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Abstract

We identify an abstract language for component software based on process
algebra. Besides the usual operators for sequential, alternative and par-
allel composition, it has primitives for instantiating components and for
deleting instances of components. We define an operational semantics for
our language and give a type system in which types express quantitative
information on the components involved in the execution of the expres-
sions of the language. Included in this information is for each component
the maximum number of instances that are simultaneously active during
the execution of the expression. The type system is compositional by the
novel use of ‘deficit types’. The type inference algorithm runs in time
quadratic in the size of the input. We consider extensions of the language
with loops and tail recursion, and with a scope mechanism. We illustrate
the approach with some examples, one on UML diagram refinement and
one on counting objects on the free store in C++.

1 Introduction

Component software is computer software which has been assembled from stan-
dardized, reusable programs called components. The fact that components may
be manufactured by different third parties adds up to the difficulties one has to
ensure basic safety properties, in particular those connected to resources. For
example, how to ensure that only one driver of each serial device is used, and
only one password generator? How to know that there is enough memory space
for all instances of components?

Most of the current approaches to this problem are dynamic in the sense
that the running system is programmed to protect itself. For example, a server
will deny service to new clients when its workload becomes too high. Another
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example is the singleton pattern, see [14], which allows at most one object of
the class in question to be created.

In this paper we develop techniques for the static analysis (that is, compile
time or design time) of component software. As many safety properties actually
are undecidable, the abstraction level of our techniques is quite high. They are
not meant as a substitute for dynamic techniques, but aim at complementing
them.

The static technique we use is based on type theory [3], [24], and our lan-
guage for component software is based on process theory [23] with interpreted
atomic actions for component instantiation and deallocation. For example, a
declaration like x−≺ ((newa+newb) ‖ newc) ·dela means that the instantiation
newx deploys x in a way described by the expression after the −≺-symbol. That
is, either a or b is instantiated in parallel to the instantiation of c, after which a
is deallocated. Clearly, in a state without an instance of a, the expression newx
is only safe to execute if b and/or c instantiates a, and this should follow by
inspection of their respective declarations. Even without recursion, such com-
ponent declarations are non-trivial to analyse on safety issues like: will there
always be an instance of a when a deallocation takes place, how many instances
of b are simultaneously active during the execution, et cetera.

Since the aim is to count instances we have abstracted from all behaviour of
components that doesn’t affect component instantiation and deallocation. Also,
we do not specify which particular instance is deallocated, we have abstracted
from the different identities of instances of component a and are only able to
see the number of such instances. (This abstraction is alleviated by a scope
mechanism. Writing {[ ], E} limits the lifetime of all instances created by E to
the execution of E and enforces deallocations by E to apply to these instances
only.) We shall show that on this abstraction level estimating the number of
instances of components involved in the execution is both feasible and non-
trivial.

The operations for component composition we consider are: sequential com-
position ·, alternative composition + (also called choice), and parallel compo-
sition ‖. These are well-known process theoretic operators. The primitives for
component instantiation/deallocation are new and del as used in the example
above. There are many other important aspects to component software. One
of these is communication between components. This paper does not deal with
communication. Therefore our language is more of a typed basic process algebra
than a coordination language in the usual sense.

The basic system will be defined in Section 2. The operations and primitives
will get a precise meaning by their operational semantics, given in Section 3.
Types will be introduced in Section 4, and their basic properties, including
quadratic-time type inference, will be proved in Section 5. In Section 6 we
prove soundness of the type system with respect to the operational semantics.
The section ends by a key result, namely Theorem 6.4 with its Corollary 6.5,
guaranteeing progress, termination and an upper limit to the number of com-
ponent instances. In Section 7 we consider extensions of the basic system with
loops and tail recursion (7.1), to deal with memory usage (7.3), and with a scope
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operator (7.4). Elaborated examples can be found in Section 4.3 and 7.2. We
conclude in Section 8, after a short review of related work.

2 Basic System

2.1 Syntax

The language for components is parametrized by an arbitrary set C = {a, b, c, . . .}
of component names. We let variables x, y, z range over C. Component ex-
pressions are given by the following syntax. We let capital letters A, . . . , E

Table 1: Syntax

Expr ::= Factor | Expr · Expr
Factor ::= newx | delx | (Expr + Expr) | (Expr ‖ Expr) | nop

StExp ::= {M,Expr} (for any bag M of elements from C)
Prog ::= nil | Prog, x−≺ Expr

(with primes and subscripts) range over Expr . The ambiguity in the rule for
Expr is unproblematic. Like in process algebra, sequential composition can be
viewed as an associative multiplication operation and products may be denoted
as E E′ instead of E · E′. The operations + and ‖ are also associative and we
only parenthesize to prevent ambiguity. Sequential composition has the highest
precedence, followed by ‖ and then +. The primitive nop abstracts all opera-
tions that do not involve component instantiation or deallocation. In the third
clause of the grammar we define state expressions, to be used in the operational
semantics in the next section. A state expression is a pair of a bag (see Section
3.1) and an expression where the latter may be nop, in which case the state is
terminal.

By var(E) we denote the set of component names occurring in E, formally
defined by var(nop) = ∅, var(newx) = var(delx) = {x}, var(E1+E2) = var(E1 ‖
E2) = var(E1E2) = var(E1) ∪ var(E2). The size of an expression E, denoted
σ(E), is defined by σ(newx) = σ(delx) = σ(nop) = 1 and σ(A+B) = σ(AB) =
σ(A||B) = σ(A) + σ(B) + 1.

A component program P is a comma-separated list starting with nil and
followed by zero or more component declarations of the form x −≺ Expr , with
x ∈ C (nil will usually be omitted, except in the case of a program containing
no declarations). dom(P ) denotes the set of component names declared in P
(so dom(nil) = ∅). Declarations of the form x −≺ nop are used for primitive
components, i.e., components that do not use subcomponents. The size of a
program P , denoted σ(P ), is defined by σ(P, x −≺ A) = σ(P ) + 1 + σ(A) and
σ(nil) = 1.
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2.2 Small Examples

Examples of component programs that will be well-typed (see Section 4) are:

a−≺ nop, b−≺ newa · dela (b creates an instance of primitive component a and
then deletes an instance of a);

a−≺ nop, b−≺ nop, c−≺ (newa ‖ newb) · (dela+ delb) (c creates in parallel an
instance of a and one of b, and then deletes an instance of either a or b);

a−≺ nop, b−≺ newa · newa, c−≺ newb · newb (c creates two instances of b, each
of which creates two instances of the primitive component a).

We adopt the convention that a component program P not equal to nil is
executed by executing newx, where x is the last component declared in P .
In the last example, newc creates two instances of b which each create two
instances of a, so four in total. This shows that the execution of a component
program (see Section 3.2) can be exponential in the size of the program, even for
programs without +, ‖. Programs with · and +, or with · and ‖, can be executed
in exponentially many different ways, and each of these may have exponential
length. This means that it is in general not an option to run the program and see
what happens. We have to prove, however, that the static analysis we propose
can be done in reasonable time.

Examples of component programs that when executed either will not termi-
nate or might lead to errors are:

a−≺ newa (circular);

b−≺ newa (a not declared);

a−≺ nop, b−≺ nop, b−≺ newa (b declared twice);

a−≺ nop, b−≺ dela (b deletes non-existing instance of a);

a−≺nop, b−≺(newa+dela) (b deletes non-existing instance of a in one branch);

a −≺ nop, b −≺ (newa ‖ dela) (b deletes non-existing instance of a if dela is
executed before newa).

3 Operational Semantics

3.1 Bags and Multisets

Bags are like sets but allow multiple occurrences of elements. A negative bag
expresses deficits of elements. Bags are often also called multisets, but we reserve
the term multiset for a concept which allows one to express both deficits and
multiple occurrences. Formally, a bag, a negative bag and a multiset, each with
underlying set of elements C, are mappings M : C→S, where S is N, −N and
Z, respectively. We shall use the operations ∪,∩,+,− defined on multisets,
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as well as relations ⊆ and ∈ between multisets and between an element and
a multiset, respectively. We recall briefly their definitions: (M ∪ M ′)(x) =
max(M(x),M ′(x)), (M ∩M ′)(x) = min(M(x),M ′(x)), (M +M ′)(x) = M(x)+
M ′(x), (M − M ′)(x) = M(x) − M ′(x), M ⊆ M ′ iff M(x) ≤ M ′(x) for all
x ∈ C. The operation + is sometimes called additive union. Both the bags
and the negative bags are closed under all operations above with the exception
of −. Note that the operation ∪ returns a bag if at least one of its operands
is a bag, and similarly for the operation ∩ and negative bags. The negation
−M of a bag M is clearly a negative bag, and conversely. For convenience,
multisets with a limited number of elements are sometimes denoted as, for
example, M = [2x,−y], instead of M(x) = 2, M(y) = −1, M(z) = 0 for all
z 6= x, y. In this notation, [ ] stands for the empty multiset, i.e., [ ](x) = 0
for all x ∈ C. We further abbreviate M + [x] by M + x and M − [x] by
M − x. Multisets, bags and negative bags will be denoted by M (with primes
and subscripts), it will always be clear from the context when a bag or a negative
bag is meant. For any bag, let set(M) denote its set of elements, that is,
set(M) = {x ∈ C | M(x) > 0}. For a negative bag M , let set(M) = set(−M).
With C fixed and multiplicities in binary, all the above operations on bags and
multisets take time linear in the size of the representations of the bags/multisets
(but logarithmic in the values of the multiplicities).

