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ABSTRACT 

Variable selection is an important step in multivariate calibration in which the 

number of variables in the independent variable matrix is reduced by eliminating those that 

are not related to the response. Many methods based on different criteria have been 

developed for this purpose. Some of them include competitive adaptive reweighted 

sampling (CARS), subwindow permutation analysis (SPA) and random forest (RF) which 

can be implemented prior to the construction of both regression and classification models. 

When applied to metabolomics datasets, variable selection can aid in the discovery of 

potential biomarkers for a particular disorder. 

 

In this study, the mechanism of the three abovementioned methods described in the 

literature has been investigated and compared. Their performance when applied to three 

different metabolomics datasets for multivariate classification was also studied. Although 

the most favorable method varied for each dataset, model prediction performance was 

found to improve when variable selection was carried by means of any of the methods. 

However, because the parameter settings for the methods were set by default for this 

comparison, an optimization of these is recommended to obtain a more appropriate 

comparison. 

 

In an attempt to optimize the variable selection stage for the creation of 

classification models for the three metabolomics datasets of interest, the original CARS 

algorithm was modified to simultaneously optimize three different parameters. Although 

promising results were obtained with this modification, a discrepancy was detected in 

terms of the validation process embedded in the algorithm.  

 

A new variable selection method based on the separate optimization of identity and 

number of informative variables was developed. However, its implementation did not 

prove to increase model prediction performance when compared to the results obtained 

when using the original or modified CARS, or when using all variables in the original 

dataset. Some of the aspects identified as possible pathways to improve the method’s 



Abstract 

vii 
 

performance were tested, only to be discarded. Further study regarding other untested 

pathways is needed for the improvement of this method. 
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1. INTRODUCTION 

1.1. OBJECTIVES 

The aim of this study was to optimize the variable selection stage prior to the 

construction of multivariate classification models for three different metabolomics datasets 

by means of partial least squares discriminant analysis (PLS-DA). To achieve this, the 

following objectives were defined: 

 

1.1.1. To compare the mechanism of the competitive adaptive reweighted sampling 

(CARS), subwindow permutation analysis (SPA) and random forest (RF) 

methods for variable selection as described in the literature. 

1.1.2. To perform VS using the three above mentioned methods with standard settings 

applied to three different metabolomics datasets profiled by gas 

chromatography (GC)-mass spectrometry (MS).  

1.1.3. To examine existing MATLAB scripts for the above methods in detail to verify 

their mechanism and their accordance to the procedures described in the 

literature.  

1.1.4. To select one of the above methods to modify for improvement by identifying 

from its algorithm parameters to be optimized.  

1.1.5. To establish a strategy and algorithm to simultaneously optimize the identified 

parameters. 

1.1.6. To create a manageable script in MATLAB for the performance of the modified 

method that allows the user to easily vary the definition of certain input 

parameters.  

1.1.7. To compare the performance of the modified method and the original method 

applied to the above mentioned three datasets. 
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1.2. THEORY AND BACKGROUND 

Calibration is a widely applied tool in analytical chemistry, without which routine 

activities as essential as determining the concentration of an analyte in a sample could not 

be carried out. It is basically a comparison between two sets of numbers, and can be 

divided into two main types: absolute and relative calibration
 
[1]

.
 Absolute calibration 

refers to the comparison of a measurement to an accepted standard, for example, the 

measurement a balance indicates when weighing a standardized mass that is traceable to 

the international prototype of the kilogram
 
[2].  However, usually in practical quantitative 

analysis absolute calibration is not really relevant. For example, when using a standard 

solution of known concentration to calibrate an ultraviolet (UV) visible spectrometer, the 

purpose is not to obtain a commonly accepted absorbance at a certain wavelength, but to be 

able to predict the concentration of future samples. This is known as relative calibration, 

and is how calibration is usually generalized. Martens and Næs define calibration as “the 

use of empirical data and prior knowledge for determining how to predict unknown 

quantitative information Y from available measurements X, via some mathematical transfer 

function”
 
[1]. 

 

1.2.1. Univariate versus multivariate calibration 

Every calibration model consists of one or more dependent variables, or responses (y), 

one or more independent variables (x) and their coefficients (β), and an error term (ϵ) 

which indicates the unexplained variance in the dependent variable
 
[3].  The simplest type 

of model is the univariate model, in which there is only one independent variable. 

 

              

Equation 1. 

 

Equation 1 represents the linear relationship between the ith response (y) and its 

corresponding dependent variable (x). The parameter β0 is the intercept, or the value of y 

when x is zero
 
[3, 4]; β1 is the slope and represents the change in y for every increase of 1 



1. Introduction 

3 
  

in x,
 
[3, 4] and ϵ is the error term. The values of β0 and β1 provide the best fitting line for a 

given calibration data set
 
[3].  

  

Although univariate models can be used to solve some analytical problems, they cannot 

be applied when there is more than one factor or independent variable affecting the 

response or dependent variable. Multivariate calibration can be applied to solve complex 

sample analysis problems where univariate analysis comes short. A typical multivariate 

model can be represented as shown in Equation 2. 

 

                                                   

Equation 2. 

 

The parameters β0-βp can be estimated using multiple regression analysis
 
[3, 5, 6]. 

Multivariate regression is equivalent to univariate analysis in the sense that, when having p 

number of variables, the values of the parameters or regression coefficients β0, β1, β2… βp 

return the best hyperplane from relating the dependent variable (y) and the set of 

independent variables (X)
 
[3].  

 

1.2.2. Regression versus classification 

One of the multivariate statistical techniques that study relationships between 

numerical variables is regression analysis. Regression was first used as a statistical term by 

Sir Francis Galton in 1877
 
[7], who carried out a study about the height of children born 

from tall parents. During this study, he named the process of predicting one variable from 

another “regression”, because he observed that the children’s height tended to move back 

or “regress” toward the mean height of the population. The term is defined by Gosling as 

“a statistical technique used to develop a mathematical equation that relates the known 

variable(s) to the unknown variable”
 
[7]. So, regression analysis is a tool that aids in the 

estimation of the relationship between the independent and dependent variable(s) through 

an equation. When there is more than one independent variable involved in the prediction 
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of the dependent one, as in multivariate calibration, the process is termed multiple 

regression. 

 

Classification or discriminant analysis is a statistical technique that establishes 

differences between classes of objects by examining sets of multiple variables 

corresponding to each object
 
[8, 9]. By identifying these differences, the technique allows 

the assignment of any object to the class it most closely resembles
 
[9]. 

 

Because regression aims to predict a response, while in classification, the purpose is to 

identify the class which a certain object belongs to, the main difference between the two is 

the type of values that are obtained for the response variable y: continuous for the former 

and class labels for the latter
 
[10, 11].   

 

1.2.3.  Partial least squares regression  

Partial least squares (PLS) is a linear regression technique that is probably the most 

commonly used method for multivariate calibration
 
[12].  The linear model that results 

from PLS (Equation 3) consists of a response variable matrix (Y), a descriptive or 

predictor variable matrix (X), a regression coefficient matrix (β) and a noise or error term 

(Є) of sizes n by m, n by p, p by m and n by m, respectively. For the matrix X, the number 

of rows (n) is the number of objects and the number of columns (p) is the number of 

variables
 
[13]. The columns in the response matrix Y represent the number of responses 

(m) corresponding to the n objects.  

 

       

Equation 3. 

 

To establish a PLS model, a weight matrix W of size p by c, where c is the number 

of latent variables (LV), is calculated for X. LVs are orthogonal or non-correlated factors 

that provide the best predictions and are derived from the original predictive variables
 
[14]. 

The factor score matrix T (Equation 4) of size n by c is then calculated. The columns of W 
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are weight vectors for each of the p columns in X, which are computed in such a way that 

the covariance between responses and the corresponding scores is maximized
 
[13]. The 

regression of Y on T is then performed to produce Q, the loadings for Y (Equation 5). 

Finally, the regression coefficients β are calculated using Q (Equation 6), completing the 

prediction model (Equation 3).  

     

Equation 4. 

 

       

Equation 5. 

 

     

Equation 6. 

 

The loadings for X (P) of size p by c must also be calculated to obtain the unexplained 

fragment (F) of the scores (T) in Equation 7.  

 

       

Equation 7. 

 

Of the available algorithms that can be used to compute PLS, nonlinear iterative partial 

least squares (NIPALS) is the standard. From the many variants, the following, detailed by 

Hill and Lewicki [13], who consider it to be one of the most efficient, assumes that both X 

and Y have been transformed to have means of zero. The superscript T for a given matrix X 

(X
T
) represents the transpose [15] of X. For a given vector y, its norm or length [16] is 

denoted with the symbol || y ||. 

 

For each LV (h),         where the initial values for A, M and C are     
  , 

    
  ,     , and c is given, 

i. Calculate   , the dominant eigenvector of   
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ii.               ‖  ‖⁄ , and store    into   as a column 

iii.               
               ⁄ , and store    into   as a 

column 

iv.      
      ⁄ , and store    into   as a column 

v.                 
  and                 

  

vi.              
  

 

The unexplained fragment F of the scores (Equation 7) obtained with the current LV 

is used as the next X to estimate the following LV through steps v and vi of the algorithm. 

At the end of the iteration or repetition for the last LV, the scores matrix T and the 

regression coefficients β of Y on X can be calculated according to Equation 4 and 

Equation 6, respectively [10]. 

 

Once a model is built, its prediction performance can be assessed by using an 

independent test set, that is, a group of objects and their true response values that were not 

used to build the model. The predicted response for each element in the test set is then 

compared to the true response to obtain an error. A scheme of the processes of model 

building using PLS and model validation is shown in Figure 1. 

 

 

Figure 1. Scheme of PLS predictive model building and validation. The regression coefficient 

vector β is used to calculate the predicted response of both the calibration set, to evaluate the 

fitness of the model, and an independent test set, to evaluate the predictive power. (Taken from 

[12])  
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PLS-DA is a variant of PLS used for classification problems, when the response y is 

categorical
 
[17]. It carries out linear discriminant analysis (LDA) on the score matrix T 

after it has been extracted from the X matrix by PLS. LDA can be implemented through 

Fisher’s algorithm, which maximizes the variability between classes in relation to the one 

within the classes
 
[18].  

 

1.2.4.  Cross validation 

Defining the best number of LVs, or PLS components, for model building is imperative 

to avoid underfitting and overfitting. A commonly used technique to accomplish this is 

cross validation (CV)
 
[12]. It consists of partitioning the dataset into a calibration or 

training set, from which a model will be built, and a validation or test set, which will be 

used to assess the model’s performance. The partitioning is carried out many times to 

obtain many different training and test sets, and finally the validation results from all the 

partitions are averaged. 

 

K-fold cross validation is a type of CV in which the data is divided into K non 

overlapping groups, or folds, of almost the same size
 
[19].  One of the folds is removed and 

the rest is used to build a PLS model. The fold, which was removed, is then fitted to the 

model and the response variable predicted by the model is compared to its true response 

variable to obtain an error. This procedure is repeated as many times as there are groups, 

until all of them have been used as a test set only once. The prediction errors for all objects 

are then combined to obtain an error. This error can be calculated for each number of LVs 

used to build the final PLS model. The number of LVs used to build the model that 

achieves the lowest error is the optimal one. A new model is calculated from the entire 

dataset using the optimal number of components revealed at the end of the CV procedure. 

An example of 4-fold CV is represented in Figure 2. 
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Figure 2. Representation of a 4-fold CV example using a predictive variable matrix X of size 14 by 

13 and only one response y for each of the 14 objects. The objects are partitioned into four different 

groups which alternate the role of test set in each different CV round. The errors of each group are 

combined to obtain one final error.   

 

1.2.5. Classification model assessment 

Regression and classification differ mainly in the type of values the response variable 

contains. Since these are continuous for the former, a root mean square error (RMSE) 

proves to be appropriate to assess model prediction in this case. However, this parameter 

cannot be applied for classification models as the values recorded in the response are 

categorical. Other parameters exist as alternative assessment parameters for classification. 

The ones used in this study are described below. Because this study involved binary 

classification problems, the following descriptions can be applied to this particular 

situation, disregarding cases in which more than two classes are to be predicted. 
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1.2.5.1. Misclassification error 

The misclassification error is the total number of incorrectly classified objects, 

comprising false negatives (FN) and false positives (FP), divided by the total number 

of classified objects (n) (Equation 8) [20]. 

 

      
∑( ̌    )

 
 

     

           
           

Equation 8. 

