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Abstract—A new derivative-free optimization method for
unconstrained optimization of partially separable functions
is presented. Using average curvature information computed
from sampled function values the method generates an average
Hessian-like matrix and uses its eigenvectors as new search
directions. For partially separable functions, many of the
entries of this matrix will be identically zero. The method is able
to exploit this property and as a consequence update its search
directions more often than if sparsity is not taken into account.
Numerical results show that this is a more effective method for
functions with a topography which requires frequent updating
of search directions for rapid convergence.

The method is an important extension of a method for non-
separable functions previously published by the authors. This
new method allows for problems of larger dimension to be
solved, and will in most cases be more efficient.

Keywords-Generating Set Search, Derivative-Free Optimiza-
tion, Partial Separability, Sparsity.

I. I NTRODUCTION

Continuous optimization is an important area of study,
with applications in statistical parameter estimation, eco-
nomics, medicine, industry — simply put, anywhere a math-
ematical model can be used to represent some real-world
process or system which is to be optimized. Mathematically,
we can express such a problem as

min
x∈D⊆Rn

f(x), (1)

wheref is the objective function, based on the model which
is defined on the domainD. These models can range from
simple analytic expressions to complex simulations. Well
known optimization methods such as Newton’s method use
derivatives to iteratively find a solution. These derivatives
must be provided, either through explicit formulas/computer
code, or, for instance, automatic differentiation.

Suppose, however, that the objective function is pro-
duced by some sort of non-differentiable simulation, or
that it involves expressions which can only be computed
numerically, such as the solution to differential equations,
integrals, and so on. In this case derivatives might not exist,
or they may be unavailable if the numerically computed
function is subject to some kind of adaptive discretization
and truncation and therefore is non-differentiable, unlike the

underlying mathematical function. In these cases derivative-
based methods are not directly applicable, which leads to the
need for methods that do not explicitly require derivatives.
For an introduction to derivative free methods the reader is
referred to [1].

Generating set search (GSS) methods are a subclass
of derivative-free methods for unconstrained optimization.
These methods can be extended to handle constraints, but
we will focus on the unconstrained case when the domain
D in the problem (1) is equal toRn. A comprehensive
introduction to these methods can be found in [12]. In their
most basic form these methods only use function values
and do not collect any information such as average slope or
average curvature information. Computing this information,
however, can significantly speed up convergence, and this is
done in the methods presented in [2], [3], [4].

In addition, information about the structure of the function
known a priori can also be useful. Suppose that the objective
function f can be written as a sum of element functions,

f =

m
∑

i=1

fi,

where each element function has the property that it is un-
affected when we move along one or more of the coordinate
directions. For example, we might have

f(x1, x2, x3) = f1(x1, x2) + f2(x2, x3). (2)

Then, the function is said to be partially separable [9] and
we say thatfi has a large null space. Iff is partially
separable and twice continuously differentiable, then its
Hessian matrix,

∇2f(x) =









∂2f

∂x2

1

· · · ∂2f
∂x1∂xn
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...
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∂xn∂x1

· · · ∂2f
∂x2

n









,

will be sparse. For the function (2) the Hessian element
∂2f

∂x1∂x3

will be zero. If the function (2) is not twice contin-
uously differentiable, then the matrix of the corresponding
finite differences, that is, the matrix with



[

f(x1 + h, x2, x3 + k)− f(x1 + h, x2, x3)

−f(x1, x2, x3 + k) + f(x1, x2, x3)
]/

(hk) = 0, (3)

in position (i, j) = (1, 3) (and with similar expressions
for all other (i, j)-pairs) will be sparse for anyx, and any
nonzeroh and k, none of which have to be the same for
each(i, j)-pair. The sparsity structure is the same as for the
differentiable case, so that the expression (3) is identically
zero. This result can be extended to any partially separable
function, as proved in [5].

In [15] a GSS method which exploits such structure
is presented, which is applicable to the case where these
element functions are individually available.

In this paper we present a GSS method which takes
advantage of the structure of partially separable functions,
without requiring the element functions (which may or may
not be differentiable) to be available. It is an extension
of the paper [4]. We use the concept of average curvature
introduced in [4].

This paper is organized as follows: In section II we outline
a basic framework for GSS, as well as the previous work of
the authors on which the present paper is based. In Sections
III and IV we present our main contribution, which is the
framework for handling partially separable functions. Sec-
tion V contains numerical results, and concluding remarks
are given in Section VI.

