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Abstract

The fjord system of Sørfolda and Nordfolda situated in northern Norway is
used in a model study. Particularly to explore the mechanisms causing sepa-
ration and mixing of eggs from Arcto-Norwegian Cod (ANC) and Norwegian
Coastal Cod (CC).

The Regional Ocean Modeling System (ROMS) simulates the circulation
in the fjord, characterized by the estuarine circulation. The major forcing to
the fjord system is the fresh water discharge, with its seasonal and interannual
variations.

Two extreme years with respect to runo� were chosen to study; 1960
representing a cold and dry year, and 1989 representing a warm and wet
year. The estuarine circulation was established during both years, with 1989
generally having a fresher surface layer. The onset of melting season was
approximately one month earlier in 1989 compared to 1960.

A particle tracking model was used to transport CC eggs in the fjord
system. Particles drifting at �xed depths showed especially larger spread at
1 m depth during 1989 than 1960. Most particles lower in the water column
stayed within the fjord system.

The particles was added a dynamical vertical distribution, as a function
of buoyancy and mixing. A fresher surface layer in April 1989 compared
to 1960 caused a larger fraction of the eggs to be heavier than the brackish
layer. When the eggs are situated lower in the water column, the possibility
of being transported away is much smaller and the degree of retention is
larger. Considering the last part of the spawning period a stronger separation
between ANC and CC is observed in 1989 compared to 1960. The results
indicate that CC have adapted the buoyancy of eggs to increase retention of
eggs inside the fjord system.

From the results it is concluded that CC are self-recruiting and the sepa-
ration between ANC and CC eggs are strong. Future climate change might
enhance the separation between the two populations.
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Chapter 1

Introduction

Vestfjorden is an ocean bay situated between the Lofoten archipelago and the
mainland in northern Norway. This is one of the main spawning sites for the
Arcto-Norwegian Cod (Gadus morhua L.) (Sundby & Bratland, 1987). The
region has been subjected to extensive research activity since the 1860s due to
the unique location regarding both cod �sheries and reproduction (Sundby,
1980). The great cod �sheries in Norway have experienced large variations
in landings, which initiated the study of physical-biological interactions on
cod recruitment. Hjort (1914) hypothesized that the large �uctuations in
�sh recruitment was due to natural variations in the system and that the
year-class strength was determined at an early life stage.

Already in the early 1900s �shermen recognized and described di�erent
shapes and colors on cod caught close to the coast and cod caught away from
the coast (Rinde et al., 1998). Rollefsen (1933) used otholits to determine
the age of cod, and later this was used to de�ne the di�erence between the
two populations, which are now known as the Arcto-Norwegian Cod (ANC)
and the Norwegian Coastal Cod (CC). The ANC and CC are considered as
separate populations regarding to management and quotas. Early stages of
ANC are known to drift over long distances (600-1200 km) (Bergstad et al.,
1987) into the Barents Sea for feeding and nursery grounds. They migrate
back to the Lofoten area to spawn. This is in large contrast to the CC which
spawn at the coast and partly into the fjords (Jakobsen, 1987), and are not
known to leave the coastal areas. There are several di�erent populations of
CC situated along the Norwegian coast, some might even say every fjord has
its own population. Studies from the Norwegian Skagerrak coast show local
CC populations with a geographical extent of about 30 km and local retention
of early life stages (Knutsen et al., 2007; Jorde et al., 2007; Espeland et al.,
2007).

Genetic studies are not fully agreeing on the actual genetic di�erence be-
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tween the two species. Some studies are implying greater di�erences between
individuals in a population than di�erences between populations (Árnason
& Pálsson, 1996; Mork & Giæver, 1999). Others �nd a marked genetic dif-
ference between coastal and Arctic populations suggesting more independent
populations than earlier studies (Pogson & Fevolden, 2003)

The �rst attempt to model transport of cod larvae from Lofoten was
done by Ådlandsvik and Sundby (1994). They concluded that a need for
higher model resolution was necessary to capture the major variations in
the system. Vikebø et al. (2005) discussed a physical-biological coupling
maintaining the separation of ANC and CC, elaborating on the hypothesis
by Sundby (1994), who proposed that the separation could be caused by
di�erence in egg buoyancy between the two populations. A di�erence in
buoyancy between ANC and CC eggs is observed in this area, with the ANC
eggs more buoyant (Kjesbu et al., 1992). The pelagic ANC eggs, spawned in
the saline coastal waters, are concentrated close to the surface and decreasing
with depth, and hence very sensitive to variations in wind-induced mixing
(Sundby, 1983). The mesopelagic CC eggs, spawned in the fjords with low-
saline surface water, are concentrated lower in the water column, being more
dependent on the strati�cation and hydrography (Sundby, 1991). However,
Stenevik et al. (2005) showed that the speci�c gravity of CC eggs at di�erent
locations along the Norwegian coast did not vary much, but that the local
salinity structure of the water masses determined whether the eggs were
pelagically or mesopelagically distributed.

Objectives
The object of this thesis is to investigate how di�erences in salinity pro�les
and variations in speci�c gravity of eggs in�uence horizontal transport, and
contribute to separation and mixing between ANC and CC eggs. Particularly
explore whether climate change will a�ect the extent of separation between
the two cod populations. A regional ocean model is used to simulate the
circulation in a fjord system during two di�erent years. The �rst year, 1960,
representing a cold and dry year, and the second year, 1989, representing a
warm and wet year. Drift patterns of eggs will be modeled with a dynamic
vertical distribution using a particle tracking model. The spreading and
mixing of eggs will be discussed in relation to the di�erent years.
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Content
Chapter 2 contains information about the physical and biological environ-
ment of Sørfolda and Nordfolda. In chapter 3 background theory is pre-
sented. Chapter 4 includes information regarding methods, the circulation
model and the particle tracking model. The results from the circulation
model are shown in chapter 5, and the output from the particle tracking
model is shown in chapter 6. The discussion is found in chapter 7, summary
and conclusions in chapter 8. Appendix A contains data from Folda.
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Chapter 2

The physical and biological
environment of Sørfolda and
Nordfolda

2.1 Location

Figure 2.1: Lofoten and Vestfjorden in the northern part of Norway, with the
area of study inside the square. The blue shaded area is the main spawning
area for ANC.
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The fjord system of Nordfolda and Sørfolda is chosen in order to study
the separation between Arcto-Norwegian Cod (ANC) and Norwegian Coastal
Cod (CC) eggs. These are two separate fjords with a joint opening towards
Vestfjorden, located in the northern part of Norway at 67.5◦N (see Figure
2.2). The ANC spawn in Vestfjorden and on the northern side of Lofoten,
see Figure 2.1, while the CC are known to spawn inside the fjord system of
Nordfolda and Sørfolda.

A fjord is often divided into several regions. The innermost part is called
the head of the fjord, where the major rivers are located. In a fjord with many
branches there are several heads of the fjord system, as shown in Figure 2.2.
The place where the fjord widens and meet the coastal areas outside is called
the mouth of the fjord.

Nordfolda is 55.6 km long, from mouth to head, and the width is ranging
from 4 km to 2.4 km in the innermost part. The greatest depth in Nordfolda
is 527 m close to the head, with a sill depth of 225 m. Sørfolda is 50 km
long and 3 km wide near the mouth and getting narrower towards the head,
reaching a width of 1.6 km at the innermost part. The deepest basin is 574
m deep, and a sill 265 m deep is situated close to the connecting point with
Nordfolda (Aure & Pettersen, 2004). The inner end of Sørfolda is divided
into two main branches, where the northern part is called Leirfjorden. The
whole fjord system is divided into several smaller branches and surrounded
by steep mountains.

 20’  40’   15oE  20’  40’   16oE 
 18’ 

 24’ 

 30’ 

  67oN 
 36.00’ 

 42’ 

 48’ 

 54’ 

Nordfolda

Sørfolda

Lakså bridge

Hjartøy

Vinkfjord

Leirfjorden

Lakshola

Vallvatn

Straumbukta

Strandå

Figure 2.2: The fjord system of Nordfolda and Sørfolda.
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2.2 Fresh water input
There are several large rivers discharging great amounts of water into the
fjord system. Due to the location at a high latitude the amplitude of the
seasonal cycle is large (Sundby, 1982). In winter large amounts of fresh
water is retained as snow in the mountains. Melting season starts in late
spring and the volume �ux is maximized in June (see Figure 4.3). In coastal
areas and at lower altitudes (<100 m) the seasonal cycle is di�erent with
several �oods during the year. The fjord system of Sørfolda and Nordfolda
is so large that it covers both coastal and mountain areas. Most of the land
area surrounding Nordfolda has middle altitude (100-600 m) and is then
considered to be a transition area, between coastal and mountain. The inner
part of Sørfolda and Leirfjorden is surrounded by mountains and glaciers, the
rest by lower mountains. The rivers discharging at the head of Sørfolda and
Leirfjorden have large drainage areas, causing large volume �uxes during the
melting season. These two places are the dominating fresh water sources to
the system. The fresh water input to Nordfolda is much smaller compared to
Sørfolda, and with a di�erent seasonal cycle. This might set up di�erences
between the fjords regarding to salinity and volume �uxes of brackish water.

The spawning is known to occur during spring. This is a transition time
regarding the fresh water cycle, going from retention to melting. Di�ering
onset of melting season causing changes in the estuarine circulation, might
have a large impact on the transport of eggs. Interannual variability in
temperature and precipitation can cause large variations in runo�. In cold
years the melting is delayed, whereas during warm years the melting starts
earlier and some runo� might even occur during the winter.

2.3 Hydrography
The Institute of Marine Research has been monitoring several fjords in Nor-
way every year since 1975, included Sørfolda and Nordfolda (Aure & Pet-
tersen, 2004). Data have been collected every fall around November/December
(Figure 2.3), a season with low primary production and reduced variability
in the fjord basins. The salinity pro�les (at the right in Figure 2.3(a) and
2.3(b)) show a low-saline surface layer with large interannual variability. Sør-
folda has in general a fresher surface layer than Nordfolda, both have lowest
salinity at the head. The temperature pro�les (at the left in Figure 2.3(a)
and 2.3(b)) show large variability in the upper 150 m. The temperature max-
imum is found around 50-75 m and the highest temperatures are observed in
the outer part of the fjord system.
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(a) Nordfolda (b) Sørfolda

(Aure & Pettersen, 2004)

Figure 2.3: Mean and standard deviation in temperature and salinity pro-
�le from November/December 1976-2001 from the stations at the positions
shown in Figure 2.2 as red dots.

2.4 Circulation

The circulation pattern in Sørfolda and Nordfolda is not known in detail.
However, all available information suggests the fjord system to be a typical
Norwegian fjord with the corresponding estuarine circulation, depending on
the fresh water input. The currents in the mouth area are dominated by the
tidal cycle (Statens Kartverk, 1998), but vary strongly with changing winds.
In both Sørfolda and Nordfolda the prevailing surface currents are directed
out of the fjord, but might be in�uenced by tides when the runo� is reduced
and the winds are calm. At the mouth the current is most often directed
outwards, especially on the northern side.

Mohus and Haakstad (1984) investigated the physical, chemical and bio-
logical conditions in Straumbukta at the inner end of Sørfolda. They sampled
hydrographical data seven times from January to November, also currents
were measured in November. The circulation pattern was quite complicated
but was characterized by the estuarine circulation, with out�ow in the upper
layer and compensating in�ow below. The surface current was also found
to vary strongly with the local winds, holding the potential to spin up the
estuarine circulation or reverse the whole system. Under normal conditions
in Sørfolda the surface current was observed to be 5% of the wind speed.
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2.5 Winds
Sundby (1982) investigated the variability and energy of winds in Vestfjorden.
The results showed that two di�erent directions are most common in this
area, easterly and south-westerly winds. The easterly winds occur specially
in winter due to drainage of cold air from the mainland. Cold and heavy
airmasses �ow out of the fjords and towards the coast following the terrain.
Just outside Folda this gives south-easterly winds and north-easterly on the
opposite side of Vestfjorden. The south-westerly winds contain more energy
but are not as frequent, and occur when low-pressure systems pass by. Under
these conditions the winds are directed into Vestfjorden and it is expected
that the topography modi�es the wind directions further inside Folda.