 

1.2.5.2. Accuracy 

Subtracting the misclassification error from one generates the model prediction 

accuracy [20, 21]. This parameter is a measure of how well a model can assign the correct 

class to an object from unknown or test data [22]. Being the opposite of the 

misclassification error, it can also be calculated by dividing the number of correctly 

classified objects, consisting of true negatives (TN) and true positives (TP), by the total 

number of classified objects (n) (Equation 9).  

 

         
∑( ̌    )

 
 

     

           
           

Equation 9. 

 

1.2.5.3. Sensitivity 

Sensitivity is a measure of a model’s ability to correctly classify objects with positive 

value or of class 1 [23, 24]. Let us consider that, for a given dataset in which the objects 

represent individuals, class 1 and -1 indicate the presence or absence, respectfully, of a 

particular disease or condition. A highly sensitive model would produce few false 

negatives, meaning that most of objects of class 1 would correctly be associated with the 

condition at issue [24]. This parameter is calculated by dividing the number of correctly 

classified objects of class 1, or TPs, by the total number of objects of class 1 that were 

classified, or TPs and FNs (Equation 10).  
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Equation 10. 

 

1.2.5.4. Specificity 

Specificity is a measure of a model’s ability to classify objects of negative value or of 

class -1 [23, 24]. For the example described for sensitivity (Section 1.2.5.3), a highly 

specific model would be one that produces few false positive results. This means that most 

of the objects of class -1 would correctly be associated with the absence of disease [24]. 

This parameter is calculated by dividing the number of correctly classified objects of class 

-1, or TNs, by the total number of objects of class -1 that were classified, or TNs and FPs 

(Equation 11). 

 

            
  

     
 

Equation 11. 

 

1.2.5.5. Area under curve 

The area under the receiver operating characteristic (ROC) curve, or simply area under 

curve (AUC), is a measure of a model’s ability to discriminate objects of different classes 

[25]. It plots the rates of correctly classified objects of class 1, or TPs (sensitivity), against 

the rates of incorrectly classified objects of class -1, or FPs (1-specificity) for an entire 

range of cut points (Figure 3) [25, 26]. AUC values range from 0.5 to 1.0, the latter 

indicating perfect classification ability (100% sensitivity and specificity) and the former a 

random choice of class (50% sensitivity and specificity) [27, 28].  
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Figure 3. A) ROC curve with AUC close to 1, indicating high discriminatory power and B) ROC 

curve with AUC of 0.5, a diagonal line, indicating no discriminatory power. (Taken from [28]) 

 

1.2.5.6. Mathew’s correlation coefficient 

Mathew’s correlation coefficient (MCC) is a measure of the correlation between the 

predicted value and the true response [29]. MCC values range from 1 to -1, indicating 

perfect positive or negative correlation, respectively. A value of zero indicates 

orthogonality, or total absence of correlation. MCC is calculated according to Equation 

12. 

 

    
           

√(     )  (     )  (     )  (     )
 

Equation 12. 

 

1.2.6.  Variable selection 

Variable selection (VS) is the process of reducing the original number of explanatory 

variables in the dependent variable X matrix by discriminating informative variables from 

the ones that are not related to the response y
 
[30]. Some of the reasons why VS is an 

important step in the calibration process include the following: 
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a) According to the parsimony principle, also known as Ockham’s razor, for a group 

of competing models that fit a given dataset, the simplest should be considered the 

best one
 
[31, 32]. In other words, the data should be explained in the simplest way; 

thus, unnecessary or uninformative variables that do not have any effect on a 

prediction should be excluded
 
[33].  

b) Some variables are not only uninformative, but they are also interfering. That is, 

they add more noise than relevant information to the model and their inclusion 

actually makes an analytical prediction worse
 
[33, 34].  

c) Cost in terms of time and money can be reduced if irrelevant predictors are not 

measured [33].  

d) The selecting of informative variables can be applied for different purposes such as 

identifying the most influential factors affecting the quality of a product or the 

characteristic features of a certain class. In the first instance, a few vital factors are 

much easier to measure and control in a process industry than all possible process 

variables
 

[35]. The second case takes place, for example, when classifying 

metabolomics data.  

 

In a metabolomics dataset, each variable represents a metabolite, and the objects are 

individuals. In the case of binary classification, there are only two possible responses: 1, 

indicating the presence of a particular metabolic state, such as a disorder, or -1, indicating 

its absence. So by selecting informative variables from these types of datasets, a selection 

of informative metabolites, that can be considered potential biomarkers, is actually taking 

place
 
[36, 37, 38]. In this way, we can learn about metabolic perturbations that exist in 

individuals with a disease of interest, and ultimately, determine the pathophysiological 

mechanisms of the disease, allowing the discovery of new pathways for diagnosis and 

treatment. 

 

The purpose of VS is to find a subset of variables that produce the smallest errors when 

used to carry out quantitative analysis or to classify objects into different categories
 
[34]. 

Many methods have been developed to either identify variables that provide relevant 
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information, eliminate interfering and uninformative variables or both. Three of these 

methods are described below. 

 

1.2.6.1. Competitive adaptive reweighted sampling (CARS) 

CARS is a method originally developed to select informative wavelengths from 

continuous spectral data, specifically applied for the first time to near infrared 

spectroscopy (NIR)
 
[39]. It is based on Darwin’s evolution principle “survival of the 

fittest” and is combined with PLS to assess variable importance. It basically consists of a 

number of iterations involving 1) Monte Carlo sampling (MCS) in object space, 2) VS by 

means of weights and the exponentially decreasing function (EDF), 3) VS by reweighted 

sampling of variables selected in the previous step and 4) model building with each subset 

of selected variables and CV to calculate prediction error.  

 

1.2.6.1.1. Monte Carlo sampling 

The first step in the CARS algorithm involves obtaining a sample of objects using the 

Monte Carlo approach to build a multivariate model. The name “Monte Carlo” was 

properly attributed after the popular gambling destination, as this sampling method is 

based on the laws of chance or probability
 
[40]. A sample of objects is selected randomly 

without replacement, which means that an object that was chosen does not return to the 

sampling lot and thus, can only be sampled once. The ratio of kept objects for training or 

model building is usually around 0.80-0.90
 
[39]. The remaining unsampled objects will not 

be used during that particular iteration until the fourth step where all objects will be 

included for CV to obtain a prediction error. This sampling is done to “select variables 

which are of high adaptability regardless of the variation of training samples” [39]. In other 

words, the aim is that the method is as robust to the change in samples used for model 

building as possible. Some of the parameters resulting from the PLS model built from the 

training sample obtained in this step can be used to calculate an importance score for each 

variable. 
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1.2.6.1.2.  Two-stage variable selection using EDF 

A weight (w) is calculated as an importance score based on the regression coefficient 

(β) corresponding to each variable (Equation 13).  

 

   
|  |

∑ |  |
 
   

                                                                                      

Equation 13. 

where p is the number of variables in the original dataset. An alternative importance score 

to use here is the selectivity ratio (SR), which is the relation between the explained (vexp) 

and residual (vres) variance for each variable
 
[37, 41] (Equation 14). 

 

                          ⁄  

Equation 14. 

 

The explained and residual variance should be calculated based on target projection 

[41], which “reveals the y-relevant variation in the x-variables captured by a 

multicomponent PLS model on a single latent variable” [41].  

 

The variables with the highest weights or SRs will be kept. The ratio of variables to be 

kept for each MCS run will vary, and is calculated based on (Equation 15): 

 

     
              

Equation 15. 

 

where N is the number of the MCS run or iteration that is taking place and a (Equation 16) 

and k (Equation 17) are constants that follow two conditions: I) For the first MCS run, all 

variables will be selected in this step, II) while in the last run, only two variables will be 

kept. In this way, the ratio of variables to be kept (r) will decrease for each run (i), 

exhibiting a behavior that can be graphically observed in Figure 4. The decrease is 

exponential and occurs in two stages: I) rapidly, where the number of chosen variables 
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drops significantly between iterations and II) subtly, where the number of variables kept 

varies very little in comparison to the previous iteration
 
[39]. 

 

  (
 

 
)
 (   )⁄

 

Equation 16. 

 

  
  (  ⁄ )

   
 

Equation 17. 

 

 
Figure 4. Exponential decrease of the ratio of retained variables in Step 2 of the CARS algorithm 

for each MCS run. Two stages can be distinguished: I) a rapid decrease in the number of retained 

variables and II) a more refined selection where the number of kept variables varies very little in 

comparison to the previous sampling run. (Taken from [39]) 

 

1.2.6.1.3.  Adaptive reweighted sampling 

The third step of the CARS algorithm consists of a second variable selection process 

and is where the evolution principle is applied. Based on their weights or SRs, the higher 

the importance score, the more fit or competitive a variable is to survive. Variables with 

lower importance scores are weaker and will be wiped out by the more dominant ones. 

This process is carried out by the use of adaptive reweighted sampling (ARS), where the 

higher the importance score assigned to each variable in Step 2, the higher the probability 
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for its corresponding variable to be sampled. In this way, by means of sampling with 

replacement, in which a variable is selected and then returned or “replaced” to the 

population which is being sampled
 
[42], the variables with higher scores will be sampled 

multiple times, while the ones with the lower scores will be completely left out, and thus, 

eliminated. The variables that were sampled more than once have taken the place of those 

that were discarded; thus, the resulting vector is the same size as the one containing the 

variables that were submitted to ARS. Finally, the remaining variables are included only 

once in the final selected variable subset, regardless of how many times they were 

resampled, resulting in a variable vector of reduced size. 

 

1.2.6.1.4.  CV to evaluate the variable subset 

Finally, a PLS model is built considering only the variable subset selected in steps 2 

and 3, and an error is obtained using CV. As mentioned before, CV evaluates model 

prediction by dividing the data into multiple training sets and independent test sets
 
[43]. 

The objects included in the training and test sets are alternated in such a way that each 

object is in the test set once and once only
 
[43]. The error obtained will either be a root 

mean square error of cross validation (RMSECV) or a classification assessment parameter, 

in the case of regression or classification, respectively. 

 

The four steps above will be repeated for each MCS run or iteration, obtaining an error 

for each one. The run whose error is the lowest will be considered the optimal one, and the 

variable subset obtained in that run will be selected as the best combination of variables for 

predictive purposes.  Figure 5 summarizes the CARS algorithm in a flow chart. 
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Figure 5. Flow chart of CARS algorithm. 

 

1.2.6.2. Subwindow permutation analysis (SPA) 

SPA was developed to be applied to metabolomics datasets for the selection of 

metabolites that could be informative of the prediction of a clinical outcome, thus 

considered biomarkers
 
[36]. It is based on the principles of model population analysis 

(MPA) and like CARS, uses PLS to build a series of submodels. MPA’s main principle is 

to statistically analyze an output of interest of a population of sub-models
 
[44]. In the case 

of VS, one could analyze the distribution of prediction errors
 
[36]. In summary, the steps to 

execute SPA are: 1) MCS in object and variable space, 2) PLS submodel building for each 

sampling run and 3) statistical analysis of the distribution of prediction errors. 

 

1.2.6.2.1. MCS of objects and variables 

Unlike CARS, MCS is performed on variables as well as objects for each run (Figure 

6), resulting in a data subwindow which gives, to some extent, information about the 

synergetic effect between the variables included in it
 
[36]. This effect refers to the higher 
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performance of the combination of variables when compared to that of the sum of the 

individual contributions of each one
 
[36].  
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Figure 6. Representation of MCS in both object and variable space for a dataset of size 20 X 10, if 

a ratio of 0.75 objects and a number of 3 variables are retained for each subwindow. The resulting 

training set would be of size 15 X 3, while the test set would comprise the remaining 5 objects and 

the same 3 variables. (Taken from [36])  

 

1.2.6.2.2.  PLS submodel building 

When solving classification problems, PLS-DA can be used to build models with the 

training sets of each subwindow. CV is employed to choose the optimal number of PLS 

components.  

 

1.2.6.2.3.  Statistical analysis of an output of interest 

As mentioned before, for the purpose of VS, a suitable output to analyze is the 

distribution of the prediction error. For N MCS runs, the same number of subwindows will 

be obtained. However, not all of the N subwindows will contain the jth variable; so, in 

order to assess its importance, only the J subwindows that contain it should be analyzed. 

 



1. Introduction 

19 
  

The J submodels obtained from the previous step will be validated using their 

corresponding J test sets, for which two errors will be calculated: a normal prediction error 

(NPE) and a permuted prediction error (PPE). The difference is that the second one is 

calculated using the test set after randomly permuting, or giving a random order to the 

values for the jth variable. In this way, the variable of interest is being noised up and so, if 

it is considered predictive, the prediction error would be expected to increase
 
[45] because 

the accuracy of the output depends on the specific value of this variable.  A DMEAN is 

obtained by subtracting the mean of NPEs from that of PPEs (Equation 18). The 

procedure is illustrated in Figure 7.  

