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Preface

This dissertation is submitted as a partial fulfilment of the requirements for
the degree Doctor of Philosophy (PhD) at the University of Bergen. The work
has been conducted at the Centre for Integrated Petroleum Research (CIPR)
in collaboration with the Department of Mathematics at the University of
Bergen.

The dissertation is organised in three parts. In Part I we present the
general and theoretical background for the scientific studies that we have
performed. The results of these studies have been formalised in three scien-
tific papers. These are included in Part II. Finally, in Part III we provide
supplementary material to the scientific papers.
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Chapter 1

Introduction

Understanding the scaling mechanisms on how to map information between
scales, is important in many areas of research. In climate research, scientists
try to answer questions like: What is the mean temperature in the world? To
what extent will a possible change in global temperature affect the climate
locally? In economy, understanding how a small perturbation in the economy
somewhere in the world inflict the economy at other places in the world,
might help to avoid future financial crises. As for reservoir engineering,
understanding the fundamental scaling mechanisms within a porous media,
is crucial in order to develop accurate reservoir models and efficient and
robust reservoir simulators.

The purpose of this chapter is to provide the reader with some basic
understanding of petroleum reservoir engineering, and the scales that are in-
volved. We start by giving a brief introduction to what a petroleum reservoir
is, how to characterise it, and the main production techniques for extracting
hydrocarbons from the subsurface. The study of this thesis is devoted to
multiscale techniques for improved reservoir simulations. We will highlight
some of the current challenges within reservoir simulations, and discuss what
we see as the challenges for the future. Finally, we will give an outline to the
rest of the manuscript.

1.1 Reservoir engineering

A petroleum reservoir is a porous medium where hydrocarbons, such as
oil and gas, has accumulated and is being trapped. Such geological for-
mations have been formed over millions of years, as compressed layers of
sediments. Over time, the reservoir may have experienced erosion, tilting,
bending, cracking and even breaking. As a result, the geometry and geology
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Figure 1.1: Petroleum reservoir

of petroleum reservoirs can be highly complex and highly heterogeneous. An
important property of the petroleum reservoir is the trapping mechanism,
which prevent the lighter fluids, like oil and gas, from migrating further up-
wards. Typically, the top layer of the reservoir forms a caprock, which act
as a seal. The simplified sketch in Figure 1.1 shows a typical distribution of
fluids within a petroleum reservoir, where the lighter gaseous phase is formed
on top of the oil-phase, which again is above the water-phase.

1.1.1 Reservoir characterisation and scales

In general, many rock types have the potential of becoming a petroleum
reservoir. The only requirement, in addition to the trap, is that the rock
must contain a network of interconnected pores, where fluids can flow. In
practise, there are two rock types in which the major hydrocarbon reserves
have been found, those are sandstone and carbonate rock formations. The
different rock types are characterised in terms of their petrophysical rock
properties. In the following we will discuss two of the main rock properties,
the porosity and permeability.

Porosity

The porosity of the rock is defined as the fraction of pore volume per
bulk volume,

Porosity =
Pore volume

Bulk volume
, (1.1)

and is a measure of the potential storage capacity of the reservoir. We can
use the porosity to estimate the amount of hydrocarbons in the reservoir.
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In general, the porosity can be determined by the use of either visual
measurements, e.g NMR and micro-scan or by the use of lab-experiments.
By injecting oil into a porous core sample, we can experimentally determine
the effective porosity, i.e., the amount of pore space accessible for the oil.
This is the most widely used technique for determining the porosity. The
porosity is an averaged quantity, and will in general vary with the size of
bulk volume (see Equation (1.1)). If the entire bulk volume is inside a single
pore, the porosity is 1. On the pore scale, (∼ 10−6m), we will in general
experience large spatial variations in the measurements of the porosity. As
we increase the bulk volume, the spatial variations of our measurements
will decrease. At the scale, where all local measurements give more or less
the same porosity, we say that we have a representative elementary volume
(REV) for measuring the porosity. This is illustrated in Figure 1.2. If the
reservoir is perfectly homogeneous, there will be only one REV for the entire
reservoir. Unfortunately, such reservoirs do not exist in nature.

Permeability

The permeability of the reservoir is a measure for the fluid conductivity of
the reservoir rock. This parameter is more complex and involves both the
size, geometry and interconnectivity of the porous network. Much research
has been devoted to finding correlations between the permeability and the
porosity, the pore-sizes or the pore-geometry. In general, the permeability
will increase with increasing porosity and pore-size of the reservoir. Similar
to porosity, the permeability can be measured experimentally on the lab,
however, the notion of an REV for the permeability is less understood. The

P
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Homogeneous reservoir
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Figure 1.2: Representative elementary volume for the porosity
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proper definition and quantification of the permeability on different scales
will be discussed in more detail in the next two chapters.

In general, all reservoirs are heterogeneous with a range of scales, both
for the porosity and the permeability. However, some general trends can
be identified. Sandstone reservoirs tend to have a more narrow pore-size
distribution, and a characteristic pore size and porosity can be detected.
Carbonate reservoirs are usually more difficult to characterise, with several
characteristic pore-size distributions on different scales. The pore size distri-
bution for a sandstone reservoir is typically measured on the scale of micro
(10−6) meters. For carbonates, it is not uncommon to additionally find pores
on the size of centi (10−2) meters (vugs), or even meters (cavernous pores).
Such large-scale pores can have a major impact on the production of the hy-
drocarbons. Fractures on the scale of centimetres and faults on the scale of
meters are other large scale heterogeneities which can be found in any type
of natural reservoirs. They have a strong effect on the permeability of the
reservoir.

1.1.2 Geological model

Many of today’s oil and gas reserves are located deep in the subsurface,
not easily accessible. To develop such petroleum reservoirs for production is
expensive, thus, it is important to get a good overview of the economical
feasibility and risks involved. An important tool in that process, is the
construction of a geological model, describing the static state of the reservoir.

Building a high-resolution geological model, consists of several steps. In
the first step we want to honour the geometry of the main geological features,
like the different layers, zones and faults of the reservoir. This preliminary
model is often called the structural model. The fluid flow will mainly follow
the geological layering of the reservoir, which can be detected by seismic
imaging of the subsurface. The oil and gas can further be situated in different
zones of the reservoir divided by impermeable layers of e.g. clay. Each zone
can again consist of several geological layers. The distribution of the oil and
gas zones, together with the flow properties within the zones and connection
between the zones, will to a large extent determine the proper choice of
production strategy. Finally, the faults represent a great uncertainty, in
which it is difficult to predict their impact on fluid flow. A fault may act as
both a trapping mechanism and a conductor of fluid flow. Because of their
complex geometry, the faults are often grossly simplified in the geological
model.

A (stratigraphical) flow grid is constructed to represent the principle di-
rections of the fluid flow. The grid is usually optimized in terms of smooth-
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ness, however, the complex geological features may put constraints on the
development of the grid.

Finally, a full high-resolution geological model contains a description of all
the petrophysical rock properties within each of the fine-grid cells. Because
of the complex geometry and high spatial variability of the rock properties,
this geological description can be rather detailed, and the flow grid might
have (107 − 108) grid cells [39].

1.1.3 Petroleum recovery

The recovery process consists of drilling several production and/or injection
wells into the subsurface. Based on the pressure and temperature in the reser-
voir, together with the reservoir rock and fluid properties, several production
techniques are possible. The objective is to recover as much of the hydro-
carbons as possible, at as low cost as possible, i.e. minimizing the number
of wells. The recovery techniques are usually divided into three main stages;
primary recovery, secondary recovery and tertiary or enhanced recovery.

The pressure within the reservoir can be several hundred times larger then
the pressure on the surface. Thus, the release of potential energy, related to
the compression of hydrocarbons are often large enough to extract up to 25-
30 percent of the oil an gas reserves. The actual recovery rate will depend
on the size of the pressure compartment and the placement of the fluids. As
an example, a gas cap above the oil cap, in the near-well region, will expand
due to drop in pressure, and can be used as a pressure support to increase
the recovery of oil. This early stage of production is called primary recovery,
and is the simplest, most used and most inexpensive production type.

To further increase the recovery of oil and gas and maintain a stable pro-
duction rate, it is necessary to provide an external pressure support. This
stage is called the secondary recovery. The most common approach is to
inject water, which displaces the hydrocarbons in the direction of the pro-
duction well. An important issue is that the injected fluid should not be
miscible with the displaced fluid. Moreover, the difference in fluid properties
of the two fluids is important. If the pressure decreases to a value below the
bubble point for the oil, gas is released from the oil-phase. In some situations
it is practical to first recover the oil-phase, before producing the gas. Thus,
we can re-inject the gas, temporarily storing it and at the same time use it
as a pressure support. In the later years, the problem of increased emissions
of CO2 to the atmosphere has received much attention. Some of today’s
production fields also involves capturing and storage of CO2. The CO2 can
either be used as a pressure support, or injected into a depleted reservoir or
deep-water aquifer.
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After the secondary recovery stage, as much as 40-50 percent of the oil
and gas reserves is usually left behind. The reason for this can be many.
Basically, the fluids form preferential flow paths, and the displacement of
hydrocarbons only covers parts of the reservoir. In order to recover more
of the residual and immobile oil, enhanced recovery techniques need to be
applied. All techniques aimed at improving the sweep efficiency and recovery
of hydrocarbons, beyond the traditional displacement of oil and gas belongs
to the tertiary or enhanced recovery stage. These techniques include injection
of chemical and biological species, to change the viscosity or surface tension
of the oil or the injected water. Many of the applied techniques are costly,
and the effects are not well documented. However, a successful technique
may increase the recovery substantially.

1.2 Multiscale modelling and simulation

Over the last couple of decades much of the easy accessible oil and gas have
been produced, many existing oil fields are mature and secondary and en-
hanced production techniques are applied to extend the production-life of
these reservoirs. Complex and highly heterogeneous reservoirs, which ear-
lier were not developed, are now being opened for production. An increased
understanding of the flow in such formations (e.g. faulted and fractured
reservoirs) is necessary in order to make the production from these reservoirs
economically feasible.

Much work has focused on including more physics into the reservoir
model, e.g. dual-permeability models for fractured reservoirs [77] and the
unified earth model for including complex fault structures [67]. Monitoring
techniques have been developed or improved, i.e. gravimetric monitoring of
water displacing gas [33] and 4D time-lapse seismic for measuring the oil-
water contact [18]. Together, the improvements in scientific research and
technology give us a more detailed picture of the geological structures of the
reservoir and the fluid contact movements during production. Moreover, the
computers are getting faster; in which case we can more often than before
simulate on the full geological model. As a result, we can put more informa-
tion of the reservoir into our reservoir models and run full-field simulations.

In order to take advantage of the detailed description of the reservoir,
it is crucial that we have robust computational methods, which can handle
difficult geometries and heterogeneities, and do not add more uncertainty to
the already uncertain process of flow and transport in porous media. Tradi-
tionally, the fine-scale properties of the reservoir are upscaled to a suitable
resolution for applying conventional reservoir simulators. However, over the
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last 10-15 years, there has been a growing interest in multiscale methods.
These are computational methods for flow in porous media, which aim at
capturing heterogeneities on several scales into the simulations of the geolog-
ical model at comparable computer efficiency. Upscaling is now an integrated
part of the direct simulation on the geological model. This gives us the pos-
sibility of controlling the uncertainties of our coarse scale simulations.

The scope of this thesis is to study the numerical framework of the mul-
tiscale methods for applications towards reservoir simulation. We want to
analyse the mathematical properties of the numerical multiscale algorithms
and develop robust numerical techniques which can be applied to problems
involving realistic porous media.

1.3 Outline of the thesis

In the following chapters we will describe various strategies for building the
simulation model and conducting robust and efficient reservoir simulations.
The mathematical and numerical models of the reservoir simulator will be
described in Chapter 2. Traditional methods for solving the governing equa-
tions will also be explained, and numerical challenges are addressed. In
Chapter 3 we describe conventional techniques for upscaling petrophysical
properties of the reservoir from the geological model to be included in the
simulation model. Here, we will mainly focus on the upscaling of single-
phase parameters. Chapter 4 describes the class of domain decomposition
techniques, which is commonly used to solve the large system of linear equa-
tions arising from the discretisation of the governing flow equations. The
multiscale methods can be viewed as a combination of upscaling and domain
decomposition, and is described in Chapter 5. Here we will show how the
upscaling step can be integrated, so as to efficiently simulate on the fine-scale
geological model. We summarize the papers in Chapter 6, before concluding
this thesis.





Chapter 2

Reservoir Simulation

Reservoir simulation is an important tool in order to understand the flow
and transport of fluids in a porous medium, and in order to predict future
developments of the reservoir. The simulations can be used to optimise
the placement of wells, quantify uncertainties and foresee future production
scenarios of the reservoir.

In this chapter we will describe the reservoir simulator; its mathematical
models for flow and transport in porous media and the various computational
techniques to solve the equations. Our main focus will be on the numerical
aspects of the reservoir simulator, like the various discretisation techniques
to represent the mathematical equations and the different numerical solvers
to efficiently carry out the simulations. For more information about reservoir
modelling and simulation, see e.g. [12, 13, 22, 76].

2.1 Mathematical models for flow in porous me-
dia

In the previous chapter we briefly introduced the physical setting of a
petroleum reservoir, a couple of typical production scenarios and some typ-
ical scales of the reservoir. In this section we will develop mathematical
models which describe the flow and displacement of fluids on the reservoir
scale (101 − 104 m). In principle we could describe all displacement pro-
cesses on the pore scale, but then we are limited by computational power
to run simulations on the scale of millimetres and centimetres. In addition,
the geometry and fluid distributions on the pore scale are not known to us.
Instead, we will consider all our equations on the continuum level, where
the petrophysical parameters are defined and measured over some average
volumes (REVs).
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The differential equations for flow and transport are governed by conser-
vation laws, such as conservation of mass, momentum and energy. In the
following we describe some of the mathematical models which are being used
for reservoir simulation today.

2.1.1 Single-phase flow

The single-phase model is an important test model, which is extensively used
to validate the performance of computational methods for flow in porous
media. The practical importance of this model is perhaps limited as the
petroleum reservoir contains several chemical species of several phases. How-
ever, a possible application could be the case of primary recovery of oil, when
the reservoir pressure is higher than the bubble point pressure for oil and the
influence of the water-phase is negligible small. In this case, it can be prac-
tical to approximate a single-phase system of equations.

The single-phase flow in porous media is driven by pressure gradients and
governed by the Darcy’s law, which is a deterministic model for the reservoir.
The phase-velocity v is written as

v = −K

μ
(∇p− ρg∇z) , (2.1)

where K is the permeability, μ is the phase viscosity, p is the pressure, ρ
is the phase density, g is the gravitational acceleration and z is the vertical
coordinate. The Darcy’s law, first established in [24], can be considered as
an upscaled model for the porous medium, as long as there is a distinct
separation of scales, between the pore-scale and the continuum-scale. Under
certain assumptions on the flow, the Darcy model can be derived from the
Navier-Stokes equations. The Navier-Stokes equations are normally used to
model flow on the pore scale.

The averaged parameters, K and μ, describe the conductivity of the rock
and fluid, respectively. The permeability acts as a tensor, and may have large
spatial variations. In general, the permeability is directional dependent, in
which case it is called anisotropic. However, for many applications it is
convenient to approximate an isotropic permeability tensor aligned with the
grid, in which case K becomes diagonal. In practise, the permeability tensor
can be hard to determine precisely, and it is usually approximated through
a series of lab- and/or numerical experiments. More information on how
to define and approximate an averaged permeability tensor is provided in
Chapter 3.

The viscosity represents the internal friction of the fluid. In general, the
viscosity is a function of pressure and temperature. For primary and sec-
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ondary recovery of near-isothermal reservoirs, the phase viscosity is usually
represented by a constant value. In enhanced oil-recovery, however, the aim
is often to change the value of the phase viscosity, e.g. to lower the viscosity
of the oil-phase or to increase the viscosity of the injected water, in order to
get a more efficient displacement of the oil.

From the conservation of mass we know that the change in the concen-
tration within a closed volume Ω must be balanced by the fluxes over the
boundaries ∂Ω (inflow minus the outflow), and the internal sources and sinks,
which we denote by f . This gives us the following relation for the phase den-
sity ρ:

d

dt

∫
Ω

φρdV +

∫
∂Ω

ρvdS =

∫
Ω

fdV. (2.2)

Here, φ is the porosity and is a measure of the accessible volume for the
fluid-phase to the total rock volume (see also discussion in Section 1.1.1).
The conservation law holds for any arbitrary volume Ω, and by using the
divergence theorem together with Darcy’s law we can formulate the following
single phase flow equation:

∂ (φρ)

∂t
−∇ ·

(
ρ

μ
K (∇p− ρg∇z)

)
= f. (2.3)

The density is a function of the pressure, and the compressibility of a fluid
is defined by

c =
1

ρ

∂ρ

∂p
. (2.4)

For an ideal fluid under isothermal conditions, the compressibility c will be
constant. For weakly compressible fluids and non-deformable porous media,
i.e ρ and φ are treated as constant in time, we can approximate the non-linear
parabolic equation (2.3) by a linear parabolic equation for the pressure,

cφ
∂p

∂t
−∇ ·

(
1

μ
K∇ (∇p− ρg∇z)

)
=
f

ρ
. (2.5)

Moreover, for incompressible fluids (c = 0), we can introduce the potential
u = p− ρgz and the single-phase equation becomes a static elliptic equation
for the potential u:

−∇ · (K∗∇u) = f ∗. (2.6)

For simplicity, we have here scaled the permeability tensor and the right hand
side. In the following we will denote by x∗ the scaled or upscaled parameter
of x. Thus, the pressure equation takes the form of a Poisson equation.
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In general, we always deal with compressible phases, in which case the
flow is governed by non-linear parabolic equations. However, after discretis-
ing the parabolic equation in time, we are left with an elliptic equation for the
pressure. Equation (2.6) is often refered to as the model elliptic problem and
is extensively used for testing the convergence of spatial discretisation tech-
niques and the efficiency of linear solvers stemming from elliptic differential
equations.

2.1.2 Two-phase flow

We now consider the case of two-phase immiscible flow. For secondary oil
recovery, when the reservoir pressure is higher then the bubble point pressure
for oil, we may consider such a two-phase system of oil and water. Thus, we
are interested in the displacement of the oil phase by the water phase. In
the following we will use the subscripts o and w to denote the oil and water
phase, respectively.

In a water-oil system, the water phase will tend to flow close to the
pore walls, while the oil phase flows in the pore throats [76]. Both fluids
can flow simultaneously and they will occupy a fraction of the same pore
volume. The flow of each of the phases will now depend on the presence
of the other phase, and we need to introduce three additional parameters;
capillary pressure, phase saturation and relative permeability.

The interaction between fluid and rock, results in a slightly higher pres-
sure in the water-phase, compared to the oil-phase. This difference in phase
pressures is refered to as the capillary pressure and denoted by

pc = po − pw. (2.7)

In general, the pore-scale capillary pressure is a highly complex variable, de-
pending on the pore geometry and the surface tension between the fluids.
The notion of an upscaled capillary pressure on the Darcy scale is less un-
derstood, see e.g. [47] for more information. However, it is clear that the
capillary pressure is a function of saturation. In reservoir simulations it is
common to use capillary curves, which are based on experiments or mathe-
matical relations of the saturation.

The saturation of phase α is denoted by Sα ∈ [0, 1] and represents the
fraction of the total pore space occupied by phase α. The two phases will
together fill the entire pore volume.

We define the effective permeability of phase α by Kα = Kr,αK, where
Kr,α is called the relative permeability of phase α. While the relative perme-
ability is an upscaled reservoir parameter, it is in general a tensor, however
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it is most often considered as a scalar variable. In the following we will only
consider the scalar relative permeability, kr,α ∈ [0, 1]. For more information
on tensor relative permeabilities, see e.g. [56]. The fluid-fluid interaction
reduces the total flow. Note that

∑
α kr,α < 1, in regions where more then

one phase are present.
For simplicity we will also introduce the mobility of phase α as

λα =
kr,α
μα

. (2.8)

If we assume that flow of each phase is governed by the individual phase
pressures, we can represent the phase velocity by the generalised Darcy’s
Equation,

vα = −λαK (∇pα − ραg∇z) . (2.9)

Similar to the case of single phase flow, we can use the conservation of mass
to model the evolution of the phase density per time:

∂ (φραSα)

∂t
−∇ · (ραvα) = fα, α = o, w. (2.10)

Note that, φραSα is the mass of phase α, where φSα represents the fractional
pore-space of phase α. To solve the two-phase problem for the pressures po
and pw and the saturations So and Sw, we also need to define some constitu-
tive relationships for the petrophysical parameters:

So + Sw = 1, (2.11)

po − pw = pc(Sw), (2.12)

μα = μα(Sw), (2.13)

ρα = ρα(Pw), (2.14)

kr,α = kr,α(Sw), (2.15)

2.1.3 Pressure and saturation equation

The two-phase flow model (2.10) exhibits two parabolic equations, one for
each of the phases α = o, w. By applying the constitutive relations (2.12-
2.13) we can manipulate the system of parabolic equations and rewrite the
two-phase model into one elliptic equation for the pressure and one hyperbolic
equation for the saturation. If we expand the time derivative in Equations

(2.10) and add
(

1
ρo

)
times the first equation with

(
1
ρw

)
times the second

equation, we arrive at the elliptic pressure equation:
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∂φ

∂t
+ φ

(
Swcw

∂pw
∂t

+ Soco
∂po
∂t

)
+

1

ρo
∇· (ρovo) +

1

ρw
∇· (ρwvw) =

fo
ρo

+
fw
ρw
. (2.16)

Here, cα is the compressibility of phase α given by relation (2.4). The first
constitutive relation (2.12) was here used to remove the saturations from the
equation. The second constitutive relation (2.13) is then used together with
Equation (2.16) to solve for po and pw.

In order to derive an equation for the saturation, we will express the
Darcy velocity of the water phase in terms of the total velocity v = vo +vw.
By combining (2.9) and (2.13) we can write

vw =
λw

λo + λw
v +

λoλw
λo + λw

K (∇pc + (ρw − ρo) g∇z) , (2.17)

If we insert (2.17) into (2.10) for the water phase, we arrive at the hyperbolic
equation for the saturation

∂ (φρwSw)

∂t
−∇·

(
ρw

(
λw

λo + λw
v +

λoλw
λo + λw

K (∇pc + (ρw − ρo) g∇z)
))

= fw.

If we assume incompressible fluids and incompressible porous media, we can
simplify the elliptic pressure equation. We define λt = λo + λw as the total
mobility and write

−∇· (λtK∇pw) = fo
ρo

+
fw
ρw
. (2.18)

Note that in the case of λo = λw, i.e. the total mobility is constant, the
pressure equation is time-independent and needs only be solved once. Thus,
the saturations may be updated repeatedly in time, from a fixed velocity
field.

The pressure is a global elliptic variable which in general needs to be
recalculated everywhere at each time-step, whenever λt has changed. The
saturation Sw is a local variable, and needs only be changed locally in parts
of the reservoir, at every time-step. Typically, the saturation needs to be
updated close to the water-oil contact. The total mobility λt = λt(Sw) is
a function of the saturation, thus it changes locally. A good approximation
of the pressure may be obtained by only updating the pressure close to the
water front where λt has changed significantly.
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In the multiscale simulations, which will be explained in Chapter 5, we
couple a global pressure variable on a coarse scale with local pressure vari-
ables on the fine-scale (continuum scale). Thus, in each time step, we only
need to solve one smaller (upscaled) global problem and those local fine-scale
problems in which λt has changed. This enable us to run simulation on the
fine-scale much more efficiently. The accuracy of the multiscale simulations
may be controlled by expressing the multiscale method in the framework of
domain decomposition. The development of robust multiscale methods for
reservoir simulation has been the main objective of this thesis.

2.2 Numerical reservoir simulation

The mathematical models described above, are too complicated to be solved
analytically and need to be treated numerically by means of computational
methods. Even for the case of single phase flow, only special situations of
simplified geometry and rock properties can be solved by analytical methods.
Those cases are, however, important as benchmark tests for the computa-
tional methods.

In the following we will describe the numerical reservoir simulator. The
purpose of the reservoir simulator is to efficiently solve the mathematical
equations, for a given characterisation of the reservoir and the fluids inside,
and to provide robust and accurate solution strategies. In principle we want
to take large time-step in our simulations, while keeping the number of New-
ton iterations low. In the following we will describe two important features
of the numerical reservoir simulator; the time-stepping method and the nu-
merical grid. A more detailed description of numerical reservoir simulation
can be found in [37, 76].

2.2.1 Time-stepping

The discretisation in time is carried out by a first order finite difference
scheme, typically the Euler’s formula. At each time-step of the simulation,
we then have to solve for the dynamic variables, like saturation and pressure.
In principle, the equations for flow and transport in porous media are highly
non-linear, and most reservoir simulators solve these equations by applying
the Newton’s method. This is an iterative method for calculating a certain
steady state of a non-linear function by taking linear steps. At each time step
of the simulation, the Newton’s method linearises the equation and iterates
until the residual (of the non-linear equation) is lower than some pre-defined
tolerance value. The number of iteration needed can be controlled by the
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size of the time-step.
There are several approaches on how to solve for the dynamic variables,

pressure and saturation. The pressure exhibit an elliptic character, and needs
to be treated implicitly, i.e. at the end of the time-step. Note that the calcu-
lation of an elliptic variable result in a globally coupled problem which is very
time-consuming to solve. The linear pressure solver often constitute the main
computational cost when running a full-field reservoir simulation and efficient
methods for solving the elliptic problem is the main focus of the reminding
of the chapter. However, the choice of solution strategy for the saturation
variable is also important, as it defines the time-stepping approach.

The saturation can be solved either implicitly or explicitly, resulting in
different numerical formulations with different properties. In general, a fully
implicit treatment of the dynamic variables leads to the most robust and
stable method. The increased stability, give us the possibility of choosing
longer time steps for our simulations. These favourable properties make the
fully implicit method (FIM), the method of choice for the petroleum indus-
try. The formulation is unconditionally stable and has no direct time-step
limitations. However, each Newton-iteration requires solving the fully cou-
pled system, which can be time-consuming for large compositional systems.

If we treat the saturations explicitly, we arrive at the implicit in pressure,
explicit in saturation (IMPES) formulation. The pressure, because of its
elliptic nature, is always evaluated at the end of the time-step, while the
saturation is evaluated at the beginning of the time-step. This allows us to
solve for the pressure and saturations independently, in a sequential manner.
As a consequence, the time-step is restricted by the propagation speed of the
saturations and space discretisation of the computational grid. This is known
as the CFL-criterion. Each linear time-step, using IMPES, is in general much
faster to solve, however, the time-step restrictions may kill the efficiency of
this method.

In general, there are many more strategies for efficiently solving the dy-
namic variables, specially for compositional models. For more detailed about
these and other time-stepping strategies, see e.g. [22].

2.2.2 The grid

A significant part of the numerical reservoir simulator is the grid. For the
mathematician, it is known as the computational grid, and has a direct
implication on the validity of the discretisation techniques and performance
of the numerical methods. For the geologist, the grid is sometimes refered
to as the flow grid or reservoir grid, and is designed to adapt to the
geological layers and heterogeneities of the reservoir. Generally speaking,
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the geologists design the grid, while the mathematicians discretise the
equations in accordance with the grid, and try to build numerical schemes
which are robust with respect to the given grid.

Flow grid

In principle, the flow grid is designed to represent the geology and ge-
ometry of the reservoir as best as possible. The main flow will follow the
layering of the reservoir and it is natural that the grid also follows these
layers. A typical flow grid for a petroleum reservoir is based on hexahedral
grid cells. The 2D cross section of such a grid gives a quadrilateral grid.
The geological layers are mostly horizontal and parallel, in which case it is
simple to represent hexahedral grid cells in 3D and quadrilateral grid cells
in 2D.

Commercial simulators like Eclipse [85] have traditionally been based on
a natural numbering of the grid cells, in which case the flow grid needs to be
stratigraphical. These constraints make it difficult to represent heterogeneous
structures like fractures and faults explicitly in the simulations. Moreover,
it is not uncommon to have crossing fractures or faults. A stratigraphical
gridding of fractured and faulted reservoirs can result in many small and
skewed grid cells with possibly large aspect ratio. Such grid cells are typically
very difficult to represent in the numerical methods and may contribute to
errors and large CFL-numbers.

When dealing with heterogeneous structures, like fractures, faults and
collapsing layers, we experience abrupt changes in the rock properties which
we know will have a strong effect on the fluid flow. Thus, it is especially
important to model these cases correctly. Triangular grids have been shown
to be very flexible w.r.t. adapting to different heterogeneous structures. A
unique Delaunay grid can be generated, by connecting any distribution of
grid points [87]. However, the number of grid cells can become large, and the
increased number of connecting cells in the numerical scheme can also be-
come a challenge. Another possibility is to used local grid refinement (LGR)
in the neighbourhood of local heterogeneities, where increased resolution is
required. All these adaptive gridding strategies usually result in unstruc-
tured grids, which can be difficult to handle for many numerical methods;
it is difficult to find a natural numbering of the grid cells and the numerical
scheme do not have a predefined structure. Algebraic methods, which can
adapt to general sparse matrix-structures are then preferred.

Over the last couple of decades, much work has been devoted to the
design of robust numerical methods for general grids. In Eclipse the
algebraic multigrid (AMG) preconditioner has replaced the previous nested
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(a) Cell-centred (b) Mesh-centred (c) Dual grid

Figure 2.1: An illustration of different grid types.

factorisation, used together with ILU. Such numerical methods in general
allow for more complicated grids.

Computational grid

While the flow grid represents a discretisation of the petrophysical
properties of the reservoir, the computational grid is related to the discreti-
sation of the dynamical variables, like pressure, velocity and temperature.
These variables are represented at discrete points on the grid, normally
refered to as nodes. There is a clear distinction between cell-centred, and
mesh-centred grids, where the dynamical variables are represented at nodes
in the centres of the cells or at centres of the mesh. For some numerical
methods, both of these grids are applied , where the one grid is considered
the dual representation of the other. This is the case for the multiscale
control-volume methods to be discussed in Chapter 5. Examples of different
computational grids are shown in Figure 2.1.

In most conventional reservoir simulators they apply the control-volume
discretisation in the space dimensions. Control-volumes are cell-centred
grids, representing integrated quantities. The control-volume discretisation
will be discussed in the next chapter.

2.3 Control volume discretisation of the elliptic
equation

For a given mathematical model and a given computational grid, the next
step is to discretise the equations. While the main work of this thesis is
devoted to numerical multilevel methods for solving elliptic problems, we
consider the discretisation of the Elliptic equation (2.6):

−∇ ·K∇u = f, (2.19)
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which is often refered to as the model problem for elliptic equations. For
simplicity, we neglect gravity and refer to the elliptic variable u as the pres-
sure and K as the permeability of a porous media. Hence, Equation (2.19)
is also often refered to as the pressure equation. A delicate issue for elliptic
problems for flow in porous media, is that the tensor coefficients of K are dis-
continuous and the spatial variability of K can be large. A major challenge
lies in computing the fluxes across these discontinuities.

For the time-discretisation, the accuracy of the computations is controlled
by lowering the time-step. Similarly, we seek spatial discretisation techniques
which are convergent in the limit as the spatial grid size Δx→ 0. However, it
should be mentioned that a typical discretisation of the pressure equation for
reservoir simulation yields large coupled systems of equations to be solved,
and refinement of the grid is not always possible. In fact, a large class of
mathematical techniques aims at coarsening the elliptic problem, to a scale
more suitable for conducting numerical simulations. Such techniques are
investigated in Chapter 3.

The method of choice for most reservoir simulators is the control volume
method. This is a class of discretisation techniques, based on the integral
formulation of the principle of mass conservation (2.2). If we integrate Equa-
tion (2.19) across a control volume Ω and use the divergence theorem, we
can write the control-volume formulation as

−
∫
∂Ωi

v · n dS =

∫
Ωi

f dV. (2.20)

Equation (2.20) states that the mass transfer between the control-volumes is
balanced between the accumulation term, f , on the right hand side, and the
fluxes, across the interfaces. We define the flux q across a cell-interface Γ by

q = −
∫
Γ

v · n dσ = −
∫
Γ

nTK∇u dσ (2.21)

The control-volume formulation is based on integrated quantities and allows
for discontinuous permeability and discontinuous pressure across the inter-
faces. The formulation only requires that the source term f ∈ L∞(Ω) and
that the boundary ∂Ω is Lipschitz continuous, such that the integrals are
bounded and well-defined. The class of numerical schemes based on the
control volume formulation, needs to discretise the flux-expression (2.21) for
each cell interface such that relation (2.20) is satisfied. The flux is normally
considered as a linear function of the pressure, in witch case the discretisation
of (2.20) takes the following linear form:
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∑
qi =

∑
i

∑
j

tijuj =
∑

fi. (2.22)

Here, the index i runs over all cells of the grid, while j represents the indices
of all neighbouring grid-cells which contribute to the flux across the inter-
faces of grid cell i. The coefficients ti,j are refered to as the transmissibillity
coefficients, corresponding to the flux across the boundary of grid cell i. If we
assembly all flux expressions in Equation (2.22) and (2.20) we get a globally
coupled system of equations,

Tu = f. (2.23)

The global system matrix T contains all local transmissibillity coefficients
tij. This matrix will be sparse, and if the grid cells have a local numbering
along the coordinate axis, the sparsity pattern will be diagonal. The num-
ber of connections {tij} per grid cell i will vary with the choice of control-
volume scheme; We will denote this number as the dimension of the numer-
ical scheme. In the following we will introduce two different discretisation
schemes for the control-volume method.

2.3.1 The two-point flux approximation method

The two-point flux approximation (TPFA) method is perhaps the simplest,
and it is the most widely used of all the control volume methods. As the
name indicates, the method approximates the flux across a given interface,
or surface in 3D, by applying the physical state of the two adjacent grid cells.
By considering the situation in Figure 2.2, we express the flux qi+ 1

2
across

the interface Γi+ 1
2
as

qi+ 1
2
= − ui+1 − ui

1
2

[
Δxi

ki
+ Δxi+1

ki+1

] = −ti,i+1 (ui+1 − ui) . (2.24)

Here, the denominator denotes the harmonic averaged permeability defined
on the interface between cell i and i + 1. Note also, that the TPFA-
formulation requires a scalar permeability coefficient in the direction per-
pendicular to the interface Γi+ 1

2
. This is only the case if the grid is aligned

with the principle directions of the permeability tensor, in which case the grid
is said to be K-orthogonal. A necessary condition for K-orthogonal grids is
that the following relationship is satisfied:

νTKn = 0, (2.25)
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xi

xi+ 1
2

Γi+ 1
2

xi+1

↑ν −→n

Figure 2.2: The two-point flux approximation

where ν and n are the normal vectors shown in Figure 2.2. If we sum over
all the cell interfaces, Equation (2.20) will result in a five-point scheme for
2D-flow and a 7-point scheme for 3D-flow.

2.3.2 The multi-point flux approximation method

For non-K-orthogonal grids, the TPFA-method is not a consistent approx-
imation of the flux, and we need to consider a larger pressure-stencil for
the numerical discretisation. The multi-point flux approximation (MPFA)
method was introduced independently in [6] and [31], and can be regarded
as a generalisation of the TPFA-formulation to the more general case of full-
tensor permeability K. In the following, we will describe the MPFA-method
for structured 2D quadrilateral grids, as it is presented in [5]. For further
extensions to general 3D grids, see e.g. [7].

The MPFA-method uses 6 pressure corner-points to approximate the flux
across a single interface Γ. By splitting the interface in two half-edges, we
define two interaction regions by joining the nodes in the cell centres with
the midpoints on the interfaces. Half-edge fluxes are computed on each in-
teraction region and summed together for the flux on the entire interface.
The flux-stencil and a single interaction region is illustrated in Figure 2.3.
On each sub-cell i the pressure is approximated by a linear function on the
variational triangle. The variational triangle is also shown for the interaction
region in Figure 2.3. If we consider xj, j = 1, 2, 3, as the three corners of the
triangle, we can approximate a linear pressure variation on sub-cell i as

ui(x) =
∑
i

u(xj)φj(x), (2.26)

where φi
j is a linear basis function satisfying φi

j(xk) = δjk, for k = 1, 2, 3. By
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(a) MPFA

−→−→variational
triangle

(b) Interaction region

Figure 2.3: Illustration of the flux stencil (left) and the interaction region
(right) for the MPFA method.

requiring continuity in flux across the interfaces and continuity in pressure
at the interface midpoints, we can express the fluxes as a linear combination
of the pressure points. On each interaction region the local flux-expression
reads ⎡

⎢⎢⎣
q1
q2
q3
q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

⎤
⎥⎥⎦
⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ . (2.27)

By subassembly of all the flux expressions, the MPFA method results in
a 9-point scheme for flow-problems in 2D and a 27-point scheme for flow
problems in 3D. For general unstructured grids, even more pressure points
may be required, but for K-orthogonal grids, the MPFA-method reduces to
the TPFA-method.