II. GENERATING SET SEARCH USING CURVATURE

INFORMATION

We restrict ourselves to a subset of GSS methods, namely
sufficient decrease methods with2n search directions, the
positive and negative ofn mutually orthogonal directions,
of unit length. These directions will in generalnot be the co-
ordinate directions. A simplified framework for the methods
we consider is given in Figure 1. The univariate function
ρ must be nondecreasing and satisfylimx↓0

ρ(x)
x

= 0.
For simplicity, increasing the step length can be thought
of as multiplying it by 2, and decreasing it as dividing
by 2, although these rules may be more advanced. For
the formal requirements on these rules, see [12]. Given
mild requirements on the functionf the step lengthδ will
ultimately go to zero, and the common convergence criterion
for all GSS methods is thatδ is smaller than some tolerance.

As can be seen from the pseudo code in Figure 1, the
set of search directions can be periodically updated. In [4],
the authors present a method that computes average curva-
ture information from previously sampled points, assembles
this information in a Hessian-like matrix and uses the
eigenvectors of this matrix as the search directions, which
amounts to a rotation of the old search directions. Once this
rotation has been performed, the process restarts, and new
curvature information is computed, periodically resulting in

Given set of search directionsQ, step lengthδ and an
initial guessx← x0.
While δ is larger than some tolerance

Repeat untilx has been updated or allq ∈ Q have
been used:

Get next search directionq ∈ Q.
If f(x + δq) < f(x)− ρ(δ)

Updatex: x← x + δq.
Optionally increaseδ.

End if

End repeat
If no search direction provided a better function
value, decreaseδ.
Optionally updateQ.

End while

Figure 1. Simplified framework for a sufficient decrease GSS method.
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Figure 2. Location of sampled points used for curvature computation.

new search directions. It is shown that the efficiency of the
method can be greatly improved compared to just using the
coordinate directions as the search directions throughout.

The computation of curvature information can be done
in the following way, which is a slight modification of
the methodology presented in [4]. Consider Figure 2, and
assume that the current point is the point markeda, and
that the next two search directions in the repeat-loop in the
pseudo code are the directions shown,q1 and q2. When
searching along two directions in a row, there are four
possible outcomes. Success-success (both the search along
q1 andq2 produce function values which satisfy the sufficient
decrease condition), success-failure (the search alongq1

produces a sufficiently lower function value, but the search
alongq2 does not), failure-success, and finally failure-failure.
In all of these four cases, by computing the function value
at a fourth point, the function values at four points in a
rectangle can be obtained. The details are given in Table I.
The function values at four such pointsa, b, c andd can be
inserted into the formula

f(c)− f(b)− f(d) + f(a)

‖b− a‖ ‖d− a‖ . (4)

If the objective function is twice continuously differentiable,
then (4) is equal toqT

1 ∇2f(x̂)q2, where x̂ is some point
within the rectangleabcd. If the function is not twice con-
tinuously differentiable, (4) captures the average curvature



Outcome Notes
SS The search alongq1 moves the current best point

to b, and the search alongq2 moves the current best
point toc. The function value atd must be computed
separately.

SF The search alongq1 moves the current best point
to b, and the search alongq2 computes the function
value atc, but does not move the current best point.
The function value atd must be computed separately.

FS The search alongq1 computes the function value at
point b, but does not move the current best point. The
search alongq2 computes the function value at point
d. The function value at pointc must be computed
separately.

FF Neither the search alongq1 norq2 update the current
best point, but the function values at pointsb andd

are obtained. The function value at pointc must be
computed separately.

Table I
THE FOUR POSSIBLE OUTCOMES WHEN SEARCHING ALONG TWO

CONSECUTIVE DIRECTIONS. S MEANS SUCCESS, F MEANS FAILURE.

in the rectangle.
The rectangle lies in the plane spanned by the search

directionsq1 andq2 since these were used consecutively. By
successively reordering how the “get next search direction”
statement considers the directions inQ, one can obtain cur-
vature information with respect to all then(n−1)/2 possible
different combinations of search directions, in a finite and
uniformly bounded number of steps, which depends onn
since there areO(n2) elements of curvature information
which must be assembled. (For this reason, the method is not
suitable forn larger than about30, but exploiting structure
can allow for much largern, as will be explained in Section
III.)

The information can be assembled in a matrixCQ, so that
CQ, in the case of a twice continuously differentiablef ,
containsqT

i ∇2f(x̂)qj in positions(i, j) and(j, i), which is
curvature information with respect to the coordinate system
defined by then directions inQ. (Note that the point̂x
is different for each(i, j)-pair.) The diagonal elements of
CQ must be computed separately, for instance when the step
length is reduced, since the preceding repeat-loop, combined
with the currentf -value then gives the function values at
three equally spaced points on a straight line for alln search
directions.