 

                           

Equation 18. 

 

 

Figure 7. Obtainment of NPEs and PPEs for the calculation of variable importance assessment 

parameter DMEAN.  

 

Each NPE and PPE is dependent of the combination of variables belonging to their 

corresponding subwindow, hence providing information regarding the interactions between 
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those variables. The whole J subwindows encompass the effects that all of the p-1 

variables have on the variable j
 
[36]. 

 

The variable selection process consists in I) eliminating all variables with a DMEAN 

lower than zero, II) carrying out Mann-Whitney U-Test to evaluate the significance in the 

difference between the distributions of both prediction errors, resulting in a ρ-value for 

each variable, III) variable ranking according to their ρ-value and IV) selecting the 

variables that comply with a predefined threshold. 

 

The Mann-Whitney U-Test can be considered “the non-parametric equivalent of 

Student’s t-Test” [46] whose use does not require data to be normally distributed. This 

statistical test checks whether the data of a particular group tends to be larger than that 

belonging to another group [47]. 

 

The ρ-value is inversely proportional to variable importance, and thus, for practical 

reasons, it can be converted to a conditional synergetic score (COSS) through Equation 

19. In this way, the score assigned to each variable is directly proportional to its 

importance, and therefore the acceptance criteria will change, for example, from ρ≤0.01 to 

COSS≥2. 

 

           ( ) 

Equation 19. 

 

1.2.6.3. Random Forest (RF) 

RF is an ensemble method, which combines multiple decision trees to obtain one final 

prediction
 
[48]. A decision tree is a hierarchical structure consisting of nodes and directed 

edges which is built by crafting a series of key questions about the attributes of certain data 

of interest
 
[49]. Three types of nodes make up a decision tree: a root node, which has 

outgoing edges but no incoming ones; internal nodes, which have both incoming and 

outgoing edges; and terminal or leaf nodes, which only have incoming edges, and denote a 
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label or prediction. The root and internal nodes, being non-terminal, contain attribute test 

conditions to separate objects that have different characteristics
 
[49]. 

 

To illustrate this, Tan, Steinbach and Kumar [49] present a decision tree for the 

classification of mammals or non-mammals (Figure 8). When an object is run down the 

tree, the answer to the question “body temperature” will lead to either a follow-up 

question, or a classification label. In this way, as many follow-up questions will succeed 

until a final conclusion about the object is made. 

 

 

Figure 8. Decision tree classifier for the mammal classification problem. Three types of nodes can 

be distinguished, where the leaf nodes designate the final outcome or prediction. (Taken from [49]) 

 

Although decision trees have the advantages of being able to handle high-dimensional 

data, ignore unimportant variables and interpret models suitably, their performance is not 

always satisfactory. The simple decision tree illustrated above (Figure 8) fails to correctly 

classify the monotremes, which are a special group of mammals that lay eggs instead of 

giving birth [50], such as the platypus. In general, decision trees usually have low 

prediction accuracies
 
[51], only slightly better than a random choice of class

 
[48]. One of 

the attempts to improve this has been the use of ensemble methods or combining forecasts, 

which combine the results of multiple individual models to reach a single prediction
 
[52]. 

Experimental evidence has shown that ensemble methods are often much more accurate 

than any single hypothesis
 
[48, 53]. 
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For a given data subset used to build a decision tree, the conditions that separate an 

object in each of the non-terminal nodes according to its known response (y) will be 

governed by the “attributes” of each object in the training set, these being represented as a 

p-dimensional vector of variables associated with each object
 
[48]. Thus, RF can be 

defined mathematically as an ensemble of B trees {  ( )     ( )}, where   

{       }  is a variable vector corresponding to an object whose outcome will be 

predicted
 

[51]. A total of B predictions will be obtained for each object:  { ̌  

  ( )    ̌    ( )} , one from every tree, all of which will then be combined to 

produce one final prediction
 

[51]. RF can be used to solve both regression and 

classification problems, being the final outcome the average of all individual tree 

predictions for the former or the class obtained by the majority of trees for the latter
 
[51, 

52]. 

 

1.2.6.3.1. Training algorithm 

The following training procedure has been taken from Svetnik et al. [51]. Given data 

for a set of n objects for training, D = {(X1, Y1), …, (Xn, Yn)}, where Xi, i=1, …, n, is a 

vector of variables and Yi is the corresponding prediction for the ith object, the algorithm is 

as follows: 

 

i. From the training data of n objects, a bootstrap sample is drawn, which is a 

random sample with replacement of size n. This means that the new sample will 

have the same number of objects as the original one; it could include some of 

the original objects more than once, while others will be left out altogether
 
[54]. 

The selection of an object for the new sample is independent from the previous 

selection.  

ii. For each bootstrap sample, a tree is constructed by choosing the best split at 

each node, among a randomly selected subset of mtry variables, instead of all of 

them. Here, mtry is a tuning parameter that can be chosen as a function of the 

total number of variables (p). The performance of RF seems to change very 

little over a wide range of values of mtry, except near the extremes: 1 or p. The 
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tree is grown until no further splits are possible, reaching its maximum size, and 

it is not pruned back. 

iii. The above steps are repeated until a sufficient number of trees are grown. 

 

The tree growing algorithm used is CART (Classification and Regression Trees), that 

builds classification trees according to a splitting rule; the rule that performs the splitting 

of the training sample into smaller parts
 
[55]. 

 

1.2.6.3.2.  RF for variable selection 

The construction of each decision tree depends on random vectors sampled 

independently from each other, but with the same distribution for all trees in the forest
 

[48]. This refers to bootstrap sampling
 
[54], and the random vectors sampled are the p-

sized vectors of variables corresponding to each object in the training set. Thus, the 

selection of an object for training is independent of the previous one. This means that some 

objects will be sampled more than once, while others will not be sampled at all
 
[54]. The 

former will constitute the bootstrap sample, which is the same size of the original dataset
 

[54], with the difference that it contains repeated objects, and will be used for trainng or 

tree construction. The rest of the objects constitute the out-of-bag (OOB) sample, which is 

the test set, and will be approxmately one third of the size of the original dataset
 
[51]. 

According to empirical evidence provided by Breiman [48], having this large test set is 

almost as accurate as it being the same size as the training set.  

 

Variable importance in RF is carried out by means of the OOB estimates. Due to its 

complexity, the mechanism of how a group of trees provides a prediction is difficult to 

interpret. Because it does not produce an explicit model, the relationship between 

descriptors or variables and the outcome is said to be hidden inside a “black box” whose 

insides are practically unknowable [51, 56, 57]. To solve this problem, internal OOB 

estimates can be used to carry out certain measures of variable importance that are 

available to identify the informative variables
 
[56].  
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As an approach to measure the importance of the jth variable, two measurements of 

prediction performance are computed for the test set or OOB sample, in a similar way as 

described in Section 1.2.6.2.3 as NPEs and PPEs for SPA. Each OOB object is run down 

its respective tree to obtain a prediction. In addition, a second run is carried out, this time 

permuting the jth variable. At the end of the procedure, each object will have two 

predictions for each time it constituted the OOB sample for a given tree: a normal 

prediction and one carried out with the jth variable permuted or noised up.  

 

The performance of each prediction must then be measured. As stated by Svetnik et al. 

[51], in the case of classification problems, the change in prediction accuracy is usually a 

less sensitive measure than the change in the margin. For multiclass classification 

problems, margin can be defined as the difference between the proportion of correct class 

predictions and the maximum proportion of incorrect ones
 
[58].  Svetnik et al. [51] 

illustrates this by supposing for a given three-class problem that an object of class 1 

receives 60, 30 and 10 percent votes of class 1, 2 and 3 respectively. Thus, the margin is 

equal to        (       )     . In the case of binary classification, the margin is 

simply the difference between the proportion of correct class predictions and the 

proportion of incorrect ones. A positive margin indicates a correct class prediction, while a 

negative one means the opposite
 
[51].  

 

From the margins calculated for normal predictions and predictions with permuted 

variable j, the means for both, M and Mj, respectively, are calculated. The variable 

importance is simply the difference between these means (Equation 20), where if it is 

positive, zero or negative, the variable is considered informative, non-informative or 

interfering, respectively. For regression problems, the RMSE is calculated instead of 

margins
 
[51]. 

 

                 
Equation 20. 
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1.2.6.4. Comparison of CARS, SPA and RF 

From the literature search carried out, a series of aspects have been identified in which 

CARS, SPA and RF can be compared. 

 

In general, they are all based on different criteria: CARS on a variable importance 

score based on parameters obtained from the construction of a PLS model; SPA on the 

difference in empirical distribution between NPEs and PPEs; and RF on the difference in 

prediction performance validated on OOB estimates with normal and permuted variable 

values. Unlike the other methods, which were developed for classification purposes, CARS 

was originally meant to solve regression problems. 

 

Regarding the selection of objects used for the training procedure, RF uses bootstrap 

sampling, while the others use MCS. However, during this sampling procedure, both SPA 

and RF also select a subgroup of variables for training in each run. The original model 

built in CARS in each run, on the other hand, includes all variables in the dataset. 

 

All of the methods involve a validation stage to generate an error that is used in some 

way to select the optimal variable subset. SPA and RF calculate a normal error and an error 

when the values of a certain variable are randomly permuted from an independent test set. 

CARS carries out CV on the original dataset to obtain an error; thus, because most of the 

objects are used for training the PLS model in the first step, the test set is not independent. 

 

Finally, the criteria for the selection of variables once the importance scores for each 

one is known varies between all methods. CARS automatically produces a subset that 

achieves the lowest error, that was selected by EDF and ARS based on the individual 

variable importance scores. SPA and RF assign errors to each variable individually, as 

opposed to doing so to a set of variables as in CARS. However, RF only focuses on the 

sign of the importance score, designating variables as informative, noninformative or 

interfering if this is positive, negative or zero, respectively. SPA on the other hand, 

calculates a ρ-value or COSS for each variable, and defines a threshhold or cutoff value for 
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one of these, or both, as criteria for variable selection. Table 1 summarizes the similarites 

and differences between the VS methods at issue.  

 

Table 1. Comparison between the methods of CARS, SPA and RF for VS. 

 CARS SPA RF 

General Criteria: 
Regression 

coefficients or SRs 

obtained from PLS 

Difference in empirical 

distribution between NPEs 

and PPEs 

OOB estimates to 

validate performance 

using normal and 

permuted variable values 

Developed for: Regression Classification Classification 

Sampling for  

training set: 
MCS MCS Bootstrap sampling 

Training set  

sampling of: 
Objects Objects & variables Objects & variables 

Error(s) generated 

from validation stage: 
CV error NPE & PPE NPE & PPE 

Validation performed 

on: 
All data Independent test set 

Independent test set 

(OOB samples) 

Criteria for VS: 
Subset associated 

with the lowest error 

Variables achieving a ρ-

value below or a COSS 

above a defined threshold 

Variables with positive 

importance score 

 

1.2.7. Instrumentation 

Of the available analytical techniques used to generate data from chemical systems 

prior to multivariate analysis, gas chromatogarphy (GC) coupled with mass spectrometry 

(MS) is applied in many fields because of its versatility to separate, quantify and identify 

volatile and semi-volatile organic compounds
 
[59, 60]. It combines the advantages of high 

degree of separation, or resolution, from GC, and strong identification power, or high 

sensitivity, from MS [61]. 

 

1.2.7.1. Chromatography 

The International Union of Pure and Applied Chemistry (IUPAC) defines 

chromatography as “a physical method of separation in which the components to be 

separated are distributed between two phases, one of which is stationary (stationary phase) 

while the other (the mobile phase) moves in a definite direction” [62]. The signal obtained 
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by the chromatographic system is related to the concentration of the separated compounds 

and is represented graphically in a chromatogram. A chromatogram is a plot of the signal 

in function of time or of volume of used mobile phase in the form of peaks
 
[63]. It can 

provide qualitative or quantative information by determining the position of the 

component’s peaks in the time axis or by calculating the area under the peak, respectively
 

[63]. 

 

Elution in chromatography is the process in which a sample is dragged by the mobile 

phase through the stationary phase, which is contained in a chromatographic column. The 

more affinity a certain compound in the sample has to the composition of the stationary 

phase, the longer it will be retained in the column, because it will be more difficult for the 

mobile phase to drag it. If a sample has no affinity to the stationary phase, it will not be 

retained by it, and will simply move along with the flow of the mobile phase. Thus, the 

compounds that are less retained by the stationary phase, will flow faster and will exit the 

column to the detector first. The last compounds detected are the ones that have more 

affinity to the stationary phase. Figure 9 shows a scheme of the previous description. 

