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Preface

This thesis is organized as follows.

Part I. The first part consists of a brief introduction to combinatorial commutative

algebra in general, and also a brief introduction to this thesis. In Chapter 1 we give

the basic background for the theory of Stanley–Reisner rings, simplicial complexes

and resolutions of such rings. We will also introduce the consept of depth of a

graded S-module, and its relation to its minimal free resolution.

In Chapter 2, we introduce the notion of a polarization of a general monomial

ideal. This technique reduces many questions about monomial ideals in general to

Stanley–Reisner rings, where we can use combinatorial methods. Since there are

many possible ways of polarizing a monomial ideal, interesting questions about

polarizations itself occur. We therefore also include a brief introduction to defor-

mation theory, which will be a tool used to study different polarizations.

Part II. The second part consists of three papers. Paper A is accepted for publi-

cation and will appear in Journal of pure and applied algebra, Volume 217, Issue

5, May 2013, Pages 803–818. Preprints of Paper B and Paper C are available on

arXiv, and final versions will soon be submitted for publication.
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Part I

Introduction and background





Chapter 1

Introduction

In the field of commutative algebra and algebraic geometry, one of the main goals

is to understand the connection between algebra and geometry. One such approach

would be to describe all projective varieties up to isomorphism classes, and simi-

larly, to describe all graded rings S/I up to isomorphism classes. This is of course

too ambitious, and most studies are restricted to some smaller classes of varieties

or rings. One strategy for such a classification is to set an invariant of varieties,

or ideals, and thereafter study all varieties or ideals with this invariant. Usually,

this invariant is the Hilbert polynomial and the Hilbert scheme is the family of

varieties with a given Hilbert polynomial. Other important invariants, which are

refinements of the Hilbert polynomial are the Hilbert function, the Betti numbers

and the graded minimal free resolution. A classic result by Macaulay [11] says

that the Hilbert function of S/I is the same as the Hilbert function of the quotient

S/in<(I), where in<(I) is the initial ideal of I . So the problem of calculating

the Hilbert polynomial of a quotient ring S/I is reduced to the case of finding the

Hilbert polynomial of quotients S/J of S by a monomial ideal J .

Combinatorial commutative algebra is the research area where one uses com-

binatorial methods or structures to describe the algebra or algebraic properties of

commutative rings or modules over a commutative ring. One of the most suc-

cessful topics is the theory of Stanley–Reisner rings, where there is a one-to-one

correspondence between simplicial complexes and square-free ideals. In this case

there is a formula, called Hochster’s formula, which is a very nice example of how

the combinatorial structure can be used to compute the Betti numbers of a Stanley–

Reisner ring.

In this thesis, we will study two different areas of combinatorial commutative

algebra. In paper A, we study square-free modules. Square-free modules is a gen-

eralization of square-free ideals, and was introduced by Kohij Yanagawa in the

article [18]. Square-free modules are always supported on a simplicial complex.

We study square-free Cohen–Macaulay modules supported on a connected simpli-

cial graph. Such modules, which are what we will call locally of rank 1, behave

similarly as line bundles on curves. We investigate this relationship and prove that
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many results for line bundles on curves also hold for these modules on a graph.

In paper B and C, we study another topic of combinatorial commutative alge-

bra. Namely, polarizations. In general, if I is a monomial ideal (for instance the

initial ideal of a graded ideal), then we want to produce a square-free monomial

ideal Ĩ such that I and Ĩ have the same numerical invariants (i.e. Betti numbers,

Hilbert functions, etc.). Now Ĩ corresponds to a simplicial complex, and it is pos-

sible to use the techniques from the theory of Stanley–Reisner rings to produce

these invariants. There is a standard way of making such an ideal, but in general

this is an ideal of a very big polynomial ring, and for practical purposes, this may

not be the best way of calculating the Betti numbers of I . Another approach is to

find a special kind of monomial ideal with the same invariants. One such ideal is

the generic initial ideal gin<(I). This ideal is a Borel-fixed ideal, and there are

methods for producing a minimal free resolution for such ideals, for instance by

the Eliahou–Kervaire resolution (see [14]). There are also other cellular resolution

of Borel-fixed ideal that are generated in one degree. This is done by Sinefakopou-

los in [16] and by Nagel and Reiner in [13]. The construction of Nagel and Reiner

is quite interesting, since they use a new polarization of the ideal for making the

cellular resolution. In paper B, we study the different polarizations of powers of

the maximal ideal. When the polynomial ring has only three variables, we show

that every cellular minimal free resolution of the ideal md comes from such a po-

larization. Recently, there has been some other work on cellular resolutions of this

and other monomial ideals. In the paper [7], of Dochtermann, Joswig and Sanyal,

the authors uses different arrangement of tropical hyperplanes to construct minimal

cellular resolutions of the ideal md. This interesting technique extends the work of