Inside a fjord with steep sides the wind is assumed to be directed along
the fjord. If it is not too wide, there are little variance across the fjord.
Channeling of winds in fjords is observed to cause strong winds. The wind
direction inside a fjord cannot be predicted from measurements outside. This
interaction is complex and also depends on the stability of the atmosphere
(Asplin et al., 2002).

2.6 Cod spawning and juvenile distribution
The data available regarding spawning and nursery grounds in Nordfolda and
Sørfolda are presented in Figure 2.4. The data have been distributed by The
Norwegian Directorate of Fisheries (Gyda Lorås, pers.comm.). Figure 2.4(a)
shows that spawning takes place at several locations in the fjord system,
particularly at the head of the various fjord arms. Figure 2.4(b) shows the
nursery grounds to be mostly situated in Sørfolda except in the inner most
end of Nordfolda. This proves Nordfolda and Sørfolda to be well suited for
studying the drift of cod eggs.
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(a) Spawning grounds (b) Nursery grounds

Figure 2.4: Observed spawning and nursery grounds for cod (Gyda Lorås,
The Norwegian Directorate of �sheries, pers.comm.).



Chapter 3

Theory

3.1 The estuarine circulation
Fresh water from river runo� meets salty water from the ocean inside the
fjord. The physical environment in a fjord system is highly depending on
the balance between these two water masses. When the river discharge is

(Farmer & Freeland, 1983)

Figure 3.1: Schematic view of a fjord divided into three layers.

dominating over tidal input the estuarine circulation develops, which is char-
acterized by strong strati�cation (Dyer, 1997). The fjord can be divided into
three layers, a thin surface layer, an intermediate layer and a deep bottom
layer below the sill (Figure 3.1). Fjords are often characterized by one or
multiple sills, separating the fjord basin from the coastal areas. The deepest
part of the fjord can be deeper than the continental shelf outside.

The surface layer is generated by the river input at the head of the fjord.
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The low-saline surface water is pushed out of the fjord due to the density
di�erence. The strongest velocity is found near the surface. On the interface
between the water masses is a strong velocity shear, resulting in wave for-
mation and breaking causing salty water being mixed into the surface layer.
Because of this entrainment the total volume of the surface layer increases
towards the mouth, together with increasing salinity. The total amount of
water being entrained is depending on the energy available for mixing, mainly
supported by the wind stress and tidal energy. Due to continuity a return
�ow is set up in the intermediate layer, compensating for the out�ow in the
upper layer. These processes are included in the estuarine circulation. The
ventilation of the deep water is another circulation, controlled by vertical
mixing and periodic over�ows. When the sill depth is large and the inter-
mediate layer is deep, the interaction between the estuarine circulation and
deep water ventilation is weak (Stigebrandt, 1981).

The seasonal variations in fresh water input cause seasonal changes in the
estuarine circulation. When the runo� increases during spring the estuarine
circulation starts to develop, reaching maximum intensity in mid summer
and then slowly reducing. During fall the stability of the water column is
decreasing due to diminishing fresh water �ux and cooling of the upper layer.

The interannual variability in fresh water input is also signi�cant (see
Figure 4.2), and is known to be correlated with the NAO-index1 (Ottersen
et al., 2001). A high NAO-index causes high temperatures and enhanced
precipitation mainly during winter season. These factors might give large in-
terannual di�erences in the estuarine circulation, like earlier onset of melting
season and increased runo� during winter.

3.1.1 Rotation
When movement is slow enough or on a su�ciently large scale, the rotation of
the Earth starts to de�ect the motion. This is a �ctional force called Coriolis
force and turns motion to the right in the northern hemisphere. In fjords the
rotation starts to become important when the width is comparable to the
internal Rossby radius for a two-layer system:

R =

√
g′h1

f
(3.1)

where
g′ = g

ρ2 − ρ1

ρ2

(3.2)

1The North Atlantic Oscillation winter index - a measure of the intensity of low-pressure
systems in the North Atlantic
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is the reduced gravity, f is the coriolis parameter, h1 is the depth of the upper
layer and ρ1 and ρ2 are the densities in the upper and lower layer, respectively.
This formulae states that the internal Rossby radius is proportional to the
density di�erence, which means that when the strati�cation is strong, then
the rotation is less important. Since the strati�cation varies seasonally and
interannually, the in�uence of rotation will also change signi�cantly.

3.2 The vertical distribution of eggs
The Arcto-Norwegian Cod (ANC) spend most of their lives in the Barents
Sea, but migrates towards the Norwegian coast for spawning. The spawning
takes place at separate places along the coast, with the Lofoten area as the
main spawning site (Sundby & Bratland, 1987). The spawning starts in the
beginning of March, and continues until the beginning of May with a peek
concentration around the �rst days of April (Ellertsen et al., 1989). The
Norwegian Coastal Cod (CC) are more stationary and mainly observed in
coastal and fjord areas. The feeding areas are therefore closer to the spawning
areas, which are located several places along the coast. The CC spawn during
a longer time period than ANC, with a peek concentration 3-4 weeks later
(Kjesbu, 1988).

Solemdal and Sundby (1981) collected ANC eggs in Lofoten from 1968
to 1972. They found the neutral buoyancy of the eggs, equivalent to salinity
to be between 29.5 and 33.0 (see Figure 3.2). Within Vestfjorden these eggs
are lighter than the surrounding water, resulting in a pelagic2 distribution.
Stenevik et al. (2008) measured speci�c gravity of eggs from the CC at
several places along the Norwegian coast. They found that the buoyancy did
not vary much between the locations, except for the northern most which
is thought to be in�uenced by the ANC. In Tysfjord, at the inner part of
Vestfjorden, the neutral buoyancy equivalent to salinity was ranging from
30.6 to 34.1 (see Figure 3.2). Which is slightly higher than the ANC eggs,
causing a fraction of the CC eggs to be heavier than the surrounding water
and being mesopelagically3 distributed.

The vertical distribution of eggs is a function of ascending speed and
downward mixing. The vertical velocity is given by Stokes' formulae:

w =
1

18

gd24ρ

µ
(3.3)

2Pelagic eggs have a speci�c density lower than the mixed layer, Sundby (1991)
3Mesopelagic eggs have a speci�c density higher than the mixed layer and lower than

the bottom layer, named bathypelagic eggs by Sundby (1991)
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Figure 3.2: Neutral buoyancy of Arcto-Norwegian Cod (Solemdal and
Sundby, 1981) and Norwegian Coastal Cod eggs (Stenevik et al., 2008).

where g is acceleration due to gravity, d is diameter of the egg, 4ρ = ρw−ρe

is the density di�erence between the surrounding water and the egg and µ
is molecular viscosity. The Stokes' formulae is only valid when the Reynolds
number is low, Re < 0.5:

Re =
ρwdw

µ
(3.4)

Mixing can be supported by winds, tides and velocity shear. The pelagic
eggs are mostly situated in the mixed layer and highly a�ected by wind-
induced mixing (Sundby, 1983). Strong winds results in reduced concentra-
tions at the surface and calm winds increase the surface concentration. The
mesopelagic eggs are less a�ected by the winds and the vertical distribution
has stronger dependency on buoyancy variations and strati�cation (Sundby,
1991).



Chapter 4

Model and methods

4.1 Fresh water discharge
Fresh water discharge is the major driving mechanism in fjords, controlling
both the circulation and the hydrography (Sælen, 1967). In this chapter
the annual mean discharge to the area is calculated and included in the
circulation model.

When calculating the annual mean discharge, the area was divided into
17 drainage areas, see Figure 4.1. A planimeter was used on an isohydate-

Figure 4.1: The 17 drainage areas in the fjord system.
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map from NVE (The Norwegian Water Resources and Energy Directorate)
to calculate the annual mean discharge in every of the 17 subregions, the
results are shown in Table 4.1.

Table 4.1: Annual mean runo� for the period 1961-1990.
Drainage area m3/s Regime Watermark

1 7,66 coastal Strandå
2 0,97 inland/transition Lakså bridge
3 2,71 inland/transition Lakså bridge
4 1,29 inland/transition Lakså bridge
5 5,14 inland/transition Lakså bridge
6 14,70 inland/transition Lakså bridge
7 6,57 inland/transition Lakså bridge
8 2,06 inland/transition Lakså bridge
9 0,57 inland/transition Lakså bridge
10 3,53 inland/transition Lakså bridge
11 1,42 inland/transition Lakså bridge
12 7,72 inland/transition Vallvatn
13 42,76 mountain/glacier Lakshola
14 4,89 inland/transition Vallvatn
15 39,14 mountain/glacier Lakshola
16 6,46 inland/transition Vallvatn
17 11,87 inland/transition Vallvatn

Total 159,46

The drainage areas were classi�ed in di�erent regimes depending on ele-
vation above sea level and distance from the coast (NVE, 2002). A coastal
regime dominates near the mouth of the fjord system where the highest runo�
is in autumn and winter and at a minimum in summer, highly depending on
the precipitation. A mountain/glacier-regime is situated close to the head
of the fjord, with high �ows in the summer and low �ows in winter due to
retention of precipitation. Between these two is the inland/transition-regime
with high runo� during spring and autumn and low �ow during summer and
winter. To include both information about annual mean discharge and sea-
sonal variations a representative watermark had to be determined for every
drainage area. NVE (Ingeborg Kleivane, pers.comm.) provided data from
rivers in the area that could be used as watermarks. One watermark was
selected to represent every regime (Table 4.2). For inland/transition-regime,
two di�erent watermarks was used, Lakså bridge in Nordfolda and Vallvatn
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in Sørfolda. Information about the watermarks are found in Table 4.2, in-
cluding some notes regarding the quality. The data are averaged over �ve
days.

Table 4.2: Information about the watermarks in Folda, the location can be
found in Figure 2.2.

Watermark Time series Regime Notes
Lakså bridge 1953-2006 transition
Lakshola 1916-2005 mountain/glacier regulated after 1999
Strandå 1916-2007 coastal poor data quality
Vallvatn 1953-2005 transition low altitude

The data from the watermarks and the annual mean discharge are com-
bined, and included into the model domain at the positions of the major
rivers. The river runo� is released into the model area distributed over a
number of grid cells in the horizontal depending on the size of the source. In
the vertical the output is distributed over the 10 upper sigma layers, increas-
ing towards the surface.

The annual mean discharge from the watermarks (Table 4.2) is shown in
Figure 4.2. The data have been standardized for comparison. The di�erent
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Figure 4.2: The annual mean discharge for all watermarks, standardized for
comparison. The two selected years are marked with black circles.

watermarks show similar interannual variability, except after 1999. In 1999
Lakshola was regulated, which had a major impact on the annual mean
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discharge. From this data the two years, 1960 and 1989, were chosen. Both
years are more than two standard deviations away from the mean, in opposite
directions.

Figure 4.3 shows the seasonal variations of discharge for all the water-
marks. The upper panel shows the data from Lakshola during 1960 and
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Figure 4.3: Monthly mean discharge for the years 1960 and 1989, note dif-
ferent scales.

