on the Norwegian
market. Bjørnland (2009) analyses the relationships between oil price shocks and stock
market booms on the Norwegian market, while Gjerde & Saettem (1999) analyses the re-
lationship between stock returns and macroeconomic variables.

In this thesis, we will investigate changes in correlation on the Norwegian Stock Market,
using daily data over a period of 5 years. We will be using the Local Gaussian Correlation
to describe the change in correlation for the factors. This approach is not like the method
of vector autoregression models, restricted to linear dependence and does not su�er from
the bias that is found in conditional correlation. Additionally we will be using theory for
risk management and copulas together with the Local Gaussian Correlation to describe

1



2 CHAPTER 1. INTRODUCTION

and calculate the risk on the Norwegian Stock Market.

Since the Local Gaussian Correlation is a new measure of correlation, there has been
limited use of it on observed data. It is therefore of interest to compare the results of
this method to results found by other methods, and try to give an interpretation of these
�ndings.

The structure of this thesis can be summarized as follows:

• Finance:
A quick introduction to logarithmic di�erences, some distributions used in �nance,
risk estimation and GARCH as a description of volatility.

• Dependence Measures:
Since the chapter of �nance was restricted to the univariate case, we argue for the
use of several variables in �nance and give a recap of Pearson's correlation coe�cient.

• Copulas:
Copulas o�ers a way of binding together random variables under di�erent kind of
dependence structures. This chapter gives an introduction to copulas and introduce
some di�erent copula models.

• The Capital Asset Pricing Model:
CAPM is a model, which states a link between the risk and expectation for invest-
ments under some assumptions. We will investigate an attempt to model the change
in risk by the use of conditional correlation and see why results based on this method
might be biased. The problem with conditional correlation motivates for the next
chapter.

• Local Gaussian Correlation:
The Local Gaussian Correlation is a model that lets several multivariate Gaussian
distributions approximate an observed distribution f in separate neighborhoods. We
then use the correlation of each of the Gaussian distributions as a description of the
correlation for f in that particular part of the plane.

• Analysis of Dependence and Risk in the Norwegian Stock Market:
By using the previously introduced theory, we are able to describe change in corre-
lation on the Norwegian Stock Market and compare our results to results found by
others. We use the risk estimators introduced earlier as well as one based on Local
Gaussian Correlation to investigate the risk on the Oslo Stock Exchange.

• Conclusion:
Short summary of the results and some interpretation of these, followed by some
suggestions for further work.



Chapter 2

Finance

In this chapter, we will cover some of the fundamental aspects of �nancial modeling. The
theory in this chapter is mostly based on the book of McNeil et al. (2005), which o�ers
a thorough introduction to risk management. Another reference of in�uence that should
be mentioned is the Bachelor's thesis, Lura (2011), as it covers some of the theory we will
introduce in this chapter, in an investigation of the validity of the assumption of a Gaussian
return distribution in �nance.

We will start by explaining what �nancial returns are, how they are calculated and we
will investigate some parametric assumptions regarding these. This is followed by a quick
introduction to some models used in risk management and a model for describing volatility,
all of which are important topics in the �eld of �nance.

When modeling �nancial data an often used approach is to start out with what is known as
the logarithmic di�erence or the returns for the data. When investigating the logarithmic
di�erences, our interest is the change in the stock price rather than its actual value. The
logarithmic di�erence is de�ned as follows

De�nition 2.0.1. Logarithmic di�erence

Xt = 100(log(St+1)− log(St))

where St is the observed price of a stock.

It is easily seen from the de�nition of logarithmic di�erence that when St+1 and St is equal,
Xt is zero. When St+1 is larger than St, the value of Xt will be positive, �nally when St+1

is less than St the value of Xt will be negative.

3



4 CHAPTER 2. FINANCE

2.1 Return Data for the Statoil Stock

As an example of return data, we will be using real-life stock data for the Norwegian oil
company Statoil. The Statoil stock is notated on the Oslo Stock Exchange and the New
York Stock Exchange. Statoil was partially privatized and listed on the stock exchanges
the 18 of June 2001, but the Norwegian government is still its major shareholder, and own
approximately 2/3 of its stocks.

Our data for Statoil are based on daily prices of the stock at closing time. The dataset
is collected from the Oslo Stock Exchange's homepage, and ranges over a �ve years pe-
riod(from October 11, 2007 until October 11, 2012) resulting in 1260 values for the price,
or 1259 values for the logarithmic di�erence. The following table summarizes some of the
observed properties of the returns for the stock.

Mean Var Median Kurtosis Skewness
Statoil -0.02 5.04 0 4.04 -0.46
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Figure 2.1: Logarithmic di�erences for Statoil
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Note that in Figure 2.1, and for the rest of this thesis the following de�nition for kurtosis1,
sometimes referred to as excess kurtosis is used.

Kurt[X] =
E[X4]

V ar[X]2
− 3.

2.2 Distribution Models for Financial Returns

By moving on to the parametric parts of statistics, we can take advantage of more ad-
vanced models, moreover, we might be able to simplify the calculations. In the following
sections we will make and analyze some of the conventional assumptions regarding the
distribution of the returns. There are numerous reasons why some of these assumptions
should be avoided or at least be treated with caution. Falsely assuming that the return is
described by a given distribution might lead to severe underestimation of risk.

Because of this, we will look at some examples where we assume a given distribution
and to try to understand some of the pitfalls we should be aware of. In this section, we will
be restricting ourselves to the univariate case, but will later see how the theory of copulas
can be used to join marginal distributions together in di�erent kinds of dependence.

2.2.1 Gaussian Return Distribution

The most assumed distribution for the returns is probably the Gaussian distribution. With
its simple structure, low number of parameters and relation with the central limit theorem
it is an appealing choice of distribution. Its univariate density function is

f(x|µ, σ2) =
1√

2πσ2
exp{(x− µ)2

2σ2
}. (2.1)

The expressions for the expectation and the variance for the Gaussian distribution are
given

E[X] = µ

V ar[X] = σ2.

When assuming a Gaussian return distribution we only need values for the expectation
and variance, as the kurtosis and skewness are both zero for the Gaussian distribution.
This results in its famous bell form and the symmetry around the mean.

1For an explanation of what kurtosis is and what it describes, DeCarlo (1997) might be an article of
interest.
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2.2.2 Student t Return Distribution

Student's t distribution is a distribution function often used in introductory courses on
hypothesis testing on the mean. Nevertheless, this is not the only use for this distribution,
as it turns out the t distribution may often be a better description for logarithmic di�erences
than the Gaussian distribution. We say that T has a t distribution with υ degrees of
freedom if T is given as follows

T =
Z√
U
υ

. (2.2)

Here Z is a standard Gaussian, and U is Chi squared with υ degrees of freedom, and
independent of Z Hogg & Tanis (2005). Its density function can be given as

f(x|υ) =
Γ(υ+1

2
)

√
υπΓ(υ

2
)
(1 +

x2

υ
)−

υ+1
2 . (2.3)

The expectation for a chi-square random variable is equal to its value for the degrees of
freedom, this means that when υ gets large, Equation 2.2 will approach Z, i.e. when the
degrees of freedom get large a t-distributed variable will converge to a standard Gaussian
distribution.

In Hogg & Tanis (2005) υ is restricted to positive integer values, however we will follow in
a similar manner as in Ruppert (2010) where the only restriction for the degrees of freedom
is that υ > 0, when the t-distribution is used as a model for data.

Like the Gaussian distribution, the t-distribution is symmetric, but it has heavier tails, and
therefore, more extreme values are more likely with the t-distribution. Casella & Berger
(2002) summarize the moments for the t distribution as

E[Xn] =


Γ(n+1

2
)Γ(υ−n

2
)√

πΓ(υ
2

)
υn/2 if n < υ and even

0 if n < υ and odd
Unde�ned otherwise

(2.4)

From this, it follows that the mean is 0 for υ > 1,
variance is υ

υ−2
for υ > 2 and ∞ for 1 < υ ≤ 2,

skewness is 0 for υ > 3 and for υ > 4, the kurtosis is 6
(υ−4)

.
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2.2.3 Normal Inverse Gaussian Return Distribution

The last distribution we will introduce is the Normal Inverse Gaussian distribution from
the family of generalized hyperbolic distributions. This family was introduced in Barndor�-
Nielsen (1978) and according to McNeil et al. (2005) some of the reason it has been em-
braced to a large extent in the �eld of �nancial-modeling is because of its relation to Lévy
processes. Another advantage for the Normal Inverse Gaussian(NIG) distribution is that
the description for both the skewness and kurtosis are more �exible than for the t and
Gaussian distribution. The density function of the NIG distribution as parameterized in
Barndor�-Nielsen (1997) is

f(x|α, β, µ, δ) = a(α, β, µ, δ)q(
x− µ
δ

)−1K1{δαq(
x− µ
δ

)}eβx, (2.5)

where K1 is the modi�ed Bessel function of order three and index 1, which in Bølviken &
Benth (2000) is written on the form from Abramowitz et al. (1964)

K1(z) = z

∫ ∞
1

e−zt
√
t2 − 1dt

q(x) =
√

1 + x2,

and a(α, β, µ, δ) = π−1αeδ
√

(α2−β2)−βµ.

Following are some moments and properties for the distribution as given in Bølviken &
Benth (2000)

E[X] = µ+ δ
β/α

(1− (β/α)2)1/2

V ar[X] = δ2α−1 1

(1− (β/α)2)3/2

Skew[X] = 3α−1/4 β/α

(1− (β/α)2)1/4

Kurt[X] = 3α−1/2 1 + 4(β/α)2

(1− (β/α)2)1/2
.

Due to more parameters and the appearance of the Bessel function the NIG distribution
is harder to �t to data than both the student t distribution and the Gaussian distribution.
We will on two di�erent occasions compare the three distributions introduced and try to
determine if the �exibility of the NIG distribution makes it a better �t for the return
distribution than the two simpler distributions.
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2.2.4 Comparison of the Distributions on the Statoil Stock

In our dataset for Statoil the maximum value for the return is 12.74 while the minimum
is -11.56. The probability for a Gaussian random variable with parameters matching the
one given for Statoil in Figure 2.1 having a value of less than 11.5 is 0.9999999. Moreover,

(1− 0.9999999)× 1259 ≈ 0.000181,

this means that we would expect approximately zero observations from the given Gaus-
sian distribution exceeding this limit during the period, but counting the minimum value
we observed two exceedances of this magnitude for the Statoil stock. The probability of
observing the maximum value(less than 1-0.9999999) is so low that we should question the
use of the Gaussian distribution as a description for these returns.

tFit from the package2 fBasics suggest 1.75 degrees of freedom based on the observations
of the returns, in this case the expectation is zero, the variance if ∞, while the kurtosis
and skewness are unde�ned. But even with a variance of ∞ the t distribution might be a
better choice for the return distribution than the Gaussian distribution, the probability of
observing a value less than 11.5 with the given degrees of freedom is 0.9940744. This means
that the probability of observing the maximum value is low, but it is de�nitely higher than
for the Gaussian distribution. Moreover

(1− 0.9940744)× 1259 ≈ 7.46

which means that with the t distribution with the given degrees of freedom we will ex-
pect some exceedances of this size during a period of 1259 days. We only observed two
occasions where the absolute value of the return exceeded 11.5 during our sample period,
nevertheless it seems like the t distribution might be a better choice than the Gaussian
distribution, at least from a risk perspective.

Similar the �t.NH function from QRMlib was used to measure parameters for the NIG
distribution, and the parameters are summarized in the table below.

delta alpha beta mu
2.01634871 0.41189402 -0.03914205 0.17637789

2 The calculations and the �gures in this thesis is created by the use of R, additional packages that
have been used in the calculations are mentioned in the text.
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The probability for the NIG distribution with the parameters given above having a value
less than 11.5 is 0.9996756.

(1− 0.9996756)× 1259 ≈ 0.408375,

which is closer to the observed value of 2 exceedance of this size found in the sample, than
the Gaussian and t distribution.

Note that this comparison is rather simpli�ed, as the maximum value for the returns
was 12.74 and not 11.5, the means for the Gaussian and the NIG distribution are not zero,
which means that P (X < x) is not equal to 1−P (X < −x) for these, and the NIG distri-
bution is skewed for these parameters, which is a factor to consider as well. Nevertheless,
it provides some information on how well the extreme observations are described by the
distributions. We will return to a more reasonable comparison of these distributions later
on.

In the following plot there are three random samples, these are from the Gaussian, t
and NIG distribution, where the parameters are as given above. For each of the plot the
y-axis is restricted from -15 to 15, but it should be noted that the t distribution exceeds
this limit on several occasions, and in the random sample from the t distribution our
observed maximum was 34.51224 and minimum -31.69406. A visual comparison of these
distributions and the plot of the logarithmic di�erence in Figure 2.1, might suggest either
the t or the NIG distribution as a choice for the distribution of the Statoil returns.
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Figure 2.2: Random samples, with parameters based on returns from Statoil
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2.3 Risk Measures

If we are interested in the probability of a standard Gaussian distributed variable being
less than 1.65 we can easily look up that the probability of this is approximately 0.95.
This kind of problem arise in �nance, where an insurance company need to verify that
they have enough money available to cover potential losses, or someone who has invested,
need to know that they can a�ord the potential loss. We will in this section take a
look at two di�erent ways of estimating a limit for the loss, these are Value at Risk and
Expected Shortfall. Before de�ning a risk measure, it is natural to de�ne and have a clear
understanding what we mean by loss.

De�nition 2.3.1. The Loss function

We let L(t) = V (t) − V (t + 1) be the loss over a period of 1 steps and V(t) denotes the
given value of our object at time t.

As we can see from the de�nition a positive value for the loss function L(t) means that
the value of interest has decreased from time t to t+ 1. Here we have restricted ourselves
to a period of 1 step, although this could easily be de�ned for a general numbers of steps,
moreover, we will refer to the loss function only by L. The reason for this simpli�cation is
that the time t is not really relevant in the following de�nitions and how the theory can
be extended for time periods longer than 1 step are brie�y mentioned later.

We will throughout this introduction to risk measures use the Gaussian distribution when
assuming a distribution for the loss, this might not be a realistic assumption, but it will
hopefully provide the necessary understanding on how these calculations can be done under
other choices for the loss distribution.

2.3.1 Value at Risk and Expected Shortfall

Value at Risk, or often just VaR is a measure of the quantile function for the Loss L de�ned
above. We will in the case of Value at Risk and Expected Shortfall stick to de�nition from
McNeil et al. (2005).

De�nition 2.3.2. Value at Risk

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α},

where α ∈ (0, 1) gives the con�dence level. L gives the loss, and FL(l) = P (L ≤ l).

This means that V aRα is the limit that our loss will not exceed with a probability of α.
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The de�nition of Expected Shortfall is closely related to the de�nition of VaR, and is

De�nition 2.3.3. Expected Shortfall

ESα =
1

1− α

∫ 1

α

qu(FL) du,

where qα(FL) is the quantile function of FL de�ned as
qα(FL) = inf{l ∈ R : FL(l) ≥ α}, α ∈ (0, 1).

Expected Shortfall like VaR is a risk measure often used in �nance. One di�erence between
these is that, while VaR only give us a limit, we will not exceed with a given probability,
Expected Shortfall gives us the expected value for the loss conditioned on that we have
exceeded this limit. The relationship between VaR and ES is easily seen in De�nition 2.3.3
where qu(FL) equals the de�nition of VaR given in De�nition 2.3.2.

As methods of calculating VaR and ES, we will in this section be using the historical
and parametric method, although methods based on Monte Carlo simulation can also be
used as shown in the later analysis.

2.3.2 Historical Method for Measuring VaR and ES

In order to use the historical method, we arrange our observed losses l1, . . . , ln from the
distribution L in increasing order, which is called the order statistics. l(n) is the largest
loss and l(1) is our smallest loss, since the Loss function gives a positive value for the loss.
When calculating VaR we want to �nd the smallest loss l where

P (L ≤ l) ≥ α.

In other words if we let α = 0.95, we want to �nd the smallest loss li , that 95% of our
values for the returns exceed. While for the Expected Shortfall, we calculate the mean of
the 5% largest losses.

Example 2.3.4. Historical VaR and ES for Statoil Stock
As mentioned earlier we had 1259 values in this dataset for the Statoil stock. We want to
�nd the value our loss will not exceed with a probability of 95%.

1259× 0.95 = 1196.05,
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this means that our value of interest is the l(1197), the reason for the use of l(1197) instead of
l(1196) is that when calculating a risk it is usually better to overestimate than underestimate.
We then have that according to the historical VaR we will with 95% probability not lose
more than l(1197) = 3.536. Or in other words, our value for the return will with 95% prob-
ability exceed -3.536.

1259× 0.99 = 1246.41

and l(1247) = 7.058 is the historical VaR with α = 0.99.

When calculating the Expected Shortfall we are interested in the loss l(1197), however,
we are also interested in the other values exceeding the limit, namely l(1198), . . . , l(1259). We
therefore calculate the mean of the values l(1197), . . . , l(1259), which is 5.557. And we say
that if our loss exceeds the 95% limit we expect it to be -5.557.

V aR0.95 V aR0.99 ES0.95 ES0.99

Statoil 3.536 7.058 5.557 9.2153

2.3.3 Parametric Methods for Risk Measures

As mentioned we will limit this introduction of parametric methods to the assumption of a
Gaussian distribution for the loss, the reason for this is that it is essential similar for other
distributions. Parametric Value at Risk calculates the limit that our loss will not exceed
by a given probability conditioned on our loss being distributed by the given distribution,
similar Expected Shortfall is the expected value conditioned on that we have exceeded this
limit.

Theorem 2.3.5. VaR for a Gaussian Distributed Loss

V aRα = µ+ σΦ−1(α)

where Φ denotes the standard Gaussian cumulative distribution function, Φ−1 is its inverse,
the quantile function and L is Gaussian distributed with variance σ2 and mean µ.

This expression is easily veri�ed by De�nition 2.3.2 and the fact that

P (L ≤ µ+ σΦ−1(α)) = Φ(Φ−1(α)) = α.
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The close relation between VaR and Expected Shortfall combined with Theorem 2.3.5
implies

Theorem 2.3.6. Expected Shortfall for Gaussian distribution

For an Gaussian loss distribution L,

ESα = µ+
σ

1− α
φ(Φ−1(α)),

where φ is the standard Gaussian density function and Φ−1 is the standard Gaussian
quantile function. This can be veri�ed by combining De�nition 2.3.3 with the expression
given for the VaR in Theorem 2.3.5.

Example 2.3.7. Parametric VaR and ES with Gaussian Loss

The 0.95 quantile for a standard Gaussian distribution is Φ−1(0.95) ≈ 1.645, and for the
already mentioned Statoil stock we had that µ̂ = −0.02 and σ̂ = 2.245. This means that if
we assume that the loss variable is distributed by a Gaussian distribution, and use Theorem
2.3.5 and 2.3.6 we get the following values for the Expected Shortfall and Value at Risk.