Sinefakopoulos, and its connection to our work on different polarizations might be

interesting to explore. See also [9] and [6] for more related work on cellular res-

olutions. Furthermore, we also study polarizations of square-free ideals and give

some new results. In paper C, we also study different polarizations of powers of the

maximal ideal. This time, we study the different polarizations as different points

in their Hilbert scheme. We show that some polarizations are smooth points in the

Hilbert scheme, and we calculate the dimension of their components.



Chapter 2

Stanley–Reisner rings and
Cohen–Macaulay modules

Here we will give a brief introduction to this field of combinatorial commutative

algebra and the theory of Stanley–Reisner rings. For more details, we suggest the

book of Miller and Sturmfels [12], the book of Bruns and Herzog [4], the book of

Stanley [17], and the book of Eisenbud [8].

2.1 Definitions and basic results

Let [n] = {1, 2, . . . , n}. A subset F ⊆ [n] is called a face.

Definition 2.1. A simplicial complex is a collection of faces Δ, such that if F ∈ Δ
and G ⊆ F , then G ∈ Δ.

A maximal face is called a facet. A simplicial complex is completely specified

by its facets.

Let S := k[x1, x2, . . . , xn] be the polynomial ring over a field k.

We often identify each face F ∈ Δ with its vector in {0, 1}n which has entry

1 in the spots where i ∈ F and 0 otherwise. This convention allows us to write

xF =
∏

i∈F xi.

Definition 2.2. The Stanley–Reisner ideal of the simplicial complex Δ is the

square-free monomial ideal

IΔ =
(
xF |F �∈ Δ

)
generated by monomials corresponding to non-faces F of Δ. The Stanley–Reisner

ring of Δ is the ring k[Δ] := S/IΔ

Example 2.3. Let Δ be the simplicial complex on [4] with facets {1, 2, 3}, {1, 4}
and {3, 4}. Then we can draw Δ as
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1

34

2

We have that {1, 3, 4} and {2, 4} are the minimal non-faces, so that

IΔ = (x1x3x4, x2x4) .

Definition 2.4. Let Δ be a simplicial complex. Then we define the Alexander dual

of Δ to be the simplicial complex

Δ∗ = {F c |F �∈ Δ}.

If IΔ is the Stanley–Reisner ideal of Δ, then IΔ∗ is called the Alexander dual of

IΔ.

Example 2.5. If Δ is as in Example 2.3 above, then Δ∗ is the simplicial complex

with facets given by the complements of the minimal non-faces of Δ. This is {2}
and {1, 3}, and we can draw Δ∗ as

1

34

2

We have that {4}, {1, 2} and {2, 3} are the minimal non-faces of Δ∗. So we

have that

IΔ∗ = (x4, x1x2, x2x3) .

We also observe that IΔ∗ = (x1, x3, x4) ∩ (x2, x4), and that IΔ = (x4) ∩
(x1, x2)∩ (x2, x3). So the Alexander duality of square-free ideals interchanges the

minimal generators and the irreducible components of the ideal.

If M a finitely generated graded S-module, then it is possible to find a graded

free resolution of M :

0 ←− F0
ϕ1←− F1

ϕ2←− F2 ←− · · · ϕl←− Fl ←− 0.

That is, a set of free modules Fi =
⊕

j S(−j)βij , and homogeneous maps ϕ such

that coker(ϕ1) ∼= M and ker(ϕi) = im(ϕi+1). If the modules Fi are chosen to

be of the smalles possible ranks, the resolution is called a minimal free resolution.

In this case, the numbers βij are called the graded Betti numbers of M , and l =
max{i |Fi �= 0} is called the projective dimension of M . We write pdim(M) = l.
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Since the polynomial ring is Zn-graded, we may consider Zn-graded S-

modules. If M is a Zn-graded S-module, then it is possible to find a Zn-graded

minimal free resolution of M as above, with Fi =
⊕

aj
S(−aj)

βi,aj , where

aj ∈ Zn. The numbers βi,aj are called the Zn-graded (or multigraded) Betti num-

bers of M .