3.2 Operational Semantics of Basic System

A state is a pair {M,E} consisting of a bag M with underlying set of elements
C, and an expression E. The expression may be nop, in which case {M, nop}
is called a terminal state. An initial state is of the form {[ ], newx}. A state
expresses that we execute E with a bag M of instances of components. The
operational semantics is given as a state transition system in the style of struc-
tured operational semantics [25]. For a program P and states p1 and p2, we let
p1  P p2 express that there is a transition from state p1 to state p2.  ∗P is the
transitive and reflexive closure of  P . In Table 2 we list the transition rules.
The inductive rules are osPar1, 2 and osSeq. The other rules are not inductive,
but osNew and osDel are conditional with the condition specified as a premiss
of the rule. A state like {[ ], dela}, from which there are no transitions possible,
is not terminal, but has to be considered as an error state.

4 Type System

4.1 Types

Since we are interested in the maximum number of simultaneously active in-
stances during the execution of an expression E, it is natural to use a bag
with underlying set C as the type of E. However, we want typing to be com-
positional, that is, the type of E E′ should be expressed in the types of the
subexpressions E and E′. Due to del, the highest number of simultaneously
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Table 2: Transition rules for a component program P

(osNew)
x−≺A ∈ P

{M, newx} P {M + x,A}

(osDel)
x ∈M

{M, delx} P {M − x, nop}

(osSeq)
{M,A} P {M ′, A′}
{M,AE} P {M ′, A′E}

(osNop)

{M, nopE} P {M,E}

(osAlt1)

{M, (E1 + E2)} P {M,E1}

(osPar1)
{M,E1} P {M ′, E′1}

{M, (E1 ‖ E2)} P {M ′, (E′1 ‖ E2)}

(osAlt2)

{M, (E1 + E2)} P {M,E2}

(osPar2)
{M,E2} P {M ′, E′2}

{M, (E1 ‖ E2)} P {M ′, (E1 ‖ E′2)}

Terminal states: {M, nop}
(osParEnd)

{M, (nop ‖ nop)} P {M, nop}

active instances during execution of E can be greater than the highest number
of instances which are still allocated after execution of E. Consider a sequence
of transitions {[ ], E E′}  ∗P {M,E′} for some program P . The highest num-
ber of simultaneously active instances during this particular execution of E E′

depends on M and M cannot be predicted without extra information in the
type of E. The solution is to include also the highest net increase in number
of instances after execution in the type of an expression. As the latter number
may be negative, this should be a multiset in the sense of Section 3.1.

Dually, since we are interested in safe deallocation, we need to know for each
component the highest negative net change, that is, the maximum decrease, of
instances during the execution of an expression, for which we use a negative bag
in the type. For maintaining compositionality we then also have to include a
multiset for the lowest increase in instances after execution in the type. This
multiset is of interest also since it can signal a memory leak. The minimum and
the maximum can be different because of the choice operator.

A type of a component expression is a quadruple X = 〈Xn, Xp, X l, Xh〉,
where Xn is a negative bag, Xp is a bag and X l and Xh are multisets. The
multisets X l and Xh contain, for each x ∈ C, the lowest and the highest net
change in the number of instances, respectively, after the execution of the ex-
pression. This implies that, if the type of E is X and if {M,E} ∗P {M ′, nop},
then X l ⊆M ′ −M ⊆ Xh.
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Note that at the start of the execution both the ‘deficit’ and the ‘surplus’
are [ ]. The negative bag Xn and the (positive) bag Xp contain, for each x ∈ C,
the lowest and the highest net change in the number of instances, respectively,
during the execution of the expression. This implies that, if the type of E is X
and if {M,E} ∗P {M ′, E′}, then Xn ⊆M ′ −M ⊆ Xp. For example, with a a
primitive component, the type of (newa dela) + dela is 〈[−a], [a], [−a], [ ]〉.

We use U, . . . , Z to denote types. We extend + from multisets to types, such
as done in the rule Par in Table 3: X1+X2 is the type 〈Xn

1 +Xn
2 , X

p
1 +Xp

2 , X
l
1+

X l
2, X

h
1 +Xh

2 〉. For a type X, var(X) = set(Xn) ∪ set(Xp).

4.2 Typing Rules

With the above interpretation in mind the typing rules in Table 3 are easily
understood. They define a ternary typing relation Γ ` E : X in the usual
inductive way. Here Γ is called a basis, mapping variables to types. Typings are
of the form Γ ` E :X, and will also be phrased as ‘expression E has type X in
Γ’. The type system is not fully syntax-directed since sequential composition is
associative, in order to keep the operational semantics as simple as possible (cf.
AE in osSeq).

A basis Γ is a partial mapping of components x ∈ C to types. By dom(Γ)
we denote the domain of Γ, and for any x ∈ dom(Γ), Γ(x) denotes its type in Γ.
For a set S ⊆ dom(Γ), Γ|S is Γ restricted to the domain S. For any x ∈ C and
type X, {x 7→ X} denotes a basis with domain {x} mapping x to X.

An expression E is called typable in Γ if Γ ` E :X for some type X. The
latter type X will be proved to be unique and will sometimes be denoted by
Γ(E).

Table 3: Typing rules

(Axm)

Γ ` nop :〈[ ], [ ], [ ], [ ]〉

(New)
Γ(x) = X

Γ ` newx :〈Xn, Xp + x,X l + x,Xh + x〉

(Del)
x ∈ dom(Γ)

Γ ` delx :〈[−x], [ ], [−x], [−x]〉

(Par)
Γ ` E1 :X1, Γ ` E2 :X2

Γ ` E1 ‖ E2 : X1 +X2

(Alt)
Γ ` E1 :X1, Γ ` E2 :X2

Γ ` E1 + E2 :〈Xn
1 ∩Xn

2 , X
p
1 ∪X

p
2 , X

l
1 ∩X l

2, X
h
1 ∪Xh

2 〉
(Seq)

Γ ` E1 :X1, Γ ` E2 :X2

Γ ` E1E2 : 〈Xn
1 ∩ (Xn

2 +X l
1), Xp

1 ∪ (Xp
2 +Xh

1 ), X l
1 +X l

2, X
h
1 +Xh

2 〉
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Definition 4.1 The type of a program P is a basis Γ. The type of a program
is calculated by the function t which is inductively defined as follows:

t(nil) = ∅
t(P ′, x−≺ E) = Γ ∪ {x 7→ Γ(E)}, where Γ = t(P ′) and x 6∈ dom(Γ)

As an easy example, recall the last program in Section 2, P = nil, a −≺
nop, b −≺ (newa ‖ dela). One easily infers Γ = t(P ) with Γ(a) = 〈[ ], [ ], [ ], [ ]〉,
Γ(b) = 〈[−a], [a], [ ], [ ]〉, and Γ ` newb : 〈[−a], [a, b], [b], [b]〉. The type of newb
signals a possible deficit by the negative bag [−a] (arises when dela is scheduled
before newa), the fact that a and b can be simultaneously active (the bag [a, b]),
as well as a memory leak by the bags [b] (caused by not deleting b). More
examples of typings can be found in the next subsection.

4.3 Example: Refining UML Activity Diagrams

In this section we show how UML activity diagrams can be analysed/refined with
our techniques. We abbreviate newf delf by callf and use this expression to
model a function call. Note that f is deleted automatically by callf , but not
the subcomponents that f possibly instantiates.

a:assign seats d:debit account

c:charge credit card

b:award bonus a:assign seats

[member] [non-member]

Figure 1: A UML activity diagram for ordering seats

Following [26, Ch. 8], we consider a theatre box office with members and non-
members. Members can order seats that will be paid by charging an account
that comes with membership, and members will then earn some bonuspoints.
Non-members pay by credit card and do not get bonuspoints. The design of this
ordering procedure can be described by the simple UML-diagram in Figure 1.
Arrows indicate control flow. Rounded boxes are used for actions and rhombic
boxes delimit branching. Actions can be refined, that is, described by other
UML diagrams. Since there is no specific order between the actions in the left
branch, they are assumed parallel, and the beginning and the end of the parallel
branching is expressed by the horizontal fat bars. In the right branch the actions
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are serialized. The expression corresponding to this set-up is (calla ‖ callb ‖
calld) + callc calla.

Let us assume that the actions a, b, d involve one and the same database,
whereas c is primitive. Then we can refine: a −≺ newdb calla′ deldb, b −≺
newdb callb′ deldb, d−≺newdb calld′ deldb. Here db is a primitive component
for accessing the database, and a′, b′, d′ are the database transactions for assign-
ing seats, awarding the bonus and debiting the account, respectively. If we then
add o −≺ (calla ‖ callb ‖ calld) + callc calla we get the following typing:
callo : 〈[ ], [a, a′, b, b′, c, d, d′, 3db, o], [ ], [ ]〉. We see from the type that there is
a possibility of three parallel database connections. If this is undesirable, the
parallel composition should be changed into a sequential one:
o′ −≺ calla callb calld+ callc calla, with the following typing:
callo′ :〈[ ], [a, a′, b, b′, c, d, d′, db, o′], [ ], [ ]〉.