V aR0.95 V aR0.99 ES0.95 ES0.99

Statoil 3.71 5.24 4.650 6

Note that the mean of the Loss distribution L has the opposite sign of the mean for the
return.

2.3.4 Discussion of Risk Measures

As we have seen, there are several ways of estimating risk. The historical way of estimating
Value at Risk and Expected Shortfall is quite easy, but they are also rather naive. Assum-
ing that our observed values for the loss are a good representation for potential loss might
be considered foolish. Similar parametric VaR might be somewhat risky too, at least with
a Gaussian distribution, because as we have seen the Gaussian distribution is probably a
bad choice for the return distribution and is known for underestimating the risk. This can
be seen in our data when α = 0.99, then the historical VaR and ES are much higher than
the parametric results.

To calculate the risk over a period N , N > 1, a natural approach is to use data of length N ,
for instance using weekly data if we want to estimate the risk over a week. Unfortunately,
this will lead to a reduction in the number of observations, an alternative approach as
suggested in Hull (2009) is to assume

N -day VaR = 1-day VaR×
√
N
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This approach makes particular sense if we assume that the loss distribution L is given
by a Gaussian distribution with expectation zero, since N(0, σ2) then

√
n×L is N(0, σ2N).

In the choice between VaR and ES one advantage of ES over VaR is as mentioned, that
while VaR gives you information of the risk with a certainty α and leaves the rest as an
uncertainty, Expected Shortfall tells us what to expect in the tail. Another advantage is
that while Expected Shortfall is a so-called coherent risk measure, this is not always the
case for Value at Risk, this is shown in an example of defaultable bonds in McNeil et al.
(2005).

A coherent risk measure is said to be a risk measure satisfying the four axioms of transla-
tion invariance, subadditivity, positive homogeneity, and monotonicity. These axioms are
de�ned in both Artzner et al. (1999) and McNeil et al. (2005). Of the four axioms the
subadditivity property is really the one of interest in our case, as this does not necessarily
apply for VaR. We will explain this axiom in a less formal way than in the references given
above. If we let L1 and L2 be two loss distributions and ξ(L) be a function for the risk of
a given loss. Subadditivity then requires that we have

ξ(L1 + L2) ≤ ξ(L1) + ξ(L2).

This essentially means that a merger of multiple risks should not create additional risk.

We have seen that the t or NIG distribution might be a better choice for the loss dis-
tribution than the Gaussian, but since the loss is probably not independent and identical
distributed, these assumptions might be unrealistic, this leads to the topic of volatility.

2.4 Volatility and Volatility Measures

As we can see by comparing Figure 2.2 and Figure 2.1, it is more than just the size
of the more extreme values that suggest against the assumption that the returns of the
stock price is given by iid observations from a given distribution. In the article Mandel-
brot (1963), Mandelbrot described the phenomenon, now known as volatility clustering, as
"large changes tend to be followed by large changes -of either sign- and small changes tend
to be followed by small changes.". This phenomenon is easily seen in Figure 2.1, where 28
of the 45 observations having absolute value exceeding 5 is in the interval [200,300] of the
1259 values.

Volatility can be seen as the conditional standard deviation, which is dependent on the
past of our process. This means that the volatility itself is not directly observable, but we
can estimate it, and a way of doing this is by the GARCH model.
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2.4.1 GARCH

GARCH is short for Generalized Autoregressive Conditional Heteroscedasticity, and was
introduced in Bollerslev (1986). GARCH is a generalization of the ARCH model, and the
original ARCH model was developed by Robert F Engle in Engle (1982). Both the ARCH
and its generalization GARCH are models which describes the future volatility, based upon
the observed values of the past.

We will in this thesis stick to the GARCH model, which in McNeil et al. (2005) is de-
�ned as follows

De�nition 2.4.1. GARCH Process

Let Zt be a strict white noise process SWN(0,1), which means that it is independent and
identical distributed with expectation 0, and variance 1. The process Xt is a GARCH(p,q)
process, if it is strictly stationary for all t ∈ Z and Xt is given by σtZt. Where

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j,

α0 > 0, α1 ≥ 0, . . . , αp ≥ 0 and β1 ≥ 0, . . . , βq ≥ 0

The sum involving the alphas is often referred to as the ARCH term and the value p let us
choose how many lags in {Xt} we want to use, i.e. for how long time we will let an historic
value in�uence the volatility.

Similar the sum involving the betas is known as the GARCH term, and q let us choose
for how long the previous values for the volatility should in�uence the present volatility.
Obviously this means that a GARCH(p,0) is equal to an ARCH(p) process.

GARCH Filtering

As we saw in Figure 2.1, the observations do not seem to be independent. Later on we
will need to assume that, these observations are in fact given by independent and identical
distributed observations, we will therefore be using the GARCH process to try to �lter out
the day to day dependence in �nancial data.
The logarithmic di�erences Xt is then described as

Xt = µ+ Ztσt

where Ztσt is a GARCH process as de�ned earlier. And the standardized residuals, where
rt is the observed return is calculated as

ât =
(rt − µ̂)

σ̂t
(2.6)
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This �ltration is described and used in Støve et al. (2012), and in that case, it is concluded
that the modi�cation done by this �ltration does not signi�cantly a�ect the conclusions
regarding �nancial contagion in �nancial data. We will use the same way of �ltering
�nancial data, but note that manipulation of data in this manner should always be done
with caution.

Fitting of GARCH Processes to Data

Maximum likelihood is one of the ways we usually �t the models to observed data for a
GARCH model, we will introduce the approach as described in McNeil et al. (2005). Since
in a GARCH(p,q) model σt is calculated by the p last values of Xt and the q last values
of σt we are interested in the joint distribution of Xp, . . . , Xn conditioned on X0, . . . , Xp−1

and σ0, . . . , σq−1. In the case of GARCH(1,1) this is

fX1,...,Xn|X0,σ0(X1, . . . , Xn|X0, σ0)

= Πn
t=1fXt|Xt−1,...,X0,σ0(Xt|Xt−1, . . . , X0, σ0).

We can write the conditional likelihood for a GARCH(1,1) model on the following form

L(α0, α1, . . . , αp, β1, . . . , βq|X) = Πn
t=1

1

σt
g(
Xt

σt
) (2.7)

where σt is as de�ned in De�nition 2.4.1, and g(z) is the density of a strict white noise
process, e.g. a standard Gaussian distribution.

In practice this can be estimated by choosing a starting value for σ0, and �nding the
values that maximizes the logarithm of the likelihood. This can be done numerically by
systematically trying di�erent values for the parameters in the likelihood, until the values
that maximizes the likelihood are found.

This is time-consuming, but can be simpli�ed by using the approach of variance target-
ing3 as described in Hull (2009). We then reduce the numbers of parameters we have to
estimate. This approach is to set α0 equal to the following equation.

α0 = VL(1− α1 − . . .− αp − β1 − . . .− βq).

Here VL, which is known as the long-run average variance is set equal to the sample vari-
ance calculated from the data. In the case of a GARCH(1,1) model, we then only have to
estimate values for α1 and β1.

However, in most cases it is more convenient and more e�ective to use packages that
is available for this purpose, and in the rest of this paper all parameters in the GARCH
model is found by the function garchFit from the package fGarch.

3A discussion of the possible advantages and disadvantages with variance targeting in GARCH models
can be found in Francq et al. (2009).
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Example 2.4.2. Volatility estimated by GARCH(1,1) on the Statoil stock
For this example we have used the same dataset as showed in Figure 2.1. The coe�cients
as estimated on this stock, by fGarch for an GARCH(1,1), with a Gaussian strict white
noise process are

α0 α1 β1

GARCH(1,1) 0.0067757 0.0585787 0.9289262

Figure 2.3 is the plot of the logarithmic di�erence and σt from the GARCH(1,1) process
described above. It should be noted that the �rst values estimated will be in�uenced
by the starting value of σ0. Throughout this thesis σ0 is set to the empirical standard
deviation of the sample. In this plot is quite apparent how periods with large values for
the logarithmic di�erence, so called volatility clusters, is the same area where the GARCH
process describes the volatility to be large.

To compare the di�erent choice of distribution for the strict white noise process, Figure 2.4
has plots of three GARCH processes based on the Statoil stock, where the SWN samples
are drawn from a Gaussian, t and a NIG distribution.

In the case of a Gaussian and NIG distributed Zt, the expectation and variance for the
distribution is set to 0 and 1. However when Zt is a t distribution, we have to apply a
standardization of the t distribution where,

Zt =

√
υ − 2

υ
Yt.

Here Yt is t distributed with υ degrees of freedom, then E[Zt] = 0 and V ar[Zt] = 1 when
υ > 2. The degrees of freedom, and the additional values for the NIG distribution are
calculated by the garchFit function. It is obvious that the plot in Figure 2.4 resembles
the logarithmic di�erence in Figure 2.1 much better than in the case of independent and
identical distributed random variables seen in Figure 2.2. We will later on return to a
discussion and test for which of the distribution is the best choice for the white noise
process for some stocks available at the Norwegian Stock Market.
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Figure 2.3: Volatility estimated by GARCH(1,1) on the logarithmic di�erences



20 CHAPTER 2. FINANCE

0 200 400 600 800 1000 1200

−
1

5
0

1
0

Index

G
a

u
s
s
ia

n

0 200 400 600 800 1000 1200

−
1

5
0

1
0

Index

t

0 200 400 600 800 1000 1200

−
1

5
0

1
0

Index

N
IG

Figure 2.4: GARCH(1,1) processes based on the Statoil stock, where the white noise
samples are drawn from a Gaussian, t and a NIG distribution.



Chapter 3

Dependence Measures

Now that we have covered some topics regarding �nance and risk management in the uni-
variate case, a natural step further is to consider the case of multiple random variables.

As an example of multiple random processes, let us consider the Norwegian Stock Market.
Say we decide to invest in the already introduced stock of Statoil, it is often assumed that
Oslo Stock Exchange is highly in�uenced by the price of oil. One possible relation might
be that a high oil price would be good news for Norwegian based companies since several
companies are involved with drifting of platforms and export of oil. This could lead to a
strong Norwegian currency, however, a strong Norwegian currency would make the Norwe-
gian based companies less competitive on international market, which again could be bad
for the Norwegian Stock Market.

As it turns out there are numerous factors to take into consideration when trying to de-
scribe the relationship between di�erent processes. Luckily for us there are several methods
for describing correlation and dependence. The following chapters will focus on methods
of describing and modeling dependence, starting o� with a recap of Pearson's correlation
coe�cient which is a usual part of the curriculum of introductory courses in statistics.

21
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3.1 Pearson's Correlation Coe�cient

Pearson's correlation coe�cient is together with expectation, variance and covariance, a
natural topic in introductory courses in statistic. It is a measure for linear correlation on
the interval [-1,1], where -1 or 1 means the observations are on a straight line.

Following is the Pearson's correlation coe�cient for the random variables X and Y with
their respective standard deviations σx and σy as given in Casella & Berger (2002)

ρ =
E[(X − E[X])(Y − E[Y ])]√

V ar[X]× V ar[Y ]
=
Cov[X, Y ]

σxσy
(3.1)

where σx <∞ and σy <∞.

Or in the case of a sample observed from X and Y we have the estimate

ρ̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.2)

There are some properties concerning the Pearson's correlation coe�cient and indepen-
dence that should be mentioned. These are also often part of the curriculum of introduc-
tory courses, but their importance cannot be stressed enough. Not being aware of these
might very well lead to incorrect conclusions.

Lemma 3.1.1. Independence implies zero correlation

Let X and Y be to independent random variables. Then the correlation coe�cient ρ = 0.

The next property is a result of Pearson's correlation coe�cient being an estimator of lin-
early dependence. This means that we may experience ρ being small for heavily dependent
observations. In the extreme case we may actually experience ρ being 0, even if the random
variables are strongly dependent. A classical example of this is given below.

Example 3.1.2. Zero correlation does not imply independence

Let X be given by an N(0,1) distribution and Y = X2 which means that it is given by a
χ2(1) distribution.
From the distributions we have the following:

E[X] = E[X3] = 0

E[Y ] = 1.

Clearly X and Y are dependent, but what about their correlation?

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]

= E[X(Y − 1)) = E[XY ] = E[X3] = 0

Pearson's correlation coe�cient ρ is therefore zero
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Because of this, independence should not be concluded by ρ being zero, but ρ 6= 0 does
imply the variables being dependent.

3.1.1 Pearson's Correlation Coe�cient and the Gaussian Distri-

bution

We will be using the same parameterizing for the following two de�nitions of the multivari-
ate Gaussian distribution as used in Rizzo (2007). In the case of a bivariate distribution
it is given

ψ(x, y|θ) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[(x− µx
σx

)2−2ρ
(x− µx

σx

)(y − µy
σy

)
+
(y − µy

σy

)2
]}
.

(3.3)
where θ is [µx, µy, σx, σy, ρ]

As you can see the correlation coe�cient ρ is a part of the bivariate Gaussian distribution,
and this is the case in in higher dimensions too.

Similar the density function for a multivariate Gaussian distribution is given

ψ(x|Σ, µ) =
1

(2π)d/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} (3.4)

where x = x1, . . . , xd, Σ is a d× d nonsingular covariance matrix and µ = (µ1, . . . , µd)
T .

Each of the marginal distributions in a multivariate Gaussian distribution is Gaussian
distributed N(µi, σ

2
i ). Similar two marginal distributions from a multivariate Gaussian

distributed are distributed by a bivariate Gaussian distribution. So in a multivariate
Gaussian distribution the same relation as described in the bivariate case applies for each
of the possible connection of the margins. Therefore, in the case of multivariate Gaussian
distributions Pearson's correlation coe�cient is a natural part of the distribution.

Following are some plots of samples generated in R with mvrnorm, from the library MASS.
These represent six separate bivariate random variables, all of them with a Gaussian dis-
tribution. the parameters given below, and ρ as given in the plot.

Σ =

(
1 ρ
ρ 1

)
, µ =

(
0 0

)
As we can see when the correlation is 1 or -1, the sample is on a straight line.
Here ρ = 1 results in the line increasing along the x = y-axis, while ρ = −1 makes high
values in the x-axis result in low values at the y-axis and vice versa. This strong dependence
is relaxed as the correlation goes to zero.
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Figure 3.1: Sample from bivariate Gaussian distributed variables with
(−1,−0.5, 0, 0.2, 0.8, 1) as corresponding values for ρ



Chapter 4

Copulas

The copula is a topic that has had growing popularity in recent time, especially in the �eld
of �nance. The �rst appearance of the word copula as a way of joining di�erent marginal
distribution together in a multivariate distribution was in Sklar (1959). This article was
also the �rst appearance of the theorem known as Sklar's theorem, the theorem that has
made the copula into what it is today.

However it should be mentioned that mathematicians like Féron and Fréchet deserve some
acknowledgment. Sklar knew that Fréchet was working on theory of connecting multivari-
ate distributions with their margins, after reading Feron (1956), where Féron introduced
related theory in three dimensions, Sklar extended it to a general dimension and wrote to
Fréchet about it. It is essentially this correspondence between Sklar and Fréchet which
were published as Sklar (1959). The history of copulas as described by Sklar himself, can
be found in Sklar (1996).

Copulas allow us to choose between di�erent dependence structures for our marginal dis-
tribution. Say that we have a portfolio consisting of multiple stocks, and we �nd that the
Gaussian distribution describes the movement for these stocks in a satisfying way, however
the relationships between the stocks are not Gaussian, which means that the multivariate
Gaussian distribution may not be a good �t for modeling this portfolio. The copula o�ers a
way of combining the univariate margins, where their relationship is described by copulas.
With this approach, we can choose between endless combinations of marginal distributions
and copulas, and this is one of the main reasons why copulas have really been embraced
in the �eld of �nance.

25



26 CHAPTER 4. COPULAS

We will use the de�nition of copulas as given in McNeil et al. (2005)

De�nition 4.0.3. Copulas
A d-dimensional copula is a cumulative distribution function on [0, 1]d with standard uni-
form marginal distributions.

As a consequence of this a copula inherits the following properties:

• C(u1, . . . , ud) is increasing in each component ui

• C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

• For all (a1, . . . , ad),(b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have∑2
i1=1 · · ·

∑2
id=1(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}

The last one is probably the least obvious one, but it ensures that the probability of ob-
serving a vector from its copula is non-negative. These properties are found at McNeil
et al. (2005).

Theorem 4.0.4. (Sklar's Theorem)
Let F be a d-dimensional cumulative distribution function with univariate margins F1, . . . , Fd.
Then there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd ∈ R̄ = [−∞,∞],

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

In the case of continuous margins, the copula is unique, and in the discrete case it is
uniquely determined on Range F1× Range F2 × · · ·×Range Fd.

Sklar's theorem as stated above is from Durante & Sempi (2010), for a proof of the theorem
in the case of continuous margins see McNeil et al. (2005).

There are numerous versions of copulas of interest available, but this text will be re-
stricted to a few of them. We will introduce the independence, the comonotonicity and
the countercomonotonicity copula from the class of fundamental copulas, followed by the
Gaussian and t copula from the category of implicit copulas, and Gumbel, Clayton and
Frank as examples of Archimedean copulas. The de�nitions will be given for a multivariate
case, but for the di�erent copulas our applications will be restricted to the bivariate case.
Note that the de�nition of the copulas mentioned above is based on the form of McNeil
et al. (2005) if not stated otherwise.
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4.1 Fundamental Copulas

Fundamental copulas are special cases of copulas on their own, but may also appear as
special cases for other copulas. The Comonotonicity copula and the Countermonotonicity
which are two of the fundamental copulas we will introduce are closely related to what is
known as Fréchet bounds. Fréchet bounds as described in McNeil et al. (2005) states that
for every copula C(u1, . . . , ud) we have the following bounds for the dependence:

max{
d∑
i=1

ui + 1− d, 0} ≤ C(u) ≤ min{u1, . . . , ud} (4.1)

The Independence copula is de�ned as

C(u1, . . . , ud) = Π(u1, . . . , ud) = Πd
i=1ui (4.2)

As the name suggest there are no relationship between the margins in the independent
copula. The upper bound in Fréchet bounds is a multivariate copula by itself and is known
as the Comonotonicity copula

C(u1, . . . , ud) = M(u1, . . . , ud) = min{u1, . . . , ud}. (4.3)

In the same way the lower bound in Fréchet bounds is a copula, but only in the bivariate
case. It is known as the Countermonotonicity copula

C(u1, u2) = W (u1, u2) = max{u1 + u2 − 1, 0} (4.4)

An extension of the countermonotonicity concept for a dimension higher than two is not
possible, this is shown in McNeil et al. (2005).