 

 

Figure 9. Scheme of the chromatographic elution process. The mobile phase flows continuously 

through the column, which is packed with the stationary phase. Of the compounds in the sample, B 

has more affinity to the stationary phase, and so is retained longer. Compound A exits the column 

and is detected first (t3) and B follows after a certain time (t4), thus being separated. (Taken from 

[64]) 
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Compound A (CA) in Figure 10 is the unretained species, and so t0 is the dead time, 

which gives a measure of the mobile phase migration rate [63]. The retention time tR for 

each compound is actually the sum of the dead time with the time the compound was 

delayed in exiting the column at regular time with the mobile phase (ts) due to its retention 

in the stationary phase (Equation 21). Knowing the length of the column (L), the average 

linear velocities of both the mobile phase (Equation 22) and each solute or compound 

separated (Equation 23) can be calculated. 

 

         

Equation 21. 

 

  
 

  
 

Equation 22. 

 

  
 

  
 

Equation 23. 

 

 

Figure 10. Example of a chromatogram (A) and its basic parameters (B). The retention time tR of 

each compound C is the time it takes to travel through the chromatographic column which contains 

the stationary phase. CA is an unretained species, and so its elution time is the dead time (t0). 

  

The different types of chomatography mainly vary in the physical state of the 

mobile phase. In GC, it is a gas, and the stationary phase is either a solid, (gas-solid 
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chromatography) or a liquid (gas-liquid chromatography), making its interaction with 

compounds an adsorption, or a partition, respectively. In the latter, the compounds are 

dissolved in the mobile phase, not just attached to its surface like in the former
 
[65]. The 

sample is vaporized when it is injected in the column and the first compounds to elute tend 

to be the ones with lowest boiling point or most volatile
 
[66]. 

 

 The main parameters that affect the resolution or separation ability in GC are the 

temperature, the flow rate of the mobile phase or carrier gas, the composition of the 

stationary phase and the column dimensions
 
[67]. The chromatographic system consists in 

a) a carrier gas supply with pressure and flow rate regulators, b) an injection system c) a 

column, d) a detector and e) a read out or recorder system (Figure 11). 

 

 

Figure 11. Scheme of a GC system and its components. (Taken from [66]) 

 

The continuos flow of the carrier gas is carefully controlled, resulting in relatively 

precise retention times. The sample is injected in liquid or gas phase, and once in the 

injector, it is vaporized and homgenized with the carrier gas and swept by it into the 

column. The column is usually a tube wound in a spiral of 1 to over 100 m long
 
[63] and is 

usually inside an oven with a wide range of temperature settings. After the sample has 

travelled through the entire column, it passes through the detector and then is dispersed in 

the atmosphere. 
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1.2.7.2. Mass spectrometry 

Although GC offers advantages such as high resolution, speed and relatively low cost, 

it usually requires the use of spectroscopy to confirm the identities of the peaks
 
[61, 67]. 

One of the reasons GC and MS are highly compatible is that both need the sample to be in 

the gas phase
 
[61]. Instead of the dispersion of the sample into the atmosphere after GC 

analysis, coupling can be carried out by simply connecting the end of the column to the 

entrance of the MS system wih a transfer line (Figure 12). The vaporization and separation 

of the components in the sample performed by GC can be considered a “pretreatment” 

before MS analysis.  

 

 

Figure 12. Coupling of a gas chromatograph and a mass spectrometer. (Taken from [68]) 

 

Fenn et. al. [69] defined MS as “the weighing of individual molecules by 

tranforming them into ions in vacuo and then measuring the response of their trajectories 

to electric and magnetic fields or both”. After the sample is introduced in the mass 

spectrometer, three basic operations take place: 1) ionization, 2) separation of the ions 

based on their mass-to-charge ratio (m/z) and 3) counting of the number of ions in each 

seperated group or measuring the ion current during ion formation
 
[63].  The m in m/z 

refers to the atomic mass of the ion while the z is its elementary charge. Usually the ions 

formed have a single charge [63]; thus, the m/z in most cases is merely the atomic mass of 

the ion. The mass spectrometer’s response is represented in a plot of relative intensity in 

function of m/z (Figure 13). 
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Although there are many types of mass spectrometers with varying ion sources and 

mass analyzers, they all consist of the same basic components (Figure 14). The ion source 

transforms the introduced sample into gaseous ions by bombarding it with electrons, 

photons, ions, molecules or thermal or electric energy. The ions produced, which are 

usually positive but can also be negative, are then accelerated into the mass analyzer. Here, 

the energetically charged ions are continuosly detected and sorted according to their m/z. 

Finally, the beam of ions is converted into an electric signal by a transducer to be 

processed and displayed in a further stage. It is important to note that all the components, 

with the exception of the last, are maintained in a vacuum, or at a pressure lower than the 

atmosphere’s. The object of this is to reduce the frequency of collisions to ensure the 

integrity of the ions and electrons produced
 
[63]. 

 

 
 

 

Figure 13. Mass spectra of the compound 

C10H14O shown. (Taken from [70]) 

 

Figure 14. Basic components of a mass 

spectrometer. (Taken from [63]) 

 

 The resulting mass spectra can be compared with existing spectral libraries until a 

match is obtained, and thus the compound is identified.  

  

 Chromatographic techniques coupled with MS have been recognized as the 

standard for metabolomic profiling
 
[71, 72]. Of these, the combined advantages of GC-MS 

mentioned before, as well as the existence of extensive spectral libraries make it an 

excellent choice for this purpose
 
[71]. 
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2. EXPERIMENTAL 

2.1. METABOLOMIC DATASETS 

Three different previously available metabolomics datasets profiled using GC-MS were 

submitted to analysis. For all of them, the values for the independent variable X matrix 

were expressed as ratios of peak area over internal standard peak area, while the dependent 

variable y was a binary response vector. 

 

2.1.1. Type 2 diabetes mellitus dataset (T2DM) 

The X matrix in T2DM contains the free fatty acids (FFAs) profiles of 45 type 2 

diabetes mellitus patients and 45 healthy controls (size 90 by 21) as obtained by Tan et al. 

[73]. Diagnosis was based on the criteria of the American Diabetes Association (ADA) 

[74]. The subjects’ overnight fasting plasma samples were obtained from the Xiangya 

Hospital of Hunan in Changsha, China. All the patients had at least one month of treatment 

through diet and athletic activities. The controls were from the same city as the patients, 

but not blood related. 

 

Immediately after collection, each sample was submitted to centrifugation prior to 

storage with anticoagulant at -80°C. Sample preparation was carried out according to the 

procedure described by Yi et al. [75], in which hexane is used for double extraction of 

lipids obtaining methyl esters of esterified fatty acids (EFA) in the first extraction and of 

FFAs in the second. Instrumental analysis was carried out with a Shimadzu GC2010A 

(Kyoto, Japan) gas chromatographer coupled to a GCMS-QP2010 single quadrupole mass 

spectrometer (Compaq Pro Linear data system, class 5 K software). The GC-MS 

conditions are summarized in Table 2. 
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Table 2. Summary of GC-MS conditions used by Tan et al. for the acquisition of T2DM [73]. 

GC 

Sample 

Introduction 
Carrier 

Gas 
Injector 

Temperature 

Column 

Type 
Internal 

Diameter 
Length 

Film 

Thickness 
Temperature 

program 

1:10 split ratio 

1.0 µL sample 

Helium 

Flow rate: 

1.0 mL/min 
250°C DB-23 0.25 mm 30 m 0.25 µm 

70-150°C, 20°C/min 

150-180°C, 6°C/min 

180-220°C, 20°C/min 

150-180°C, 6°C/min, 

then held for 9 min 

MS 
Ionization voltage Ion source temperature Full scan mode mass ranges Velocity 

70 eV 200°C 30-450 amu 0.2 s/scan 

 

The National Institute of Standards and Technology (NIST02) spectral library was 

implemented for the identification of FFAs. Chemometric resolution methods were used to 

solve overlapping peaks, as described in [73]. 

 

2.1.2. Postoperative cognitive dysfunction dataset (POCD) 

The X matrix in POCD contains the metabolic profiles of 24 female Sprague Dawley 

rats after isoflurane anesthesia: 12 diagnosed with POCD and 12 healthy (size 24 by 44) as 

obtained by Zhang et al. [38]. The subjects were kept under controlled conditions of light 

and humidity, but free access to food and water for a week prior to the experiments. Since 

POCD involves loss in one or more components of mental capacity after induction of 

anesthesia [76], diagnosis was based on the successful or unfavorable completion of the y-

maze ethology test [77, 78] to evaluate cognitive function 24 hours after anesthesia. The 

rats were purchased from Hunan Agricultural University in Changsha, China. The plasma 

samples were separated from blood through centrifugation and stored at -80°C. 

 

The sample preparation procedure performed by Zhang et al. is described in their work 

[38] and involves protein precipitation using methanol and vortex and centrifugation to 

obtain a supernatant that is later evaporated dry. After being reconstituted with 

methoxyamine hydrochloride solution and incubated at 70°C, the mixture is derivatized 

with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and incubated at 70°C. 

Instrumental analysis was carried out with a Shimadzu GCMS-QP2010 gas 
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chromatographer-quadrupole mass spectrometer (Kyoto, Japan). The GC-MS conditions 

are summarized in Table 4. 

 

Table 3. Summary of GC-MS conditions used by Zhang et al. for the acquisition of POCD [38]. 

GC 

Sample 

Introduction 
Carrier Gas 

Column 

Type 
Internal 

Diameter 
Length 

Film 

Thickness 
Temperature 

program 

1:10 split ratio 

1.0 µL sample 

Helium 

Flow rate: 

1.0 mL/min 
DB-5ms 0.25 mm 30 m 0.25 µm 

70°C for 4 min 

70-300°C, 8°C/min, 

then held for 3 min 

MS 
Ionization 

voltage 

Ion source 

temperature 

Interface 

temperature 

Full scan m/z 

ranges 
Velocity Detector voltage 

70 eV 200°C 250°C 35-800 amu 0.2 s/scan 0.9 kV 

 

Of the over 100 obtained peaks, only the ones with signal-to-noise ratio higher than 10 

were kept. Metabolite identification and quantification was carried out with the aid of 

NIST mass spectral library search and chemometric methods for peak resolution as 

described in [38]. 

 

2.1.3. Child obesity dataset (CHOB) 

The X matrix in CHOB contains the metabolic profiles of 29 prepubertal children: 16 

diagnosed as obese and 13 as overweight (size 29 by 30) as obtained by Zeng et al. [79]. 

The diagnosis was based on the children’s body mass index (BMI) to categorize them as 

overweight or obese. The subjects’ blood plasma samples were obtained from the Xiangya 

Hospital of Central South University in Changsha, China and stored at -80°C. 

 

Sample preparation was carried out according to the procedure described by Zeng et al. 

[80], which involves protein precipitation with acetonitrile and vortex and centrifugation to 

obtain a supernatant that is later evaporated dry. After being reconstituted with hexane, the 

sample is derivatized with a mixture of BSTFA and trimethylsilyl chloride (TMSC) at 

70°C. Instrumental analysis was carried out with a Shimadzu GCMS-QP2010 gas 

chromatographer-quadrupole mass spectrometer (Kyoto, Japan). The GC-MS conditions 

are summarized in Table 4. 



2. Experimental 

35 
  

Table 4. Summary of GC-MS conditions used by Zeng et al. for the acquisition of CHOB [79]. 

GC 

Sample 

Introduction 
Carrier 

Gas 
Injector 

Temperature 

Column 

Type 
Internal 

Diameter 
Length 

Film 

Thickness 
Temperature 

program 

1:10 split ratio 

1.0 µL sample 

Helium 

Flow rate: 

1.0 mL/min 
280°C DB-1 0.25 mm 30 m 0.25 µm 

100°C for 10 min 

100-300°C, 8°C/min, 

then held for 2 min 

MS 
Ionization 

voltage 

Ion source 

temperature 

Full scan m/z 

ranges 
Velocity 

Detector 

voltage 

Solvent cut 

time 

Data acquisition 

start time 

70 eV 200°C 35-800 amu 0.2 s/scan 0.9 kV 3.5 min 4.0 min 

 

The NIST/Environmental Protection Agency (EPA)/National Institute of Health (NIH) 

(NIST05) mass spectral library was implemented for the identification of metabolites.  