Example 2.6. If Δ is the simplicial complex from Example 2.3 above, then the

Stanley–Reisner ring S/IΔ is a Z4-graded S-module, and it has a minimal free

resolution gives as

S
[x1x3x4 x2x4]←−−−−−−− S(−(1, 0, 1, 1))⊕ S(−(0, 1, 0, 1))

⎡
⎣ x2
−x1x3

⎤
⎦

←−−−−−− S(−(1, 1, 1, 1)).

Since the twists occuring in a minimal free resolution of a Stanley–Reisner ring

are always an element of {0, 1}n, we can identify the twists by faces σ ∈ [n]. For

instance, we have that {1, 0, 1, 1} can be identified with the face {1, 3, 4} ∈ [4].

One can use reduced homology or cohomology of simplicial complexes to

compute the multigraded Betti numbers of a Stanley–Reisner ring k[Δ] = S/IΔ.

This is called Hochster’s formula and it comes in two versions. Before we state the

theorem, we need one more definition

Definition 2.7. If Δ is a simplicial complex, and if F is a face of Δ, then we define

the link of F to be

lkΔ(F ) = {G ∈ Δ |F ∪G ∈ Δ and F ∩G = ∅}.
Theorem 2.8 (Hochster’s formula). All non-zero Betti numbers of S/IΔ lie in
square-free degrees σ (i.e. is an element of {0, 1}n), and

βi,σ(S/IΔ) = dimkH̃i−2(lkΔ∗(σc); k) = dimkH̃
|σ|−i−1(Δ|σ; k).

2.2 Cohen–Macaulay modules

If S = k[x1, x2, . . . , xn], and if M is a finitely generated graded (or multigraded)

S-module. Then the projective dimension of M is ≤ n by Hilbert’s syzygy theo-

rem [8, Theorem 1.13]. The projective dimension of M can be calculated by the

algebraic invariant called depth. Here we present some basic definitions and results

from the book of Bruns and Herzog [4].

Definition 2.9. An element y ∈ S is called an M -regular element if yz = 0 for

z ∈ M implies that z = 0. A sequence of elements (s1, s2, . . . , sr) in S is called a

regular M -sequence if the following are satisfied:

(i) si is an M/(s1, . . . , si−1)M -regular element for i = 1, . . . , r and
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(ii) M/(s1, . . . , sr)M �= 0

We will only be interested in the case where the si’s are homogeneous elements

of positive degrees. So (ii) automatically holds because of Nakayama’s lemma.

Definition 2.10. Let M be a graded finitely generated S-module. Then we define

depth(M) = max {r | (s1, . . . , sr) is a regular M -sequence} ,

where all si are homogeneous of positive degree.

The inequality depthM ≤ dimM always holds.

Definition 2.11. Let M be a finitely generated S-module. If depthM = dimM
then M is said to be Cohen–Macaulay.

The depth of an S-module can be read of a minimal free resolution by its

projective dimension. This is given by the following theorem.

Theorem 2.12 (Auslander–Buchsbaum). Let S = k[x1, . . . , xn] be the polynomial
ring in n variables, and let M be a finitely generated graded S-module. Then

pdim(M) = n− depth(M).

If M = S/IΔ is a Stanley–Reisner ring, then we can use Hochster’s formula

to calculate its projective dimension, and use the Auslander Buchsbaum theorem

to calculate its depth. So it is clear that it is possible to deside if S/IΔ is Cohen–

Macaulay by analyzing the simplicial complex Δ. This is done by Reiner’s Crite-

rion [4, Corollary 5.3.9].

Theorem 2.13. Let Δ be a simplicial complex. Then the following are equivalent:

(a) k[Δ] is Cohen–Macaulay

(b) H̃i(lkF ; k) = 0 for all F ∈ Δ and all i < dim lkF .

The Cohen–Macaulay property for rings and modules has turned out to be

quite important. From the Auslander–Buchsbaum theorem, we see that Cohen–

Macaulay modules has the shortest possible length, given a fixed dimension. So in

some sense, we can think of them as having the simplest possible algebraic struc-

ture. In paper A, we will study square-free Cohen–Macaulay modules supported

on a graph. Here the Cohen–Macaulay property is important to make an analogy to

the theory of line bundles on curves. We also give another equivalent description

of Theorem 2.13.