4.2 Implicit Copulas

Let X be a multivariate random vector with joint cdf denoted by F(x) with F (x) as the
corresponding cdf for the margins, then implicit copulas are copulas on the form

C(u) = F(F−1(u1), . . . , F−1(ud)). (4.5)

The most common implicit copulas are probably the Gaussian copula and the t copula.
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From the equation above, the bivariate Gaussian copula can be written

CGa
ρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp{−(s2

1 − 2ρs1s2 + s2
2)

2(1− ρ2)
}ds1ds2. (4.6)

where Φ−1 is the quantile function of a standard Gaussian distribution. Similar the bivari-
ate student-t copula is given

Ct
υ,ρ(u1, u2) =

∫ t−1
υ (u1)

−∞

∫ t−1
υ (u2)

−∞

1

2π(1− ρ2)1/2
{1 +

(s2
1 − 2ρs1s2 + s2

2)

υ(1− ρ2)
}−

υ+2
2 ds1ds2 (4.7)

Where t−1
v is the quantile function of a standard univariate t distribution.

Example 4.2.1. Relationship between the bivariate Gaussian copula and Fundamental
copulas
If the correlation ρ is equal to 0 in Equation 4.6, we have that

CGa
0 (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
exp{−(s2

1 + s2
2)

2
}ds1ds2

=

∫ Φ−1(u1)

−∞

1√
2π
exp{−s

2
1

2
}ds1

∫ Φ−1(u2)

−∞

1√
2π
exp{−s

2
2

2
}ds2

= u1u2,

which is equal to the bivariate independence copula de�ned above.
Similar if ρ is 1, the bivariate Gaussian copula is equal to the comonotonicity copula and
in the case of ρ equal to -1, it gives the countercomonotonicity copula.
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4.2.1 Sample from Implicit Copulas

The form of the implicit copulas will in many cases make them quite easy to sample from.
If X is a random vector from a multivariate distribution, then

U = (F (x1), . . . , F (xd))

where F (x) is the cdf of the margins, gives a sample from the given copula.
This means that if we can sample from its multivariate distribution and calculate the cdf
we can generate a sample from its implicit copula.

Following is two �gures, the �rst is of six di�erent Gaussian copulas, while the second
one is six di�erent student-t copulas. Each of the plots consists of 1000 observations from
each copula. The original sample from the multivariate Gaussian distribution was gener-
ated by the function mvrnorm in the MASS library, with the parameters given below, and
ρ as given in the plot.

Σ =

(
1 ρ
ρ 1

)
, µ =

(
0 0

)
The sample from the student-t distribution was generated by the function rmvt from the
mvtnorm library, with 1 degree of freedom and with

Σ =

(
1 ρ
ρ 1

)
and ρ as given in the plot.
Notice that Σ does not correspond to the covariance matrix, for this distribution and the
variance is not even de�ned when the number of degrees of freedom is less than 2.

When the rho parameter is 0.8 for the copulas, the Gaussian copula start to resemble a line
in the x = y-axis, while the t copula still has quite a few observations along the opposite
diagonal. In the case of rho being zero, we see that the Gaussian copula has observations
all over the plane, while the t copula has less values in the area of say x = 0 and y = 0.5.
This is because unlike the Gaussian copula, ρ = 0 does not lead to independence between
the marginals for the t copula. This can be veri�ed by setting ρ = 0 in Equation 4.7.
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Figure 4.1: Sample from bivariate Gaussian copulas with (−1,−0.5, 0, 0.2, 0.8, 1) as
corresponding values for ρ
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Figure 4.2: Sample from bivariate t copulas with (−1,−0.5, 0, 0.2, 0.8, 1) as corresponding
values for ρ
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4.3 Archimedean Copulas

Archimedean copulas are copulas on the form

C(u1, . . . , ud) = φ−1{φ(u1) + . . .+ φ(ud)} (4.8)

Where φ is known as the generator function of the copulas. The following restrictions to
the generator function apply:

1. φ is a continuous strictly decreasing and convex function mapping [0, 1] onto [0,∞]

2. φ(0) =∞

3. φ(1) = 0

The second restriction for the generator function may in some cases be relaxed. An ex-
ample of this is shown in the table below. Here θ ≥ −1 are possible values for θ in the
Clayton copula. But for θ < 1 the generator function does not satisfy φ(0) = ∞ and is
therefore not called strict.

We will in this thesis restrict ourselves to the Archimedean copulas; Gumbel, Clayton and
Frank as given below. For a large list over di�erent Archimedean copulas and their gen-
erators see Durante & Sempi (2010) where they have examples of 22 di�erent generator
functions.

Table 4.3.1. Some Archimedean bivariate copulas

Copula C(u, v) φ(t) Parameter range strict

Gumbel exp(−[(−log(u))θ + (−log(v))θ]1/θ) (−log(t))θ θ ≥ 1 yes

Clayton [max(u−θ + v−θ − 1, 0)]−1/θ 1
θ
(t−θ − 1) θ ≥ −1 θ ≥ 0

Frank −1
θ
log(1 + (e−θu−1)(e−θv−1)

e−θ−1
) −log( e

−θt−1
e−θ−1

) θ ∈ R yes

Unfortunately sampling from Archimedean copulas are a little bit more complex than in the
case of implicit copulas, since these are not based on well known multivariate distributions
that we can sample from. However, there are methods of doing this, McNeil et al. (2005)
o�ers an algorithm based on laplace-stieltjes transformations of known distributions to
sample from the given copula, while an approach based on conditional copula for simulating
from di�erent copulas are covered in Genest & MacKay (1986).
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Example 4.3.2. Frank copula

As an example of Archimedean copulas we will take a closer look at the Frank copula in
the bivariate case. We will derive the expression for the copula given in Table 4.3.1, where
the generator function is −log( e

−θt−1
e−θ−1

). We then have to derive the inverse of the generator
function, this is straight forward because of the �rst requirement of the generator function.

U = −log(
e−θt − 1

e−θ − 1
)

e−U =
e−θt − 1

e−θ − 1

log(e−U(e−θ − 1) + 1) = −θt

t =
−log(e−U(e−θ − 1) + 1)

θ

= φ−1(U)

With this expression inserted in the formula for the Archimedean copulas given in Equa-
tion 4.8, we end up with the formula for the Frank copula given in Table 4.3.1.

Unfortunately the algorithm for simulating from a Frank copula described in McNeil et al.
(2005) does not allow the parameter θ to be negative.
This is restricting because θ ∈ R for the Frank copula. And θ < 0 result in the Frank
copula having negative correlation, which is quite an important factor when investigating
dependence. Luckily the algorithm described in Romano (2002) allows θ to be negative.

The following plot is generated by the algorithm for the Frank copula given in Romano
(2002), which is based on Genest & MacKay (1986). Each plot consist of 1000 values where
θ is as given in the plot. As we can see large values of θ, both positive and negative makes
the values appear on a straight line. When theta is 1 the Frank copula has some similarities
with the Gaussian copula when the correlation is zero. There are some similarities when
theta and the correlation gets larger as well, however the Frank copula appears to have its
values sampled equally on a straight line, while the Gaussian copula seems to have more
values appearing around origo and x = y = 1.
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Frank Copula
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Figure 4.3: Sample from bivariate Frank copulas with (−50,−20, 1, 10, 20, 30) as
corresponding values for θ
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4.4 Meta-Distributions

An interesting application of Sklar`s theorem is the possibility to create so called meta-
distributions. Sklar`s Theorem 4.0.4 states the existence of a copula binding the univariate
margins together so that it equals the joint distribution.

An additional property from this theorem, is the reverse statement:
Let C be a copula and F1, F2, . . . , Fd be univariate distributions, then the cumulative distri-
bution function F = C(F1, F2 . . . Fd) is a d-dimensional joint distribution with F1, F2, . . . , Fd
as its margins.

This means that we can create distribution that is a combination of a copula with the
margins of our choice. Giving the possibility to create for example a combination of Gaus-
sian copula with exponential margins. This particular combination is used in what is
known as Li`s model, Li (1999). This model has gotten an awful lot of critic following the
latest �nancial crisis, Financial times even got as far as publishing an article about the
model with the title "`The formula that felled Wall St"' Jones (2009).

The problem with this model is that the Gaussian copula may have been a good description
of the dependence under normal circumstances, but the Gaussian copula has a constant
correlation. Unfortunately the correlation is not always constant, and it is often the case
that the correlation is stronger when things go bad than in good times. This means that
this model might work when modeling periods of positive returns, but will underestimate
the potential risk in bad times. Whether it is the model itself or the people apparently
using it without knowing its limitations that deserve the blame is an open question. How-
ever, what is certain is that meta-distribution is a useful way of constructing multivariate
distributions with di�erent combinations of copula and margins.

Example 4.4.1. Meta-Gaussian distribution
If we want to sample from a meta-Gaussian distribution with say exponential(β) distributed
margins, we �rst need to get a sample X from a multivariate Gaussian distribution, this
can be done in R with the function mvrnorm from the package MASS.
Then F−1(Φ(Xi)) where F

−1(y) is the univariate quantile function for an exponential(β)
distribution and Φ(Z) is the cumulative distribution function for a univariate Gaussian
distribution is one observation from the meta-Gaussian distribution with exponential dis-
tributed margins.

Following are some random samples consisting of 1000 observations from the distribution
described above. The exponential distributions parameter equals 1 and the correlation
parameter rho is given in the plot.
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Meta-Gaussian Distribution

●
● ●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●
●●●

●

●●

●
●

●●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●
●

● ●

●

●

●●
●

●

●

●●●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●
●●

●
●

●●●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●●●●
●●

●

●

●●●

●●

●

●

●

●●

●

●

●
● ●

●
●

●

●●
●●

●
●● ●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●
●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●●

●

●

●
●

●●

●●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

● ●
●●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●

●

●
●

●●

●

●
●

●●

●
●

●

●

●●●

●
●●

●●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●
●●

●

●

●

●●●

●

●●

●
●●

●

●●

●

●

●

●

●●
●

●

● ●

●

● ●

●

●●● ●

●

● ●●
●

●●

●

●

●

●●
●

●

●
●●

●
●

●●●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

● ● ●

●

●

●

●

●●

●

●

●●

●
●●●

●●

●●
●

●●●

●

●

●

●
●

●

●
●

●

●
●

●
●

● ●
●

●
●●

●

●●
●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●●

●
● ●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

● ●

●

●
●● ●●

●

●
●

●

●●● ●●
●

●

●

●

●

●
●

●

● ●●●●
●

●

●●
●

●
●●

●
●

●

●
●●●

●

●
●

●●
● ●

●

●

●●

●

●

●

●●

●
●
●

●●

●

● ●●● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●● ●●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●●● ●

●●
●●●●

●

●
●

●●

●
●●

●●

●

● ●●

●
●

●

●

●

●
●

●

●
●

● ●
●●

●●

●
●

●

●

●

●●

●
●●

●

●

●
●●

●

●●

●●
●

●

●●

●

●●●

● ●
●●

● ●

●

●

●

●

●

●
●

●

●

●●
●●

●
●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●

●●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

● ●

●

●

●

●●
●●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

● ●

●●●●
●●

●●
●

●

●
●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●●

●
●●●

●●●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●●

●●●
●

●
●

●

●

●
●

●●

●

●
●

●●

●● ●
●●

●
●

●
●● ●

●
●

●
●

●

●

●

●
●

●

●

●

0 2 4 6 8 10

0
2

4
6

8

x

y

●●●
●
●

●

●● ●

●

●

● ●
●

● ●

●

●●

●

●
●

● ●●● ●

●
●

●

●

●

●

●

●
●

●
●● ●●

● ●

●

●●

●

●

●●

●

●

● ●

●
●

●

●

●●

●

●
●

●●

● ●●

●●
●

●

●

●

●

●

●

●●

●

●● ●

●●

●
●

●

●

●

●●
● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

● ● ●
●

●

●

●●
●

●
●

●

●
● ●●

●
●

●

●

●
●●

●●

●

●

●
●●

●

●

●

●
●

●
● ●

●
●

●

●

●●
●

●
●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

● ●

●
●

●●●
●

●

●

●●

● ●

●

●
●

●●

● ●●●
●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●
●● ●

●
●
●●

●
●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

● ●

●
●

●

●●

●

●● ●
●

●
●●

●

●●

●

●

●●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●
●

●●
●

●

●●●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●●
●

●

●●

●

● ●

●●

●

●

●●

●

●● ●

●●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
● ●●

●

●
●

●

●

● ●● ● ●

●

●

●

●
●

●

●
● ●● ●

●
●

●●

●

●

●
●

●

●● ●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●●●
●●

●

●●●
●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●● ●

●

●

●●●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●● ●●● ●

●

●

● ●

●
●●●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●
● ●●

●

● ● ●
●

●
●●

●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ●
●

● ●●●

●

● ●●
●

●
●

●

● ●

●

●

●
●
●

●●

●

●
●●

●

●

●●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ● ●
●

●

●
●●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●● ●

●

●
●
●

●
● ●

●

●

●

●●
●

●

●

●●

●
●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●●

●

●
● ●

●
●

●

●
●

●
●

● ●

●●

●●

●●●

●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●●

●

●
●

● ●
●

●
●

●
●● ●

●

●

●

●
● ●

●

● ●
●

●
● ●

●

●

●

●

●
●●

●
●●●

●
●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●
●

●

●

●

● ●

●

●

●●●

●
●

●

●
●

●●

●
●
● ●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●●

●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
● ●

●● ●

●● ●●

●

●
●

●

●
● ●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●
● ●●

●

●
●

●
● ●●

●●
● ● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8

x
y

●
●

●

●●●

●●

●

●

●

●●
●●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
● ●●

●

● ●

●● ●
●

●

●

●●
●●

●

●

●

●

●

●

●●●
● ●

●

● ●

●●
● ●

●

●

●

●
●

●

●
●

●
●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●
●

●

●

●●

●

●
● ●●

●

● ●● ● ●

●

●

●

●
● ●

●

●

●

●

●● ●●

●

● ●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●
● ●●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
● ●

●●

●
●

●●
●

●

●

●
●

●●

●

●

●
●

●

●
●● ●

●
●

●
●

● ●
●

●

●
●●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●
● ●

●

●

● ●
●

●

●

●
●●

● ●
●

●
● ●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●

● ●

●● ●
●

●

●
●

●
●

●

●●
● ●

●

●●

●

●

●

●

●

●
●

●●

●

●

● ●●
●

●
●

●
●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●●
●

●
●

● ●

●

●
●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●●

●
●

●

●
●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

● ●
●

●
● ●

●

●

●●●

●

●
●

●

●●
●

●

●

●
●

●
●
●●

●●
●

●
●

●

●

●● ●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●●

●

● ●●
●

●

●

●
●

● ●
● ●

●

●

●

●●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●●

●
●●● ●

●

●

●

●
●

●
●●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●
● ●
●

●●

●
●●

●

●

●

●

●

●

●●

●●
●●

●

●

●
●

●●● ●●

●

● ●●
●

●

●
●● ●● ●

●
●

●

●
● ● ●

●

●
● ●

●

●●●
●

●
●
●

●
●

●
●

●
●

●
●

● ●

●

●
●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●●

●

●

● ●

●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●
● ●

●

●
●

●
●

●

●

●●

●
●
●

●

●
●

● ●
●

●●
●

●
●

● ●●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●●

●

●
●

●

●
●

● ●●
●

●

●

●

●

● ●

●

●

●

● ●
●●

●
●

●
● ● ●

●

●

●●

●

●
●●

●
●

●
●

●
● ●

●

●
●●

●

● ●●●

●

●
●●

●●

●●
●

●
●●

●

●

● ● ●
●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●●

●
●

● ●

●

● ●●
● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

● ●●
●

● ●
●

● ●
●

●

●

●●
●

●

●

●
●

●● ●●

●

●
●●

●

●● ●

●

●
●●

●

●●
●

●

●

●

0 2 4 6 8 10

0
2

4
6

8

x

y

●

●

●

●

●
●

●●

●

● ●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

● ● ●

●

● ●

●●
●

●

●

●●
●

●●
●

●

●

●

●● ●

●

●
●●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●●

●

● ●●●
●

●

●

●●
●

●

●

●●●

●

● ● ●
●

●

●
●

●

●

●
●●

●
● ●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

● ●
● ●● ●●

●
●

●

●
●

●●

●

●
●

●●●

●

●

●

● ●

●

●

●●

● ●

●

●
●

●

●● ●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●●

●

●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●●

●
●

●

●

●

●
●

●

●

● ●
●

● ●
●

●●
●

●

●●

●

●

●
●●

● ●
●

●●

●

●
● ●●
●

●

●

●

●

●

●● ●
● ●

● ●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●● ●●

●

●●

●

●

●

●
●

●●

●
●●

●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●●
●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●
●

●●
●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●
●

●●
●

●
●

●
●● ●●

●

●●

●
● ●

● ●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●

●
●●

●

● ●●
●

●●●
●

●

●

● ●
●

●●

●
●●●

●

●
●

●

●

●

●
●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●
●

● ●●

●

● ●● ●

●●
●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●
●

●
●

●

●●
●

●

●
●

●

●●●
●

●

●● ●
●● ●

● ●

●

●

●

●

●

●
●●

●

● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●
●

● ●●
● ● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●● ● ●●
● ●●

●
●

●●

●

●

●
●

●

●

●●
●●●●●

●

●

●●●

●

●

●

●

●●

●

● ●
● ●

●

●
●

●
●

●

● ●

●

●
●

●
●

●● ●
●●

● ●

●

●

●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

●
●●● ●●

●

●
●
●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
● ●

●

●

●

●●

●
●●

●
●●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
● ●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8

x

y

●

●
●

●
●

●

●

●●●
●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●●●

●

●

●●
●

●

●
●●
●

●
●●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
● ●

●

●

●
●

● ●
● ●●

●

●

●●●●
●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●● ●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●
●