2.3.3 Monotonicity

When designing the discretisation method, we want to honour certain proper-
ties of the elliptic equation (2.19). One such property is called the maximum
principle. If we consider an elliptic boundary value problem with non-zero
Dirichlet conditions, u ≥ 0 on the boundary ∂Ω, and with non-negative right
hand side, f ≥ 0. Then, the maximum principle will tell us that the solu-
tion u is everywhere non-negative in Ω and will attain its minimum value on
the boundary. Moreover, the maximum principle holds for any sub-region
Ωi ∈ Ω, thus, the solution must be everywhere monotone inside of Ω. We
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would like to have the same property for the discrete system of equations
(2.23), and we say that the numerical method is monotone, if it satisfies the
discrete maximum principle.

A sufficient criterion for monotonicity is that the system matrix T is an
M-matrix, i.e. all elements of the inverse matrix T−1 is non-negative. The
numerical scheme provided by the TPFA-method is guaranteed to result in
an M-matrix, thus, the TPFA-method is unconditionally monotone. The
nine-point scheme of the MPFA-method is not guaranteed to give an M-
matrix, and for certain anisotropy ratios the solution may contain spurious
oscillations. Sufficient criteria for monotonicity of the 9-point scheme are
given in [74]; these are less restrictive than the condition of an M-matrix.

In general, MPFA methods represent a class of linear discretisation meth-
ods which reproduce the correct linear pressure field for homogeneous media
and general grids. That is, if the numerical scheme is monotone. In Section
2.3.2 we presented the general MPFA-O(η) method, where η represents the
continuity point of the pressure on the interface. The most common choice
for the MPFA-O method, is η = 0, which denotes continuity in pressure at
the mid-point of the interfaces, but in general, η can be chosen arbitrary be-
tween 0 and 1. For instance for triangles, the MPFA-O(1/3) method is shown
to be more beneficial, as it provides a symmetric MPFA-scheme. Much work
has been devoted to optimise the MPFA-methods w.r.t. convergence and to
develop robust MPFA-schemes for problems involving anisotropic porous me-
dia. It has been shown that no 9-point schemes can be made unconditionally
monotone for every grid and permeability fields [55], however, the violation
of the monotonicity criteria do not necessarily result in large errors. In fact,
there do not exist any explicit methods of quantifying the size of the spuri-
ous oscillations that may occur. For quadrilateral grids in 2D, the MPFA-L
method [8] results in a compact 7-point scheme. This method has shown
improved properties with respect to monotonicity. While it is difficult to
construct robust MPFA-schemes for general grids, often small perturbations
of the grid may transform a non-monotone scheme into a monotone scheme
[96]. For a more thorough investigation on robust control-volume methods
on general grid structures, consult [55].

2.4 Linear solvers

In the following we will focus on different solution strategies for solving the
linearised equations. The linear system of equations arising from the lineari-
sation step in the Newton’s method is typically very large, up to 106 − 107

number of unknowns is not uncommon. The linear solver of the reservoir
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simulator is often the main bottleneck of the simulations and it may account
for more than 70 percent of the total running time [14]. Thus, the choice of
an efficient linear solver is crucial.

2.4.1 Direct solvers

The linear system of equations to be solved can be written as

Au = b, (2.28)

where A in general is a (n × n) non-symmetric and sparse system matrix
and b is the corresponding (n × 1) right-hand side vector. In principle, the
exact solution (u = A−1b) is simple to compute by inversion of the system
matrix. This can be carried out by e.g. a Gaussian elimination of Equation
(2.28) at the cost of O(n2) floating operations, if the sparsity of A is taken
into account.

An efficient direct solver is based on the factorisation of A, into matri-
ces which are faster to invert. Important techniques include the LU- and
Cholesky-factorisation. By factorising A = LU , the linear system (2.28) can
be solved sequentially by the following two equations:

Ly = b, (2.29)

Uu = y. (2.30)

Thus, the solution can be expressed as u = U−1L−1b. Various choices of L
and U are possible. If the system matrix is badly scaled, or close to singular,
a scaling and permutation of the system matrix is also possible. This results
in a PLU-factorisation A = PLU , where the P -matrix can be regarded as
a preconditioning, prior to the LU-factorisation. If A is a symmetric and
positive definite matrix, the Cholesky factorisation A = LLT can be applied,
resulting in faster algorithms for solving the linear system.

A direct solver, oppose to an indirect iterative solver is regarded as the
most robust solution strategy, however, as the number of linear equations be-
comes large, a direct calculation of (2.28) gets extremely expensive. Because
of the poor scalability of direct solvers with respect to the number of grid
cells n, indirect solvers are almost always preferable in reservoir simulations.

2.4.2 Iterative solvers

Iterative methods aim at solving the linear system (2.28) without inverting
the system matrix A. The problem is then formalised as a minimization
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problem of the error function e = u − û evaluated in some norm, where û
denotes the approximation to the exact solution u. Another possibility is to
minimize the residual function

r = b− Aû, (2.31)

where the actual error is related to the residual through

e = A−1r. (2.32)

The iterative methods can be classified into two major classes; the relaxation
methods and the prolongation methods. In the following we briefly discuss
two of the most popular iterative methods, the Richardson iteration and the
Krylov subspace method, as representatives for the two classes of iterative
methods.

Richardson Iteration

The Richardson iteration represents a class of iterative methods based
on relaxation of the approximated elements of the solution vector. Starting
from an arbitrary initial vector u(0), the iteration can be written on the form

u(i+1) = u(i) + ω
(
b− Au(i)

)
, (2.33)

where ω > 0 is an arbitrary scaling parameter. Both the Jacobi, Gauss-Seidel
and SOR- method are based on this algorithm, which aims at improving each
individual element of the approximated solution vector by local corrections
of the error function. In order to guarantee converge to the true solution u,
i.e. ui+1−u

ui−u
< 1, we must choose ω < 2

ρ(A)
, where ρ(A) is the spectral radius

of A. Thus, for ill-conditioned problems, ω << 1, and the convergence
rate will be slow. For large elliptic problems where the solution is highly
dependent upon the boundary conditions, the Richardson iteration typically
has a slow convergence. A multigrid method is then typically applied as
a preconditioner, to accelerate the convergence. In addition, while certain
elements of the approximated solution vector may converge faster then
others, local index-sets can be used. Thus, we only need to iterate on a
smaller part of the global vector.

The Krylov subspace methods

Designed to solve large systems of equations, the Krylov subspace method
is probably the most extensively used linear solver for reservoir simulations
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today. The methods belong to a class of projection methods which seek an
approximation u(m), of the solution u on the subspace u0 + Km, such that
the Petrov-Galerkin condition

b− Aum⊥Lm. (2.34)

is satisfied. Here,

Km(A, r0) = span{r0, Ar0, A(2)r0, · · · , A(m−1)r0)} (2.35)

is the Krylov subspace of dimension m. The subspace Lm is usually related
to the Krylov subspace, but may be chosen independently for the different
Krylov methods.

Consider the functional F (u) = ‖b− Au‖22, representing the norm of the
residual vector. The generalised minimal residual (GMRES) method seeks
approximations u(m) which minimises the residual,

u(m) = arg{ min
u∈u(0)+Km

F (u)}. (2.36)

It follows that the minimization problem is equivalent to finding the orthog-
onal projection of the residual onto the subspace Lm = AKm. The GMRES
algorithm uses the Arnoldi process to generate orthogonal basis functions
to the Krylov subspace Km. Similar to all orthogonalized Krylov methods,
the method converges monotonically in at most n iterations, where n is the
size of the system matrix A. The actual number of required iterations is
typically much smaller, and will depend on the condition number of A. The
use of a preconditioner, to lower the condition number of the system matrix,
can substantially reduce the number of required iterations. The drawback
of the GMRES algorithm, is that in general all search directions need to be
stored in memory. For large linear systems, a modified version of GMRES is
applied, which restarts the iterative procedure every nr < n iteration step,
using u(nr) as the new initial vector. The optimal choice of nr is however not
always clear.

If A is symmetric and positive definite, the conjugate gradient (CG)
method is probably the most efficient Krylov method to use. The
CG method seeks approximations u(m) such that the error functional(
u(m) − u

)T
A
(
u(m) − u

)
is minimized. Since A is symmetric (A = AT ),

it follows from (2.32) that this is equivalent to minimizing the residual ex-
pression

r(m)A−1r(m). (2.37)
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Thus, we only need to constructs a sequence of orthogonal residual vectors in
Lm = Km. The main advantage of CG, is that the search directions can be
updated in a recursive manner, and we only need to store information from
the last iteration step. Similar to the GMRES method, the CG method is
seldom used without a preconditioner.

Several generalisations of the CG method to non-symmetric systems have
also been proposed. The perhaps most popular of these methods is the
BiCGSTAB method. This method requires less storage capacity then the
GMRES method for large number of iterations, however, the convergence is
not guaranteed to be monotone. For a more complete discussion about these
and other iterative linear solvers, see e.g. [81]

2.4.3 Preconditioners

For the application to reservoir simulation, the system matrix A is often
ill-conditioned. A suitable preconditioner, is then the key ingredient for any
efficient iterative linear solver, when solving such problems. Instead of solving
Equation (2.28), we now seek the solution of

(MA) u =Mb, (2.38)

where M ≈ A−1, such that the new preconditioned system (2.38) is better
conditioned and requires less number of iterations to converge. Of course, the
preconditioned matrix M should be fast to construct. Indeed, if M = A−1,
we have in fact solved Equation (2.28) by a direct solver. An equivalent ex-
pression for the preconditioned system can be written in terms of the residual:

Bz = r (2.39)

where B = M−1 ≈ A, and z is the preconditioned residual. Note that,
Equation (2.39) indicates that we do not need to invert the preconditioned
matrix B, we only need to efficiently solve the preconditioned linear system
such that the preconditioned residual z represent a better approximation to
the exact solution.

Incomplete factorisations

While the system matrix A typically has a sparse banded structure,
the elements of the factorisation A = LU and the inverse A−1 = U−1L−1 are
not sparse. However, the off-diagonal elements usually have a decreasing
value away from the diagonal. Based on this observation many incomplete,
sparse factorisations have been proposed, which are fast to invert. These,
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include the diagonal Jacobi approximation, the Incomplete LU-factorisation
(ILU), the Incomplete Cholesky (IC) factorisation and the nested factor-
ization [10]. Simple as they may seem, they usually work quite well as
preconditioners M for the problem (2.38). For the ILU-preconditioner,
it is further common to apply a threshold for which element to fill. In
the case of ILU(0), only the non-zero elements of A will be represented
in the ILU-factorisation. If A has a block structure, block versions of the
incomplete ILU and the incomplete Cholesky factorisation also exist.

Domain decomposition

Domain decomposition (DD) is a special type of a block ILU decom-
position, where the different blocks also represent a decomposition in
space. It can also be written in the form of a Richardson iteration and
applied as an iterative method. This will be investigated further in Chapter 4.

Multigrid

The Multigrid method can also operate as a linear solver itself, but is
most often applied as a preconditioner for the Krylov subspace methods
or the Richardson iteration. In fact, it can be seen as a special type of
DD-preconditioner, where only a single sub-domain is considered. Both the
multigrid and DD preconditioners are of the form (2.39).

Motivated by the fact that the local relaxation of the discrete node values
only efficiently smooths out the high-frequency part of the error, the multi-
grid algorithm includes coarse-scale solvers on a multiple of coarse grids, to
efficiently reduce oscillations in the error at all scales. In general, the multi-
grid algorithm consists of two main components, fine-scale smoothing and
coarse-scale corrections. Local relaxation solvers, also called smoothers, are
used initially to smooth out the fine-scale oscillations of the residual. Typi-
cally a couple of Richardson type iterations are being used at the finest scale.
The residual is then step-wise being restricted to the coarser levels, where
coarse-scale corrections are being computed on each level. The coarse-scale
corrections are further being interpolated back and collected at the fine-scale.
This procedure can further be repeated in several multigrid cycles, until the
residual is sufficiently small. An efficient multigrid algorithm consists of n1

pre-smoothing steps, nc multigrid cycles and n2 post-smoothing steps, where
the numbers n1, nc and n2 are not necessarily known in advance.

The interpolation functions and coarse-scale equations are not always
trivial to construct. For geometric multigrid methods, these are formed
through some pre-defined knowledge of the geometry of the grids. Typically
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the coarse-scale operators stems from discretisations on the respective coarse-
scale grids. For the algebraic multigrid (AMG) method, the coarse grids are
not known in advance, and all the operators belonging to the coarse grids are
calculated through algebraic manipulations of the fine-scale system matrix.
Thus, the AMG method can be applied to any type of unstructured grids.





Chapter 3

Upscaling

The geostatistical model describing the rock properties of a given reservoir
is often too detailed to be resolved within conventional reservoir simula-
tors. Upscaling is a mathematical (or numerical) technique for developing
coarse-scale reservoir models which are more suitable for conducting reser-
voir simulations. In this chapter we will discuss some of the fundamental
techniques for upscaling reservoir parameters. The emphasis will here be on
the Pressure equation for single-phase incompressible flow.

3.1 Coarse scale parameters

The various upscaling methods are usually classified in terms of the type
of parameters that are upscaled. Typical, for multi-phase flow problems we
need to upscale parameters like permeability, porosity, relative permeabil-
ity and capillary pressure curves. The permeability and porosity are called
single-phase parameters, as they are independent upon the different fluids
that are present in the reservoir. The relative permeability and capillary
pressure are denoted multi-phase parameters, as they are dependent upon
the saturation of the different phases. Single-phase parameter upscaling is
by far the most studied area within upscaling, and the best understood. In
general, for multi-phase flow we also need to upscale relative permeability
and capillary pressure for the time-dependent parabolic equation. However,
in some cases for moderate level of coarsening, single-phase upscaling meth-
ods have shown to be reasonable approaches for upscaling these parameters
as well [28]. In this thesis we have studied the multiscale methods. For the
multiscale methods, the coarse-scale pressure solution is calculated on the
coarse scale and interpolated down onto the fine-scale. Thus, the transport
can then be solved on the fine-scale. A coarse model is only considered for the
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pressure equation. In the following we will consider upscaling of the elliptic
pressure equation and the parameters that are involved. For a summary on
general techniques for multiphase upscaling, see e.g. [23, 25].

3.1.1 Coarse scale pressure equation

The coarse scale elliptic equation is usually assumed to be on the same form
as the fine-scale elliptic equation,

−∇· (K∇ufine) = f, (3.1)

−∇· (Keff∇ucoarse) = f ∗, (3.2)

whereKeff denotes the homogenised or effective permeability tensor over the
coarse block and f ∗ is the source term integrated over the coarse block. In
the following we neglect gravity and refer to u as the pressure p. The coarse-
scale pressure equation is here based on the assumption of scale-separation
and spatial periodicity. Let us consider that the fine-scale permeability tensor
K(x,y) oscillates on two distinct and well-separated scales, x and y, where
x � y. In the limit, as x → 0, there exists a coarse scale model and
a representation of the homogenised permeability tensor Keff (y), which is
independent upon the fine scale fluctuations [48].

This is in general not the case for porous media flow, however, we can still
try to represent a block permeability tensor (also called equivalent perme-
ability tensor) for the coarse model which preserves certain principle features
of the flow on the fine scale. Rubin and Gomez-Hernandez [80] required that
the flow rate calculated across the homogenized block should be equal to the
average fine-scale flow rate calculated across the same block volume. For an
isotropic medium, where the flux and gradient vectors coincide, they defined
the block permeability Kb by the following formula:

Kb =
1

V

∫
V

v(x)dx

(
1

V

∫
V

−∇p(x)
)−1

, (3.3)

where V is the block volume and v(x) is the Darcy velocity. Indelman and
Dagan [52] further suggested to use the equality of the dissipation of energy
as a criterion for calculating the equivalent block permeability. The equality
of dissipated energy has the favourable property that the upscaled block
permeability, Kb, will be equal to the actual effective permeability, Keff , of
the medium, whenever it exists. Based on these and other criteria, several
methods for calculating the upscaled permeability have been proposed.
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Some of the main challenges of upscaling are: How to generate informa-
tion about the local fine-scale flow field on the coarse block? How to calibrate
that information in order to calculate an upscaled permeability tensor Kb

with the desired equivalent properties, and how to choose a coarse-scale grid
for these effective parameters? In the next subsections we will discuss some
of the techniques for solving these problems. For a thorough discussion on
single-phase upscaling methods, see also [36, 79].

3.1.2 Averaging techniques

First we present a couple of simple analytical averaging techniques for cal-
culating the equivalent block permeabilities. For simplified configurations
of porous media, where we have uniform flow, analytical expressions for the
effective permeability may exist. Let us consider flow through an idealised
layered reservoir, where each layer is assumed to have constant thickness
h. We assign a scalar permeability coefficient, ki, to each of the layers i as
illustrated in Figure 3.1 for horizontal and vertical flow.

First we consider the case of horizontal flow. We apply a constant pres-
sure on the left and on the right boundary, p(0, y) = 1 and p(Lx, y) = 0, and
no-flux boundary conditions on the lower and upper boundaries. The pres-
sure gradient in the y-direction is zero, thus, we know that the flow will be
uniform and parallel to the layers, and the fluid velocity in each layer will be
proportional to the permeability, vix = ki. By requiring that the integrated
flux across the external outflow boundary should be equivalent for the fine-
scale and coarse-scale model, we can write the expression for the effective
permeability,

(a) Horizontal flow (b) Vertical flow

Figure 3.1: Directional flow through a layered reservoir
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keff =
1

n

∑
i

ki, (3.4)

which is the arithmetic average of the fine-scale permeabilities. Now, we can
apply the same strategy for the case of vertical flow. Here the boundary
conditions are p(x, 0) = 1, p(x, Ly) = 0 and v · n1 = v · n2 = 0. Within

each layer we will have a constant velocity vi = ki

(
pi− 1

2
− pi+ 1

2

)
, where

pi+ 1
2
denotes the pressure at the interface between layer i and i + 1. The

flux v is a conserved quantity and is continuous between the layers, thus the
pressure solution will be piecewise linear. If we integrate over all the pressure
differences, we can observe that the effective permeability in the y-direction
is represented by the harmonic average,

1

keff
=
∑
i

1

ki
. (3.5)

Note that in the case of one-dimensional flow, the harmonic average always
gives the correct representation of the effective permeability. That is why
the harmonic average of the permeability is used in several spatial discretisa-
tion techniques, e.g. the control-volume methods. If the permeability is not
aligned, or perpendicular, to the principle direction of the flow, these proce-
dures are not sufficient. This is generally the case for flow in two and three
dimensional porous media. A generalization of the two analytical approaches
described above is found by the power averaging law, in which

keff =

[
1

V

∫
V

(ki)
ω dV

] 1
ω

(3.6)

is the effective permeability. Here V represents the volume of the block. In
the case of ω = 1 we retain the arithmetic average, while ω = −1 gives us
the harmonic average. In [26] they use this formula to calculate the effective
permeabilities for shale layered reservoirs. The analytical techniques do not
require any information about the underlying fine-scale flow field, thus they
are very efficient, but in general these techniques are not sufficiently accurate.

3.1.3 Properties of the effective permeability

For general two and three dimensional flow problems, the effective perme-
ability do not satisfy an additive relationship of fine-scale permeabilities and
standard averaging techniques do not apply. Keff is no longer only a function
of {Ki}, but also the position of {Ki}. The heterogeneous nature of porous
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Figure 3.2: The effective permeability measured on different scales. Taken
from Nordahl et. al. [72].

rock formations results in preferential flow paths and permeability variations
on different scales. If the scales are well-separated, we can identify repre-
sentative elementary volumes (REVs) for the permeability, similar to that
of porosity. Thus, we can calculate an effective permeability tensor Keff

on that scale. However, it should be mentioned that the concept of REV is
less understood for permeability, as the result not only depend on the size
of the core sample, but also on how the lab-experiment on that sample is
being conducted. Figure 3.2 gives an example of how the permeability may
change as a function of the sample size. See Nordahl et. al. [72] for more
information on the REV for permeability.

If we assume that we have scale-separation, the homogenization theory
states that in the limit as the fast scale goes to zero there exists a coarse scale
pressure equation (3.2), with a unique effective permeability tensor Keff

which is independent of the fast-scale. The effective permeability tensor
can further be proven to be symmetric and positive definite [48]. Note,
that even though the fine-scale medium is isotropic and homogenised, the
effective permeability on the coarse scale may still be anisotropic with a full
tensor representation. Thus, we transform our fine-scale problem to a more
complicated one on the coarse scale.

3.2 Flow-based upscaling

In practise, we do not have information about any possible REV scales and
the geometry is to complex to be able to analytically compute the effective
permeability. Thus, we seek numerical techniques to calculate equivalent
block permeability tensorsKb. Flow-based upscaling is a numerical upscaling
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technique, which preserves the main features of the flow on the fine scale.
It consists of two steps. The first step is to gather information about the
fine-scale flow field on the coarse block. This can be done either by solving
a local or a global fine-scale flow problem. Based on the information from
several fine-scale flow fields, we can approximate an equivalent permeability
tensor Kb for that coarse block. The calibration of Kb is the second step and
may also be done either locally or globally. Hence, the different approaches
are divided into four groups; local-local, local-global, global-local and global-
global upscaling methods.

We will here describe the local-local and local-global upscaling methods.
These methods will further be useful for the description of multiscale and
domain decomposition methods in the following chapters. Global upscaling
methods (global-local and global-global) are considered too computationally
expensive for solving large multiscale problems, and is not treated here.

3.2.1 Local-local upscaling

Local-local upscaling consists of solving a set of local flow problems, from
which we can calibrate an equivalent permeability tensor, purely based on
local information. We can think of the local flow problems as a type of nu-
merical lab-experiments. We would like these experiments (or flow problems)
to be independent from each other and as close as possible to actual reser-
voir conditions. A critical issue for these methods, is the choice of boundary
conditions for the numerical tests. It is important to understand that for
most upscaling problems, no unique solution exists and each set of different
boundary conditions will in general result in different block permeabilitiesKb.
While the actual boundary conditions are not known a priori and will most

Γ1 Γ2

Γ3

Γ4

0
→x

H1

↑ y

H2

Figure 3.3: Coarse block
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likely vary throughout the simulation, we seek natural boundary conditions
which we believe will capture the main features of the flow on the fine-scale.
For simplicity we will here explain the various methods in two dimensions and
for regular Cartesian grids, however, the methods are naturally extended to
three dimensions and general grids. Note that the implementation becomes
more challenging on unstructured grids.

The most common choice of boundary conditions, is to consider fixed
pressure on two opposite boundaries, and no-flux conditions on the two re-
maining boundaries. Consider the single block domain shown in Figure 3.3.
The flow in the x-direction is approximated by solving a fine-scale pressure
equation (3.2), subject to the following boundary conditions,

p(0, y) = 1, (3.7)

p(H1, y) = 0, (3.8)

v · n3 = v · n4 = 0, (3.9)

where n3 and n4 are the normal vectors corresponding to the interfaces Γ3

and Γ4, respectively. Similarly we can define boundary conditions for flow in
the y-direction, and in three dimensions we would have a third flow problem
in the z-direction.

The calibration of a coarse-scale permeability tensor Kb can be done in
several ways. The two most common local procedures are: to evaluate the
total flux across the outflow boundaries, and to evaluate the volume averaged
flux across the entire block volume. By considering the total flow across the
two outflow boundaries (Γ2 and Γ4) we can compute an approximation to the
effective block permeability in the two coordinate directions. The total flow
across the outflow boundary Γ2, for flow in x-direction, can be calculated as

q1 =

∫ L

0

v(L, y) · n2dy =
∑
j

(vj · n2), (3.10)

where j is an index for the fine-scale cells on the boundary Γ2. The flux q1
represents the integrated flow in the x-direction, calculated from numerical
experiment 1. Using the Darcy’s law for flow in one dimension, we can
calculate the equivalent permeability k1 = q1L1

L2
for the flow in x-direction

across the homogeneous block. Similarly we can compute the equivalent
permeability for flow in the y-direction. This simple construction gives us
a diagonal permeability tensor on the coarse scale. In general, the flow
across the coarse block will be anisotropic and a diagonal approximation of
the block permeability is not sufficient. Thus, we need to allow for a full-
tensor representation of Kb. This may be achieved by calculating the volume
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averaged flux across the block volume. Thus, from the solution of numerical
experiment i (vi and pi), we can compute

v̄i =
1

V

∫
V

(vi) dV =
1

V

∑
nc

vi, (3.11)

∇pi =
1

V

∫
V

∇ (pi) dV =
1

V

∑
nc

∇pi (3.12)

where nc now sums over all fine-cells belonging to the coarse block. While
each of the volume averaged fluxes (v̄1 and v̄2) and pressure gradients (∇p1
and ∇p2) has two components, one in each coordinate direction, we get a
(4× 4) linear system to solve for the four components of Kb,⎡

⎢⎢⎢⎣
∇p11 ∇p21 0 0

0 0 ∇p11 ∇p21
∇p12 ∇p22 0 0

0 0 ∇p12 ∇p22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
k11
k12
k21
k22

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
v̄1
1

v̄2
1

v̄1
2

v̄2
2

⎤
⎥⎥⎦ . (3.13)

This calibration do not however account for the symmetry of Kb. In order
to guarantee a symmetric tensor, an additional constraint (k12 = k21) must
be made, resulting in a fifth equation in (3.13).

The no-flux boundary conditions used in the example above forces the
flow in one coordinate direction at a time, thus, restricting the influence of
transversal flow. Several Dirichlet and Dirichlet-Neumann boundary condi-
tions have been studied, which allow for flow across all boundaries of the
coarse block, s.a. linear or fixed pressure boundary conditions [43] and pe-
riodic boundary conditions [29, 16]. Both of these boundary conditions will
lead to a full-tensor permeability whether we consider equality of total flux
across the boundaries or average flux across the entire block volume. The
periodic boundary conditions also result in a symmetric and positive definite
tensor. This has been rigorously proved by Bøe [16] for the case of conser-
vation of Dissipation. For general boundary conditions, a symmetric and
positive definite permeability tensor is not guaranteed and must be obtained
through a post-processing of the permeability coefficients.

All the techniques discussed above are local and regarded as relatively
cheep to solve. In general, three local fine-scale problems need to be solved in
order to compute an equivalent full-tensor permeability for each block in three
dimensions. These methods give reasonable approximations to the equivalent
block permeability whenever the sub-scale heterogeneities are well captured
within the coarse-block [95]. Thus, an important issue of local-local upscaling
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techniques is the generation of a coarse-scale grid. In Sandvin et. al. [84]
we developed an algebraic technique of generating local boundary conditions
(interface approximations) which are independent upon the underlying grid.
These boundary conditions showed to be more robust with respect to flow
on irregular grids and heterogeneous log-normal permeability.

3.2.2 Extended local and local-global upscaling

If the fine-scale problem involves large correlation lengths in the permeabil-
ity (e.g. channelised reservoir), local-local upscaling methods may yield large
errors and global information is necessary to take into account. The solution
of global numerical experiments is considered too computationally expen-
sive and will not be treated here, but there are other ways of incorporating
global or extended local information into the calibration of the equivalent
permeability.

The extended local upscaling methods were not discussed in the previous
subsection. These methods are similar to local-local upscaling methods, but
solve the local problem on an extended local domain. We can think of it
as having a boundary layer around the coarse block. By knowing the per-
meability distribution in the vicinity around the coarse block of interest, we
can more accurately approximate the local fluxes which contributes to the
local boundary conditions for the local-local upscaling. The calibration of the
block permeability tensor is done locally on the coarse block. In [95] they
refer to this as oversampling, and demonstrates how extended local upscaling
can reduce the resonance error of the larger scale heterogeneities. This over-
sampling technique was first introduced in [49] for the multiscale methods,
and will be discussed more in detail in Section 5.1.2.

The local-global upscaling method [20] takes global information into ac-
count, but without solving any global fine-scale simulations. The global
boundary conditions are coupled to the local sub-domains through the coarse
scale only, and the local boundary conditions that are used to locally calcu-
late the equivalent block permeability tensor on the coarse-scale, is updated
through an iterative solution process. The local-global approach consists of
the following steps:

• Local-local upscaling

• Solve the coarse problem for the pressure

• Interpolate the coarse scale pressure onto an extended local boundary

• Recalculate the upscaled parameters (extended local-local upscaling
with new pressure boundary conditions)
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• Recalculate the coarse scale pressure

The procedure continues until the coarse scale pressure satisfies a predefined
tolerance value for the upscaling. The main motivation of this approach is to
efficiently communicate the influence of the global boundary conditions onto
the local problems. For problems involving highly heterogeneous formations
with long correlation lengths, e.g. channelised reservoirs, the local-global
method may yield considerably more accurate approximations compared to
local-local methods. Finally, an adaptive local-global method [19] further
increase the efficiency of the iterative procedure. By examine the convergence
locally, the adaptive method only recalculate those local problems which are
necessary.

A critical point in the local-global approach, is the local interpolation of
the coarse-scale solution. Unlike domain decomposition method, the local-
global method only converge on the coarse scale. While the fine-scale solution
is sensitive to the choice of the interpolation, the method is not in general able
to fully resolve the details of the fine-scale. In [84] we show that by expressing
the upscaling technique in terms of a domain decomposition preconditioner,
it is possible to develop a local upscaling technique which exactly reproduces
pre-defined flow fields.

3.2.3 Upscaling of transmissibillities

Sub-scale heterogeneities may give rise to complex flow paths on the fine-
scale, which can not be represented by a single block permeability tensor.

p1 p2∗ ∗

qi

(a) Two-domain

→

→
↑ ↑

q1

q2
q3

q4

p1 p2

p3p4

(b) Dual coarse block

Figure 3.4: The figure to the left is a two-domain region, often used for trans-
missibillity upscaling of the TPFA formulation. The figure to right illustrates
a coarse scale interaction, applied for upscaling to the MPFA method.
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An alternative approach is then to directly try to approximate the flow on
the coarse scale, by calculating the upscaled transmissibillity coefficients in
the control-volume discretisation scheme.

When upscaling the transmissibillity coefficients we follow the same
procedure of first approximating the local flow field, and then calibrating
that information in order to approximate the equivalent coarse parameter.
Since the transmissibillities are located at the interfaces between neighbour-
ing cells, we now have to consider local numerical flow experiments on the
two-domain region. See Figure 3.4(a). Hence, the local problems are twice
as large compared to permeability upscaling, but for each coarse interface it
is enough to solve one flow problem.

TPFA formulation

By applying the boundary conditions ((3.8)-(3.9)) we can calculate
the fluxes qi across the coarse interfaces. These, together with the average
pressures p̄j from each coarse block can then be used to calculate the
upscaled transmissibillity coefficient of the TPFA method. From Equation
(2.24) we have that

t∗12 =
∑

i qi
p̄1 − p̄2

(3.14)

MPFA formulation

In order to approximate the coarse scale transmissibillity coefficients
of the MPFA method we need to take into account more coarse scale
pressure nodes. Recall, from Section 2.3.2 that the MPFA-method ap-
proximates half-edge fluxes on the interaction region, corresponding to the
fine-scale dual grid. Similarly, we can form coarse scale interaction regions
by constructing a dual coarse grid, as shown in Figure 3.4(b).

The local transmissibillity matrix T of the flux stencil (2.27) contains 16
elements for 2D quadrilateral grids and can be approximated by solving 4
independent flow problems on the coarse dual-block. These problems can
be refered to as the basis problems for the construction of a coarse scale
system matrix, and the solutions u of these problems are often called the
basis functions. We will here denote the basis functions by φi, i = 1, . . . , 4,
and they need to be linearly independent. Thus, from (2.27) we have the
following relation for the basis functions of the MPFA method,
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⎡
⎢⎢⎣
q1
q2
q3
q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
t∗11 t∗12 t∗13 t∗14
t∗21 t∗22 t∗23 t∗24
t∗31 t∗32 t∗33 t∗34
t∗41 t∗42 t∗43 t∗44

⎤
⎥⎥⎦
⎡
⎢⎢⎣
φ1

φ2

φ3

φ4

⎤
⎥⎥⎦ . (3.15)

To ensure linear independence, it is common to require that

φi(xj) = δij (3.16)

and

∑
i

φi (x) = 1. (3.17)

Thus, for the basis problem 1 we have that φ1 =
[
1 0 0 0

]T
, and from

(3.15) we obtain ⎡
⎢⎢⎣
q1
q2
q3
q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
t∗11
t∗21
t∗31
t∗41

⎤
⎥⎥⎦ . (3.18)

Hence, it is also known as upscaling of fluxes.
The accuracy of the upscaling methods is dependent upon the choice of

boundary conditions for these basis problems. Typical choices are linear
pressure conditions, no-flow conditions and periodic boundary conditions.
The different approaches can also be improved by solving the basis problems
on extended local or semi-global problems. The local-global approach ex-
plained in the previous section applies both to upscaling of permeability and
transmissibillity.

Finally, it should be noted that even though more complex fine-scale flow
fields may be taken into account in the upscaling of the transmissibillities, the
coarse scale pressure cannot resolve these fine-scale details. Obviously, the
coarse scale solution only account for coarse scale flow, and is only equivalent
to some average of the fine-scale solution. For multiphase flow, the fine-
scale flow field changes with saturation in each time-step and an upscaling
of the fluxes may only be valid for a certain steady state of the petrophysical
properties.

However, the basis functions may be updated, as a function of saturation,
and that is what is being done in the multiscale methods. These will be
discussed more in depth in Chapter 5. In the next chapter we will explain
the domain decomposition methods. These methods couple the coarse scale
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solution to the fine-scale, which makes it possible to efficiently solve the
fine-scale solution through iterative algorithms.





Chapter 4

Domain Decomposition

In the previous chapter we have discussed how the fine-scale parameters of
the geological model are being upscaled and represented on an effective coarse
scale. The coarse scale model is often refered to as the simulation model, as
it is much more efficient to work with, and thus more practical for every day
engineering work. The geological model is then used to validate the results
from the simulation model.

Domain decomposition represents another mathematical technique, for
efficiently solving large linear systems of equations arising from the discreti-
sation of the elliptic problem. It can be used on both the fine-scale and
coarse scale discrete problems. The main idea is to decouple the large global
boundary-value problem into several smaller local problems, and to carry
out the solution by means of an iterative solution process. Domain decom-
position has shown to be very suitable for parallel computing, and is also a
convenient framework to build and analyse multi-level methods.

The methods of domain decomposition can be classified in several ways;
in terms of the decomposition strategy (overlapping or non-overlapping), the
iterative solution strategy (solver or preconditioner) or the number of coarse
levels.

There are two main classes of domain decomposition methods; Schwarz
methods for overlapping sub-domain and substructuring methods for non-
overlapping sub-domains. We will start by giving a brief introduction to
the framework of Schwarz methods for general overlapping sub-domains in
Section 4.1, before directing our attention to the theory of substructuring
methods for non-overlapping decompositions in Section 4.2. For the exten-
sion to many sub-domains, we need to accelerate the convergence by including
a coarse space, this will be the focus of Section 4.3 and 4.4. In the end of the
chapter, we discuss several choices of coarse-scale basis functions, and their
ability to capture sub-scale heterogeneities. This will further be useful for
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our discussion of multiscale methods in Chapter 5.

4.1 Introduction to Schwarz methods

In this section we introduce the general framework of Schwarz methods for
overlapping sub-domains. We will show how domain decomposition can be
formulated as an iterative solver for solving the coupled elliptic problem.
Different iterative schemes lead to different Schwarz algorithms. We discuss
the various forms of the Schwarz method in Section 4.1.2. Finally, we also
show how the Schwarz method can be applied as a preconditioner for an
iterative solver.