Once the matrixCQ is complete, it is subjected to the
rotation

C ← QCQQT , (5)

whereQ is the matrix with then unique search directions
as its columns, ordered so that they correspond to the
ordering of the elements inCQ. C now contains curvature
information with respect to the standard coordinate system.

The search directions inQ are then replaced with the
positive and negative of the eigenvectors ofC.

III. E XTENSION TO SEPARABLE FUNCTIONS

Suppose the functionf is partially separable. As men-
tioned in the introduction, the Hessian will be sparse iff is
twice continuously differentiable, and if the Hessian is not
defined, the matrix of average curvature information will
be sparse [5]. Letr be the number of nonzero elements in
the lower diagonal of these curvature matrices. Then, even
though the matrixC can be restricted to have this sparsity
pattern, the matrixCQ cannot be assumed to be sparse, since
we cannot expect the finite differences (4) to be zero for
arbitrary search directionsQ. However, sparsity can still be
exploited.

Define the Kronecker product. Given two matrices
A ∈ R

m×n and B, then the Kronecker productA⊗B is
given as

A⊗B =







A11B · · · A1nB
...

...
Am1B · · · AmnB






. (6)

The Kronecker product is useful in the present context
because of the relation

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C). (7)

Herevec(X) andvec(C) are vectors containing the entries
of the matricesX andC stacked row-wise [11].

Using (6) and (7) the rotation (5) can be written implicitly
as

(QT ⊗QT )vec(C) = vec(CQ). (8)

Since we impose a sparsity structure onC as well as
symmetry, all the entries in the upper triangle, as well as
all the zero entries ofvec(C) can be removed from (8),
resulting in the overdetermined equation system

(QT ⊗QT )Pcvec(C) = vec(CQ), (9)

where the vectorvec(C) contains ther elements ofC to
be determined, and then2 × r 0-1 matrixPc adds together
the columns corresponding to upper and lower diagonal
elementsCij and Cji for all off-diagonal elements, and
deletes the columns corresponding to zero entries inC. For
example, ifC is to be tridiagonal and is of size3× 3, that
is,

C =





× ×
× × ×
× ×



 ,



then it has one zero element and five nonzero elements in
the lower triangle, so thatPc has size9× 5 and reads:

Pc =





























1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1





























. (10)

Since the equation system (9) is overdetermined, we can
selectr rows from the coefficient matrix and the right-hand
side, resulting in ther × r equation system

Prow(QT ⊗QT )Pcvec(C) = Prowvec(CQ), (11)

whereProw is an r × n2 0-1 matrix which selectsr rows.
Prow will be the first r rows of a permutedn2 × n2

identity matrix. The resulting equation system (11) will be
significantly smaller than its counterpart (8) when a sparsity
structure is imposed onC, and the corresponding effort
required to compute the right-hand side is similarly smaller.
If there are onlyO(n) elements to be determined, then the
number of steps needed to compute the entire right-hand side
Prowvec(CQ) does not depend onn, which does away with
the practical limit on dimension discussed in the previous
section.

Exactly which rowsProw should select in order to create
a well-conditioned coefficient matrix is nontrivial, and is
sometimes called the subset selection problem in the liter-
ature (see e.g., [7]). One suitable solution procedure is to
determine these rows by computing a strong rank-revealing
QR factorization of the transpose ofProw(QT ⊗ QT ) and
selecting the rows chosen by the theory and algorithms of
Gu and Eisenstat, presented in [10]. An implementation of
this selection procedure can be found in [14].

IV. CONVERGENCE THEORY

The method presented so far, being a sufficient decrease
method with 2n search directions which are the positive
and negative ofn mutually orthogonal directions, adheres to
the algorithmic framework and convergence theory of Lucidi
and Sciandrone [13]. We can therefore state the following
theorem, without proof.

Theorem 1:Supposef is continuously differentiable,
bounded below and the level setL(x) =

{

y
∣

∣

∣
f(y) ≤ f(x)

}

is compact. Then, the method converges to a first-order
stationary point.

We now prove that iff is twice continuously differen-
tiable, then the computed curvature matrixC converges to
the true Hessian in the limit.

Define
A = Prow(QT ⊗QT )Pc.