1989, whereas the lower panel shows the mean from Lakså bridge, Strandå
and Vallvatn (note di�erent scales). It is clear that Lakshola is the dom-
inating fresh water source in the area, approximately 10 times larger then
the others (see also Table 4.1). Lakshola is representing a mountain/glacier
regime, with a clear summer maximum discharge. In 1989 the summer max-
imum was twice as large as in 1960. Lakså bridge, Vallvatn and Strandå
represent an inland/transition and a coastal regime. The major di�erence
between these watermarks and Lakshola is the enhanced discharge during
fall (September and October) and winter (December and January), most
pronounced in 1989. All months show higher runo� through 1989 than 1960.

The spawning takes place in the spring time, with a peek concentration in
April. Figure 4.3 shows that the discharge during this period is about twice
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as large in 1989 than in 1960 for Lakshola. For the watermarks Lakså bridge,
Strandå and Vallvatn the di�erence between 1989 and 1960 is not so great in
March and April, but much larger in May. Lakshola shows a strong increase
in runo� during the spring months, from about 5 m3/s in March to above
30 m3/s in May. The other watermarks show an increase only during spring
1989. This means that the spring is a major transient time. A shift in the
seasonal cycle of discharge would have a large impact on the runo� during
this period. Changes in fresh water input during spring coincides with the
spawning and may a�ect the transport of eggs.

In 1968 a major fresh water source at the inner end of Sørfolda was
regulated. This is not included in these calculations. The regulation caused
water to be guided away from drainage area 15 to 16, which caused a change
in the annual mean runo�. The seasonal variations are also expected to be
altered, with increased runo� during winter and reducing the maximum �ow.

4.2 The circulation model

The model used for these simulations is the Regional Ocean Modeling System
(ROMS) version 3.0, algorithms described by Shchepetkin and McWilliams
(2005). This is a free-surface, hydrostatic, primitive equation ocean model
that uses stretched terrain-following s-coordinates in the vertical and curvi-
linear coordinates in the horizontal (Haidvogel et al., 2007). The primitive
equations are solved by the �nite di�erences method on an Arakawa C-grid,
including a Generic Length Scale (GLS) turbulence closure scheme (Umlauf
& Burchard, 2003).

The model domain is shown in Figure 4.4. The high resolution bathymetry
was obtained from Statens Kartverk (Sjøkartverket) and included in Figure
4.4. In the actual model run the largest depth was set to 300 m, and the
bathymetry was smoothed around steep slopes. The grid is rotated with an
angle of 45◦ relative to the latitude, origo is positioned at longitude 15.15◦E
and latitude 67.24◦N. The grid length is 200 m with 257 points in ξ direction
and 282 points in η direction. In the vertical there are 35 sigma layers, close
together near the surface and reduced resolution in the lower layers and to-
wards the bottom. Sigma layer number 35 is the surface layer. The resolution
in the upper layers varies from 0.29 m to 0.33 m, and at the bottom from 2.1
m to 53.5 m. The baroclinic timestep is 60 seconds, with 60 barotropic time
steps between each baroclinic timestep.
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Figure 4.4: The model domain including bathymetry, with horizontal axes ξ
(u direction) and η (v direction).

4.2.1 The governing equations
The primitive equations solved by ROMS are presented in Cartesian coordi-
nates:

∂u

∂t
+ ~v · ∇u− fv = − 1

ρ0

∂p

∂x
+ Fu + Du (4.1)

∂v

∂t
+ ~v · ∇v + fu = − 1

ρ0

∂p

∂y
+ Fv + Dv (4.2)

assuming the Boussinesq approximation1. The variables are explained in the
Table 4.3. Further, the hydrostatic approximation is applied, assuming the
vertical pressure gradient balances the buoyancy force:

∂p

∂z
= −ρg (4.3)

The equation of continuity for an incompressible �uid is given by:
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.4)

The time evolution of the potential temperature and salinity �elds are gov-
erned by the advective-di�usive equations:

∂T

∂t
+ ~v · ∇T = FT + DT (4.5)

1Boussinesq approximation - density di�erences are neglected except in the vertical
when contributing to the buoyancy force
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∂S

∂t
+ ~v · ∇S = FS + DS (4.6)

The density �eld is computed according to the equation of state:

ρ = ρ(T, S, P ) (4.7)

Table 4.3: Description of the variables used in the equations above.
Du, Dv, DT , DS di�usive terms
Fu, Fv, FT , FS forcing terms
f Coriolis parameter
g acceleration due to gravity
P total pressure P ≈ −ρ0gz
ρ0 + ρ(x, y, z, t) total in situ density
S(x, y, z, t) salinity
T (x, y, z, t) potential temperature
t time
u, v, w the (x, y, z) components of vector velocity ~v
x, y horizontal coordinates
z vertical coordinate

4.2.2 Initial �eld
The initial �eld was calculated from data collected in Folda November 1993,
a year with near average runo� conditions. The fjord system was divided
into three regions: Nordfolda, Sørfolda and the mouth area. One pro�le
representing each area was selected and smoothed out to cover the whole
fjord system. Linear interpolation was used to nest everything together.
This initial �eld was used in all simulations.

4.2.3 Forcing
All atmospheric forcing was extracted from the ERA40 archive, with a hori-
zontal resolution of 1 degree. This includes cloud cover, air pressure, speci�c
humidity, precipitation, air temperature and wind components. All variables
are obtained every sixth hour.

The boundary conditions are taken from a dataset covering the Nordic
Seas (Engedahl et al., 1998), containing salinity, temperature, currents and
surface elevation. The data are monthly means based on several years of
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observations and model output. This forcing will be included along the open
boundaries, and is equal in all simulations.

Three semi-diurnal tidal components (M2, S2, N2) and one diurnal com-
ponent (K1) are added along the open boundaries (Moe et al., 2002). The
lateral boundary conditions are implemented using a combination of Flather
(Flather, 1976), Chapman (Chapman, 1985) and �ow relaxation scheme
(Martinsen & Engedahl, 1987).

The fresh water forcing is described in section 4.1

4.2.4 Model run
After studying the variations in annual mean discharge (see Figure 4.2), the
years 1960 and 1989 were selected to be further investigated. The reason is
that 1960 represents a cold and dry year, and 1989 a warm and wet year.
The impact of variations in annual mean discharge can then be studied.

In the di�erent runs the initial �eld, the climatology and the tidal forcing
will be the same. The di�erences are in atmospheric forcing and runo�. The
simulations start 1st November 1959 and 1988, because of the data used in
the initial �eld, and continue until 31st December without wind forcing. Then
the wind is included and the model runs continue until 31st May 1960 and
1989. This was done because of the need for shorter time steps when the
wind forcing is included.

4.3 The particle tracking model
A Lagrangian Advection and DI�usion Model (LADIM) is used to simulate
transport of eggs (Ådlandsvik & Sundby, 1994). The model uses the saved
output from ROMS to advect the eggs with the currents. In the simplest
case the eggs are held at a constant depth and transported around for a
time period. For a more realistic case the eggs are allowed to be displaced
vertically, resulting in a dynamical vertical distribution. Each egg has its
own speci�c gravity and a vertical velocity is calculated depending on the
density di�erence between the egg and the surrounding water. Then the
vertical dispersal is calculated with the �nite-volume method and binned
random walks (Thygesen & Ådlandsvik, 2007). Totally 100 bins are used
with a distance of 1 m, which means that particles cannot go deeper than
100 m. The model only calculates within which bin the particle is located,
hence with a vertical resolution of 1 m.



Chapter 5

Model results

This chapter includes the main results from the two model runs. First an
overview of the salinity distribution in the whole fjord system is given, on 10th

April and 25th April in 1960 and 1989. Then the circulation pattern in the
mouth area is shown on the same dates, in Figure 5.2 and 5.3. Cross-sections
from the sill in Sørfolda and Nordfolda are then presented (Figure 5.6 and
5.7). Section 5.4 displays vertical pro�les at di�erent locations in the fjord,
followed by temporal variations in the vertical structure. The next section
shows the monthly mean salinity and temperature pro�le during the spring.
In the last section the circulation and salinity at the mouth of Leirfjorden
are shown, during a 5-days transition period in April 1989.

The hydrography and circulation inside the fjord system are important
for the spreading and distribution of cod eggs. As mentioned in section 3.2,
the vertical velocity of eggs is a function of the density di�erence between
the eggs and the surrounding water. Hence, changes in the hydrography will
change the vertical distribution of eggs in the water column. The estuarine
circulation inside a fjord is characterized by strong vertical gradients in the
current �eld, see section 3.1. A vertical movement of the eggs might cause
them to enter the out�owing surface layer or the in�ow at the lower levels.

5.1 Salinity distribution
Figure 5.1 shows the salinity at 1 m depth in Sørfolda and Nordfolda. The
data from 10th April and 25th April are shown in both 1960 and 1989, all
with same scales. This is about the same time as the spawning occurs, and
when the fresh water discharge is increasing.

Figures 5.1(a) and 5.1(b) are from 10th April 1960 and 1989, respectively.
The freshest areas in 1960 are at the inner end of the fjord. The salinity is
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(a) 10th April 1960 (b) 10th April 1989

(c) 25th April 1960 (d) 25th April 1989

Figure 5.1: Salinity at 1 m depth.

slightly lower in Nordfolda (∼32) than in Sørfolda (∼33), but generally the
horizontal variations are small. Leirfjorden is the freshest fjord area in 1989,
however a few other branches show very low salinity at the head. There
are very small cross-fjord variations inside Leirfjorden, but in Sørfolda the
fresh surface layer is constricted to the right hand side, in relation to the
�ow directions, causing strong cross-fjord variance. In Nordfolda the salinity
is quite constant in the whole fjord. Brackish water leave the fjord on the
northern side of the mouth area. When comparing 1960 and 1989, the main
di�erence is the distinct low-saline water in 1989 located in Leirfjorden and
Sørfolda. The salinity is in general lower during 1989 than 1960 for the whole
fjord system. The cross-fjord variability is signi�cantly larger in 1989 as well.
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Figures 5.1(c) and 5.1(d) are from the same area 15 days later in spring,
25th of April. The salinity is in general lower on 25th April than on 10th April
for the entire area. Both years show a progressively increasing salinity from
head to mouth in all fjord branches. Some cross-fjord variability is observed
in Sørfolda, most distinct in 1989. Both years show brackish water on the
northern side of the mouth. The salinity in 1960 is on average higher than
in 1989. On 25th April 1989 a di�erence between Sørfolda and Nordfolda is
observed, with lowest salinity in Sørfolda. This shift in salinity correlates to
the di�erence in fresh water input to Nordfolda and Sørfolda, as discussed in
section 2.2.

5.2 Circulation pattern in mouth area
The estuarine circulation develops in both fjords for both model runs, 1960
and 1989. The circulation is then characterized by an out�ow in the upper
layer and a compensating in�ow below.

The circulation pattern in the mouth area can be quite complicated. The
currents have strong variability depending on density di�erences, winds and
tides. This is also where Nordfolda and Sørfolda interact with each other
and with the shelf areas. The amount of exchange between these two fjords
will a�ect the horizontal distribution of cod eggs.

5.2.1 Circulation on 10th April
Figure 5.2 shows the circulation in the mouth area at 1 m depth on 10th

April 1960 and 1989, the same time as 5.1(a) and 5.1(b). Both years show
an out�ow from Sørfolda, strongest in 1989 (note di�erent scales). In 1960 a
large part of the current is turning towards Nordfolda, and joining a westerly
�ow north of the island Hjartøy leaving the fjord system on the northern side
of the mouth. In 1989 the out�ow from Sørfolda is divided at Hjartøy with
one branch entering Nordfolda and one branch leaving the area.