●●
●

●

●

● ●●
● ●●

●
●

●
●

● ●

●

●●
●

●●
●●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●●
●

●●

●
●

●

●

● ●
●

●

●

●

●●●

●

●

●

●●

●
●

●●●
●

●

●●

●
●

●

●
●

●

● ●●
●

●

●
●

●

●

●●

●
●

●

●●

●

●
●●●

●
●●● ●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●●

●

●
●● ●

●●
●●●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●●

●● ●
●●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●
●●

●

● ● ●

●

●
● ●

●

●

●

●

●
●

● ●●●● ●●

●

●

●

●
●

●

●●●

●

●
●●●

● ●

●

●
●

●

●

●

●

●

●
●

●●

● ●●
●●●

●

●
●

●

●●
●●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

● ●●

●●
●

● ●
●

●

●

●
●

●●
● ●

●

●

●
●

●

●
●

●

●

●●
●● ●

●

●
●

●

●
●

●
●

●

● ●●

●
●

●

●
●

●

●

●

●

● ●●●

●

●

●
●

●
●

●●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●● ●

●

● ●● ●
●●

●● ●
●●

●
● ●

●

●

●●

●

●
●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●
●

●
●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●●●
●

●
●

● ●●●

●

●
●●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●

● ●

●●

●

● ●●
●
●

●
●

●●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●
●

●
●

●

●●
●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

● ●
●

●

●
●●

●

●
●

●●

●
●

●

● ●

●

●

●
●

●●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

● ●
●●

●

●

●

●
●

●●

●

●
●

●
●

●●

●

●

●

●

●●
●

●

●
●

●

●

● ●
●
●

●

●

●● ●

●

●●

●

●

●
●

●
●●●●●

● ●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●
●● ●●●

●●
●

●
●

●

●●●
●

●

●

●

●

●

●

●

● ●●●

●
●●

●

●

●

●

●●
●

●

●

●

●

●●

● ●

●
●

●

●
●

●

●●
●

●

●●
●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●●
● ●

●
●

●
●

●

●

● ●
●●● ●●●●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●● ●●●

●

●

●

●

●
●

●

●
●

0 2 4 6 8 10

0
2

4
6

8

x

y

●
●

●●

●
●

●
●

●●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●

●●

●
●

●●●●●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●●
●●

●●●

●

●
●●

●
●●
●

●●●
●

●
●●

●

●●
●●

●●

●

●
●

●

●
●

●
●

●
●●●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●●●
●●

●●

●●

●

●●

●●

●

●

●●
●

●
●

●

●●
●●

●

●

●

●●
●

●

●
●●

●

●●

●●
●

●
●

●

●
●

●●

●

●●●

●
●

●●
●●

●

●
●

●
●●●
●

●

●●●

●

●

●

●
●

●

●●●
●

●

●

●●

●
●●

●
●

●

●

●●●●●
●

●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●

●●

●

●●●
●●

●●●●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●●●
●

●

●

●

●
●

●
●●

●

●

●●●●●●

●

●

●

●
●●

●

●●

●

●
●●●

●

●

●

●
●●●

●
●

●

●
●●●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●●●●●

●

●

●

●

●

●
●●●

●

●
●●●●

●

●●
●●

●

●●

●

●

●

●●●●

●

●

●●●
●

●

●●

●

●

●
●

●

●

●●

●

●●
●

●
●●

●

●●
●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●●●●

●

●

●

●●
●

●
●

●●
●●●●

●

●●
●●●

●

●●
●

●

●

●●

●

●●
●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●●
●●

●

●

●●

●

●
●

●

●
●

●
●●

●●

●

●●
●

●●
●

●

●

●

●

●●

●●

●

●●
●●

●
●

●●
●

●●

●●
●

●
●

●●
●

●

●
●

●●

●

●

●

●●●
●

●

●
●

●

●

●
●

●

●
●●

●●

●

●

●

●
●●

●●●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●
●

●●●●●

●

●

●

●

●

●●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●●

●
●●●●

●

●

●

●
●

●●
●

●
●●●

●
●●●●●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●
●●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●●
●●

●

●

●●●●
●●

●

●

●

●
●

●●
●

●

●●●

●
●

●
●●●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●●

●
●

●

●●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●●

●●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●●●●

●●

●

●
●

●

●●

●●

●

●

●

●

●
●

●●
●

●

●
●●●

●
●

●

●
●

●

●

●

●

●●●●
●●●●

●

●
●

●●●
●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●

●●

●●●

●

●●
●●

●

●●

0 2 4 6 8 10

0
2

4
6

8

x

y

Figure 4.4: Samples from 6 di�erent meta distributions constructed from Gaussian
copulas with exponential(1) margins and with (−1,−0.5, 0, 0.2, 0.8, 1) as corresponding

values for ρ
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4.5 Rank Correlation

Rank correlation coe�cients are measures of dependence that are based on the rank of the
observations, where the rank for a value Yi from a sample Y1, . . . , Yn is

rank(Yi) =
n∑
j=1

I(Yj ≤ Yi). (4.9)

This might make rank correlation measures a preferred choice over Pearson's correlation
coe�cient when �tting copulas to data. While Pearson's correlation coe�cient is in�u-
enced by the margins of the copulas, coe�cients based on rank correlation only depend on
the copula itself. This is because rank correlation under a transformation by increasing
monotonic functions preserve the samples rank correlation, and as a consequence of this
the correlation coe�cients based on rank correlation only depend on the copula. This lack
of in�uence by the marginals makes rank correlation useful when �tting copulas to data.

An important concept when it comes to rank correlation is concordance and disconcor-
dance. This is a property of the relationship between two points, and we will use the
de�nition given in Roger (2006).

De�nition 4.5.1. Concordance and disconcordance
- two points in R2, (X, Y ) and (X∗, Y ∗) are said to be concordant if (X−X∗)(Y −Y ∗) > 0
or they are said to be disconcordant if (X −X∗)(Y − Y ∗) < 0

As examples of rank correlation coe�cients we will introduce the measures Kendall's tau
and Spearman's rho. As with Pearson's correlation coe�cient, both the Kendall's tau cor-
relation coe�cient and the Spearman's rho correlation coe�cient are on the interval [-1,1].

We will in the following introduction of Kendall's tau and Spearman's rho use the de�nition
as given in Ruppert (2010).
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4.5.1 Kendall's tau

Let (X, Y ) be a bivariate random vector and let (X∗, Y ∗) be an independent copy. Then
Kendall's tau for (X, Y ) are as follows

De�nition 4.5.2.

ρτ (X, Y ) = P ((X −X∗)(Y − Y ∗) > 0)− P ((X −X∗)(Y − Y ∗) < 0)

= E(sign((X −X∗)(Y − Y ∗)))

Which is actually the probability of concordance - the probability of discordance for (X, Y )
and (X∗, Y ∗).

For an bivariate sample (Yi,1, Yi,2), where i = 1, . . . , n, the sample Kendall's tau is

ρ̂τ (Y1,Y2) =
(
n

2
)−1

n−1∑
i=1

n∑
j=i

sign((Yi,1 − Yj,1)(Yi,2 − Yj,2)).

4.5.2 Spearman's rho

De�nition 4.5.3. Spearman's rho
For the two random variables X and Y with the cumulative distribution functions FX and
FY Spearman's rho is given by

ρS(X, Y ) =
Cov(FX(X), FY (Y ))√
V ar(FX(X))V ar(FY (Y ))

(4.10)

This means that Spearman's rho is actually Pearson's correlation on the copula in the
continuous case, and in the case of discrete margins Spearman's rho is Pearson's correlation
on the transformed random variables.

Or for an observed bivariate sample (Yi,1, Yi,2), where i = 1, . . . , n, Spearman's correlation
coe�cient can be computed as follows.

ρ̂s(Y1,Y2) =
12

n(n2 − 1)

n∑
i=1

{rank(Yi,1)− n+ 1

2
}{rank(Yi,2)− n+ 1

2
} (4.11)

This is Pearson's sample correlation for a sample on the ranks of Yi,1 and Yi,2.



4.5. RANK CORRELATION 39

4.5.3 Examples on Spearman's rho and Kendall's tau

To get a picture of how Pearson's, Spearman's and Kendall's correlation coe�cients com-
pares to one another, the following is a table of three di�erent examples based on the
Gaussian distribution and the correlation calculated with the three coe�cients. The actu-
ally calculation of the correlation was done in R by the corr function, where you can choose
between Pearson's, Kendall's and Spearman's coe�cient. The following plot is given as the
�rst plot correspond to Test1, second plot to Test2 and third plot to Test3, where Test1,
Test2 and Test3 are de�ned as below.

• Test1 = {'Sample of 1000 values from bivariate Gaussian with correlation 0.8'}

• Test2 = {X ='Sample of 1000 values from standard Gaussian' and Y = exp(X)}

• Test3 = {X ='Sample of 1000 values from standard Gaussian' and Y = X2}

We can see in Figure 4.5 that all of the above captures the correlation quite well, when it
is sampled from a bivariate Gaussian with correlation 0.8, although Kendall is a bit lower
than the other two. In the case of an exponential transformation of the sample both Spear-
man and Kendall estimates the correlation to be one, while Pearson's which is restricted to
linear correlation only give correlation approximately equal to 0.77. And in the last exam-
ple where Y is the square of the Gaussian sample all of the correlation coe�cients are close
to zero. This coincides with the theoretical values which means that correlation equal to
zero does not imply independence for either of the three introduced correlation coe�cients.
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Examples on di�erent correlation coe�cients
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Figure 4.5: Pearson Kendall and Spearman on random samples
The upper plot corresponds to Test1, the middle to Test2 and the lower to Test3.



Chapter 5

The Capital Asset Pricing Model

Portfolio theory and the Capital Asset Pricing Model(CAPM) has been credited with
making the �eld of �nance into a �eld of science. The following quote from Merton (1990)
describes the �eld before the introduction of the mentioned theory:
"As recently as a generation ago �nance theory was still little more than a collection of
anecdotes, rules of thumb, and manipulations of accounting data. The most sophisticated
tool of analysis was discounted value and the central intellectual controversy centered on
whether to use present value or internal rate of return to rank corporate investments."

One would believe that Merton knew what he was talking about for in 1997 he was,
together with Scholes awarded the Nobel Memorial Prize in Economic Sciences, for their
work on the famous Black-Scholes formula, Jarrow (1999).

The Capital Asset Pricing Model is a model used in order to establish a connection be-
tween the risk of an asset and its expected return. If we are considering investing in a
speci�c stock with a given risk, CAPM can be used to decide if the expected return is
worth the risk. Before going into the mathematical parts of this model, we will introduce
some necessary de�nitions and clarify some crucial assumptions that are needed for the
CAPM to be valid.
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5.1 Essential De�nitions for the Model

We will give a short introduction to some of the necessary de�nitions used in the Capital
Asset Price Model, based on the de�nition given in Lee (2006), which also o�ers additional
properties of the following de�nitions.

Market Portfolio

The market portfolio is comprised of all risky assets weighted in proportion to their market
value. The market portfolio has no unsystematic risk. We will later be doing analysis on
the Norwegian Stock Market and will then be using the OSEBX index as an approximation
for the market portfolio.

E�cient Portfolio

A portfolio is e�cient if no other portfolio has the same expected return at a lower variance
of returns.

Riskless Rate

The riskless or risk-free rate is de�ned as the interest rate that can be earned with certainty.
There is no risk associated with the riskless rate(at least in theory).

5.2 Assumption for the CAPM

The validity of the CAPM is dependent on some assumptions stated below, these are more
or less equal to the version found in Ruppert (2010)

1. The market prices are based on the fact that supply equals demand.

2. Everyone has the same forecast of expected returns and risks.

3. All investors have a portfolio consisting of combinations of risky assets as well as the
risk-free asset.

4. The market rewards people for assuming unavoidable risk, but there is no reward for
needless risk.

It is obvious that in a real life situations all of these assumptions will not hold, however
with a little caution the following theory might be helpful in asset speculation and risk
measuring. We will start the introduction of CAPM by derivation of the Capital Market
Line and The Security Market Line.
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The following derivations of these are based on the derivation given in Ruppert (2010),
with some minor changes based on Berk & DeMarzo (2007).
The Capital Market Line let us estimate the expected value of an e�cient portfolio based
on the risk of the e�cient portfolio, the risk-free rate and the expectation and variance of
the market portfolio. This particular line will not be of major importance later on and will
with the exception of the example given below only be used as an part of the derivation of
the Security Market Line, which is our main focus from the theory of CAPM.

The Security Market Line is used to give a direct link between the expected return and
the risk of a risky asset. We will limit the examples on real life data in this section to
some discussion about its use in Silvapulle & Granger (2001), however we will return to
the CAPM when doing empirical analysis on the Norwegian Stock Market.

5.3 The Capital Market Line

Consider an e�cient portfolio that portion a part w ∈ [0, 1], of its assets to the market
portfolio and (1-w) to the risk-free asset. We write the return of this portfolio as

R = wRM + (1− w)µf = µf + w(Rm − µf ).

Where R is the return of the e�cient portfolio, µf is the risk-free rate and RM is the return
on the market portfolio. We let

µR = E[R], σR =
√
V ar[R],

µM = E[RM ] and σM =
√
V ar[RM ].

Then the expectation of this portfolio can be written

µR = µf + w(µM − µf ).

while the standard deviation is σR = wσM and we have that w = σR
σM
.

The value for w inserted in the formula for the expectation yields

µR = µf +
σR
σM

(µM − µf ). (5.1)

And this formula for the expectation of the return of the e�cient portfolio is known as
The Capital Market Line. It is a link in the µR - σR plane, and the slope of the line is

µM − µf
σM

, (5.2)
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which is the ratio of the risk premium to the standard deviation of the market portfolio.

We can easily see that when σR = 0, i.e. the standard deviation or volatility of the e�-
cient portfolio is zero, the expectation of the e�cient portfolio equals the expectation of
the risk-free asset. This makes sense, if we refuse to take any risk our only choice is the
risk-free asset.

When σR = σM the expectation of the e�cient portfolio equals the expectation of the
market portfolio. This means that the Capital Market Line is the line from the risk-free
rate trough the market portfolio. And it gives us the value of the highest possible expected
return for any level of volatility.

Example 5.3.1. Investing by the CML
Say we have invested an amount in a stock where we expect a return of 10 with a volatility
of 15%. By saving the same amount in a saving account our rate is 5%, but we suppose
this is risk-free i.e. the volatility is 0. We may also put our money in the market portfolio,
which has expected return of 12 and volatility 10%.

We want to duplicate the expected return of the stock by rather investing our money
in the savings account and the market portfolio, by Equation 5.1 we have

10% = 5% + (12%− 5%)
σR
10

σR = 50/7 ≈ 7.14

This means that, if we invest 0.714 of our amount in the market portfolio and the remaining
0.286 we put in the savings account, the expected return matches the expected return for
the stock, but the volatility of 7.14%, is lower than the volatility for the stock, hence, this
is a better investment than the stock.
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5.4 Security Market Line

Consider a portfolio P consisting of two assets, the market portfolio and the i-th risky
asset. The return of this portfolio is

RP = wiRi + (1− wi)RM .

Where wi is a weight ∈ [0, 1], Ri is the i-th risky asset and RM is the market portfolio.
We let

µi = E[Ri], σi = SD[Ri],

µM = E[RM ] and σM = SD[RM ].

The expectation of this portfolio can be written

µP = wiµi + (1− wi)µM .

While the variance for the portfolio is

σ2
P = w2

i σ
2
i + (1− wi)2σ2

M + 2wi(1− wi)σi,M .

Where σi,M is the covariance between two assets.

The slope of the portfolio is given

δµp
δσP

=
δµP
δwi

δwi
δσP

=
(µi − µM)σP

wiσ2
i − σ2

M + wiσ2
M + σi,M − 2wiσi,M

.

Which reduces to (µi−µM )σP
σi,M−σ2

M
when wi = 0.

Setting wi = 0 makes our portfolio equal to the market portfolio and should then be equal
to the slope of the CML (5.2).

(µi − µM)σP
σi,M − σ2

M

=
µM − µf
σM

We rearrange and get the following expression for the SML

µi − µf =
σi,M
σ2
M

(µM − µf ) = βi(µM − µf ). (5.3)

Under the CAPM all the individual securities plotted according to their expected return
and the beta should fall along the SML. This means that by estimating the individual β's,
for the stocks in a given portfolio, we can calculate the expected return of the portfolio
under the given assumptions. We will return with an example of this and some discussion
on the SML in our empirical analysis later on.
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5.5 Conditional Correlation and Betas

In Silvapulle & Granger (2001) the authors investigates the possibility of portfolio diversi�-
cation, i.e. the possible advantage of spreading the risk in several stocks rather than a few.
Their approach is based upon conditional correlation, which is an approach of analyzing
asymmetry. The conditional correlation between two random variables X and Y is

ρA = corr[X, Y |A] (5.4)

where A = {[a ≤ X ≤ b and c ≤ Y ≤ d]}.
In other words, the conditional correlation is the correlation between two random vari-
ables under a truncation. A truncated distribution is a distribution where the values are
required to be in an interval which does not necessarily cover the whole support of the
distribution. As with the Gaussian distribution where its values are de�ned on the whole
R, a truncated Gaussian is de�ned in a sub region of R. A more thorough introduction to
truncated distributions and derivation of the moments used in this section for the bivariate
Gaussian case can be found in Appendix A.

Silvapulle & Granger (2001) use a dataset consisting of 30 Dow Jones industrial stocks
in the period of 1991 to 1999. They divide the values of the stock in three separate cat-
egories; the lower quantile, the middle values and the upper quantile. They �nd signs of
the average conditional correlation of the 30 stocks to be higher in the lower quantile than
in the middle group, but they �nd no signs of di�erence between the upper quantile and
the middle group.

Another important aspect of Silvapulle & Granger (2001) is the conditional values of the
betas. The authors use the approach of conditional correlation, together with the beta in
Equation 5.3 to create a conditional beta, which is given

βA =
Cov[Ri, RM |A]

V ar[RM |A]
. (5.5)

The authors then use the conditional beta as a measure of the risk under di�erent condi-
tions for the market.

Unfortunately, there might be some fallacy in the conclusion done in Silvapulle & Granger
(2001), due to the approach of conditional correlation. In Boyer et al. (1997) it is shown
that the approach of splitting the values into di�erent groups may actually give the impres-
sion of reduction in correlation, even when this is not the case. This is done by analyzing
the bivariate Gaussian distribution, dependent on one of its marginal distribution. The
bivariate Gaussian distribution has a constant correlation for the whole sample, however
by conditioning the bivariate Gaussian on the region of one of its marginals they show that
the value for the conditional correlation between the values are in�uenced by the trunca-
tion of the region.
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We will therefore use some of the same approach as in Boyer et al. (1997), and replicate the
calculations in Silvapulle & Granger (2001) by assuming a Gaussian return distribution,
and see how this matches their results. Since the method used in Boyer et al. (1997) is
restricted to truncation on one of the marginal distribution we will be using a truncated
bivariate Gaussian distribution. We will only cover the case of a conditional beta in this
section, an evaluation of the conditional correlation, variance and expectation is covered
in Appendix A.

Figure 5.1 gives two plots of the movement for the conditional beta calculated on some
bivariate Gaussian distributions. The upper plot has an upper truncation on both of the
margins, which is moved further and further into the tails, i.e. the size of A is increased.
Meanwhile the lower plot has a lower truncation on both its margins, which starts at 0.9
for both of its margins and is increasing, leading to a decrease in the size of A. Notice that
the values for the beta in the lower plot would be similar for a upper truncation in the
lower tail because of the symmetry of the Gaussian distribution. For both the upper and
the lower plot the Gaussian distributions has zero valued expectations and the following
matrixes as covariance matrixes in the given order respectively.

Σ1 =

(
1 0.5

0.5 1

)
, Σ2 =

(
1 0.5

0.5 3

)
, Σ3 =

(
2 0.5

0.5 1

)
and Σ4 =

(
2 0.5

0.5 3

)
.