 

2.2. DATA ANALYSIS 

All data analysis procedures and programming, with the exception of outlier detection, 

were performed in MATLAB, version 7.11.0 (R2010b), Copyright 1984-2020, The 

MathWorks Inc., Natick, MA, USA. In addition, the pre-coded MATLAB scripts used for 

the implementation of algorithms are available freely at [81].   

 

2.2.1. Comparison of VS methods 

As a preliminary stage, the performance of CARS, SPA and RF applied to the 

described datasets was compared. The inputs for each script were set by default for all 

datasets. 

 

2.2.1.1. CARS 

The script carsplsda.m [81] was used for the implementation of CARS. The maximum 

number of LVs, or PLS components to extract, fold for CV and number of MCS were 

fixed to 5, 5 and 1000, respectively. Centering, which is subtracting the mean of all 

elements in a column from each element [13], was used as pretreatment for both X and y. 

At this stage, the variable importance score was set to be assigned according to the 

regression coefficients.  
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2.2.1.2. SPA 

The script used to run SPA was spa.m [81]. The maximum number of PLS components 

for CV, fold for CV, number of MCS runs, ratio of training samples to total samples and 

number of variables to be sampled in each MCS run were fixed to 5, 5, 1000, 0.8 and 10, 

respectively. Centering was used as the data pretreatment method. The ρ value of 0.05 was 

predefined as a proper threshold for statistical significance [82, 83].  

 

2.2.1.3. RF 

The script rfvs.m was coded based on the TreeBagger MATLAB function to carry 

out variable selection using RF [84]. The script indicates the storage of the OOB estimates 

for variable importance obtained from this function. It allows the construction of more than 

one forest and averages the variable importance scores obtained for each one. These means 

are then plotted for each variable in a bar graph, which is an output of the script. The 

greater the value of the result of a given variable, the more important it is. In this way, 

variables with positive or negative importance are considered informative or interfering, 

respectively, while variables with importance equal to zero are considered non-

informative. 

 

The number of iterations or forests was set to 10. To choose the number of trees N, to 

be used, trial runs were carried out for each data set with 1000 and 1500 defined as N. Five 

hundred was defined as a suitable number of trees based on the plot of OOB classification 

error against the number of trees grown. A relatively stable trend of the OOB classification 

error is achieved well below this number for all datasets (Figure 15). However, there is a 

variation in stability when the number of trees grown (N) is changed. The impact N has on 

the result is not really understood and is beyond the scope of this study. 
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Figure 15. OOB error classification rate per number of trees when using A) N=1000 and B) 

N=1500. A relative stable trend in the OOB error classification rate is achieved well below 500 

trees in all datasets. 

 

2.2.1.4. PLS-DA model building 

The datasets containing only the selected variables resulting from the previous methods 

were submitted to PLS-DA through the implementation of the script plslda.m [81]. 

Centering was used as the data pretreatment method. The script was run six times, 

alternating the number of PLS components to extract from two through seven, and 

selecting the one that produced the most accurate result. 

 

To build models for the original datasets without VS, the script plsldacv.m [81] was 

used. This performs PLS-DA with K-fold CV to determine the optimal number of PLS 

components. Centering was chosen as the data pretreatment method and the fold was set to 

5. The maximum number of PLS components to extract was set to 7.  

 

The outputs of the scripts used for PLS-DA modeling with or without CV include the 

prediction assessment parameters: 1) misclassification error, 2) selectivity, 3) specificity, 

4) AUC and 5) MCC. These parameters were taken into account in this stage. 
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The parameter settings for each variable selection and model building algorithm are 

summarized in Table 5. 

  
Table 5. Summary of parameter settings for the comparison of VS methods. 

 
CARS for 

VS 
SPA for VS RF for VS 

PLS-DA 

model 

building 

after VS 

PLS-DA 

model 

building 

with CV 

without VS 

SCRIPT carsplslda.m spa.m rfvs.m plslda.m plsldacv.m 

Number of LVs 5 - - - - 

Fold for CV 5 5 - 2-7 - 

Number of MCS 1000 1000 - - - 

Data pretreatment method centering centering - centering centering 

Variable importance 

according to 

regression 

coefficients 
- - - - 

Maximum  LVs for CV - 5 - - 7 

Ratio of training objects - 0.80 - - - 

Variables sampled during 

MCS 
- 10 - - - 

ρ cutoff value - 0.05 - - - 

Number of forests - - 10 - - 

Number of trees - - 500 - - 

 

 

2.2.2. Optimization of VS Method 

 

2.2.2.1. Outlier detection 

Score plots were built for the detection of outliers in each dataset using Sirius, 

Version 8.1, Copyright 1995-09, Pattern Recognition Systems AS, Bergen, Norway. PLS-

DA was applied to obtain the scores, which are a representation of the objects in the new 

PLS coordinate system [85]. They were then projected on a plot of one PLS component 

against another. Because the first component has the highest percentage of variance 

explained in X and y, which successively decreases for each new one, the plot of the first 

two was given more consideration for the determination of outliers. As part of the usual 

pretreatment before building PLS models [13], the elements in both the response variable y 

and the predictor variables X were standardized prior to the abovementioned procedures to 
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uniform the variables’ standard deviation; however, normalization was not carried out 

because the data is expressed as a peak area ratio of each object over the internal standard.  

 

2.2.2.2. Analysis of CARS algorithm 

The script for CARS was examined in detail using MATLAB’s debugging mode. From 

this stage on, the variable importance score was based on the SRs rather than the 

regression coefficients, because the values of the latter might be affected by the amount of 

orthogonal variation in the independent variable matrix X [41, 86]. The default setting for 

the ratio of objects to be kept in each MCS was found to be 0.95, with which, for datasets 

with few objects like the ones used, very few objects are left out of the training set. In 1000 

MCS, many repeated training sets are bound to result, which basically makes the attempt 

of the first step of CARS to ensure its robustness in the variation of training samples quite 

insignificant.  

 

To observe the effect of the training set size on the variation in resulting errors in each 

MCS, plots of CV error against MCS run were built. In addition, the unbalance of classes 

in training sets, that is, the inclusion of a much higher proportion of objects of one class 

than another, was investigated. The tests were performed on the POCD dataset. Table 6 

shows the different proportions of objects to be sampled in the first step of CARS that 

were tested. 

 

Table 6. POCD training sets employed for the construction of CV error vs. MCS run plots. 

Plot Code Training Set Selection Description 

TS1 0.70 sampled randomly 

TS2 0.80 sampled randomly 

TS3 0.90 sampled randomly 

TS4 All objects of class 1 (12) and 7 of class -1 sampled randomly 

TS5 All objects of class -1 (12) and 7 of class 1 sampled randomly 

TS6 
Equally distributed: 10 of Class 1 and 9 of Class -1 for the first 500 runs; 9 

of Class 1 and 10 of Class -1 for the rest of the runs, all sampled randomly. 

TS7 All objects (no sampling) 
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In addition to the training set issue, another irregularity in the original CARS algorithm 

was identified. The number of PLS components used to calculate the variable importance 

scores for steps 2 and 3 of CARS is arbitrarily defined, not optimized with CV as for the 

second PLS model built in step 4. The final selected variable subset depends on the 

importance scores calculated from this first model; thus, it is important to alternate the 

number of PLS components here as well, to determine which one produces a better model. 

 

2.2.2.3. Modification of CARS algorithm  

It was proposed that the purpose of the MCS in step 1 of obtaining results independent 

of the composition of the training set could be achieved using K-fold CV by removing one 

of the folds for training alternately until all folds were excluded once for model building.  

 

In addition to this, three main parameters were identified for simultaneous optimization 

in the CARS algorithm: 

i. Number of PLS components used for SR calculation in step 2 

ii. Number and identity of variables to keep 

iii. Number of PLS components used for CV in step 4 

 

With all this in mind the original CARS algorithm was modified to consist of four main 

loops as described below. 

 

2.2.2.3.1. Top loop: K-Fold CV 

The original dataset is divided into K folds or groups. For the iterations one through K, 

the group number corresponding to the iteration number is excluded from the training set.  

 

2.2.2.3.2. Outer loop: PLS components for SR calculation 

For each training set, c different PLS-DA models are built using one through c PLS 

components. The SR vector resulting from the models are the variable importance scores. 
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2.2.2.3.3. Middle loop: EDF-ARS run for VS 

For each SR vector, N different VS runs are carried out. Each run involves EDF and 

ARS and will produce a subset of selected variables. Note that due to the random 

component in the ARS stage of the VS process that creates a casual variation in the 

number of variables chosen, it is not satisfied that the highest VS run will select the fewest 

variables. 

 

2.2.2.3.4. Inner loop: PLS components for CV 

A model is built using each of the N subsets of variables. CV is carried out to optimize 

PLS components extracted to build the model. Thus, the training set is then divided into K 

subfolds, resulting in K subtraining sets and their corresponding test sets consisting of the 

group excluded from the subtraining set. The model built with the subtraining set is used to 

make predictions on the test set. The predicted class ( ̌) is compared to the true class ( ) of 

the ith object. A misclassification error is then calculated for each model. 

 

After all loops have been completed, the total number of CV errors obtained will be the 

product of multiplying the number of folds (K), number of LVs for SR calculation (cSR), 

number of VS runs (N) and number of LVs for model building (cPLSDA) (Equation 24). The 

optimal model will be the one with the smallest CV error. Because we are dealing with 

classification problems, the error is not a value of how correct or incorrect a prediction is, 

like in regression problems. Any positive number obtained as a prediction is automatically 

converted to 1 (class 1). The same applies to negative numbers, converted to -1 (class -1). 

Thus, it is very common that the same error value will be repeated for different models. If 

more than one model achieves the lowest error, than the optimal one is the one that 

includes the lowest number of variables. If more than one model achieves the lowest error 

and uses the lowest number of variables, then the one that uses that least number of LVs 

for model building will be selected, and so on for the number of LVs for SR calculation. In 

accordance with the principle of parsimony, the simplest model with the lowest error and 

lowest number of variables is our target [31, 32]. The variable subset used to build this 

optimal model is the final subset of informative variables. Figure 16 shows a scheme of 

the four loops in the algorithm of the modified CARS method.  
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Equation 24. 

 

 

Figure 16. Scheme of the four loops of the modified CARS algorithm when using 4-fold CV, N VS 

runs and 10 maximum number of PLS components for SR calculation and model building. 

 

2.2.2.4. New CARS-based method for variable identity and number optimization 

(VINO) 

In addition to the modification of the CARS algorithm, VINO was proposed as a new 

VS method. The algorithm involves a separate optimization of the identity and the number 

of variables that should be considered important. In addition, the number of PLS 

components for both SR calculation and model building are optimized. In the previously 

described modified method (Section 2.2.2.3) the fold left out for training is simply 

discarded, not used as a test set for CV; thus, CV is carried out on the same data that was 

used for training. This does not ensure a proper prediction for future samples but just for 

this particular training data. To solve this, in the new method the fold that was excluded 
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was used as a test set for the validation of the models built. A detailed description of the 

VINO algorithm can be found below. 

 

2.2.2.4.1. Stage 1: Obtainment of LV accuracy matrix 

2.2.2.4.1.1. Top loop: components for SR calculation optimization 

A total of c maximum number of LVs for SR calculation is defined. The number will 

vary from one through c for each top loop iteration.  

 

2.2.2.4.1.2. Outer loop: K-fold CV 

For each of the c different possible number of LVs for SR calculation, the data is 

divided into K groups or folds. This will produce K training sets by alternating the fold that 

is excluded. The fold that is excluded from a training set is its corresponding test set. 

 

2.2.2.4.1.3. Middle loop: EDF-ARS runs for VS 

For each of the K test sets, a model is built using the number of LVs defined for the 

corresponding top loop iteration. The model will produce an SR vector, which is used to 

carry out N VS runs in two stages: EDF and ARS. This will result in N subsets of selected 

variables for each training set. 

 

2.2.2.4.1.4. Inner loop: components for PLS-DA model building 

For each of the N variable subsets, c models are built by varying the number of LVs for 

PLS-DA from one through c. Each model is validated using the test set that was left out 

from the training set used in the corresponding outer loop iteration. This will produce c 

misclassification errors for each of the N variable subsets in a size N by c LV error matrix. 

Each element of this matrix is subtracted from one to produce an LV accuracy matrix 

(LVAM) of the same size. Figure 17 shows a scheme of the steps leading to the 

obtainment of the LVAM. 
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Figure 17.  Scheme of stage 1 of VINO when using 10 maximum LVs for SR calculation and 

model building, four folds for CV and N VS runs. The output of interest is the LV accuracy matrix. 

 

2.2.2.4.2. Stage 2: Obtainment of variable number cube, variable identity cube 

and latent variable mean accuracy matrix 

From the LVAM, a LV mean accuracy vector (LVMAV) of size one by c is obtained. 