Now assume connecting to the database is an expensive operation. How
often the database is opened can be analysed by changing db from a primi-
tive component into db −≺ newdb′ with db′ a primitive component that rep-
resents opening the database. Note that we have not written calldb′ but
newdb′, which means that instances of db′ are not deleted. The maximum
number of times the database is opened is now accounted for in the new typ-
ing callo′ : 〈[ ], [a, a′, b, b′, c, d, d′, db, 3db′, o′], [db′], [3db′]〉. Assume opening the
database many times should be avoided. One could then consider redefining
a, b, d in the following way: a−≺ newdb calla′, b−≺ callb′, d−≺ calld′ deldb.
Although this is fine for the left branch, it is wrong for the right branch. The new
typing signals what is wrong: callo′ :〈[ ], [a, a′, b, b′, c, d, d′, db, db′, o′], [db′], [db, db′]〉.
The occurrence of db in the last multiset is caused by the fact that db is not
deleted in the right branch. We finish with the refinement which is probably
the most economical: nil, a′ −≺ nop, b′ −≺ nop, c −≺ nop, d′ −≺ nop, db −≺ nop,
o′′−≺newdb calla′ callb′ calld′ deldb+callc newdb calla′ deldb, with typing
callo′′ :〈[ ], [a′, b′, c, d′, db, o′′], [ ], [ ]〉.

5 Basic Properties of the Typing System

5.1 Uniqueness of Types

In this section we will prove several useful lemmas leading to the uniqueness of
types. The following lemma will be used frequently without explicit mentioning.

Lemma 5.1 (Basics)

1. An expression E is typable in a basis Γ if and only if var(E) ⊆ dom(Γ).

2. If Γ = t(P ) and Γ ` E :X, then dom(P ) = dom(Γ), Xn ⊆ X l ⊆ Xh ⊆ Xp

and var(E) ⊆ var(X).

Proof:
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1. By two easy inductions, one on the size of E (the if-part) and one on the
derivation of Γ ` E :X (the only-if-part).

2. By induction on t(P ) one proves dom(P ) = dom(t(P )). The second part
requires a double induction, the primary induction on the length of Γ and
a secondary induction on the derivation Γ ` E : X. The primary base
case, Γ = ∅ and E = nop is trivial. Now let Γ = t(P ), Γ ` E : X for
some non-empty Γ and assume the result has been proven for all shorter
bases. We prove Xn ⊆ X l ⊆ Xh ⊆ Xp by a secondary induction on the
derivation of Γ ` E :X. The secondary base cases E = nop and E = delx
are trivial. Consider the base case E = newx with Γ(x) = X ′ for some X ′.
Then Γ′ ` E′ :X ′ for some Γ′ ⊂ Γ with x−≺E′ ∈ P . Now we can apply the
primary induction hypothesis to Γ′ and the result for X follows from that
of X ′. The secondary induction steps require many easy calculations. We
do two and leave the others to the reader. Assume Xn

1 ⊆ X l
1, X

n
2 ⊆ X l

2.
Then Xn

1 ∩Xn
2 ⊆ X l

1 ∩X l
2 and

Xn
1 ∩ (Xn

2 +X l
1) ⊆ X l

1 +Xn
2 ⊆ X l

1 +X l
2

Finally, one proves var(E) ⊆ var(X) by induction on Γ ` E :X.

�

Lemma 5.2 (Associativity) If Γ ` A :X, Γ ` B :Y and Γ ` C :Z, then the
two ways of typing the expression ABC by the rule Seq, corresponding to the
different parses (AB)C and A (BC), lead to the same type.

Proof: By applying Seq to Γ ` A : X and Γ ` B : Y we get Γ ` AB :
〈Xn ∩ (Y n +X l), Xp ∪ (Y p +Xh), X l + Y l, Xh + Y h〉 and combining this with
Γ ` C :Z we get Γ ` ABC :〈(Xn ∩ (Y n +X l))∩ (Zn + (X l +Y l)), (Xp ∪ (Y p +
Xh)) ∪ (Zp + (Xh + Y h)), (X l + Y l) + Zl, (Xh + Y h) + Zh〉. By applying Seq
to Γ ` B :Y and Γ ` C :Z we get

Γ ` BC :〈Y n ∩ (Zn + Y l), Y p ∪ (Zp + Y h), Y l + Zl, Y h + Zh〉

and combining this with Γ ` A :X we get Γ ` ABC :〈Xn∩ ((Y n∩ (Zn +Y l)) +
X l), Xp∪ ((Y p∪ (Zp +Y h))+Xh), X l +(Y l +Zl), Xh +(Y h +Zh)〉. It remains
to prove that the two types resulting from the combination are equal. For the
last two parts of the quadruples this trivially follows from the associativity of +
for multisets. For the first parts of the types this follows from the associativity
of ∪ and the distributivity of + and − over ∪. �

The following lemma is necessary since the typing rules are not fully syntax-
directed. If, e.g., E1 = AB, then the type of E1E2 could have been inferred
by an application of the rule Seq to A and BE2. In that case we apply the
previous lemma.
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Lemma 5.3 (Inversion)

1. If Γ = t(P ) and Γ(x) = X, then there exists a program P ′ such that
P ′, x−≺A is an initial segment of P and Γ|dom(P ′) = t(P ′) and Γ|dom(P ′) `
A :X.

2. If Γ ` newx :X, then X = 〈Γ(x)n,Γ(x)p + x,Γ(x)l + x,Γ(x)h + x〉.

3. If Γ ` delx :X, then X = 〈[−x], [ ], [−x], [−x]〉.

4. If Γ ` nop :X, then X = 〈[ ], [ ], [ ], [ ]〉.

5. For ◦ ∈ {+, ‖, ·}, if Γ ` (E1 ◦ E2) : X, then there exists Xi such that
Γ ` Ei :Xi for i = 1, 2. Moreover,
X = 〈Xn

1 ∩Xn
2 , X

p
1 ∪X

p
2 , X

l
1 ∩X l

2, X
h
1 ∪Xh

2 〉 if ◦ = +,
X = X1 +X2 if ◦ = ‖, and
X = 〈Xn

1 ∩ (Xn
2 +X l

1), Xp
1 ∪ (Xp

2 +Xh
1 ), X l

1 +X l
2, X

h
1 +Xh

2 〉 if ◦ = ·.

Proof: We first prove the first part by an easy induction on t(P ). The base
case t(nil) is trivial, and in the induction case we have

t(P ′, y −≺A) = Γ′ ∪ {y 7→ Γ′(A)}, where Γ′ = t(P ′) and y 6∈ dom(Γ′).

If x = y we have the result from the rule application. Otherwise we can apply
the induction hypothesis to t(P ′).

The other parts are proved by structural induction on the derivation of Γ ` E :X.
The base cases Axm, Del and New and the induction cases Alt and Par are
obvious (no need for the induction hypothesis). The only interesting case is
the rule Seq, which has three subcases. Consider the conclusion Γ ` E1E2 :X.
If this has been inferred by an application of Seq with premises Γ ` Ei :Xi for
i = 1, 2 we are done (no need for the induction hypothesis). However, it is
possible that E1 = AB and that Seq is applied to A and BE2. The third
case, E2 = BC and Seq applied to E1B and C, follows by symmetry. So let
E1 = AB and consider the following application of the rule Seq.

Γ ` A :Y1,Γ ` BE2 :Y2
Γ ` E1E2 : 〈Y n

1 ∩ (Y n
2 + Y l

1 ), Y p
1 ∪ (Y p

2 + Y h
1 ), Y l

1 + Y l
2 , Y

h
1 + Y h

2 〉

The type in the conclusion is the type X for which we have to find types Xi

such that Γ ` Ei :Xi for i = 1, 2, and

X = 〈Xn
1 ∩ (Xn

2 +X l
1), Xp

1 ∪ (Xp
2 +Xh

1 ), X l
1 +X l

2, X
h
1 +Xh

2 〉

By the induction hypothesis applied to Γ ` BE2 : Y2 we get types Z and X2

such that Γ ` B :Z and Γ ` E2 :X2. By applying Seq to Γ ` A :Y1 and Γ ` B :Z
we get a type X1 such that Γ ` E1 :X1. It follows by Lemma 5.2 that

〈Xn
1 ∩ (Xn

2 +X l
1), Xp

1 ∪ (Xp
2 +Xh

1 ), X l
1 +X l

2, X
h
1 +Xh

2 〉
= 〈Y n

1 ∩ (Y n
2 + Y l

1 ), Y p
1 ∪ (Y p

2 + Y h
1 ), Y l

1 + Y l
2 , Y

h
1 + Y h

2 〉

�
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Lemma 5.4 (Uniqueness of Types) If Γ1 ` E :X, Γ2 ` E :Y and Γ1|var(E) =
Γ2|var(E), then X = Y .