Figure 5.1 does not correspond to what is seen in Silvapulle & Granger (2001), where they
reported an average beta of 0.836 for the lower 0.05 quantile, 0.752 in the middle and 0.512
for the upper 0.95 quantile of the values. By looking at the upper plots in Figure 5.1 when
Pr(A) is approaching 1, we see that the value for beta is higher than in the left part of
the lower plots. This does not match the results in Silvapulle & Granger (2001), where
they found higher values for the beta in the lower quantile than in the middle. Also the
authors in Silvapulle & Granger (2001) points out that the standard error of the betas is
large, 0.416 for the lower 0.05, 0.148 in the middle and 0.252 for the upper 0.95 quantile
of the values, which means that they should be evaluated with caution.

That our values for the beta in Figure 5.1 does not seem to change equal to the ones
in Silvapulle & Granger (2001), is not really that surprising. As we have seen and will see
more of later, the Gaussian distribution is not necessarily a good �t for �nancial returns.
But as seen in Figure 5.1, the betas calculated with conditional correlation is not constant,
as they should be because of the constant correlation and variance in the Gaussian distribu-
tion. This means that the �ndings in Silvapulle & Granger (2001) might also be in�uenced
by this bias. Because of this, we will investigate an additional measure of correlation in
the following chapter.
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Change for the Conditional beta

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

Pr(A)

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

Pr(A)

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

Pr(A)

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

Pr(A)

be
ta

0.030 0.020 0.010 0.000

0.
11

0.
13

0.
15

Pr(A)

be
ta

0.030 0.020 0.010 0.000

0.
06

0
0.

07
5

0.
09

0

Pr(A)

be
ta

0.030 0.020 0.010 0.000

0.
16

0.
20

Pr(A)

be
ta

0.030 0.020 0.010 0.000

0.
09

0.
11

0.
13

Pr(A)

be
ta

Figure 5.1: Change for the conditional beta with two di�erent truncations on 4 di�erent
bivariate Gaussian distribution



Chapter 6

Local Gaussian Correlation

Local Gaussian Correlation is really the main subject of this thesis. It is a new depen-
dence measure with an approach that di�ers drastically from the other ways of estimating
correlation that we have explored earlier. It does produce a value on the interval [-1,1]
re�ecting the dependence, but instead of letting this value represent the correlation as a
constant it measure the correlation locally. This enables us to describe how changes in one
variable a�ect the change in the other variable.

As mentioned under the section of correlation, the Gaussian distribution has a close con-
nection with Pearson's correlation coe�cient. This means that linear dependence is a
natural part of a Gaussian distribution in multiple dimensions. As seen when analyzing
data for the Statoil stock assuming a distribution for the returns often simplify calcula-
tions and allow for more sophisticated analyses. One example would be to assume the
distribution for the returns is given by a Gaussian distribution. By estimating its variance
and expectation by the observed sample we were able to calculate the Value at Risk and
Expected Shortfall. Unfortunately the assumption that the return distribution is given by
a Gaussian distribution is poor at best, and as we have seen, risk estimation based on this
approach might underestimate the risk.

Assuming that the observed sample is from a Gaussian distribution should be avoided,
or at least be made with caution. Nevertheless, there are ways for us to get to use some of
the properties of the Gaussian distribution even without having to assume too much about
the actual return distribution. And this is where Local Gaussian Correlation comes into
play.

Consider a point (x, y) given on the plane R2. We are interested in a bivariate Gaussian
distribution with density function denoted ψ so that it approximates the given density
function f in a neighborhood A, around (x, y). Or in other words the probability for an
observation in A should be approximately the same for our Gaussian approximation and
the observed distribution.

49
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By doing this over the region where f is de�ned, or at least where we have observed
values from the distribution of f , we end up with a family of Gaussian distributions, each
approximating f in its own neighborhood. We denote the Gaussian approximation in the
neighborhood of (x, y) as ψx,y. The Gaussian approximation will in its neighborhood be a
good approximation for f , and we can use the correlation of ψx,y as a measure of the local
dependence in this neighborhood.

6.1 Derivation of the Method

Local Gaussian Correlation as described above may give a slight idea of how it is calculated.
However, we will also walk trough the derivation in a more technical sense. This will hope-
fully give an understanding of how the Local Gaussian Correlation actually is estimated and
its properties. For a deeper explanation of the theory, Tjøstheim & Hufthammer (2012)
which is the article that �rst introduced this correlation measures might be of interest.
Another article of interest may be Hjort & Jones (1996) where related theory is used for
density estimation.

As already mentioned in Equation 3.3 the probability density function for a bivariate
Gaussian distribution is given by

ψ(x, y|θ) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[(x− µx
σx

)2−2ρ
(x− µx

σx

)(y − µy
σy

)
+
(y − µy

σy

)2
]}

where θ is [µx, µy, σx, σy, ρ]

We are interested in the bivariate Gaussian that approximate f in A. Because of this, we
let the distribution ψx,y, which gives the probability for u and v in the neighborhood of
(x, y) depend on x and y.

ψx,y(u, v|θ(x, y)) =
1

2πσ1(x, y)σ2(x, y)
√

1− ρ(x, y)2
exp

{
− 1

2(1− ρ(x, y)2)

×
[(u− µ1(x, y)

σ1(x, y)

)2 − 2ρ(x, y)
(u− µ1(x, y)

σ1(x, y)

)(v − µ2(x, y)

σ2(x, y)

)
+
(v − µ2(x, y)

σ2(x, y)

)2
]}
(6.1)

Where θ(x, y) = [µ1(x, y), µ2(x, y), σ1(x, y), σ2(x, y), ρ(x, y)]

To estimate the values for θ(x, y) that makes ψx,y approximate f , we turn to a combination
of local likelihood and kernel estimation.



6.1. DERIVATION OF THE METHOD 51

6.1.1 Local Likelihood

The ordinary likelihood function for a bivariate sample (X1,1, X1,2), (X2,1, X2,2), . . . , (XN,1, XN,2)
is given as

L(θ) = ΠN
i=1f(Xi,1, Xi,2|θ)

The approach of maximum likelihood is �nding the values of θ that maximize the given
likelihood. This is an ordinary way of estimating parameters in statistics. The maximation
is usually done with setting the derivative on the logarithm of the likelihood function with
the respect to the wanted parameter equal to zero and solving for our parameter.

To estimate the parameters locally we will use something closely related to this, known as
local likelihood. This version of local log likelihood was described in Hjort & Jones (1996),
where it was used for semi-parametric density estimation.

De�nition 6.1.1. Local log likelihood

l = log(L) =
1

N

N∑
i=1

Kb1(Xi − x)Kb2(Yi − y)log(ψx,y(Xi, Yi|θ(x, y)))

−
∫
Kb1(u− x)Kb2(v − y)ψx,y(u, v|θ(x, y))dudv.

where Kb1(u− x) = b−1
1 K(b−1

1 (u− x)) and similarly for Kb2

Kb1 and Kb2 are used in what is known as kernel estimation1. By letting N → ∞, i.e.
when the number of observations goes to in�nity, the �rst part of the local likelihood will
converge to the integral form almost surely2.

1

N

N∑
i=1

Kb1(Xi − x)Kb2(Yi − y)log(ψx,y(Xi, Yi|θ(x, y)))

→
∫
Kb1(u− x)Kb2(v − y)log(ψx,y(u, v|θ(x, y)))f(u, v)dudv

(6.2)

This follows from the law of large numbers or the ergodic theorem.

1Kernel estimation is an estimation of a density function given an observed sample. An introduction
to kernel estimation can be found in Rizzo (2007)

2Casella & Berger (2002) o�ers an introduction to di�erent types of convergence in statistics
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By letting the number of observation go to in�nity the local likelihood de�ned above
converge to the integral form almost surely, so that

l→
∫
Kb1(u− x)Kb2(v − y)[log(ψx,y(u, v|θ(x, y)))f(u, v)− ψx,y(u, v|θ(x, y))]dudv

It then follows that the derivative of the local likelihood δl
δθj

will almost surely converge to∫
Kb1(u− x)Kb2(v − y)

δ log(ψx,y(u, v|θ(x, y)))

δθj
[f(u, v)− ψx,y(u, v|θ(x, y))]dudv

Following the normal approach of maximizing a likelihood, we restrict δl
δθj

to be zero, and

by letting b1 & b2 → 0 we have that

δ log(ψx,y(x, y|θ(x, y)))

δθj
[f(x, y)− ψx,y(x, y|θ(x, y))] +O(b2

1 + b2
2) = 0

Summarized we have that when the number of observations goes to in�nity and the band-
width is small, ψx,y equals the density f in that neighborhood.
There are some restrictions to bandwidth in the kernel estimation that also may apply.
We will limit our discussion about bandwidth to an example of Local Gaussian Correlation
estimated under di�erent bandwidths. For an more thorough discussion on the importance
of bandwidth see Tjøstheim & Hufthammer (2012).

In order to estimate θ(x, y), we take the derivative on the local likelihood and solve it
numerically for

[µ1(x, y), µ2(x, y), σ1(x, y), σ2(x, y), ρ(x, y)]

where the derivative of the local likelihood with respect to θj is.

1

N

N∑
i=1

Kb1(Xi − x)Kb2(Yi − y)
δlog(ψx,y(Xi, Yi|θ(x, y)))

δθj

−
∫
Kb1(u− x)Kb2(v − y)

δlog(ψx,y,θ(u, v|θ(x, y)))

δθj
ψx,y(u, v|θ(x, y))dudv (6.3)
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6.2 Distribution of the Parameters

In Tjøstheim & Hufthammer (2012) they show that the estimator θ̂b(x, y) for θ(x, y)
is asymptotically given by a Gaussian distribution.

(Nb1b2)1/2[θ̂N,b(x, y)− θb(x, y)]
d→ N(0, J−1

b Mb(J
−1
b )T ) (6.4)

where Jb =

∫
Kb1(u− x)Kb2(v − y)w(u, v, θb(x, y))

×wT (u, v, θb(x, y))ψ(u, v|θb(x, y))dudv

−
∫
Kb1(u− x)Kb2(v − y)∇w(u, v, θb(x, y))

×[f(u, v)− ψ(u, v|θb(x, y))]dudv

Mb = b1b2

∫
K2
b1

(u− x)K2
b2

(v − y)w(u, v, θb(x, y))

×wT (u, v, θb(x, y))f(u, v)dudv

−b1b2

∫
K2
b1

(u− x)K2
b2

(v − y)w(u, v, θb(x, y))f(u, v)dudv

×
∫
K2
b1

(u− x)K2
b2

(v − y)wT (u, v, θb(x, y))f(u, v)dudv

and w(u, v, θb(x, y)) =
δlog(ψx,u(u, v|θb(x, y))

δθj
.

To actually calculate the variance of the estimator θ̂ is unfortunately a little bit harder
than it may seem. The return distribution f is still unknown, so we cannot compute Jb or
Mb in a simple manner. One way of computing the integral is by using numerical integra-
tion based on the observed sample from the distribution f to compute the unknown part
of the integral. Another possible method is by using bootstrap3, to generate the variance
and expection for θ̂.

Both these methods are quite dependent of the original observed sample to be a good
representation for the distribution f . However, the method based on bootstrap also re-
quires the assumption that the sample is iid, which may not be true. One way to avoid
this problem might be to use a GARCH-�ltering as described under the introduction of
GARCH.

3 Bootstrap as a method for nonparametric distribution estimation was introduced in Efron (1979). If
we have an observed sample from a distribution f we can by resampling obtain a random sample from the
distribution fn(x), which is an estimator of f . For an introduction of bootstrap, see Rizzo (2007)



54 CHAPTER 6. LOCAL GAUSSIAN CORRELATION

The method based on bootstrap is the method that has been used in the calculations
in this thesis. This has been done by the code written by Karl Ove Hufthammer 'kode-
loclkb-gr'.

Throughout the rest of this thesis the calculation of the Local Gaussian Correlation is
done with the bandwidths set equal to the empirical standard deviation of the observa-
tions if nothing else is stated. Similarly, when the Local Gaussian Correlation is calculated
on non-simulated data the data has been �ltered with a GARCH-�lter under the assump-
tion of a t distribution. The plots along the x = y-axis is calculated on 50 points uniformly
spaced with a con�dence interval of 90% and the bootstrap is calculated by 500 replicates
if nothing else is stated.

6.3 Examples and Uses of Local Correlation

We will later in this thesis use Local Gaussian Correlation on some �nancial data sets
to investigate some of the properties Pearson's correlation and other global dependence
measures may have problem detecting. Like for example how the correlation between
two stocks may be a�ected by the value of the stocks. The following section will be
dedicated to calculation of the local correlation on some simulated data to see the in�uence
of bandwidth, and some visualization of the dependence for di�erent copulas.

6.3.1 Constant Correlation

As mentioned the relationship between the margins in a multivariate Gaussian distribution
is constant. This means that for a multivariate Gaussian distribution the theoretical local
correlation will be constant and equal to the theoretical Pearson's correlation coe�cient.
We will in this example estimate the Local Gaussian Correlation on a random sample from
a bivariate Gaussian with three di�erent bandwidths; 0.5, 1 and 2. The sample consist of
1000 observations from a Gaussian with the following parameters

Σ =

(
1 0.8

0.8 1

)
and µ =

(
0 0 .

)
Figure 6.1 contains a scatterplot of the sample and the Local Gaussian Correlation with the
bandwidths equal 0.5, Figure 6.2 is the Local Gaussian Correlation with the bandwidths
equal to 1 and 2.

What we can see in these plots, is that calculations with a small bandwidth is heavier
in�uenced by each observation, making it possible to observe properties, we might not see
with larger bandwidths. However, this also makes it more exposed to random �uctuations.
On the other hand, in the case of too large bandwidth we may not observe important local
properties in the sample. When the bandwidth is tending to in�nity, the correlation of
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each area will be equal to Pearson's correlation coe�cient for the whole sample.

Pearson Kendall Spearman
Gaussian sample 0.77 0.56 0.76
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Local Gaussian Correlation on a random Gaussian sample
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Figure 6.1: Scatterplot of the sample and calculation with bandwidth=0.5
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Figure 6.2: Upper plot has bandwidth=1 and lower plot has bandwidth=2
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6.3.2 Local Gaussian Correlation Visualization of Copulas

As mentioned, we will later be using Local Gaussian Correlation to describe actual �nan-
cial data. And in this setting, it is natural to compare the observed dependence structures
with known copulas. We will therefore be estimating the Local Gaussian Correlation along
the diagonal of x = y on random samples of the already introduced copulas: Gaussian, t,
Gumbel, Clayton and Frank. This approach has been followed in Berentsen et al. (2012),
where tails and other important features of the copulas are calculated analytical.

Notice that in the following visualization of the copulas we have restricted ourselves to
the interval of -2 to 2, even though the copula has important features outside this limit.
The reason for this is that these plots are made by sampling with a Gaussian as the marginal
distributions, which gives that approximately 95% of the observations will be between this
limit. Estimating too far out might give in�uenced by rare observations, which might not
necessarily be a good description of the copula.

Also, note that there is slight deviation of the estimates of the plots from the theoreti-
cal value of the Local Gaussian Correlation due to the randomness of sampling, this is
easily seen on the Gaussian copula where the theoretical value is constant equal to the
parameter of ρ, but our plots shows some minor variation.

Each of the samples consists of 10000 observations, where the parameters in the distri-
bution are given in the plot. And the bandwidth in the estimation is set equal to the
standard deviation of the random variables, which means that the bandwidth is approxi-
mately equal to 1 due to its standard Gaussian marginal distributions.

The equation for the Clayton, Gumbel and Frank copula can be found in Table 4.3.1.
As seen in Figure 6.3, Figure 6.4 and Figure 6.5 an increase in the value of θ for these
copulas increase the correlation between the marginals.

For the Gaussian copula de�ned in Equation 4.6, the ρ parameter correspond to the global
correlation, and we see in Figure 6.6, that the estimated values for the Local Gaussian
Correlation are approximately constant equal to the global correlation, in fact Berentsen
et al. (2012) shows that the analytical value for the Local Gaussian Correlation is constant
for a Gaussian copula with arbitrary marginals.

The t copula is de�ned in Equation 4.7 and the correlation is covered in Figure 6.7 and
Figure 6.8. In Figure 6.7 we see the in�uence of the correlation parameter ρ, and we see
that there is an increase in correlation as ρ increase. Note that there might be some de-
ception in the meaning of the parameter ρ in Figure 6.7, as ρ does not correspond to the
global correlation for a t copula where υ <∞. However, as seen in Figure 6.8, a t copula
with parameter ρ approximates a Gaussian copula with global correlation ρ as the degrees
of freedom increase.
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Clayton Copula
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Figure 6.3: Local estimated Gaussian correlation, Kendall and Spearman on samples
from Clayton copula with parameter θ and Gaussian marginal distributions
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Frank Copula
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Figure 6.4: Local estimated Gaussian correlation, Kendall and Spearman on samples
from Frank copula with parameter θ and Gaussian marginal distributions
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Gumbel Copula
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Figure 6.5: Local estimated Gaussian correlation, Kendall and Spearman on samples
from Gumbel copula with parameter θ and Gaussian marginal distributions
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Gaussian Copula
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Figure 6.6: Local estimated Gaussian correlation, Kendall and Spearman on samples
from Gaussian copula with global correlation ρ and Gaussian marginal distributions
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t Copula(υ = 2)
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Figure 6.7: Local estimated Gaussian correlation, Kendall and Spearman on samples
from t copula with correlation parameter ρ and Gaussian marginal distributions
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t Copula(ρ = 0.5)
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Figure 6.8: Local estimated Gaussian correlation, Kendall and Spearman on samples
from t copula with υ degrees of freedom and Gaussian marginal distributions



Chapter 7

Analysis of Dependence and Risk in the

Norwegian Stock Market

Now that we have covered the theory for this thesis, we can start with the analysis of
the Norwegian Stock Market. We will start with an introduction of the market and some
analysis that has previously been done, before we calculate the Local Gaussian Correlation
between the main index of the Oslo Stock Exchange and some macroeconomic factors to get
an idea of what drives the Norwegian market. Finally, we will use the previously introduced
theory of CAPM, copulas, and risk measures together with the Local Gaussian Correlation
to describe dependence and risk in the Norwegian Stock Market. We assume that the
OSEBX index, which is the Oslo Stock Exchange's main index, is a good description for
the overall stock market. It is an investable index consisting of weighted values of chosen
stocks available on the Oslo Stock Exchange, where the stocks are selected semiannually.

7.1 Introduction to The Norwegian Stock Market

Oslo Stock Exchange is a small and volatile stock market. It is often assumed to be heavily
in�uenced by the oil prices, since many of the larger companies are directly associated with
the oil industry. This hypothesis has previously been tested in articles as Bjørnland (2009)
and Gjerde & Saettem (1999). These are studies on macroeconomic factors like oil price,
interest rate, unemployment and their relationship with the OSEBX stock exchange index.