Over the last 3-4 decades there has been an intense research on the con-
vergence properties and robustness for these methods. We will not go into
details on the rather broad theory on Schwarz methods, but try to highlight
some of the more important components and tools for constructing efficient
multi-level Schwarz methods. For a more thorough presentation on the the-
ory of Schwarz methods, consult e.g. [78, 88, 92] and the references therein.

For simplicity we will consider the Poisson problem

−Δu = f in Ω (4.1)

u = 0 on ∂Ω (4.2)

where the solution u ∈ H1(Ω), the right-hand side vector f ∈ L2(Ω) and ∂Ω
is the Lipschitz continuous boundary of Ω.

4.1.1 The Schwarz method for overlapping sub-domains

The pioneering method of Schwartz (1870) [86], also known as the alternating
Schwarz method, is considered to be the first contribution to the domain de-
composition literature. He proved the convergence of an iterative procedure
of solving the decoupled elliptic boundary value problem. The motivation at
that time was not to establish an iterative framework for parallel computing,
but he used the algorithm to show the existence of harmonic functions with
prescribed boundary values [92]. Never the less, the algorithm of Schwarz
illustrates many of the important features of domain decomposition as it is
used today.

The iterative method of Schwarz can be described as follows. Consider
Ω to be a closed region consisting of two overlapping sub-domains Ω1 and
Ω2 with corresponding boundaries ∂Ω1 and ∂Ω2. Denote the overlapping
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Ω1 Ω2
Ω3

Γ1Γ2

Figure 4.1: Two overlapping sub-domains

region Ω3, as it is shown in Figure 4.1 and let Γi be the part of ∂Ωi that also
corresponds to the boundary of Ω3. Given an initial guess u0, which vanishes
on ∂Ω, we calculate uk+1 by sequentially solving:

−Δuk+ 1
2 = f in Ω1,

uk+
1
2 = uk on Γ1,

uk+
1
2 = 0 on ∂Ω1 ∩ ∂Ω,

(4.3)

−Δuk+1 = f in Ω2,

uk+1 = uk+
1
2 on Γ2,

uk+1 = 0 on ∂Ω2 ∩ ∂Ω.
After the first fractional step, the solution u

1
2 on Ω1 is mapped onto the

boundary Γ2, and the solution u1 is carried out by solving the boundary-
value problem on Ω2. In the same manner, the solution on Ω2 is mapped
onto Γ1 for the updated boundary-value problem on Ω1, and so on. The
iteration converges, when the exact boundary conditions are found for the
internal boundaries Γ1 and Γ2.

Under certain assumptions on Ω1 and Ω2 it is possible to show that there
exist some constants C1, C2 ∈ (0, 1) such that the error of the alternating
Schwarz method has the following bound:

‖u− uk+1‖L∞(Ω) ≤ Ck
1C

k
2‖u− u0‖L∞(Ω), (4.4)

However, as it is pointed out in [78], the convergence may be very slow
(C1, C2 � 1) in the case of small overlapping region. For a complete deriva-
tion of the proof of (4.4) see e.g. [63].
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4.1.2 The multiplicative and additive forms

The Schwarz method can be formulated as a Richardson iteration, where the
rate of convergence of the method is dependent upon the projection of the
local solutions onto the internal boundaries of Γi. In order to show that this
is the case, we will follow the arguments in [92].

When analysing the Schwartz methods, it is convenient to rewrite the
elliptic problem on the variational form:

a(u, v) =

∫
Ω

fv, ∀v ∈ H1(Ω). (4.5)

where

a(u, v) =

∫
Ω

(∇u · ∇v) dx, (4.6)

is the bilinear form and v is a test function belonging to the space H1(Ω).
For the discretisation we introduce a triangulation T on Ω, such that the
boundaries Γ1, Γ2 and ∂Ω do not cut through any of the elements of T . We
also need to define a corresponding space V on T , such that u, v ∈ V . We
let V be the space of continuous and piecewise linear functions on Ω, that
vanishes on ∂Ω, and denote V1 and V2 as the spaces for the corresponding
functions on Ω1 and Ω2. Thus, we can also define the local bilinear forms
ai(u, v) =

∫
Ωi
(∇u · ∇v) dx, where u, v ∈ Vi. The extension operator

RT
i : Vi → V, i = 1, 2, (4.7)

is used to extend, by zeros, the local functions vi ∈ Vi on Ωi to the space
V on Ω. Note also that Ri : V → Vi are the usual restriction operators,
that maps the functions v ∈ V onto the sub-spaces Vi. We now define two
orthogonal projections Pi = RT

i P̃i, i = 1, 2, where P̃i : V → Vi are defined
by the relation

ai(P̃iu, vi) = a(u,RT
i vi) (4.8)

By using the variational form (4.5) and the definition of the orthogonal pro-
jection, we can now express the fractional steps of the alternating Schwarz
method as a Richardson iteration,

uk+
1
2 − u = P1(u

k − u),

uk+1 − u = P2(u
k+ 1

2 − u),
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Thus, by combining the two fractional steps, the complete iteration step
becomes

uk+1 − u = (I − P2)(I − P1)(u
k − u),

where the error propagation term

(I − P2)(I − P1) = I − (P1 + P2 − P1P2)

is on a multiplicative form. Such methods are denoted as multiplicative
Schwarz methods. The error propagation term, as it is written here, is
not symmetric, but it can be made symmetric if we consider an additional
fractional step in the algorithm. By including a third fractional step, solve
the problem on Ω1 with the updated boundary condition from the solution
on Ω2, the Richardson iteration takes the symmetric form

(I − P1)(I − P2)(I − P1).

Another useful algorithm is obtained by not updating the internal boundary
conditions at each fractional step. Thus, all sub-domain problems can be
solved independently and simultaneously in each iteration step. If we consider
ui as the solution on Ωi, we can write the additive Schwarz algorithm as

−Δuk+1
1 = f in Ω1,

uk+1
1 = uk2 on Γ1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(4.9)

−Δuk+1
2 = f in Ω2,

uk+1
2 = uk1 on Γ2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω.

By a similar finite element analysis of this algorithm, we can also write (4.10)
as a Richardson iteration

uk+1 − u = (I − (P1 + P2))(u
k − u),

where the error propagation term is on additive form. Both the additive
and multiplicative Schwarz methods are naturally extended to many sub-
domains. The main idea behind all of these domain decomposition algo-
rithms is to decouple large systems of equation, and solve them locally by an
iterative process. The Schwartz methods have shown to be very suitable for
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parallel implementation. While the additive formulation is relatively straight
forward to implement and run on parallel computers [15, 57, 88], the parallel
implementation of the multiplicative Schwarz method is a bit more involved.
Prior to the local computations, we need to identify disjoint sub-domains
which do not share any overlapping region. This can be done by a colouring
technique [92]. The sub-spaces Vi corresponding to the disjoint sub-regions
(of the same colour) will then be orthogonal, and the sub-problems corre-
sponding to these sub-spaces can be solved in parallel.

4.1.3 The Schwarz method as a preconditioner

As we have seen from the previous subsections, domain decomposition can
be used to build iterative solvers for the elliptic problem, where the boundary
value problem on Ω is replaced by boundary value problems on Ωi, i = 1, 2.
We will refer to problems on Ω as global problems and problems on Ωi as local
problems. Since the local problems in general are faster to compute, domain
decomposition methods can also be used to build effective preconditioners for
the global problem. In order to show this we will now consider the discrete
global problem. By a suitable discretisation of Poisson’s Equation (4.2) we
arrive at the linear system of equations,

Au = b, (4.10)

where A is a symmetric and positive definite matrix. In the following we will
represent the discrete restriction operators Ri as the matrices, consisting of
zeros and ones, which map the global vectors and matrices on Ω to corre-
sponding local vectors and matrices on Ωi. Similarly, we define the discrete
extension operators RT

i . We introduce the two local problems Âiu = b∗,
i = 1, 2, where Âi is the approximated local stiffness matrices given by,

Âi = RiAR
T
i , i = 1, 2,

and is associated with the space Vi. The Schwarz methods are defined by the
projection-like operators,

Pi = RT
i P̂i, i = 1, 2, (4.11)

where P̂i now is given by the discrete form of Equation (4.8);

vTi ÂiP̂iu =
(
RT

i vi
)T
Au, ∀ u ∈ V, v ∈ Vi. (4.12)

We note from (4.12) that we can write AiP̂i = RiA, and by using Equation
(4.11) we observe that the projection-like operator can be expressed as a
preconditioned operator for the global system matrix A,
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Pi =
(
RT

i Â
−1
i Ri

)
A.

If we consider the additive Schwarz methods, Pa =
∑

i Pi, we can write the
one-level additive Schwarz preconditioner as

Ba =
∑
i

(
RT

i Â
−1
i Ri

)
. (4.13)

For the multiplicative formulation (4.1.2), the preconditioner takes a more
complicated structure, where Pm = I −∏i(I − Pi). However, the precondi-
tioner can still be represented by a recursive routine, that applies each local
preconditioner to the corresponding restricted vector on Ωi.

4.2 Substructuring methods

We will now direct our attention to the case of non-overlapping sub-domains.
That is, the case where two neighbouring sub-domains at most share a set of
common boundary nodes on the internal interface Γ. The domain decompo-
sition methods for non-overlapping sub-domains are refered to as substruc-
turing methods.

4.2.1 Non-overlapping sub-domains

Let us again take a look at the continuous Poissons problem given by Equa-
tion (4.2). Consider two non-overlapping sub-domains Ω1 and Ω2, with com-
mon boundary Γ, as illustrated in Figure 4.2. Under certain assumptions on
the regularity of the right-hand side term f and the sub-domain boundaries,
the problem can be formulated as

Ω1 Ω2

Γ−→

−→

n2

n1

Figure 4.2: Non-overlapping sub-domains
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−Δu1 = f in Ω1, (4.14)

u1 = 0 on ∂Ω1 ∩ ∂Ω, (4.15)

u1 = u2 on Γ, (4.16)

∂u1
∂n1

= −∂u2
∂n2

on Γ, (4.17)

u2 = 0 on ∂Ω2 ∩ ∂Ω, (4.18)

−Δu2 = f in Ω2, (4.19)

where n1 and n2 are the normal vectors on Γ; n1 = −n2. The Equations
(4.16) and (4.17) represent the transmission conditions for the solution on
the boundary between the sub-domains. For second order elliptic problems
where u ∈ H1(Ω), we require continuity of u and the normal derivative (flux)
of u across Γ. In general, these conditions depend on the nature of the
problem.

In the following we will only consider exact local solvers. Thus, the in-
ternal degrees of freedom can be eliminated prior to the iterative procedure.
Similar to the overlapping Schwarz methods, the solution of this problem can
be computed by an iterative algorithm for the interface equation. Moreover,
it can be shown that the solution u on Γ has to satisfy the Steklov-Poincaré
interface equation, see [9, 78]. In the next sub-sections we will consider it-
erative substructuring for the discrete system of linear equations. We will
derive a Schur complement problem for the equation on the interface, which
can be seen as a discrete approximation to the Steklov-Poincaré equation for
the continuous problem.

4.2.2 Discrete formulations of the boundary equation

We will now derive two formulations for the discrete equation on the interface
Γ. These formulations will form the basis for all iterative substructuring
methods discussed in the remaining of this chapter.

We consider the equivalent discrete form of the Poisson’s Equation, given
by Equation (4.10). For non-overlapping sub-domains it is convenient to par-
tition the degrees of freedom into those corresponding to the internal nodes
(u

(i)
I ) on each sub-domain Ωi, and those related to the internal boundary

nodes (uB) on Γ. Thus, we can represent the coupled system of equations on
the following matrix form:
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⎡
⎢⎣A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI ABB

⎤
⎥⎦
⎡
⎣u

(1)
I

u
(2)
I

uB

⎤
⎦ =

⎡
⎣b

(1)
I

b
(2)
I

bB

⎤
⎦ . (4.20)

Here, uB = u
(1)
B = u

(2)
B accounts for the continuity of the solution uB on

the internal boundary Γ, while the right hand side vector bB = b
(1)
B + b

(2)
B ,

corresponds to the source terms on Γ. The global system matrix A can been
constructed by subassembling the local system matrices A(i) corresponding
to the discretisation on Ωi, i = 1, 2. The local problems have the following
form, [

A
(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

][
u
(i)
I

u
(i)
B

]
=

[
b
(i)
I

b
(i)
B + λ(i)

]
i = 1, 2. (4.21)

Here λ(i) = A
(i)
BIu

(i)
I + A

(i)
BBu

(i)
B − b

(i)
B is the residual on the boundary due to

the decoupling, which can be regarded as the discrete normal flux across Γ.
The transmission conditions, given by the Equations (4.16) ans (4.17) can
now by represented discretely by the following relationships

uB = u
(1)
B = u

(2)
B , (4.22)

λB = λ
(1)
B = −λ(2)B . (4.23)

By a direct sum of the two local problems (4.21), we see that the flux terms
cancel each other out and we retain the coupled formula given by Equation
(4.20). Note also that the two upper rows of (4.20) represent the Dirichlet
problems on Ω1 and Ω2, respectively.

We can now derive an algebraic equation for the solution uB on Γ. By a
simple block Gaussian elimination of (4.20), we express the system of equa-
tions on reduced form

⎡
⎣A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

0 0 S

⎤
⎦
⎡
⎣u

(1)
I

u
(2)
2

uB

⎤
⎦ =

⎡
⎣b

(1)
I

b
(2)
I

g

⎤
⎦ , (4.24)

where

S = ABB − A
(1)
BI

(
A

(1)
II

)−1

A
(1)
IB − A

(2)
BI

(
A

(2)
II

)−1

A
(2)
IB (4.25)

and
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g = b
(1)
B − A

(1)
BI

(
A

(1)
II

)−1

b
(1)
I + b

(2)
B − A

(2)
BI

(
A

(2)
II

)−1

b
(2)
I (4.26)

are the Schur complement matrix and the modified right-hand side term on
the boundary, respectively. The Schur complement system,

SuB = g, (4.27)

can be regarded as an equation for the trace of the exact solution uB on Γ,
where S is the discrete approximation to the Steklov-Poincaré operator [78].
Similar to A, the Schur matrix may also be assembled by the local Schur
matrices constructed on each sub-domain Ωi, which are given by

S(i) = A
(i)
BB − A

(i)
BI

(
A

(i)
BB

)−1

A
(i)
IB, i = 1, 2. (4.28)

Note that S(i) in general forms a full matrix, where all the boundary un-
knowns are coupled together through the internal of Ωi.

We can also derive a dual formulation for the discrete flux on Γ. If we
consider a block factorisation of the two local problems (4.21), we can write
the local interface equations as

u
(i)
B =

(
S(i)
)−1 (

g(i) + λ(i)
)
, i = 1, 2. (4.29)

concerning the solution u
(i)
B , flux λ

(i)
B and Schur complement S(i) on Γ. In

stead of neglecting λB we can now use condition (4.23) and neglect uB.
By subtracting the second equation in (4.29) from the first and using the
continuity conditions on Γ we arrive at the following dual formulation:

Fλ = d (4.30)

where

F =
(
S(1)
)−1

+
(
S(2)
)−1

,

d := − (S(1)
)−1

g(1) +
(
S(2)
)−1

g(2).

The two formulations (4.27) and (4.30) forms the basis for the primal and
dual iterative substructuring algorithms, to be discussed in the following
subsections. While these algorithms involve the Schur complement, they are
also known as Schur complement methods.

The Schur complement system is usually better conditioned then the
original system. In fact, it can be shown that the condition number of the
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Schur complement matrix S is bounded by the condition number of the
original system matrix A [11].

The multiplication of the Schur complement S with a vector v, corre-
sponds to solving a local Dirichlet problem on each sub-domain Ωi. Note
that this can be done without explicitly forming the Schur complement. The
multiplication of F (subassembly of the inverse of the local Schur matrices)
with a vector v is equivalent with solving a Neumann problem on each sub-
domain. The two primal and dual formulations are the starting points for a
number of substructuring algorithms, which consists of solving local Dirich-
let and Neumann problems in a certain order. The most popular of these
methods will be presented in the following.

4.2.3 Primal algorithms

We will now discuss two algorithms for solving Equation (4.27); the
Dirichlet-Neumann algorithm and the Neumann-Neumann algorithm. For
simplicity we first consider the case of two non-overlapping sub-domains Ω1

and Ω2, as shown in Figure 4.2.

Dirichlet-Neumann

The Dirichlet-Neumann algorithm consists of solving one Dirichlet problem
and one Neumann problem in each iteration. From a given initial solution
u
(0)
B on the boundary Γ, the Dirichlet-Neumann algorithm can be described

by the following steps:

1. Solve the Dirichlet problem on Ω1, with the given Dirichlet boundary data
u
(k)
B :

u
(1)
I =

(
A

(1)
II

)−1 (
b
(1)
I − A

(1)
IBu

k
B

)
.

2. Compute the corresponding flux λB on Γ corresponding to Ω1:

λ
k+ 1

2
B |Ω1 = A

(1)
BIu

k+ 1
2

I + A
(1)
BBu

k
B − b

(1)
B .

3. Solve the resulting Neumann problem (4.21) on Ω2, with the corresponding

flux condition. Note that λ
k+ 1

2
B |Ω2 = −λk+

1
2

B |Ω1 on Γ.

ûk+1
B =

(
S(2)
)−1
(
g(2) − λ

k+ 1
2

B |Ω2

)
4. Update the solution on the boundary:
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uk+1
B = θûk+1

B + (1− θ)uk,

where θ ∈ [0, θmax] is a relaxation parameter. The first two steps can be

combined. If we eliminate u
(1)
I , we find that the flux across Γ is given from

the Dirichlet solution as λ
k+ 1

2
B |Ω1 = −(g

(1)
B − S(1)ukB). By substituting the

expression for the flux into the third step, we observe that the algorithm
can be rewritten as a preconditioned Richardson iteration (uk+1

B − ukB) =
Bθ(g − SukB) for the Schur complement system,

uk+1
B − ukB = θBDN(g − SukB) (4.31)

where BDN =
(
S(2)
)−1

is the preconditioner for the Schur complement ma-

trix S. Note that, if S(1) = S(2) = 1
2
S, the Dirichlet-Neumann preconditioner

will be exact.

Neumann-Neumann

The Neumann-Neumann algorithm consists of solving two Dirichlet
and two Neumann problems in each iteration. Starting from a given initial
boundary value u0B, the algorithm can be written in terms of the same three
steps:

1. Solve a Dirichlet problem on both sub-domains Ω1 and Ω2, with prescribed
Dirichlet boundary data u

(k)
B :

u
(i)
I =

(
A

(i)
II

)−1 (
b
(i)
I − A

(i)
IBu

k
B

)
, i = 1, 2.

2. Compute the corresponding fluxes λ
k+ 1

2
B on Γ corresponding to Ωi, i = 1, 2:

λ
k+ 1

2
B |Ωi

= A
(i)
BIu

k+ 1
2

I + A
(i)
BBu

k
B − b

(i)
B .

3. Solve the resulting Neumann problem (4.21) on Ωi, i = 1, 2, with the
corresponding flux conditions.

ûk+1
B |Ωi

=
(
S(i)
)−1
(
g(i) − λ

k+ 1
2

B |Ωi

)
4. Update the solution on the boundary:

uk+1
B = θûk+1

B + (1− θ)uk,
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In the same way as for the Dirichlet-Neumann algorithm, the Neumann-
Neumann algorithm can be expressed as a preconditioned Richardson itera-
tion:

uk+1
B − ukB = θBNN(g − SukB) (4.32)

where BNN =
(
S(1)
)−1

+
(
S(2)
)−1

= F . Thus, the dual formulation acts
as a preconditioner for the Schur complement system. Note that this is an
additive Schwartz preconditioner, in which case all the sub-domain problems
can be solved simultaneously and in parallel.

4.2.4 Dual algorithms

In a similar fashion we can construct algorithms for the dual formulation
(4.30). The dual equivalent of the algorithms discussed above are the
Neumann-Dirichlet and the dual Neumann-Neumann algorithm. Both of
these algorithms can also be written in terms of preconditioned Richardson
iterations,

λk+1
B − λkB = BF θ

(
d− FλkB

)
(4.33)

for the dual formulation. In case of the Neumann-Dirichlet algorithm we
solve one Neumann problem on Ω1, with a repeating Dirichlet problem on
Ω2. Thus the preconditioner for the Dirichlet-Neumann methods is given by
BND = S(2). Similar to the Neumann-Neumann method the dual version
solves individual sub-problems on Ω1 and Ω2. Thus, the preconditioner for
the dual Neumann-Neumann method takes the form: BdNN = S(1) + S(2).

4.3 Primal iterative substructuring methods for
many sub-domains

In the previous section we have seen how the Schur complement S can be
used to construct one-level algorithms for solving the two-domain problem.
In this section we will extend the primal substructuring methods to many
sub-domains. In general, the extension from two to many sub-domains can
be viewed as solving a collection of many two-domain problems. However,
as we will see, the construction of efficient iterative substructuring methods
for the case of many sub-domains is not so straight forward.
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4.3.1 Extension to many sub-domains

The Neumann-Neumann and dual Neumann-Neumann algorithms are both
naturally extended to many sub-domains. All the local operations are inde-
pendent and can be solved in parallel. The Neumann-Dirichlet and Dirichlet-
Neumann methods can also be extended, but we need to keep track of which
sub-domains that are coupled to each other. For structured grids, this can
be done by using a colouring technique as discussed in Section 4.1.2.

For two and three dimensional problems we will have to deal with floating
sub-domains. That is, sub-domains which are not connected to the global
Dirichlet boundary ∂Ω. The local system matrix S(i) corresponding to a
floating sub-domain is singular and can not be directly inverted. Thus, in
order to solve the pure Neumann problems corresponding to the inverse of
S(i) we need to apply some kind of regularised inverse or preconditioner for
the singular matrix.

While the Schur complement matrix S is much denser then A, the ex-
plicit calculation of S is expensive. The aim of primal iterative substructuring
methods is to solve the Schur complement system S without explicitly form-
ing the matrix S. Thus, we formulate our substructuring methods as Schur
complement preconditioners for e.g. the Krylov-type algorithms. Various
choices of local preconditioners will now be discussed in the next subsection.

4.3.2 Local Schur complement preconditioners

We consider the construction of local Schur complement preconditioners for
the Neumann-Neumann method, in the case of many sub-domains. Similar
approaches can also be applied to other variants of substructuring methods.
The local preconditioner for the Neumann-Neumann method is analogous to
the choice of local boundary conditions used in the local upscaling meth-
ods discussed in the Chapter 3. Moreover, the multiscale control-volume
methods which have been the main focus of this thesis can be categorised
as special types of Neumann-Neumann preconditioners. The localisation ap-
proximations applied in the multiscale framework can be seen as local Schur
complement preconditioners.

For the general case of 3-dimensional elliptic problems, we need to intro-
duce some additional notation on the geometry. We define the interface as
Γ = ∪i �=j (∂Ωi ∩ ∂Ωj). We further refer to sub-domain faces as the subset of
Γ that is only shared by two sub-domains, sub-domain edges as the subset of
Γ that is shared between more than two sub-domains and sub-domain ver-
tices as the union of the endpoints of the sub-domain edges. Thus, we can

sub-divide the degrees of freedom on Γ, uB =
[
uF uE uV

]T
, where uF , uE
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and uV are the degrees of freedom corresponding to sub-domain faces, edges
and vertices, respectively. Thus, we can formulate the Schur complement
problem (4.27) as ⎡

⎣SFF SFE SFV

SEF SEE SEV

SV F SV E SV V

⎤
⎦
⎡
⎣uFuE
uV

⎤
⎦ =

⎡
⎣gFgE
gV

⎤
⎦ . (4.34)

Recall form Section 4.2.3 that the Neumann-Neumann method requires the

solution of a Neumann problem, involving
(
S(i)
)−1

multiplied with a vector.

The multiplication x =
(
S(i)
)−1

y can be found by solving

S(i)x = y (4.35)

The aim of the local preconditioner, is to approximate the Schur com-
plement S, such that the local problem (4.35) is fast to compute. In the
following we will discuss two local Schur complement preconditioners, which
has been successfully applied to the elliptic problem for flow in porous media.

Tangential component approximation

The tangential component (TC) approximation is a simple way of ne-
glecting the global couplings, while preserving the local flow on Γ. The
local Schur complement S(i) in (4.28) consists of a local term A

(i)
BB and

a global term −∑iA
(i)
BI

(
A

(i)
II

)−1

A
(i)
IB. The TC approximation simply

neglects the global term and approximates the local Schur complement by
a sparse matrix S

(i)
TC = Ã

(i)
BB, which has the same sparsity pattern as A

(i)
BB.

While the local matrix A
(i)
BB can be significantly diagonal dominant, due

to transversal flow, this matrix is not a good approximation to S(i). The
TC approximation neglects the contributions to the flow normal to the
boundary, corresponding to the elements of A

(i)
BI . In the preconditioner

Ã
(i)
BB we have neglected the part of the diagonal elements of A

(i)
BB. The

TC approximation is algebraic, simple to implement and can be applied to
general geometries and dimensions. The preconditioner may however be
sensitive to variations in material constants on Γ.

The Multiscale Finite Volume Method (MSFV) applies a similar tangen-
tial flow approximation, denoted the reduced boundary condition [53]. This
boundary condition is shown to be similar to the TC approximation for
Cartesian grids, and the method is analogous to a special type of two-level
additive Schwartz preconditioner.



62 Domain Decomposition

Interface probing

A second sparse approximation to the Schur complement can be ob-
tained by using the interface probing technique. This is also a completely
algebraic technique, meaning that it only considers the local matrices S(i).
By a careful choice of probing vectors {vj, 1 ≤ j ≤ d}, a low-bandwidth

(d−diagonal) matrix S
(i)
P is constructed such that

S
(i)
P vj = S(i)vj = wj, j = 1, . . . , d. (4.36)

Thus, the approximated Schur complement has the same application on vj

as the true Schur complement, and these d degrees of freedom are captured
within the preconditioner. An important note is that the Schur complement
S(i) do not need to be formed explicitly. The application of S(i) with
the probing vectors is carried out by multiplying vj through all the local
matrix-components S(i). This is equivalent with solving d local Dirichlet
problems. Usually d = 3, which results in a tri-diagonal approximation of
S(i). Even though the resulting preconditioner is on local form, both the
local and global term of the Schur complement are approximated, which
makes the probing approximation more robust with respect to irregular
grids and variations in the coefficients of K.

Other interface approximations

Several other choices of local Schur complement preconditioners have
been proposed and many of them are designed for the model elliptic problem
with constant coefficients.

In the case of uniform rectangular mesh on Ω, using piecewise linear func-
tions for the discretisation, the Schur complement S, and its eigenvalues can
be explicitly constructed in terms of the sine transform. Based on these ana-
lytical expressions for the Schur complement and eigenvalues, Dryja [27] and
later Golub and Mayers [41] proposed two local Schur complement precondi-
tioners which are spectral equivalent to the true Schur complement. While
these preconditioners are superior for solving the Poisson’s problem on uni-
form rectangular grids, their performance are in general highly dependent on
the specific problem to be solved.

The Toepliez approximation is another preconditioner which takes ad-
vantage of the special structure of the Schur complement. [17]. This pre-
conditioner is motivated by the observation that the local Schur complement
matrix for homogeneous problems usually has a banded structure, where
each diagonal band has small variations. Thus the local Schur complement
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matrix is close to being a Toepliez matrix, for which the inverse matrix can
be efficiently calculated. Other local Schur complement preconditioners also
include the change of basis, from nodal basis to hierarchical basis [89] or
multilevel basis (PBX) [91].

Finally, it should be repeated that domain decomposition is, for most
cases, used as a preconditioner for the Krylow subspace methods (e.g. con-
jugated gradient methods or the generalised minimal residual (GMRES)
method), where the goal is to bound the condition number.

In general, one-level preconditioners have a poor performance for elliptic

problems where the condition number is proportional to H−2
(
1 + logH

h

)2
.

HereH < 1 is the sub-domain mesh size and h < H is the fine-scale mesh size.
Due to the term H−2, the condition number will deteriorate with increasing
number of sub-domains, or refinement of the grid.

4.3.3 Scalable preconditioners

Domain decomposition methods are most often used as preconditioners for
solving large linear systems. Thus, it is crucial to bound the condition num-
ber for increasing number of sub-domains. The preconditioner is said to be
scalable if the condition number is bounded. That is, if the condition number
is close to constant when we refine the grid and keep the ratio between the
fine-scale and coarse-scale mesh size (H

h
) fixed.

We can illustrated this by a small scaling exercise. Let us consider a the
single sub-domain K ⊂ R

n of size H < 1, which is bounded and where the
boundary ∂K is Lipschitz continuous. We further assume that there exist
two functions u, v ∈ H1(K) such that,

|v|2H1(K) ≤ C‖u‖2H1(K). (4.37)

The two functions u and v are bounded by a constant C that only depends
on K. By the transformation x = Hx∗ from K to the domain K̃ with the
same shape and with unit mesh size, we arrive at the new bound

|v|2H1(K) ≤
C̃

H2
‖u‖2H1(K), (4.38)

where the constant C̃ only depends on the shape, and not the size, of K. In
order to remove the dependence of H−2, we need to impose a Poincaré in-
equality of the type ‖u‖2L2(K) ≤ C̃2H

2|u|2H1(K). Such a bound on the L2-norm

can found to hold, if the solution u has a zero mean over K [92]. For one-level
methods, if K is not connected with the global Dirichlet boundary, we can
not in general impose such a bound. For two-level methods, where the coarse
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space is able to represent at least constant solutions exactly, such a bound
may be found, and we can construct scalable preconditioners. That is why we
need to consider multilevel methods, when we build domain decomposition
preconditioners for solving large elliptic problems. For more complicated el-
liptic problems, e.g with oscillating coefficients, we need to require additional
properties of the coarse space. This is discussed more in detail in Section
4.4.2.

4.4 Two-Level Substructuring Methods

We have now seen that the rate of convergence for one-level domain decompo-
sition preconditioners deteriorates in the case of many sub-domains. In order
to make the rate of convergence independent upon the size of the problem,
we need to include a global coarse space component.

4.4.1 Coarse scale correction

From the previous section we have learned that iterative substructuring meth-
ods, when applied to large linear systems, should be used as precondition-
ers. Usually, these methods are applied as preconditioners for the Krylov
methods, i.e. the conjugate gradient (CG) and generalised minimal residual
(GMRES) method. The aim is to minimize the error function e, given by the
relation Se = r, but since the error function involves the inverse of the matrix
S, it is more convenient to work with the residual. The starting point for all
the Krylov-type algorithms is the residual r = g−Su, on the fine-scale. The
residual can be distributed to all sub-domains and minimized in an iterative
procedure such that the updated solution takes the following form:

uk+1 = uk +BF r
k (4.39)

In this equation BF represents a one-level preconditioner (additive or mul-
tiplicative) on the fine scale, consisting of local solvers or preconditioners.
Experience shows that many local solvers are efficient for reducing the high-
frequency oscillations of the residual, but they are slow in reducing the low-
frequency oscillations. This is due to the slow transportation speed of global
information. If we can approximate the residual rC on a coarser space, we
can accelerate the convergence of the low-frequency error. Suppose that RC

represents the restriction operator from the fine-scale degrees of freedom to
the coarse scale degrees of freedom and that AC is an operator on the coarse
scale. Then
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uk+
1
2 = uk +RT

CACRCr
k

uk+1 = uk+
1
2 +BF r

k+ 1
2

represents a simple two-step, two-level algorithm for minimizing the residual.
We can write BC = RT

CA
−1
C RC as the coarse scale preconditioner and write

the two-level iterative algorithm on the following compact form,

uk+1 = uk + (BC +BF − BFSBC)r
k. (4.40)

We clearly see that the full preconditioner B2,MS = BC +BF −BFSBC takes
the form of a two-level, multiplicative Schwarz operator. In the same manner
we can also construct two-level additive Schwarz preconditioners.

4.4.2 Space decomposition

The building blocks of an efficient two-level preconditioner consist of many
local preconditioners and a suitable coarse-scale solver. A global coarse-scale
component is essential for bounding the number of iterations for large elliptic
problems, and the development of suitable coarse spaces has been one of the
main topic of research within domain decomposition during the last couple
of decades. See e.g. [93, 71] for an historical overview.

We will define V0 as our coarse space and assume the following space
decomposition:

V = RT
0 V0 +

N∑
i=1

RT
i Vi. (4.41)

The operators RT
i , i = 1, . . . , n, are the usual extension operators defined

in Section 4.1.3. The extension operator RT
0 : V0 → V represents the inter-

polation from the coarse scale degrees of freedom to the fine-scale degrees
of freedom and is also refered to as the coarse-scale basis function. The
coarse-scale basis function is usually defined somewhat different from the
local extension operators Ri; see Section 4.4.3 for more details.

The coarse space can be related to the local spaces in several different
ways, leading to a number of different substructuring methods. In addition to
the two-level additive and two-level multiplicative methods, we may construct
hybrid Schwarz methods, where the coarse and local operators are treated in
different ways.
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It is the choice of V0 and RT
0 which really defines the efficiency of the

domain decomposition preconditioner. The construction of these parameters
has been the main focus of all the papers [83, 84, 82] included in this thesis.

There are two principle properties, which has shown to be important
when constructing the coarse space. The first principle states that all the
sub-spaces {Vi, 0 ≤ i ≤ N} should form a stable splitting of V . Thus, for
every v ∈ V

v =
N∑
i=0

RT
i vi, where vi ∈ Vi, (4.42)

such that

N∑
i=0

ai(vi, vi) ≤ C0a(v, v). (4.43)

Here a(· , · ) is the same inner-product as used in Section 4.1.2. The principle
is also refered to as the bounded energy condition, and it is important that the
coarse space satisfies this condition. The second important principle is called
the null-space property, which states that the coarse space should include
the null-space of all the bilinear forms ai(· , · ) [68]. For the scalar second
order elliptic problems, the null-spaces are given by constant functions. This
condition is directly related to the Poincaré inequality, discussed in Section
4.3.3, and can be thought of as fixing the constant for the inexact local
Neumann problems.

The coarse scale operator AC ∈ V0 is often defined in terms of a Galerkin
approximation AC = R0AR

T
0 , where the interpolation operator RT

0 consisting
of coarse scale basis functions defines the coarse space. However, the coarse-
scale operators can be defined quite freely, on some coarse mesh which may
or may not coincide with the sub-domain mesh. In general, it is preferable
that the coarse-scale elements are comparable in size with the sub-domains
[92].

4.4.3 Coarse-scale basis functions

The coarse-scale basis functions span out the solution on the coarse scale.
Thus, it is important that these functions capture the principle flow on the
underlying fine-scale. In order for the domain decomposition preconditioner
to be efficient, it is also important that the coarse scale basis functions satisfy
the bounded energy condition and the null-space property. In the following
we will discuss the piecewise constant basis function and the discrete har-
monic basis function.
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The space of piecewise constant basis-functions is used in the Balancing
domain decomposition (BDD) preconditioner [69]. The method satisfies the
null-space property for scalar elliptic problems. The advantage of this rather
simple coarse space, is that it is applicable to very general geometries and
the algorithm is rather simple to implement. The dual equivalent to BDD is
the FETI algorithm [35]. It uses the same coarse space as BDD, is entirely
algebraic, and applies to the dual formulation (4.29). These two methods
capture the constant solution of the coarse scale, in which case it is possible
to make the condition number independent upon the size of the problem.

Most domain decomposition preconditioners are efficient for solving large
scalar elliptic problems, when the scalar coefficient a is constant on each sub-
domain. For varying coefficients inside the sub-domains, it is not straight
forward to satisfy the bounded energy condition. The BDDC (balancing
domain decomposition by constraints) method of Dohrmann is a two-level
Neumann-Neumann preconditioner, based on constrained energy minimiza-
tion. The coarse space consists of piecewise discrete harmonic functions. The
coarse preconditioner is additive rather then multiplicative, which makes it
possible to choose a different bilinear form for the coarse space. Consequently,
the coarse-scale operator of the BDDC preconditioner is less dense.