Proof: By structural induction on the derivation of Γ1 ` E : X. In the
case of the rule Axm, Del and New we have that E = nop, E = delx, and
E = newx, respectively. In all three cases X = Y follows by applying the
Inversion Lemma 5.3 to Γ2 ` E :Y .

Assume Γ1 ` E :X is inferred by the following application of the rule Par:

Γ1 ` E1 :X1, Γ1 ` E2 :X2

Γ1 ` E1 ‖ E2 : X1 +X2

Applying the Inversion Lemma to Γ2 ` E1 ‖ E2 : Y gives types Yi such that
Γ2 ` Ei : Yi and Y = Y1 + Y2. Now we apply the induction hypothesis to the
premises Γ2 ` Ei :Xi and get Xi = Yi for i = 1, 2. It follows that X = Y .

The cases of the rules Alt and Seq are analogous to the case of Par.

�

The previous lemma motivates the notation Γ(E), and it is now easy to see that
t(P ) is unique.

5.2 Type Inference

Type inference means to compute, for a given component program P and ex-
pression E, Γ = t(P ) and X such that Γ ` E :X if there are such types, and
to report failure otherwise. This may require reordering P , a task that should
not burden the programmer. We should then prove that the type, if it exists,
is independent of the specific reordering used. We prepare reordering with a
lemma.

Lemma 5.5 For any program P , the following are equivalent:

1. t(P ) is well-defined;

2. Every x is declared at most once in P and for every initial segment P ′, x−≺
A of P we have that var(A) ⊆ dom(P ′).

Proof: For proving that 1 implies 2, assume 1 and let P ′, x −≺ A be an
initial segment of P . At some point in the calculation of t(P ), P ′ is extended
to P ′, x−≺A in the following manner

t(P ′, x−≺A) = Γ′ ∪ {x 7→ Γ′(A)}, where Γ′ = t(P ′) and x 6∈ dom(Γ′)

By the premiss and Lemma 5.1 it follows that var(A) ⊆ dom(P ′) and that
x 6∈ dom(P ′).

It remains to prove that 2 implies 1. This will be done by induction on the length
of P . The base case nil has type ∅. Assume P = P ′, x−≺ A satisfies 2. Then

12



also P ′ satisfies these conditions, so by the induction hypothesis Γ′ = t(P ′) for
some Γ′. Since var(A) ⊆ dom(Γ′) we can by Lemma 5.1 infer Γ′ ` A :X for some
type X. Using Definition 4.1 we conclude that t(P ′, x −≺ A) = Γ′ ∪ {x 7→ X}.

�

Part 2 of the above lemma partially specifies the ordering in P . For example,
if P is nil, x −≺ newz, y −≺ newz, z −≺ nop then both P1 = nil, z −≺ nop, x −≺
newz, y −≺ newz and P2 = nil, z −≺ nop, y −≺ newz, x −≺ newz satisfy 2. The
following strengthening of Lemma 5.4 proves that in general types do not depend
on the ordering chosen.

Lemma 5.6 (Strong Uniqueness) If Γ1 = t(P1) and Γ2 = t(P2) and P2 is a
reordering of a subset of P1, then Γ1|dom(P2) = Γ2.

Proof: Let conditions be as above. We use induction on the derivation of
t(P2). The base case is P2 = nil, in which case Γ2 = Γ1|∅ = ∅. For the
induction case, assume Γ2 = t(P2) is calculated in the following way:

t(P ′2, x−≺ E) = Γ′2 ∪ {x 7→ Γ′2(E)}, where Γ′2 = t(P ′2) and x 6∈ dom(Γ′2),

where Γ′2(E) = Γ2(x). Since x ∈ dom(P2) ⊆ dom(Γ1) we get by the Inversion
Lemma 5.3 that there is P ′1 such that P ′1, x−≺E is an initial segment of P1 and
for Γ′1 = Γ1|dom(P ′

1)
that Γ′1 = t(P ′1) and Γ′1 ` E :Γ1(x). Since Γ′2 ` E :Γ2(x) the

Basics Lemma 5.1 implies var(E) ⊆ dom(P ′2). Since dom(P1) ⊃ dom(P ′2) we have
from the Basics Lemma 5.1 and the Uniqueness Lemma 5.4 that Γ1|dom(P ′

2)
` E :

Γ1(x). Since P ′2 is a reordering of a subset of P1 and Γ′2 = t(P ′2), the induction
hypothesis gives us Γ1|dom(P ′

2)
= Γ′2, so again from the Uniqueness Lemma 5.4

we get Γ1(x) = Γ2(x). This yields Γ1|dom(P2) = Γ2. �

Theorem 5.7 (Type Inference) There exists an algorithm that, given a com-
ponent program P and an expression E, does the following:

1. First program P is reordered to satisfy part 2 in Lemma 5.5. If P cannot
be reordered in such a way, or if var(E) 6⊆ dom(P ), the algorithm reports
a failure.

2. In the second phase, assuming that P has successfully been reordered and
that var(E) ⊆ dom(P ), a basis Γ = t(P ) and a type X are computed such
that Γ ` E :X.

The algorithm works in time O(σ(P )2 +σ(E)2). The types X and Γ in phase 2
are unique if they exist.

Proof: After assuring there is at most one declaration of each component,
phase 1 can easily be done by a topological sort [21] of the directed graph with
nodes dom(P ) and edges from y to x if and only if there exists a declaration
x−≺A in P such that y occurs in A.

13



For phase 2, Γ = t(P ) and then Γ ` E :X can be inferred in the type system and
the definition of t with inference trees linear in the size of E and P , respectively.
As the multiset operations are in linear time the whole phase takes quadratic
time.

The algorithm reports failure if P cannot be reordered or if var(E) 6⊆ dom(Γ).
Γ and X are independent of the particular reordering of P by Lemma 5.6. �

6 Correctness Properties

The following lemma is instrumental for analysing the effect that applying the
rules osNew and osDel has on the type of the expression. Note that parts 1 and
2 are dual, 3 and 4 are dual and 5 is self-dual using the duality: Zl ↔ Zh,
Zn ↔ Zp, +x↔ −x and ⊆ ↔ ⊇.

Lemma 6.1 Let typings A : X, B : Y, E : Z, AE : U, B E : V be inferred in
Γ. Then the following facts hold:

1. If Y n ⊇ Xn − x and X l = Y l + x, then V n ⊇ Un − x.

2. If Y p ⊆ Xp + x and Xh = Y h − x, then V p ⊆ Up + x.

3. If Xn = Y n − x and X l = Y l − x, then Un = V n − x.

4. If Xp = Y p + x and Xh = Y h + x, then Up = V p + x.

5. X� − Y � = U� − V �, for � ∈ {l, h}.

Proof: By easy calculations based on the typing rule Seq. We do one and
leave the others to the reader. Let conditions be as stated in part 1 of the lemma.
Then V n = Y n∩(Zn+Y l) ⊇ (Xn−x)∩(Zn+(X l−x)) = (Xn∩(Zn+X l))−x =
Un − x. �

The following lemma captures some essential invariants of the operational
semantics. The first part is known under the names subject reduction and type
preservation. The remaining parts reflect the fact that every step reduces the set
of reachable states. Hence maxima do not increase and minima do not decrease.

Lemma 6.2 Let Γ = t(P ), Γ ` E :U and let {M,E} P {M ′, E′} be a step in
the operational semantics. Then we have:

1. Γ ` E′ :V for some type V .

2. M ′ + V n ⊇M + Un, i.e., the minimum safety margin doesn’t decrease.

3. M ′ + V p ⊆M + Up, i.e., the maximum resource use doesn’t increase.

4. M ′ + V l ⊇M + U l, i.e., the minimum net effect doesn’t decrease.
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5. M ′ + V h ⊆M + Uh, i.e., the maximum net effect doesn’t increase.

Proof: All parts are proved by simultaneous induction on the definition of
 P . Part 1 uses the Inversion Lemma 5.3 to break down the typing Γ ` E :U .
Thereafter a type for E′ can be inferred.

For the base case osNew, let Γ ` newx :U and consider a step {M, newx}  P

{M+x,A}. By applying the Inversion Lemma 5.3 and the Uniqueness Lemma 5.4
we get that U = 〈V n, V p + x, V l + x, V h + x〉, where V = Γ(A). Parts 3, 4 and
5 become equalities while part 2 follows from M ′ + V n = M + Un + x.

For the base case osDel, let Γ ` delx : U and consider a step {M, delx}  P

{M−x, nop}. By applying the Inversion Lemma 5.3 we get U = 〈[−x], [ ], [−x], [−x]〉
and V = 〈[ ], [ ], [ ], [ ]〉. This makes parts 2, 4 and 5 equalities, while part 3 follows
from Up = [ ] ⊇ V p − x.

For the base case osNop, let Γ ` nopE′ :U and consider a step {M, nopE′} P

{M,E′}. By applying the Inversion Lemma 5.3 we get a type V such that
Γ ` E′ :V and V = U . Parts 2 to 5 become equalities. The base case osParEnd
is similar.