The analysis in Bjørnland (2009) uses monthly data from 1993 to 2005 to analyses the
e�ects of oil price shocks on stock returns in Norway. She uses a vector autoregression to
describe the relation between oil prices and macroeconomic behavior. She �nds that oil
price shocks explain almost 20 percent of the variation for the OSEBX index in the time
horizon of half a year. Additionally she �nds that following a 10 percent increase in oil
prices, an immediately increase of 2 to 3 percent for the stock returns is observed.
Moreover, Gjerde & Saettem (1999) conclude with a strong dependence between the Nor-
wegian Stock Market and the oil price by using a similar model and monthly observations

65
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from 1974 to 1994.

In our investigation of factors that in�uence the Norwegian Stock Market, we will use
a di�erent approach than the one in Gjerde & Saettem (1999) and Bjørnland (2009). We
will calculate the Local Gaussian Correlation to describe the change in correlation between
the OSEBX index, the price of Brent Oil and the value of the USD in NOK as the market
changes.

7.1.1 Introduction of Data Concerning the Stock Market

Bjørnland (2009) results indicate a strong dependence between the Norwegian Stock Mar-
ket and the monetary policy, but in order of keeping this introduction of the stock market
fairly simple, we limit ourselves to the change in oil price and the change in the exchange
rate between NOK and USD.

The data for the exchange rates are found on the Central Bank of Norway's homepage,
while the values for the OSEBX index and the oil price is taken from the Norwegian Stock
Exchange's homepage.

The oil price is the price for Brent crude and is given in USD. The articles mentioned
above mainly focuses on monthly observations, while we use daily closing time data from
October 11, 2007 until October 11, 2012. The datasets are synchronized to give 1214 num-
bers of logarithmic di�erences and a short summary of the datasets are given in the table
below.

Mean Var Median Kurtosis Skewness
Oslo Børs Benchmark Index -0.01 4.39 0.12 3.81 -0.50

Brent Oil 0.03 6.01 0.02 2.17 -0.15
USD/NOK 0 0.95 -0.02 2.25 0.02
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7.1.2 Estimating the Local Gaussian Correlation Between Di�er-

ent Factors and the OSEBX Index

It is clear from the results found in Gjerde & Saettem (1999) and Bjørnland (2009) that
there is a strong relationship between the Norwegian Stock Market and oil price.
One might expect that the in�uence of the oil price shock estimated in Bjørnland (2009)
might be better described by longer time horizons e.g. monthly, rather than for daily ob-
servations due to the possible time di�erence in the opening hours of the Norwegian Stock
Exchange and other markets, and due to trends that is seen over several days. This might
make some of the results found in previously mentioned articles hard to replicate by our
approach, although some correlation is expected.

The following Figures has estimated local correlation in the plane for areas where the
observed sample suggest the probability for an observation is larger than 0.0001. Note
that in the scatterplot the observations has been GARCH-�ltered and we have restricted
the size of the axis to [-3,3].

By looking at the scatterplot in Figure 7.1 it is apparent that we should probably try
to keep our analysis in the range of [-2, 2] for both of the variables, as there are a very
limited numbers of values exceeding this limit. In the Local Gaussian Correlation plot we
�nd a positive local correlation along both the x = y and the x = −y-axis. And for both
the axis there is clearly higher correlation when the logarithmic di�erence for the oil price is
negative, than for positive values. For positive values for the oil price along the x = y-axis
the correlation stays at approximately 0.25 from origo throughout the tails, where there
seems to be a slight increase in correlation. While at the x = −y-axis the local correlation
quickly drops and seems to end at slight above 0 in the tail. This shows that as expected
there is a clear correlation between the Norwegian Stock Market and the oil price on daily
basis, although the correlation is noticeable weaker when the stock exchange has negative
and the oil price has positive values.

As mentioned the oil price in Figure 7.1 is given in USD. And since the exchange rates
is not constant this might in�uence the correlation between the stock market and the oil
price e.g. a fall in the stock market could possible lead to the price for USD in NOK
to increase. Figure 7.2 gives a scatterplot and a plot over the local correlation between
the OSEBX index and the price for a USD in NOK notated USD/NOK. The scatterplot
clearly shows a negative correlation between the factors and that we should probably avoid
making conclusions outside the range of [-2,2].
Along the x = −y-axis there is a high negative value for the correlation with a minimum
approximately around origo, with a value of -0.4.

Since it is clear that there is a strong correlation between both the exchange rate and the
price of oil(in USD). One might be interested in how much of the correlation between the
oil price and the market that can be explained by the exchange rate.
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Figure 7.3 is a scatterplot and the plot over the local correlation given in Figure 7.1. Here
the oil price has been transferred to NOK to match the currency of the Norwegian Stock
Market. The plot over the local correlation shows a clear decrease in the correlation along
both of the axis. And an observation of negative values for the Norwegian Stock Market
and positive values for the oil price now results in a negative correlation.

Figure 10.9, Figure 10.10 and Figure 10.11 in Appendix B gives the corresponding 90%
con�dence interval based on bootstrap replicates, for Figure 7.1 Figure 7.2 and Figure 7.3.
The con�dence interval seems to show the same trend as mentioned above. However, for
positive value for Brent oil in Figure 10.11 and in Figure 10.9 the con�dence interval has
some cases of opposite sign. This is seen for positive values for Brent Oil and negative
values for the OSEBX in Figure 10.9, and for positive values for the Brent Oil and both
negative and positive values for the OSEBX in Figure 10.11. This might suggest that there
might not be a clear trend for the market when the Brent Oil has positive returns and the
OSEBX has negative returns.

7.1.3 Interpretation of the Correlation

Figure 7.1 show that there is clear dependence between the oil price(USD) and the Nor-
wegian Stock Market for positive values for the stock market, while an increase in oil price
seems to keep the correlation constant or decrease it.

This may be explained by a small and volatile stock market in Norway, where the oil is a
crucial part of the economy, changes in oil price in�uence the stock market way more than
the stock market of Norway in�uence the oil price.

A large part of the correlation between the stock market and the oil price disappears
when taking the currency into account, since there is high negative correlation between the
Norwegian Stock Market and the price of USD in NOK. A possible explanation for this
might be that, negative values for the oil price will probably lead to negative values for the
Norwegian Stock Market, which again leads to a decrease for the value of the NOK.
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Local Gaussian Correlation: OSEBX - Brent Oil price(USD)
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Figure 7.1: Local Gaussian Correlation between the OSEBX index and the price of Crude
Brent(USD)
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Local Gaussian Correlation: OSEBX - USD/NOK
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Figure 7.2: Local Gaussian Correlation between the OSEBX index and the USD/NOK
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Local Gaussian Correlation: OSEBX - Brent Oil price(NOK)
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Figure 7.3: Local Gaussian Correlation between the OSEBX index and the price of Crude
Brent
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7.2 Oslo Stock Exchange Data

Now that we have established an image of the Norwegian Stock Market and seen how it is
in�uenced by some factors, we will investigate the relationship between the stock exchange
and its stock.

In the following calculation we will be using data for the OSEBX index and 18 di�er-
ent stocks on Oslo Stock Exchange. The data is collected from Oslo Stock Exchange's
homepage. The data for each of the individual stocks ranges from October 11, 2007 until
October 11, 2012, leaving a number of 1260 values of daily prices for the stock at closing
time, which results in 1259 values of the logarithmic di�erences.
A short summary of the returns is given in the table below.

Mean Var Median Kurtosis Skewness
Oslo Børs Benchmark Index -0.01 4.25 0.12 3.98 -0.51

Aker Solutions -0.03 15.87 0 6.58 -0.62
DNB -0.01 10.92 -0.06 5.93 -0.07

Fred Olsen Energy -0.01 6.53 0 2.94 -0.36
Frontline -0.2 18.26 -0.18 27.71 -1.38

Norsk Hydro -0.08 9.7 0 3.68 -0.22
Orkla -0.06 5.92 0 6.49 0.01

Petroleum Geo Services -0.04 14.94 0 3.92 -0.32
Prosafe -0.01 8.12 0 6.11 -0.48

Renewable Energy Corporation -0.38 25.1 -0.4 4.14 -0.23
Royal Caribbean Cruises -0.02 13.61 0 4.25 0.21

Schibsted 0 9.64 0 3.48 -0.02
Seadrill 0.04 10.62 0.19 14.02 -0.77

Songa O�shore -0.14 21.84 0 79.97 -4.35
Statoil -0.02 5.04 0 4.04 -0.46

Storebrand -0.08 15.98 -0.08 4.08 -0.17
Telenor 0 5.8 0.05 21.51 -1.43

TGS NOPEC Geophysical Company 0.06 13.27 0.06 4.79 -0.02
Yara International 0.04 11.06 0.07 3.64 -0.38

Table 7.1: Summary of data concerning the Oslo Stock Exchange

These stocks are chosen because they are all available on the Oslo stock exchange through-
out the period mentioned above, the companies are of di�erent size, and business, although
9 of the companies are directly related to the petroleum industry in Norway. All of the
stocks are frequently traded, which means that there is not too many observations found
where the value of the return is zero caused by lack of trade.

Figure 10.1, Figure 10.2 and Figure 10.3 in Appendix B shows the scatterplots of the
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stocks plotted against the OSEBX index. Note that the x-axis, representing the individual
stocks have di�erent scales in some cases. In the �gures we see there are some extreme
values for Songa O�shore and Frontline, which is probably some of the cause of their high
kurtosis in Table 7.1. These are real observations and has not been �ltered out, one might
argue for and against �ltering out extreme observations as it probably does not repre-
sent normal behavior for the stock, but from a risk perspective observations like these are
important and should not be �ltered.

7.3 Distribution of the Data

As mentioned, assuming that a speci�c distribution such as the NIG distribution, is a
good description of our data may simplify calculations. Because of this, we will search for
a distribution which describe the introduced data satisfactory.

In Bølviken & Benth (2000) the authors used the NIG distribution to evaluate the VaR for
some stocks on the Norwegian Stock Market. They use eight Norwegian stocks which are
found on the Oslo Stock Exchange and Norsk Hydro, which then was found on the New
York Stock Exchange. The data for Norsk Hydro were from January 2, 1990 until Decem-
ber 31, 1998, and had a total of 2274 values, while the data from Oslo Stock Exchange
consisted of 506 closing time prices from October 16, 1997 until November 17, 1999. They
compared the Value at Risk for the Gaussian distribution and the NIG distribution with
the result of a non-parametric method based on kernel estimation and conclude that the
NIG distribution gives a better �t than the Gaussian.

As we have seen in our examples when introducing the theory of GARCH, models based
on a time dependent standard deviation clearly gives a better description of the data than
when the standard deviation is assumed constant.

We will therefore be using a test similar to the one used in Aas et al. (2005), where the
authors uses VaR exceedance as a measure of distributional �t in an comparison of a mul-
tivariate NIG-GARCH, Gaussian-GARCH, symmetric t-GARCH and a skewed t-GARCH
model. They �nd that for a one-day period the multivariate NIG-GARCH model is a
better �t than the a multivariate model based on a Gaussian-GARCH, symmetric Student
t-GARCH and a skew Student t-GARCH distribution.

Table 7.2 summarize a similar test as the one in Aas et al. (2005) and Bølviken & Benth
(2000) to see if a Gaussian-GARCH, NIG-GARCH or a t-GARCH model is the best de-
scription for the return distribution on our stocks from the Oslo Stock Exchange.

We are interested in the numbers of exceedances of the VaR for each of the three models.
The quantile is chosen to be the one of V aR0.95 and V aR0.99.
The GARCH parameters and additional parameters for each of the GARCH-model is cal-
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culated on the whole sample. On this test we have removed the �rst 10 values of the time
series as these might be in�uenced by the �rst value used for the volatility. 'Di� from Ex-
pected' is calculated as the sum of the absolute value of the di�erence between the expected
values of exceedance(1249×(1−α)) and the observed by the di�erent models for each stock.

Not surprisingly it seems from the values in 'Di� from Expected' that overall the NIG-
GARCH is the best match for our data. And that both the t-GARCH and the NIG-GARCH
model is a better choice than the Gaussian-GARCH model, especially for the V aR0.99.

There is a censoring for the NIG distribution in the results, which should be mentioned as
the garchFit function for fGarch was not able to calculate the parameters for some of the
stocks1 (these are denoted by (∗)). These have not been taken into the calculation of 'Di�
from Expected'.

Because of the mentioned error with the estimation of GARCH parameters for some of
data we will therefore be using the t-GARCH as our model of choice for further analysis.
Even if may be the next best choice as a description of our data, it does seem to explain
the data satisfactorily and the GARCH coe�cients are found and seem stable for all of the
stocks.

1Aker and Frontline failed to converge by the nlminb routine but did by the lbfgsb algorithm when
assuming a NIG distribution. Frontline converged with a warning message while Schibsted and Telenor
failed to converge for all of the 8 combinations of algorithms for maximum likelihood estimation and
evaluations of the Hessian matrix.
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Exceedance of V aR0.95

Expected t Gaussian NIG
DNB 62.5 60 58 60

Fred Olsen Energy 62.5 65 59 60
Norsk Hydro 62.5 66 64 62

Orkla 62.5 62 54 54
Oslo Børs Benchmark Index 62.5 84 87 74

Petroleum Geo Services 62.5 68 63 64
Prosafe 62.5 60 59 61

Renewable Energy Corporation 62.5 49 45 50
Royal Caribbean Cruises 62.5 61 60 62

Seadrill 62.5 71 69 62
Songa O�shore 62.5 60 55 52

Statoil 62.5 71 66 63
Storebrand 62.5 58 56 58

TGS NOPEC Geophysical Company 62.5 59 54 57
Yara International 62.5 71 71 65

Di� from Expectated 0 89.5 107.5 65.5
Aker Solutions 62.5 63 57 60∗

Frontline 62.5 58 51 87∗

Schibsted 62.5 67 63 ?∗

Telenor 62.5 66 54 ?∗

Exceedance of V aR0.99

Expected t Gaussian NIG
DNB 12.5 13 22 13

Fred Olsen Energy 12.5 18 24 13
Norsk Hydro 12.5 9 14 9

Orkla 12.5 13 15 11
Oslo Børs Benchmark Index 12.5 13 19 11

Petroleum Geo Services 12.5 13 18 11
Prosafe 12.5 12 18 13

Renewable Energy Corporation 12.5 8 11 8
Royal Caribbean Cruises 12.5 11 15 11

Seadrill 12.5 16 26 13
Songa O�shore 12.5 13 19 11

Statoil 12.5 12 17 10
Storebrand 12.5 7 15 9

TGS NOPEC Geophysical Company 12.5 8 15 8
Yara International 12.5 15 18 14
Di� from Expected 0 34.5 81.5 29.5

Aker Solutions 12.5 13 22 13∗

Frontline 12.5 10 13 24∗

Schibsted 12.5 11 15 ?∗

Telenor 12.5 10 15 ?∗

Table 7.2: Numbers of exceedance of V aR0.95 V aR0.99 for three GARCH models.
∗ Are observations where there were problems with the coe�cient estimation.
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7.4 Local Gaussian Correlation on the Norwegian Stock

Market

Patton (2004) investigate the di�erence in dependence structure between indices for monthly
data, during so-called bear and bull markets, where bear market is an overall negative trend
in the market, while bull is more optimistic with a positive trend. They compare the use of
a bivariate Gaussian distribution with time dependent parameters with models based on
di�erent copulas(including the Gaussian copula) with Skewed student's t distribution with
time dependent parameters as marginal distributions. They �nd evidence that models able
to describe skewness and asymmetric dependence were a better choice when making port-
folio decisions than models based on the bivariate Gaussian marginal distributions and/or
copula.

Similarly, we have seen by the use of VaR exceedance that the t-GARCH model clearly
beats the Gaussian-GARCH model as a description of the marginal distributions for the in-
troduced stocks. We will continue in a similar manner as Patton (2004) and try to describe
the dependence structure between the introduced stocks and the index. The relationship
between the stock and the index is important because it gives us an image of how the
stock is a�ected by the movement of the rest of the market. We will also calculate the
local correlation between some stocks, to see how they are a�ected by each other.

7.4.1 Local Gaussian Correlation Stock to Index

Figure 10.1, Figure 10.2 and Figure 10.3 in Appendix B shows the scatterplots of the stocks
against the OSEBX index. Since the limit of the axes are not standardized and these plots
does not show the GARCH-�ltered returns, it might not be easy to tell, however, as we did
earlier, we should keep our investigation inside the limit of -2 to 2 where we have enough
observations.

Figure 7.5, Figure 7.6 and Figure 7.7 contain plots of the Local Gaussian Correlation
between each of the introduced stocks and the OSEBX index along the x = y-axis. Over-
all, there are high correlation values between the stocks and the index, and for every one of
the stocks the correlation is between the interval of 0.9 and 0.35 for the whole axis. Figure
7.4 shows the mean of the local correlation for the 18 stocks where the con�dence interval
is calculated by bootstrap with 500 replicates. This con�rms the strong correlation seen
between the individual stocks and the index. It is also apparent how the negative tail for
the stocks and the index has noticeable stronger correlation than the positive tail, as there
is a di�erence on approximately 0.1

Several of the stocks even has as correlation as high as 0.8 when both the returns has
an value of about -2 and there seems to be a trend of lower correlation in the positive tail
than in the negative.
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The highest value for the Local Gaussian Correlation is found in Statoil, here the local
correlation is between 0.9 and 0.8 along the whole axis. Similarly Petroleum Geo Services,
TGS NOPEC and Aker Solutions are not far behind. Finding a strong correlation between
these oil related companies is not surprising, because as we have seen there is quite a strong
dependence between the oil price and the Norwegian Stock Market.

Strong correlation is not limited to oil related industries, Norsk Hydro and Orkla is exam-
ples of companies that is not directly related to the oil industry but has a high positive
correlation with the OSEBX index.

Another company worth mentioning is Renewable Energy Corporation, which belongs to
an industry quite di�erent from the oil industry. Renewable Energy Corporation has a
strong correlation when both the company and the stock market has large losses, but its
correlation is weakened dramatically for positive values for the returns.
This might also be partly explained by the Norwegian Stock Markets relation with the oil
industry. In bad times for the stock market, one would expect people to be nervous and
more restrictive with their investments, which is bad news for the individual stocks and
the stock market as a whole. Good times for the oil industry and the industry of renewable
energy might not necessarily be related, as these are, at least to some extent counterparts.
This might explains why the correlation is lower for positive values.
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Figure 7.4: Mean estimated Local Gaussian Correlation between stocks and the OSEBX
index
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Figure 7.5: Local Gaussian Correlation between stocks and the OSEBX index(1/3)
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Figure 7.6: Local Gaussian Correlation between stocks and the OSEBX index(2/3)
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Figure 7.7: Local Gaussian Correlation between stocks and the OSEBX index(3/3)
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7.4.2 Local Gaussian Correlation Between Stocks

In this investigation we will limit ourselves to the �rst 5 of the 18 stocks introduced in
Table 7.1, namely Aker Solutions, DNB, Fred Olsen Energy, Frontline and Norsk Hydro.