The coarse-scale basis-functions Φi are computed as a constrained mini-
mization problem, minimizing the energy expression

E = ΦT
i A

(i)Φi/2. (4.44)

The coarse scale operator A
(i)
C , corresponding to each sub-domain is further

determined by the basis-functions, such that

A
(i)
C = ΦT

i A
(i)Φ. (4.45)

The dual equivalent to the BDDC is the FETI-DP [34], which was developed
prior to the BDDC. The FETI-DP preconditioner uses primal unknowns on
the corners and dual Lagrange multipliers for the continuity of the solution
on the remaining part of the boundary Γ. A special version of the FETI-DP
algorithm is called the P-FETI-DP [38] and can be shown to be similar to
the BDDC method. In fact, all these methods have shown to be related and
they give more or less the same eigenvalues. Thus, they are also comparable
w.r.t. convergence rates [62, 70].

Discrete harmonic basis functions are also used in the multiscale methods.
These methods are like domain decomposition preconditioners, but applied to
elliptic problems with highly varying coefficients, i.e. porous media problems.
The aim of the multiscale methods are to capture as much of the fine-scale
information as possible inside the coarse-scale basis functions, and to use
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the coarse-scale solution after only one iteration (upscaling) to recalculate
an approximate fine-scale flow field which can be used for efficient reservoir
simulations. These methods are the focus of the next Chapter 5.



Chapter 5

Multiscale Methods

In the previous two chapters we have investigated two different approaches for
efficiently solving the elliptic problem for flow in porous media. By upscaling,
we reduce the dimension of our fine-scale problem and seek a coarse-scale
solution which have equivalent properties to the some pre-defined average
of the fine-scale solution. In domain decomposition, we construct consistent
interpolation functions between the scales and use the coarse-scale solution as
a preconditioner to efficiently solve the fine-scale problem. In this chapter we
introduce the multiscale methods, which can be seen as combined techniques
of upscaling and domain decomposition.

We start by giving a general background to the multiscale methods, before
focusing on the multiscale methods applied to the control volume formula-
tion. We will show that these methods can be formulated as both upscaling
methods and multiscale domain decomposition preconditioners.

5.1 Introduction to the multiscale methods

The multiscale methods for solving multi-phase flow in porous media are
quite recent compared to upscaling and domain decomposition, but during
the last 10-15 years these methods have gained an increasing interest. The
main motivation is that while the fluid velocities in the reservoirs can have
large variations on the fine-scale due to rapid variations in the fine-scale per-
meability, the pressure is in general smoother and may be well represented
on an integrated coarse scale. Thus, when applied to e.g. an IMPES formu-
lation, the elliptic pressure equation is solved primarily on the coarse scale,
while the transport of fluids is carried out on the fine-scale.

The solution of the elliptic problem is often the main bottleneck of the
simulations. The multiscale methods contribute to a substantial speed-up of
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the fine-scale simulations by solving the elliptic equation for the pressure on
the coarse scale. Thus, the multiscale method can be seen as a compromise,
between pure upscaling and solving the entire problem on the fine-scale.

If we consider the case of two-phase flow, the mobility ratio and relative
permeabilities will change as the saturation front evolves in time. Thus, the
flow conditions and the premises for single-phase upscaling also changes. In
this case, the updated fine-scale flow field from the multiscale simulation can
be applied to recompute the basis functions used for the upscaling. Hence, the
multiscale methods can also be seen as an alternative to two-phase upscaling.

5.1.1 The multiscale finite element method

The multiscale finite element method (MsFEM) for elliptic problems in
porous media was first proposed in [49] as an upscaling technique. The
objective at that time, was that the elliptic problem is too computationally
expensive to be resolved at the fine-scale. Hence, upscaling is needed to re-
duce the large degrees of freedom of the fine-scale elliptic problem. However,
we know that the small scale heterogeneities can have a significant influence
on the fluid flow on the fine scale. By recalculating the fine-scale pressures,
the transport of fluids can be carried out on the fine-scale.

The multiscale relation is written as,

ufine =
n∑
i

φiuicoarse, (5.1)

for i = 1, . . . , n, where n is the number of coarse nodes. The local coarse-
scale basis functions φi express the coupling between the coarse scale and
the fine scale. The aim of MsFEM is to capture fine-scale information of
the elliptic operator into the local coarse-scale basis functions, thus, enforc-
ing the correct fine-scale effects onto the coarse-scale. The MsFEM method
indicated improved accuracy of the elliptic solution on the coarse scale, com-
pared to standard upscaling methods for problems involving strong sub-scale
heterogeneities. Furthermore, the approximate fine-scale solution recovered
from the local basis functions showed comparable accuracy to the fully re-
solved solution for many problems. Especially flux dependent properties, like
the water-cut, show fairly good match with the full-field fine-scale model. In
the homogeneous limit, where the periodicity of the fine-scale heterogeneities
goes to zero, the multiscale method gives the correct effective solution on the
coarse-scale.

The key element of the multiscale method is the local basis-functions.
We will here describe the MsFEM basis functions for a 2D regular Cartesian
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Γ1 Γ2

Γ3

Γ4

Ωi

Figure 5.1: Illustration of a 2D Cartesian coarse block for the MsFEM
method

grid, with coarse elements Ωi ⊂ Ω as illustrated in Figure 5.1. The local
basis function φi used in the multiscale method is defined on Ωi such that

−∇· (K∇φi
)
= 0 in Ωi ⊂ Ω. (5.2)

We construct one local MsFEM basis function φi
j (j = 1, . . . , 4) for each ver-

tex node of the coarse element Ωi. For a 2D rectangular coarse element and
isotropic permeability K, the boundary condition on the horizontal bound-
aries Γ3 and Γ4 is given by the reduced 1D problem

− ∂

∂x
kx
∂φi

∂x
= 0. (5.3)

Similarly we can construct the boundary condition for the vertical 1D bound-
aries. The uniqueness and continuity of φi is guaranteed through the con-
ditions on the corner nodes xj, where φ

i(xj) = δij. The MsFEM method
can also be extended to 3D problems, however, only for Cartesian grids with
isotropic permeability. The basis functions satisfy the following interpolation
properties,

0 ≤ φi ≤ 1, (5.4)∑
i

φi = 1. (5.5)

Note that, in the case of homogeneous permeability the oscillating basis func-
tions of MsFEM reduces to the standard linear finite element basis functions.
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The MsFEM method is often considered to be the first of what we will
denote the multiscale methods for elliptic problems involving flow in porous
media. Many of the key ideas were formulated in the pioneering works of
Hou and Wu ([49] and [50]). In contrast to traditional upscaling methods,
the multiscale methods do not assume scale-separation or periodicity of the
porous rock. In fact, one of the main motivations is to capture the resonance
error occurring at the sub-scale between the geological fine scale and the
computational coarse scale. This is known as the oversampling technique.

5.1.2 The oversampling technique

An error is introduced on the boundary between the coarse elements due
to the approximation induced in the local boundary conditions. The true
boundary condition can only be found by actually solving the fine-scale prob-
lem. As a result, the error of the approximate solution, computed by the
multiscale method, is always largest close to the local boundaries. Another
important observation is that while the small-scale heterogeneities are well
captured within the local-basis functions and the large scale heterogeneities
are captured on the coarse scale, the intermediate-scale heterogeneities on
the size of the coarse element corresponds to the largest error. This is known
as the resonance effect.

The answer to these problems, as it is proposed in [50], is oversampling.
That is, for each coarse element Ωi we compute the local basis functions
ψi
j on an extended local domain Ω′

i ⊂ Ωi. Boundary conditions are then
placed on Ω′

i, away from the boundary of the coarse element Ωi, i.e., moving
the main approximation error further away from the coarse element. The
local basis functions φi

j on Ωi are then found by scaling the part of ψi
j which

belongs to Ωi. It can be shown that the interpolation properties (5.4) and
(5.5) still hold on Ωi with oversampling. However, two basis functions φi

j and

φi+1
j corresponding to the same vertex node do not have to coincide on the

boundary. I.e. the elements are allowed to be non-conformal.
Another way of thinking about oversampling, is that the local boundary

conditions are moved closer to the global boundary, which for most elliptic
problems are known. Thus, oversampling is a way of incorporating global
information into the calculation of the local basis functions. In the limit,
as the entire global domain is chosen as the oversampling region, we can
compute the exact local boundary conditions.

In [30] they apply the local-global upscaling technique on the multiscale
method. Thus, they apply a global approximation of the fine-scale solution
in order to more precisely calculate the boundary conditions for the local
basis-function problems. Furthermore, Efendiev et. al. [32] uses the ex-



5.1 Introduction to the multiscale methods 73

act fine-scale solution of the first time step to more accurately represent the
multiscale basis-functions which are being applied for the entire multiscale
simulation. Both of these methods result in more accurate multiscale ap-
proximations, however, they are based on pre-calculated global information
which is computationally more expensive. Another remark regarding these
methods, is that the pre-defined global information needs to be updated for
each new well that is introduced in the simulation.

The construction of the independent local basis functions in [30, 32] fol-
lows the exact same steps as the MsFEM method, in which the reduced
boundary condition is applied on the interfaces. This local boundary condi-
tion will still provide an interpolation error on the fine-scale. In [84] we show
that it is in fact possible to incorporate the global fine-scale solution into the
coarse operator, such that the fine-scale information is exactly represented,
i.e. removing the interpolation error from the multiscale simulation.

5.1.3 The mixed multiscale finite element method

The MsFEM method was further extended to flow and transport by the
mixed multiscale finite element method (MMsFEM) of [21]. In the mixed
formulation, the solution for the pressure and the flux is computed simulta-
neously on each interface Γij, between two coarse elements Ti and Tj. The
two-domain region is illustrated in Figure 5.2. Thus, the MMsFEM method
applies a pair of basis functions (φij, ψij) ∈ (U × V ), for the pressure and
velocity, respectively. Here (U , V ) ⊂ L2(Ω)×H(div; Ω) are the finite dimen-

Γij

Ti Tj

Figure 5.2: Upscaling region for the MMsFEM method
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sional multiscale spaces of the discrete problem.
Assume a triangulation T = {T}. The multiscale spaces are spanned by

their local basis functions, where ψij = −Kλt∇φij. The local basis function
φij is calculated from the two-domain problem,

∇ · ψij =
1

|Ti| in Ti, (5.6)

∇ · ψij = − 1

|Tj| in Tj, (5.7)

subject to the boundary conditions

ψij · nij =
1

|Γij| on Γij (5.8)

and

ψij · n = 0 on ∂Ti ∪ ∂Tj \ Γij. (5.9)

The Equations (5.6) and (5.7) form the homogeneous elliptic problem. This
is the same equation which is also being used for the calculation of the local
MsFEM basis functions.

In the MMsFEM framework, both the pressure and the velocity are com-
puted on the coarse scale as well as interpolated onto the fine-scale. The
approximate fine-scale solution is mass-conservative and may be applied for
fine-scale simulations. However, as pointed out by Aarnes et. al. [1], the
local conservation only exists on the coarse scale. Fine-scale source terms
(non-zero right hand side term f) are not taken into account when calculat-
ing the coarse-scale basis functions. Thus, injection and production wells are
only modelled on the coarse scale, and their contribution on the fine-scale
will be averaged out across the entire coarse element.

Aarnes et. al. [1] modified the MMsFEM method, and included local
conservation on the coarse elements which contained source terms. Thus,
the MMsFEM method can be applied to simulate on the fine-scale. In the
case of

∫
Ti
f dx ≥ 0, the modified basis function ψij is defined on Ti such

that

∇ · ψij =
f∫

Ti
fdx

, (5.10)

subject to the boundary conditions (5.8) and (5.9). In the case of
∫
Ti
f

dx = 0, the Equations (5.6) and (5.7) are considered. The framework for
calculating the local basis-functions for dynamical variables on the interface
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is much more flexible than the nodal based basis functions with respect to
the gridding. The MMsFEM method can be used to simulate on general
grids.

Further extensions of this framework have focused on improved sub-
scale capturing of large-scale structures [4], better modelling of the well-bore
and near-well flow [59]. For efficient multiscale simulations, the MMsFEM
method has also been coupled with streamline methods for transport [3, 90].

5.1.4 The variational multiscale method

In the variational multiscale (VMS) method we follow an alternative ap-
proach, different from traditional upscaling. Considering the variational for-
mulation

a(u, v) = (f, v) ∀ v ∈ V, (5.11)

where a(u, v) is a bilinear form, VMS seek a two-scale solution u = uc+uf ∈
U = Uf ⊕Uc. Here, uc ∈ Uc represents the coarse-scale solution, and uf ∈ Uf

corresponds to the remaining part of the solution on the fine-scale. Thus,
from the spitting we can write the fine-scale and coarse-scale equations as
follows:

a(uf , vf ) + a(ac, vf ) = (f, vf ) vf ∈ Vf , (5.12)

a(uf , vc) + a(ac, vc) = (f, vc) vc ∈ Vc, (5.13)

Note, that the multiscale framework is formulated in the continuous space.
Most of the VMS methods originates from the work of Hughes [51], where
the fine-scale solution uf is written in terms of a Green’s function. Different
approximations of the Green’s functions, will then in general result in dif-
ferent VMS methods. The spaces Uf and Uc are normally orthogonal, but
this is not a requirement. In [60] they decompose the fine-scale solution,
uf =

∑
i u

i
f , where u

i
f ∈ U i

f (ωi) ⊂ Uf (Ω) is a localised solution with sup-
port on ωi ⊂ Ω. The ωi is here refered to as a patch, and the size of these
patches may be optimised based on a posteriori error estimates. Adaptive
implementations based on the residual error have also been proposed [73].

5.2 Multiscale control-volume methods

In this section we will consider the multiscale methods designed for the
control-volume discretisation, also known as the finite-volume discretisation.
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Most of conventional reservoir simulators are based on the control-volume dis-
cretisation, thus one might claim that these multiscale methods have a greater
potential of being implemented into existing reservoir simulator frameworks.
The multiscale finite volume (MSFV) method is developed by [53], and is
the most well-known of the multiscale methods for control volumes. This
method has been of special interest for the study in this thesis.

The MSFV method can be shown to be similar to upscaling of transmis-
sibillities, in which the coarse-scale system also represents a discretisation
based on the control volume formulation. The method can also be seen as
a special case of a mass-conservative domain decomposition preconditioner,
which is termed MCDD [73]. Both of these numerical strategies will be dis-
cussed more in the following. In our research we have considered the MCDD
preconditioner, and we have developed several new multiscale control-volume
methods with different numerical properties.

5.2.1 The multiscale finite volume method

The MSFV method was developed by Jenny et. al. [53] as the finite volume
equivalent of the MsFEM. The multiscale assumption of the MSFV method
is the same as that of the MsFEM method and the construction of the local
basis functions are the same. These are defined in Equations (5.1) and (5.5).

The reconstruction of the fine-scale fluxes is different, and a bit more in-
volved for the MSFV method. Since finite volumes are cell centred, whereas
the finite elements are mesh centred, the local basis functions of the MSFV
method are constructed on a mesh-centred dual coarse-grid. The dual-grid is
illustrated in Figure 5.3. While the coarse scale pressure and fluxes are rep-
resented on the cell-centred primal coarse-grid, a post-processing step is re-
quired to recover the fine-scale mass-conservative fluxes. The post-processing
step is described in [53].

Much of the work on extending/improving the MSFV method has focused
on application towards more realistic problems in the petroleum industry;
mainly towards including more physics into the framework. One of the main
challenges has been to incorporate physical features that are not linearly
scalable with the pressure. Such properties can not be captured by the
local basis-functions, as they are defined in Equation (5.1). Recall that the
multiscale basis function is designed to capture local fine-scale information
of the elliptic operator with zero right-hand side, i.e. the solution of the
homogeneous elliptic problem (5.2). In [66] they propose a second set of
functions, denoted the correction functions {ψi}. These additional degrees
of freedom, one per coarse node, need to be included in order to capture
gravity effects and capillary effects. They are calculated by solving the local
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elliptic problem with the right-hand side term and zero boundary conditions.
The fine-scale solution is then defined as

ufine =
∑
i

(
φiuicoarse + ψi

)
. (5.14)

Similar to the MMsFEMmethod, wells are not easily included into the MSFV
framework. The pressure regime in the vicinity of a production well is non-
linear, and is not captured by either the MSFV basis function or the correc-
tion function. One additional basis function per well needs to be included in
order to recover the locally conservative flux field in the vicinity of each well
[54, 94]. Much work has also been devoted to improve the MSFV basis func-
tion towards particularly difficult porous structures, e.g. anisotropic porous
media [65], shale layers [64] and fractured reservoirs [45].

It can however be criticised that too little research has been devoted to
improving the MSFV method for conducting simulations on irregular grids
and more complex geometries. All applications of the MSFV method seem to
be considering regular Cartesian grids. The MSFV method has further been
extended to 3D multiscale simulations [61], however, restricted to regular
Cartesian grids.

The reduced boundary condition which is used to construct the MSFV
basis function has clear weaknesses towards simulations on anisotropic porous
media and non-K-orthogonal grids [58, 84]. In addition, the boundary con-
dition is a geometric approximation, which is less robust w.r.t. irregular grid
structures and is not in general extendible to multilevel methods [83].

5.2.2 The MSFV as an upscaling technique

The MSFV method was first implemented as an upscaling method, similar
to the MsFEM method. MSFV can be seen as an upscaling of fluxes or
transmissibillities.

Consider a regular Cartesian grid in two dimensions. For each dual coarse-
grid cell (see Figure 5.3) we compute one basis function related to each coarse
node. The coarse nodes are located at the corners of the dual coarse cell.
The MSFV method solve 4 local basis function problems on each dual-coarse
cell Ωi, subject to the multiscale conditions (5.4) and (5.5). Recall from
Section 3.2.3, that this is equivalent to the upscaling of transmissibillities in
the MPFA method. Thus, on each dual coarse cell (interaction region) we
have the following relationship between the basis-functions and the fluxes
across the primal coarse interfaces:
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Figure 5.3: Illustration of a dual coarse grid cell for the MSFV method
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In pure upscaling, the fluxes and transmissibillity coefficients across the
coarse interfaces are summed together as coarse scale parameters. In the
MSFV method, the fine-scale transmissibillities are stored in memory, for
the recalculation of a mass-conservative fine-scale flux field. This post pro-
cessing step is the only difference between an upscaling method as described
in Chapter 3 and the MSFV method. If we sum the transmissibillities on the
fine-scale together, we obtain the coarse operator of the MSFV method. This
operator turns out to be similar to the MPFA-O(η) method, where η = 1
[46]. Recall from Chapter 2 that the numerical schemes resulting from the
MPFA methods may have monotonicity issues for anisotropic flow, in cases
where the principle directions of the permeability tensor is not aligned with
the grid. Indeed this is also the case for the 9-point scheme of the MSFV
coarse operator [84]. In [46] they propose a new compact coarse operator,
which combined with the MSFV basis functions gives a more robust multi-
scale finite volume method for problems involving anisotropic porous media.

Similar to other upscaling methods, the accuracy of the MSFV method
can be improved by means of oversampling [40], or inclusion of global infor-
mation [30, 32]. Another approach, to be described next, is to formulate the
MSFV method in an iterative framework.
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5.2.3 The multiscale methods in an iterative framework

While the coarse scale operator of the MSFV method suffers from mono-
tonicity issues, there might be large local errors in the approximate multi-
scale solution, but in many cases the multiscale solution can be substantially
improved by applying a few local iterations. The first iterative formulation
of the MSFV method was described in [44]. Here, they proposed to iterate
on the boundary conditions for the elliptic problem of solving the local basis-
function, and for this purpose they applied a line relaxation method. The
MSFV method is easily extended to an iterative multiscale method. In fact,
the original MSFV method itself, can be seen as a special case of a mass-
conservative domain-decomposition (MCDD) preconditioner, which applies
one numerical iteration before recovering the mass-conservative fine-scale so-
lution [75].

The link between multiscale methods and domain decomposition has also
been studied for the MsFEM method [2]. Similar to the MSFV method, the
MsFEM method can be viewed as a non-overlapping domain decomposition
preconditioner. Their study indicates that the reduced boundary condition
gives a faster convergence than the use of linear boundary conditions for most
problems in 2D and 3D. Note also that in 1D, the MsFEM method is exact,
i.e. it fully resolves the solution after one iteration.

For 2D elliptic problems with highly oscillating coefficients, the condition
number is proportional to the largest jump in material constants. To some
extent, the harmonic basis functions of the multiscale methods (MsFEM and
MSFV) can capture the fine-scale oscillations on the sub-domain and thus
result in more robust preconditioners for flow in heterogeneous porous media
[42].

In the framework of domain decomposition, the multiscale control vol-
ume methods are considered to be special types of Schur complement pre-
conditioners, or MCDD-preconditioners. By a pre-processing of the fine-scale
linear system, mass-conservation can be passed onto any hierarchical coarse
grid [83]. If no approximations are considered for the coarse-scale nodes, a
mass-conservative solution may be calculated on the coarse-scale, and recov-
ered on the fine-scale. The recomputation of the fine-scale mass-conservative
flux-field follows the post-processing step of the MSFV method [53]. Different
approximations to the Schur complement is equivalent to choosing different
boundary conditions, and will lead to different multiscale methods or differ-
ent MCDD-preconditioners. The reduced boundary conditions of the MSFV
method for problems involving for regular Cartesian grids, is equivalent with
a special Schur complement approximation called the Tangential component
(TC) approximation [84]. The TC approximation is most accurate when the
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principle directions of the flow is aligned in the same direction as the local
boundaries. In case of strong anisotropic flow and flow on irregular grids,
other approximations are more accurate.

In our study we have studied the multiscale methods in the framework of
MCDD. By developing algebraic preconditioners, we seek multiscale control
volume methods that are more robust with respect to challenging grids and
porous structures. Furthermore, we aim at constructing a flexible multiscale
framework. Based on the problem, we should be able to optimise the size
of each sub-domain, the number of coarse levels, the number of coarse-scale
nodes on each coarse level, and the numerical interface approximation on
each sub-domain boundary. These aspects have been studied in the scientific
papers.



Chapter 6

Summary of papers and
conclusion

The thesis includes three scientific papers. In the preceding chapters we
have presented the theory and foundation for the study of this thesis. In
this chapter we will give a short summary to each of the papers; present the
problems that we have investigated and summarize the main results that we
have obtained. In the end of this chapter we draw some general conclusions
upon the results and insight that we have achieved.

In addition to the scientific papers, a book chapter is included as a sup-
porting material to this dissertation. Here we give a detailed description
of the mass-conservative domain-decomposition preconditioners, which has
been our framework when studying the multiscale control-volume methods.
The chapter should be regarded as a complement to the thesis and should
be read after the three scientific papers, in the light of the results and the
findings that we have obtained.

6.1 Summary of papers

Paper A: Multiscale Mass-Conservative Domain-Decomposition Precondi-
tioners for Elliptic Problems on Irregular Grids. Published in Computational
Geosciences, Vol. 15(3), Pages 587-602, June 2011.

Andreas Sandvin, Jan Martin Nordbotten and Ivar Aavatsmark

In Section 5.2 we showed how the multiscale control volume method
can be seen as a Schur complement preconditioner for a DD-method. This
was first demonstrated in [75], where they formulated the MSFV as a
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special type of mass-conservative DD preconditioners, termed MCDD. In
this paper we examine several multiscale control-volume methods within the
framework of MCDD, we study the mathematical and numerical properties
of these methods and develop new MCDD-preconditioners and multiscale
control-volume methods. We demonstrate how the original MSFV method
fails to capture the linear pressure field on irregular Cartesian grids, and
that it is not in general robust with respect to long-range heterogeneities.
We developed a multiscale framework based on probing, which is pure
algebraic and a more robust with respect to simulations on irregular grid
structures.

Recall from Section 4.3.2 that the probing technique applies certain
linearly independent probing vectors on each sub-domain, and that these
vectors will be exactly captured by the numerical method. We show
that, based on the choice of these vectors, we can build either robust
preconditioners, or accurate upscaling methods. In particular, we propose a
new upscaling method based on pre-defined local flow fields. The resulting
multiscale framework based on probing is convergent, more flexible and it
is a natural way of incorporating global or non-local information into the
multiscale simulation.

Paper B: A Unified Multilevel Framework of Upscaling and Domain-
Decomposition. Proceeding paper of the XVIII International Conference on
Water Resources, Barcelona 2010.

Andreas Sandvin, Jan Martin Nordbotten and Ivar Aavatsmark

The multiscale control-volume methods can be seen as either an up-
scaling method or a DD-preconditioner. This was discussed in Section 5.2
for the MSFV method. The same applies for the MCDD preconditioners, in
which case we can stop the iteration process at any iteration step and recap-
ture a fine-scale mass-conservative flux field. In this paper we show that the
hierarchical multi-grid structure of the multiscale control-volume methods
can easily be extended to build true multiscale methods in the framework
of MCDD. In order to reconstruct a mass-conservative flux-field on the finer
level, we have to require mass-conservative systems on the coarser grids. We
only have to exactly compute the solution on the coarsest mass-conservative
level. Furthermore, the mass-conservative solutions can be recovered
stepwise onto the finest level. We demonstrated the multilevel framework
of MCDD, together with the flexibility of the MCDD-preconditioner, by
combining upscaling and preconditioning. On a three level grid, we upscale
the finest level and apply a preconditioner on the intermediate level. We
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observe that the multilevel framework is robust and that various upscaling
techniques can be applied with different preconditioners.

Paper C: Auxiliary Variables for 3D Multiscale Simulations in Het-
erogeneous Porous Media. Submitted to Journal of Computational Physics,
November 2011

Andreas Sandvin, Eirik Keilegavlen and Jan Martin Nordbotten

In Section 4.4 we discussed the importance of having a rich coarse
space for the performance of the DD-preconditioners. In this paper we
develop an new strategy for improving the robustness of the multiscale sim-
ulations in 3D, by means of including more information to the coarse space.
In addition to the common mass-conservative variables on the coarse-scale,
auxiliary coarse variables can be included, to capture non-linear effects
which are not easily captured by the standard multiscale basis functions.

The construction of scalable domain decomposition preconditioners in
3D is non-trivial. In particular the vertex based coarse space, commonly
applied with the multiscale methods, do not bound the condition number for
increasing number of sub-domains. The multiscale framework using auxiliary
variables is a generalisation of the vertex based method, which allows for
additional degrees of freedom on the coarse scale. A special choice of the
auxiliary variables results in the wire-basket method. This method is more
robust in 3D and has been shown to yield scalable preconditioners for certain
problems [89].

Our results clearly show that the wire-basket method results in a much
better preconditioner than the usual vertex based method. The study also
shows that we do not need to use all coarse-scale degrees of freedom related
to the wire-basket. For problems involving flow in porous media, the method
of auxiliary variables requires substantially less numbers of iterations when
including a few additional coarse-scale degrees of freedom on the interfaces.

6.2 Conclusion

In this thesis we have analysed the multiscale control volume methods for flow
in porous media. We have developed a flexible iterative multiscale framework,
based on domain decomposition and we have implemented several multiscale
preconditioners with increased robustness with respect to heterogeneous flow
in porous media. The objective of this thesis has been to mature the multi-
scale control-volume methods towards applications on realistic porous media.
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In particular, we have extended the multiscale framework toward simulations
on general grids (paper A), general scales (paper B) and general dimensions
(paper C and supporting material).

During this work we have identified several weaknesses of the multiscale
framework of e.g. the MsFEM method and the MSFV method. In our
opinion, the MCDD framework is more flexible and has several advantages
over these methods. The multiscale method can be applied as an upscal-
ing method, a domain decomposition preconditioner, or as a combination of
upscaling and domain decomposition. Secondly, the framework is algebraic
and the methods can be implemented as adaptive multilevel preconditioners.
Finally, auxiliary variables may be included on the coarse scale, which enable
the user to model the coarse scale more accurately.

For certain challenging problems of porous media flow, where the flow
on the coarse scale is not aligned with the principle directions of the coarse-
scale grid, the multiscale coarse-scale operator do not nescessarily satisfy the
monotonicity criteria. This can result in large numerical errors in the coarse
scale solution, and correspondingly pour approximations to the fine-scale flux
field. These fluxes may not be applicable for conducting simulations. For
such problems, it is absolutely crucial to be able to iterate on the coarse-scale
solution. Within the framework of MCDD, we can iteratively improve the
coarse-scale solution to whatever accuracy that we desire. At any iteration
step, we can recover a mass-conservative fine-scale flux field and run fine-scale
simulations accordingly.

The increased robustness and flexibility of the multiscale methods brings
us closer to the ultimate goal of combining simulations on the geological
fine-scale model and the coarse-scale simulation model. Moreover, efficient
implementations of this framework can make it possible to include the influ-
ence of detailed fine-scale information, such as results from fractured network
models and fault descriptions, into the reservoir simulator. This may sub-
stantially improve the accuracy of future reservoir simulations.
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Abstract Multiscale methods can in many cases be
viewed as special types of domain decomposition pre-
conditioners. The localisation approximations intro-
duced within the multiscale framework are dependent
upon both the heterogeneity of the reservoir and the
structure of the computational grid. While previous
works on multiscale control volume methods have fo-
cused on heterogeneous elliptic problems on regular
Cartesian grids, we have tested the multiscale control
volume formulations on two-dimensional elliptic prob-
lems involving heterogeneous media and irregular grid
structures. Our study shows that the tangential flow
approximation commonly used within multiscale meth-
ods is not suited for problems involving rough grids.
We present a more robust mass conservative domain
decomposition preconditioner for simulating flow in
heterogeneous porous media on general grids.

Keywords Porous media · Reservoir simulation ·
Multilevel

1 Introduction

The heterogeneities at different scales in porous rocks
make reservoir simulations computationally challeng-
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ing, both with respect to time consumption and ac-
curacy. The rapid variations in fine-scale permeability
have big influence on the flow and need to be accounted
for in the numerical methods. Various upscaling proce-
dures have been developed to increase the efficiency
of the flow calculations (see [12]). These techniques
serve to construct coarse-scale flow parameters for the
global problem on a coarser scale. However, for flow
in complex geological media, it is crucial to solve the
transport of fluids on the fine scale (Darcy scale). The
idea behind multiscale methods as it was presented in
[18] is to capture the fine-scale flow properties within
independent local basis functions. After solving for the
pressure on the coarse scale, the local basis functions
then serve as accurate interpolation functions from the
coarse-scale to the fine-scale pressure solution. Since
the significant change in saturation often takes place
in smaller parts of the global domain, only a few local
basis functions need to be recalculated at each time
step. Also, since the local basis functions are indepen-
dent, the calculation of these may be carried out in par-
allel. Numerical experiments show that the multiscale
technique can be efficient for solving multiphase flow
problems in heterogeneous porous media [1, 3, 20].
The accuracy of the multiscale solution will, how-

ever, depend on the choice of localisation approxima-
tion, i.e. the choice of boundary conditions for the local
basis function problems. Since the error in the local
solutions is the largest close to the local boundaries, it
has been shown in [19] that the error can be greatly re-
duced by calculating the local basis functions on larger
overlapping domains. This corresponds to moving the
local boundaries closer to the global boundary which
determines the exact flow field. Another approach is
to directly incorporate global information into the local
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boundary value problems, by first solving an initial
global fine-scale problem [11]. The use of local–global
information has also been considered in [10]. While
these methods may provide more accurate local solu-
tions, they are in general more computationally expen-
sive, specially in the case of repeated update of the
global information, e.g. for changing global boundary
conditions. A third approach is to improve the accuracy
by means of local iterations on the domain interfaces
[16, 28]. We will consider the latter approach.
It has been showed, in [28], that the multiscale finite-

volume (MSFV) method of Jenny et al. [20] can be
viewed as a special case of a mass conservative domain
decomposition (MCDD) preconditioner, using a tan-
gential flow approximation on the domain interfaces.
The fine-scale solution for the MSFV method is ex-
pressed as a linear combination of local basis functions,
which is equivalent with one iteration using the MCDD
preconditioner. In the following, we will refer to the
multiscale solution, as the approximation obtained af-
ter one iteration with the MCDD preconditioner. The
class of MCDD preconditioners offers a general frame-
work for approximating the flow on the interface,
in which we can construct a wide range of different
multiscale preconditioners with various properties. In
this paper, we will focus on four principal properties
for the multiscale preconditioner. The preconditioner
should:

• Be cheap to construct. In this paper, we consider
local sparse approximations to the flow on the
boundary, i.e. sparse representations of the local
Schur complement systems.

• Be applicable as a multiscale method. For many
practical applications, it is computationally too ex-
pensive to iterate on the fine-scale solution, and
the coarse-scale solution will be applied directly.
The preconditioner should give a physically reliable
approximation to the fine-scale flow field after only
one iteration.

• Possess good convergence properties. Some of the
local fine-scale features may be difficult to capture
within a coarse-scale system. Thus, we are forced to
iterate on the fine-scale residual.

• Be applicable to realistic porous media. Real-
istic flow problems for reservoir simulation in-
volve irregular grid structures and heterogeneous
anisotropic permeability fields. The multiscale ap-
proximations induced on the local domain inter-
faces have to be robust with respect to irregular
geometries and fine-scale anisotropies not aligned
with the grid.

We will consider the following elliptic problem for
two-dimensional flow in porous media,

−∇· (K∇u) = q in� ⊂ R
2, (1)

where K is a symmetric positive definite matrix repre-
senting the permeability of the media, u is the potential
and q represents the source terms. The permeability
is in general a full tensor describing the conductivity
of an anisotropic porous medium, and it is the spatial
variability of this parameter which represents the key
challenge discussed in this paper. By integrating Eq. 1
over an arbitrary control volume ω ⊂ � and applying
Green’s theorem, we obtain the integral equation for
conservation of incompressible fluids,

∫
∂ω

f· ν dσ =
∫

ω

q dτ. (2)

Here, f = −K∇u represents the Darcy velocity and
ν is the outward normal vector to ∂ω. Methods based
on the discretisation of Eq. 2 is referred to as control
volume methods and yield local mass conservation
within ω. The resulting discrete system of fine-scale
equations, arising from a control volume discretisation,
takes the following form:

Au = b . (3)

We will assume that the solution u ∈ V, where V
is the space of piecewise linear functions on � = ∪ωi.
The right-hand side term b represents the integrated
sources over ωi and belongs to the space of piecewise
constant functions on�. Finally, the fine-scale operator
A ∈ V is a sparse and in general non-symmetric matrix,
which contains information about the fine-scale geom-
etry and variability of K.
Previously, multiscale control volume methods have

focused on the elliptic problem (see Eq. 1) on regular
Cartesian grids. As far as we know, multiscale con-
trol volume methods have not been applied to prob-
lems involving irregular grid structures. In this paper,
we investigate the accuracy, efficiency and robustness
of different multiscale control volume approximations
when applied to heterogeneous problems on irregular
grids. Our study shows that the reduced boundary con-
dition, commonly applied with the MSFV methods [10,
16, 20], is not robust with respect to perturbations on
the fine-scale grid. Even for regular Cartesian fine grids
and isotropic permeability tensor, the spatial variability
in the fine-scale permeability may produce anisotropies
on the coarse scale. The tangential flow on the local
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boundaries is not sufficient to capture these coarse-
scale anisotropies within the solution. We introduce
a new multiscale framework, based on algebraic ap-
proximations to the Schur complement for constructing
more accurate and robust interface approximations, for
multiscale simulations on irregular grids. While this
is a pure algebraic technique, it naturally extends to
unstructured and multilevel grids.
The paper is organised as follows: In the next sec-

tion, we give an introduction to the MCDD precon-
ditioners. We show how the multiscale methods can
be formulated as stand-alone upscaling methods, or
as MCDD preconditioners for an iterative process. In
Section 3, we compare the existing localisation approx-
imation used for multiscale control volume methods
with an algebraic interface approximation based on
probing. A small comparison on the computational
cost related to each of the preconditioners is given in
Section 4, before testing the robustness and efficiency
of the preconditioners for some numerical experiments
in Section 5. Finally, we conclude the paper.

2 MCDD

In this section, we will consider the framework of
non-overlapping domain decomposition methods and
introduce the special class of MCDD methods in-
troduced by [28]. Within this framework, we formu-
late the multiscale control volume methods as MCDD
preconditioners.

2.1 Grids and scales

We will consider a cell-centred grid on the fine scale,
consisting of control volumes {ωi, 1 ≤ i ≤ n}, such that
they form a non-overlapping partition of �. Thus,

� =
⋃

i

ωi; ωi ∩ ω j = ∅ i 	= j.