For osAlt1, 2, let Γ ` (E1 + E2) :U , and consider {M, (E1 + E2)}  P {M,Ei}.
From the Inversion Lemma 5.3 we have X1 and X2 such that the typings E1 :X1

and E2 :X2 hold in Γ. We have U = 〈Xn
1 ∩Xn

2 , X
p
1 ∪X

p
2 , X

l
1 ∩X l

2, X
h
1 ∪Xh

2 〉
and V = Xi. The calculations for parts 2 to 5 of the lemma are done by using
U� ⊇ X�i for � ∈ {p, h} and U� ⊆ X�i for � ∈ {n, l} using mono/antitonicity
properties of ∪ and ∩.

For the induction case osPar1, let Γ ` (E1 ‖ E2) : U and consider the step
{M, (E1 ‖ E2)}  P {M ′, (E′1 ‖ E2)}, inferred from the step {M,E1}  P

{M ′, E′1}. From the Inversion Lemma we have types X and X2 such that typings
E1 :X and E2 :X2 hold in Γ where U = X + X2. We get from the induction
hypothesis a type Y such that Γ ` E′1 :Y and all parts of the lemma hold with
X for U and Y for V . We get V = Y +X2 by applying the typing rule Par. All
parts carry over from the induction hypothesis for X, Y via X +X2, Y +X2.
The case of osPar2 follows by symmetry.

For the induction case osSeq, let Γ ` AE′′ :U and consider a step {M,AE′′} P

{M ′, B E′′} inferred from a step {M,A}  P {M ′, B}. By applying the Inver-
sion Lemma 5.3 and the induction hypothesis we get types X,Y, Z such that
the typings A :X, B :Y and E′′ :Z hold in Γ, such that

U = 〈Xn ∩ (Zn +X l), Xp ∪ (Zp +Xh), X l + Zl, Xh + Zh〉
V = 〈Y n ∩ (Zn + Y l), Y p ∪ (Zp + Y h), Y l + Zl, Y h + Zh〉

Parts 2 to 5 of the lemma carry over from the induction hypothesis for X,Y by
Lemma 6.1. �

Definition 6.3 A state {M,E} is safely typed by a basis Γ, denoted by Γ `
{M,E}, if Γ ` E :X for some X such that [ ] ⊆M +Xn.
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The next theorem characterizes several correctness properties of the system.
The inferred types are also proved to be sharp (part 6 below). An alternative
intuition for sharpness is that if E has type X, then there is no type Y that
enjoys all of these correctness properties in relation to E and at the same time
improves one or more constituents of X, that is, (Y n ⊃ Xn) ∨ (Y p ⊂ Xp) ∨
(Y l ⊃ X l) ∨ (Y h ⊂ Xh).

Theorem 6.4 If t(P ) ` E :X and [ ] ⊆M +Xn, then the following holds:

1. If {M,E} P {M ′, E′} then t(P ) ` {M ′, E′}.

2. If E is not nop, we have {M,E} P {M ′, E′} for some {M ′, E′}.

3. All  P -sequences starting in state {M,E} are finite.

4. If {M,E} ∗P {M ′, nop}, then X l ⊆M ′ −M ⊆ Xh.

5. If {M,E} ∗P {M ′, E′} then Xn ⊆M ′ −M ⊆ Xp.

6. The type X is sharp in the following sense: for every y ∈ C and any
� ∈ {l, h} there exists a terminal state {M ′, nop} such that {M,E}  ∗P
{M ′, nop} and (M ′ − M)(y) = X�(y); for every y ∈ C and any � ∈
{n, p} there exists a state {M ′, E′} such that {M,E}  ∗P {M ′, E′} and
(M ′ −M)(y) = X�(y).

Proof: Let Γ = t(P ), Γ ` E :X and [ ] ⊆M +Xn.

1. Assume {M,E}  P {M ′, E′}. E′ is typable in Γ by Lemma 6.2, part 1.
Moreover, [ ] ⊆M ′ + Γ(E′)n follows immediately from part 2 of the same
lemma.

2. By induction on the size of E. Any E can be written in one of the
following forms: newx, delx, nop, E1E2, (E1 + E2), (E1 ‖ E2). For
each of these forms we check that part 2 of the Theorem holds. In case
newx we have a declaration for x in P by Lemma 5.1 so that we can apply
osNew. In case delx we have x ∈ M by [x] = −Xn ⊆ M so that we can
apply osDel. The case nop holds trivially. In case E1E2, if E1 = nop we
can apply rule osNop, otherwise we have from the Inversion Lemma 5.3
a type X1 such that Γ ` E1 :X1 and Xn

1 ⊇ Xn. We can then apply the
induction hypothesis for the smaller E1 and use this step as premiss for
an application of osSeq. In case (E1 ‖ E2), if E1 = E2 = nop we can apply
osParEnd. Otherwise we can use the induction hypothesis for at least one
of the smaller E1 or E2 so that we can apply osPar1 or osPar2. In case
(E1 + E2) we can always apply one of osAlt1 or osAlt2.

3. Let EP be the set of terms that can be typed in Γ. For every E ∈ EP , define
|E| in the following recursive way: |delx| = |nop| = 1, |newx| = 1 + |A|
if x −≺ A ∈ P , |(E1 + E2)| = 1 + max(|E1|, |E2|) and |E1 · E2| = |(E1 ‖
E2)| = |E1|+ |E2|. By structural induction on the derivation of Γ ` E :X
one easily sees that |E| is well-defined and gives an upper bound to the
number of steps in the operational semantics.
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4. By induction on the number of steps, using Lemma 6.2. The base case
{M,E} = {M ′, nop} is trivial. For the induction step, consider {M,E} P

{M1, E
′}  ∗P {M ′, nop} and assume Γ(E) = X, Γ(E′) = Y and Y l ⊆

M ′ −M1 ⊆ Y h. By Lemma 6.2, part 4, we have X l + M ⊆ Y l + M1, so
we get X l ⊆ Y l +M1 −M ⊆ M ′ −M . By part 5 of the same lemma we
have Y h +M1 ⊆ Xh +M , so we get M ′ −M ⊆ Xh.

5. By induction on the number of steps, using Lemma 6.2. The base case
(zero steps) is trivial. For the induction step, consider {M,E} P {M1, E1}
 ∗P {M ′, E′} and assume Γ(E) = X, Γ(E1) = Y and Y n ⊆ M ′ −M1 ⊆
Y p. By Lemma 6.2, part 2, we have M + Xn ⊆ M1 + Y n so we get
Xn ⊆ M ′ −M . From part 3 we have Y p + M1 ⊆ Xp + M so we get
M ′ −M ⊆ Xp.

6. By primary induction on the length of P and secondary induction on the
derivation of Γ ` E : X. If the length of P is zero the result is trivial.
Otherwise, Γ = t(P ) has been calculated by

t(P ′, x−≺A) = Γ′ ∪ {x 7→ Γ′(A)}, where Γ′ = t(P ′) and x 6∈ dom(Γ′)

Assume the result has been proved for all programs shorter than P . We
now prove that X is sharp whenever Γ ` E :X by (secondary) induction
on the derivation of the latter. Let y ∈ C. Note first that, for � ∈ {n, p},
if some X�(y) = 0, one can take {M ′, E′} = {M,E} to get the desired
result for X�(y). With this in mind the base cases Axm and Del are easy.

The base case New is more interesting since it uses the primary induction
hypothesis. Assume Γ ` newz :X is inferred by the following application
of the rule New:

Γ(z) = Y

Γ ` newz :〈Y n, Y p + z, Y l + z, Y h + z〉

If z is not the last variable declared in P , then the sharpness of

X = 〈Y n, Y p + z, Y l + z, Y h + z〉

follows from the primary induction hypothesis (in combination with Strong
Uniqueness). Otherwise, we have that x = z and P is P ′, z−≺A as in the
calculation of t(P ′, x −≺ A) above, with Γ′ = t(P ′), Y = Γ′(A). For any
y ∈ C different from z we can use the primary induction hypothesis for
A, Y and prefix the sequences obtained by a step using the rule osNew
as we have M(y) = (M + z)(y) and Y �(y) = (Y � + z)(y). For z, note
that Y n(z) = 0 and take {M ′, E′} = {M,E} to get Xn(z) = Y n(z) =
0 = (M ′ −M)(z). For � ∈ {p, l, h} we have Y �(z) = 1 and we can take
{M ′, E′} = {M + z,A}.
The induction cases of the rules Alt and Par are simple. In both cases the
secondary induction hypothesis can be applied to the premises Γ ` Ei :
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Xi (i = 1, 2). In case of Alt, if X�(y) = X�i (y) for given y and �, then
one uses the induction hypothesis for Ei (i may vary with y, �). In case
of Par, we apply the secondary induction hypothesis to both premises and
concatenate both sequences using the inductive rule osPar. By additivity
this gives the desired results. (Any interleaving of the two sequences would
amount to the same.)