Chapter 3

Polarizations and
deformations

3.1 Polarizations

Let S = k[x1, . . . , xn] be the polynomial ring on n variables over a field k. If

I is a monomial ideal, then we are interested in finding a graded minimal free

resolution of I (or S/I). As explained in Chapter 2 above, there are techniques for

doing this in the case where I is the Stanley–Reisner ideal of a simplicial complex.

That is, if I is a square-free monomial ideal. The idea of a polarization of I is

to produce a square-free ideal Ĩ in a bigger polynomial ring S̃ such that the Ĩ has

the same numerical invariants as I . For instance, if I = (x2, y3), then we can

polarize the x-variable and the y-variable to produce an ideal Ĩ = (x1x2, y1y2y3)
in the polynomial ring S̃ = k[x1, x2, y1, y2, y3]. We can go the other way, by

depolarizing the ideal Ĩ as follows. Let J = (x1−x2, y1− y2, y1− y3) be an ideal

of S̃. Then S̃/J ∼= S and Ĩ ⊗
S̃
S̃/J ∼= I as an S-module. We want to be able to

use techniques for Stanley–Reisner rings to find a minimal free resolution of Ĩ as

an S̃-module, and tensor it by S̃/J to produce a minimal free resolution of I as an

S-module. Since tensoring is not exact, this will in general not produce a minimal

free resolution. However, if we require the sequence (x1 − x2, y1 − y2, y1 − y3) to

be a regular S̃/Ĩ-sequence, it will.

Definition 3.1. Let I be an ideal in S = k[x1, . . . , xn]. A polarization Ĩ of I is an

ideal in the polynomial ring

S̃ := k [x11, . . . , x1r1 , x21, . . . , x2r2 , . . . , xnrn ]

such that the sequence

σ = (x11 − x12, x11 − x13, . . . , x11 − x1r1 , x21 − x22, . . . , xn1 − xnrn)

is a regular S̃/Ĩ-sequence, and that Ĩ⊗ S̃/〈σ〉 ∼= I . The homomorphism ϕ : Ĩ −→
I is called the depolarization of Ĩ .
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Example 3.2. The standard way of polarizing an ideal is to replace every power

of a variable xdii in a monomial by the product xi1xi2 · · ·xidi . We will call this

polarization of an ideal I the standard polarization of I . For instance, if I =
(x21, x1x2, x1x3, x

2
2, x2x

2
3, x

3
3), then the standard polarization of I is the ideal

Ĩ = (x11x12, x11x21, x11x31, x21x22, x21x31x32, x31x32x33) .

When I is a Borel-fixed ideal generated in one degree, then in both [16] and

[13], a cellular minimal free resolution of I is produced. In the article [13], then

the polyhedral cell complex giving this cellular resolution is called the complex

of boxes. This complex is produced by introducing a new type of polarization.

Inspired by this work, we call this polarization for the box polarization. In a paper

by Yanagawa [18], it is shown that such a polarization exists for all Borel-fixed

ideals.

Example 3.3. This polarization uses an ordering of the varibles x1 < x2 < · · · <
xn. In general, a monomial m = xd1i1 x

d2
i2
· · ·xdrir , for i1 < i2 < · · · ir, is polarized

to the monomial

m = xi1,1xi1,2 · · ·xi1,d1xi2,(d1+1) · · ·xi2,(d1+d2) · · ·xir,d,

where d = d1+d2+ · · · dr. To make things clearer, we show this with an example.

Let I be the ideal I = (x21, x1x2, x1x3, x
2
2, x2x

2
3, x

3
3) from Example 3.2 above.

More precisely, we get the ideal

Ĩ = (x11x12, x11x22, x11x32, x21x22, x21x32x33, x31x32x33) .

This polarization is called the box polarization of I .

One of the differences of the two polarizations is explained in the following

example:

Example 3.4. Let I = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4). Then the standard

polarization of I is the ideal

IS = (x11x21, x11x31, x11x41, x21x31, x21x41, x31x41) ,

while the box polarization gives us the ideal

IB = (x11x22, x11x32, x11x42, x21x32, x21x42, x31x42) .

So the standard polarization does not change a square-free ideal, but the box polar-

ization does.

In paper B we study different polarizations of powers of the maximal ideal, and

also in particular polarizations of square-free versions of these.
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3.2 Deformations

Another observation about the standard polarization and the box polarization of the

ideal I in Example 3.2 and 3.3, is that they are both ideals of the same polynomial

ring, with the same graded Betti numbers. This means that they also have the same

Hilbert polynomial, and that they both corresponds to points of a common Hilbert

scheme. Every other polarization of I in this polynomial ring will also correspond

to a point of this Hilbert scheme. In paper C we calculate the tangent spaces of

the standard polarization and the box polarization of powers of the maximal ideal.