The Figures 5.3(a) and 5.3(b) show the currents at 10 m depth at the
same time and place as before. The picture is more complicated at this depth.
In 1960 there is still a small out�ow from Sørfolda, but a stronger out�ow
from Nordfolda on the northern side of Hjartøy and leaving the area. On
the southern side several eddies are seen where water masses from Nordfolda
and Sørfolda meet. In 1989 the out�ow from Sørfolda is weak, and a strong
out�ow from Nordfolda is spreading out on both sides of Hjartøy. There is
a westerly current on the northern side of the mouth and a large eddy is
situated further south. The circulation pattern in 20 m is not shown since it
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Circulation in Folda 10th April 1960 at 1m depth
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(a) 1960 at 1 m depth

Circulation in Folda 10th April 1989 at 1m depth

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

55

0,7m/s

(b) 1989 at 1 m depth

Figure 5.2: Daily mean currents on 10th April, covering the mouth area with
Sørfolda at the south, Nordfolda to the east and opening to the west.

is similar to 10 m.
Figures 5.3(c) and 5.3(d) show the currents at 30 m depth at 10th April.

In this case there is an in�ow towards Sørfolda in both years. In 1960 the
in�ow comes from Nordfolda and in 1989 from the mouth area. A large
cyclonic eddy is located on the southern side of the opening in 1989, as was
visible in 10 m. A weak out�ow from Nordfolda is �owing on the southern
side of the Hjartøy and entering the eddy.

5.2.2 Circulation on 25th April
Figure 5.4 shows the circulation pattern at the mouth area on 25th April 1960
and 1989, at the depths 1 m, 10 m and 30 m. The currents at 20 m is not
shown because of strong similarities with 30 m depth.

At 1 m depth the current is directed out of Sørfolda in both years. In
1960 the out�ow turns left and passes Hjartøy on the western side. However,
in 1989 the out�ow turns right and enters Nordfolda. An out�ow from Nord-
folda is visible at 10 m depth in 1960, �owing on the southern side of Hjartøy
and entering the mouth area. In 1989 the out�ow from Nordfolda at 10 m
depth is de�ected at Hjartøy, and no distinct pattern is visible elsewhere.
The circulation at 30 m depth is quite complex and several eddies are seen.
A week in�ow into Sørfolda is seen in 1960 and an anticyclonic circulation
around Hjartøy. A large cyclonic eddy is located in the mouth area. The
currents are directed out of Sørfolda in 1989, with weaker velocities than in
1960.
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Circulation in Folda 10th April 1960 at 10m depth
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(a) 1960 at 10 m depth

Circulation in Folda 10th April 1989 at 10m depth
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(b) 1989 at 10 m depth

Circulation in Folda 10th April 1960 at 30m depth
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(c) 1960 at 30 m depth

Circulation in Folda 10th April 1989 at 30m depth
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(d) 1989 at 30 m depth

Figure 5.3: Daily mean currents at 10 m and 30 m depth on 10th April.

The results shown here demonstrate that the circulation pattern in the
mouth area changes between the two di�erent dates, 10th and 25th April dur-
ing both years. No particular situation can be recognized to represent each
year. As mentioned earlier the currents in the mouth area are complicated
and depend on the volume �ux of brackish water, winds and tides. In peri-
ods with large fresh water input and weak winds the out�ow from Sørfolda is
most often observed to leave the fjord system on the western side of Hjartøy.
When the freshwater discharge is lower and the out�ow is weaker, the surface
�ow in Sørfolda is more likely to be directed into Nordfolda. The winds also
have greater impact on the system when the brackish water �uxes are low.
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Circulation in Folda 25th April 1960 at 1m depth
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(a) 1960 at 1 m depth

Circulation in Folda 25th April 1989 at 1m depth
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(b) 1989 at 1 m depth

Circulation in Folda 25th April 1960 at 10m depth
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(c) 1960 at 10 m depth

Circulation in Folda 25th April 1989 at 10m depth
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(d) 1989 at 10 m depth

Circulation in Folda 25th April 1960 at 30m depth
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(e) 1960 at 30 m depth

Circulation in Folda 25th April 1989 at 30m depth

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

55

0,07m/s

(f) 1989 at 30 m depth

Figure 5.4: Daily mean currents on 25th April, covering the mouth area.
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5.2.3 Eddies
In a fjord system with large spacial variability in currents, the possibility for
eddies to form is large. An eddy has the potential to induce strong turbulence
and generate mixing. In a fjord system like Folda the eddy size is limited by
the width of the fjord. In Sørfolda and Leirfjorden, which are narrow and
have strong fresh water input, the production of eddies is limited. Only when
the estuarine circulation is reversed small eddies form, see section 5.7. In the
main part of Nordfolda the width is large enough and the fresh water �ux
is small enough for transient eddies to develop. However, the temporal and
spatial variability is large, such that no distinct pattern can be described. In
the mouth area the results indicate a cyclonic eddy situated west of Hjartøy,
also highly varying in time. This eddy is visible in Figure 5.3 and Figure 5.4.

5.3 Cross-sections at the sill
Both main fjords, Sørfolda and Nordfolda, have a sill close to the mouth at
265 m and 225 m depth. A sill is a vertical constriction of the water column,
which might cause reduced exchange between the fjord and the coastal areas.
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Figure 5.5: The cross-sections at the sill in Sørfolda and Nordfolda, marked
as red lines.
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5.3.1 At the sill in Sørfolda
Figure 5.6 shows cross-sections at the sill in Sørfolda on 10th April 1960 and
1989, at the position shown in Figure 5.5. The current speed and the salinity
structure from 1960 are seen in 5.6(a) and 5.6(b). Positive current velocity
is directed out of the fjord. The largest current speed is observed in the
surface layer. The depth of no motion is lower on the eastern side than on
the western side. The current is directed in the opposite way below 25 m,
going into the fjord. The salinity structure shows freshest water in the upper
layers on the eastern side.
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Figure 5.6: Cross-sections at the sill in Sørfolda 10th April, from west to east.
Positive current velocity is directed out of the fjord and the x-axis is number
of grid points.

The Figures 5.6(c) and 5.6(d) are showing current speed and salinity on
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10th April 1989. The strongest current speed is seen in the upper layers,
constricted to the upper 5 m. The strength of the current is greater in 1989
than compared to 1960. The salinity pro�le shows a fresh surface layer on
the eastern side. The strati�cation is weak on the western side of the fjord .

5.3.2 At the sill in Nordfolda
Figure 5.7 displays cross-sections at the sill in Nordfolda on 10th April 1960
and 1989, at the position shown in Figure 5.5.
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Figure 5.7: Cross-sections at the sill in Nordfolda, from south to north.
Negative current velocity is directed out of the fjord and the x-axis is number
of grid points.

The Figures 5.7(a) and 5.7(b) show the salinity structure and current
speed on 10th April 1960. Negative current speed is directed out of the fjord.
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An out�ow is observed on the northern side, concentrated between 5 m and
20 m depth. Towards the southern side of the fjord is an in�ow in the upper
10 m. The salinity distribution shows a strati�cation, with freshest (<32.2)
water on the northern side.

The lower panels (5.7(c) and 5.7(d)) display the same section from 10th

April 1989. An out�ow is seen below about 5 m, strongest on the northern
side of the fjord between 5 m and 25 m. An in�ow is observed in the upper
5 m, reaching 0.3 m/s on the southern side. The salinity pro�les show a
strong strati�cation, where the surface salinity is close to 28.5. Above 5 m
the freshest water is located on the southern side, below 10 m the low-saline
water is situated on the northern side. When comparing with Figure 5.2(b),
the reason for the in�ow and low-saline water in Nordfolda is explained by
the out�ow from Sørfolda turning towards Nordfolda.

5.4 Spatial variability in vertical structure
Figure 5.8 shows the vertical pro�les of salinity and the along-fjord current
velocity on 10th April 1960, at four di�erent locations in the fjord system.
The positions are shown in Figure 2.2 as blue boxes and red stars, located in
Sørfolda, Leirfjorden, Nordfolda and in the mouth area.
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Figure 5.8: Vertical pro�les of salinity (left) and along-fjord current velocity
(right) at four di�erent locations in the fjord system on 10th April 1960,
positions shown in Figure 2.2.
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The freshest (<30) surface layer is observed in Leirfjorden. In Nordfolda
the surface salinity is about 32, and just below 33 in Sørfolda and above 33 at
the mouth. There is a strong out�ow in Sørfolda, Nordfolda and Leirfjorden
and a weak in�ow at the mouth area in the surface layer. In Sørfolda the
current reduces with depth, reaching in�ow below 20 m. The current in
Leirfjorden decreases rapidly and becomes positive between about 3 m and 8
m. Around 10 m depth there is an out�ow, and below 20 m an in�ow is seen.
The current in Nordfolda is directed outwards above 10 m, with a maximum
at the surface, and a relatively strong in�ow between 10 m and 50 m. At the
mouth a constantly weak in�ow at all depths is seen.
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Figure 5.9: Vertical pro�les of salinity (left) and horizontal current velocity
(right) at four di�erent locations in the fjord system on 10th April 1989,
positions shown in �gure 2.2.

Figure 5.9 shows the same pro�les from 10th April 1989. The pro�les
show the same structures but the scales are larger. The surface salinity in
Leirfjorden is now approximately 22 and the thickness of the surface layer is
close to 3 m. In Nordfolda and Sørfolda the surface salinity is below 30. The
surface layer is more distinct in 1989 than 1960 at all locations, except at the
mouth area. The strongest surface current is located in Sørfolda (>0.3 m/s)
and Nordfolda (0.2 m/s) going out of the fjord, compared with less than 0.15
m/s in 1960. In Nordfolda a strong in�ow 5 m and 20 m is observed. A
di�use in�ow is seen in Sørfolda and Leirfjorden in the lower layers. At the
mouth the surface current is directed into the fjord, changing to opposite
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direction at about 5 m depth.

5.5 Temporal variability in vertical structure
Figure 5.10 displays the salinity in the upper 50 m during March, April and
May 1960 and 1989 at a station at the sill in Sørfolda. The position is marked
as a blue star on the cross-section in Sørfolda in Figure 5.5. These �gures
illustrate the variability in the salinity, and the development of a surface layer
in the fjord.

The upper panel (Figures 5.10(a) and 5.10(b)) shows the salinity through
March 1960 and 1989. Both years show only small variations in the upper
layers. The minimum surface salinity in 1989 (∼32.5) is lower than in 1960
(∼32.8). At 50 m depth the salinity is constant during the whole period.

Entering April (Figures 5.10(c) and 5.10(d)) the surface salinity shows
larger variability than in March. At the end of April 1960 a distinct surface
layer is created with a minimum salinity of 30. Below 15 m no variability
is observed. Already in the beginning of April 1989 a low-saline surface
layer is generated. This surface layer is about 5 m deep and has salinities
down to 27. However, the existence of this upper layer is not constant.
It disappears occasionally and the salinity varies between 27 and 33. Four
di�erent incidents of a well established surface layer are apparent. In the
layers below it is seen that the 33-isohaline is rising, from about 30 m in the
beginning of April to 15 m at the end.

Figures 5.10(e) and 5.10(f) show the salinity structure during May 1960
and 1989. There is a distinct surface layer through May 1960, with a depth
of about 5 m. Two episodes of low surface salinity are apparent, with a
minimum of 24. May 1989 shows a strong strati�cation through the whole
period, with salinities down to 16. The depth of the surface layer varies
between 5 m and 15 m. There are several incidents of low-saline surface
water.

Figure 5.11 shows the in and out�ow in the upper 50 m during March,
April and May 1960 and 1989 at the sill in Sørfolda, with positive direction
out of the fjord. The currents in the upper part are subjected to strong
variability during the whole period.

