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ABSTRACT

Motivation: 454 pyrosequencing, by Roche Diagnostics, has
emerged as an alternative to Sanger sequencing when it comes to
read lengths, performance and cost, but shows higher per-base error
rates. Although there are several tools available for noise removal,
targeting different application fields, data interpretation would benefit
from a better understanding of the different error types.
Results: By exploring 454 raw data, we quantify to what extent
different factors account for sequencing errors. In addition to the
well-known homopolymer length inaccuracies, we have identified
errors likely to originate from other stages of the sequencing process.
We use our findings to extend the flowsim pipeline with functionalities
to simulate these errors, and thus enable a more realistic simulation
of 454 pyrosequencing data with flowsim.
Availability: The flowsim pipeline is freely available under the
General Public License from http://biohaskell.org/Applications/
FlowSim.
Contact: susanne.balzer@imr.no

1 INTRODUCTION
Second-generation sequencing techniques have revolutionized
DNA sequencing. In comparison with Illumina (Solexa/Genome
Analyzer) and Applied Biosystems (SOLiD), 454 pyrosequencing
stands out with its longer reads (up to ∼500 bp). However, higher
sequencing error rates compared with traditional Sanger sequencing
and the lack of a detailed understanding of error characteristics still
hamper the effective utilization of pyrosequencing.

In de novo whole-genome sequencing, high coverage may
compensate for erroneous sequences. However, erroneous reads are
problematic for SNP detection (Quinlan et al., 2008) and especially
for metagenomics, as they can lead to a considerable overestimation
of diversity in a sample (Quince et al., 2009). Hence, there has been
a strong focus on examining the quality of 454 pyrosequencing data
and noise removal. Also artificial duplicates are an important issue,
because they may lead to incorrect conclusions about the abundance
of species and genes (Gomez-Alvarez et al., 2009).

1.1 The 454 pyrosequencing technology
The 454 pyrosequencing technology is based on sequencing-by-
synthesis which is performed in parallel on around one million
beads deposited in wells on a plate. Each bead carries around 10
million molecules resulting from emulsion PCR (emPCR) starting
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from one single DNA fragment. The sequencing is performed by
cyclic flowing (T, A, C, G) of nucleotide reagents over the plate,
every bead giving rise to at most one DNA sequence (‘read’). Each
flow produces a light signal in each of the beads, either a very
weak signal (‘negative flow value’, in practice being between 0 and
0.5, indicating that no base was incorporated) or a stronger signal
(‘positive flow value’), proportional to the length of a homopolymer
run (Margulies et al., 2005).

This chemical process implicates two characteristics that are
intrinsic to 454 pyrosequencing data: when the light signal is too
strong or too weak, this leads to an over- or under-call for the
corresponding nucleotide type. For example, a flow value of 2.48
for nucleotide C gives a homopolymer length of two, while a flow
value of 2.52 will give three nucleotides. Apparent substitution
errors can occur when an over-call follows an under-call or vice
versa. Compared with the called DNA sequence, the underlying flow
values thus contain additional information relevant for base calling
accuracy and for comparison of reads, which is why analyses often
are carried out in ‘flowspace’ as opposed to ‘nucleotide space’.

The latest 454 pyrosequencing version, GS FLX Titanium
(referred to as Titanium in the rest of the paper), uses 200 flow cycles,
which corresponds to 800 flows. The results of one sequencing run
include the light signal intensity data (‘flow values’) for each well
and the base called DNAsequence together with quality information.
This is stored in a binary SFF (standard flowgram format) file.

1.2 Duplicate reads
Earlier studies have revealed that between 4–44% (Niu et al., 2010)
and 11–35% (Gomez-Alvarez et al., 2009) of sequences in a typical
metagenomic dataset are exact or almost-exact duplicates. Both tools
454 Replicate Filter (Gomez-Alvarez et al., 2009) and cd-hit-454
(Niu et al., 2010) are based on the CD-HIT clustering algorithm
(Li and Godzik, 2006) and provide a fast way of removing duplicates
from pyrosequencing data. While this is a crucial step for the success
of metagenomic studies based on 454 pyrosequencing data, we have
not observed a comparably high percentage of exact or almost-exact
duplicates in shotgun data generated in the context of projects we
are involved in.