A primal coarse grid is then constructed on top of
the fine grid, such that each primal coarse-grid cell
{�i, 1 ≤ i ≤ N} is a collection of fine-grid cells and the
boundaries of �i coincide with boundaries on the fine
grid, as shown in Fig. 1. Moreover, we require that
each fine-grid cell is represented in exactly one primal
coarse-grid cells. Thus, the primal coarse grid also sat-
isfies a non-overlapping partitioning of �. The centre-
most fine-grid cell within each primal coarse-grid cell is
further denoted as the coarse-grid node. Continuing in
this manner, we note that we can construct a hierarchy

Fig. 1 The multiscale mesh. Here, the bold faces show the primal
coarse grid, constructed on top of an underlying fine-scale grid.
The dashed lines further indicate the dual coarse grid, on which
the circles and stars refer to vertex and edge nodes, respectively

of cell-centred coarse grids. However, for simplicity,
we will here restrict our attention to two-scale meth-
ods. We consider true multiscale implementations of
this framework in [30]. Note also that both the fine
and the coarse grid may consist of arbitrarily shaped
polygons.
We further introduce a dual coarse grid (indicated by

dashed lines in Fig. 1) on which we will solve our local
problems. We will refer to the dual coarse-grid cells as
domains and denote them by �′

i. The primal coarse-
grid nodes of � will then be located at the vertices
of �′

i. On each domain �′
i, the degrees of freedom

corresponding to the boundary nodes will be denoted
by subscript B and those corresponding to internal
nodes by subscript I. The degrees of freedom related to
the boundary unknowns will further be subdivided into
those corresponding to vertex nodes and edge nodes,
denoted by subscripts V and E, respectively.
Note that, while the primal coarse cells�i are collec-

tions of cell-centred grid cells, the degrees of freedom
on �i are strictly separated from those on � j, when
i 	= j. For the dual coarse grid, the nodes are located
on the vertices. Hence, the dual coarse cells �′

i form a
non-overlapping partitioning of� in the classical sense,
where the nodes on the dual-cell boundaries may be
shared between neighbouring cells.
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2.2 Mass conservative coarse-scale operator

For many applications, the multiscale method is ap-
plied as an upscaling procedure. At each time step
of the simulation, the potential values are solved on
the coarse scale, and the fine-scale solution is only
reconstructed locally through a linear combination of
coarse-scale basis functions. These basis functions are
computed initially and seldom recomputed during the
simulation. To reconstruct a mass conservative fine-
scale flux field at a given time step, it is crucial that the
coarse-scale operator also serves as a discretisation of
the mass-conservation principle given in Eq. 2. Thus,
as a preprocessing step, we will integrate the fine-scale
equations (corresponding to fine-scale control volumes
ωi) associated with each primal coarse cell �i into
the row of the corresponding coarse node i. This will
give us mass conservation on the primal coarse grid,
represented by the coarse nodes.
We will consider a family of spaces {Vi, 1 ≤ i ≤

N} corresponding to the primal coarse cells �i and
the extension operators RT

i : Vi → V, such that V =∑N
i=1 RT

i Vi. For each �i, we define Mi : Vi → Vi as
the integration operator adding all rows in Ri A, corre-
sponding to fine-scale control volume equations on �i,
into the row of the coarse node i. More precisely, we
can write the integration operator on matrix form

Mi = I + eiV
(
1 − eiV

)T
, (4)

where I is the identity matrix, eiV is the unit vector
identifying the row of the vertex (coarse) node and 1
is the vector entirely filled with ones. By applying the
integration operator Mi on the fine-scale system (Eq. 3)
restricted to each coarse cell �i, we construct a system
of equations, which is mass conservative on both scales.
We write the MCDD system as

Cu = p, (5)

where

C =
∑
�i

(Ri)
T Mi Ri A and p =

∑
�i

(Ri)
T Mi Rib .

The fine-scale operator C belongs to the same space
as A but has the additional property of preserving the
mass balance on the coarse scale as well as the fine
scale. It can be shown that this preprocessing step also
acts as a good preconditioner for the fine-scale operator
A, as it introduces a coarse space [30].

2.3 Schur complement system

The idea behind domain decomposition methods is
to decouple the global fine-scale problem into inde-
pendent local boundary value problems. The global
fine-scale problem is then solved by iterating on the
boundary unknowns of these local problems. To ac-
celerate the iterative process, a global coarse-scale
problem is constructed to capture the low-frequency er-
ror and to pass information between the local problems.
By grouping the unknowns corresponding to internal

nodes in uI and those corresponding to boundary nodes
in uB, we can reorder the unknowns u = [

uI uB
]T
, and

write Eq. 5 as

[
CII CI B

CBI CBB

] [
uI

uB

]
=

[
pI

pB

]
. (6)

All the internal unknowns uI are now decoupled into
local domains �′

i, where the matrix CII has a simple
block diagonal structure. Thus, the internal degrees
of freedom may be solved locally within each domain
�′

i as

uI = C−1
I I (pI − CI BuB) . (7)

Hence, we can eliminate the internal degrees of
freedom by substituting Eq. 7 into the second line of
Eq. 6 and obtain the reduced Schur complement system

(
CBB − CBIC−1

I I CI B
)

uB = pB − CBIC−1
I I pI . (8)

The matrix S = CBB − CBIC−1
I I CI B is referred to as

the Schur complement of C, and for simplicity, we
also denote g = pB − CBIC−1

I I pI as the modified right-
hand side term. The Schur complement S is related
to the space of discrete harmonic functions, where the
multiplication of S to a vector x is equivalent to solve a
local Dirichlet problem involving C−1

I I on each domain
�′

i. Thematrix S can be shown to yield better properties
w.r.t. the condition number [4]; however, it is expensive
to construct. In general, we never explicitly construct
the Schur complement matrix S; we only do the neces-
sary matrix–vector multiplications involving S.
By a similar reordering of the unknowns, uB =[

uE uV
]T
, we can write the Schur complement system

on matrix form

[
SEE SEV

SV E SVV

] [
uE

uV

]
=

[
gE

gV

]
. (9)

Here, SEE and SEV have a block diagonal structure;
however, each block is in general dense. In particular,
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the Schur complement matrix SEE can analytically be
written as

SEE = CEE − CEIC
−1
I I CIE. (10)

This equation will be important later, when we dis-
cuss the properties of the different preconditioners. We
observe that the first term in Eq. 10 contains the local
couplings between the neighbouring edge elements,
CEE. This matrix will be sparse, with a predominantly
tridiagonal structure. The second term in Eq. 10 is re-
ferred to as the global term, where internal information
is interpolated onto the edge nodes. This term couples
all the edge nodes together and forms a full matrix.
A direct solution of Eq. 9 is for most applications

computationally too expensive, and we seek to con-
struct a preconditioner for the Schur complement prob-
lem such that the number of local algebraic operations
involving C−1

I I is as low as possible. We approximate
Eq. 9 by

[
I Ŝ−1

EE ŜEV

SV E SVV

] [
uE

uV

]
=

[
Ŝ−1

EEgE

gV

]
, (11)

where ŜEE and ŜEV now denote the approximations
to SEE and SEV , respectively. Note that we have only
modified the equations for the edge nodes, where

uE = Ŝ−1
EE

(
gE − ŜEVuV

)
. (12)

Hence, the solution uV of Eq. 11 still remains mass
conservative on the coarse scale. In fact, any approxi-
mation of uE will only affect the accuracy and not the
property of mass conservation on the coarse scale. By
substituting Eq. 12 into the second line of Eq. 11, we
can write a mass conservative system of equations for
the solution uV on the coarse scale,

ACuV = gV − SV E Ŝ−1
EEgE, (13)

where

AC = [
SV E SVV

] [−Ŝ−1
EE ŜEV

I

]
. (14)

The coarse-scale operator AC is related to the space
of piecewise discrete harmonic functions, where the
approximated discrete harmonic extension on uV is
determined by the ŜEE and ŜEV . For the multiscale
methods, the coarse-scale equation (Eq. 13) will be
solved directly. The columns of AC contain the coarse-
scale basis functions, which can be used to recover the
fine-scale solution u f = [

uI uE uV
]T
.

3 Interface approximations

The essential part in the construction of a good MCDD
preconditioner, or efficient and accurate multiscale
method, is the choice of interface approximation, which

in our framework is ŜEB =
[

ŜEE ŜEV

]
. For most cases,

the approximation error in ŜEE will dominate. In this
section, we will primarily focus on different approxima-
tions to SEE and use ŜEV = CEV . In Section 3.4, we will
further discuss approximation techniques for the entire
SEB and how this can be related to flow-based upscaling
techniques.
Recall from Eq. 10 that SEE consists of two terms,

a local term CEE and a global term containing the
couplings between edge and internal nodes. We will
consider two types of interface approximations: a tan-
gential flow approximation and an interface probing
approximation. Both approximations result in low-
band matrices, which are fast to invert. We have
also applied other interface approximations, like the
Toeplitz approximation [5] and the J-operator [6].
While they yield good results for the elliptic problem
with constant coefficient on uniform Cartesian grids,
they do not perform well for problems involving het-
erogeneous porous media and non-regular fine grids.
Another approach, not considered here, is to directly
approximate the second term of Eq. 10 by applying
some local preconditioner on CII . This would lead to
a more expensive composite preconditioner, where the
resulting approximation is not guaranteed to be sparse.
For a broader discussion on different interface approx-
imations, see [31].

3.1 Approximation properties

Our aim is to construct approximations ŜEE with sim-
ilar spectral properties as SEE for which the system
involving ŜEE is fast to compute. In order to get a phys-
ically reliable solution after only one iteration (equiv-
alent to solving the coarse-scale problem), we need to
require some properties for the coarse-scale operator
AC. For single-scale methods, usual requirements for
the systemmatrix A are that they are mass conservative
and exactly reproduce constant and linear potential
fields. As an example, most control volume methods
are constructed precisely to satisfy these criteria.
As shown in Section 2, the MCDD preconditioners

are constructed to be mass conservative on both the
fine scale and the coarse scale. Furthermore, we will
require that AC is exact for constant solutions. For
general heterogeneous elliptic problems, this is the
only analytical solution that we can identify, which is
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obtained by imposing zero boundary conditions and no
internal source terms. For the multiscale methods, this
implies that the local basis functions must form a parti-
tion of unity, i.e. the sum of the local basis functions is
exactly equal to 1. For the MCDD preconditioners, we
require that

ŜEE1 = SEE1, (15)

which ensures that the approximation ŜEE is exact for
constant solutions. In the case of K-orthogonal fine
grids, i.e. grids which are aligned with the principal
directions of the permeability tensor, there are no cou-
plings between vertex and internal nodes. Thus, SEV =
CEV and property 15 is a sufficient criterion for the
resulting preconditioner to preserve constant solutions
locally. However, for general grids, property 15 is not
sufficient and we need to require that

ŜEB1 = SEB1. (16)

The importance of capturing the constant solution
has also been emphasized in domain decomposition,
where it corresponds to capturing the null space of the
local Schur complement matrices [24]. This is one of
the important properties for the coarse space, which
is needed to construct scalable two-level precondition-
ers with good convergence rates. Another important
property for the coarse space, which is necessary to
construct a robust preconditioner, is often referred to
as the bounded energy condition [25] and is directly
related to the capturing of sub-scale variations in the
coefficients of K [15].
The motivation behind the multiscale methods is

precisely to capture these local sub-scale variations
within coarse-scale basis functions (i.e. within the
coarse space of the corresponding operator Ac), by
solving local PDEs on �′

i with pre-described boundary
conditions. By solving extended local problems, e.g. by
an oversampling procedure [9, 18], the local PDE-based
fields on �′

i are made less sensitive to the boundary
approximations, and the sub-scale information along
∂�′

i can also be well captured.
In Section 3.4, we will show how the interface

probing technique can be applied to capture a few
PDE-based fields governed by pre-defined boundary
conditions on extended local domains. The difference
from oversampling and global methods is that the local
solutions are applied to approximate the Schur comple-
ment SEB, rather than the basis functions.

3.2 Tangential component approximation

A frequently applied approximation for the multiscale
methods, the reduced boundary condition (see [10, 11,

18, 20]), is to approximate the tangential flow along
each local boundary. For the elliptic problem on regular
Cartesian grids and with isotropic medium, the tangen-
tial flow along the boundary is found by discretising the
elliptic equation (Eq. 1) directly along each local edge.
As far as we know, the reduced boundary condition
has only been applied to regular Cartesian grids, and
it is not clear how to extend it to non-K-orthogonal
grids. In order to test the reduced boundary condition
within the MCDD framework, we discretise the ellip-
tic equation (Eq. 1) along the local boundaries by a
two-point flux approximation method. We denote the
tridiagonal approximation resulting from the reduced
boundary condition by SRBCEE . The preconditioner is
denoted MCDD-RBC.
An equivalent approximation for regular Cartesian

grids is the tangential component approximation, dis-
cussed in [28, 31]. This is an approximation to the first
term of Eq. 10. Essentially, the tangential component
(TC) approximation splits CEE = CT

EE + CN
EE, where

CN
EE is a diagonal matrix containing the contribution
to normal flow arising from the coupling between edge
and internal nodes. By neglecting the flow normal to
the local boundaries, the tangential component approx-
imation is defined as

STCEE = CT
EE. (17)

The matrix STCEE is tridiagonal when the edge nodes
on the dual coarse grid have a natural numbering along
each individual interface, and the expression is valid
for general grids. We denote the resulting precondi-
tioner, MCDD-TC. In the case of K-orthogonal fine
grid, STCEE = SRBCEE .

3.3 Probing technique

The interface probing technique (see [7] and references
therein) represents a more general approach for ap-
proximating the flow on the boundary. The aim is to
approximate the Schur complement matrix SEE by a
low-bandwidth matrix ŜEE, such that

ŜEEvi = SEEvi = wi, (18)

for some linearly independent probing vectors vi. The
method was motivated by the observation that the
Schur complement matrix often has a banded structure,
where the Schur complement elements decay rapidly
away from the diagonal. In fact, it has been shown
by Golub [14] that |Sij| = O

(|i − j|−2
)
, for i 	= j. The
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probing vectors suggested in [7] for approximating the
n-diagonal matrix SnP

EE are

vi =
∑

j=imod(n)

e j. (19)

In the case of tridiagonal probing, the probing vec-
tors are v1 = [1 0 0 1 0 0 · · · ]T , v2 = [0 1 0 0 1 0 · · · ]T

and v3 = [0 0 1 0 0 1 · · · ]T . While these probing vec-
tors are linearly independent, Eq. 18 can be shown to
yield a unique tridiagonal approximation ŜEE. Note
also that Eq. 18 does not require the explicit formu-
lation of the full matrix SEE, which would be expen-
sive; only those dimensions associated with the probing
vectors vi need to be calculated. In the case of three
probing vectors, three local Dirichlet problems needs
to be solved.
The interface probing technique can also be thought

of as an efficient way of incorporating fine-scale prop-
erties into the coarse-scale operator. Indeed, since the
sum of the probing vectors represented by Eq. 19 equals
1, property 15 is naturally satisfied. We will denote the
probing vectors of Eq. 19 as oscillating probing vectors
because of their form and since they are designed to
capture the fine-scale oscillations of the residual. We
refer to MCDD-3P and MCDD-5P as the MCDD pre-
conditioners, using SnP

EE with n = 3 and 5, respectively.

3.4 Solution-based probing vectors

Originally, the interface probing technique was ap-
plied together with oscillating probing vectors, on the
form given by Eq. 19, to approximate the diagonal
structure of SEE. For heterogeneous and anisotropic
problems, there might be strong non-local couplings
between boundary nodes, in which case the local Schur
complement matrix does not have a diagonal structure.
The oscillating probing vectors are designed to capture
the fine-scale oscillations of the residual and therefore
yield robust and good convergence properties for the
iterative process. However, these probing vectors are
not able to capture the correct features of the fine-
scale solution after only one iteration. Motivated by
standard flow-based upscaling strategies, see, e.g. [12],
solution-based probing vectors are introduced to cap-
ture the underlying fine-scale variations within each lo-
cal domain �′

i. Numerical experiments show that these
probing vectors can be used to construct precondition-
ers with better approximation properties for the first
iteration [30].
In order to guarantee that the multiscale precondi-

tioners exactly reproduce constant solutions for gen-

eral grids, we need to consider the probing of SEB =[
SEE SEV

]
(see Eq. 16),

ŜEBvi = SEBvi = wi. (20)

Within an iterative solution process, we never con-
struct the Schur complement matrix SEB explicitly,
nor do we construct the inverse of this matrix. We
only apply the SEB to some residual vectors rB on the
boundary. The multiplication of SEB with a probing
vector v can be regarded as solving a local Dirichlet
problem with boundary values v. Thus, the accuracy of
the preconditioner will depend on how well the probing
vectors vi are able to capture the correct fine-scale
variations on the boundary. For example, the choice
v = 1will guarantee that themethod preserves constant
solutions locally, for general grids.
We compute the solution-based probing vectors vi

SB
on �′

i by solving local flow problems on �i ⊃ �′
i. The

solution-based probing vectors vi
SB are then defined as

the restriction of the local solutions to the local bound-
ary (see Fig. 2). It follows from Eq. 20 that the approxi-
mation ŜEB will be exact for those particular boundary
value problems defined by vi

SB. In this manner, the
interface probing approximation can be constructed
to be accurate for certain pre-defined boundary value
problems.
The resulting multiscale preconditioner shares many

similarities with the oversampling technique, applied
in [9, 11, 13, 19]. In both strategies, a local elliptic
problem is solved on an overlapping domain �i ⊃ �′

i,
in order to reduce the approximation error introduced
by the local boundary conditions. The difference of
this strategy compared with other extended local or
global multiscale methods is that we approximate the
Schur complement, not the local basis functions. Thus,
our multiscale method is formulated as a Schur com-
plement preconditioner, which makes it a convergent
method. Together with solution-based probing vectors,
our preconditioner will be accurate for certain right-
hand sides, in which case it has the additional prop-
erty of an upscaling method. Results from Sandvin (to
be submitted for publication) show that the proposed
method is comparable in accuracy to multiscale control
volume methods using oversampling.
In order to construct robust approximations to SEB,

we must require that the probing vectors are linearly in-
dependent and that the 1-vector is represented through
one or a sum of the probing vectors. A combination of
solution-based and oscillating probing vectors is in our
experience a good choice. In the original framework of
the probing technique, a typical choice of ŜEE would
be a three-diagonal matrix, constructed from three
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Fig. 2 Local domain �′
i

V

I
E

probing vectors, with the same sparsity pattern as the
local discretisation CEE. Thus, each edge segment con-
necting two vertex nodes (see Fig. 2) is decoupled, and
the edge approximation ŜEE can be inverted locally on
the individual edge segments. The approximation ŜEB

is constructed in the same manner, from Eq. 20, filling
only the diagonal elements and the element neighbours
corresponding to the largest couplings in CEB. While
this interface approximation is only based on neighbour
connections, it is a purely algebraic construction and
independent on the underlying geometry. We denote
the interface approximation SN

EB and the corresponding
MCDD preconditioner MCDD-N.
The construction of local approximations ŜEB, in the

case of solution-based probing vectors, can be sensitive
w.r.t. the requirement of linear independent probing
vectors. To make the proposed MCDD-N precondi-
tioner more robust, it is convenient to add a fourth
probing vector and consequently a fourth non-local
coupling. As a fourth coupling in SEB, we choose an
average value, representing the contribution from all
local vertex nodes. Thus, the ŜEV will be a full matrix,
while the ŜEE retain its local structure and can be
inverted locally.

3.5 Inclusion of global information

For the application of multiphase flow, the elliptic
problem needs to be solved repeatedly in time for
slightly varying tensor coefficients Kij. In this case, we
may afford to spend some extra computational work
initially, to construct an accurate multiscale method for
the time-dependent problem. In [10, 11], they propose
a more accurate multiscale method by incorporating
information from a global fine-scale solution into the
framework of the reduced boundary condition. How-
ever, the reduced boundary condition may not be able
to capture the local variations of the global information
correctly.
The interface probing technique represents a con-

sistent framework for including fine-scale information

into operators on coarser scales. In fact, if one of
the probing vectors is chosen as the exact fine-scale
solution restricted to the boundary, we have not done
any approximations on the solution, and the fine-scale
solution is solved exactly in one iteration.

3.6 Comparison of the two interface approximations

By applying the multiscale method as a preconditioner
for a domain decomposition method, we have for-
mulated each local problem as a Schur complement
problem. In this framework, the reduced boundary
condition, analogous to the tangential component ap-
proximation for K-orthogonal grids, is a purely local
approximation, i.e. an approximation to the first term
in Eq. 10. The algebraic approximation, resulting from
the interface probing technique, can be regarded as a
global approximation to the Schur complement matrix,
where the resulting matrix has a local structure. Let us
consider the tridiagonal probing technique described in
Section 3.3. From the Eqs. 10 and 18, we have that

SEEvi = {
CT

EE + (
CN

EE − CEIC−1
I I CIE

)}
vi

= (
wT)i + (

wN)i
, (21)

where we have split CEE into a tangential component
CT

EE and a normal component CN
EE. While the tangen-

tial component CT
EE has a tridiagonal structure, it is

exactly represented by the 3 probing vectors vi given by
Eq. 19, resulting in the tangential component approxi-
mation. Thus,

S3P
EE = STCEE + ŜN

EE, (22)

where the second term is an approximation to the flux,
accounting for the normal flow on the boundary. Since

∑
i

vi = 1, (23)

we observe from Eq. 18 that property 15 is satisfied
for all interface probing approximations SnP

EE. However,
from Eq. 21, we observe that the tangential component
approximation only preserves constant solutions locally
whenever

(
CN

EE − CEIC−1
I I CIE

)
1 = 0. (24)

Here, CN
EE is a diagonal matrix corresponding to the

normal flow, where CN
EE1 = −CEI1. Hence,

CEI
(
1 + yI

) = 0, (25)
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where yI can be calculated from

CIIyI = CIE1. (26)

In case of K-orthogonal grid along the domain
boundaries, there are no contributions to the flow
between vertex and internal nodes (CIV = 0), and it
follows that relation 26 is equivalent to a Dirichlet
problem with constant boundary values −1,

[
CII CI B

0 I

] [
yI

yB

]
=

[
0

−1

]
(27)

Thus, yI = −1 and Eq. 25 is satisfied. However,
for general grid structures, CIV 	= 0, and the tan-
gential component approximation does not satisfy
property 15. By probing the SEB (see Eq. 20), the
interface probing technique also satisfies property 16
and exactly reproduces constant potential solutions lo-
cally, for general grid. Moreover, by choosing solution-
based probing vectors, the preconditioner may be
constructed to be exact for any predefined characteri-
sation of the solution.

4 Computational efficiency aspects

The main objective of the multiscale methods is effi-
ciency, and the approximations obtained in Section 3
will often be used directly to solve the reduced coarse-
scale equation (Eq. 13). In the framework of domain
decomposition, we may also use these approximative
systems as coarse-scale preconditioners for solving the
elliptic fine-scale problem iteratively. In this section,
we study the computational work related to these
preconditioners.

4.1 Cost of applying the preconditioners

The MCDD preconditioners discussed in this paper
are non-overlapping and residual free on the internal
degrees of freedom, meaning that the unknowns cor-
responding to internal nodes are solved exactly. For
an iterative solution process, the internal degrees of
freedom need only be resolved once. The degrees of
freedom related to the edge nodes are eliminated by
the different choices of interface approximations ŜEB.
The linear system related to ŜEB is assumed to be
fast to compute. Thus, the main degrees of freedom
are proportional to the number of coarse cells (vertex
nodes), and the efficiency of the iterative procedure
will be measured due to the number of fine-scale solves
needed to solve the coarse-scale equation (Eq. 13).

The major computational cost involves C−1
I I applied

to vectors xi. These operations require solving the local
fine-scale problem

CIIyi = xi. (28)

The solution vectors yi can be stored and reused
in an iterative process. On each local domain �′

i, we
have four degrees of freedom, one related to each
vertex node. Thus, the left-hand side of the coarse-
scale equation (Eq. 13) requires solving four fine-scale
problems of the form (Eq. 28). The solutions yi may
be stored as coarse-scale basis functions. For each new
iteration, we only need to solve one fine-scale problem
corresponding to the new right-hand side term (resid-
ual). In practice, we will only update the residual locally
on the boundary, in regions where the residual is large.
If the purpose is to solve the coarse-scale equation

(Eq. 13) only, the right-hand side term pI correspond-
ing to internal source terms on the fine scale has to
be interpolated onto the vertex nodes. This requires
solving two additional local fine-scale problems on each
local domain where pI 	= 0. In the case ofK-orthogonal
fine grid, SV E = CV E, and we only need to solve one
additional local fine-scale problem.

4.2 Cost of constructing the interface approximations

The accuracy and efficiency of the different MCDD
preconditioners lie in the construction of ŜEB. In this
study, we have only considered low-band approxima-
tions ŜEB, for which the system ŜEByi = xi is fast to
compute. There is, however, an initial cost related to
the construction of some of these approximations. For
the tangential component approximation and the re-
duced boundary condition approximation, ŜEB can be
constructed directly from the global system matrix C of
the fine-scale equation (Eq. 5). The probing technique
(see Eq. 18) requires solving one fine-scale problem
per probing vector, i.e. 3 and 5 fine-scale problems
for the construction of S3P

EB and S5P
EB, respectively. The

same applies to SN
EB. However, the fine-scale problems

Table 1 Number of fine-scale solves related to the different
MCDD preconditioners

STCEB SRBCEB S3P
EB S5P

EB SN
EB

Interface approximation 0 0 3 5 3–5a

Multiscale method 4 4 7 9 7–9a

For each new iteration +1 +1 +1 +1 +1

aThe fine-scale problems related to the solution-based probing
vectors can be larger, depending on the size of the overlapping
region, on which they are computed



596 Comput Geosci (2011) 15:587–602

related to the construction of the solution-based prob-
ing vectors might be larger, depending on the size of the
overlapping region on which they are computed.
All interface approximations can be reused in an

iterative process. An overview of the cost related to
each of the preconditioners is summarized in Table 1.

5 Numerical experiments and results

The MCDD preconditioners described in the previ-
ous subsections are tested for several test problems,
involving both irregular grids and heterogeneous per-
meability fields. The different preconditioners will be
compared with respect to the accuracy of the first
iteration (equivalent to upscaling) and the number of
fine-scale solves to obtain a certain tolerance value for
the error (fine-scale solver). While there is an initial
cost related to the construction of the precondition-
ers discussed in Section 4, we choose to compare the
preconditioners with respect to the number of local
fine-scale solves rather than the number of iterations.
The global fine-scale solution will here serve as the
reference solution for the approximated solutions.
For the iterative scheme, we apply the precondi-

tioned generalized minimal residual (GMRES) [29],
where we compare the efficiency of the differentMCDD
preconditioners based on the tangential component
approximation (MCDD-TC), the reduced boundary
condition (MCDD-RBC), the tridiagonal and penta-
diagonal probing technique (MCDD-3P and MCDD-
5P) and the interface probing technique based on
neighbour connections (MCDD-N(n)). Here, n is the
number of overlapping sub-domains, used to compute
the solution-based probing vectors. For the numerical
results of MCDD-N, we have considered two solution-
based and two oscillatory (see Eq. 19) probing vectors.
The two solution-based vectors are constructed, so to
capture the principal flow in the horizontal and vertical
direction, respectively. As boundary conditions for the
overlapping domain, we have applied a unit pressure
drop in one direction and no-flow conditions in the
other. The MCDD preconditioners are also compared
to the unpreconditioned GMRES method, referred
to as MCDD-unprec. For large linear systems, the
GMRES algorithm requires large information storage,
and a restarted version of GMRES may improve the
efficiency of the algorithm. For our numerical experi-
ments, we do not consider restarts.

Monotonicity For the fine-scale discretisation, we
consider the multipoint flux approximation (MPFA)

method as described in [2]. More precisely, we have
applied the MPFA O-method, which guarantees con-
tinuity of flux over each interface and continuity in
pressure at the mid-point of each interface. For general
quadrilateral grids, the discretisation will lead to a nine-
point stencil on the fine scale. For K-orthogonal fine
grid, the method will reduce to a five-point scheme
similar to the two-point flux approximation method.
In any case, the coarse-scale operators resulting from
the various MCDD preconditioners will in general be
nine-point stencils. Common for all these stencils is that
they do not guarantee monotone methods [27] and may
produce non-physical oscillations on the coarse scale
for certain anisotropies on the coarse scale. This may
again lead to incorrect flow fields on the fine scale.
The solution can, however, be improved through local
iterations on the fine scale. Monotonicity of the coarse-
scale operator for the MSFV method has been studied
in [17]. A compact coarse-scale operator with improved
monotonicity properties was proposed, which reduces
to a seven-point stencil in the limit of homogeneous
permeability. However, the compact operator did not
lead to improved robustness for the MCDD precondi-
tioners when solving heterogeneous flow problems on
irregular grids.

Error norms For the accuracy of the multiscale so-
lution in potential and flux after one iteration, we

p
=

1

p
=

0

no-flow

no-flow

Fig. 3 Computational mesh. The figure shows a 50 × 50 irregular
Cartesian grid on the fine scale. The degree of perturbation for
this grid is ε = 0.4. The bold faces show the coarse-scale grid,
where we have applied a uniform coarsening of 5 × 5 grid cells
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consider the error in L∞-norm, as it relates to
monotonicity. We denote

δu = ‖ u1 − u∞ ‖∞
max (u∞) −min (u∞)

, (29)

δ f = ‖ f 1 − f ∞ ‖∞
max ( f ∞) −min ( f ∞)

, (30)

as the multiscale errors for the potential u and the flux
f , respectively. In Eqs. 29 and 30, u1 and f 1 represent
the approximated multiscale solutions (solutions after
one iteration), while u∞ and f ∞ represent the con-
verged fine-scale solutions for potential and flux. The
reconstruction of a mass conservative flux on the fine
scale is performed by a post-processing step similar
to the MSFV method. The errors within the GMRES
algorithm is evaluated in the L2-norm.

Grids The MCDD preconditioners are tested on ir-
regular rough grids. These grids are generated by ran-

dom perturbations on the uniform Cartesian grid. If we
consider x to be the coordinates of the initial uniform
grid, irregular fine grids are generated by

xε = x + εrh, (31)

where h is the fine-grid cell size of the initial uniform
grid, r ∈ [−1, 1] is a random variable and ε ∈ [0, 0.5] is
the degree of perturbation. Figure 3 shows one example
of a simulation grid, where ε = 0.4.

5.1 Uniform flow on rough grids

We first consider the elliptic problem (Eq. 1), where we
neglect the source terms (q = 0) and apply a homoge-
neous and isotropic permeability tensor with diagonal
elements, k = 1. We use no-flow boundary conditions
on the top and bottom boundary and a unit pressure
drop in the horizontal direction, as shown in Fig. 3.
From the choice of boundary conditions, the flow on
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Fig. 4 A comparison of the different MCDD preconditioners for
the elliptic problem with constant coefficient. Here, the horizon-
tal axis represent the degree of roughness for the irregular grid.
a The spectral condition number and c the number of fine-scale

solves to meet a tolerance of 10−8 for the different precondition-
ers. In b and d, we plot the multiscale error, measured in L∞-
norm, obtained after one iteration with GMRES. All results are
means of 50 realisations of random generated rough grids
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the fine scale will be uniform. We will solve the homo-
geneous problem on irregular grids, to study the grid
dependence of the different MCDD preconditioners.
From the construction of control volume methods for
elliptic problems, the expression for the flux depends
on both geometry and the permeability tensorK, where
perturbations on the grid will have similar effects as
perturbing K.
Figure 4a shows the comparison of the spectral con-

dition number for the fine-scale system, when applying
the different MCDD preconditioners. We observe that
the preconditioners based on oscillatory probing vec-
tors (MCDD-3P and MCDD-5P) result in significantly
lower condition numbers than the preconditioners
based on harmonic (MCDD-RBC) and solution-based
vectors (MCDD-N). We also observe that the MCDD-
3P and MCDD-5P preconditioners are more robust
with respect to perturbations on the fine-scale grid, for
perturbations up to about 40% of the fine-grid cell
size. This indicates that the interface approximations,
commonly used for multiscale and upscaling methods,
are not as well suited as multiscale preconditioners
for the fine-scale problem. For perturbations above
40% of the fine-grid cell size, none of the low-band
approximations for the Schur complement discussed in
this paper are robust. Such rough grids will include non-
convex and highly distorted grid cells (see Fig. 3).
In Fig. 4b, we show the number of fine-scale solves,

required to solve the homogeneous fine-scale problem.
For Cartesian grid (ε = 0), the local tangential flow
approximations used in MCDD-RBC and MCDD-TC
reduce to the exact linear boundary conditions, and the
problem is solved exactly in one iteration. However, for
perturbed grids (ε > 0), the interface probing approxi-
mation used in (MCDD-3P and MCDD-5P) are more
robust, and the preconditioners need about the same
amount of computational work. The MCDD-N precon-
ditioner is designed as an upscaling technique and is
not suited as a preconditioner for the iterative scheme.
Note also that the MCDD-TC preconditioner, which
is a consistent approximation to the tangential flow
along perturbed local boundaries, is less accurate than
the inconsistent two-point flux approximation used in
MCDD-RBC.
In some cases, we cannot afford to iterate on the

fine-scale solution, and we would like to reconstruct
a fine-scale approximation from the solution of the
coarse-scale problem. This is equivalent with one iter-
ation on the fine-scale solution. Figure 4b, d show the
accuracy of the multiscale solutions, obtained after one
iteration on the fine-scale solution. While the oscillat-
ing probing vectors used in MCDD-3P and MCDD-5P
result in more robust approximations for the iterative

process, they are not as well suited for upscaling. The
reduced boundary approximation (MCDD-RBC) has
previously shown to be accurate for problems involving
regular Cartesian grids; however, it is not as accurate
for problems involving irregular grid. By introducing
solution-based probing vectors in MCDD-N, we are
able to obtain much more accurate approximations to
the fine-scale solution at first iteration, for problems
involving irregular grids.

5.2 Heterogeneous problems on rough grids

Next, we consider elliptic problems with variable coef-
ficients k(x). We consider isotropic, log-normal per-
meability on the fine scale, as shown in Fig. 5. Local
sub-scale heterogeneities may introduce strong non-
local couplings between boundary unknowns on the
local sub-domains, as discussed in Section 3.4, which are
more difficult to capture within local interface approx-
imations. From Fig. 6, we see that the MCDD precon-
ditioners resulting from the interface probing technique
are able to better capture these non-local couplings and
are more robust with respect to fine-scale perturbations
on the fine grid. The tangential component approxima-
tion is not able to capture the correct flow normal to
these local boundaries and has a larger dependency on
the degree of perturbation ε. The multiscale methods
have shown to have difficulties with capturing large
anisotropies in the fine-scale flow field, especially for
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–0.5

0

0.5

1

1.5

Fig. 5 A generated log-normal permeability field, with standard
deviation of 0.5 and a correlation length of 3 fine-grid cells in both
x- and y-direction. The figure shows the base 10 logarithm of the
permeability
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Fig. 6 The number of fine-scale solves needed to reach a tol-
erance of 10−8 when solving the elliptic problem for heteroge-
neous log-normal permeability when applying different MCDD
preconditioners. The horizontal axis represents the degree of
roughness for the perturbed grid. All results are mean values
from 20 realisations of permeability fields and 20 realisations of
randomly generated rough grids

problems with diagonal channels going through corner
cells of the local sub-domains [22]. This is because the
coupling, CV I , between vertex and internal nodes, is

neglected in the tangential component approximation.
For problems involving irregular grids, MCDD-RBC
and MCDD-TC do not preserve constant solution (see
Section 3.6). By placing a high permeable channel be-
tween two opposite corners of the global fine grid,
the tangential approximation (MCDD-TC andMCDD-
RBC) is not able to capture the diagonal flow over
the vertex nodes and requires solving many more fine-
scale problems (iterations), even for Cartesian grid.
The interface probing approximation is based on an
algebraic approximation to the Schur complement and
is more or less independent upon the geometry and
principle directions on the fine scale. In Fig. 7a, b,
we again observe that the MCDD-N preconditioner
in general provides more accurate approximations to
the solution after one iteration. The results in Fig. 7b
even show that the interface probing technique, using
oscillating probing vectors, results in more accurate
approximations to the multiscale flux on the fine scale
than the more commonly used tangential component
approximation. As for regular upscaling techniques, the
quality of the solution-based probing vectors depends
on the induced local boundary conditions and the size
of the overlapping domains.