Each element in this vector contains the mean value of the accuracies of the N models built 

using the variables selected in the corresponding VS runs for each one through c LVs for 

PLS-DA. It is important to note that it will not be possible to use all of the c amounts of 

LVs to build a model for every VS run selected subset. For example, in the last VS run 

where no more than two variables can be selected, LVs three through c will not be used 

because there is no room for dimensionality reduction. Thus, the mean for each number of 

LVs for modeling is obtained by summing the accuracies of only the VS runs where that 
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amount of LVs could be used and then dividing by the total of those runs, which can be N 

or lower (Equation 25). This vector gives information on the effect that using a certain 

number of LVs for modeling has on the prediction performance.  

 

                
∑                                              

                                                       
           

Equation 25. 

 

A LVMAV is obtained for each of the K training sets. Combining all of them will 

result in a latent variable mean accuracy matrix (LVMAM) of size K by c. 

 

In addition to LVMAV, other data arrays result from LVAM. For every column in 

LVAM corresponding to a number of LVs used for modeling, a variable accuracy matrix 

(VAM) with rows representing VS runs (N) and columns representing each variable (p) is 

obtained. The accuracy reported for the first VS run is recorded in the first row of VAM, 

but only in the columns of the variables that were selected during that VS run. The rest of 

the elements in that row are given a negative value.  This is repeated for each of the N VS 

runs, completing the whole VAM. 

 

From VAM, a variable number vector (VNV) of size p by one is obtained. Each 

element of this vector contains an accuracy value assigned to every possible amount of 

variables that can be selected in each VS run. For each amount, the accuracies of the VS 

runs that selected it are summed and then divided by the total of those runs (Equation 26). 

This vector gives information of the performance when choosing a certain number of 

variables, regardless of which ones they are. 

 

              
∑                                                         

                                                     
           

Equation 26. 

 

In addition to VNV, a variable identity vector (VIV) of size one by p is obtained 

from VAM. This vector gives information of the effect that including a particular variable 
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has on the prediction performance, regardless of how many other variables it is combined 

with.  For each variable, the accuracies of the VS runs that selected it are summed and then 

divided by the total of those runs (Equation 27). Each element of this vector contains an 

accuracy value assigned to each variable. 

 

              
∑                                              

                                          
           

Equation 27. 

 

Since a total of c VAMs, one for each PLS component used for modeling, will be 

obtained from each LVAM, the same number of VNVs and VIVs will result for each 

training set. Combining the VNVs and the VIVs will produce a variable number matrix 

(VNM) and a variable identity matrix (VIM), respectively. Uniting the K VNMs and the K 

VIMs obtained for each training set will generate two three dimensional data arrays: 

variable number cube (VNC) and variable identity cube (VIC), respectively. 

 

Figure 18 shows a scheme of stage 2 of VINO, showing the previously described 

processes that take place to obtain LVMAM, VNC and VIC. 
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Figure 18. Scheme of stage 2 of VINO when using 10 maximum LVs for SR calculation and 

model building, four folds for CV and N VS runs. The outputs of interest are VNC, VIC and 

LVMAM.  

 

2.2.2.4.3. Stage 3: Obtainment of fold variable number matrix, fold variable 

identity matrix and fold latent variable vector. 

The values for each training set in LVMAM, VNC and VIC are combined by way of a 

mean value. For LVMAM, this means that the first dimension, or the rows, will be 

averaged to obtain a fold latent variable vector (FLVV) of size one by c. For VNC and 

VIC, the third dimension will be averaged producing a fold variable number matrix 

(FVNM) and a fold variable identity matrix (FVIM), respectively. Averaging the third 

dimension consists in obtaining the mean of all the elements in the same row and column. 

The sizes of FVNM and FVIM are p by c and c by p, respectively. Figure 19 shows a 

scheme of the training set averaging third stage of VINO. 
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Figure 19. Scheme of stage 3 of VINO when using 10 maximum LVs for SR calculation and model building, four folds for CV and N VS runs. 

The outputs of interest are FVNM, FVIM and FLVV.  
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2.2.2.4.4. Stage 4: Optimization of variable identity and number and of PLS 

components for SR calculation and PLS-DA modeling 

From the FLVV, the number of LVs that exhibit the highest accuracy value is chosen 

as the optimal number of PLS components for modeling. If more than one number of LV 

achieves this value, the lowest number of LVs is chosen, to obtain a simpler model [31, 

32]. 

 

The vectors in FVNM and FVIM corresponding to the optimal number of PLS 

components for modeling are chosen as the fold variable number vector (FVNV) and the 

fold variable identity vector (FVIV), respectively.  

 

The FVIV is sorted in descending order so that the variables with highest accuracy are 

ranked first. The FVNV will aid in the specification of the cutoff value for the sorted 

FVIV. The number of variables to be kept (u) will be the one corresponding to the highest 

accuracy value in FVNV. If there is more than one number of variables with this value, 

then the lowest number of variables is selected, to obtain a simpler model [31, 32]. The 

optimal variable subset will contain the first u variables in the sorted FVIV. 

 

The entire process to obtain an optimal number of PLS components for modeling and 

an optimal variable subset is repeated for each one through c LVs for SR calculation. A list 

of highest accuracy values obtained for each optimal number of PLS-DA LVs 

corresponding to every amount of LVs used for SR calculation is generated. The amount of 

LVs for SR calculation to which the highest value in this list belongs to is the optimal one. 

If more than one amount of LVs for SR calculation is associated with this accuracy value, 

the least amount of LVs is chosen.  

 

The optimal number of PLS components for modeling and optimal variables subset are 

the ones corresponding to the optimal number of PLS components for SR calculation. 

Figure 20 shows a scheme of the final stage of VINO in which the final outputs are four 

parameters which have been optimized: 1) number of PLS components for SR calculation, 
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2) number of PLS components for PLS-DA modeling, 3) identity of variables and 4) 

number of variables.  

 

 

Figure 20. Scheme of stage 4 of VINO when using 10 maximum LVs for SR calculation and 

model building, four folds for CV and N VS runs. At the end of the algorithm four parameters will 

have been optimized: 1) LVs for SR calculation, 2) LVs for PLS-DA modeling and 3) identity and 

4) number of variable in the form of a selected variable subset. 

 

2.2.2.5. Comparison of original CARS performance with that of modified CARS 

and the new VINO method 

The parameter settings to perform VS were constant when executing either CARS, 

modified CARS or VINO (Table 7). Because the number of objects in all datasets with 

outliers removed was divisible by four, with zero remainder for T2DM and POCD and one 

remainder for CHOB, the number of folds (K) was switched from five to four. This was 

done in an attempt to keep the number of objects in each fold as equal as possible. The 
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maximum number of LVs for PLS-DA modeling (c) was set to 10. In the case of CARS, 

the number of LVs for SR calculation is defined as c, not varied from one through c like in 

the modified CARS and VINO. One thousand was established as a sufficient number of 

MCS or VS runs, as the case may be. Centering was kept as the data pretreatment method 

and, as mentioned before, the variable importance was calculated according to SRs.  

 

The procedures were carried out five times for each method to have an idea of how 

stable their performance was in terms of repeatability. 

 

Table 7. Parameter settings for the comparison of CARS, modified CARS and VINO. 

Fold for CV 
Number of 

MCS/VS runs 

Data 

pretreatment 

method 

Variable 

importance 

according to 

Maximum LVs for 

SR calculation* and 

model building 

4 1000 centering SR 10 

*In the case of CARS, the LVs for SR calculation is defined as 10, not varied from 1-10. 

 

Once the VS procedure was completed, modeling was carried out using the same 

plsldacv.m script described in Section 2.2.1.4. The number of maximum PLS components 

for CV was set to 10. The prediction assessment parameters mentioned in Section 2.2.1.4 

were taken into account to evaluate the VS procedure; however, because the 

misclassification error encompasses more information than the rest of the assessment 

parameters, more emphasis was placed on it. 
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3. RESULTS AND DISCUSSION 

3.1. COMPARISON OF VS METHODS 

The results of the performance of the methods of CARS, SPA and RF for VS in the 

preliminary stage are summarized in Table 8.  

 

Table 8. Classification assessment results after carrying out VS with CARS, SPA and RF for 

T2DM, POCD and CHOB. The results of the VS method displaying the best performance have 

been highlighted for each dataset. 

Datasets 

Variable 

Selection 

Method 

Prediction Assessment Parameters (%) 

Variables chosen 
Error AUC Sensitivity Specificity 

T2DM 

None 0.0333 0.9746 0.9778 0.9556 All (21) 

CARS 0.0222 0.9751 0.9778 0.9778 5, 9, 11, 14, 16, 18, 20 

SPA 0.0000 0.9778 1.0000 1.0000 
2, 4, 5, 6, 7, 8, 9, 10, 11, 

14, 15, 17, 18, 20, 21 

RF 0.0111 0.9743 0.9778 1.0000 
1, 2, 3, 4, 5, 6, 8, 9, 10,11, 

12, 13, 14, 15 

POCD 

None 0.3103 0.6635 0.7500 0.6154 All (44) 

CARS 0.1250 0.8438 0.8333 0.9167 21, 22, 29, 33, 35 

SPA 0.3333 0.7431 0.6667 0.6667 8,11 

RF 0.0833 0.8750 0.9167 0.9167 

5, 6, 9, 11, 13, 14, 26, 27, 

28, 30, 31, 32, 35, 36, 39, 

41, 42 

CHOB 

None 0.3103 0.6947 0.6875 0.6154 All (30) 

CARS 0.1724 0.8438 0.7500 0.9231 
1, 2, 4, 5, 7, 9, 10, 14, 15, 

19, 23, 24, 26, 27, 28, 30 

SPA 0.2069 0.7909 0.8125 0.7692 5, 23, 26 

RF 0.2759 0.8077 0.7500 0.8462 1, 8, 10, 12, 13, 14, 26 

 

In general, T2DM appears to be the most stable dataset exhibiting the most ideal 

results for all VS methods, even when no VS is carried out. CHOB seems to be the least 

stable. This does not come as a surprise due to the fact that the dissimilarities in the 
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profiles of the two groups being classified, obese and overweight, should be much more 

subtle then the ones in the profiles of an obese and healthy group, for example.  

 

For every dataset, the results tend to improve when implementing any VS method. 

However, the method providing the best results varies from dataset to dataset: SPA, RF 

and CARS perform better on T2DM, POCD and CHOB, respectively.  

 

Something to note is that considering many prediction assessment parameters 

makes interpretation complicated. Not all parameters will exhibit the best value for the 

same method. In Table 8 when comparing the results for POCD when using all variables 

and the ones after VS with SPA, in terms of specificity, the latter is better; however, 

regarding the misclassification error, it is the contrary.  

 

A possible alternative to deal with this without disregarding any of the parameters 

of interest is combing all of them to a single response [87]. A multi response optimization 

approach involving the termed “desirability function” has been implemented to solve 

problems involving industrial quality control, analytical techniques and pharmaceutical 

formulation, to name a few [87, 88, 89, 90, 91]. This approach is described in detail by 

Derringer and Suich [87] and consists in transforming each response into desirability 

values which are then combined through a geometric mean to obtain a global desirability 

value. This value will range between zero and one and will represent the overall 

assessment of the combined responses, being there a more favorable balance as it 

increases. This would produce a single response for comparison of VS methods if it were 

to be applied to the resulting prediction assessment parameters. 

 

 Note that, since in this stage the parameters for VS were given standard values, a 

more significant comparison would require their optimization for every method and 

dataset. 
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3.2. OPTIMIZATION OF VS METHOD 

3.2.1. Outlier detection 

The PLS-DA score plots for the three datasets of interest built in Sirius (© 1995-

09) are presented in Figure 21. The percentage of explained variance by each LV for 

the independent variable X and the dependent variable y is shown in their axes labels. 

The ellipses are constructed using Hotelling’s T
2
 test [92], and indicate the limits out of 

which outliers will fall [93]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLS-LDA score plots  of A) T2DM, B) POCD and C) CHOB.  

 

Figure 21. PLS-DA score plots of the first three PLS components of A) T2DM, B) POCD and C) 

CHOB. Objects of class 1 are labeled in blue, while class -1 markers are red. The variance 

explained in X and y, respectively, is stated beside the component number on the axes labels.   
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The resulting variance explained is in accordance to the known fact that it decreases 

with each new LV [94]. Because of this, the plot of component one against two was given 

more consideration for the selection of outliers. All objects in POCD and CHOB lie within 

the established limits. There appears to be an irregularity in relation to the first LV for the 

sixth and thirtieth object of class -1 in T2DM that is repeated in the second plot for both 

and in the third for the former. These two objects were eliminated from T2DM before 

carrying out the following stages. The fourth object of class -1 is deviated in relation to the 

third LV in the second and third plot; however, because the percentage of variance that this 

component explains for both X and y, 8.1 and 7.1, respectively, is quite small, this object 

was not considered an outlier. 