The current speed during March 1960 and 1989 is shown in Figures 5.11(a)
and 5.11(b). During March 1960 the current has small vertical variations,
and has the same direction through out the upper 50 m. Two episodes of
in�ow are seen around 6th and 20th March, with maximum speed of 0.15 m/s.
In between these two episodes is an incident of out�ow.
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(f) May 1989

Figure 5.10: Salinity pro�le at the sill in Sørfolda in March, April and May.
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Figure 5.11: Horizontal current speed at the sill in Sørfolda in March, April
and May, positive is out of the fjord.
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During March 1989 strong variability is evident in the upper 20 m, with
several incidents of both out�ow and in�ow with speeds close to 0.2 m/s in
both directions. The prevailing currents are directed out of the fjord below
20 m.

During April 1960 (Figure 5.11(c)) the currents have highest variability
in the upper 15 m. The most frequent direction is outwards with speeds up
to 0.3 m/s, interrupted by a strong in�ow around 17th April. In April 1989
(Figure 5.11(d)) the strongest variability is constricted within the upper 5
m. The most common direction is out of the fjord, with two short episodes
of in�ow.

Figures 5.11(e) and 5.11(f) display the currents during May 1960 and
1989. Both years show large variations within in the upper 5 m. The highest
velocities are observed in the surface out�ow in 1989, around 0.5 m/s, and
intermittently disrupted by in�ows. One signi�cant incident of surface in�ow
is seen in May 1960, otherwise the currents are most often directed out of
the fjord. Some periods of enhanced in�ow is observed in the lower layers
during 1989, mainly at 5-10 m depth.

5.6 Comparing vertical pro�les between 1960
and 1989

Figure 5.12 shows monthly mean salinity pro�les from Sørfolda and Nord-
folda. The positions are shown in Figure 2.2 as red stars. The pro�les are
averaged over March, April and May for both 1960 and 1989. The same is
done for the temperature, shown in Figure 5.13.

The salinity pro�les from spring 1960 are seen as solid lines in �gure 5.12.
The surface salinity in Sørfolda decreases from March to April from about 33
to 23. Below 10 m only minor variations are apparent. The surface salinity
in Nordfolda decreases as well, but not as much as in Sørfolda. In 1989
the di�erence between March and May is larger than observed in 1960. The
reduction of surface salinity in Sørfolda is from 32 to 17. Comparing between
the years, the strati�cation starts one month earlier in 1989 than in 1960.
This means that the salinity pro�le in April 1989 matches the pro�le in May
1960. In Nordfolda the di�erence between 1960 and 1989 is even larger. Here
the surface salinity in April 1989 is lower than the salinity in May 1960. The
upper layer in Nordfolda is in general deeper than in Sørfolda.

The temperature pro�les (Figure 5.13) have highest variability in the
upper 50 m, both in Sørfolda and Nordfolda. All pro�les are getting progres-
sively warmer towards the end of spring. The variability between the years
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Figure 5.12: Monthly mean salinity in Sørfolda and Nordfolda, positions are
shown as red stars in Figure 2.2.

is not as pronounced as seen in the salinity pro�le. The amplitude of the
surface warming is slightly higher in 1960, starting o� colder and ending up
warmer than in 1989.

5.7 Circulation at the mouth of Leirfjorden
In Figure 5.14 the circulation pattern at the mouth of Leirfjorden is shown,
this is at the inner end of Sørfolda. The Figures (a)-(e) all show the currents
at 1 m depth from 17th to 21st April. This time period is chosen because of
the normal estuarine circulation is reversed and then restored.

On 17th April is the normal situation with out�ow in Leirfjorden and Sør-
folda. The current does not vary much across the fjord, except for boundary
e�ects. On 18th April the out�ow is only present on the western side of
Sørfolda, not in Leirfjorden. Entering 19th April the current is directed into
Sørfolda, strongest on the southern side. The current in Leirfjorden is also
directed into the fjord following the topography. The next day the system
is in between the two opposite circulation patterns, with an out�ow in Leir-
fjorden and on the northern side of Sørfolda. On the southern side it is still
in�owing water, all joining at the mouth of Leirfjorden. 21st April the situ-
ation is getting close to the normal estuarine circulation with an out�ow in
the upper layer. But in the middle of Sørfolda the out�ow meets the in�ow
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Figure 5.13: Monthly mean temperature in Sørfolda and Nordfolda, positions
are shown as red starts in Figure 2.2.

and is pushed along the northern side.
Figure 5.15 shows the salinity distribution at the same time and place

as the currents in Figure 5.14. On 17th April there is a clear di�erence in
salinity across the fjord, both in Leirfjorden and Sørfolda. This coincides
with what is considered normal estuarine circulation. 18th April show the
same for Sørfolda, both no clear variance in Leirfjorden. Reaching 19th April
the cross fjord variance is missing and replaced with progressively decreasing
salinity towards the head of the fjord. This is the same in Leirfjorden on 20th

April, but in Sørfolda a tongue of salt water is entering on the southern side.
This is the same day as before, when the currents in Sørfolda were directed
both into and out of the fjord. On 21st April there is strong variability across
Sørfolda when the normal estuarine circulation is setting up again. Inside
Leirfjorden the salinity decrease towards the inner end, with no cross fjord
variance.
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Circulation at the mouth of Leirfjorden at 1m depth
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Circulation at the mouth of Leirfjorden at 1m depth
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Circulation at the mouth of Leirfjorden at 1m depth
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Circulation at the mouth of Leirfjorden at 1m depth
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Circulation at the mouth of Leirfjorden at 1m depth
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Figure 5.14: Circulation at the mouth of Leirfjorden at 1 m depth.
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Figure 5.15: Salinity at the mouth of Leirfjorden at 1 m depth.
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Chapter 6

Transport of eggs

The results from the particle tracking model are presented in this chapter.
Data from the circulation model are used to transport the particles during
the main spawning season in 1960 and 1989.

The �rst approach shows particles spreading at constant depths. Four
di�erent release times are used; 15th March, 1st April, 15th April and 1st May.
The particles are advected for 21 days, being close to the incubation time
for cod eggs. When the particles are held at �xed depths their movement
support information about the overall transport in this depth. Especially
the currents at 1 m depth are interesting because they illustrate the fate of
pelagic eggs in the fjord system. Most mesopelagic eggs can be found in the
whole water column down to 30 m depth with highest concentrations around
5-10 m, strongly varying with the vertical salinity structure.

The second approach uses a dynamical vertical egg distribution. This is a
more realistic case that uses the neutral buoyancy distribution of Norwegian
Coastal Cod (Figure 3.2). The same release times are used together with 21
days of advection.

6.1 Transport at �xed depths
From Figure 2.4(a) four release areas were selected; Sørfolda, Leirfjorden,
Nordfolda and Vinkfjord. The particles were released with small spatial
variations at 1 m, 10 m, 20 m and 30 m depth and was �xed to this depth.
324 particles was released at each spawning area, 1296 in total.

Figure 6.1 shows the trajectories for particles held constantly at 1 m
depth. The release time was 15th April and the particles were transported
for 21 days in both 1960 and 1989. All particles released in Sørfolda 1960 are
concentrated in the inner parts of the fjord. From Nordfolda and Vinkfjord
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Figure 6.1: Particles released on 15th April and transported for 21 days in
1960 and 1989, black boxes indicate release area.

some particles have left their spawning grounds, but none have left the fjord
system. The particles released during 1989 show a larger spreading after 21
days. Most particles have left their origin, being transported either out of
the fjord through the mouth or into another fjord branch.

Particles transported at 10 m and 20 m depth are shown in Figure 6.2.
The spreading of particles at 30 m is not shown due to of strong similarity
with 20 m. Figures 6.2(a) and 6.2(b) show the path of particles held at 10
m depth during 1960 and 1989, both released on 15th April. Most particles
stay within the fjord branch where they were released in 1960. In 1989 all
particles released in Sørfolda, Leirfjorden and Nordfolda are retained close
to release area. Only particles released in Vinkfjord spread out from their
starting point, covering the outer part of Nordfolda.

The spreading of particles at 20 m depth is similar to 10 m (Figures 6.2(c)
and 6.2(d)). The degree of retention is large for particles released in Sørfolda,
Leirfjorden and Nordfolda. A small number of particles from Vinkfjord leave
the fjord in 1960, compared to a larger number in 1989. The particles at 20
m depth are spreading out towards the mouth area in 1989, in contrast to
the particles in 10 m depth that stay within Nordfolda.

Table 6.1 shows the percentage of particles that ends up outside the fjord
system after being transported around for 21 days. The dates are di�erent
release times, the same for both years. In total only a few particles are
advected out of the fjord in 1960. This occurs with the release time of 1st

May. In 1989 the total number of particles leaving the system is larger.
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Figure 6.2: Particles released on 15th April and transported for 21 days in
1960 and 1989, black boxes indicate release area.

Especially at 1 m depth there is a great number of particles spreading out of
the fjord on 15th March and 15th April.

After the particles have been drifting for 21 days, the total distance trav-
elled was calculated by using the o�set between the �rst and the last position.
When the total distance travelled is less than 25 km, the particle is consid-
ered retained inside the same fjord where it was released. If the total distance
is more than 25 km, the particle has either left the whole fjord system or has
entered another fjord branch. This speci�c distance is used since it is about
half the length of the fjord. Table 6.2 shows the percentage of particles
remaining within a radius of 25 km from spawning area.

In 1960 the percentage of particles being trapped close to the spawning
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Table 6.1: Percentage of particles leaving the fjord system.
15thMarch 1stApril 15thApril 1stMay

1960 1 m 0 0 0 3,4
10 m 0,3 0,9 1,5 0
20 m 0 0 0 0
30 m 0 0 0 0

1989 1 m 10,5 1,9 23,8 0
10 m 1,9 5,6 0,3 0
20 m 0 0,3 0 4,3
30 m 0 0 0 0,6

ground is higher than 83% at all depths at all times. 1st April is the time of
largest spreading of particles. The Table 6.1 showed earlier that no particles
from 1st April 1960 left the fjord system, which means that all 17% that
travelled more than 25 km are still within the fjord system. The degree of

Table 6.2: Percentage of particles remaining within a radius of 25 km from
spawning area.

15thMarch 1stApril 15thApril 1stMay
1960 1 m 98,8 83,0 96,0 87,4

10 m 99,1 96,3 97,8 99,1
20 m 100 100 100 100
30 m 100 100 100 100

1989 1 m 71,3 84,3 51,5 71,9
10 m 96,9 79,9 98,2 100
20 m 100 99,7 99,4 93,5
30 m 100 100 100 99,4

retention in 1989 is in general lower than in 1960, except for 1st April of 1 m
depth. The percentage of particles at 1 m depth staying close to release point
varies between 52% and 84%. The dispersion of particles is most pronounced
on 15th April 1989. About half the total number of particles have disappeared
from their spawning grounds. When comparing with Table 6.1 it can be seen
that not all particles travelling far away have left the fjord system, many
have also covered a large distance within the fjord.
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6.2 Dynamical vertical distribution
For a more realistic transport of eggs, the particles used in section 6.1 are
added the possibility of vertical displacement, resulting in a dynamical ver-
tical distribution. Each particle obtains a speci�c level of neutral buoyancy
according to the distribution in Figure 6.3. For easier interpretation of the
results, the eggs are divided into �ve buoyancy groups, which will be used
later in evaluation of the results.
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Figure 6.3: Neutral buoyancy of Norwegian Coastal Cod, divided into �ve
buoyancy groups for easier comparison of results.

In every setup approximately 15000 eggs are used with a diameter of 1.4
mm. All are released at 20 m depth and equally distributed at the four
spawning grounds; Sørfolda, Leirfjorden, Nordfolda and Vinkfjord. The par-
ticle tracking model calculates the vertical velocity depending on the density
di�erence between the eggs and the surrounding water, using equation 3.3.
Then the vertical movement is computed based on the vertical velocity and
the eddy di�usivity coe�cient, with an internal timestep of 6 s. The density
structure, the eddy di�usivity coe�cient and the current speed are imported
from the circulation model, and updated every hour. The output from the
particle tracking model is stored every hour. The simulations are continued
for 21 days, being close to the incubation time for cod eggs.