This is done by the language of deformation theory which we will recall here. For

more details, see [10] and [15].

The first theorem/definition is [10, Theorem 1.1]

Theorem 3.5. Let Y be a closed subscheme of the projective space X = Pn
k over

a field k. Then

(a) There exists a projective scheme H , called the Hilbert scheme, parametrizing
closed subschemes of X with the same Hilbert polynomial P as Y , and there
exists a universal subscheme W ⊆ X ×H , flat over H , such that the fibers
of W over closed points h ∈ H are all closed subschemes of X with the
same Hilbert polynomial P .

(b) The Zariski tangent space of H at the point h ∈ H corresponding to the
subscheme Y is given by H0(Y,NY/X), where NY/X is the normal sheaf of
Y in X

Example 3.6. In our case, we want to study different polarizations of the ideal

md = (x1, x2, . . . , xn)
d. Since both the standard polarization and the box

polarization of md lie in the polynomial ring S = k[x11, . . . , xnd], we take

X = Proj(S), and we take Y to be the closed subscheme Proj(S/Md), where

Md = (x11, x21, . . . , xn1)
d corresponds to the trivial polarization of md in S. Then

the standard polarization Pnd corresponds to the closed subscheme Proj(S/Pnd)
and the box polarization Bnd corresponds to the closed subscheme Proj(S/Bnd).

We want to calculate the tangent space of the points in the Hilbert scheme cor-

responding to different polarizations of the ideal md. This can be done by finding

all local deformations of the ideals. Such deformations are called first order defor-

mations. We present the basics from [10, Chapter 1.2].

Let D = k[t]/t2 denote the dual numbers. Let X be a scheme over k, and let

Y be a closed subscheme of X .

Definition 3.7. A deformation of Y over D in X is a closed subscheme Y ′ ⊆
X ′ = X ×D, flat over D, such that Y ′ ×D k = Y .

In our case, when X = Proj(S) and Y = Proj(S/I) for a homogeneous ideal

I , we can reformulate the definition to the following.
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Definition 3.8. A deformation of I over D in S is an ideal I ′ ⊂ S′ = S[t]/t2, with

S′/I ′ flat over D, such that (S′/I ′)⊗D k ∼= S/I .

The set of deformations over D can be given a module structure by the follow-

ing identification stated in [10, Proposition 2.3].

Proposition 3.9. To give a deformation I ′ ⊂ S′ of I over D as in Definition 3.8 is

equivalent to give an element ϕ ∈ HomS(I, S/I).

Since NY/X
∼= HomX(I,OY ), we can use the graded S-module

HomS(I, S/I) to calculate the tangent space of I in the Hilbert scheme H .

Proposition 3.10. Suppose that depthHomS(I, S/I) ≥ 2. Then

H0(NY/X , Y ) ∼= (HomS(I, S/I))0 ,

where (HomS(I, S/I))0 denotes the k-vector space consisting of elements of de-

gree 0.

When I is a polarization of md in the polynomial ring S = k[x11, . . . , xnd],
with d ≥ 2 and n ≥ 2, then the depth of HomS(I, S/I) is always greater than

or equal to 2. We can therefore calculate the dimension of the tangent space of

the subscheme corresponding to I by finding all deformations I ′ ⊂ S′ over D.

The next thing we are interested in, is to show if the polarization corresponds to

a smooth point in the Hilbert scheme H . There are two possible methods for

doing this, and both are used in paper C. The first is to find the dimension of the

component of the Hilbert scheme which contains Proj(S/I). If this is the same

as the dimension of the tangent space, then it must correspond to a smooth point.

This is possible for the box polarization, since in this case, Bnd is the initial ideal of

a determinantal ideal. For more information of determinantal ideals and Gröbner

basis of such see for instance [5] and [3]. The second method is to first find all

first order deformations I ′ ⊂ S′ over D. Then show that all such deformations

are also deformations over k[t]. That is, to show that all local deformations lift

to global deformations. We can actually calculate this since the relations between

the generators of a monomial ideal or in fact a Stanley–Reisner ideal are quite

simple. We will use this method for the standard polarization. We have been partly

motivated by some results on deformations of Stanley–Reiser rings by Altmann

and Christophersen. See for instance [1] and [2].
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