Let f be twice continuously differentiable and the Hessian
Lipschitz-continuous in the sense that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖. (12)

Definer pairs of vectorsp(k), q(k) k = 1, . . . , r, all of unit
length, such that thekth row of A is equal to

(

p(k)T ⊗ q(k)T
)

Pc. (13)

This means some of these vectors will be equal, but the pairs
will be unique. In addition letr pointsxk, k = 1, . . . , r, be
such that elementk of Prowvec(CQ),

(Prowvec(CQ))k = p(k)T∇2f(xk)q(k).

Let η be such that

max
i,j
‖xi − xj‖ = η.

Let N be the neighborhood of points such that

N =
{

x
∣

∣

∣
‖x− xk‖ ≤ η, k = 1, . . . , r

}

.

For convenience, let us restate (11), as

Avec(C) = Prowvec(CQ). (14)

Lemma 2:AssumeA is invertible. LetC be the symmet-
ric n×n matrix constructed from the solution of (14). Then,
there exists anx ∈ N such that

‖∇2f(x)− C‖ ≤ ‖A−1‖nLη.

Proof. Let us rewrite the contents ofProwvec(CQ):

(Prowvec(CQ))k

= p(k)T∇2f(xk)q(k).

= p(k)T
(

∇2f(x) +∇2f(xk)−∇2f(x)
)

q(k)

=
[

p(k)T∇2f(x)q(k)
]

+
[

p(k)T (∇2f(xk)−∇2f(x))q(k)
]

. (15)

Then, and in addition definingh = vec(∇2f(x)), equation
(14) can be written as

Avec(C) = Ah + ǫ. (16)

Here(Ah)k is the expression in the first parenthesis of (15),
and ǫk is the expression in the last parenthesis of (15). If
we consider the norm of a single element inǫ, this is

|ǫk| ≤ ‖p(k)‖‖∇2f(xk)−∇2f(x)‖‖q(k)‖
≤ Lη, (17)

using (12) and the fact thatp andq have unit length. When
solving (14), we get

vec(C) = h + A−1ǫ.



If we consider a single element ofvec(C) and h we can
write

|(vec(C))k − hk| ≤ ‖A−1‖|ǫk|,
which can also be written

|Cij − (∇2f(x))ij | ≤ ‖A−1‖|ǫk| (18)

Using the property of the 2-norm that

‖A‖2 ≤ n max
i,j
|aij |,

as well as (17) we can extend (18) to

‖C −∇2f(x)‖ ≤ ‖A−1‖nLη,

which completes the proof.�
We must now prove that there always exists a matrixA with
rankr, and that the term‖A−1‖ is uniformly bounded. Since
A is made up of the rows of the matrix(QT ⊗QT )Pc, there
will be a choice of rows which imply full rank if the matrix
(QT ⊗QT )Pc has rankr.

Lemma 3:For any orthogonal matrixQ and any sparsity
structure to be imposed onC, the matrix (QT ⊗ QT )Pc

has full rankr, and its smallest singular valueσr satisfies
σr ≥ 1.
Proof. Since Q is orthogonal, so isQT , and also
(QT ⊗QT ). For any sparsity structure, right-multiplying
(QT ⊗ QT ) with Pc either adds together two columns, or
deletes columns. Consequently, the columns of the resulting
matrix (QT ⊗ QT )Pc are orthogonal (which implies full
rank), and have either length one or length

√
2. It then

follows that the singular values are equal to the length of
the column vectors, either 1 or

√
2. �

Lemma 4:Prow can be chosen such that for a givenn,
the smallest singular value ofA is uniformly bounded below,
and consequently that‖A−1‖ is uniformly bounded.
Proof. This result follows from the theory and methods of
Gu and Eisenstat [10], which guarantee that the rows ofA
(or equivalently the columns ofAT , as is done in [10]) can
be selected from the rows of(QT ⊗QT )Pc in such a way
that the smallest singular value ofA is larger than or equal
to the smallest singular value of(QT ⊗QT )Pc, divided by
a low order polynomial inn andr. Sincen andr are given
and the smallest singular value of(QT ⊗QT )Pc is always
larger than or equal to 1, the result follows.�

Finally, we show thatη goes to zero as the GSS method
converges to a stationary point.