1.3 Erroneous reads
There are several factors that account for erroneous base calls or
reads, especially inaccuracies in the sequencing chemistry, leading
to slightly too high or low flow values, and carry-forward and
incomplete extension errors (Margulies et al., 2005), accumulating
over the read, which reflects the stochastic nature of the base
incorporation chemistry. Furthermore, it has been shown that
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a low percentage of reads accounts for a high percentage of errors
(Huse et al., 2007) and that sequencing quality decreases toward
the end of a read (Balzer et al., 2010; Hoff, 2009). We have earlier
described the characteristics of these inaccuracies, calculated the
empirical distributions of flow values and included the results in our
simulation tool flowsim (Balzer et al., 2010). However, these models
do not adequately explain all the sequencing errors that we have
observed, which is reflected in the fact that, when applied to whole-
genome shotgun sequencing, our simulator produces data giving
better assemblies than does real data (Section 3). Here, we report
on a more careful examination of other error sources and suggest a
new pipeline for a more realistic simulation of 454 pyrosequencing
reads. We are not able to establish the exact source of these errors,
but hypothesize that a portion of the errors are introduced during
PCR library preparation.

1.4 Filtering and trimming
Some of these error patterns, but not all of them, are addressed
by the 454 quality-trimming and read-filtering algorithms. A
detailed description is given in the 454 manual (Roche Applied
Science, 2008). However, in some applications, improved results
are obtained when applying a stricter quality-filtering and -trimming
(compared with 454 default settings) or using additional algorithms
and tools. Several research groups have suggested methods for
noise removal and quality-trimming, the requirements on data
quality obviously varying with respect to applications. Whole-
read filtering strategies include the complete removal of: chimeric
reads, reads with undetermined bases (i.e. N’s) or reads showing a
certain percentage of flow values in the interval [0.5, 0.7] (termed
‘dubious flow values’) before reaching a certain flow cycle (Huse
et al., 2007; Kunin et al., 2009; Quince et al., 2011). Trimming
approaches focus on: a stricter read-trimming based on quality
scores, adaptor removal [e.g. with LUCY (Chou and Holmes, 2001)],
but also more sophisticated approaches such as multiple assembly
strategies with reads obtained by applying several trimming settings
(http://www.genome.ou.edu/informatics.html).

2 FACTORS FOR SEQUENCE QUALITY
In this study, we characterize error patterns derived from Titanium
454 pyrosequencing data and estimate to what extent different error
types account for sequencing errors.

2.1 Adaptors
Sequences are limited in length by the number of flow cycles. Ideally,
clones should be sufficiently long so that the end of the clone is not
reached during sequencing, which means that also the adaptor is not
reached. If the clone is shorter, the adaptor sequence will be included
at the end of the read. This part of the sequence should be masked
by the Roche analysis pipeline. However, the trimming procedure
sometimes fails if only part of the adaptor is contained in the read
or if there are sequencing errors in the adaptor sequence. We have
observed both cases in shotgun data from different genomes.

In genome assembly, residual adaptors can block contig extension
at the end of reads, especially in lower coverage regions and when
working with assemblers that do not use a broad overlap window.

Fig. 1. Empirical flow values distributions (D.labrax) and derived intervals.

2.2 Pyrosequencing errors
The light signal strength from the chemical reaction in the
sequencing process is the basis for correct determination of
homopolymer lengths and hence responsible for data accuracy.
Slightly too high or too low signal strengths can lead to over- or
under-calls.

Carry-forward errors occur when the flushing between the flows is
not sufficient and leftover nucleotides are present in a well. Also the
incomplete extension of a template due to insufficient nucleotides
within a flow can cause a read to get out-of-sync. These errors are
collectively referred to as CAFIE. The Roche software adjusts the
flow values in an attempt to correct for these errors, and both the flow
values and the DNA data in the SFF file correspond to the corrected
data (Roger Winer, Roche Diagnostics, personal communication).