In the case of the rule Seq we also apply the secondary induction hy-
pothesis to the premises Γ ` Ei : Xi (i = 1, 2). Concerning X�(y) for
� ∈ {l, h} we can concatenate the two sequences. For Xn(y) we distin-
guish between Xn(y) = Xn

1 (y) and Xn(y) = Xn
2 (y) + X l

1(y). In the
first case we take the sequence for {M,E1} and postfix all expressions
with E2 to obtain a sequence for {M,E1E2} with the desired property.
In the second case we take the sequence {M,E1}  ∗P {M ′, nop} with
(M ′ − M)(y) = X l

1(y), postfix its expressions with E2, and then pro-
ceed with the sequence {M ′, E2}  ∗P {M ′′, E′2} with (M ′′ − M ′)(y) =
Xn

2 (y). The total sequence {M,E1E2}  ∗P {M ′, E2}  ∗P {M ′′, E′2} en-
joys (M ′′ −M)(y) = X l

1(y) +Xn
2 (y) = Xn(y). The last case, Xp(y), can

be dealt with in a way very similar to Xn(y).

Note that sharpness has been obtained by runs that may depend on the com-
ponent y and on the part of the type for which sharpness is desired. �

The following Corollary summarizes the guarantees of progress, termination
and upper limits to the number of component instances.

Corollary 6.5 If Γ = t(P ) and Γ ` {[ ], E}, then {[ ], E} ∗P {M, nop};
if {[ ], E} ∗P {M ′, E′}, then M ′ ⊆ Γ(E)p.

7 Extensions

In this section we extend the basic system with loops and tail recursion, followed
by an example on counting objects on the free store in C++. Thereafter we give
two more extensions, one for dealing with memory usage and one introducing a
scope operator which supports the implicit deallocation of resources.

7.1 Loops and Tail Recursion

It will not come as a surprise that recursion and unbounded loops are difficult to
deal with in static analysis, since many properties become undecidable. Finite
loops can be dealt with by iterated sequential composition. Under rather strict
conditions, basically that the body of the loop has no net effect on the bag of
instances of components, we can also deal with unbounded loops. These are
modelled by the special form of recursion known as tail recursion. For loops we
extend the syntax with Factor ::= loop(n,Expr), n > 0. For tail recursion
no new syntax is needed.

18



The intuition behind a finite loop loop(n,E) is the n-fold sequential com-
position of E with itself. If Γ ` E :X, then some easy calculations based on
the typing rule Seq give Γ ` E · · · E : Y (n times E) with Y l = n ∗ X l and
Y h = n ∗ Xh (all multiplicities multiplied by n). Furthermore, we can cal-
culate Y n = Xn ∩ (Xn + X l) ∩ · · · ∩ (Xn + (n − 1) ∗ X l). This expression
can be simplified. If X l(x) ≥ 0, then Y n(x) = Xn(x). If X l(x) < 0, then
Y n(x) = Xn(x) + (n − 1) ∗ X l(x). We can abbreviate the case distinction by
X l(x) ?Xn(x) :Xn(x) + (n− 1) ∗X l(x). Abstracting from the variable x we
state Y n = X l ?Xn :Xn + (n− 1) ∗X l, where A ?B :C is the multiset defined
by (A ?B :C)(x) = B(x) if A(x) ≥ 0, and C(x) otherwise. Similarly we find
Y p = Xh ?Xp + (n− 1) ∗Xh :Xp. With this in mind the rules concerning loops
in Table 4 are easily understood.

Table 4: Rules for loops and tail recursion

(osLoop)
n > 1

{M, loop(n,E)} P {M,E loop(n− 1, E)}
(osLoop1)

{M, loop(1, E)} P {M,E}
(Loop)

Γ ` E :X, n > 0

Γ ` loop(n,E) : 〈X l ?Xn :Xn + (n− 1) ∗X l,
Xh ?Xp + (n− 1) ∗Xh :Xp, n ∗X l, n ∗Xh〉

(Rec)
` P :Γ, Γ ` E :X, Γ ` A :Y, x /∈ dom(Γ), X l = Xh = [ ]

` P, x−≺ E delx newx+A :Γ ∪ {x 7→ 〈Xn ∩ Y n, Xp ∪ Y p, Y l, Y h〉}

For tail recursion we add the typing rule Rec in Table 4. We do not need
an extra rule in the operational semantics. The intuition behind E delx newx
is that, after the body E has been executed, the frame of the tail recursive call
(on top of the call stack) is popped before a new frame is pushed. Note that we
do not have to deal with arbitrarily high multiplicities of x.

The most important modification of the theory is the requirement of fairness
in the execution of recursive components such as x −≺ E delx newx + A. This
means that eventually, after zero or more times choosing E delx newx, the base
case A is chosen. Fairness is necessary for termination. Also for type inference
some care must be taken. First, in Lemma 5.5, part 2, one has to allow dec-
larations of the form x ≺ E delx newx + A and require var(E A) ⊆ dom(P ′),
Γ′ = t(P ′), and Γ′(E)l = Γ′(E)h = [ ]. The proof of this lemma can then easily
be extended. For the dependency graph we consider a tail recursive x to de-
pend on variables in var(E A) only. With these precautions we get quadratic
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type inference also for the system with loops and tail recursion.

7.2 Example: Counting Objects on the Free Store in C++

In this section we show how to apply our techniques to the analysis of dynami-
cally allocated memory in C++ [28]. In the example below, functions (such as
P1, U) as well as objects on the free store (such as C_instance) are modelled as
components. Again we let callf abbreviate newf delf and use this expression
to model a function call. Note that f is deleted automatically by callf , which
models the (automatic) deallocation of stack objects created by f . However,
the subcomponents of f are not deleted by delf . In languages like C++, it is
the programmer’s responsibility to deallocate objects on the free store created
by a function.

In the program fragment in Figure 2, so-called POSIX threads [1] are used
for parallelism. The function pthread_create launches a new thread calling the
function which is third in the parameter list with the argument which is fourth.
This function call, either P1(C_instance) or P2(C_instance), is executed in
parallel to P5(), and the two threads are joined in pthread_join. The func-
tions P3(), P4(), P5() are left abstract, and so is the dynamic data type C.
Every function has been annotated with an expression in our language between
/* ... */, where P3, P4, P5, C are assumed to be primitive components. We
trust that all the rest is self-explaining. In the sequel, we will also discuss some

void* P1(void* x) /* P1 -< call P3 del C */ {

P3(); delete (C*) x; return NULL;

}

void* P2(void* x) /* P2 -< call P4 */ {

P4(); /* position 1 */ return NULL;

}

/* U -< new C ((call P1 + call P2) || call P5) */

void U(int choice) {

pthread_t pth;

C* C_instance = new C();

pthread_create(&pth, NULL, choice ? P1 : P2 , C_instance);

P5(); /* position 2 */

pthread_join(pth, NULL) /* position 3 */;

}

void UU(int choices[]) /* UU -< loop(10, call U) */ {

for(int i=0; i<10; i++) U(choices[i]);

}

Figure 2: C++ code using threads and objects on the free store.

variations of the above example. The central question in all examples is: is the
deallocation of the objects C_instance on the free store correct?
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Collecting all declarations in the above example we get the program P :

p3 −≺ nop,
p4 −≺ nop,
p5 −≺ nop,
c −≺ nop,
p1 −≺ callp3 delc,
p2 −≺ callp4,
u −≺ newc ((callp1 + callp2) ‖ callp5),
uu−≺ loop(10, callu)

Type inference gives the following results:

callp1 :〈[−c], [p1, p3], [−c], [−c]〉,
callp2 :〈[], [p2, p4], [], []〉,
callu :〈[], [c, p1, p2, p3, p4, p5, u], [], [c]〉,
calluu :〈[], [10c, p1, p2, p3, p4, p5, u, uu], [], [10c]〉

This signals in the last multiset (·h) of the type of uu a memory leak of [10c]
(in the worst-case). Obviously, this is caused by the possible choice of callp2
instead of callp1 by u, whereby created instances of c are not deleted.

Let us discuss a few ways to improve the program. The most probable source
of the error is that the programmer simply forgot to delete c in p2 (at position 1
in the example). Changing the declaration of p2 into p2−≺callp4 delc fixes the
memory leak: for the new p2 we have callp2 :〈[−c], [p2, p4], [−c], [−c]〉 and as a
consequence the last multiset of the new types of callu and calluu becomes
empty.

Let us go back to the program P and consider another attempt to fix the
memory leak. One idea is to insert delete C_instance; at position 2 in the
function U. This means that P is changed by changing the declaration of u into:
u′−≺ newc ((callp1 + callp2) ‖ callp5 delc). Type inference now signals that
we actually delete c too many times: callu′ :〈[−c], [c, p1, p2, p3, p4, p5, u], [−c], []〉.
The reason is of course the possible choice of callp1 instead of callp2 by u′,
whereby the instance of c is deleted twice. Therefore u′ should be combined
with removing delc from the declaration of p1. Even then u′ contains a hidden
error: depending on the particular scheduling used in the parallel composition,
the instance of c may be deleted too early if in use by p3 or p4. We can simulate
the use of c by p3 by adding a primitive component cu, changing the declaration
of p3 to p3 −≺ delcu newcu and inserting delcu and newcu in front of delc and
newc, respectively. Then the type of u′ would have signalled a deficit in the
negative bag (·n).