5.3 Realistic porous media

In realistic porous media, we might be faced with
complex geological layers, where the fine-scale per-
meability has long and anisotropic correlation lengths.
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Fig. 7 Upscaling of log-normal permeability. The figures show
the accuracy of the multiscale solution obtained after one iter-
ation. In a, we plot the L∞-error of the potential, and b shows

the L∞-error of the flux. All results are the truncated (80%)
mean values from 20 realisations of permeability fields and 20
realisations of randomly generated rough grids
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We consider the two-dimensional cross sections cor-
responding to the top and bottom layer of the 10th
SPE comparative solution project [8] (see Fig. 8a, b).
This test case is aimed at comparing different upscaling
procedures and has been extensively used for testing
multiscale methods. While the geometry is a simple
uniform Cartesian grid, the permeability contrasts are
rather challenging for reservoir simulators. The model
for each layer consists of a 60 × 220 uniform Cartesian
fine grid. To test the multiscale preconditioners, we
further apply a 12 × 20 coarse grid. We use similar
boundary conditions as in the previous test cases. The
top layer is a Tarbert formation, while the bottom layer
is fluvial. From the bottom layer (Fig. 8b), we clearly
see channels with long correlation lengths throughout
the reservoir. These channelized flow paths will result
in anisotropic permeability on the coarse scale.
In Table 2, we compare the efficiency of the precon-

ditioners based on the tangential flow approximation
(MCDD-RBC) and the interface probing approxima-
tion (MCDD-3P and MCDD-5P). Since the simulation
grid isK-orthogonal, the MCDD-TC andMCDD-RBC
are equivalent formulations. Thus, we only report the
results of the MCDD-RBC. For the top layer (Tarbert
formation; see Fig. 8a), there are quite large correlation
lengths in the fine-scale permeability, with small sub-
scale variations on each coarse block. All the precondi-
tioners give quite good results for this problem. Note
that even though the construction of the MCDD-3P
and MCDD-5P requires solving 3 and 5 local fine-
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Fig. 8 Base 10 logarithm of permeability for the bottom and top
layer of the SPE 10th comparative solution project. Here, a shows
layer 1 (top) and b layer 85 (bottom)

Table 2 Number of fine-scale solves needed to reach a tolerance
10−8 in the L2-norm

Layer MCDD-RBC MCDD-3P MCDD-5P

1 33 30 30
85 347 167 146

scale problems initially, they are still more efficient for
solving the fine-scale problem iteratively. The bottom
layer contains a fine-scale permeability with anisotropic
correlation lengths. This channelized reservoir does not
have a clear scale separation, which makes it more
challenging to construct efficient multilevel precondi-
tioners. Our results clearly show that the oscillating
vectors of the interface probing technique (MCDD-
3P and MCDD-5P) are better suited for capturing the
high-frequency error in the solution for channelized
flow.
Table 3 shows the accuracy of the multiscale so-

lution (first iteration). The results from layer 1 (top
layer) show that we can construct quite accurate mul-
tiscale approximations to the fine-scale solution after
only one iteration. Thus, there exists an exact rep-
resentation of the flow on the coarse scale. By in-
creasing the region of the overlap, the solution within
the target region is less effected by the boundary
conditions and more determined by the local vari-
ations in the fine-scale permeability. Thus, different
boundary value problems will give more similar re-
sults, and the solution-based probing vectors can get
close to linearly dependent. This may result in an ill-
conditioned system for computing the interface approx-
imation of MCDD-N, in which case we will have to
reduce the number of solution-based probing vectors.
A natural extension, which is beyond the scope of
this paper, is to adapt the overlapping regions based
on the fine-scale residual. This idea has been studied
in [26].
In the results for layer 85 (bottom layer), the

anisotropies in the upscaled permeability produce non-
physical oscillations in the solution for the coarse scale.
In fact, the coarse-scale operators, for all the tested
multiscale methods, fail to meet the requirements for
monotonicity [28]. For completeness, we also tested the
multiscale control volume method with linear bound-
ary conditions as well as the MCDD-N preconditioner
including global information. The MSFV method using
linear boundary conditions has shown to give smaller
errors then the MSFV method using reduced bound-
ary conditions, for some problems involving highly
anisotropic porous media [23]. By including global in-
formation in the MCDD-N preconditioners, the local
approximations ŜEB exactly reproduces the fine-scale
flow field. However, these preconditioners also yield
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Table 3 The error of the multiscale solution after one iteration, measured in the L∞-norm
Layer MCDD-RBC MCDD-3P MCDD-5P MCDD-N(1) MCDD-N(2) MCDD-N(3)

1 (u) 0.15 0.14 0.19 0.032 0.043 0.018
1 (f) 0.069 0.098 0.12 0.012 0.014 0.037
85 (u) 0.47 11 155 2.6 0.54 0.53
85 (f) 0.43 0.58 8.1 2.8 0.26 0.17

Here, (u) denotes the fine-scale potential solution and ( f ) the fine-scale flux

non-monotone coarse-scale operators and non-physical
oscillations in the coarse-scale potential solution.
Table 3 shows the large errors in the fine-scale potential
solution, caused by non-physical oscillations on the
coarse scale. These oscillations in turn result in wrong
boundary conditions for the recalculation of fine-scale
fluxes. As it is known that there exist cases where
no nine-point scheme is monotone [21], changing the
discretisation scheme might not be enough. In order to
construct accurate upscalingmethods for problems with
anisotropic coarse-scale permeability, one approach
might be to adapt the coarse-scale grid to the principal
directions of the flow on the coarse scale. However,
it is not clear how to construct a coarse grid which
will guarantee monotonicity. In any case, we would
need a robust multiscale framework which can handle
simulations on general grids.

6 Conclusion

We have tested the efficiency and accuracy of MCDD
preconditioners for two-dimensional heterogeneous el-
liptic problems on irregular grids. In the case of solv-
ing only one iteration, the MCDD preconditioners are
similar to standard multiscale control volume methods
where only the global coarse-scale equation is solved.
Since we approximate the Schur complement, rather
than the local basis functions, the proposed multi-
scale methodology is convergent to the fine scale. Our
numerical experiments have shown that the reduced
boundary condition (MCDD-RBC), commonly applied
for constructing multiscale methods, is not robust with
respect to perturbations on the fine scale. In the case of
non-K-orthogonal grids, the reduced boundary condi-
tion does not preserve constant solutions, which makes
it unsuitable for constructing multiscale precondition-
ers for flow problems on irregular grid structures or
anisotropic permeability.
We have presented a more robust multiscale frame-

work, based on the interface probing technique, for
solving heterogeneous elliptic problems on irregular
grids. While theMCDD-3P andMCDD-5P, using oscil-
lating probing vectors, act as more efficient multiscale

preconditioners for the fine-scale problem, solution-
based probing vectors can be constructed (MCDD-N)
to give a more accurate representation of the coarse
scale. Both of these preconditioners are purely alge-
braic upscaling techniques; thus, they are independent
upon geometry and extendible to multiscale simula-
tions on unstructured grids. Moreover, the interface
probing technique can be seen as a more consistent
way of incorporating global fine-scale information into
the coarse-scale basis functions, as it is designed to
exactly reproduce the solution of given boundary value
problems.
When applied as a preconditioner for Krylov-type

algorithms, the objective is to efficiently reduce the
residual. At first iteration, the residual vector is exactly
equal to the boundary conditions provided by the right-
hand side vector p. Thus, multiscale methods based
on global information are accurate. After the first it-
eration, the residual is proportional to the error and
is similar to oscillating noise. Thus, a simple fine-scale
preconditioner, which effectively smooths the error, is
to be preferred.
For certain anisotropy relations on the coarse scale,

it is not possible to construct monotone nine-point
stencils on the coarse scale. Thus, we may need to
iterate on the fine-scale residual, in order to reduce the
non-physical oscillations produced by the coarse scale.
The MCDD preconditioners can be adapted to serve
as either an accurate approximation to the coarse-scale
problem (multiscale method) or an efficient precondi-
tioner for the fine-scale problem.
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Summary. We consider multiscale preconditioners for a class of mass-conservative
domain-decomposition (MCDD) methods. For the application of reservoir simulation,
we need to solve large linear systems, arising from finite-volume discretisations of elliptic
PDEs with highly variable coefficients. We introduce an algebraic framework, based on
probing, for constructing mass-conservative operators on a multiple of coarse scales. These
operators may further be applied as coarse spaces for additive Schwarz preconditioners.
By applying different local approximations to the Schur complement system based on a
careful choice of probing vectors, we show how the MCDD preconditioners can be both
efficient preconditioners for iterative methods or accurate upscaling techniques for the
heterogeneous elliptic problem. Our results show that the probing technique yield bet-
ter approximation properties compared with the reduced boundary condition commonly
applied with multiscale methods.

1 INTRODUCTION

Challenges within flow in porous media include complex geological structures with
spatial variability on multiple scales. Reservoir simulations (i.e. groundwater flow, oil
recovery, CO2 storage) often involve large spatial scales, where we need to solve large
linear systems repeatedly in time. The potential u within the reservoir is governed by an
elliptic PDE, with highly variable tensor coefficients k(x),

−∇· (K(x)∇u(x)) = q x ∈ Ω. (1)

Here Ω is a two dimensional domain, K is the permeability and q represents the source
terms. Standard two-level domain-decomposition methods, using e.g. piecewise linear

1
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basis functions for the coarse space, where the oscillating coefficients are assumed to be
resolved at the coarse scale, in general perform poorly for these problems5, where the
condition number will have a dependence on the largest ratio in coefficients k. Multiscale
methods3 is introduced as an upscaling technique for constructing robust coarse spaces,
with harmonic basis functions. The multiscale problem is solved directly on the coarse
scale, and resolved on the fine scale as a linear combination of the basis functions. This
is equivalent with one fine-scale iteration, using the multiscale method as a two-level
additive Schwarz preconditioner for domain decomposition8.

In some cases the solution may be too expensive to compute on the fine scale at each
time step, and we are forced to do upscaling. However, the coarse-scale operator may
produce non-physical oscillations in the solution6, which can only be reduced by iterat-
ing on the fine-scale residual. We will introduce an adaptive framework for constructing
coarse spaces for the class of mass-conservative domain-decomposition (MCDD) methods
introduced by Nordbotten and Bjørstad8, which can act as either an accurate upscaling
method, or an efficient preconditioner. The framework is based on algebraic approxima-
tions to the Schur complement, by using the interface probing technique2. Most multiscale
methods are based on a geometric upscaling of fine-scale information, however, this does
not naturally generalize from two- to multi-level methods, or arbitrary geometries and
dimensions. The probing technique on the other hand is only based on neighbour element
relations, which is independent upon the underlying geometry, and we show in Section 3
how this approach can be extended to construct multilevel preconditioners. For the ap-
plication of upscaling, we observe that we can obtain much more accurate coarse spaces
by applying a set of solution-based probing vectors. A more detailed discussion is given
in Section 4. To demonstrate the flexibility of the proposed methodology, we show in
Section 5 a two-step preconditioner, where the first step is an upscaling of the fine-scale
system, and the second step is a preconditioner for the upscaled system.

2 MCDD

2.1 Fine-scale system

We consider linear systems arising from fine-scale discretisation on cell centred grids,
consisting of finite volumes ωi. Here, the permeability tensors K are assumed to be
constant on each volume ωi, but may be discontinuous at the interfaces γij, between
two neighbouring volumes ωi and ωj. By integrating (1) over ωi, and applying Green’s
theorem we obtain the integral equation for conservation of incompressible fluids,∫

∂ωi

F· νi =
∫
ωi

q. (2)

Here, F = −K(x)∇u(x) represents the Darcy flux and νi is the outward normal vector
to ∂ωi. A discretisation of (2) yields local mass conservation within ωi, and the global
discrete system of fine-scale equations takes the form

2
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Au = b. (3)

The system matrix A is in general non-symmetric.

2.2 Grids and scales

A primal coarse grid Ω =
⋃

Ωi is defined, such that each primal coarse cell Ωi is a set
of finite volumes ωj on the fine scale and the interfaces of Ωi align with the interfaces on
the fine scale. The centre-most volume on the fine scale within Ωi is defined as the coarse
node V . By repeating the process, we can form a hierarchy of cell centred coarse grids
Ωl. As a preprocessing step we require mass conservation between all cells Ωl

i on each
level l, on which we will compute the solution. This gives us the possibility to construct a
mass-conservative flow field on level l, from the approximate solution û at the same level.
Let Al

i = Rl
iA be the restriction of the system matrix A to Ωl

i. Acting on each primal
coarse cell Ωl

i, the integration matrixM l
i sums all the rows of Al

i into the row of the coarse
node V . More precisely,

M l
i = I + eliV

(
1− eliV

)T
, (4)

where I is the identity matrix, eliV is the unit vector identifying the row of the coarse
node and 1 is the vector entirely filled with ones. We apply (4) on the linear system (3),
which gives us the MCDD system

Cu = p, (5)

where

C = Q(l)A; p = Q(l)b and Q(l) =
∑
l

∑
i

(
Rl

i

)T
M l

iR
l
i.

A dual coarse grid Ω′ is also introduced, s.t. all the coarse nodes defined on the primal
coarse grid Ω represent vertex nodes on the dual grid. A continuous path of connecting
cells on the finer level, connecting two neighbouring primal coarse nodes, further define the
interfaces on the dual grid. The boundary of Ω′

i consist of boundary nodes, sub-divided
into edge and vertex nodes, as shown in Fig. 1(b). While the MCDD system of equations
is defined on the primal grid, all local operations will be carried out on the dual grid.

3 SCHUR COMPLEMENT SYSTEM

We consider non-overlapping sub-domains on Ω′, where the sub-domains only share
common sub-interfaces. We will denote the boundary nodes and internal nodes on each
sub-domain by subscript B and I, respectively. The boundary nodes B are further sub-
divided into edge nodes E and vertex nodes V . The vertex nodes will here be of special

3
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importance, since they define our coarse-scale degrees of freedom. By grouping the un-
knowns corresponding to the internal nodes I in uI , and the unknowns located on the
local interfaces of Ω′

i in uB, we reorder the fine-scale problem (5), writing[
CII CIB

CBI CBB

] [
uI
uB

]
=

[
pI
pB

]
. (6)

All internal unknowns are now decoupled on each local sub-domain, and can formally
be eliminated by a block Gaussian elimination of (6). This gives us the Schur complement
system SuB = pB−CBIC

−1
II pI on the interface, where S = CBB−CBIC

−1
II CIB. The Schur

complement system can be shown to be better conditioned1, however the system is still
quite expensive to solve. The multiplication of S with a vector x will require solving a
Dirichlet problem on each local sub-domain Ω′

i.
By a similar grouping of unknowns uE and uV on the edge nodes E and vertex nodes

V , respectively, we can write [
SEE SEV

SV E SV V

] [
uE
uV

]
=

[
gE
gV

]
. (7)

The reordered Schur complement matrix now has a sparse block structure, however each
block is in general dense. We want to construct a simple approximation to S−1

EESEV , and
a reduced system-matrix Ac on a coarser scale, where Ac can be solved directly or applied
as a coarse space for an additive Schwarz preconditioner. Note that this only modifies
the matrices belonging to the equations for the edge unknowns. Thus, our solution still
have the property of conserving mass on the coarse scale. Another observation is that the
coarse-scale operator Ac will have the same general structure as the fine-scale operator
A. This means that the same operations may be applied for Ac, and we can recursively
construct mass-conservative operators on a hierarchy of levels.

For the construction of 2-level additive Schwarz preconditioners, numerical experiments
indicate that the property of mass conservation may result in better conditioned problems
for the fine-scale, see Figure 1(a), however this does not necessarily apply for multi-level
Schwarz preconditioners. The approximation induced on the edges for the highest level,
may destroy the property of mass conservation on all intermediate levels, meaning mass
conservation can only be guaranteed on two scales simultaneously, that being the coarsest
and finest scale. Consequently, the MCDD operators may be better suited as input
parameters for a multigrid-type preconditioner, where the restricted residual is applied
directly on each mass-conservative level.

4 INTERFACE PROBING APPROXIMATION

For the interface approximation on the local edge nodes, we consider the probing tech-
nique introduced in Chan and Mathew2 and references therein. The aim is to construct
an approximation of the Schur complement matrix on the edge, such that

4



Andreas Sandvin, Jan M. Nordbotten and Ivar Aavatsmark

18 36 54 72 90 108 126 144
0

1

2

3

4

5

6 x 105

κ(A)
κ(Q(2)A)
κ(Q(3)A)

h−1

κ

(a)

I E

→→

V

(b)

Figure 1: Figure (a) shows the condition number of the fine-scale solution with mass conservation on
multiple levels, as we refine the grid. Figure (b) shows a single sub-domain Ω′

i, where the bold lines
indicate the boundary. The boundary cells are shared between two sub-domains, where each sub-domain
only compute half-fluxes along the boundary.

ŜEBv
i = SEBv

i = wi, (8)

for some carefully chosen linearly independent probing vectors vi. Originally, the prob-
ing technique was applied on the square matrix SEE, where the choice of probing vectors
vi =

∑
j=i mod(n) ej would lead to a low-band approximation of the Schur complement,

which is fast to invert. The method was motivated by the observation of Golub and
Mayers4, that the coefficients of the Schur complement often had a rapid decay away
from the diagonal, following the relation |Sij| = O (|i− j|−2). In the case of anisotropic
coefficients Kij in the elliptic problem (1), we may have large off-diagonal elements, and
the relation for the coefficients does not apply. If we instead probe SEB on each Ω′

i, the
probing vectors vi can be interpreted as boundary values for a Dirichlet problem on Ω′

i.

4.1 Solution-based probing vectors

We introduce solution-based probing vectors, to mimic upscaling techniques and there-
fore provide better approximation properties for heterogeneous and anisotropic problems.
Let SEB be the Schur complement on the edge, restricted to a single domain Ω′

i, where
B denotes the boundary of Ω′

i (see Figure 1(b)). The application of a probing vector
vi with the Schur complement matrix SEB in (8), requires solving a Dirichlet problem
on Ω′

i, with boundary values vi. Thus, we may construct accurate upscaling methods
by choosing probing vectors vi that capture the important physical features of the local
fine-scale solution. In fact, if the probing vectors could be chosen as the exact fine-scale
solution restricted to the local boundary of Ω′

i, the local approximation is exact, and
the solution converges in one iteration. For the construction of solution-based probing
vectors, we solve flow problems on a local domain covering the local support of SEB (see
Figure 1(b)). The restriction of the local solution to the boundary B will then be used
as a probing vector, which will belong to the null space of the SEB. We construct the
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interface approximation ŜEB, from (8), filling only the diagonal elements and the element
neighbours, corresponding to the largest couplings in CEB. If the number of probing vec-
tors are larger then the number of non-zero couplings in CEB, we represent the additional
neighbour connection(s) by an average of the remaining boundary elements. For each
local problem, the calculation of a solution-based probing vector requires solving a local
fine-scale problem on Σ ⊃ Ω′

i. However, as the resulting probing vector vi ∈ null(SEB)
we do not need to solve the local fine-scale problem relating to the multiplication with
SEB. It follows from relation (8), that the preconditioner will be exact for those fine-scale
problems captured by the local solutions. We will denote the preconditioner, MCDD-N,
since its construction only depends on Neighbour relations.

4.2 Oscillating probing vectors

The interface probing preconditioners discussed in Chan and Mathew2, are based on
oscillating vectors, vi =

∑
j=i mod(n) ej . These preconditioners may give more robust

approximations to the Schur complement, however they lack the physical interpretation
provided by the solution-based probing vectors. Similar to standard upscaling techniques,
the quality of the solution-based probing vectors will be case dependent. For robustness,
all the probing vectors should not belong to the null space of SEB. In fact, experience
shows that by applying a few oscillating vectors, we get a more robust method. Thus, a
combination of oscillating and solution-based probing vectors seems to be favourable. It is
important that the chosen probing vectors are linearly independent. If two of the vectors
vi are close to being linearly dependent, the system (8) for calculating the approximation
ŜEB will be ill-conditioned.

5 NUMERICAL EXPERIMENTS

We demonstrate the Multilevel MCDD-N preconditioner for a heterogeneous flow prob-
lem generated by a random Log-Normal permeability field, with standard deviation 1 and
a correlation length of 3 fine-grid cells in both the x- and y-direction. All calculations
are performed on a (50x50) uniform mesh, with a coarsening factor of 5. For the global
boundary conditions we consider u = 1 at the left boundary, u = −1 on the right bound-
ary and no-flow conditions on the top and bottom boundary. We consider a two-step
3-level coarsening strategy, consisting of upscaling from the fine level, and precondition-
ing the intermediate level. For upscaling, we construct two solution-based probing vectors
belonging to the null space of SEB. We solve one problem with unit pressure drop in the
horizontal direction and no-flow conditions on the vertical boundaries. Similarly, we solve
a second problem with unit pressure drop in the vertical direction and no-flow conditions
on the horizontal boundaries. All the local solutions are solved on a region with an over-
lap of 1, 2 and 3 sub-domains. We refer to MCDD-N(n) as the preconditioner with n
sub-domains overlap. Additionally, two oscillating probing vectors are used. As precon-
ditioners for the intermediate level we consider the interface probing preconditioner of
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Chan and Mathew4, using 3 and 5 oscillating vectors. We denote them MCDD-3P, and
MCDD-5P, respectively. Both strategies are compared with an MCDD preconditioner us-
ing reduced boundary conditions. This is the same interface approximation applied with
e.g. the multiscale finite-volume method of Jenny7 for problems on regular Cartesian fine
grid. It is also equivalent with the tangential component approximation ŜEB = CT

EB, (see
e.g. Smith et al.9). We denote the preconditioner MCDD-TC.

MCDD-TC MCDD-3P MCDD-N(1) MCDD-N(2) MCDD-N(3)

mean 4.2 · 10−1 9.5 · 10−2 4.8 · 10−2 1.2 · 10−2 2.6 · 10−2

mean (92%) 1.5 · 10−1 9.2 · 10−2 3.1 · 10−2 9.9 · 10−3 4.5 · 10−3

mean (80%) 1.4 · 10−1 9.1 · 10−2 2.1 · 10−2 8.1 · 10−3 3.7 · 10−3

Table 1: Upscaling; We analyse the error in L2-norm after one fine-scale iteration. The results for each
method are the mean of 50 realisations of random Log-normal permeability fields. We also show the
truncated means, where 2 and 5 realisations of both the low and high end of the results are discarded.

MCDD-TC MCDD-3P MCDD-N(1) MCDD-N(2) MCDD-N(3)

unprec. 78 71 74 74 74
MCDD-TC 31 30 28 28 35
MCDD-3P 23 22 22 22 22
MCDD-5P 17 16 17 17 17

Table 2: Preconditioning; The table shows the number of iterations on the intermediate level, to meet a
tolerance of 10−8. Here each column represents different upscaling procedures, while the rows represent
different preconditioners. All results are means of 50 realisations of random Log-normal permeability
fields.

6 DISCUSSION

The results in Table 1 show that considerably more accurate coarse spaces can be
achieved by applying only a few solution-based probing vectors, capturing the most im-
portant features of the fine-scale solution. While the upscaling method resulting from the
tangential component approximation (MCDD-TC), fails to capture the correct flow field
for many problems involving heterogeneous permeability, the probing technique (MCDD-
3P) represents a more robust framework for approximating the flow on the boundary.
Harmonic probing vectors (MCDD-N) can be applied to give better approximation prop-
erties for the interface probing technique. As for standard upscaling methods, the overall
accuracy of the solution-based vectors relies on the localisation assumptions for the local
problems. In general, the overall accuracy will increase with the size of the overlapping
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region; The results show an improved accuracy of about a factor 2.5, per sub-domain.
For robustness of the preconditioner, we need an independent set of probing vectors. For
large overlapping regions, the local solution within the target region is less influenced by
the boundary conditions and we may get similar flow behaviour for different boundary
set up. This may cause inaccurate approximations to the local Schur complement. The
residual on the local boundaries can be used to build local error estimates and adaptive
strategies for constructing accurate operators on the coarse scale or efficient smoothers
for the fine-scale. Table 2 shows that algebraic preconditioners may be constructed and
applied to coarser levels, independently of the choice of upscaling procedure. The oscil-
lating probing vectors applied with the (MCDD-3P and MCDD-5P) seem to be efficient
to capture the oscillating nature of the residual. However, a systematic investigation of
the quality of the MCDD preconditioners is beyond the scope of this paper, and a more
systematic study of the localisation approximation and the properties of ŜEB is needed.
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Abstract

The multiscale control-volume methods for solving problems involving flow in porous media have gained
much interest during the last decade. Recasting these methods in an algebraic framework allows one to
consider them as preconditioners for iterative solvers. Despite intense research on the 2D formulation,
few results have been shown for 3D, where indeed the performance of multiscale methods deteriorates. The
interpretation of multiscale methods as vertex based domain decomposition methods, which are non-scalable
for 3D domain decomposition problems, allows us to understand this loss of performance.

We propose a generalized framework based on auxiliary variables on the coarse scale. These are enrich-
ments the coarse scale, which can be selected to improve the interpolation onto the fine scale. Where the
existing coarse scale basis functions are designed to capture local sub-scale heterogeneities, the auxiliary vari-
ables are aimed at better capturing non-local effects resulting from non-linear behavior of the pressure field.
The auxiliary coarse nodes fits into the framework of mass-conservative domain-decomposition (MCDD)
preconditioners, allowing us to construct, as special cases, both the traditional (vertex based) multiscale
methods as well as their wire basket generalization.

Keywords: multiscale methods, control volume methods, porous media, preconditioning, domain
decomposition

1. Introduction

Geological porous media are typically characterized as heterogeneous at virtually every scale. This
reflects the process by which geological formations are created, where natural sedimentation processes span-
ning kilometers horizontally and millennia in time lead to composite materials that are intrinsically complex
in structure. Compounding the difficulties introduced by multiscale geological parameterizations are the
strongly non-linear equations that describe multi-phase flow in porous media. These equations lead to chal-
lenges that are manifested in discontinuous solutions as well as both gravitational and viscous instabilities.
Such phenomena are frequently best understood as multiscale in nature. As a consequence of the complexity
in modelling multi-flow in geological porous media, virtually every text-book on the subject address issues
of scale. We refer to [1] for classical examples.

Two main avenues are typically followed when confronting multiscale phenomena. The most classical
approach, multiscale modelling, is to manipulate equations defined at a finest, verified, scale, and attempt
to derive effective equations valid on coarser scales. These equations are typically stated for derived vari-
ables. These derived variables broadly fall into three categories: Conserved (extensive) quantities, auxiliary
(intensive) state variables, and problem specific variables. This final category of variables may be unique
to the problem, or to the coarser scales, and can be interpreted to represent emerging properties of the
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system. In some cases these emerging properties are parameterizations of what would otherwise be seen as
hysteretic, or non-unique, behavior. In the context of multi-phase flow in porous media, component masses
are conserved at all scales, pressure is an intensive state variable at all scales, and finally various parame-
terizations of hysteresis or dynamical behavior are introduced to make the models appropriate in practice
[2]. This classical approach has seen several formalizations in recent years, among the most instructive of
which is the Heterogeneous Multiscale Method [3].

A more recent approach to handling multiscale characteristics is through adaption of the numerical
methods themselves. Classically introduced as generalized finite elements by Babuska and Osborn [4], it
was first made into a useful concept through the residual-free bubble methods [5], where multiscale features
of the solution can be handled. Later, this concept was also applied to multiscale coefficients, in what is
termed multiscale finite element and multiscale finite volume methods (see [6] for an introduction). While
multiscale numerical methods have shown good properties on academic problems, they often fail to live up to
their promise on real problems [7]. By exploiting the link between multiscale numerical methods and domain
decomposition (DD), multiscale control volume methods can be framed in an iterative setting which greatly
increases the potential for robust implementations [8]. However, an improved multiscale representation
without iterations is still the ultimate goal.

In this paper, we propose to enhance the common understanding of multiscale numerical discretizations
through an analogy to multiscale modelling. In particular, as multiscale control volume methods inher-
ently discretize conserved quantities, it is natural to ask if the discrete approximation, like its modelling
counterpart, can be enhanced through introducing problem-specific additional variables. We term these
additional variables auxiliary, and the remainder of the paper is devoted to developing and verifying this
concept. In particular we consider the issue of assigning boundary conditions to the local problems based
the state in the coarse variables. This poses challenges for multiscale numerical methods, especially in the
presence of long correlation pathways that renders non-local dependence of the solution. The problem is
difficult already in two spatial dimensions, where the state in the coarse variables must be mapped onto
a 1D boundary. Strategies proposed to remedy the situation include oversampling [9, 10], utilizing global
information [10, 11] and using specialized boundary conditions [7, 12]. The situation becomes worse in three
spatial dimensions, since a mapping to a 2D boundary is needed. In this paper, auxiliary coarse variables
are used to address these challenges. By exploiting links between multiscale control volume methods and
domain decomposition, the auxiliary variables can easily be introduced in the linear solver. We consider
grids with relatively few primary coarse variables (corresponding to aggressive coarsening), and enhance the
coarse space by auxiliary variables. Thus the number of internal boundaries decreases, while there is enough
degrees of freedom in the coarse space to capture details in the solution. Our numerical experiments involves
model problems as well as industrial benchmark data. The results show that auxiliary coarse variables can
improve the performance of the linear solver considerably.

The rest of the paper is structured as follows: In Section 2, multiscale methods for three-dimensional
problems are discussed and difficulties are pointed out. A multiscale linear solver is introduced in Section
3, and the extension to coarse spaces is introduced in Section 4. Simulation results are presented in Section
5, and the paper is concluded in Section 6.

2. Challenges of 3D multiscale elliptic problems

In this study we consider the following elliptic problem for flow in three dimensional porous media,

−∇· (K∇u) = q, (1)

where K is the permeability of the medium, u is the potential and q represents the source terms of the
system. The heterogeneous structure of porous rocks is reflected in the permeability K, which can vary
by several orders of magnitude on different scales. It is the variation of this parameter which represents
the major challenge, and has been the main focus of the multiscale methods for problems involving flow
in porous media. Hou and Wu [13] showed that the sub-scale information of the elliptic operator can be
captured within a few coarse-scale basis functions, which increases the accuracy of the recovered fine-scale
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solution. Several multiscale numerical methods have later been developed for the capturing of sub-scale
information into local basis-functions. We refer to [6] for an overview of these methods.

A special focus of this paper will be on problems involving long correlation lengths of the parameter
K, e.g. fractures, faults and channels which occupies several coarse-scale grid blocks. The discretization of
such problems are particularly difficult to upscale, and local iterations are required to guarantee accurate
solutions [14]. Due to the difficulties involved, the primary focus of previous work has been the 2D problem.
In the remainder of this section we will briefly discuss some of the existing challenges of multiscale numerical
methods, and highlight some of the main challenges of extending these methods to 3D simulations.

2.1. Multiscale numerics

In general porous media there are rarely only two or a couple of distinct scales, but rather a continuum
of physical scales which needs to be taken into account. However, for practical purposes we need to define
a finest (geological) scale for the discretization of our problem. Usually the fine-scale discretization leads to
a large coupled problem which is extensive to solve and often too computationally expensive to compute.
For multiscale methods, one or a couple of coarse scales are added to speed up the calculation of a fine-scale
conservative solution.

The solution space for each coarse scale is spanned by local coarse-scale basis functions. This is referred
to as the coarse space. As for upscaling, the coarse scale equations for the multiscale method are stated
for conserved variables, thus the multiscale methods can be categorized as upscaling methods. In addition,
through the construction of coarse-scale basis functions, the multiscale methods can be applied as multilevel
DD-preconditioners. In this paper we will consider the multiscale control volume methods, which can be
written as DD-preconditioners in the framework of mass conservative domain decomposition (MCDD) [8].

While the multiscale methods are designed to capture local heterogeneities within the sub-domains, one
of the difficulties has been to include non-local and global information, which may influence the solution
locally. An oversampling strategy was proposed by [9] to include non-local information into the calculation
of the local basis-function, thus reducing the resonance effect of the intermediate scale heterogeneities.
Adaptivity w.r.t the size and structure of these oversampling regions has further improved the accuracy and
limited the number of additional computations [15]. The use of global information has also been considered
[10, 11]. Finally, local iterations seams to be inevitable when constructing robust implementations of the
multiscale methods.

2.2. Extension to 3D

Despite intense research on challenging problems in 2D, few results have been reported for problems in
3D. The capturing of sub-scale information naturally becomes more challenging for three dimensional flow.
However, the extension from 2D to 3D problems also introduces new challenges w.r.t. the construction of
the coarse-scale basis functions.

Concerning upscaling, the third dimension results in a larger gap between the numerical scales, where
the number of fine cells per coarse cell grows as ndim. Any aggressive coarsening strategy is obviously
more challenging for 3D problems. The boundary conditions for the local elliptic problems are difficult to
approximate. The localization approximations embedded in the multiscale simulations are usually lower-
dimensional approximations of the flow on the sub-domain faces and edges and the errors due to these
approximations become more severe for three dimensional flow.

From a domain decomposition perspective, it is well known that the extension of the coarse-scale basis
functions from 2D to 3D problems is non-trivial. The multiscale methods are in general vertex-based (VB)
methods (Fig. 1(a)), meaning that the coarse-scale degrees of freedom (dof) are associated with the vertices
of the local sub-domains. For these methods, the standard piecewise linear interpolation is not robust, and
do not result in scalable preconditioners for 3D-problems [16]. While the 2D coarse scale solution is mapped
directly onto the boundary, the 3D coarse-scale solution, defined on vertices, needs to be mapped in two
stages. The solution is first interpolated onto the edge dof, and secondly onto the face dof. The harmonic
basis functions of the multiscale methods have shown to be more robust than the usual piecewise linear
basis functions, w.r.t. problems involving sub-scale heterogeneities in 2D [17], however, this has not been
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(a) (b)

Figure 1: Figure (a) and (b) show the vertex cells and wire basket cells, respectively.

verified for 3D problems. Moreover, in the homogeneous limit, the harmonic basis functions degenerates to
the usual piecewise linear basis functions, which are not scalable with the size of the problem.

In domain decomposition, various extensions of the coarse space have been proposed to retain the ap-
proximation properties obtained in 2D simulations. Of special interest to this paper is the wire basket (WB)
method [18], where both the vertex and edge dof belong to the coarse space, see Fig. 1(b). Thus, we only
have one interpolation from the coarse-scale dof (wire basket) onto the boundary dof, which is similar to
VB-methods for 2D-problems. Other extensions of the coarse space involves defining special interpolations
on the sub-domain faces [16, 19]. Such methods will not be discussed in this paper. Instead we will show
how the traditional VB-methods with standard interpolations can be improved through the use of auxiliary
coarse variables.

While the WB-method is attractive w.r.t. convergence of the fine-scale solution, it uses a large static
coarse space resulting in a much larger and more dense numerical scheme on the coarse scale. In many cases,
it is not necessary to use all these dof related to the wire basket. Thus, by discarding the less important dof
on the coarse scale, we may save many unnecessary computations.

In this paper, we develop a generalised framework for multiscale simulation by introducing auxiliary
variables to the coarse space. The auxiliary variables are strategic sampling points of the coarse scale and
they are meant as a supplement to the existing conserved variables on the vertices. Thus, it can be seen as
a generalization of the existing vertex-based multiscale control volume methods. Furthermore, we observe
that the WB-distribution of coarse variables becomes a special choice of the auxiliary coarse variables. The
auxiliary variables fit naturally into the framework of MCDD, in which case they represent an additional
flexibility with respect to multiscale simulation and multiscale numerical modelling. However, before we can
introduce the auxiliary coarse variables, we need to formulate the domain decomposition framework.

3. MCDD

The discretization of Eq. (1) results in a sparse system of linear equations,

Au = b, (2)

where the system matrix A is in general large. Hence, a direct calculation of Eq. (2) is typically very
time-consuming. In reservoir simulation, several linear systems on this form must be solved within each
time-step, in which case inexact solvers are always used. We seek a fast inexact solver for approximating
the solution of the fine-scale problem (2).

4



Figure 2: The figure shows the multiscale grid. Here, the bold faces indicate the primal coarse grid, constructed on top of an
underlying fine-scale grid.