 

Regarding the separation of classes, the differences seem to be less marked in CHOB, 

as was expected due to the similarity in adverse metabolic effects that obesity and 

overweight cause [95, 96]. 

 

3.2.2. Analysis of CARS algorithm 

A problem that has been identified in the performance of CARS is the lack of 

consistency in its results [39]. The optimization of this method was chosen as a starting 

point to improve VS in our metabolomics datasets.  

 

One of the findings during the analysis of the CARS MATLAB script used is that the 

number of LVs for SR calculation in the second step is simply set arbitrarily, not optimized 

like for the number of LVs for modeling in the final step. The need for this optimization 

was established in addition to that already existing for number of LVs for modeling and 

variable subset.  

 

Another observation is that the ratio of objects selected during MCS in the first stage 

was set to 0.95. This value does not allow much variation of the training set composition 

when the number of objects in a dataset is small. For example, when applying this ratio to 

POCD, which is the dataset with the smallest amount of objects (24), only one of them will 

be left out alternately during MCS. This leaves only 24 training set possibilities for 1000 
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MCS runs; thus, they will be repeated more than once. This is not realistic enough to 

ensure robustness of the method with regards to the variation of objects used for training, 

and therefore eliminates the entire purpose of the MCS. 

 

It was also found that the CARS script was coded in such a way that, independently of 

the number of objects kept for training, the proportion of class1/class-1 was maintained. 

For example, for the original T2DM, without outliers removed, having the same amount of 

objects from each class (45), the number of objects sampled from each one of them is 43, 

to obtain a total of 86 objects for training, 0.95 of the total number of objects (90). 

However, not every dataset contains an equal amount of objects for each class. T2DM with 

outliers removed, for instance, has two less objects for class -1, while for CHOB, it is three 

less objects for that class. 

  

To evaluate the effect that sampling different proportions of classes, as well as different 

ratios for training in the MCS stage has on CARS’s VS performance, plots of CV errors 

per MCS runs were constructed for POCD using different training sets as detailed in Table 

6 of Section 2.2.2.2. (Figure 22).  
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Figure 22. Plots of CV error per MCS run for the POCD dataset for training sets A) TS1, B) TS2, 

C) TS3, D) TS4, E) TS5, F) TS6 and G) TS7. 
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Because the error taken into account is a misclassification error, which is just a count 

of objects that were incorrectly classified divided by the total number of classified objects 

[20], multiple MCS runs will achieve the lowest error value. In the case of POCD, there 

are 24 objects to be classified, so there are basically 24 error possibilities (Equation 28), 

being the lowest 0.042 and the highest 1. This is illustrated in the following example for 

POCD in which the number of total objects in a dataset, n, which will be used to obtain a 

CV error in the final stage of CARS, is 24. 

 

                
 

 
            

Equation 28. 

 

i.                (  ⁄ ) (  ⁄ ) (  ⁄ )   (  ⁄   ) 

ii.                (   ⁄ ) (   ⁄ ) (   ⁄ )   (    ⁄ ) 

iii.                (     ) (     ) (      )   ( ) 

 

This being explained, the MCS run with lowest error and highest index was selected as 

the optimal one when using every training set. However, in every plot (Figure 22), there is 

some oscillation during the first MCS runs, followed by a constant error that only varies 

until the last 100 runs or less. This may be due to the few possible errors, training set 

combinations or both, that are bound to be repeated in so many MCS runs (N=1000). This 

suggests that the algorithm could be improved by implementing a new strategy to vary the 

objects used for training.  

 

Another inference obtained by the plots in Figure 22 is that, in some cases, the lowest 

error is achieved by chance. In plot A, for example, the lowest error value (0.1250) is 

achieved in the fourth MCS run, sixteen runs before it stabilizes to a constant value of 

0.3333. This situation in which the lowest error value is achieved before a stable error 

trend is established also occurs in plots B through H. This random component affects the 

stability of the method.  
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One could think that, because the number of retained variables in the EDF stage of 

CARS decreases for each MCS run, in addition to the random component of the ARS 

stage, repeating a training set between runs doesn’t necessarily mean that the same variable 

subset, and therefore the same error, will be obtained. However, a different impression is 

given from plot G. Because for its construction no MCS was carried out, all objects are 

being included for training in every VS run; there is no variation in the training set. An 

error value of 0.1250 is maintained from runs 46 through 927 indicating that although there 

is a random component in the VS process through ARS, it does not have a significant 

effect on the subset of variables chosen. It can be considered an “educated” random choice, 

as variables with higher importance scores have a higher probability of being sampled. The 

uninformative variables will probably be left out anyways independently of the ratio of 

variables kept defined in the EDF stage. The increase in the error toward the final runs is 

probably due to the fact that at this point, the maximum number of selected variables is 

lower than that of actual informative variables.  

  

It is important to keep in mind that CARS was originally developed for continuous 

data, specifically NIR spectra [39], for which the purpose is regression instead of 

classification. Thus, a RMSE is used to evaluate prediction performance as opposed to a 

misclassification error [23]. This gives way to infinite error possibilities, which leaves little 

or no room for repetition. This is an important difference between classification and 

regression that must be noted. Another difference is that a misclassification error does not 

indicate how correct or incorrect an error is; it is an absolute “yes” or “no”.  

 

3.2.3. Modification of CARS algorithm 

In an attempt to improve the strategy to ensure the robustness of the method in regards 

to the variation of the training set, the CARS algorithm was modified to divide the data 

into K folds as equal as possible to alternately leave out for training. The modified 

algorithm also involved the simultaneous optimization of LVs for both SR calculation and 

PLS-DA modeling in addition to that of the variable subset. The results of five independent 
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runs of the modified and original CARS for T2DM, POCD and CHOB are shown in Table 

9, Table 10, Table 11, respectively. 

 

Table 9. Prediction performance results from T2DM when applying modified and original CARS 

five times and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.0341 0.9333 1.0000 0.9682 0.9341 (All) 1-21 

Modified 

CARS 

0.0114 0.9778 1.0000 0.9695 0.9775 5, 8, 11, 18 

0.0114 0.9778 1.0000 0.9695 0.9775 5, 8, 11, 18 

0.0114 0.9778 1.0000 0.9695 0.9775 5, 8, 11, 18 

0.0114 0.9778 1.0000 0.9695 0.9775 5, 8, 11, 18 

0.0114 0.9778 1.0000 0.9695 0.9775 5, 8, 11, 18 

CARS 

0.0341 0.9556 0.9767 0.9693 0.9321 9, 11, 18 

0.0227 0.9778 0.9767 0.9690 0.9545 8, 11, 18 

0.0341 0.9556 0.9767 0.9693 0.9321 9, 11, 18 

0.0227 0.9778 0.9767 0.9690 0.9545 8, 11, 18 

0.0341 0.9333 1.0000 0.9682 0.9341 1-21 

 

The overall results for the modified CARS when applied to T2DM surpass those of 

CARS (Table 9). The modified method achieved the highest values for every prediction 

assessment parameter. In addition, those values, as well as the number and identity of 

variables selected, is unchanged for all five runs, indicating great stability.  

 

The minor variability in results from different independent CARS runs reflects its 

previously reported instability [39]. However, the most disconcerting result is that it 

selected all variables in the fifth run. It also achieved the same error as when no VS was 

performed in runs two and three, although it was never lower. This is also considered a 

successful optimization for the first four CARS runs, as the model has been simplified by 

including fewer variables without decreasing the prediction performance [31, 32].  
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Table 10. Prediction performance results from POCD when applying modified and original CARS 

five times and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

Modified 

CARS 

0.0833 1.0000 0.8333 0.8056 0.8452 
9, 20, 22, 26, 30, 31, 32, 34, 

35, 36, 37, 43 

0.0833 0.9167 0.9167 0.8611 0.8333 

2, 6, 9, 11, 14, 19, 20, 22, 24, 

26, 28, 30, 31, 32, 34, 35, 36, 

41, 44 

0.0833 0.9167 0.9167 0.8264 0.8333 
4, 6, 8, 9, 11, 20, 22, 26, 29, 

30, 31, 32, 41 

0.1250 0.8333 0.9167 0.8194 0.7526 19, 22, 27, 31, 32, 35 

0.1250 0.9167 0.8333 0.8264 0.7526 6 20 22 28 31 32 34 35 

CARS 

0.1667 0.8333 0.8333 0.7951 0.6667 31, 32 

0.1667 0.8333 0.8333 0.8333 0.6667 6, 22, 31, 32 

0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

0.1667 0.9167 0.8333 0.7535 0.7526 

4, 9, 12, 13, 18, 20, 22, 24, 

26, 27, 28, 29, 30, 31, 32, 34, 

35, 39, 41, 42, 43 

 

 As with the previous dataset, the results obtained for POCD reflect a better VS 

performance by the modified CARS when compared to the original. Although modified 

CARS’s results are less stable for this dataset than those for T2DM, the superiority of all 

its prediction assessment parameters over those of original CARS and when no VS is 

carried out is maintained. However, the apparent variability in number and identity of 

variables is not satisfactory. 

 

CARS’s stability improved in regards to its prediction assessment parameter 

values, but decreased for the selected variable subsets. The number of variables selected 

varies from two to all, the latter resulting for one more run in this dataset than in the 

previous one. The prediction performance parameter values for the three runs that did not 

select all variables are quite similar than those obtained with the absence of VS. However, 

the fact that for these runs the number of variables considered is reduced without affecting 

the prediction performance, makes it a successful optimization, as mentioned before. 
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Nevertheless, as in the modified CARS, there is a large variability in the selected variable 

subsets.  

 

Table 11. Prediction performance results from CHOB when applying modified and original CARS 

five times and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

Modified 

CARS 

0.3750 0.5000 0.7500 0.5521 0.2582 
5, 12, 15, 16, 17, 19, 20, 23, 

26, 27, 30 

0.3750 0.5000 0.7500 0.6354 0,2582 5, 8, 10, 11, 17, 27, 29 

0.4583 0.5000 0.5833 0.5035 0.0836 
5, 8, 11, 12, 13, 17, 21, 23, 

28, 29 

0.5417 0.4167 0.5000 0.4861 0.0836 1, 5, 8, 11, 12, 13, 17, 23 

0.5000 0.5000 0.5000 0.4896 0.0000 5, 8, 11, 12, 13, 17, 23 

CARS 

0.2759 0.6875 0.7692 0.7043 0.4546 
5, 8, 12, 16, 17, 20, 23, 26, 

28 

0.2759 0.7500 0.6923 0.7115 0.4423 5, 10, 12, 17, 23 

0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

0.2759 0.7500 0.6923 0.6226 0.4423 10, 12, 23, 26 

 

 Unlike the previous datasets, the results for modified CARS when applied to 

CHOB (Table 11) decline in regards to the original CARS and when including all 

variables. There appears to be a higher consistency in variables selected than in POCD, but 

the results for all prediction assessment parameters are not only unstable, but also indicate 

a much poorer performance. 

 

 CARS’s consistency in the error values is improved to 100 per cent; however, the 

instability in selected variable subsets persists, as well as two occurrences when all 

variables are included. In general, the prediction performance when applying CARS is the 

same than when no VS is performed, and much better than the modified CARS. 
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As observed for the previous preliminary stage when three different VS methods 

were compared (Section 3.1), from the three datasets, T2DM appears to be the most stable 

while CHOB, the least. This indicates that the differences in metabolic profiles between 

diabetic and healthy individuals are much more marked than those of obese and 

overweight prepubertal children [95, 96, 97]. 

 

3.2.4. New method VINO 

In spite of the rather promising results obtained from the modified CARS, the 

validation carried out in the final stage is performed on the same data used for training. A 

proper validation must be carried out on an independent test set [98, 99]. This was 

corrected in the new method VINO. The simultaneous optimization of the three parameters 

performed by modified CARS was also incorporated in the new method. The results of 

applying VINO on T2DM, POCD and CHOB five times are shown in Table 12, Table 13 

and Table 14, respectively. For each dataset, the results of running CARS five times, 

previously reported for comparison with modified CARS (Section 3.2.3) are also 

presented.  