Another idea might be to insert delete C_instance; at position 3 in the
function U, in combination with removing delete x; from the function P1. The
resulting program in our formalism reads: p3−≺nop, p4−≺nop, p5−≺nop, c−≺nop,
p′1−≺callp3, p2−≺callp4, u′′−≺newc ((callp′1+callp2) ‖ callp5) delc, uu′−≺
loop(10, callu′′), with type calluu′ :〈[], [c, p′1, p2, p3, p4, p5, u′′, uu′], [], []〉. This
would be the preferred solution, with newc and delc in the same declaration.
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This solution would still be valid if p5 would use c (with P5(C_instance) instead
of P5() in function U).

7.3 Cumulative Resources

This extension illustrates how our techniques can be used for quantifying the us-
age of cumulative resources. By “resource” we mean in this section a cumulative
resource such as memory, power consumption, or bandwidth. Conceptually the
easiest way to deal with such resources is to introduce a primitive component
u representing one unit of the resource and use in each declaration the right
number of newu expressions. For example, consider a −≺ newb (newc + newd)
and let a use two units of the resource at deployment, and later on one more in
the branch newd. This could be expressed in the following way:

a−≺ newu newu newb (newc+ newu newd)

Though attractive by its simplicity, this method has one major drawback: it
contains in essence a unary representation of numbers, and this makes that the
expressions can become exponentially long. Therefore we opt for a different
approach, which keeps expressions polynomial.

Let m : C→N be a function specifying the use of the cumulative resource for
each component. More precisely, for every x ∈ C the amount of the resource
used by an instance of x, not including the resources used by the subcomponents
of x, is given by m(x). Given Γ ` E : X, applying the function m to the
elements of Xp and adding the results certainly gives an upper bound for the
resource use of E. However, as the maxima for different components need not
be attained in the same run, these upper bounds are not sharp, as illustrated
by the following example.

Consider the following typing with basis a−≺ nop, b−≺ nop:

newa newa newb+ newa newb newb :〈[ ], [2a, 2b], [a, b], [2a, 2b]〉

Obviously, 2m(a) + 2m(b) is an unsharp upper bound for the total usage of the
resource. A sharp bound is max(2m(a) +m(b),m(a) + 2m(b)).

Sharp bounds can be obtained by an elegant change of the typing rules in
Section 4. Let m : C→N be as above and let u be a new (unused) component
name. Let um(x) be the bag consisting of m(x) copies of u. The allocation
(deallocation) of resources used by an instance of x is modelled by adding (sub-
tracting) the bag um(x). Recall the operational semantics and the type system
with rules as given in Table 2 and Table 3, respectively. Replace systematically
[−x] by [−x]− um(x), M + x by M + x+ um(x) and M − x by M − x− um(x)
and so on. Note that this replacement is also correct for the negative bag in
the type of newx in New in Table 3 by the following reasoning. Since x doesn’t
occur in Xn, we have in fact Xn = [ ]∩ (Xn + x) in New. The replacement now
gives [ ]∩ (Xn +x+um(x)) = [ ]∩ (Xn +um(x)) in New’. The rules that change
are shown in Table 5, all other rules stay the same.
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Table 5: Modified rules for the usage of a cumulative resource

(osNew’)
x−≺A ∈ P

{M, newx} P {M + x+ um(x), A}
(osDel’)

x ∈M
{M, delx} P {M − x− um(x), nop}

(Del’)
x ∈ dom(Γ)

Γ ` delx :〈[−x]− um(x), [ ], [−x]− um(x), [−x]− um(x)〉
(New’)

Γ(x) = X

Γ ` newx : 〈[ ] ∩ (Xn + um(x)), Xp + x+ um(x),
X l + x+ um(x), Xh + x+ um(x)〉

With only minor modifications, the theory developed in Section 4–6 holds for
the modified system. For example, in Lemma 5.1 one has to exclude x = u, in the
Inversion Lemma 5.3, the first two parts, one has to apply similar substitutions
for x as above. In the end one obtains a similar result as Corollary 6.5. Here one
has to interpret N(u), for any bag N , as an amount of the cumulative resource.

Corollary 7.1 With the rules modified as in Table 5 we have: if Γ = t(P ),
Γ ` {[ ], E} and {[ ], E} ∗P {M,E′}, then M(u) ≤ Γ(E)p(u).

This result can be proved to be sharp and can be extended to the system with
loops and tail recursion.

7.4 A Scope Operator

In this section we will introduce a scope operator. The primary goal is to have
a convenient mechanism for deallocating components. Consider the following
example: a−≺ nop, b−≺ newa, c−≺ (newa+ newb) nop Assume we want to deal-
locate all instances created by executing newc. This would mean a c and either
an a or an a and a b, depending on which alternative has been chosen. Note
that nop abstracts from possible use of a and/or b. Using right-distributivity
and including proper deallocation in the various alternatives would lead to:
c′ −≺ newa nop dela + newb nop delb dela. Now newc′ delc′ would correctly
deallocate all instances, but this way of explicit memory management is very
unattractive, and would moreover lead to exponentially long expressions. It
is better to have a mechanism which automatically deallocates all instances of
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components created by an expression, in the same way as local variables disap-
pear when a block is left. This is achieved by the scope mechanism proposed
in this section. This also alleviates to some extent the abstraction from the
identities of instances, since we can view the bag of all instances as partitioned
into smaller, local ones.

To demarcate a scope we use a matching pair of curly brackets. Writing
{M,E} limits the lifetime of all instances in M and those created by E to the
execution of E and enforces deallocations by E to apply to these instances only.
The use of the same brackets as in states is deliberate, since a state in Section 3
is nothing more than an outermost scope.

As can be expected, the scope mechanism involves an extension of the syntax,
extra rules for the operational semantics, and two new typing rules. In Table 6
we specify the extensions.

Table 6: Additions for the scope operator

Syntax, extending Table 1:
Factor ::= StExp

Operational semantics, extending Table 2:
(osScp)

{N,A} P {N ′, A′}
{M, {N,A}} P {M, {N ′, A′}}

(osPop)

{M, {N, nop}} P {M, nop}

Typing rule, extending Table 3:
(Scp)
Γ ` E :X, [ ] ⊆M +Xn, set(M) ⊆ dom(Γ)

Γ ` {M,E} :〈[ ],M +Xp, [ ], [ ]〉

First, the syntax for expressions in Table 1 is extended with an extra rule
for Factor . Note that this also extends the state expressions themselves, since
they depend on expressions. In a declaration x−≺E, where E is an expression
in the extended syntax, only empty bags may occur in subexpressions of the
form {[ ], E′}. As before, a program consists of a list of declarations. Thus
expressions occurring in a program form a subset of those occurring in states.
State expressions may have subexpressions of the form {M,E} with arbitrary
bags M , where M represents the store of component instances that are local
to this occurrence of E. For example, {M, ({M ′, A {[ ], B}} ‖ C) (D + E)}
corresponds to a state in which the expression is executed with an outermost
store M of instances and with local stores M ′ for A and [ ] for B. Expression C
usesM , and so doD and E if the leading factor of the expression has terminated.
A does not affect M and B, who starts after A has terminated, does not affect
M nor M ′.
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Table 6 gives two extra rules for the operational semantics which are easy
to understand. Furthermore, the typing rule Scp requires that, for {M,E} to
be well typed, it has to be safe to execute E using M . If so, the type of {M,E}
reflects that there will be no deficit underway, and no instances left over after
executing {M,E}. The maximum resource use involved equals M plus the
maximum involved in executing E. Note that the new typing rule types state
expressions and not only expressions occurring in programs.

The mapping var uses the rules from the definition above, and in addition
var({M,E}) = set(M) ∪ var(E). The lemmas in Section 5 will not be repeated,
since their formulation as well as their proofs are very similar. From the Basics
Lemma 5.1, part 1, we must add a condition to the right hand side, since the rule
Scp imposes an additional condition on typability. (This condition is fulfilled
in places where it is used.) For the Inversion Lemma 5.3, we must add the
following clause related to the new typing rule.

Lemma 7.2 (Extensions to the Inversion Lemma)

6. If Γ ` {M,A} :X, then there exists a type Y , such that Γ ` A : Y with
[ ] ⊆M + Y n and X = 〈[ ],M + Y p, [ ], [ ]〉.

Proof: The inductive proof of Lemma 5.3 can easily be extended to the new
case above. The new typing rule Scp does not complicate the other steps. �

In this extended system, the total number of component instances in a state
{M,E} should take into account not only M but also all bags possibly occurring
in E. This is done by the following definition of the total sum Σ. In doing so,
however, one counts in instances that will never coexist, such as in {M,E1} +
{M,E2} and {M,E1} {M,E2}. Therefore we also define the notion of a valid
expression, in which irrelevant bags are empty.

Definition 7.3 (Sum and Valid Expression) For any expression E, let ΣE
be the sum of all N in subexpressions {N,A} of E, recursively defined: Σ{M,E} =
M + ΣE and Σ(E1 ‖ E2) = Σ(E1E2) = Σ(E1 + E2) = ΣE1 + ΣE2 and
Σdelx = Σnewx = Σnop = [ ]. An expression E is valid if for all subexpres-
sions of the form (E1 +E2) we have Σ(E1 +E2) = [ ], and for all subexpressions
of the form F E′, F a factor, we have ΣE′ = [ ].