Figure 7.8 and Figure 7.9 shows the Local Gaussian Correlation on the x = y-axis for
the 10 possible combinations of these stocks. Overall, there seems to be quite a strong
correlation between the stocks along the whole axis. If we exclude Frontline, the lowest
value for the con�dence interval of the correlation is right beneath 0.4, which is quite a
strong correlation.

The lowest value of the correlation along the whole of the axis seems to be between Front-
line and DNB. While Norsk Hydro and Aker Solutions seems to be strongest correlated
with the di�erent stocks, and the strongest correlation is found between them.

Due to the size of the con�dence interval for the local correlation the claim of a con-
stant correlation can probably not be disproved for all of the possible combinations, this
is seen in for example the correlation plot between in DNB and Aker Solutions.

There are several of the plots strongly suggesting against a constant dependence structure,
e.g. Fred Olsen Energy - Aker Solutions, Frontline - Aker solutions and Frontline - Fred
Olsen Energy.

In Frontline - Fred Olsen Energy the correlation falls from almost 0.5 in -2 to right above
0.2 in 2, which is the largest change in the correlation among the stocks, but also note that
the con�dence interval is rather large for this combination.

By focusing on the observed values and not too much on the con�dence interval there
seems to be a trend of an increase in local correlation from -2, it reaches a reaches a peek
somewhere around -1, before it decrease to a value similar to or lower than its value in -2.
This peak is not seen between the individual stocks and the index.

This means that the correlation between the stocks is strengthened for small loses for the
stocks, but not for larger loses. This might be explained by small loses for the stocks might
be linked to small loses for the whole market, but large loss for either of the stocks might
mean bad news for the particular company and not the market as a whole, thus weakening
the correlation.
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Figure 7.8: Local Gaussian Correlation between stock returns(1/2)
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Figure 7.9: Local Gaussian Correlation between stock returns(2/2)
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7.5 The CAPM on the Norwegian Stock Market

We have introduced some theory for the Capital Asset Pricing Model and seen how it(in
theory) can be used under strict assumptions to describe the relationship between the ex-
pected returns and the risk for stocks.

By moving the return of the risk-free rate over to the opposite side of the equal sign in
Equation 5.3 we have that the expectation for the stock can be written as follows

µi = µf +
σi,M
σ2
M

(µM − µf ) = µf + βi(µM − µf ). (7.1)

By letting µf > 0 and µM be the estimate of the mean for the OSEBX index, which from
Table 7.1 is -0.01, we easily see that a positive value for beta will result if µi is less than µf .

One of the assumptions for the CAPM as stated in Ruppert (2010) is that "`All investors
choose portfolios optimally according to the principles of e�cient diversi�cation."' This
means that no one would be investing in a stock where the expected return is less than
the risk-free rate. This means that no one would be interested in investing in stocks, since
µM < µf leads to µi < µf . This is one of several reasons why the validity of the CAPM
model has been questioned, some important parts in this debate has been the dispute be-
tween Black (1993) and Fama & French (1992).

In Fama & French (1992) the authors do not �nd the expected relation between aver-
age return and betas on observed data. Black (1993) questions the use of past average
returns as a measure of the expected returns and criticize the authors of Fama & French
(1992) among other researchers for questionable selection of data and misleading presen-
tation of results as an attempt to disprove the CAPM model. This dispute is covered in
several articles from the mentioned authors and others, but the important one for us will
be the one of Pettengill et al. (1995).

In Pettengill et al. (1995) the authors investigate the topic of negative values for the
market portfolio and the validity of CAPM due to this. They �nd that even though they
cannot say anything about the validity of the CAPM. They do �nd results that support
the continued use of beta as a measure of market risk.

Following is a table of values for the expected return for the stocks already introduced
with a corresponding plot of the security market line where the risk-less rates is set to be
0.0054, and the expected return for the market portfolio is set to the observed mean of the
OSEBX index(-0.01). The value for the risk-less rate is chosen since

100× log(1.02(1/365)) ≈ 0.0054,

which means 0.0054 is approximately the daily value for the logarithmic di�erence corre-
sponding to a yearly rate of 2%.
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Betas for Norwegian Stocks
Expected Return beta

Aker Solutions(1) -0.016 1.477
DNB(2) -0.011 1.146

Fred Olsen Energy(3) -0.007 0.902
Frontline(4) -0.010 1.080

Norsk Hydro(5) -0.012 1.221
Orkla(6) -0.008 0.935

Petroleum Geo Services(7) -0.017 1.564
Prosafe(8) -0.010 1.057

Renewable Energy Corporation(9) -0.016 1.491
Royal Caribbean Cruises(10) -0.008 0.923

Schibsted(11) -0.008 0.957
Seadrill(12) -0.013 1.308

Songa O�shore(13) -0.016 1.528
Statoil(14) -0.008 0.940

Storebrand(15) -0.013 1.293
Telenor(16) -0.005 0.739

TGS NOPEC Geophysical Company(17) -0.014 1.352
Yara International(18) -0.011 1.177
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Figure 7.10: Values of betas and Expected Returns(according to Equation 7.1) for
Norwegian stocks
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7.5.1 Interpretation of the Betas

As already mentioned the above values for the expected returns does not necessarily make
that much sense, because the average value of the market portfolio(OSEBX index) is neg-
ative for the considered time period, thus making it smaller than any reasonable value of
the risk-less rate.

For the particular choice of value for the risk-less rate and the expected value for the
market portfolio as given above one could clearly choose to invest in Telenor rather than
the other stocks, as it has the highest expectation and the lowest risk for the stocks. As
seen in Equation 7.1 the expectation for all the stock is bound to be less than the risk-free
rate when the expected return for the market portfolio is less than the return for the risk-
free rate, making the risk-free rate the most reasonable choice of investment.

The negative average value of the OSEBX index is not really that big a surprise. The
period of our data is known for its �nancial di�culties, a period of losses, debt and unem-
ployment around the world. Some of the background of the �nancial crisis can be found in
the article Jones (2009) mentioned before, which focuses on collateralized debt obligation
(CDO) mispricing. And for the choice of the value for the expectation of the market port-
folio Black (1993) is probably right. The negative observed mean does necessarily match
what the investors expected, and this is really the expectation of interest in the CAPM.
The fact that people have been investing throughout this period, shows that they have
clearly not been expecting to lose money. However, we will not focus on the relationship
between the expected returns and the betas as stated in Equation 7.1, but rather use the
beta as a measure of risk on is own.

The de�nition for beta in Equation 5.3 can be written as

β =
σi,M
σ2
M

=
ρi,mσi
σM

(7.2)

where σi,M = Cov[Ri, RM ].
In the case of observed values, this can also be written as

β̂
n∑
j=1

(RM,j − µ̂M)(RM,j − µ̂M) =
n∑
j=1

(Ri,j − µ̂i)(RM,j − µ̂M)

were Ri,j and RM,j are the observed j-th return for the i-th stock and the market portfolio
with the corresponding expectations µi and µM .

By having a adequate number of observations, a beta of 1 will then suggest that the
volatility of the stock is similar to the one of the market portfolio, while a beta larger than
one gives us a risky stock, and a value for the beta which is less than one gives us a risk
which is less than the market portfolio.
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By matching the value of the beta in Table 7.10 by the empirical value for the mean
given in Table 7.1, rather than the one calculated Equation 7.1 in Figure 7.10,
we �nd that TGS NOPEC Geophysical Company has the highest mean of all of the intro-
duced stocks, but is a less risky stock(lower beta) than Aker, Renewable Energy Corpora-
tion, Songa O�shore and Petroleum Geo Services, suggesting for TGS NOPEC Geophysical
Company to be a better investment than the more risked, but lower mean valued stocks
mentioned above.

7.5.2 Local Betas and the Norwegian Stocks

As an example of estimating the Local Gaussian Correlation, we also obtain local values
for the other parameters given in the bivariate Gaussian distribution. Since all we need
to compute values for the betas is values for the correlation and the two standard devi-
ations, we are able to calculate local values for the betas. This approach does not su�er
from the previously mentioned bias for the conditional correlation described in Chapter 5.5.

Figure 7.12, Figure 7.13 and Figure 7.14 give local values for the betas for each of the
introduced stocks, where the market portfolio is assumed to be described by the OSEBX
index. The value for the beta and the con�dence interval is calculated on the same format
as set as a standard under the chapter of Local Gaussian Correlation, only here the value
of the beta is calculated on 30 points equally spaced on the diagonal instead of 50.

In the mentioned �gures we see that the all the local values for the betas for each stocks
are between 1 and 0.4, however, there are large di�erences in these. In our observations
there seems to be both symmetric and asymmetric changes in risk, where Fred Olsen En-
ergy, Orkla, Petroleum Geo services seems to be approximately symmetric. Aker Solutions,
DNB Norsk Hydro and Statoil are examples of asymmetry with higher value for betas and
therefore higher risk in the positive tail.

Our observations di�ers mainly from what is found in Silvapulle & Granger (2001) by
the fact that they �nd that there seem to be a trend of higher values for the beta in the
lower tail than in the upper tail. Yara and Renewable Energy Corporation and Schibsted
might suggest some minor decrease for the beta. Aker Solutions, DNB, Telenor, TGS
NOPEC and Prosafe are examples, which suggest otherwise.

Figure 7.11 shows the mean and the corresponding con�dence interval of the local val-
ues for the betas calculated on the 18 stocks, and according to this there do seem to be a
trend of lower values for the betas for returns somewhere between -1 and 0 compared to the
tails. The value of higher beta in the lower quantile than in the middle correspond to the
result found in Silvapulle & Granger (2001). For the positive tail the returns seem to di�er,
as we observe higher values for the beta for large positive values than in the middle and
lower quantile, whereas Silvapulle & Granger (2001) �nds no noticeable di�erence between



88CHAPTER 7. ANALYSIS OF DEPENDENCE ANDRISK IN THE NORWEGIAN STOCKMARKET

the middle and upper quantile.

That the lower tail has higher values for the betas than in the middle agree to what is seen
by volatility, where large values of both sign, for the returns seem to appear in clusters.
A larger beta associated with positive values for the returns than negative might suggest
that very large gains for the stock market might be followed by a possible stock market
downturn or even a crash (bubble), while negative values for the market is less likely to
resolve in a sudden positive boost for the market.

Discussion on the Local Beta

In Figure 7.12, Figure 7.13 and Figure 7.14 the local value of beta is less than 1 along
the whole diagonal on our interval. This corresponds to the values found in Silvapulle &
Granger (2001), where they are less than one as well. We calculated the local values for
the betas in these �gures in a similar way as we calculated the local correlation, which
means that we have used a GARCH-�lter. Under the assumption that our return is de-
scribed by a GARCH process, applying a GARCH-�lter reduces our variable to a strict
white noise(SWN) process.

Table 10.1 in Appendix B shows the summary of our data after we have GARCH-�ltered
our values. In the table, it is obvious that the OSEBX has the lowest value for the kurtosis
in the table. In Tjøstheim & Hufthammer (2012) it is shown that for a distribution having
thicker tail than the Gaussian distribution, the local variance goes to in�nity in the tail.
The lower kurtosis of the OSEBX index than the stocks will then result in the σi(x,y)

σM (x,y)
, part

of the formula for the beta in Equation 7.2 will be increasing throughout the tail, because
the tail of the stocks is heavier than the one for the index. This corresponds with how our
local values for the beta is increasing in the tail, even though the local correlation may be
decreasing.

Figure 10.8 in Appendix B gives the local betas without a GARCH-�lter for the �rst
5 stocks, and a mean calculated on all the 18 stocks. These values seem to match the
values of the global betas in Figure 7.10, better than the one using a GARCH-�lter. The
fact that the local values for the betas is above and below 1 allows us to group the data
in higher than and lower than market-risk, this is a nice feature. The mean in Figure
10.8 is calculated equal to the one in Figure 7.11, except from the �lter and the number
of replicates in the bootstrap procedure(5000 replicates in Figure 10.8 and 500 in Figure
7.11). Obvious it is quite risky to try to describe a trend when the values has not been
�ltered as there are large uncertainty in the values, as shown by the con�dence interval.
Additionally, the values for the local betas does not seem reasonable, a lower risk for large
loss than in the middle does seem rather strange, and might suggest for another way of
interpreting the non-�ltered results.

There are some more reasons why we would prefer applying a GARCH-�lter when cal-
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culating the local betas on the returns. The �rst reason is that the SWN process is
assumed iid, which means that we can use bootstrap to calculate a con�dence interval.
This is not a major concern since it can probably be done similar by using the approach of
block bootstrap introduced in Kunsch (1989). The second one is of larger concern and is
also related to the fact that our returns are probably not iid. This lead to the local betas
without a GARCH-�lter is not calculated under similar conditions, and the value of beta
is highly in�uenced by the volatility and is probably the reason why the non-�ltered values
did not seem reasonable, hence we will keep the calculation of the non-GARCH-�ltered
values just as a comparison to the �ltered values.

It then follows that the local beta as calculated with the GARCH-�lter is probably the
best of the two approaches for a local value for the betas for non-iid data. This approach
shows the change in risk for each of the stocks when the volatility is removed. The results
with increasing risk in the tail correspond to how risk is expected to behave. That the
values are less than one along the diagonal, at least in our limited interval might suggest
for an interpretation di�erent than the one for the global beta where β < 1 gives a low-risk
stock, and β > 1 gives a high-risk stock. Since the local variance for the market portfolio
will be similar for the stocks we compare to, the local beta will probably act better as a
relative risk estimator between the stocks, than as a risk categorization criterion.
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Figure 7.11: Mean estimated local beta between stocks and the OSEBX index
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Figure 7.12: Change for the local beta for stock returns(1/3)
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Figure 7.13: Change for the local beta for stock returns(2/3)
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Figure 7.14: Change for the local beta for stock returns(3/3)
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7.6 A Copula-GARCH Description of the Data

Under the chapter of Local Gaussian Correlation we estimated the change in correlation
along the x = y-axis of random samples from the introduced copulas with standard Gaus-
sian marginal distributions.

Berentsen et al. (2012) introduces a goodness-of-�t test for bivariate copula models based
on the Local Gaussian Correlation, we will in a simpler manner try to �nd a copula which
describe our stocks by visualization.

Since our plots of the Local Gaussian Correlation on the copulas are given with a Gaussian
marginal, and our data does not seem to be well described by a Gaussian distribution,
comparing the plots of the copulas with Figure 7.8 and Figure 7.9 might not be a good
approach. This is because the local correlation in the plots is in�uenced by the marginal
distributions. Because of this, we make the following transformation of the marginal dis-
tributions on the data.

xt = Φ−1(F (δt|υ)) (7.3)

δt =

√
υ

υ − 2

rt − µ̂
σ̂t

Here Φ−1 is as usually the univariate Gaussian quantile function, σt is the volatility, µt is
the mean, rt is the return and F (x|υ) is the distribution function of a univariate t distri-
bution with υ degrees of freedom.

This transformation will under the assumption that the t-GARCH model describes our
data well, give us a meta distribution with the copula similar to the observed, but with
standard Gaussian marginal distributions.
Note that when we apply the marginal distribution transformation we have not done an
additional �lter of heteroscedasticity by a GARCH-�lter, because the heteroscedasticity is
�ltered out by the transformation.

Figure 7.15 and Figure 7.16 shows the Local Gaussian Correlation calculated on the
marginal-transformed observations along the x = y-axis.
Comparing these plots with Figure 7.8 and Figure 7.9 shows that the marginal transforma-
tion does not drastically change the local correlation, but still the transformation removes
a possible source of error.

A comparison between the original, GARCH-�ltered and marginal transformed variables
can be found in Appendix B, Figure 10.1 gives the 5 stocks plotted against the OSEBX
index. Figure 10.4 and Figure 10.5 gives the GARCH-�ltered returns plotted against each
other and Figure 10.6 and Figure 10.7 is the marginal transformed returns. Notice that
Figure 10.6 and Figure 10.7 has standardized interval on the axis while Figure 10.1, Figure
10.4 and Figure 10.5 does not.
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7.6.1 Description of the Dependence Between the Stocks

Comparing Figure 7.15 and Figure 7.16 with the Frank copula plotted in Figure 6.4, seems
to be a rather poor �t, as the Frank copula is characterized by a peak in x = y = 0, the
observed data has a peak, but this is found on the negative side of the axis.

Similar the Gumbel copula in Figure 6.5 does not seem to match as it is increasing along
the axis, which is a bad description for our data along most of the axis, where the corre-
lation at -2 seems to higher than in 2.

The t copula in Figure 6.8 and Figure 6.7 is also a bad �t regardless of its degrees of free-
dom and correlation due to its symmetry and that its minimum value for the correlation
is found in zero.

This leaves us with the options of Gaussian and Clayton copula. The Gaussian copula
in Figure 6.6 with its constant correlation is probably not a good choice, but it seems like
it would probably stay inside the con�dence interval for some of our observed values.

But the best �t of our copulas is probably found by the Clayton copula in Figure 6.3.
It does not o�er the peak found at -1 at the axis, but it matches the tail dependence
observed in our stocks, where the correlation is higher at the negative tail than in the
positive.
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Figure 7.15: Local Gaussian Correlation on stock returns with transformed marginal
distributions
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Figure 7.16: Local Gaussian Correlation on stock returns with transformed marginal
distributions
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7.6.2 Risk Estimation for a Copula-GARCH Model

Now that we have found a description for both the marginal distribution and the depen-
dence structure for our stocks we can use it in risk estimation.
Table 7.3 gives the number of degrees of freedom(υ), the volatility for 'tomorrow' and the
VaR for the stocks. The 'volatility' is the last value for the volatility calculated on our
1259 returns for the stock based on a GARCH(1,1) distribution with a standardized t dis-
tribution with υ degrees of freedom. The VaR is a parametric VaR for 'tomorrow' with
the distribution described by the GARCH process and is calculated by

µL + σ1260

√
υ − 2

υ
t−1
υ (0.95)

where µL is the mean of the loss, σ1260 is the last value for the volatility calculated on our
1259 returns for the stock and the numbers of degrees of freedom is given in the table.

υ Volatility V aR0.95

Aker Solutions 6.85 2.18 3.51
DNB 7.63 1.67 2.70

Fred Olsen Energy 6.23 1.71 2.73
Frontline 4.94 3.20 5.19

Norsk Hydro 10.00 2.24 3.71

Table 7.3: Degrees of freedom, volatility and VaR calculated for mentioned stocks

We have found that the Clayton copula seems to be the best description of the dependence
between our data. McNeil et al. (2005) covers theory on how to estimate parameters for
copulas. In this case, we have used a method based on the inverse of Kendall's tau to �nd
the parameter that describes the dependence between two stocks. This has been done by
the function �tCopula from the copula package.

Calculating the Value at Risk in the bivariate case is a little more complex than for the
univariate, as a bivariate probability function has several potential values, which all give
the probability of α. When estimating the Value at Risk for a copula consisting of two of
our stocks we will therefore be using a Monte Carlo based risk calculation, which is covered
in Hull (2009) for the univariate case.