2.3 Putative PCR errors
In a previous work, we derived empirical distributions from
Dicentrarchus labrax (sea bass) Titanium data: by mapping 454
data to the originating reference genome (Kuhl et al., 2010),
we characterized the distributions of flow values belonging to
each homopolymer length (Balzer et al., 2010). These flow value
distributions, one distribution per homopolymer length, overlap,
causing over- and under-calls (Fig. 1). By examining them in
detail, an interesting and hitherto unexplained pattern emerges: the
flow value distributions often contain one major peak around the
integral value representing the correct homopolymer length, but then
also smaller peaks around the neighboring integral values (Figs 1
and 3). Although these neighboring peaks have been observed
previously, we have not seen any convincing explanation for them.
Hypothesizing that they are caused by errors in the emulsion PCR
performed prior to sequencing, we make an attempt to estimate to
what extent PCR errors contribute to the overall error rate.
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Table 1. Flow value intervals from empirical distributions (D.labrax)

Size (%) 0-distribution 1-distribution 2-distribution 3-distribution

5 [0.00, 0.02] [1.01, 1.02] [2.00, 2.02] [3.01, 3.03]
10 [0.00, 0.04] [1.01, 1.03] [2.00, 2.03] [3.00, 3.04]
25 [0.00, 0.07] [1.00, 1.04] [1.97, 2.05] [2.97, 3.07]
50 [0.00, 0.11] [0.96, 1.07] [1.93, 2.09] [2.90, 3.12]
75 [0.00, 0.14] [0.92, 1.12] [1.86, 2.16] [2.81, 3.20]
90 [0.00, 0.18] [0.86, 1.18] [1.78, 2.24] [2.69, 3.30]
95 [0.00, 0.22] [0.81, 1.23] [1.72, 2.31] [2.61, 3.39]

In order to quantify and compare the number of errors caused
by overlapping distributions with the errors in neighboring peaks,
we classified flow values according to narrow intervals around the
integral values. Based on the empirical unsmoothed flow value
distributions from D.labrax (Balzer et al., 2010), the intervals were
constructed so that they would contain a certain percentage (the
middle part) of flow values for each homopolymer length. The
intervals are slightly asymmetric (Table 1), which corresponds to
earlier observations that insertion errors are more common than
deletions (Huse et al., 2007; Quinlan et al., 2008). For flow values
of the 0-distribution (assumed not to correspond to incorporation of
a nucleotide, i.e. negative flow values), the interval extends to one
side only.

We constructed several series of intervals, containing from 5%
(conservative) to 95% (liberal) of the flow values (Table 1 and
Fig. 1). In order to decompose the distribution of flow values
observed for homopolymers of length n, we assigned each associated
flow value to one of several bins. First, flow values that would
give a correct homopolymer length call (values between n−0.5 and
n+0.49) were assigned into bin 3. Then, values that were likely to
be associated with a neighboring peak at n−1 or n+1 (subpeaks in
Figs 1 and 3) were assigned to bins 1 and 5, respectively (using the
values from Table 1 as threshold values). Intermediate values were
assigned into bins 2 and 4, while values outside the ranges of bins
1 and 5 were discarded (extreme under- or over-calls).

As an example, when considering a homopolymer of length 2,
we would define our bins as follows (using the rather conservative
25% intervals, see Table 1 and Fig. 2): bin 3 contains correct base
calls and is thus predefined as [1.5, 2.49]. All flow values that do
not fall into this bin are counted as erroneous. Of all flow values
in the range [0.5, 1.49], 25% are in [1.0, 1.04]. This interval thus
defines bin 1 for homopolymer length 2. Flow values in this bin are
assumed to originate from the 1-distribution and are thus—by our
hypothesis—likely to be caused by PCR errors. Bin 5 is accordingly
defined as [2.97, 3.07] and corresponds to PCR errors giving a triple
homopolymer.

Furthermore, flow values that lie beyond bin 1 or 5 are counted as
extreme miscalls of unknown origin (‘extreme errors’, see Table 2).

For each flow value together with the correct homopolymer
length, we can now determine into which bin it falls. From the
absolute counts, we can then for any sequence or set of sequences
calculate the fraction of ‘putative PCR errors’ (Table 2), which is the
sum of errors falling into bins 1 and 5 divided by the total number
of erroneous base calls.

We used BLASTN (Altschul et al., 1990) to map 21 mate-pair
runs from Gadus morhua (Atlantic cod) against the known mate-pair

Fig. 2. Bins for homopolymer lengths 0, 1 and 2, based on different flow
value interval sizes from Table 1.