3.1. Mass conservative coarse-scale operator

Mass conservation is an essential property for reservoir simulation and fluid flow. In our case the equation
is discretised into a set a fine-scale control-volumes ωi, resulting in a linear system of equations which is mass
conservative on the fine-scale. Each row of the linear system (2) will represent the mass balance equation
over ωi.

For the multiscale methods, the coarse model is defined on a primal coarse grid Ω, where each cell Ωi

is a collection of fine-scale control volumes and the coarse-scale interfaces coincide with interfaces on the
fine-scale as seen in Fig. 3. If the fluxes on the coarse scale are mass conservative, it is possible to recalculate
a mass conservative flux field on the fine-scale by a pre-processing of the fine-scale system (2) [20].

If all the equations corresponding to the fine-cells contained within a primal coarse cell Ωi are added, the
resulting equation will represent mass balance for Ωi. This coarse scale equation is substituted for the row
of the coarse cell (centermost cell of Ωi). More precisely, we can write the pre-processed fine-scale system
of equations as

Cu = p, (3)

where

C =
∑
Ωi

(Ri)
T
MiRiA and p =

∑
Ωi

(Ri)
T
MiRib.

Here, Mi is the integration matrix, while Ri represents the usual restriction matrix, consisting of zeros and
ones, such that, acting on the global dof, Ri picks out the degrees of freedom corresponding to Ωi. The
integration matrix Mi is written as

Mi = I + eiV (1− eiV )
T
, (4)

where I is the identity matrix, eiV is the unit vector identifying the row of the vertex cell and 1 is the vector
entirely filled with ones.

3.2. Schur complement system

Several domain decomposition techniques coupled with various iterative schemes have been developed.
For the majority of cases, the domain decomposition techniques are applied as preconditioners, where the
iterations are accelerated by the use of Krylov subspace iterative methods. In this paper we will focus on
the two-level additive Schwartz MCDD preconditioner, applied to Eq. (3). For information about other DD
preconditioners, see e.g. [16, 21, 22]. The preconditioner will be accelerated using GMRES [23].

To formulate the MCDD preconditioner, we need to introduce the dual coarse grid Ω′, consisting of dual
coarse cells Ω′

i. The dual coarse grid is defined such that the centers of the the coarse cells Ωi are located
at the vertices of Ω′. Thus the coarse scale conservation of mass is associated with the vertices of Ω′. The
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Figure 3: An illustration of the internal, face, edge and vertex cells used in the domain decomposition method. For clarity of
the visualization, only some of the face cells are shown.

fine-scale cells joining the vertex cells belong to the boundary of the dual-grid. The dual coarse-grid Ω′ is
a corner-cell grid and represents a non-overlapping decomposition of the global domain. For simplicity, we
will refer to Ω′

i as a sub-domain. For each sub-domain, the fine-scale dof corresponding to internal cells
are denoted as internal cells, while the fine-scale dof located on the sub-domain boundaries are denoted as
boundary cells. The boundary cells are further sub-divided into face cells, edge cells and vertex cells, see Fig.
3. While the internal cells are localized on each sub-domain, the boundary cells are shared by neighboring
sub-domains and are globally coupled.

By rearranging the system of equations into those dof corresponding to internal and boundary unknowns
we can rewrite Eq. (3) as [

CII CIB

CBI CBB

] [
uI

uB

]
=

[
pI
pB

]
. (5)

The internal cells belonging to different sub-domains are now decoupled, and the block-diagonal matrix
CII can formally be inverted directly on each sub-domain Ω′

i. The Schur complement system is found by
eliminating these internal cells, resulting in a system for the boundary cells only:

SuB = g, (6)

where

S = CBB − CBIC
−1
II CIB , (7)

and

g = pB − CBIC
−1
II pI .

We can further split the Schur complement matrix into cells corresponding to the face (F ), edge (E) and
vertex (V ):

S =

⎡
⎣SFF SFE SFV

SEF SEE SEV

SV F SV E SV V

⎤
⎦ . (8)

Written on this form, the Schur complement S still has a block diagonal structure, but all the blocks are
now full. An explicit construction of S will in fact require the same amount of work as solving the entire
fine-scale problem (5). Hence, the various Schur complement matrices must be approximated by sparse
matrices, such that we can decompose the Schur problem. This gives us a MCDD or Schur complement
preconditioner. A special requirement for the MCDD preconditioner is that the equation for the vertices
(conserved variables on the coarse scale) must be solved exactly, providing a mass conservative coarse scale
solution.
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3.3. Interface approximations

The accuracy of the multiscale methods depends highly on the choice of boundary conditions for the
local elliptic problems. A successful choice of boundary conditions may result in an accurate representation
of the coarse scale problem and a good first approximation to the fine-scale solution. However, within an
iterative setting, an accurate representation of the boundary conditions only affects the first iteration; after
the first iteration, the residual does not represent any actual physics but should be regarded as noise. Thus,
the best multiscale approximation does not necessarily give the most efficient preconditioner [7].

The most common interface approximation for the multiscale control volume methods is similar to the
tangential component (TC) approximation for DD-preconditioners. The TC-approximation of the Schur
matrix S (see Eq. (7)), can be written as

Ŝ = CT
BB , (9)

where CT
BB is denoted the tangential part of the CBB . While CBB is a diagonally dominant matrix, CT

BB

has reduced diagonal elements such that the row-sum equals to zero, i.e. CT
BB ·1 = 0. The tangential part of

CBB arises in the multiscale methods as a lower dimensional discretization (in the “tangential“ direction),
also called the reduced boundary condition. This is in general only possible for regular Cartesian grids,
however the TC-approximation is also valid for general grids [7]. We can write the TC-approximation for
the Schur complement (8) on matrix form,

Ŝ =

⎡
⎣CT

FF CFE 0
0 CT

EE CEV

SV F SV E SV V

⎤
⎦ . (10)

While S in general is a dense and globally coupled matrix, Ŝ is sparse and locally decoupled.

The coarse scale operator

For multiscale methods, the coarse cells represent integrated and conserved quantities on Ω. We will denote
the coarse cells as C. Normally they are spanned out by the vertex cells, in which case we write C = V . By
using Eq. (6) and (10) we can write up the equations for the face, edge and vertex cells:

CT
FFuF = gF − CFEuE ,

CT
EEuE = gE − CEV uV ,

AV uC = bV , (11)

where

AV =
[
SV F SV E SV V

]
⎡
⎢⎣
(
CT

FF

)−1
CFE

(
CT

EE

)−1
CEV

− (CT
EE

)−1
CEV

I

⎤
⎥⎦ , (12)

is the coarse-scale operator and

bV = gV +
(
SV F

(
CT

FF

)−1
CFE − SV E

)
gE − SV F gF . (13)

is the corresponding right-hand side vector on the coarse scale.
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Figure 4: Figure (a)-(c) shows a coarse cell with three sets of auxiliary coarse cells.

4. Auxiliary coarse variables

Due to the more aggressive coarsening that necessarily follows from considering higher-dimensional prob-
lems, the multiscale methods become increasingly sensitive to the approximations introduced to the Schur
complements. This is analogous to the situation that arises for traditional static condensation type methods,
where in three spatial dimensions a discussion between vertex-based and wire basket methods arises. In this
section, we introduce a framework for addressing this problems for multiscale preconditioners, in which the
coarse space can be enriched by what we term auxiliary coarse variables.

4.1. Generalized preconditioner

Originally, the multiscale grid has been structured in a hierarchical way, where the coarse cells are fixed
and represent coarse scale volumes or elements, on which mass conservation is satisfied. Indirectly, the
coarse scale equation represents a special mass conservative discretization on a coarse scale grid.

The MCDD preconditioner satisfies the same hierarchical structure, where the vertex cells preserve the
coarse-scale mass conservation, however, the MCDD framework is not restricted to those coarse scale degrees
of freedom. An extension of the coarse-scale degrees of freedom has been studied in domain decomposition,
where certain configurations of the coarse space can improve the interpolation of the coarse scale solution
and give scalable and more robust preconditioners; see e.g. [24, 25] for more information.

This is specially important in 3D, where the usual vertex-based domain decomposition method, like most
multiscale numerical methods, fail to be scalable for linear interpolations on the homogeneous problem. To
address this shortcomming we generalize the multiscale iterative methods by introducing auxiliary variables
on the coarse scale. We define the coarse cells as C =

[
X V

]
, where X represents the non-conserved

auxiliary variables and V is the conserved variables on the vertices. Any fine-scale cell can in general be
chosen as an auxiliary coarse cells. If X = E we have the wire basket distribution of the coarse cells, which
can be used to build preconditioners that are provably scalable [18]. On the other hand, if X is empty, we
retain the VB-method.

The general Schur complement preconditioner can now be written

B = Ŝ−1 =

⎧⎨
⎩
⎡
⎣CT

FF CFE CFC |(C=E)

0 CT
EE CEC

SCF SCE SCC

⎤
⎦
⎫⎬
⎭

−1

, (14)

where the approximate Schur complement matrix Ŝ, is on the same form as (10). We observe that if X
contains any edge cells, these will no longer be represented in the set E and connections to these cells will
be stored in the third block column of (14). In the case of X being empty, the preconditioner (14) is similar
to the multiscale control-volume preconditioner using vertex dof on the coarse scale (see Eq. (10)). In the
special case of X = E, we can simplify the Schur complement preconditioner, writing

8



BW =

{[
CT

FF

[
CFE 0

]
SWF SWW

]}−1

,

whereW =
[
E V

]
is the wire basket. The auxiliary coarse variables (ACVs)X, as applied in the framework

of the Schur complement preconditioners, thus generalizes multiscale methods to include enriched coarse
spaces. In general, adaptivity with respect to the selection of coarse cells is not new. In algebraic multigrid
methods, the coarse scale dof are algebraically chosen within the iterative method. Several multilevel
methods monitor the residual, and chooses the most inaccurate cells to be corrected for on a ”coarse” scale.
In this setting, the coarse scale is nothing more than a bounded set of the fine-scale. The idea of extending
the coarse space are also considered in [26, 27] in the setting of multiscale finite element methods.

4.2. Properties of the auxiliary coarse variables

The auxiliary variables give us the flexibility of including additional fine-scale information, which might
have large influence on the coarse scale. In principle, we now have the freedom of designing the coarse scale
that we want, like in the case of numerical multiscale modelling. In this framework, the coarse cells represent
distributed sampling points of the fine-scale problem, and the distribution of these points are important for
the accuracy of the method.

We envision at least three strategies for the use of auxiliary coarse variables:

• Parameter based. The auxiliary coarse variables can be applied by means of refinement of the coarse space.
In particular, this strategy should be considered in regions with strong contrasts in permeability.

• Source based. The inclusion of auxiliary coarse cells could also be motivated by the right hand side of
the problem. In particular, auxiliary cells may be placed according to source terms of the system, normally
represented by non-zero right-hand side elements. By placing an auxiliary coarse variable on the position of
a Dirichlet well, one basis function will capture the fine-scale pressure in the vicinity of that well. This is
analogous to constructing additional well-basis functions [28], which is normally performed for the MSFV
method. The support for the additional basis function corresponding to the well is here limited to the
corresponding sub-domain of the well.

• Algebraic construction. A third approach is to choose the auxiliary variables algebraically within an it-
erative procedure based on error estimates. The auxiliary variables are dynamic, in the sense that we can
include or discard these variables at any stage of an iterative procedure. In any case, we only include or dis-
card single basis-functions, which by construction are independent. This will introduce another adaptivity
with respect to solving large linear systems effectively.

The placement of the additional coarse cells on the sub-domain boundaries is also analogous to multiscale
methods with polygonal coarse elements. For each additional coarse cell on the sub-domain, we get one
additional basis function. In the simplified case of linear basis functions, we observe that the extra auxiliary
cells on the boundary will result in piecewise linear functions on the boundary. In the limit, as all the
boundary cells are filled with auxiliary coarse variables, every cell is treated exactly and the true solution
is captured. Even though this strategy is aimed at capturing non-linear and higher order functions of the
solution, this is not similar to higher order multiscale methods, in which case we would need to incorporate
higher order interpolations between the added coarse cells. In this paper we want to move the discussion away
from only focusing on improved interpolations or boundary conditions. Here we apply the same boundary
conditions everywhere, but in areas where the boundary conditions fail to capture the fine-scale physics,
we show that enrichment of the coarse space may be applied directly or within an iterative procedure to
improve the sub-scale capturing and convergence of the fine-scale solution.
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Grid Type # PCV # ACV # (Coarse nodes) # it
V1 Vertex 64 1 65 212
V2 Vertex 1728 1 1729 151
V3 Vertex 46656 1 46657 45
ACV1 ACV 64 385 449 170
ACV2 ACV 64 1537 1601 107
ACV3 ACV 1728 10369 12079 74
WB1 WB 64 4993 5057 65
WB2 WB 1728 41473 43201 42

Table 1: The number of primary (PCV) and auxiliary coarse variables for the log-normal grid. The last column shows the
number of GMRES iterations needed to achieve a relative residual of 10−8.

5. Numerical results

In this section we demonstrate the method of auxiliary variables through numerical experiments of
increasing complexity. Our aim is to demonstrate the capability of auxiliary coarse variables to stabilize the
multiscale methods for challenging problems in 3D. The simulations are conducted on parameters describing
porous media exhibiting both short and long correlation lengths, as well as large jumps in the permeability
coefficients. As for the geometry, only uniform Cartesian grids are considered. For all the numerical tests
we apply auxiliary coarse variables restricted to either the wire basket or Dirichlet sources (fixed pressure
wells).

When adding ACVs on an edge, the coarse space on the edge goes from representing linear (or reduced
operators) functions for the vertex method to a piecewise linear (or piecewise reduced operators) func-
tions. Thus ACVs can therefore be considered a refinement of the coarse space in the form of a piecewise
linear polynomial and increasing number of degrees of freedom, bearing some similarity with traditional
p-refinement for finite elements. Therefore we chose to compare ACV refinement of the coarse operator to
classical h-refinement of a vertex method, which is realized by reducing the disparity between the fine and
coarse scales. For simplicity, the additional ACVs are placed only on the subdomain edges. This keeps the
refinement strategy relatively simple, and the wire basket scheme provides an upper limit of the possible
improvement compared to the vertex scheme.

Some considerations regarding computational cost of the two refinement schemes are also in order. The
main computational effort in the MCDD preconditioner is split into three parts: Solving local subproblems
on edges, faces and the interior of subdomains, solving the coarse system, and creating restriction and
prolongation operators (basis functions) between fine scale and coarse scale nodes. Of these, creating the
mappings between coarse and fine scale will be more costly for ACV refinement than for vertex refinement,
in that the support associated with a coarse scale node will be larger in the ACV refinement case. The
impact of the two other sources of computational cost will be highly dependent on issues such as the degree
of parallelization and available memory (for problems where many iterations are needed, it may be more
effective e.g. to factorize the coarse scale matrix if one can afford to store the factorization). The final
cost comparison between refinement of the coarse space and addition of auxiliary variables therefore comes
down to implementation and hardware; we chose to use the total number of coarse variables as a proxy for
computational cost.

5.1. Log-normal test case

Our first test case is a 3D grid with 108 cells in each direction, having in total 1.259.712 fine scale cells
of unit size. The permeability has a log-normal distribution, as illustrated in Fig. 5. A Dirichlet injection
well is placed in a corner, while a Neumann producer is located in the middle of the domain. For simplicity,
periodic boundary conditions are applied.

The grid size facilitates vertex grids with a coarsening of 27, 9 and 3 cells in each direction, and we
refer to these grids a V1, V2 and V3, respectively. Thus the coarse grids V2 and V3 can be seen as vertex
refinements of grid V1. We will also refine grid V1 by placing 2 and 8 ACVs on each edge, rendering coarse
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Figure 5: A log-normal permeability field. The base-10 logarithm of the permeability is plotted.

Figure 6: Number of iterations vs coarse unknowns for vertex and ACV grids for the log-normal permeability.

grids denoted ACV1 and ACV2, respectively. Similarly, coarse grid ACV3 is creating by adding 2 ACVs
to each edge of grid V2. Finally, grid WB1 and WB2 are wire basket refinements of grid V1 and V2,
respectively. A wire basket refinement of V3 was not considered, due to the large number of coarse nodes.
The coarse grid configurations, together with the number of coarse unknowns and the number of GMRES
iterations needed are summarized in Table 1.

Our first observation is that the vertex-based multiscale preconditioner is highly sensitive to the degree
of coarsening, and indeed performs very poorly for the coarsest cases. This is consistent with our notion of
low robustness for the vertex-based method in 3D. We observe that in this case, the numerical experiments
indicate that the performance of the preconditioner can be improved by adding ACVs instead of vertex
nodes. This is clearly seen by comparing grid V2 and ACV2: Both coarse grids are refinements of grid V1,
with grid V2 having somewhat more coarse unknowns than grid ACV2. Nevertheless, the ACV strategy
needs fewer iterations to reach the desired residual.

For convenience, Fig. 6 plots the iteration count versus the number of coarse unknowns. The figure
illustrates that the ACV scheme is a middle course between the vertex and wire basket schemes, and that
the preconditioner can be significantly improved compared to the vertex method by adding relatively few
coarse variables.

5.2. SPE 10

As our second test case, we consider the permeability field from the tenth SPE comparative benchmark
problem [29]. The grid consists of 60 × 220 × 85 cells. Of these, the permeability in the upper 35 layers
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Figure 7: The base-10 logarithm of the SPE10 permeability field. The formation is viewed upside down to emphasize the
channelized features in the lower part of the reservoir.

in the z-direction resembles a log-normal distribution, while the lower 50 layers are characterized by highly
permeable channels and high permeability contrasts, see Fig. 7. Again, periodic boundary conditions are
assumed in all tests. We note that to our knowledge, this represents the first systematic investigation of the
multi-scale finite volume type methods applied as a preconditioner reported for problems of this size and
complexity.

To investigate the impact of auxiliary coarse variables on this test case, we consider both the full model,
as well as submodels from the upper and lower part of the formation. In all test cases, we will place an
injection well in one corner, and a producer in the middle of the domain. A fixed pressure is applied in the
injection well, and the injection cell is modeled as an ACV for all simulations.

5.2.1. Refinement of the coarse space

As a first test, we investigate how adding ACVs to a vertex grid impacts the number of iterations. We
define three cases, the two first being subsets of the full model, corresponding respectively to a log-normal
and channelized permeability field. The third case represents the full benchmark dataset:

Case A: A grid of 60 × 220 × 35, permeability from SPE10 layers 1-35
Case B: A grid of 60 × 220 × 35, permeability from SPE10 layers 36-70
Case C: A grid of 60 × 220 × 85, permeability from SPE10 layers 1-85

On all these cases, we apply a coarse grid of 15 × 11 × 5. We test vertex and wire basket preconditioners,
as well as three preconditioners with an increasing number of ACVs denoted ACV 1, 2 and 3. The ACV
refinement is the same for each edge, that is, permeability variations etc are not taken into account when
defining the extra coarse nodes. The GMRES iterations are halted when the relative residual reaches 10−6.

The number of coarse scale nodes and the results are summarized in Table 2. We see that the number of
iterations needed to reach the desired tolerance decrease as auxiliary coarse variables are added. With the
ACVs placed on the edges, the wire basket method is the limiting case with the densest coarse space, and
thus a reduction factor of 2-3 compared to the vertex scheme is optimal for these tests. A large part of that
improvement is achieved already when going to ACV 1. Also, the extra computational cost stemming from
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Case A and B

# ACV # (Coarse nodes) # it, Case A # it, Case B
Vertex 1 561 193 1207
ACV 1 2341 2801 99 876
ACV 2 5041 5601 96 931
ACV 3 8401 8961 62 618
WB 14001 14561 63 600

Case C

# ACV #(Coarse nodes) # it, Case C
Vertex 1 1361 1516
ACV 1 6801 8161 1082
ACV 2 13601 14961 1091
ACV 3 20401 21761 734
WB 34001 35361 780

Table 2: The number of GMRES iterations needed to reach a relative residual of 10−6 for the SPE10 test cases.

adding the extra coarse variables needed to go from ACV 3 to a full wire basket scheme does not seem to
be justifiable.

The reduction in the iteration count is highest in the upper layers, where there are few abrupt changes in
the permeability field, and thus the pressure solution has highest regularity. In the lower layers, the solution
is erratic, and to best capture this behavior by ACVs, the auxiliary nodes should likely be placed on strategic
locations in the reservoir, such as highly permeable channels. Despite that no adaptivity was applied to
position the ACVs in the current test, the number of iterations needed is still reduced significantly, even
when a relatively small number of ACVs are added.

5.2.2. Comparison of refinement strategies

It is worth comparing vertex and ACV refinement for the SPE 10 case, building on the analogy between
h and p refinement. In this test, only cases A and B are considered, to emphasize the role of the different
structure in the permeability fields.

We consider three vertex grids with an increasing number of coarse unknowns. Furthermore, we consider
two ACV schemes, created by refining the coarsest vertex grid in such a way that the ACV grids and refined
vertex grids have a similar number of coarse unknowns. Thus the simulations illustrates the performance of
vertex and ACV refinement for a fixed number of coarse cells.

The results for both Case A and B are shown in Table 3, together with the number of coarse unknowns
for the different schemes. For the log-normal-type permeability in Case A, vertex refinement renders a
higher number of iterations needed compared to the strategy of adding auxiliary coarse variables. However,
for the channelized Case B, the picture is less clear. This qualitative behavior is consistent with the notion
of h-refinement for multiscale methods [6], where we note that for the case with high regularity (the upper
layers) it is beneficial to go refine the coarse grid, while for the case of less regularity (the lower layers), the
resonance effect between the characteristic length scales in the parameter field may influence the optimal
grid spacing in a way where it is not always beneficial to reduce the spacing on the coarse grid.

In contrast, for both upper and lower layers, adding ACVs to the coarsest vertex grid renders fewer
iterations. Compared to the vertex grids with a similar number of coarse unknowns, the ACV scheme for
most cases has about half the number of iterations; in one case the reduction factor is almost 8. These
results can be seen in the context of ACV providing a bridge between the vertex-based approximation and
the relatively more robust wire basket approximation, leading to a consistently better approximation of the
Schur complement systems.
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Case A and B

Type # PCV # ACV # (Coarse nodes) # it, Case A # it, Case B
Vertex 400 1 401 249 1481
Vertex 1680 1 1681 391 1984
Vertex 3698 1 3699 832 1732
ACV 400 1201 1601 171 1220
ACV 400 3201 3601 106 832

Table 3: The number of GMRES iterations needed to reach a relative residual of 10−6 for the SPE10 test cases. Three vertex
preconditioners were tested, as well as two ACV schemes.

5.3. Standalone multiscale methods

As discussed in Section 3.3, the multiscale preconditioners derived herein can be seen as standalone
multiscale approximations, which indeed gives the classical Multiscale Finite Volume Method [20]. As such,
it is of interest to also discuss the performance of the multiscale preconditioner as an approximate solution
by itself, not just its convergence properties.

While for 2D cross sections of the testcases discussed above, the multiscale methods can be made rea-
sonably robust [7], the same is not true in 3D. In particular, for the regular Cartesian grids considered
herein, the Multiscale preconditioner as a stand-alone solver gives unacceptable approximations even on the
log-normal type permeability fields, and completely fails to give reasonable results for channelized problems
such as the lower layers of SPE10. For this reason, we have chosen to emphasize the utility of multiscale
methods in the iterative framework.

In practical implementations, the great advantage of the mass conservative types of preconditioners
discussed herein is that converged solutions to the linear system of equations are not needed in order to
have a locally conservative flow-field. Thus, in the iterative framework the tolerance of the linear solver can
be chosen well above the tolerance used both when applying traditional preconditioners, but also above the
tolerance used in our examples. This allows for considerable computational savings.

6. Conclusion

We have developed a new way of constructing coarse spaces for 3D multiscale simulations. While the
existing coarse space for multiscale control volume methods based on vertex variables become unstable for
three dimensional problems, we propose a generalised framework for including additional variables enriching
the coarse space. We have denoted the additional coarse variables as auxiliary. The extended coarse space,
based on auxiliary variables enable us to more accurately and more directly transfer fine-scale heterogeneous
information onto the coarse scale. Moreover, it gives us the flexibility of constructing suitable coarse scale
systems based on the complexity of the problem.

Numerical results show that the proposed framework can be used to construct efficient numerical methods
for flow in 3D porous media; specially for problems involving long heterogeneous structures. In particular,
the robustness of the multiscale framework in 3D is significantly enhanced with the novel formulation.

The wire basket multiscale method is a special case of the auxiliary coarse space, in which all edge cells
are sampled on the coarse scale. This method degenerates to a robust preconditioner for problems involving
homogeneous permeability on each sub-domain. While the WB-method usually gives the lowest number of
iterations, much of the captured fine-scale information is often unnecessary. Numerical experiments show
that much of the non-linear information may be captured within the local basis-functions by including a
few auxiliary variables on the sub-domain boundaries. As such, the proposed methodology forms a flexibel
and reasonable compromise between computational cost and iterative efficiency, which cannot be obtained
by classical multiscale methods.
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1. Introduction 

Understanding flow in subsurface porous media is of great importance for society due to applications such as energy 
extraction and waste disposal. The governing equations for subsurface flow are a set of non-linear partial differential 
equations of mixed elliptic-hyperbolic type, and the parameter fields are highly heterogeneous with characteristic features 
on a continuum of length scales. This calls for robust discretization methods that balance the challenges in designing 
efficient and accurate methods. In this chapter we focus on a class of linear solvers for elliptic systems that aims at providing 
fast approximate solutions, preferably in one iteration, but fall back to being iterative methods with good convergence 
properties if higher accuracy is needed. 

We consider flow of flow of a single fluid in a porous media, transporting a passive particle. This can for instance represent 
flow of a pollutant as a result of groundwater contamination. Governing equations for the flow will be presented in the next 
section. Analytical solutions to the flow problem can only be found in very special cases, and in general, numerical 
approximations must be sought. The primary numerical schemes for commercial simulations are control volume methods. 
These methods are formulated such that conservation of mass is ensured, which is considered crucial in applications. After 
discretizing, an elliptic equation needs be solved for the pressure. This process is computationally expensive and may 
constitute the majority of the simulation time. 

The permeability (fluid conductivity of the rock) in subsurface porous media has a truly multiscale nature, with highly 
permeable pathways with significant correlation lengths. Hence the elliptic pressure equation will experience strong non-
local effects, posing a challenge for linear solvers.  Moreover, the permeability field constructed by geologists is highly 
detailed; the number of cells in the geo-model can easily be several orders of magnitude higher than what is feasible to 
handle in a flow simulation. The traditional approach to this problem has been to upscale the permeability, e.g. to compute a 
representative permeability on a coarser grid. For the pressure equation this gives a linear system that is much smaller and 
computationally cheaper to solve. The drawback is of course that details in the geological characterization may be lost 
during upscaling, and these details are known to have significant impact on transport. An alternative approach is offered by 
the so-called multiscale methods, which have been a highly popular research field in the last decade (Tchelepi & Juanes, 
2008). Like upscaling, multiscale methods perform a coarsening to end up with a relatively small linear system to solve. 
However, a multiscale method also provides a mapping from the coarse solution onto the fine grid. This projected solution 
will not be equal to a direct solution on the fine grid, but the two solutions will share many properties; in particular, many 
multiscale methods provide a velocity field that is mass conservative on the fine scale. Hence it can be used to solve fine 
scale transport equations. Numerical experiments have shown that this strategy can be extremely effective and highly 
accurate when measured in metrics that are important for applications (Kippe, et al., 2008; Efendiev & Hou, 2009). 

Despite the success of multiscale methods in porous media flow, the strategy has certain weaknesses. In this chapter we 
highlight the quality of the coarse operator: If this does not represent essential features of the flow field, the quality of the 
fine scale velocity field may be poor. In particular, long and high permeable pathways are difficult to capture in the coarse 
scale operator. A natural approach would therefore be to introduce a scheme that allows for iterations on the multiscale 
solution. The idea of a multi-level iterative method resembles domain decomposition, and in Nordbotten & Bjørstad, 2008, 
the equivalence between the multiscale finite volume method (Jenny, et al., 2003) and a special domain decomposition 
strategy was shown. The resulting iterative scheme was termed mass conservative domain decomposition (MCDD), and it 
can be classified as an additive Schwarz preconditioner with minimal overlap. Contrary to classical domain decomposition 



methods, MCDD will produce solutions that are mass conservative at any iteration step, thus it is not necessary to reduce 
the pressure residual to a very low value before solving transport equations. Various aspects of MCDD have been tested for 
two-dimensional problems (Kippe, et al., 2008; Sandvin, et al., 2011; Lunati, et al., 2011). However, to formulate multiscale 
methods for three-dimensional problems has turned out to be considerably more difficult in general, and to our knowledge, 
no applications of MCDD-type methods within an iterative setting have been reported in three dimensions. 

In this chapter, we consider multiscale methods and preconditioners defined for arbitrary number of spatial dimensions. We 
show how the multiscale method can be formulated both as a top-down and as a bottom-up method, and that these 
formulations give rise to different interpretations of the resulting approximations and preconditioners. Numerical examples 
illustrate the main strengths and weaknesses of the approach. Moreover, the numerical examples highlight the capabilities 
of the framework in terms of producing quick calculations when possible, but also producing more accurate results when 
needed. 

2. Governing equations and discretization 

The primary focus of the current chapter is linear solvers. The particular linear solvers we discuss are designed to preserve 
certain properties from the physical problem. Therefore, the linear solvers cannot be discussed without first specifying both 
the governing equations and the particular discretizations we are concerned with.   

2.1 Governing equations 

We consider flow of an incompressible fluid in a porous medium. For an introduction to flows in porous media, see e.g. 
(Bear, 1972); a reference focusing on appropriate numerical methods for this problem, confer (Chen, et al., 2006).  Here we 
will only provide a brief review of the main ideas of importance to this chapter. Conservation of mass (volume) for each 
phase can be modeled by the equation: 

∇ ⋅ 𝒖 = 𝜐. 

Here the flux of each phase is represented by 𝒖, and 𝜐 denotes the volumetric source / sink terms. The flux is usually 
assumed to be given by Darcy’s law, which reads 

𝒖 =  − 𝒌∇𝑝, 

where the permeability is denoted 𝒌, and 𝑝 is the fluid potential. Additionally, we consider a dissolved concentration 𝑐 
which is passively advected with the velocity field,  

 𝜙 డ௖
డ௧

+ ∇ ⋅ (𝑐𝒖) = 𝜓, (1)  

where 𝜙 is the fraction of the void space available for fluid flow, referred to as porosity, and the material source term is 
given by 𝜓. We note that by introducing the particle velocity 𝓿 = 𝜙ିଵ𝒖 the advection of the dissolved concentration can be 
written in terms of the material derivative on Lagrangian form 

𝐷𝑐
𝐷𝑡

=
𝜓
𝜙

− 𝑐
∇ ⋅ 𝒖

𝜙
. 

By eliminating the fluid flux from the statement of volume conservation we obtain an elliptic equation for pressure  

 −∇ ⋅ (𝒌∇𝑝) = 𝜐. (2) 

In the sequel, we will study numerical solution techniques for Eq. (2), while keeping in mind that the methods must also be 
applicable for complex situations. Specifically, by integrating the Lagrangian version of the transport equation, we see that 
volume balance errors lead to exponential growth of errors in the dissolved concentration. Thus, it is of importance for the 
problems we consider that the velocity field must always be mass conservative in order to be suitable for use with most 
transport schemes. 

2.2 Discretization 

To discretize Eq. (1), we consider scalar discretizations, and in particular control volume schemes as they are particularly 
well suited for an exact representation of the conservation equation. Introducing the usual 𝐿ଶ inner product, we can write 
the elliptic equation on a weak form as: Find 𝑝 ∈ 𝐻଴

ଵ such that  



 (𝒌∇𝑝, ∇𝑤) = (𝜐, 𝑤)     for all 𝑤 ∈ 𝑊. (3) 

Here, 𝑊 represents a suitably chosen space, and we have for simplicity assumed zero Dirichlet boundary conditions to 
simplify the exposition. From this equation, we obtain control volume methods by choosing the finite subset of 𝑊௛ ∈ 𝑊 to be 
the piece-wise constants forming a partition of unity on a cell-based grid, from which we obtain 

න 𝒖 ⋅ 𝒏
డఠ

 𝑑𝜎 =  න 𝜐 𝑑𝜏,
ఠ

 

for each (primal) cell 𝜔. Note that 𝒏 is the unit normal vector pointing out from the cell, and the product 𝒖 ⋅ 𝒏 is the normal 
flux over the boundary.  Various control volume methods can now be defined by their approximation to the (flux) boundary 
integrals, most of which can be interpreted as particular choices of the finite space for 𝑝௛. We will in the following assume 
that such a choice has been made (for concreteness, one may consider the control-volume finite element method which is 
defined by 𝑝௛ lying in the space spanned by piece-wise linears with nodes forming a dual grid to the partition induced by 
𝑊௛). Furthermore, we assume for simplicity that the choice of flux approximation leads to a local approximation of the flux, 
in the sense that fluxes can be explicitly represented as a combination of fluid potentials in near-by cells.  

We have now described a general setting for discrete representations of volume balance and Darcy’s law which lead to a 
sparse linear system for the scalar variable 𝑝௛, which can be given on vector-matrix form as 

 𝑨𝒑 = 𝝊. (4) 

Remark 1: The control-volume finite element method, while attractive for educational purposes, is not very accurate in 
practice. Therefore, in reservoir simulation, the flux over a face has traditionally been approximated as driven by the 
pressure difference in the two adjacent cells only, giving rice to two-point schemes for the flux (Aziz & Settari, 1979). For 
logically Cartesian grids, this gives a classical 5- or 7-point cell stencil in 2 and 3 dimensions, respectively. However, in 
situations when the principal axis of the permeability tensor deviates considerably from the orientation of the grid, two-
point schemes are known to produce inaccurate results. As a remedy, so-called multi-point schemes have been introduced 
(Edwards & Rodgers, 1998; Aavatsmark, 2002). These produce more accurate results to the price of a larger computational 
stencil, for Cartesian grids, the resulting linear system will have 9 and 27 bands in 2 and 3 dimensions, respectively. As we 
will see, the reduced accuracy of two-point schemes for rough grids is not only important for discretizing Eq. (2); similar 
considerations are also important when constructing fast linear solvers.  

Remark 2: If a method is defined by choosing both 𝑝௛ and 𝑤௛ to lie in the same finite-dimensional space, the classical finite 
element method is recovered. In particular, the simplest choice, the piece-wise (multi)-linear functions give a system of 
equations that have a similar algebraic structure to the control-volume methods discussed above, but do not explicitly 
represent conservation. 

3. Mass conservative domain decomposition 

Here we describe the ingredients for the mass conservative domain decomposition (MCDD). We will start our presentation 
with describing the development of Schur-complement systems for 𝑁-dimensional problems. Readers may of course chose 
to disregard this generality, and consider only the special cases 𝑁 = 2, 3. From this, we will see how we can form classical 
domain decomposition methods as well as multiscale control-volume methods. Note that due to the large number of 
matrices and vectors involved in the presentation, these will no longer be marked as bold as long as there is no room for 
confusion. 

3.1 Schur complement systems 

Being consistent with the discretization outlined above, we assume that computational domain is partitioned into a fine 
scale grid, and that control volume discretization enforces conservation of mass on the fine grid cells. In order to proceed in 
the construction of a two-level method, we need to introduce the notion of coarse grids.  

Consider a continuous collection of cells, referred to as internal boundary cells, which partition the domain into isolated 
subdomains. By isolated, we mean in the sense of the discretization of the elliptic operator, such that no cell in one 
subdomain is dependent on any cells of any other subdomains. We interpret the subdomains as cells of the coarse dual grid, 
and the internal boundary cells thus form the nodes, edges, faces etc. of the dual coarse grid. We will identify cells and 
variables with a numerical subscript dependent on what part of the dual coarse grid they form part of: 0 indicates dual 



coarse nodes, 1 indicates dual coarse edges, 2 indicates faces, and so on, until 𝑁 denotes cells that lie in the subdomains 
(where 𝑁 is the dimension of the problem). Confer Fig. 1 for an illustration. When considering only the internal boundary 
cells, we will refer with subscript 𝐵 to all subscripts less than 𝑁. Note that we have not yet introduced a coarse primal grid; 
this will not be needed before a later section. 