Lemma 5:Assume that the step length expansion factor
is uniformly bounded by, say,M . Then, as the step length
δ go to zero, so doesη.
Proof. That the step lengthδ goes to zero is an integral part
of the convergence theory of GSS methods and is proved in
e.g. [12]. η is the diameter of neighborhood of pointsN .
Since all the points inN lie within the rectangles of points
used in the formula (4), it follows thatη must be smaller
than maximum possible distance between the first and the

last corner point used for computingC. Suppose, that when
the computation ofC is started the step length isδmax, and
that the maximum possible number of step length increases
beforeC is computed ist. Then we have

η ≤
t

∑

k=0

δmaxM
k−1.

The only variable in this expression isδmax, and we know
it goes to zero as the method converges. Consequently, so
mustη. �

This allows us to state the following theorem:
Theorem 6:Assume thatf is twice continuously differ-

entiable, bounded below and that the level setsL(x) are
compact. Then, as the method converges,C converges to
the true Hessian.
The proof follows from the preceding Lemmas. This result,
together with the preliminary numerical results in [6] allows
us to conjecture that the method actually converges to
second-order stationary points.

V. NUMERICAL RESULTS

For the sake of brevity, there are many common imple-
mentation details for GSS methods which have been omitted
in this paper. For instance, it is possible to have individual
step lengths (e.g.,n step lengths, one for each positive-
negative search direction pair), to compute an approximate
gradient and performing Newton-like steps, have variations
on how step length(s) can be increased and decreased,
chooseρ in several ways, and so on. These all affect
the numerical performance of the method. The purpose
of the present paper is, however, to show the benefits of
exploiting sparsity when computing curvature information
in the context of GSS methods. For this reason, it is the
relative increase in performance when exploiting sparsity
that is important in our numerical experiments, which used,
among other things,n individual step lengths. The results
are shown in Table II. The table reads, from left to right,
the function name, and the dimensionn. The functions are
all differentiable, so the columnr indicates the number of
nonzero elements in the Hessian matrix. Then follow the
number of function evaluations required to reduce the ob-
jective function value from the recommended initial solution
to 10−5, first for the method exploiting sparsity, and finally
for the method not exploiting sparsity. The functions all have
an optimal objective function valuef∗ = 0.

As one can see, one sometimes can get significant sav-
ings when exploiting sparsity, for example for the ex-
tended Rosenbrock function, CRAGGLVY, MOREBV and
TQUARTIC. The reason for this is that the new method is
able to rotate its search directions more often, which adapts
them to the local topography of the objective function.

If we look at the extended Rosenbrock function there
are several advantages to exploiting sparsity. Firstly there
are 3n/2 nonzero elements in the Hessian, which means



Function n r Sparsity No sparsity
BRYBND 10 49 936 1100

50 329 4111 3774
CHNROSNB 10 19 2103 2971

25 49 7400 15451
50 99 26385 52574

CRAGGLVY 4 5 118 481
DECONVU 61 767 3232 15790
DQRTIC 10 9 335 471

50 49 2991 3774
Ext. Rosenbr. 16 24 3369 6407

32 48 6945 16577

64 96 13889 50635
FREUROTH 10 19 912 1226
LIARWHD 36 71 3602 5257
MOREBV 10 27 363 521

50 147 1320 5769
SBRYBND 10 49 747 736
SPARSQUR 100 1232 2878 2988
TQUARTIC 50 99 9022 14176
TRIDIA 20 39 1065 1453

30 59 1662 2791
50 99 2843 5621

Table II
NUMBER OF FUNCTION FUNCTION EVALUATIONS REQUIRED TO

REDUCE THE OBJECTIVE FUNCTION VALUE TO10−5 , STARTING AT THE

RECOMMENDED INITIAL SOLUTION, FOR SELECTED FUNCTIONS FROM
THE CUTER TEST SET[8].

that in relative terms,C can be computed increasingly
cheaply asn grows. Secondly, the Hessian is block diagonal,
which implies that it has element functions which can be
optimized independently. As a consequence the eigenvectors
have a block structure as well, which, since there aren step
lengths, actually means that the method exploiting sparsity
automatically optimizes the element functions independently
of each other. This is reflected in the fact that the number of
function evaluations needed to obtain a solution grows more
or less linearly withn, as opposed to when not exploiting
sparsity, where the growth in function evaluations is almost
quadratic.

If the topography is such that frequent updating of the
search directions is not important, then the results are more
similar for the two algorithms.

VI. CONCLUSION

We have presented a GSS algorithm which exploits the
partial separability of the objective function. The method
is provably convergent to first-order stationary points, and
based on its theoretical and numerical properties we conjec-
ture that it is convergent to second-order stationary points.
Numerical results indicate that exploiting separability can
lead to significant improvement in convergence, in many
cases.
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