Table 2. Estimated fraction of error types in percentage of overall errors

Size Pyrosequencing Putative PCR Extreme
(%) errors (%) errors (%) errors (%)

5 80.18 3.97 15.85
10 79.28 5.78 14.94
25 75.69 11.17 13.14
50 67.15 24.65 8.20
75 59.18 36.89 3.93
90 51.62 47.02 1.36
95 46.63 52.77 0.60

linker sequence (TCGTATAACTTCGTATAATGTATGCTATAC
GAAGTTATTACG) and its reverse complement, assigning each
flow value to the corresponding true homopolymer length as known
from the linker sequence. This gave us a total of 17 834 274
reads, where 16 836 422 matched the linker sequence or its reverse
complement (47% each) when a bit score cutoff of 67 was used. The
997 833 (6%) reads did not or not uniquely match either the linker
or its reverse complement.

Further, we discarded 17% of the remaining reads because they
had lost synchronism (Section 2.2) or were implausible, or did not
match the linker over the whole length of 42 bp, which left us with
a total of 14 050 646 complete matches.

From those reads, we examined the flow values for each of the
60 flows (15 flow cycles; 18 positions with negative flow values
not leading to a base call; flows 1 and 60 were not counted in error
calculations since they could be part of longer homopolymers)
that were needed to sequence the 42 bp of the linker (Fig. 3).
We assigned each flow value to one of the bins described above.
From the total number of errors in each bin, we could calculate
the percentage in relation to all observed errors (Table 2). In total,
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Fig. 3. Flow value histograms for G.morhua mate-pair reads (forward matches, N =7016764). The y-axis is on a log10 scale. The 15 flow cycles correspond
to the 42 positions of the linker sequence. The gray areas contain correct base calls. Subpeaks point toward putative PCR errors.

we observed a per-flow error rate of 0.153% (including negative
flows), which is believed to underestimate the true error rate, first
because we have filtered out bad alignments prior to our analysis,
and also because the linker sequence only contains 1- and 2mers,
and longer homopolymer runs are more likely to contain errors
than shorter ones.

Even when using the conservative estimates, we get a fraction of
4–25% putative PCR errors in relation to all errors (Table 2).

This corroborates our theory that PCR errors might be an
important error source in pyrosequencing. Notably, the fraction of

PCR errors decreases with respect to the corresponding flow cycle
in a read (Fig. 4).

3 SIMULATING PYROSEQUENCING DATA
We have in our previous work (Balzer et al., 2010) presented
flowsim, a simulation tool for 454 pyrosequencing data that uses
empirical distributions of flow values to accurately model the
pyrosequencing results and that provides the simulated data as SFF
files.
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Fig. 4. Putative PCR and pyrosequencing error rates with respect to flow
cycles (for underlying flow value intervals of size 5 and 95%).

3.1 The flowsim simulation pipeline
In order to extend flowsim and to take into account the various
error types described above, the software is now split into several
independent tools, each tool modeling a separate stage in the
sequencing process.

The flowsim pipeline currently comprises the following utilities:

• clonesim, which simulates shearing of an input genome
according to a user-specified distribution of clone lengths.

• gelfilter, which selects a subset of input clones according to a
minimum and a maximum clone size.

• duplicator, which introduces artificial duplicates of clones.

• kitsim, which attaches the end of the A-adaptor (which consists
of the four letter ‘key’ at the beginning of reads, typically
TCAG), and the B-adaptor.

• mutator, which mutates the input sequences with random
insertions, deletions and substitutions at user-specified rates.

• flowsim, which simulates pyrosequencing of a set of input
sequences, calculates quality scores, filters and quality-trims
the reads, and outputs the resulting SFF file.

With the exception of flowsim which outputs an SFF file, all
utilities work with Fasta sequences as input and output, and by
default read from standard input and write to standard output. Thus,
a simple command for creating 100 000 reads from an input genome,
using default parameters, would be:

‘clonesim -c 100000 input.fasta | kitsim | flowsim -o out.sff’.

The separation into multiple programs provides more flexibility,
and it is easy for users to implement and apply additional
tools. For instance, a user could simulate amplicon sequencing
by replacing clonesim with a program that simulates amplicons,

and use the remaining flowsim pipeline to simulate the 454
sequencing process. Similarly, mate-pair libraries can be simulated
by interposing a program that simulates circularization and
fragmentation.

3.2 Simulation results
For simulation, we used a 764 Mb genomic scaffold from sea bass
(D.labrax) generated from Sanger sequencing (Kuhl et al., 2010),
where we also had available approximately 30× coverage 454
shotgun reads for comparison.