  
(a) Level 0 (b) Level 1 

  
(c) Level 2 (d) Level 3 

Fig. 1: Illustration of cells on different levels in a three-dimensional Cartesian grid. For clarity of visualization, only some of 
the cells on level 2 are indicated. 

We now start to manipulate the linear system of equations (4), with the ultimate goal of obtaining a coarse linear system that 
captures non-local structures.  By a reordering of the unknowns based on the dual coarse grid, Eq. (4) can then be written as 

 ൭
𝐴଴଴ … 𝐴଴ே

⋮ ⋱ ⋮
𝐴ே଴ … 𝐴ேே

൱ ൭
𝑝଴
⋮

𝑝ே

൱ = ൭
𝜐଴
⋮

𝜐ே

൱. (5) 

In the last row, by construction, 𝐴ேே is a sparse block diagonal matrix, with each block representing the interactions within 
each isolated subdomain. This implies that we can find the values 𝑝ே by a local calculation given the variables on the 
internal boundary cells. We write these local calculations as 

𝑝ே = 𝐴ேே
ିଵ (𝜐ே − 𝐴ே஻𝑝஻). 

We use this expression to formally eliminate internal cells from our system of equations. Thus, by substitution into Eq. (5) 
we have the Schur Complement system 

ቌ
𝑆଴଴ … 𝑆଴(ேିଵ)

⋮ ⋱ ⋮
𝑆(ேିଵ)଴ … 𝑆(ேିଵ)(ேିଵ)

ቍ ൭
𝑝଴
⋮

𝑝(ேିଵ)
൱ = ቌ

𝜐෤଴
⋮

𝜐෤(ேିଵ)

ቍ, 

where the Schur complement matrices 𝑆௜௝ are defined as 



𝑆௜௝ ≡  𝐴௜௝ − 𝐴௜ே𝐴ேே
ିଵ 𝐴ே௝, 

and the right hand side has been updated to reflect the elimination of the internal nodes by  

𝜐෤௜ ≡ 𝜐௜ − 𝐴௜ே𝐴ேே
ିଵ 𝜐ே. 

We make a few comments about the Schur complement system.  

Remark 3: By the Schur complement formulaiton the number of unknowns has been reduced, from what was essentially an 𝑁 
dimensional problem to an (𝑁 − 1) dimensional problem. This significant reduction in model complexity comes at the cost 
of the Schur complement system being in general much denser than the original system. Furthermore, the computational 
cost of calculating the full Schur complement matrices if frequently prohibitive. As such, the Schur complement formulation 
by itself is seldom used.   

Remark 4: For local discretizations the direct coupling between variables 𝑝௜ and 𝑝௝, where 𝑖 and 𝑗 are more than one integer 
apart, is usually small (and indeed there is no coupling for the two-point flux approximation methods). This implies that the 
matrices 𝐴௜௝ and thus also 𝑆௜௝ are for many practical problems essentially zero for |𝑖 − 𝑗| ≥ 2, and the full Schur complement 
system is therefore essentially block tri-diagonal. Furthermore, we see that 𝑆௜௝ only differs significantly from 𝐴௜௝ in the case 
where 𝑖 = 𝑗 = 𝑁 − 1. 

In the particular case of two spatial dimensions, the matrix 𝑆 describes interaction between edge and vertex nodes only. In 
the case of three dimensions, it describes the interaction between faces, edges and vertexes, where we expect that the 
interactions between vertexes and faces are weak.  

While the Schur complement system itself may be prohibitive to form and solve, it provides the framework for developing 
approximate solvers. Classically, these fall in the category of domain decomposition preconditioners (Smith, et al., 1996; 
Quateroni & Valli, 1999; Toselli & Widlund, 2005). In this chapter, we see how this framework also gives us both multiscale 
methods and preconditioners based on them.  

Recall that the Schur complement system is (essentially) tridiagonal. The main approximation strategies to this system fall in 
two categories: The top down strategy gives a low-rank approximation to 𝑆 based on only the degrees of freedom associated 
with vertexes of the coarse dual grid, which are then identified as the coarse degrees of freedom. This essentially forms a 
multiscale subspace based on the lower-diagonal component of 𝑆, and is the approach we will emphasize in the following.  
The bottom-up strategy goes the other way, successively applying Schur complement strategies to eliminate all variables 
until only a system for 𝑝଴ remains. Since the Schur complement matrices themselves are too expensive to calculate, the 
bottom-up approach requires introducing low-rank approximations to the Schur complement (e.g. probing based techniques 
(Chan & Mathew, 1992)) at every stage in the succession. The class of domain decomposition methods known as 
substructuring methods is often formulated in terms of the bottom-up framework. 

3.2 Multiscale basis approximations  

The multiscale basis approximations to the Schur complement system use the (block) lower diagonal component of 𝑆.  
Retaining the dependence on 𝑝଴, which we hereafter identify as the coarse variable, we then see that we obtain an explicit 
expression for the remaining degrees of freedom. In the block tri-diagonal case, this can be written compactly as: 

𝑝௜ = ቌෑ −𝑆መ௝௝
ିଵ𝑆መ௝(௝ିଵ)

௜

௝ୀଵ

ቍ 𝑝଴ + ෍ ቌ ෑ −𝑆መ௝௝
ିଵ𝑆መ௝(௝ିଵ)

௜

௝ୀ௞ାଵ

ቍ 𝜐෤௞

௜

௞ୀଵ

. 

In this expression, the matrix products are ordered right to left, and we have marked the Schur complement matrices with a 
hat, indicating that approximate choices of these matrices can be used in order to define different multiscale bases. In the 
general case, where a block tri-diagonal system is not assumed, the above expression is defined recursively. Either way, for 
conciseness, we denote the linear operator associated with the reconstruction of the full approximation 𝑝  by its 
homogeneous and heterogeneous parts,  

𝑝 = Ψ𝑝଴ + Υ𝜐෤. 



At this point we make the following remarks.  

Remark 5: The space spanned by the projection of 𝑝଴ to the full set of variables defined by Ψ is termed the multiscale space 
𝑊ு

ெௌ. It can be characterized by the basis functions obtained by setting 𝑝଴ = 𝑒௜, where 𝑒௜ is the elementary vectors. The 
resulting product allows us to define the multiscale basis function 𝜓௜

ெௌ as columns of Ψ,  

𝜓௜
ெௌ ≡ Ψ𝑒௜. 

Given suitable choices of 𝑆መ௜௝, this gives various multiscale basis functions from literature, as seen in the following remarks. 
In the terminology of domain decomposition, these basis functions are often referred to as prolongation operators. 

Remark 6: The natural interpretation of 𝑆መ௝௝
ିଵ𝑆መ௝(௝ିଵ) is to solve local problems at the level 𝑗 using level 𝑗 − 1 as boundary 

conditions. This motivates the usual approximations to these Schur complements. Three important alternatives exist.  

1. 𝑆መ௝௝  can be chosen as a discretization of the original differential operator restricted to the part of the internal 
boundary associated with 𝑗. This is the original multiscale basis functions of Hou & Wu 1997, and this is also the 
strategy we will apply in our numerical experiments. 

2. For arbitrary operators, the differential operator restricted to a lower dimension may not be a good approximation 
to the problem, and this approximation is unstable. For such cases, a simple linear interpolation on internal 
boundaries can be suggested (Lunati & Jenny, 2007), and  𝑆መ௝௝  is then chosen as any matrix which admits the 
relevant (multi-)linear solutions.  

3. Both the preceding operators require knowledge about the original geometry of the problem, and can thus be seen 
as geometric methods. If it is desired to implement multiscale methods strictly algebraically, then it is possible to 
construct algebraic approximations 𝑆መ௝௝  based on the information in 𝑆௝௝ , as was explored in Sandvin, et al., 2011. 

Remark 7: It is common to not approximate the last Schur complement 𝑆ேே. Note that this does not imply that this Schur 
complement matrix needs to be computed, as we only need to know its action on the elements of the multiscale basis and on 
the right hand side.  If this component is retained exactly, then the method becomes residual-free on the subdomains, which 
is an important aspect that can be exploited at later stages.  

Keeping in mind that we now have an explicit representation of the solution covering the domain given the knowledge of 
the coarse nodes, we can use this representation to obtain a coarse system of equations.  

3.3 Coarse scale equations retaining conservation form 

From the last section, we see that we can use the Schur complement system to obtain a multi-scale basis. This is essentially a 
low-dimensional approximation of the solution space for the homogeneous part of the discrete differential operator. What 
remains in order to get an approximate solution is to consider coarse equations that constrain the remaining degrees of 
freedom in the multiscale space.  

The original system of equations provides us with the first option for a set of coarse equations, since the equations associated 
with the coarse variables are simply our fine-scale discretization. Recalling the notation Ψ that indicates the linear operator 
that reconstructs the homogeneous part of the solution from the coarse basis we see that our original system of equations is 
simply  

(𝐴଴଴ ⋯ 𝐴଴ே)Ψ 𝑝଴ = 𝜐଴ − (𝐴଴଴ ⋯ 𝐴଴ே)Υ𝜐෤. 

This is however a poor choice of constraint for our coarse variables, as it physically represents only the differential operators 
locally around the coarse node. From the perspective of the variational derivation of the control volume method, this 
solution thus satisfies Eq. (3) with 𝑝 ∈ 𝑊ு

ெௌ and 𝑤 in the space of piecewise constants with support around the local cells 
associated with 𝑝଴.  From this understanding, we are motivated to think of reformulating the system such that the test 
functions for the coarse equations have a larger support, and in particular also form a partition of unity.  

To be precise, consider a coarse partition of the domain, referred to as the primal coarse grid, which has the following 
properties: Each cell in the primal coarse grid consists of a set of cells from the fine grid, and contains exactly one vertex (cell 
on level 0) of the dual coarse grid, see Fig. 2. Since the primal coarse grid is a subset of the fine-scale grid, we know that the 



space of piecewise constant functions 𝑊ு  on the primal coarse grid is a sub-space of the space of piecewise constant 
functions 𝑊௛ on the fine grid. Therefore, by a change of representation, we could write the original discretization such that 
the discrete equations for the coarse variables satisfied Eq. (3) for all piecewise constant functions of the primal coarse grid. 
This leads to our desired coarse equations. 

 

Fig. 2: A two-dimensional fine scale grid with a primal coarse grid imposed on it (bold lines). Black cells denotes center cells 
in the primal cell, these are on level 0 in the dual topology. 

More practically, let the 𝐴, as before, represent a standard control volume discretization. Then let 𝑅௜ be the restriction matrix 
to primal coarse cell 𝑖, and let 𝐴௜ = 𝑅௜𝐴. If furthermore 𝑀 is an integration matrix that sums all rows in 𝐴௜ into the row of the 
center cell, that is 

 𝑀௜ = 𝐼 + 𝑒௜଴(𝟏 − 𝑒௜଴)், (6) 

where 𝐼  is an identity matrix, 𝑒௜଴  is a unit vector identifying the center of the coarse cell, and 𝟏  is a vector of ones. 
Multiplication with 𝑀௜ for all primal coarse cells, and mapping the result back to the whole domain gives a linear system 

 𝐶𝑝 = 𝜐, (7) 

where 𝐶 = ∑ 𝑅௜
் 𝑀௜𝑅௜𝐴௜ , and 𝜐 ⟶  ∑ 𝑅௜

்𝑀௜𝑅௜𝜐௜ . The linear system (7) is the original conservation of mass on the fine scale for 
all variables 𝑝௜ where 𝑖 ≥ 1, however it represents conservation on the coarse scale for variables 𝑝଴. Note in particular that 
this means that 𝐶௜௝ = 𝐴௜௝ for 𝑖 ≥ 1, and that this linear transformation does not change the solution 𝑝. 

We now see that the coarse equations, as given by  

(𝐶଴଴ ⋯ 𝐶଴ே)Ψ 𝑝଴ = 𝜐଴ − (𝐶଴଴ ⋯ 𝐶଴ே)Υ𝜐෤, 

solve the problem given by Eq. (3) for with 𝑝 ∈ span 𝜓ெௌ and 𝑤 ∈ 𝑊ு, the space of piecewise constant functions on the dual 
coarse grid. We have thus derived a coarse control volume discretization, utilizing exactly a multiscale basis function to 
represent the solution. As a direct method, this is the so-called Multiscale Control Volume (Finite Element) Method as was 
first discussed (assuming 𝜐௜ = 0 for 𝑖 ≥ 1) in Jenny, et al., 2003. The multiscale control volume methods described in the 
context of linear preconditioners are the Mass Conservative Domain Decomposition preconditioners derived in Nordbotten 
& Bjørstad, 2008.   

Remark 8: In  Remark 1 at the end of the discretization section we saw that the standard finite element method is obtained by 
choosing test functions that are in the same multiscale space 𝑊ு

ெௌ as the solution space. One may ask if the same is the case 
for multiscale methods. The answer is that yes, in the sense that if the integration on the primal grid defined in Eq. (7) is 
replaced by a weighted sum, using the multiscale basis itself as weights, the classical Multiscale Finite Element method of 
Hou & Wu, 1997 is recovered.  

3.4 Recovering a conservative fine-scale flux field 

The method as outlined so far constructs a two-level set of control volume methods. This can be seen from several 
perspectives: Either as the basis for a multi-level method, as the basis for a preconditioner in an iterative method, but also 



from the perspective of deriving a new, (coarse) single-scale control-volume method. We will consider the third perspective 
in this section. 

When discussing the coupled set of equations outlined in Section 2.1, we pointed out the importance of retaining local mass 
conservation. This property is often necessary to consider (almost) point-wise, while by construction, the control-volume 
methods consider this only on the primal cells of the grid. It is therefore natural to consider whether a post-processing can 
be performed to extend this cell-wise property to a more local property, and whether this operation can be conducted 
locally. 

For a local post-processing, it is natural to use the (cell-wise conservative) fluxes over boundaries of the primal grid as the 
basis of solving Neumann boundary problems inside each cell. The Neumann problem for the elliptic problems we consider 
is well-known to only admit solutions if the compatibility condition is satisfied, which is to say that the boundary conditions 
exactly integrate to the sum of all internal sources or sinks. The control-volume methods satisfy the compatibility condition 
by construction. Note that after post-processing, we will obtain a flux field that is everywhere conservative, but as a 
consequence will not everywhere satisfy Darcy’s law.  

In the case of single-scale control-volume methods, the permeability coefficient 𝑘 is usually considered constant inside each 
primal cell, and locally post-processed fluxes can be calculated analytically for some cell shapes. While this is not used much 
from the perspective of practical simulation, it is an invaluable tool in the derivation of error estimates.  

For the multiscale control-volume method, the permeability is of course possibly heterogeneous inside each coarse primal 
cell, and a numerical calculation must be performed as a post-processing step. This can be achieved using the same grid and 
discretization as used when obtaining the multi-scale basis functions, and leads to an approximation with the following 
important properties: A post-processed flux which is conservative on the fine-scale primal grid. This post-processed flux 
allows for transport simulations to be performed on a significantly finer grid than the coarse control-volume scheme that 
was derived.  

It is important to note that the possibility of post-processing the fluxes is the most important property of the multiscale 
control-volume method. Moreover, the construction of the MCDD preconditioner explicitly preserves this property, such 
that at any iteration of an iterative approach, the approximate solution to the fine-scale problem can also be post-processed 
in an identical manner.   

3.5 Multiscale methods as iterative solvers 

The domain decomposition method formulated in Section 3.3 can be applied as a stand-alone solver for the pressure system 
(4). This was the approach advocated in the early multiscale papers (Hou & Wu, 1997; Jenny, et al., 2003; Aarnes, 2004). Since 
the action of the method on a vector can be evaluated solving local systems related to the Schur complements, as well as a 
(relatively small) coarse linear system, we understand that the method offers an efficient way to obtain a pressure 
approximation and a mass conservative fine scale velocity field. Indeed, simulations of petroleum recovery indicate that in 
some cases, this strategy provides a fairly accurate and very cheap alternative to traditional approaches. 

However, the above strategy is insufficient for more challenging problems. A particular weakness of the multiscale methods 
is the reliance on somewhat arbitrary approximations to the Schur complements 𝑆መ௜௜. Indeed, since the approximate Schur 
complements determine the subspace 𝑊ு

ெௌ, we understand that for any approximate Schur complement, cases exist where 
the solution to the fine-scale problem lies in a space orthogonal to the multiscale space. Thus multiscale methods as direct 
solvers will always have problems with robustness.  The practical performance of multiscale methods unfortunately 
deteriorates with the number of spatial dimensions; to be specific, multiscale methods have turned out to perform 
significantly worse in three spatial dimensions than in 2D.  

When faced with these issues, there are a few techniques that can be applied to improve the solution. One is to consider 
sophisticated ways to construct 𝑆መ௜௜, using in particular non-local information and information about the right hand side. 
Another approach, to be described next, is to apply the MCDD preconditioners in an iterative setting to improve the 
approximation. The simplest such strategy is a Richardson scheme, where we, equipped with an initial guess 𝑝଴, define the 
iterative scheme  

𝑝௟ାଵ = 𝑝௟ + 𝜏𝐵ெௌ(𝑏 − 𝐴𝑝௟), 



where 𝐵ெௌ  represent one application of the multiscale method and 𝜏  is a damping factor. We observe that when the 
multiscale method is applied as a stand-alone solver, this corresponds to applying a single Richardson iteration with the 
MCDD preconditioner and  𝜏 = 1. The Richardson scheme will in general exhibit poor convergence for our problem. A 
better utilization of the multiscale method is as a preconditioner inside an iterative solver such as GMRES (Saad & Schultz, 
1986). Since the problem is likely to be more difficult in some parts of the domain, the application of the preconditioner can 
be restrained to those parts, if they can be identified by error estimates.  

An important and often time consuming ingredient of GMRES is to ensure orthogonality of the basis vectors for the Krylov 
subspace in which the approximated solution lies. When GMRES is preconditioned with the multiscale method, this 
computational cost can be reduced considerably by exploiting a special feature of the solution: If the internal nodes 𝑝ே are 
eliminated using an exact solver, e.g. introducing no approximation to 𝑆ேே, the residual in the interior will be zero after one 
application of the preconditioner as discussed in Remark 7. This does not mean the pressure is exact for those cells, but rather 
that the influence of nodes on level 𝑁 on the residual is lumped into the higher levels. This also means that GMRES does not 
need to minimize the residual for cells on level 𝑁, the orthogonalization needs only consider levels 0, … , 𝑁 − 1, leading to an 
often significant reduction of the computational cost. Note that level 𝑁 cannot be totally ignored, since some nodes there are 
a part of the flux expression for level 𝑁 − 1. 

We now realize that the MCDD applied as a preconditioner in an iterative setting possess several advantageous features in 
comparison to standard preconditioners:  

1. For relatively simple problems, where standard multiscale methods are applicable, the iterative procedure can be 
terminated after a single iteration.  

2. For moderately complex problems, the iterative method can be terminated at any point where the solution is 
deemed accurate enough, and a locally conservative flux field can be recovered.  

3. For truly challenging problems, the MCDD preconditioner is comparable to standard non-overlapping domain 
decomposition based preconditioners for these problems.  

Thus we see, for applications where the exact solution to the linear system is not necessary, the current methodology allows 
for a substantial savings in number of iterations. This is of great practical importance, since the error introduced by a 
discrete approximation to (2) can frequently be orders of magnitude larger than the tolerance used in traditional linear 
solvers.  

3.6 Computational cost 

While a full assessment of the computational cost is beyond the scope of the chapter, we will make some brief comments 
that allow the reader to get a general impression of the cost of both the multiscale methods as well as their application as 
preconditioners. 

The computational cost of the MCDD preconditioner is composed of three components. First, the approximate Schur 
complement system involves approximating the action of 𝑆ேே on a (small) set of vectors. Physically, this corresponds to 
solving the local problems inside the internal subdomains for given boundary conditions. Denoting the number of internal 
subdomains as 𝑁ௌ஽, a naïve estimate of cost would be 𝑁ௌ஽ ⋅ dim 𝑝଴. However, by construction, most approximate Schur 
complements will be local, such that each subdomain typically only has non-zero boundary conditions associated with the 
variables in 𝑝଴ that are associated with cells on the boundary of the subdomain. For Cartesian coarse subdomain, this is 
identified as the corners, such that the computational cost is proportional to 𝑁ௌ஽ ⋅ 2ௗ ⋅ 𝐶ி . Here 𝐶ி  is defined as the 

coarsening factor, which is the ratio of degrees of freedom in the fine and coarse spaces, 𝐶ி ≡ ୢ୧୫ ௣
ୢ୧୫ ௣బ

. The multiscale basis is 

only calculated once.  

Secondly, there is a cost associated with the right-hand side, which needs to evaluated at every iteration. As seen in Section 
3.2, the right hand side is also associated with local calculations, forced by source terms in contrast to the multiscale basis 
functions. The cost is thus proportional to  𝑁ௌ஽ ⋅ 𝐶ி ⋅ 𝑁ூ, where 𝑁ூ is the number of iterations.  

Finally, there is the cost associated with solving the coarse set of equations. Here, there are two contrasting strategies. The 
domain-decomposition strategies argue for aggressive coarsening, where the coarse problem has (almost) negligible size 
and cost. This has the advantage that the cost of the coarse solve can be neglected, at the expense of more costly construction 



of the multiscale basis. However, as the multiscale basis calculation is trivially parallel, this may be a good strategy on some 
computational architectures, and in particular if the selection of coarse grids is hard to automate. A contrasting strategy is in 
the multi-grid flavor, where a much less aggressive coarsening is applied, which leads to a non-negligible cost in the coarse 
problem. However, since the coarse problem has the same control-volume structure as the fine-scale discretization, the 
multiscale method can be called recursively. The resulting algorithm has a better performance from the perspective of 
computational cost, but may be more difficult to implement as the problem is no longer trivially parallel. Note that for a 
conservative approximation to be obtained, the reconstruction of the flux field must also be conducted recursively. 

In general, the multiscale methods are designed for problems where there is a coupling between the permeability 𝑘 and the 
concentration field 𝑐. As 𝑐 evolves locally, the multiscale basis functions may only need to be updated locally in space, 
allowing for further computational savings compared to a generic linear solver that is not adapted to these features. These 
aspects have been carefully highlighted in a suite of 2D test cases (Kippe, et al., 2008) . 

4. Numerical examples 

In this section, we show numerical examples illustrating the properties of the domain decomposition method. For these 
examples, we have chosen the permeability field defined according to the SPE 10th comparative benchmark study much 
used to study upscaling and multiscale methods (Christie & Blunt, 2001). This test case involves a Cartesian 60 x 220 x 85 
grid. The permeability in the upper 35 layers have a somewhat smooth distribution (consistent with a shallow marine 
depositional system), whereas the 50 lower layers are characterized by sharp permeability contrasts and highly permeable 
channels with long correlation length (consistent with a fluvial depositional system). The lower layers are expected to pose 
challenges for linear solvers. Representative layers from the upper and lower parts of the formation are shown in Fig. 3. The 
permeability field spans more than 10 orders of magnitude, rendering a challenging test problem for our methods. 

  
(a) Uppermost layer 

 
(b) Lowermost layer 

Fig. 3: The base-10 logarithm of the permeability from the uppermost (a) and lowermost (b) layers in the SPE 10 test case. 
These are used in the 2D tests, and they are representative for the upper and lower part of the 3D formation, respectively.  
Blue and red corresponds to high and low-permeable regions, respectively. For convenience, the figures are rotated 𝟗𝟎𝐨. 

On this grid, we will consider simple setups, with one injection well and one producer. Both for 2D and 3D tests the injector 
is located along the boundary (the position differs somewhat between the tests, as we avoid injecting into low-permeable 
cells), and the producer is located in the middle of the domain. The pressure equation (2) is discretized using a two-point 
scheme, and for simplicity, periodic boundary conditions are assumed. For all test cases, post-processing of the flux field as 
discussed in Section 3.4 will be applied to ensure mass conservation on the fine scale. 



4.1 2D examples 

We start with two instructive examples in 2D, using permeability from the uppermost and lowermost layer of the SPE10 
dataset, as pictured in Fig. 3. Thus the fine scale grid has 60 x 220 cells, and we use a coarse grid with 4x20 cells, rendering a 
coarsening factor of 165. Fig. 4 shows the pressure profiles obtained by a fine scale solution and the multiscale solver. For the 
upper layer, the multiscale solution is similar to that of the true solution; and has a quality that is as good as can be expected 
keeping in mind that the multiscale method is essentially a coarse discretization. In both solutions the pressure contours 
clearly indicate flow from injector to the producer, although again, the resolution of the local flow around the producer is 
better refined on the fine-scale grid.  For the lower layer, the multiscale solution is highly oscillatory with false local minima 
in the solution. This can be interpreted as a case where the approximation to the Schur complement  𝑆መ௜௜ is not good enough, 
where a better approximation, or iterations, are needed to produce a pressure profile that resembles that of the fine scale 
solution. 

 

 
 

(a) Fine scale, upper layer (b) Multiscale, upper layer 

 

 
(c) Fine scale, lower layer (d) Multiscale, lower layer 

Fig. 4: Pressure solutions obtained by a fine scale and a multiscale solution for the uppermost and lowermost permeability 
layers. The injection well is located along the left boundary for all plots, while the producer is associated with the downward 
spike visible in the middle of the domain visible in all figures except (d). 

For the uppermost layer of SPE10, the relatively good MS approximation to pressure is reflected in the post-processed 
fluxes. We illustrate this by the solution to the transport equation (1), as displayed in Fig. 5 (a) and (b). Note that despite the 
relatively coarse grid used for the multiscale control-volume approximation, the reconstruction of the fine-scale fluxes leads 
to a flow field with no visible artifacts. From the perspective of practical simulation, the solutions are indistinguishable.  

Surprisingly, despite the relatively poor approximation to the pressure field, quite satisfactory fluxes can be obtained also 
for the lowermost layer as shown in Fig. 5 (c-d). This illustrates that the coarse scale conservation of mass combined with 
post-processing of the velocity field, leads to a multiscale approximation that is applicable to transport problems also for 
highly challenging problems. Note however that in these lower layers, the multiscale approximation leads to some cases 
where flow-channels are either suppressed or exaggerated.  

The results from the concentration maps in Fig 5 are further confirmed by considering time series of the concentration in the 
production well, as shown in Fig 6. For the upper layer, the curves corresponding to the fine scale and multiscale solutions 
are almost identical, and the differences are relatively small also for the lower layer. 



  
(a) Fine scale, upper layer (b) Multiscale, upper layer 

  
(c) Fine scale, lower layer (d) Multiscale, lower layer 

Fig. 5: Concentration profiles obtained by solving the transport equation based on the post-processed pressure solutions. 
High concentration of the injected species is indicated with blue. We emphasis that for the multiscale solution, the velocity 
field is post processed to achieve local conservation of mass. 

 
Fig. 6: Time series of the concentration in the upper and lower layer. 

 

Remark 9: The appearance of oscillatory behavior in the multiscale solution is not unexptected. Again, we can analyze the 
multiscale control-volume method as simply being a single-scale control volume method on the coarse primal grid. It is 
known that for problems where the anisotropy in 𝑘 is not aligned with the grid, local control-volume methods (and indeed 
this also holds for some other discretization families) in general cannot be constructed that are both consistent, as well as 
oscillation-free (Nordbotten, et al., 2007; Keilegavlen, et al., 2009). The channelized features that are shown in Fig. 3b are 
clearly not aligned with the general directions of the domain, and therefore they will lead to an effective permeability on the 
coarse grid that is also not aligned with the grid. The argument from the single-scale methods can thus be lifted to the multi-
scale setting, which then informally may be states as: No approximation 𝑆መ can be defined that leads to a local coarse-level control-
volume method that is monotone for general channelized media. 

  
(a) Upper layer (b) Lower layer 



4.2 3D examples 

The 2D examples showed that the multiscale method can provide reliable solutions for challenging permeability fields and 
relatively high coarsening ratios. As previously mentioned, the performance of the multiscale method deteriorates 
significantly when going from 2D to 3D. As we will see, the multiscale solution may be insufficient for transport purposes, 
and the application as a MCDD preconditioner inside an iterative solver is essential in order to recover accuracy. For all 3D 
simulations, we consider coarse grid cells composed of 15 x 11 x 5 fine cells, rendering a coarsening ratio of 825. 

4.2.1 Multiscale method as preconditioner 
We first consider simulations in the 10 uppermost and lowermost layers of the SPE10 formation, extending the two cases 
considered in the 2D case. Again there is an injection well in a corner of the domain, and a producer in the middle of the 
domain. We consider transport solutions based on a fine scale solution, a pure multiscale solution, and from MCDD 
preconditioned GMRES iterations. Since visualization is more difficult in 3D than in 2D, we will in 3D only give the time-
series type plots similar to Figs. 6. The time series of concentration in the production cells are shown in Fig. 7 both for the 
upper and lower layers. For the upper layers, we observe that in contrast with the 2D examples, the multiscale solution now 
deviates significantly from the fine scale solution. Applying some GMRES iterations improves the quality of the solution 
somewhat, until after a sufficient number of iterations renders a curve that is indistinguishable from the fine scale. For the 
lower layers, the stand-alone multiscale solver produce a time series that is vastly different from the fine scale solution, and 
it is therefore not shown in the figure. For this difficult problem, it takes more iterations to produce a time series that 
resembles that of the fine scale solve. 

  

(a) Upper layers (b) Lower layers 

Fig. 7: Time series of the concentration in the production well for simulations in the upper and lower part of the SPE10 
formation. The solutions obtained from the fine scale are located on top of those from 60 and 420 GMRES iterations for the 
upper and lower parts, respectively. A multiscale solution is not shown for the lower part, due to the low quality of the 
results produced. 

The above test shows that in 3D the multiscale method does not reproduce concentration curves that are comparable to the 
fine-scale curves even when for relatively easy case of the upper layers of SPE10. Thus the present test shows the utility of 
having a framework that, when the fast multiscale solution is insufficient, can fall back to an iterative scheme, and fairly 
quickly recover a velocity field that is good enough for transport purposes. The increased difficulty in approximating the 
solution is also shown in the development of the residual during the corresponding GMRES iterations, see Fig. 8. In the 
lower layers the residual decreases slower and more iterations are needed to obtained what might be deemed a satisfactory 
solution. Based on these two simple tests, we observe that the relative residual error in the linear solver of 10ିଷ to 10ିସ is 
needed in order to reproduce a good transport solution. This value is many orders of magnitude higher than the typical 
residual errors used in iterative solvers for the linear system. Indeed, the residual error as a function of iterations is shown in 
Fig. 8, where we see that more than 600 iterations are needed to obtain a converged iteration for the upper layers. The ability 
to truncate the iterations early when using MCDD as a preconditioner will therefore in this case represent a savings of about 
90% in terms of number of iterations in the iterative solver. Also for the lower layers, an early truncation saves a majority of 
the computational effort. 



 

Fig. 8: The residual as a function of GMRES iterations for parts of the upper and lower part of the formation. The iterations 
terminates when the relative residual is reduced to a factor 𝟏𝟎ି𝟏𝟎.  

At this point, it is appropriate to mention a third option to improve the multiscale solution, in addition to advanced 
approximations of the Schur complements  𝑆መ௜௜ and increasing the number of iterations: By increasing the number of coarse 
variables (in essence moving variables to level 0), the range of the multiscale basis functions 𝜓ெௌ can be increased to capture 
more of the solution. These ideas are exploited in (Sandvin, et al., Submitted), and show promising results in that the 
number of iterations needed can be reduced significantly with only a minor increase in the computational cost. 

4.2.2 Quality control of MCDD solution  
Returning to the original formulation of the system, we realize that an MCDD-based solution can be interpreted as the exact 
solution of Equations (2), for a modified permeability 𝑘∗. Using the pressure solution from the iterative solver together with 
the post-processed fluxes, we can calculate 𝑘∗. As the permeability is typically a value associated with great uncertainty for 
geological applications, we can compare the difference between 𝑘 and 𝑘∗ as a metric on the quality of the MCDD-based 
approximation. The most basic version of this comparison is to recall that from the physical motivation of the problem, the 
original permeability 𝑘 is symmetric positive definite, and we can thus assess the quality of the approximate solution based 
on whether the modified permeability 𝑘∗ also satisfies this physical constraint.  

In Table 1, iteration counts and the number of sign changes are shown for a series of residual tolerances for GMRES. The 
grid consist of 60x220x10 cells, and the permeability is found from the channelized part of the SPE10 formation. Note that 
for the SPE10 dataset, the permeability tensor is diagonal, so positive definiteness is equivalent to positive diagonal 
elements. The table shows that for a high residual tolerance, more than a third of the fluxes change sign during post 
processing. Moreover, even for high accuracy of the GMRES solution there are some sign changes during flux post-
processing. 

logଵ଴(Tolerance) -2 -4 -6 -8 -10 
Iterations 224 429 717 915 1079 
Negative elements in 𝑘∗ 37% 9.4% 1.8% .17% .0018% 

Table 1: The relative residual in GMRES, together with numbers for iterations and percentage of negative elements in the 
modified permeability. 

The deviation of the flux and potential from a physical flow field, as measured by 𝑘∗, represents one attractive metric for 
assessing the approximation quality. However, more classical a posteriori error bounds and estimates are also applicable in 
this setting, and may be of equal importance for practical applications. 

5. Concluding remarks  
The present chapter has reviewed the construction of multiscale control volume methods in arbitrary dimensions from an 
algebraic perspective, allowing for a completely decoupled implementation of the fine-level (control volume) discretization 
and the multi-scale framework. We have emphasized several important aspects, including the points where key 



approximations are made, together with both their algebraic and physical interpretations. By bringing attention to the 
formulation of multiscale methods in this general setting, we have been able to highlight aspects of how multiscale control 
volume methods relate to classical single-scale discretizations, iterative preconditioners, and multi-level approximations. 
Through carefully chosen numerical examples, we have sought to illustrate both the quality of the multiscale approximation 
to the primary variable (pressure), but more importantly the role of the multiscale approximation in the setting of a coupled 
system of equations. These examples clearly illustrate the increasing complexity faced with problems in 3D over 2D, and the 
care with which one needs to deal with notions of approximate solvers and multiscale numerics.  

In closing this chapter we wish to take the opportunity to discuss some of the main obstacles and benefits of multiscale 
methods as one considers more challenging problems.  

As a stand-alone solver for a single elliptic problem, it is difficult for multiscale methods and preconditioners to compete 
with multigrid methods. The advantage of the methodology lies therefore in different aspects.  

 A coarse discretization is obtained directly, with explicit coarse flux expressions, leading to an understanding of the 
nature of the effective coarse-scale operator for the system.  

 For time-dependent, where multiple (similar) problems need to be solved in succession, a large amount of 
calculations can be re-used from previous time-steps.  

 For (locally) spatially periodic problems, sub-domain problems may be identical and computational savings can be 
obtained through re-use again. 

 For problems with scale-separation (where homogenization is applicable), the multiscale method gives a good 
approximation to both the homogenized and true solutions after a single iteration.  

Despite the initial promise, and the evidence that the advantages can be realized for model problems, several challenges 
remain before multiscale methods attain the robustness required for practical applications. Some of the major limitations, 
together with their potential remedies are:  

 For irregular grids (both on the fine and coarse scale) and for anisotropic media, the multiscale approximation is 
again less robust, especially when local Schur approximations are applied. To some extent, this can be overcome by 
oversampling, through enriching the coarse space, or by bottom-up approaches such as matrix probing, although 
as noted in Remark 9, a local and consistent coarse operator can in general never be designed. 

 For non-linear elliptic equations (e.g. is the permeability coefficient is a function of the pressure or its gradients), 
the method is no longer residual-free in the interior if the multiscale basis functions are re-used. Recalculating 
multiscale basis functions in an iterative setting is prohibitively expensive, and it remains unclear if good 
multiscale approximations can be constructed.  

 For higher-dimensional problems (more than 3), the quality of multiscale approximations has yet to be addressed 
at all.  

With these perspectives in mind, it is clear that multiscale methods and preconditioners are still a topic of very active 
research. As such, there will most certainly be aspects of the current chapter that later research will both clarify and improve 
upon. Nevertheless, we hope that the present text succeeds in giving a current perspective on multiscale methods that will 
have value for both the general and specialized reader.  
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