By sampling a bivariate sample (Xi, Yi), where i = 1, . . . , 10000, from our estimated Clay-
ton copulas with t-GARCH models as a description of the marginal distributions we get a
sample from a Meta Clayton-t-GARCH distribution.

To simplify our calculation we weight our stocks equally, and de�ne the loss of the portfolio
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as the sum of the loss of the stocks and we have that

Li = µL1 + µL2 + σL1,1260

√
υ1 − 2

υ1

t−1
υ1

(Xi) + σL2,1260

√
υ2 − 2

υ2

t−1
υ2

(Yi)

Here Li is the total loss for the equally weighted portfolio, µL1 is the mean, σL1,1260 is the
volatility and υ1 is the number of degrees of freedom for one of the stocks, and correspond-
ing for the second stock.

L(500) is the V aR0.95 for this portfolio, while the mean of L(1) · · ·L(500) is the ES0.95. Table
7.4 gives the VaR and the ES for di�erent combinations of the stocks based on the observed
sample consisting of 10000 observations from the distribution, similar to how we previously
calculated historical VaR and ES.
Similar to Table 7.3 where Norsk Hydro and Frontline, were the most risky stocks by it-
self, Table 7.4 shows that the portfolio consisting of these stocks is the most risky portfolio.

We have previously seen that these stocks are not independent, which means that the
approach in Table 7.4 is probably a better approach than to summate the individual risk
found in Table 7.3, at least under the assumption that the dependence is well described
by the Clayton copula and the marginals by t-GARCH models. Here we have restricted
ourselves to the bivariate case, this can o� course be done in dimensions higher than two
and the approach of pair-copula mentioned in Aas et al. (2009) is then a natural place to
start.

V aR0.95 for a bivariate portfolio

DNB Fred Olsen Energy Frontline Norsk Hydro
Aker Solutions -5.994 -5.826 -7.996 -6.875

DNB -5.096 -7.008 -6.085
Fred Olsen Energy -7.074 -6.27

Frontline -8.31

ES0.95 for a bivariate portfolio

DNB Fred Olsen Energy Frontline Norsk Hydro
Aker Solutions -8.355 -8.014 -11.293 -9.275

DNB -7.075 -10.159 -8.243
Fred Olsen Energy -10.133 -8.456

Frontline -11.926

Table 7.4: Monte Carlo based VaR and ES for a bivariate Portfolio
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7.7 Discussion of Risk Management on the Norwegian

Stock Market

Under the theory of CAPM there is a relationship between the risk and the expected value
of the returns. However, as seen in Figure 7.10 this does not seem to make much sense
when we use the observed average as expectation for the market portfolio, which might
suggest for other ways of estimating the expected returns of the market portfolio. Regard-
less of the validity of the relationship between the expected value and the betas we have
seen that the theory of the CAPM can be used to describe the risk associated with stocks.

As the last part of the analysis on the Norwegian Stock Market, we will compare the
results found by global values for the betas and VaR for the �rst 5 stocks in Table 7.1
moreover, we will discuss how these compares to the local beta.

Table 7.5 gives a summary for the risk associated with these stocks, the VaR is calculated
under the assumption of a t-GARCH description of the return distribution and the beta is
the global values. It should be noted that comparing these risk measures might be some-
what deceptive as they calculate di�erent kind of risk, but we will return to this.

beta V aR0.95

Aker Solutions 1.48 3.51
DNB 1.15 2.70

Fred Olsen Energy 0.90 2.73
Frontline 1.08 5.19

Norsk Hydro 1.22 3.71

Table 7.5: Values for beta and VaR calculated for mentioned stocks

For the global betas, Fred Olsen Energy is the less risky stock followed by Frontline, DNB,
Norsk Hydro and �nally Aker Solutions.

For the parametric t-GARCH VaR we have that DNB, Fred Olsen Energy, Aker Solu-
tions, Norsk Hydro and �nally Frontline has the VaR in increasing order.

We see that there is some di�erence between which of these risk measures suggest as
the riskiest stocks. This might be explained by the fact that VaR focuses on the risk found
in the quantile, while the global beta is a description of the overall risk for the asset.

Value at Risk, Expected Shortfall and the betas has the appealing form of giving us a
simple number for the risk associated with the stock, but this simplicity is also a part of
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its weakness. Adding GARCH for a description of the volatility or other similar extensions
does not change the fact that VaR and ES only gives us a number for the risk, which overall
provides very little information.

Even under the assumption that our model describe the risk well, we are bound to ex-
ceed the V aR0.95 approximately 12.6(1260/5 × 0.05) times a year. And for the Expected
Shortfall assuming to have a good description for the mean in the tail is probably not
very realistic. The global beta is calculated by constant values for the correlation and the
variance, and as we have seen neither the dependence or the variance seem to be constant
for our data.

This suggests that local betas could be used as a description for risk rather than focusing
on the global risk or the risk found in the quantile. By looking at the values of the local
betas for the risk, we are able to describe the change in risk against the change in the
returns for the stocks. This gives the possibility of choosing stocks where the risk of the
portfolio matches the one we are interested in, or in the spirit of the CAPM, carefully
selecting stocks related to di�erent industries, in an attempt of cancel out the risk.
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Conclusion

We have seen that there is a strong correlation between the main index of Oslo Stock
Exchange and the price of oil in USD for daily data. The correlation is weakened by
transforming the currency of the oil price over to NOK. Since the market of the NOK is
mostly restricted to Norway, while the EURO or the USD is used in a larger market, the
change in NOK is highly dependent on the change for the market. This again ampli�es
the correlation found between the oil price and the Norwegian market.

Overall there is a high local correlation between the stock and the index for the whole
x = y-axis. From the mean value of the local correlations, calculated on the stocks, it is
clear that the correlation between the stocks and the market is stronger for losses, than
for positive returns. This might be explained by that in bad times for the stock market,
one would expect people to be nervous and not invest that much, which is bad news for
the individual stocks and the stock market as a whole, while positive values for the stock
might often be explained by individual factors.

Statoil have the strongest correlation of our stocks and seems to have rather constant
values for the correlation inside the interval of 0.8 to 0.9. While Renewable Energy Corpo-
ration has a high correlation when both the stock and the market index has large negative
values, but the correlation is drastically weakened for large positive values. These �ndings
might be seen as a support of the already seen tendency of large correlation between the
Norwegian Market and the petroleum industry.

By using the local parameters for the correlation and the variances for the market port-
folio(OSEBX index) and the stock, we can use the theory of CAPM to get a local value
for the beta. Plotting the change in the beta along the x = y-axis allow us to see how the
risk for the stocks changes along the axis. Analyzing the mean values for the stocks, there
seems to be a trend of higher values for the betas in the lower tails than in the middle, but
the highest values for the betas is often found in the positive tail.
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The beta calculated on this approach di�ers from �ndings found in the article Silvapulle
& Granger (2001), but our results seem to make sense when considering the nature of the
stock market, where very large gains for the stock market might be followed by a possible
stock market downturn.

We have seen that models based on non-constant volatility is probably a better description
for the stock returns than models where the returns are assumed to be iid. Further we
have seen that a NIG-GARCH is probably a better description than both the t-GARCH
and Gaussian-GARCH model. This means that our results support previously mentioned
assumptions of non-constant correlation, volatility and risk on the stock market.

Under the assumption that our data is described well by a t-GARCH model the Clay-
ton copula seems to be the best description for the dependence between 5 chosen stocks,
when choosing between the Gaussian, t, Clayton, Gumbel and Frank copula.
And we have seen how Monte Carlo theory can be used to calculate the VaR and ES under
the assumption of a copula-GARCH model.

For further work on this subject, expanding the limit of the interval is a natural place
to start. The choice of [-2,2] for the variables might have been a little bit too cautious, and
one would expect interesting �ndings out in the tail. This thesis has focused on daily data
and analysis on data of di�erent time periods might also be of interest, as some trends are
seen over longer time periods.

Another feature of CAPM that might be of interest is the Security Characteristic Line,
which can be found in Ruppert (2010). The Security Characteristic Line gives an expres-
sion for the undiversi�able risk of the stock, moreover, a local value of this can be used to
test for the bene�t of portfolio diversi�cation under di�erent behavior on the market.

Overall, we �nd that the Local Gaussian Correlation brings an interesting new aspect
to the �eld of �nance and statistical modeling.
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Appendix A: Additional Theory

9.1 The Truncated Gaussian Distribution

If we let X be a bivariate Gaussian distributed variable and de�ne the random variable Z
as

Z = X × I

Where I is an indicator function de�ned below

I =

{
1 if a ≤ x ≤ b and c ≤ y ≤ d
0 otherwise

We get that the variable Z is a truncated bivariate Gaussian variable, with the following
density

f(x, y|A) =

{
f(x,y)
Pr(A)

if a ≤ x ≤ b and c ≤ y ≤ d

0 otherwise
(9.1)

Where

A = {[a ≤ x ≤ b] and [c ≤ y ≤ d]} and Pr(A) =

∫ b

a

∫ d

c

f(x, y)dxdy

Rosenbaum (1961) o�ers the moments of interest for a Gaussian truncated bivariate on
the interval where a ≤ x ≤ ∞ and c ≤ y ≤ ∞, however, we need them for
A = {[a ≤ x ≤ b] and [c ≤ y ≤ d]}. We will therefore derive the moments E[Y |A], E[Y 2|A]
and E[XY |A] for a general interval.

9.1.1 Moments for the Truncated Bivariate Gaussian

In the following section we let φ(x) be the univariate Gaussian density and Φ(x) its cumu-
lative distribution function. We let f(x, y) be the bivariate Gaussian density and F (x, y)
be the bivariate cumulative distribution function. At �rst, note that the integral over a
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non standardized Gaussian density can be written on the form

∫ b

a

∫ d

c

1

2πσ1σ2

√
1− ρ2

exp
( −1

2(1− ρ2)

((x− µ1

σ2
1

)2
+

2ρ(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2

σ2
2

)2
))
dydx

=

∫ b−µ1
σ1

a−µ1
σ1

∫ d−µ2
σ2

c−µ2
σ2

1

2π
√

1− ρ2
exp
( −1

2(1− ρ2)
(u2 + 2ρuv + v2)

)
dudv

=

∫ b−µ1
σ1

a−µ1
σ1

∫ d−µ2
σ2

c−µ2
σ2

1√
1− ρ2

φ(v)φ(
u− ρv√

1− ρ2
)dudv

(9.2)

Since the limits of the integral can hold the information regarding the variance and ex-
pectation, we only need to derive the following moments for the standardized distribution.
We write the �rst partial derivative of f(x, y) with respect to y as

δ

δy
f(x, y) =

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)
ρx− y

(1− ρ2)

=
ρx

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)− y

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)

(9.3)

Similar the partial second partial derivative of f(x, y) with respect to y then x is

δ2

δxδy
f(x, y) =

δ

δy
(

ρx

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)− y

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
))

=
δ

δx
(

ρx

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
))− y(ρy − x)

(1− ρ2)

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)

(9.4)

The First Moment for the Truncated Bivariate Gaussian Distribution

By taking the double integral and some simple algebra on Equation 9.3, we end up with
the following expression for the �rst moment.

E[Y |A]Pr(A) = E[X|A]Pr(A)ρ−
[y=d

y=c
(1− ρ2)

∫ b

a

f(x, y)dx
]

= E[Y |A]Pr(A)ρ2 −
[x=b

x=a
ρ(1− ρ2)

∫ d

c

f(x, y)dy
]
−
[y=d

y=c
(1− ρ2)

∫ b

a

f(x, y)dx
]

=
[x=b

x=a

[y=d

y=c
− φ(y)Φ(

x− ρy√
1− ρ2

)− ρφ(x)Φ(
y − ρx√

1− ρ2
)
]]

(9.5)

Where the second step follows by symmetry between E[X|A] and E[Y |A].
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The Second Moments for the Truncated Bivariate Gaussian Distribution

The second moments is a little bit more complicated than the �rst moment, we will solve
the expression of E[XY ] and E[Y 2] simultaneously.
From Equation 9.4 we have that

(1− ρ2)

∫ b

a

∫ d

c

δ2

δxδy
f(x, y)dxdy =

[x=b

x=a

[y=d

y=c
ρφ(x)Φ(

y − ρx√
1− ρ2

)
]]
− ρ

1− ρ2
E[Y 2|A]Pr(A)

+
1

1− ρ2
E[XY |A]Pr(A)

And by multiplying in a factor of y into the �rst derivative in Equation 9.3, we have that

(1− ρ2)

∫ b

a

∫ d

c

y
δ

δy
f(x, y)dydx = ρE[XY |A]Pr(A)− E[Y 2|A]Pr(A)

=
[x=b

x=a

[y=d

y=c
(1− ρ2)yφ(y)Φ(

x− ρy√
1− ρ2

)− (1− ρ2)F (x, y)
]]

And by merging the two equations and some algebra we get the following expressions for
the moments

E[XY |A]Pr(A) =
[x=b

x=a

[y=d

y=c

√
1− ρ2)φ(x)φ(

x− ρy√
1− ρ2

)

−ρxφ(x)Φ(
y − ρx√

1− ρ2
)− ρyφ(y)Φ(

x− ρy√
1− ρ2

)
]]

+ ρPr(A)
(9.6)

E[Y 2|A]Pr(A) =
[x=b

x=a

[y=d

y=c
ρ
√

1− ρ2φ(x)φ(
x− ρy√

1− ρ2
)

−ρ2xφ(x)Φ(
y − ρx√

1− ρ2
)− yφ(y)Φ(

x− ρy√
1− ρ2

)
]]

+ Pr(A)
(9.7)

Probability of Observing the Truncated Area A∫ b

a

∫ d

c

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)dydx

=
[x=b

x=a

∫ d

c

x
φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)dy
]
−
∫ b

a

∫ d

c

x
ρy − x
1− ρ2

φ(x)√
1− ρ2

φ(
y − ρx√

1− ρ2
)dydx

=
[y=d

y=c

[x=b

x=a
xφ(x)Φ(

y − ρx√
1− ρ2

)
]]
− Pr(A)

1− ρ2
(ρE[XY |A]− E[X2|A])

Pr(A) =

[y=d

y=c

[x=b

x=a
xφ(x)Φ( y−ρx√

1−ρ2
)
]]

1 + 1
1−ρ2 (ρE[XY |A]− E[X2|A])

(9.8)
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Evaluation of the Truncated Moments

In order of get an understanding of how truncation a�ects the moments we will show the
change for the moments by plotting some examples similar to what we did with the betas
in Figure 5.1. We will consider the truncation on two di�erent bivariate Gaussian distribu-
tions, the standardized distribution and one where the variances are set to two and three.
Both of the distribution has correlation equal to 0.5 and unconditioned expectations equal
to zero. The moments are calculated in R by using the expression for the moments above,
while Pr(A) is calculated by pmnorm from the package mnormt.

Figure 9.1 shows the truncated standardized Gaussian distribution with correlation equal
to 0.5. The upper plot shows the change in correlation and the variances for the standard-
ized bivariate Gaussian distribution as the lower truncated is moved from the 0.95 quantile
towards 1 on both its margins, while the lower plot gives the expectations under similar
conditions. We only see one value for the expectation and the variances since these are
equal throughout the whole axis.

Figure 9.2 has the same truncation as the one in Figure 9.1, but the covariance matrix
is changed. Now the value for the correlation is still equal to 0.5, but the values for the
variance is 2 and 3. From these plots it is obviously that when the lower truncation is
increasing the value for the expectation is also increasing and the values for the correlation
and variances is decreasing.

And �nally Figure 9.3 shows the change in correlation and the variances for the distri-
bution mentioned above, only now the truncation is given with both upper and lower
truncation and is relaxed along the x-axis resulting in increasing probability of A. In the
last case we have not plotted the expectations as these have a constant value of zero under
the truncation described above. As we can see on the plots the moments is approaching
the global values for the moments as the truncation are removed.
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Change for the Conditional Moments
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Figure 9.1: Change in moments and lower truncation on a standardized Gaussian
distribution



108 CHAPTER 9. APPENDIX A: ADDITIONAL THEORY

Change for the Conditional Moments
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Figure 9.2: Change in moments and lower truncations on a bivariate Gaussian
distribution
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Change for the Conditional Moments
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Figure 9.3: Change in moments and truncations(upper and lower) on two bivariate
Gaussian distributions with di�erent variance and correlation
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Appendix B: Figures and Tables of Less

Importance

Mean Var Median Kurtosis Skewness
Oslo Børs Benchmark Index 0.00 0.96 0.09 0.10 -0.27

Aker Solutions 0.01 1.01 0.01 2.71 0.15
DNB -0.00 0.98 -0.02 1.19 0.04

Fred Olsen Energy 0.00 0.99 0.00 2.01 -0.42
Frontline 0.00 1.01 0.01 8.37 -0.40

Norsk Hydro 0.01 0.98 0.03 0.58 -0.10
Orkla 0.00 1.01 0.04 3.54 -0.42

Petroleum Geo Services 0.02 0.99 0.01 0.93 -0.06
Prosafe 0.00 0.98 0.01 0.45 -0.01

Renewable Energy Corporation 0.01 1.01 -0.01 4.13 -0.36
Royal Caribbean Cruises 0.00 0.98 0.01 1.73 0.13

Schibsted 0.00 0.98 0.00 2.76 0.15
Seadrill 0.00 0.99 0.07 0.65 -0.19

Songa O�shore 0.01 1.04 0.04 8.60 -0.92
Statoil 0.00 1.01 0.01 1.93 -0.42

Storebrand 0.00 1.00 -0.00 2.12 -0.04
Telenor 0.01 1.01 0.03 3.55 0.18

TGS NOPEC Geophysical Company 0.01 1.03 0.00 4.96 -0.43
Yara International 0.00 0.98 0.01 0.59 -0.19

Table 10.1: Summary of GARCH-�ltered data concerning the Oslo Stock Exchange
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Figure 10.1: Scatterplot between OSEBX and stocks (1/3)



113

Figure 10.2: Scatterplot between OSEBX and stocks (2/3)
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Figure 10.3: Scatterplot between OSEBX and stocks (3/3)
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Figure 10.4: Scatterplot between GARCH-�ltered returns for stocks (1/2)
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Figure 10.5: Scatterplot between GARCH-�ltered returns for stocks (2/2)
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Figure 10.6: Scatterplot between marginal transformed returns for stocks (1/2)
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Figure 10.7: Scatterplot between marginal transformed returns for stocks (2/2)
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Figure 10.8: Change for the local beta on non GARCH-�ltered stock returns for 5 stocks
and mean calculated on 18 stocks.
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Figure 10.9: A 90% con�dence interval for the Local Gaussian Correlation between the
OSEBX index and the price of Crude Brent(USD)
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Figure 10.10: A 90% con�dence interval for the Local Gaussian Correlation between the
OSEBX index and the USD/NOK
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Figure 10.11: A 90% con�dence interval for the Local Gaussian Correlation between the
OSEBX index and the price of Crude Brent(NOK)
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