We used flowsim to simulate a high number of reads
corresponding to 10× coverage, providing sufficient clone lengths
for 800 flows (Titanium), using empirical distributions as flow model
and quality degradation along the sequence, but only taking into
account homopolymer length errors arising from the flow value
distributions (i.e. we did not make use of kitsim or mutator).
We assembled our simulated reads using Newbler beta version
2.5 (provided by Roche Diagnostics) and compared the assembly
results, namely contig sizes, with the assembly of randomly chosen
real D.labrax Titanium reads corresponding to equal coverage. Our
assemblies of simulated reads were substantially better than those
of real data in terms of contig sizes.

When carrying out earlier simulations from Escherichia coli
(Balzer et al., 2010), we assumed strain-specific differences to be
responsible for discrepancies between the assembly of real shotgun
data and that of simulated data. Since we are now comparing
reads that we simulated from the D.labrax reference scaffold with
shotgun reads from the same individual, we can exclude this factor.
Examining the simulation accuracy of flowsim, we identified the
following factors to be potentially relevant for our assemblies having
better statistics than the assemblies of real reads: coverage (average
overall coverage, coverage distribution, zero-coverage regions),
adaptors, putative PCR errors, pyrosequencing errors. Other errors,
such as multiple DNA fragments associated with one bead, are likely
to have been eliminated by the Roche quality-filtering.

In Section 2, we have examined each of these sources of
variability and can make use of the updated flowsim pipeline
described above for further simulations.

After having added errors to the same simulated clones that we
used in earlier assemblies, i.e. first attaching adaptor sequences
and subsequently introducing PCR noise at rates comparable with
those found in real shotgun data, we ran flowsim and performed
a new assembly of our simulated reads. It still outperforms an
assembly of real reads, but assembly statistics like contig sizes and
the percentage of aligned reads and bases are closer to the assembly
of real reads when simulating additional error sources. We will
also more closely examine to what extent the real pyrosequencing
D.labrax data contain heterozygosity (coming from a diploid fish)
and how a similar effect can be introduced into the simulated reads.

While the current version of our simulator uses a uniform
coverage distribution over the input genome, we assume that this
approach is not sufficiently realistic. Typically, there is greater than
a 100-fold variation in coverage (Harismendy et al., 2009). This is
in agreement with our data, finding per-base coverage up to 760 in
D.labrax (average 33) and 1152 in E.coli (average 110).

Using cd-hit-454 (Niu et al., 2010), we observed duplicate read
rates between 2.73 and 19.13% for D.labrax and between 0.19
and 10.71% for E.coli, with 98–100% sequence identity, while—as
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expected—our simulated reads (D.labrax, 10−30× coverage) only
contained very few (0.01%) duplicates or almost-duplicates.

4 DISCUSSION AND CONCLUSIONS
In this study, we have explored different error sources of 454
pyrosequencing. Previously, light signal distributions from the
pyrosequencing chemistry and carry-forward/incomplete extension
have been seen as the major sources of noise. Neighboring peaks
in flow value distributions, observed in earlier analyses when
aligning reads to a reference, were believed to arise from biological
differences between reads and reference, but by matching reads
against a known mate-pair linker sequence and only using these short
alignments for our analyses, we eliminate this source of error. We
speculate that, beside pyrosequencing errors due to inaccuracies in
the sequencing process, also errors from the PCR library preparation
step could account for a high percentage of observed errors. Hence,
we present an empirical approach to support our assumptions, based
on the presence of strong neighboring peaks in the distributions of
flow values that correspond to the linker sequence. We see a clear
decrease in the proportion of errors assigned to neighboring peaks
as we move towards the end of the read, which is most likely due
to the increase in pyrosequencing errors caused by widening flow
value distributions. This implies that neighboring peak errors occur
at an approximately constant rate along the read.

Furthermore, it is difficult to see how the neighboring peaks could
arise from known error sources. Random noise in flow values should
result in distributions similar to Gaussian, and we see no reason
for CAFIE errors to concentrate around integral values. Thus, we
believe that the neighboring peaks are caused by real differences in
the library clones, but we cannot currently suggest an explanation
on how these arise.

Finally, our new additions to the simulation pipeline enable us
to simulate many of the identified errors, and we see that the
resulting assemblies are approaching those obtained from real data.
Nevertheless, we are examining further factors that we believe to be
relevant in read simulation and quality assessment.
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