 

Table 12. Prediction performance results of VINO when applied to T2DM five times compared 

with five runs of CARS and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.0341 0.9333 1.0000 0.9682 0.9341 (All) 1-21 

VINO 

0.0341 0.9778 0.9535 0.9672 0.9320 2, 5, 8, 9, 11, 12, 16, 18 

0.0227 0.9778 0.9767 0.9649 0.9545 2, 5, 8, 9, 11, 16, 17, 18 

0.0277 0.9778 0.9767 0.9649 0.9545 2, 5, 8, 9, 11, 16, 17, 18 

0.0341 0.9778 0.9535 0.9682 0.9320 2, 5, 6, 8, 9, 11, 16, 18 

0.0341 0.9778 0.9535 0.9682 0.9320 2, 5, 6, 8, 9, 11, 16, 18 

CARS 

0.0341 0.9556 0.9767 0.9693 0.9321 9, 11, 18 

0.0227 0.9778 0.9767 0.9690 0.9545 8, 11, 18 

0.0341 0.9556 0.9767 0.9693 0.9321 9, 11, 18 

0.0227 0.9778 0.9767 0.9690 0.9545 8, 11, 18 

0.0341 0.9333 1.0000 0.9682 0.9341 1-21 
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 The prediction performance for T2DM when using both VS methods, as well as 

when no method is applied, appears to be quite similar when considering the assessment 

parameters (Table 12). There appears to be little variability in this respect for both CARS 

and VINO, as well for the number and identity of variables selected, with the exception of 

the last run for the former. However, CARS selects fewer variables while maintaining the 

prediction performance, which makes it the better option. 

 

Table 13. Prediction performance results of VINO when applied to POCD five times compared 

with five runs of CARS and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

VINO 

0.1667 0.8333 0.8333 0.7986 0.6667 9, 22, 26, 31, 35 

0.2083 0.7500 0.8333 0.8056 0.5854 

1, 3, 5, 6, 9, 14, 15, 22, 26, 

28, 29, 30, 31, 32, 33, 35, 37, 

39, 40, 41, 42, 43, 44 

0.2917 0.5833 0.8333 0.5208 0.4303 
1, 6, 9, 22, 26, 28, 30, 31, 32, 

35, 40, 41, 42, 43, 44 

0.4167 0.5833 0.5833 0.5451 0.1667 4, 5, 34, 36, 39, 43 

0.2917 0.5833 0.8333 0.6146 0.4304 3, 6, 11, 25, 41, 43 

CARS 

0.1667 0.8333 0.8333 0.7951 0.6667 31, 32 

0.1667 0.8333 0.8333 0.8333 0.6667 6, 22, 31, 32 

0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

0.1667 0.9167 0.8333 0.7535 0.7526 

4, 9, 12, 13, 18, 20, 22, 24, 

26, 27, 28, 29, 30, 31, 32, 34, 

35, 39, 41, 42, 43 

 

The prediction performance for POCD (Table 13) drops considerably when using 

VINO, being the first run an exception. The values for the assessment parameters are not 

only unstable, but also indicate a low prediction performance. There is also lack of 

consistency in the identity and number of variables selected.  

 

  



3. Results and Discussion 

65 
  

Table 14. Prediction performance results of VINO when applied to CHOB five times compared 

with five runs of CARS and when including all variables (no VS). 

VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

None 0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

VINO 

0.2759 0.6875 0.7692 0.7067 0.2759 
1, 2, 7, 8, 9, 10, 12, 17, 18, 

20, 21, 24, 25, 26, 27, 28, 29 

0.4483 0.6250 0.4615 0.5577 0.4483 
1, 2, 7, 9, 10, 12, 15, 16, 18, 

20, 21, 24, 25, 26, 27, 28, 29 

0.4483 0.6250 0.4615 0.5577 0.4483 
1, 2, 5, 7, 9, 10, 12, 16, 18, 

20, 21, 24, 25, 26, 27, 28, 29 

0.4138 0.6250 0.5385 0.5962 0.4138 
1, 2, 5, 9, 12, 15, 18, 20, 21, 

22, 23, 24, 26, 27, 28, 29 

0.2759 0.7500 0.6923 0.7163 0.2759 
2, 5, 9, 12, 16, 18, 20, 21, 22, 

23, 24, 26, 27, 29 

CARS 

0.2759 0.6875 0.7692 0.7043 0.4546 
5, 8, 12, 16, 17, 20, 23, 26, 

28 

0.2759 0.7500 0.6923 0.7115 0.4423 5, 10, 12, 17, 23 

0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

0.2759 0.7500 0.6923 0.6226 0.4423 10, 12, 23, 26 

 

Like for POCD, there is a decrease in the prediction performance when using 

VINO to select variables from CHOB (Table 14) when comparing it to that when using 

CARS and when no VS is carried out. Although the error values appear to be more stable 

for this dataset than for POCD, the instability of selected variable subsets persists. 

 

 Despite VINO’s poor performance in selecting important variables from these 

datasets, its ability to discard interfering variables was yet to be verified. For this purpose, 

new variable subsets were generated by removing from the original datasets the variables 

that were never selected during any of the five runs of VINO. The results are shown in 

Table 15. 
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Table 15. Prediction performance results for T2DM, POCD and CHOB in three instances: 1) with 

no VS, 2) when eliminating the variables that weren’t selected in any of the previously reported 

five runs of VINO and 3) in the five previously reported runs of VINO. 

DATASET 
VS 

Method 

Prediction Assessment Parameters 
Selected Variables 

Error Sensitivity Specificity AUC MCC 

T2DM 

None 0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

VINO 

Elim. 
0.0341 0.9778 0.9535 0.9618 0.9320 

2, 5, 6, 8, 9, 11, 12, 16, 

17, 18 

VINO 

0.0341 0.9778 0.9535 0.9672 0.9320 2, 5, 8, 9, 11, 12, 16, 18 

0.0227 0.9778 0.9767 0.9649 0.9545 2, 5, 8, 9, 11, 16, 17, 18 

0.0277 0.9778 0.9767 0.9649 0.9545 2, 5, 8, 9, 11, 16, 17, 18 

0.0341 0.9778 0.9535 0.9682 0.9320 2, 5, 6, 8, 9, 11, 16, 18 

0.0341 0.9778 0.9535 0.9682 0.9320 2 5 6 8 9 11 16 18 

POCD 

None 0.1667 0.8333 0.8333 0.7465 0.6667 1-44 

VINO 

Elim. 
0.1250 0.9167 0.8333 0.8611 0.7526 

2, 4, 6, 8, 9, 11, 14, 19, 

20, 22, 24, 26, 27, 28, 

29, 30, 31, 32, 34, 35, 

36, 37, 41, 44 

VINO 

0.1667 0.8333 0.8333 0.7986 0.6667 9, 22, 26, 31, 35 

0.2083 0.7500 0.8333 0.8056 0.5854 

1, 3, 5, 6, 9, 14, 15, 22, 

26, 28, 29, 30, 31, 32, 

33, 35, 37, 39, 40, 41, 

42, 43, 44 

0.2917 0.5833 0.8333 0.5208 0.4303 

1, 6, 9, 22, 26, 28, 30, 

31, 32, 35, 40, 41, 42, 

43, 44 

0.4167 0.5833 0.5833 0.5451 0.1667 4, 5, 34, 36, 39, 43 

0.2917 0.5833 0.8333 0.6146 0.4304 3, 6, 11, 25, 41, 43 

CHOB 

None 0.2759 0.6875 0.7692 0.7067 0.4546 1-30 

VINO 

Elim. 
0.3448 0.5625 0.7692 0.7476 0.3350 

1, 5, 8, 10, 11, 12, 13, 

15, 16, 17, 19, 20, 21, 

23, 26, 27, 28, 29, 30 

VINO 

0.4483 0.6250 0.4615 0.5577 0.0874 

1, 2, 7, 8, 9, 10, 12, 17, 

18, 20, 21, 24, 25, 26, 

27, 28, 29 

0.4483 0.6250 0.4615 0.5577 0.0874 

1, 2, 7, 9, 10, 12, 15, 

16, 18, 20, 21, 24, 25, 

26, 27, 28, 29 

0.4138 0.6250 0.5385 0.5962 0.1635 

1, 2, 5, 7, 9, 10, 12, 16, 

18, 20, 21, 24, 25, 26, 

27, 28, 29 

0.2759 0.7500 0.6923 0.7163 0.4423 

1, 2, 5, 9, 12, 15, 18, 

20, 21, 22, 23, 24, 26, 

27, 28, 29 

0.3103 0.6875 0.6923 0.6683 0.3780 

2, 5, 9, 12, 16, 18, 20, 

21, 22, 23, 24, 26, 27, 

29 
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The minor improvement in the results for POCD and CHOB suggest that VINO’s 

ability to discard interfering variables is better than selecting informative ones. However, 

there appears to be no change in the results for T2DM. This aspect is one that can be 

investigated further and could lead to a change in the focal point of the VINO algorithm for 

its improvement.  

 

In light of VINO’s poor VS performance, the possibility that the mean did not 

provide a proper representation to designate an accurate identity importance value for each 

of the p variables was proposed. If this was the case, it could be replaced by the median, 

for instance. To discard this hypothesis, normal probability plots of the accuracies resulting 

from the 1000 MCS runs when using optimal LVs for SR calculation and PLS-DA model 

building were constructed for each of the p variables. Figure 21 shows the plots that were 

identified as the most asymmetrical.  
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Figure 23. POCD normal probability plots of accuracy values designated in the 1000 MCS runs for 

A) variable 6; fold 2, B) variable 24; fold 2, C) variable 26; fold 2, D) variable 30; fold 2, E) 

variable 32; fold 2 and F) variable 41; fold 4. 

 

 The accuracy values do not appear to lean to any side of the mean in a manner that 

might be considered unusual in any of the plots. This indicates that the mean is a suitable 

measure to represent the combined data.  
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4. CONCLUSION 

The theoretical mechanism of three variable selection methods as well as their 

performance when applied to three different metabolomics datasets using arbitrarily 

defined settings was compared. Key similarities and differences were identified among the 

methods, and they were all found to base variable importance according to different 

criteria. Although the method achieving the best assessment values varied with each 

dataset, for every one of them the prediction performance was improved when VS was 

carried out, whatever the method, as opposed to using all the original variables. This 

indicates that VS does indeed improve a model’s prediction performance. In addition, 

CARS was not found to perform worse than the other VS methods, even though it was 

developed to solve regression problems. This suggests that this method is indeed 

applicable for classification as well. 

 

In regards to the datasets used, T2DM exhibited the most stable behavior while CHOB 

displayed the least. This indicates a more marked difference between classes in the former 

than in the latter. Considering that the metabolic differences between diabetic and healthy 

individuals are bound to be larger than those between obese and overweight children, this 

outcome is quite realistic.  

 

Important differences between regression and classification were established, the most 

relevant being the type of values assigned to the response variable: continuous for the 

former and categorical for the latter. This leads to different ways of validating prediction 

performance for each one. The parameter on which this study was based on, the 

misclassification error, does not provide information about how correct or incorrect a 

prediction is. This gives reason to doubt whether basing the importance score assigned to 

each variable on this prediction assessment parameter is appropriate.  

 

The original CARS algorithm was modified to simultaneously optimize the PLS 

components used for SR calculation and modeling as well as the subset of informative 

variables. Although the results seem to be quite acceptable, the fact that model validation 
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was carried out on the same objects used for training led to the rethinking of the method’s 

approach. 

 

VINO was proposed as a new VS method based on the separate optimization of 

identity and number of informative variables. In addition, this method also involves the 

optimization of the three parameters considered in the modified CARS. However, its 

implementation did not prove to increase model prediction performance when compared to 

the results obtained when using the original or modified CARS, or when using all variables 

in the original dataset. Some of the aspects identified as possible pathways to improve 

VINO’s performance were tested, only to be discarded. Further study regarding other 

untested pathways is needed for the improvement of this method.  
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5. FUTURE WORK 

In order to obtain a more accurate comparison of the VS methods included in this 

study, the optimization of their parameters, which were set by default here, should be 

optimized prior to their implementation. 

 

Seeing that there are many parameters that assess prediction performance, instead of 

choosing one to analyze individually, combining the responses into one overall value is an 

alternative that can be implemented in future studies. The desirability function is a possible 

approach that applies this strategy.  

 

The final variable subset in original and modified CARS, as well as in VINO is 

selected based on a misclassification error. Because this parameter does not indicate the 

degree of correctness of a prediction, the use of another measure that produces continuous 

values for the evaluation of prediction performance involved in the algorithms of the 

abovementioned methods can be tested. 

 

In this study, VINO was applied to metabolomics datasets to solve classification 

problems. It would also be interesting to evaluate its performance on datasets with 

continuous response variables on which regression will be performed. 
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