Trajectories from a selection of eggs in buoyancy group 1 and 2 are shown
in Figure 6.4. The �gure shows the path covered during 21 days by the
particles for the years 1960 and 1989, with the same release time 15th April.
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Figures 6.4(a) and 6.4(b) show transport of eggs in buoyancy group 1
for 1960 and 1989. In 1960 there are a signi�cant number of eggs being
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Figure 6.4: Trajectories from eggs released on 15th April and transported for
21 days in 1960 and 1989, black boxes indicate spawning grounds.

transported away from their spawning grounds. From Sørfolda, Leirfjorden
and Vinkfjord the eggs are spreading out in the fjord system. No eggs from
Nordfolda have left their origin, only eggs from Vinkfjord have been advected
into Nordfolda. In 1989 the spreading of eggs away from the spawning areas
is di�erent. Here all eggs from Sørfolda and Leirfjorden have been trapped
in their respective fjord branch. But the trajectories leaving Vinkfjord show
stronger spreading inside Nordfolda and also leaving the fjord system. Eggs
being spawned in Nordfolda are both being retained and spread out.

The spreading of eggs in buoyancy group 2 are shown in Figures 6.4(c) and
6.4(d). The trajectories from 1960 covers the whole fjord system. All spawn-
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ing grounds show a large dispersal of eggs, both within the fjord branches
and out through the mouth. In 1989 only eggs from Vinkfjord show large
dispersion, all other spawning areas have a stronger degree of retention.

Figure 6.5 shows transport of eggs in buoyancy group 3 and 4. Buoyancy
group 5 is not shown since it is almost identical to buoyancy group 4.
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Figure 6.5: Trajectories from eggs released on 15th April and transported for
21 days in 1960 and 1989, black boxes indicate spawning grounds.

Figures 6.5(a) and 6.5(b) show the paths covered by buoyancy group 3.
The eggs spawned in 1960 have been subjected to large spreading. Especially
in Nordfolda eggs are located in the whole fjord. The majority of eggs being
spread out are coming from Vinkfjord, some are also leaving the fjord system.
From Sørfolda a small portion of eggs are located in main part of the fjord.
All eggs released in Leirfjorden are retained there. 1989 show less dispersal
of eggs in the whole fjord system. Eggs from Vinkfjord are transported out
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into Nordfolda and towards the mouth area. Most particles from Nordfolda,
Sørfolda and Leirfjorden remain close to their origin.

Transportation of eggs in buoyancy group 4 are shown in Figures 6.5(c)
and 6.5(d). These trajectories are more concentrated than the ones for buoy-
ancy group 3. The main part of eggs spawned in Sørfolda, Leirfjorden and
Nordfolda are being retained close to their spawning grounds. In Vinkfjord
some eggs are trapped inside the fjord and some are transported out to Nord-
folda. Comparison between 1960 and 1989 shows only minor di�erences.

When modeled vertical distribution is included, the total number of par-
ticles leaving the fjord system is di�erent than for transport at �xed depths.
In Table 6.3 the number of eggs ending up outside the fjord system is calcu-
lated. For 1960 the percent is largest for the lightest buoyancy group, and
increasing with time. For the other buoyancy groups the number of eggs lost
is smaller. In 1989 mainly eggs in buoyancy group 1 and 2 are transported
out of the region, this occurs on 15th March and 1st April. From 15th April
and forwards the percentage of eggs leaving the fjord system is small in all
buoyancy groups. The major di�erence between 1960 and 1989 is in buoy-
ancy group 1 (the lightest one). This group has largest dispersion late in
spring in 1960 and early in 1989.

Table 6.3: Percentage of eggs that have left the fjord system.
15thMarch 1stApril 15thApril 1stMay

1960 gr 1 0 3,4 11,5 13,6
gr 2 0,3 4,2 9,8 3,0
gr 3 0,7 4,1 6,4 0,3
gr 4 0,6 0,8 1,8 0
gr 5 0 0,1 0 0

1989 gr 1 10,0 13,9 1,2 1,8
gr 2 5,7 13,0 2,2 1,2
gr 3 2,2 7,6 1,2 0,9
gr 4 0,1 0 0 0,1
gr 5 0 0 0 0

In Table 6.4 the percentage of eggs staying within a radius of 25 km after
21 days is shown. Since 25 km is approximately half the length of both
Sørfolda and Nordfolda, the eggs are considered trapped close to spawning
site when remaining inside this radius.

In 1960 the percentage of retention is highest in the beginning of spring
(15th March). Later the retention is decreasing, especially for buoyancy group
1 (the lightest). For all the other groups the proportion that stay close to
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Table 6.4: Percentage of eggs staying within a radius of 25 km from the
spawning site.

15thMarch 1stApril 15thApril 1stMay
1960 gr 1 93,4 81,8 78,0 79,7

gr 2 93,3 80,1 83,8 95,2
gr 3 93,9 86,1 90,3 99,3
gr 4 96,6 96,3 97,9 100
gr 5 98,3 99,8 99,9 100

1989 gr 1 73,8 81,5 98,0 96,2
gr 2 84,0 80,4 96,7 96,4
gr 3 95,1 89,6 97,7 97,4
gr 4 99,8 99,9 99,9 99,7
gr 5 99,4 99,7 99,9 100

spawning area is high at all times. The lowest percentage of eggs staying
close to spawning grounds occurs on 15th April in buoyancy group 1 (78%).
1989 shows an opposite pattern. The degree of retention is smallest in the
beginning (73,8%) and increasing towards 15th April, most pronounced for
group 1. For 15th April and 1st May the amount of leakage is very small for
all buoyancy groups.

Mean distance travelled from spawning grounds by each buoyancy group
is displayed in Figure 6.6, from 15th April and 21 days ahead. In 1960 all
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Figure 6.6: Mean distance [km] versus time [hours] travelled from spawning
grounds, released 15th April and 21 days ahead.
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buoyancy groups keep close together in the beginning of the simulation. After
approximately 10 days the paths separate, with the lightest buoyancy groups
travelling the longest distance. The separation coincides with an incident of
low salinity in the surface layer and enhanced out�ow at the end of April, see
Figure 5.10 and 5.11. After 21 days, the mean distance varies between 5 km
and 13 km, from heavy to lighter buoyancy groups. During the simulation
for 1989 all curves stay closer together for the whole run. The two heaviest
buoyancy groups remain within 4 km after 21 days, the others do not exceed
more than 6 km from the spawning ground. The major di�erence between
1960 and 1989 is found in the three lightest groups, where they travel about
twice as long in 1960 compared to 1989.

6.3 Di�erence between spawning grounds
Figure 6.7 shows the mean distance travelled by eggs with a dynamical verti-
cal distribution for 21 days. The di�erent curves are functions of the four dif-
ferent spawning sites; Sørfolda, Leirfjorden, Nordfolda and Vinkfjord. Both
years show that eggs released in Vinkfjord travel much further away from
spawning area than at the other sites. All eggs travel a shorter distance in
1989 compared to 1960.
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Figure 6.7: Mean distance [km] versus time [hours] travelled from spawning
grounds, released 15th April and 21 days ahead.



Chapter 7

Discussion

7.1 Model performance
The Regional Ocean Modeling System (ROMS) uses the primitive equations
on a �nite grid. With a horizontal resolution of 200 m and 35 vertical sigma
layers the coverage is rather good. However, all variations on sub-grid scale
has to be parameterized, causing restrictions on the model performance. A
limitation of this model setup is the maximum bottom depth of 300 m. The
bathymetry of the fjord system shows large areas of depth down to approxi-
mately 500 m. This was done due to stability problems with the model run.
The main results of this is missing representation of the bottom layers. For
the purpose of this work, where transport of pelagic and mesopelagic eggs
con�ned to the upper 50-70 m is the main objective, this limitation is ac-
ceptable. However, the model setup can not be used to study renewals of
bottom waters.

7.1.1 Wind forcing
The atmospheric forcing used in these simulations is derived from the ERA-
40 reanalysis from 1957 to 2002, with a horizontal resolution of 1 degree. This
means that the resolution is coarse in relation to small-scale modeling. For
most of the variables, (cloud cover, air pressure, speci�c humidity, precipita-
tion and air temperature), the o�set is not too large, but regarding the wind
data the errors might be substantial. The wind �eld used in the simulations
(Figure 7.1) do not have any horizontal variations within the model area.
This is in large contrast to most observations in fjords where the winds are
known to have large spatial variations both in strength and direction. Steep
mountains surrounding fjords cause channeling of winds, often directed either
into or out of the fjord. Svendsen and Thompson (1978) concluded that the
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wind stress is the most important forcing for the circulation in a fjord. Con-
siderable runo� causing strong strati�cation traps the wind-stress response
to the surface layer.

Figure 7.1 shows the wind used in the simulations. The upper panel shows
the period from 1st March to 31st May in 1960, and the lower panel covers the
same time period during 1989. The wind varies substantially both in strength
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Figure 7.1: The wind forcing from ERA-40 relative to model grid, rotated
45◦ in clockwise direction relative to latitude.

and direction during this period in both 1960 and 1989. The wind speed never
exceeds 10 m/s and the most dominant wind directions are from south-east
and north-east (see Figures 7.2(a) and 7.2(b)). No obvious di�erences are
observed between the years, except for a stronger north-westerly component
in 1960 towards the end of the time period.

To compare the wind used in the simulations with observations, data
from Skrova in Vestfjorden are used (see Figure 2.1). Figure 7.2 shows the
most frequent wind directions from the ERA-40 wind forcing (upper panel)
together with measurements at Skrova (lower panel), during spring 1960 and
1989. The most frequent wind directions at Skrova are easterlies and south-
westerlies, as was shown by Sundby (1982). The south-westerly winds have
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a stronger southerly component in 1960 compared to 1989. Easterly winds
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Figure 7.2: Histogram of wind directions from the ERA-40 wind forcing
(upper) and observations at Skrova in Vestfjorden (lower) during March,
April and May 1960 and 1989.

in Folda are directed out of the fjord in the mouth area and in most fjord
branches. This case is assumed to enhance the estuarine circulation and
cause strong mixing in the surface layer. Strong mixing results in deepening
of the brackish layer and increased surface salinities. The other event with
south-westerly winds might cause a more complicated situation. These winds
are directed into Nordfolda and Leirfjorden, and are likely to increase the
transport from Sørfolda to Nordfolda. The south-westerly winds are strong
and will cause heavy mixing. In some fjord branches a reduced or even
reversed estuarine circulation can be expected during these incidents.

The winds used in the simulations and the observations at Skrova are
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clearly di�erent, both in wind speed and direction. Especially the strong
south-westerly winds seen in the observations are lacking in the wind forcing
from ERA-40. The observations also show a distinct easterly component,
compared to the model winds that varies between north-easterly and south-
easterly. The wind speed is general higher in the observations than in the
forcing.

These di�erences in model wind and observations will cause an underes-
timate of wind energy input to the model simulations. Reduced energy input
to the system results in weaker surface currents and less energy available for
mixing. In a fjord system with estuarine circulation, reduced mixing will gen-
erate a thinner surface layer with lower salinity than what would be observed.
The error in wind direction might have an impact on events of reduced and
reversed estuarine circulation. The observations from Skrova show that the
wind directions alternates between two situations, but the model wind is
dominated by one direction. In�ow at the sill in Sørfolda, (Figure 5.11),
is highly correlated with the north-westerly wind events, (Figure 7.1). On
average the model shows two incidents of reversed estuarine circulation per
month, (Figure 5.11). With stronger variability in wind direction this number
is expected to be higher.

Stronger variability in wind direction and strength could a�ect the dis-
persal of eggs. One reason is the increased interaction with the shelf areas
through larger number of reversals. An incident of reversed estuarine cir-
culation could cause eggs at lower levels to be transported out of the fjord.
Stronger wind energy input will increase the salinity in the surface layer.
Then a larger portion of the eggs have neutral buoyancy similar to the mixed
layer, and hence larger possibility for eggs to be situated in the strong sur-
face out�ow. It is likely that more accurate wind forcing could increase the
spreading of eggs in the fjord system.

Non-local wind e�ects
Northerly winds along the Norwegian coast will cause a surface volume trans-
port away from the coast, giving rise to upwelling at the coast. In the opposite
case southerly winds will cause downwelling at the coast. The two main wind
directions in Vestfjorden, easterly and south-westerly, will generate upwelling
and downwelling at the coast just outside Folda (Furnes & Sundby, 1981).
An upwelling event will increase the outward transport in the upper layers
in a fjord, a downwelling event will transport the upper layer into the fjord
(Asplin et al., 1999). These processes are rapid and ∼50% of the upper water
layer may be replaced within 1-2 days, which will have a large impact on the
local environment. Southerly winds will transport planktonic organisms into
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the fjord, and northerly winds can increase the o�shore transport of early
life stages of local �sh populations. Due to small geographic model area and
low-resolution wind data these processes are not resolved in the model. The
outcome will be reduced interaction between the coastal and fjord waters.

7.1.2 Hydrography and circulation

The results in chapter 5 show that the model recreate the main features
related to the estuarine circulation. The salinity is lowest at the inner ends of
the fjord branches, and increasing towards the mouth. Figure 5.6 displays the
strong out�ow in the surface layer and weaker in�ow below, corresponding to
the estuarine circulation. This �gure also shows the variation of surface layer
thickness across the fjord, verifying the in�uence of rotation. Rotation causes
motion to be de�ected towards right. This results in out�owing currents to
be de�ected towards east in Sørfolda.

Currents in coastal areas and fjords have strong temporal variations, as
illustrated in Figure 5.11. The surface current is highly depending on fresh
water �ux and wind forcing. If the fresh water in�uence is large and strati�-
cation strong, the wind in�uence is limited to the brackish layer. The strong
variations in in�ow and out�ow, especially in the surface layer, recreated by
the model seems to be realistic. The periodically strong out�ow is a result
of the changing river input. Together with this the varying wind cause the
�uctuations between out�ow and in�ow. As discussed earlier the wind input
is not expected to be representative for the area, however, the oscillation in
strength and direction are quite realistic. Hence, the time of reversal might
not be correct, but the number and strength may be quite close.

When comparing the model results from 1960 and 1989, distinct di�er-
ences can be observed. The salinity in 1960 is in general higher than in
1989. The major di�erence in forcing for the two model runs is the fresh
water discharge. All results verify that the di�erence in fresh water volume
�ux has a large impact on the estuarine circulation. This means that the
surface current is frequently stronger in 1989 than in 1960, see Figure 5.8.
The compensating current below the surface layer is also observed, but the
location and strength is more variable. The salinity pro�le in Figure 5.12
illustrates the great di�erence in fresh water content between 1960 and 1989.
This con�rmes that interannual variations in fresh water discharge have a
large impact on salinity structure and circulation.
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Rotation
The in�uence of rotation was discussed in section 3.1.1. Here this theory
will be used together with the data displayed in Figure 5.12 to calculate the
internal Rossby radius. The salinities and depth of the upper layer are then
a calculated mean from April 1960 and 1989. Equation (3.1) is used with
latitude 67.5◦N:
April 1960:

S1 = 32, ρ1 = 1025.35, S2 = 34, ρ2 = 1026.94, T = 4.5, h1 = 10m

R = 2.9km

April 1989:

S1 = 28, ρ1 = 1022.18, S2 = 34, ρ2 = 1026.94, T = 4.5, h1 = 7m

R = 5.0km

These calculations show that the internal Rossby radius is larger in 1989 than
in 1960 during the same period. The di�erence is caused by a fresher surface
layer in 1989, hence a stronger strati�cation. Considering the width of the
fjords, (Sørfolda - 3.0 km, Leirfjorden - 1.6 km, Nordfolda - 4.0 km), this
di�erence in internal Rossby radius is signi�cant. Rotation is not considered
to be important in neither of the two years in Leirfjorden. During April
1960 the internal Rossby radius is comparable or smaller than the width of
Sørfolda and Nordfolda, which means rotation is important. During 1989 the
internal Rossby radius is longer than the widths of both the two main fjords,
hence rotation is less important. This illustrates the importance of changing
strati�cation on rotational e�ects. These two examples are from the same
period in two di�erent years, but the change in internal Rossby radius can
also occur in a transition period during one season.

7.2 Transport of eggs
The results generated by the circulation model are used to simulate the trans-
port of eggs in the fjord system using a particle tracking model.

7.2.1 At �xed depths
The �rst attempt describes advection of particles at �xed depths. For 21
days the particles are held at the depth of 1 m, 10 m, 20 m and 30 m.
This approach is independent on vertical density structure and mixing, and
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support information about the overall transport at constant depths. Findings
from these simulations are found in section 6.1. These results are used to
illustrate the fate of particles held at 1 m depth through the run in 1960
and 1989, see Figure 7.3. The blue columns are portion of particles being
trapped close to spawning grounds, the green columns are particles being
transported within the fjord system and red columns are the percentage of
particles leaving the fjord. As commented before, particles staying at 1 m
depth have the smallest degree of retention. Almost all the other particles are
trapped close to the release area. Comparing 1960 and 1989, the percentage
of particles staying close to spawning grounds is largest in 1960. There is
a greater portion both leaving the fjord and being transported within the
fjord system in 1989. These results correlate to the fact that the surface
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Figure 7.3: Overview of particles held at 1 m depth.

currents were stronger in 1989 compared to 1960, which would be expected
to cause more spreading of particles con�ned to the surface layer. In the lower
layers the di�erence was not that obvious, neither in currents nor spreading
of particles.

Assuming these particles are cod eggs, almost all eggs spawned in 1960
would stay inside Sørfolda and Nordfolda. However, in 1989 eggs drifting
at 1 m depth have a large probability of being transported away from their
spawning area. Especially in late spring (from 15th April and 1st May) the
possibility of being advected far away is quite large. Hence, the vertical
position of eggs are important and has a large impact on their paths.
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7.2.2 With dynamical vertical distribution
To make the particles behave more like cod eggs, the possibility of vertical
displacement is included, resulting in a dynamical vertical distribution. Each
egg is assigned a neutral buoyancy and a vertical velocity is calculated, ac-
cording to the theory in section 3.2. The ascending or descending velocity
is depending on the density structure surrounding the egg, provided by the
circulation model. The vertical mixing is accounted for when computing the
actual vertical distribution of the eggs. Including all these variables, the ver-
tical distribution is calculated for eggs with neutral buoyancy according to
CC. The results from these considerations are shown in section 6.2, where
the buoyancy distribution is divided into groups according to the Figure 6.3.

The results are used in Figure 7.4, showing what happens to the eggs in
buoyancy group 1 (the lightest) after being advected for 21 days. This group
is chosen because of having the largest amplitude when comparing between
the years and with di�erent spawning time. The other groups show the same
pattern, but with reduced variability for the heavier egg groups. The blue
columns are percentage of eggs being retained close to spawning area, the
green columns show exchange within the fjord system and the red columns
are eggs transported out of the fjord. As commented earlier the degree of
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Figure 7.4: Overview of eggs from buoyancy group 1.

retention in 1960 is decreasing with increasing spawning time. The number
of eggs being trapped is increasing with increasing spawning time in 1989.
Towards the end of spring 1989 only a few eggs are spreading away from their
origin.

The development in 1960 might be due to later onset of the estuarine
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circulation. Early in spring several eggs stay inside the fjord because the
outgoing current is weak. Figure 5.10 shows that strati�cation in Sørfolda is
weak until the end of April, before it is getting stronger during May. When
the surface current is getting stronger the spreading of eggs also increases in
late April and May. However, since the fresh water input in 1960 is not very
strong, the surface salinity does not decrease much. Which in turn means
that the lightest eggs are �oating in the upper water column and getting
transported further away than the other eggs.

1989 shows a di�erent pattern than 1960. The strong strati�cation in
early April might explain some of the development, see Figure 5.10. A
fresh surface layer this early means that the estuarine circulation has already
started. Then an outwards �ow in the upper layer cause the eggs spawned on
15th March and 1st April to spread away from their starting point. However,
later in spring the surface salinity is getting progressively lower, see Figure
5.10. At this point the eggs are heavier than the surrounding water and sink
below the fresh surface layer. By doing this the eggs are avoiding the strong
surface current directed out of the fjord, and are getting retained at their
spawning ground.
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Figure 7.5: The vertical distribution of eggs according to the local salinity
pro�le from April 1960 (left) and 1989 (right), at a station in Sørfolda (Figure
2.2).

Figure 7.5 illustrates the vertical pro�le of Norwegian Coastal Cod eggs
according to the corresponding salinity pro�le for April 1960 and 1989. The
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salinity pro�le is a monthly mean for April, as seen in Figure 5.12, and the
eggs have the buoyancy distribution as shown in Figure 6.3. The concen-
tration of eggs is a function of the density di�erence and the eddy di�usion
coe�cient (Ådlandsvik, 2000).

The major di�erence between 1960 and 1989 is the surface salinity, being
close to 31.8 in 1960 and 26.6 in 1989. With this di�erence in salinity the
concentration of eggs near the surface has changed. In 1960 some eggs are
situated close to the surface and the maximum is around 5 m depth. However,
in 1989 the eggs are all positioned below 2.5 m, with highest concentration
around 7.5 m depth. When the surface layer is thin, as in 1989, this di�erence
in vertical distribution is important. When the eggs are at a lower level in
the water column, the possibility of being transported away is much smaller
and the degree of retention is larger.

The same vertical pro�le of eggs is shown in Figure 7.6 together with the
corresponding along-fjord current pro�le, positive current is directed out of
fjord. The maximum current speed is observed at the surface in both years,
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Figure 7.6: The vertical distribution of eggs together with the local along-
fjord current speed from April 1960 (left) and 1989 (right), at a station in
Sørfolda (Figure 2.2), positive direction is out of the fjord.

but with di�erent scales. In 1960 the out�owing surface current is close to
0.15 m/s, and approximately 0.36 m/s in 1989. The depth of the surface
layer is largest in 1960, this was also observed in the salinity pro�le. This
results in a greater portion of eggs being situated within the outgoing surface
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layer in 1960, than in 1989. In 1989 only a small percentage of eggs are at
a depth with out�owing water, the rest of the eggs are in a location with no
currents or inward currents. This explains the results showing larger degree
of retention towards the end of April 1989 compared to 1960.

7.3 Separation and mixing of ANC and CC
eggs

When discussing the separation and mixing between Arcto-Norwegian Cod
(ANC) and Norwegian Coastal Cod (CC) it is assumed that when CC eggs
are transported out of the fjord, the probability of mixing between ANC and
CC is high. Whenever the CC eggs are retained within the fjord system the
two populations are separated.

After approximately 21 days the eggs hatch into larvae. Almost imme-
diately the larvae are able to move vertically in relation to prey density.
Data from Lofoten indicate that the highest concentration of cod larvae is
between 10-30 m depth (Ellertsen et al., 1984). The results shown in section
6.1 demonstrate that particles travelling below 10 m depth have a small hor-
izontal spreading. If the eggs are retained inside the fjord system at the time
of hatching, it is likely that the retention will continue also during the larval
stage.

7.3.1 Importance of buoyancy
The neutral buoyancy of CC eggs is the only variable used in these simula-
tions to evaluate the separation between ANC and CC. However, the results
show that buoyancy of eggs are an important factor deciding the spreading
of the eggs. The �rst approach with transport of eggs at 1 m depth, shows
what would happen to pelagic eggs in this fjord system. Especially during
1989 a large portion of pelagic eggs was spreading out on a large area. When
the buoyancy distribution of CC eggs were included in the simulations, the
amount of eggs being retained within the fjord increased. This means that
the potential for being advected out of the fjord is highly present. How-
ever, since the mesopelagic CC eggs are heavier than the surface layer, they
avoid mixing with ANC outside the fjord. There is also a variability in the
transport within the buoyancy distribution of CC eggs. The lightest buoy-
ancy group has the highest probability (6.9%) of being transported out of
the fjord and being mixed with ANC eggs. The three heaviest buoyancy
groups, containing 66% of the eggs, have minor leakage at all times and are
separated from ANC eggs. Modeling studies in a fjord on the western coast
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of Norway done by Asplin et al. (1999) also acknowledged the danger for
eggs and larvae to be advected out of the fjord in the surface layer. They
indicated that species have adapted the depth of spawning and the buoyancy
of eggs to reduce dispersal of younger stages. The results shown here (Fig-
ure 7.5) indicate that CC have adapted their spawning behavior to increase
the retention of eggs inside a fjord system.

7.3.2 Choosing spawning grounds
A signi�cant di�erence between ANC and CC is the di�erent spawning
grounds. The ANC spawn in Vestfjorden, where the eggs will be lighter
than the mixed layer, while the CC spawn inside the fjords where the eggs
will be heavier than the mixed layer. The CC eggs will be mesopelagically
distributed inside Folda, but pelagically distributed in Vestfjorden where the
surface salinity is normally around 33. This is a major factor maintaining
the separation between ANC and CC.

The selection of strati�ed water masses as spawning grounds to prevent
egg stages from dispersion was discussed by Salvanes et al. (2004), which in
turn cause the CC to develop into di�erent coastal and fjord sub-populations
adapted to the local environment.

Inside the fjord system of Folda there are spatial variations in the trans-
port of eggs. Figure 6.7 shows that eggs spawned in Vinkfjord travel a longer
distance away from their origin than all other spawning grounds. The reason
for this might be the small amount of fresh water input to the fjord and close
connection to the mouth. Spawning activity in Vinkfjord is likely to cause
mixing between ANC and CC. These results are coherent with the informa-
tion about spawning and juvenile distribution in Figure 2.4, showing that
Vinkfjord is a spawning ground but not a nursery ground.

7.3.3 Seasonal and interannual variations
The results show that the retention of CC eggs within Folda varies with
varying spawning time. In 1960 the spreading of eggs is highest in late
spring, compared to 1989 when the spreading was highest in early spring.
The main causes of this is assumed to be di�erent onset of the estuarine
circulation and change in surface salinity.

The peak spawning time for CC is towards the end of April, while the
ANC reach a spawning maximum at the beginning of April. From Table 6.3
a distinct di�erence in transport of eggs spawned on 1st and 15th April is
seen. For early spawners the retention is largest in 1960, causing separation
between ANC and CC in 1960 but more mixing in 1989. For late spawners
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the retention is strongest in 1989, resulting in mixing in 1960 and separation
in 1989. This proves that the seasonal variations are on the same scale as the
interannual variations. Meaning that the spawning time is important, and
changes might have a large e�ect on the �nal distribution of eggs.

A clear variation between 1960 and 1989 is seen as well. The main di�er-
ence is seen in the fresh water input, being about twice as large in 1989. The
fresh water discharge causes changes in the estuarine circulation and in the
salinity of the brackish layer as noted earlier. The transport of eggs at �xed
depths shows a signi�cant di�erence between the years, being a re�ection of
the currents at constant depths. During the whole spawning period the total
amount of eggs leaving the fjord is 2.7% in both 1960 and 1989 included all
buoyancy groups and all spawning times. Hence the total amount of mixing
between ANC and CC eggs do not change between the years, but the time
of mixing is di�erent. In March and beginning of April the separation is
stronger in 1960 than in 1989, contrary to the end of April and May where
the separation is more pronounced in 1989 than in 1960. The favorable time
for spawning to achieve separation is changing between the years. However,
these two years show that the mixing between ANC and CC is limited and
constant between years, when considering all release times. When concen-
trating on the two last spawning times, being the time when CC spawn, there
is a signi�cant di�erence between 1960 and 1989. Then the total amount of
eggs leaving the fjord is 3.7% in 1960 and 0.9% in 1989. Hence the mixing
between CC and ANC is largest in 1960, and 1989 shows a strong separation
between the populations.

These results con�rm that the two populations of cod, CC and ANC,
are separated geographically during the egg stage and the mixing between
them is limited. Earlier work on cod recruitment in northern Norway also
acknowledged di�erent early life history of ANC and CC (Løken et al., 1994).
Furthermore, they discussed juvenile segregation due to di�erent bottom set-
tling strategies. Knutsen et al (2007) sampled eggs from CC in 20 Norwegian
fjords throughout a large geographical area. The results revealed a pattern
with higher density of pelagic eggs inside sheltered fjord habitats along the
Norwegian coast. Jorde et al (2007) found indications of local coastal cod
populations within a geographical extent of 30 km, on the scale of local fjords.
All these results con�rms the existence of separated CC populations inside
di�erent fjords. This might explain the dissimilar pattern of decline in cod
abundance in Skagerrak.
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7.4 The impact of climate change
The climate, meaning the average weather, is not constant and varies on
di�erent time scales. A global warming is observed on top of these natural
variations, caused by anthropogenic emissions of greenhouse gases. This
warming is expected to continue in the future, which may have large impacts
on the climate. Downscaling of climate models show a temperature increase
of 1.6◦ in northern Norway in 50 years (Alfsen, 2001). The precipitation is
expected to increase, up to a seasonal average of 7.8%. Even warmer and
wetter years are probable to occur more often, being similar to 1989. Meaning
that the situation observed in 1989 is likely to occur more frequently in the
future.

In 1989 the mixing between ANC and CC occurred in early spring, and
separation was stronger late in spring. With late April as the time of maxi-
mized spawning, this pattern favors separation. If years like 1989 occur more
often and might even be warmer and wetter, these results show increased
separation between ANC and CC eggs. The amount of mixing occurring
early in 1989 was caused by early onset of estuarine circulation, but weaker
strati�cation than later. Hence separation is depending on a strong strati�-
cation, which might increase due to climate change. Therefore the climate
change is expected to increase the separation between ANC and CC during
early life stages, caused by the retention of CC eggs.

This approach only includes physical processes maintaining the separation
between ANC and CC at early life stages. Even though these results indicate
strong future mechanisms to keep the CC inside the fjords, the actual survival
of the o�spring is not included. Salvanes et al (1992) found that the advection
of zooplankton into a fjord might give large interannual variability in cod
production. In a fjord with a sill the interaction with the coastal areas might
be weak and only periodic, causing limitations on food availability. How this
interaction will be a�ected by the climate change is not easy to predict.
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Summary and conclusion

A circulation model was used to simulate the estuarine circulation in a fjord
in northern Norway. The model managed to reproduce the main features in
the fjord system, consisting of a strong out�ow in the surface layer and a
weaker in�ow below.

The estuarine circulation is shown to have strong seasonal variations,
highly depending on the fresh water input. The onset of melting season
varies between years, with following variations in volume �ux of fresh water
discharge.

The vertical distribution of CC eggs is found to depend on the local salin-
ity structure. Hence the surface concentration of eggs changes with season
and between years. A low-saline surface layer results in a mesopelagic dis-
tribution, with most eggs situated below the surface layer. Small variations
in buoyancy cause vertical displacements. The vertical position controls the
transport of eggs, strongly a�ected by the strong surface �ow.

Seasonal variability is shown to be on the same scale as interannual vari-
ability. Considering the last part of the spawning period a stronger separation
between ANC and CC is observed in 1989 compared to 1960. Future climate
change might cause stronger separation between ANC and CC eggs. These
results show that most CC eggs stay very close to their origin. Supporting
that there are several local populations of CC along the coast, with limited
amount of exchange between the populations. Strong physical mechanisms
support the maintenance of local cod populations.

Since the CC is highly self-recruiting, this is a major challenge for man-
aging the stocks. Over�shing in a fjord might cause the stock to su�er major
damage and it will have di�culties to recover. While at the same time stocks
in the neighboring fjord might be sustainable and su�er no depletion. Weak
interaction between local populations demands local administration of the
�sh quotas.
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Future work
These results show a need for better wind resolution in the model run. This
can be done by downscaling the wind �eld using a model setup for this speci�c
domain.

For better model results the model domain should contain Vestfjorden to
include the e�ects of upwelling and downwelling during major wind events.
Also the maximum depth should be increased. In this way the fjord system
will be more realistic and may even host renewal events.

Only two years are used in this study. To study these processes fur-
ther several di�erent years should be included to elaborate on the di�erent
mechanisms causing separation within years and between years.

More information about the spawning period of the CC is needed. Kjesbu
(1988) indicated that CC spawns later than ANC, the results presented here
show that the mixing between CC and ANC are subjected to substantial
seasonal variations.



Appendix A

Data from Folda

On 4th and 5th April 2007 Johan Hjort collected hydrographical data in Folda.
Totally 10 CTD-stations were taken inside the fjord system. Figure A.1 shows
the locations of the stations, together with the salinity pro�le using the same
color.

Figure A.1: Salinity pro�les in Folda in the upper 50 m, colors correspond
to each other.

The two stations with lowest surface salinity is located at the inner part of
Sørfolda (∼29.3) and Leirfjorden (∼30.5). These two stations show a strong
strati�cation and a surface layer only about 5-10 m deep. All other stations
have a surface salinity between 33 and 33.8, and with very small variations
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in the upper 50 m.
In Figure A.2 the exact same data are plotted, but now showing the upper

200 m and with a smaller range of salinities neglecting the freshest stations.
Some variability is seen in the upper part, with salinities ranging from 33
to 33.8. The stations with lowest surface salinity is located in Nordfolda.
Below about 60 m the di�erences between stations are reduced, and further
decreasing downwards. In the upper 100 m the vertical variations are quite
small, but between 100 m and 180 m is a deep halocline.

Figure A.2: Salinity pro�les in Folda in the upper 200 m, with shorter range
in salinity neglecting the freshest stations.

The weather conditions at the time of these observations should be added
in these considerations. The reason is the strong winds on 4th and 5th April
2007. Outside Folda the wind strength was around 19.8 m/s and with a dom-
inantly westerly component. This means that strong winds where directed
straight into the fjord at the time of the measurements. The exact impact of
these weather conditions are not easy to quantify, but strong mixing would
be expected. The winds could be so strong that the normal estuarine circula-
tion may be reversed with in�ow in the upper layer and out�ow below. The
surface salinity observed could then be higher than what would normally be
the case.

On this cruise also eggs where collected at the CTD-stations. The num-
ber of eggs collected at the inner part of Sørfolda are shown in Figure A.3,
together with the salinity pro�le at the station. Totally 67 eggs where sam-
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pled at this station. From the surface and down to 15 m depth 32 eggs where
collected, a percentage of 48. In the layer at 15-30 m 30% of the eggs where
found, at 30-45 m depth 19% and between 45 m and 60 m 3% of the eggs.
The eggs show a pelagic distribution.

Figure A.3: Salinity pro�le and corresponding egg distribution collected.
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