Note that an expression is valid if and only if all its subexpressions are valid.
In any declaration x −≺ E, since only empty bags are allowed to occur in E,
E is obviously valid and ΣE = [ ]. The initial state when executing a program
is {[ ], newx}, where x is the last component declared in the program. The
initial state is valid by definition. The following lemma implies that all states
in sequences representing the execution of a program are valid.

Lemma 7.4 If t(P ) ` E :X, E is valid and {M,E} P {M ′, E′} is a step in
the operational semantics, then also E′ is valid.

25



Proof: By induction on the definition of  P , using that an expression is
valid whenever all its subexpressions are. Assume E is valid. In the cases of
osDel, osPop and osParEnd, E′ = nop and hence valid. In the cases of osNop, E′

is a subexpression of E and hence valid. In the case osNew, note that ΣA = [ ]
for any declaration x−≺ A. In the cases of osAlt1, 2, E = (E1 + E2) and hence
ΣE = [ ], so also ΣE′ = [ ]. In the cases of osPar1, 2, osSeq and osScp we use the
induction hypothesis. �

Note that for E = {[x], nop} + {[x], nop} we have ` E : 〈[ ], [x], [ ], [ ]〉, but
ΣE = [2x]. The following lemma states that Γ(E)p is an upper bound for ΣE
provided E is valid.

Lemma 7.5 If E is a valid expression and Γ ` E : X, then ΣE ⊆ Xp.

Proof: Proof by induction on E (no induction on derivations needed). Let E
be a valid expression. The cases E = nop, newx, delx, (E1 + E2) are trivial
since then ΣE = [ ] by Definition 7.3. In the cases E = (E1 ‖ E2), {M,E′}
the induction hypothesis can be applied. For the last case, E = E1E2, assume
Γ(E) = X. From the Inversion Lemma 5.3/7.2 we get Γ(E1) = X1 and Γ(E2) =
X2 such that Xp = Xp

1 ∪ (Xp
2 + Xh

1 ). Since E is valid we get ΣE = ΣE1 and
E1 valid, so ΣE ⊆ Xp

1 ⊆ Xp. �

Lemma 6.1 holds for the system extended with scope since it only concerns
the typing rule Seq which did not change. Lemma 6.2 also holds in the extended
system, but here it is important to stress that the denotations like  P , ` and
{M,E} are to be understood in the extended system. This means that the proof
by induction on  P gets two extra cases for the new rules osScp, osPop. For
convenience we rephrase the lemma in a short form.

Lemma 7.6 Let ` P : Γ, Γ ` E : U and {M,E}  P {M ′, E′} be a step in
the operational semantics. Then we have: 1. Γ ` E′ : V for some type V ; 2.
M ′ + V n ⊇ M + Un; 3. M ′ + V p ⊆ M + Up; 4. M ′ + V l ⊇ M + U l; 5.
M ′ + V h ⊆M + Uh.

Proof: It suffices to extend the proof of Lemma 6.2 with the following two
cases.

For the base case osPop, let Γ ` {N, nop} :U and consider {M, {N, nop}}  P

{M, nop}. By the Inversion Lemma 5.3/7.2 U = 〈[ ], N, [ ], [ ]〉 and further Γ `
nop :V where V = 〈[ ], [ ], [ ], [ ]〉. This proves part 1, and parts 2, 4 and 5 become
equalities since U� = V �, for � ∈ {n, l, h}. Part 3 follows from V p = [ ] ⊆ N .

For the inductive case osScp, let Γ ` {N,A} :U and consider a step
{M, {N,A}} P {M, {N ′, A′}}, inferred from a step {N,A} P {N ′, A′}. By
the Inversion Lemma 5.3/7.2 we have X such that Γ ` A : X, where [ ] ⊆
N + Xn, and U = 〈[ ], N + Xp, [ ], [ ]〉. We get from the induction hypothesis,
parts 1 and 2, that Γ ` A′ : Y and N ′ + Y n ⊇ N + Xn, so [ ] ⊆ N ′ + Y n or
[ ] ⊆ N ′ + Y n. Hence we can apply the typing rule Scp to get Γ ` {N ′, A′} :V ,
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where V = 〈[ ], N ′+Y p, [ ], [ ]〉. All parts follow directly from this type and from
the induction hypothesis, part 3, Y p +N ′ ⊆ Xp +N . �

The notion of a safely typed state extends the one in Section 6 but the
formulation can be simplified since we can type state expressions in the system
with scope. Thereafter follows the Soundness Theorem in which only the last
two parts differ from Theorem 6.4.

Definition 7.7 A state {M,E} is safely typed by a basis Γ, denoted by Γ `
{M,E}, if Γ ` {M,E} :X for some X.

Theorem 7.8 If t(P ) ` E :X and [ ] ⊆M+Xn, then parts 1–4 in Theorem 6.4
also hold for the system extended with scope. Moreover, the parts 5 and 6 hold
in the following formulation under the extra assumption that E is valid:

5. If {M,E} ∗P {M ′, E′}, then Xn ⊆M ′ −M and Σ{M ′, E′} ⊆M +Xp.

6. The type X is sharp in the following sense: for every y ∈ C and any
� ∈ {l, h} there exists a terminal state {M ′, nop} such that {M,E}  ∗P
{M ′, nop} and (M ′ − M)(y) = X�(y); for every y ∈ C and any � ∈
{n, p} there exists a state {M ′, E′} such that {M,E}  ∗P {M ′, E′} and
(Σ{M ′, E′}−M)(y) = X�(y) if � = p and (M ′−M)(y) = X�(y) if � = n.

Proof: Let Γ = t(P ), Γ ` E :X and [ ] ⊆ M + Xn. Parts 1-4 are proved for
the system extended with scope with some minor extensions with respect to the
proof of Theorem 6.4.

1. By Lemma 7.6, part 1 and 2.

2. By induction on the size of E. The only new form is: {N,E1}. If E1 = nop

we can apply osPop. Otherwise we have from the Inversion Lemma that
Γ ` E1 : Y for some Y and [ ] ⊆ N + Y n, so we can apply the induction
hypothesis for the smaller E1 and use osScp on this step.

3. Extend the definition of | | by |{M,E}| = 1 + |E| and use the same
argument.

4. By the same argument, using Lemma 7.6 instead of Lemma 6.2.

5. Let E be valid. Again we use induction on the number of steps, now
using Lemma 7.6. The base case (zero steps) follows by Lemma 7.5,
ΣE ⊆ Xp, since E is valid. For the induction step, consider {M,E}  P

{M1, E1}  ∗P {M ′, E′} and assume Γ(E) = X, Γ(E1) = Y and Y n ⊆
M ′ −M1 and M ′ + ΣE′ ⊆ M1 + Y p. From Lemma 7.6, part 2 we get
M1 + Y n ⊇ M + Xn so we get Xn ⊆ M ′ −M . From part 3 we have
Y p +M1 ⊆ Xp +M so we get M ′ + ΣE′ ⊆M +Xp.

6. Let E be valid. Recall that the proof is by primary induction on the length
of P and secondary induction on the derivation of Γ ` E :X. The primary
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induction follows the proof of Theorem 6.4, using Definition 4.1. In the
secondary induction, the only interesting cases are the bag Xp and the
new rule Scp.

For Xp the proof is slightly different, since we must prove (Σ{M ′, E′} −
M)(y) = Xp(y) instead of (M ′ − M)(y) = Xp(y). Note first that,
if Xp(y) = 0, then by Lemma 7.5 also ΣE(y) = 0 and one can take
{M ′, E′} = {M,E} to get the desired result. The cases Axm, New, Del,
Alt and Par follow the argument of Theorem 6.4. For the rule Seq, let
E = E1E2. Note that ΣE2 = [ ] since E is valid. Similarly to the
proof in Theorem 6.4, we apply the secondary induction hypothesis to
the premises Γ ` Ei : Xi (i = 1, 2). Note that postfixing the expres-
sions in the sequence for {M,E1} with E2 is valid since ΣE2 = [ ]. If
Xp(y) = Xp

1 (y), then we can take the sequence {M,E1}  ∗P {M ′, E′1}
with (Σ{M ′, E′1} −M)(y) = Xp

1 (y), postfix its expressions with E2 and
obtain (Σ{M ′, E′1E2} − M)(y) = Xp(y). If Xp(y) = Xp

2 (y) + Xh
1 (y),

then we can take the sequence {M,E1}  ∗P {M ′, nop} with (by the
secondary induction hypothesis) (M ′ − M)(y) = Xh

1 (y), postfix its ex-
pressions with E2 and then proceed with the sequence {M ′, E2}  ∗P
{M ′′, E′2} with (Σ{M ′′, E′2}−M ′)(y) = Xp

2 (y). The total sequence enjoys
(Σ{M ′′, E′2} −M)(y) = Xp(y).

For the rule Scp, let E = {N,A}. From the Inversion Lemma we have
Y such that Γ ` A : Y , Xp = N + Y p and X� = [ ] for � ∈ {n, l, h}.
For l and h we take any terminating sequence {N,A} ∗P {N ′, nop} and
observe that this leads to a sequence {M,E}  ∗P {M, nop} by the rules
osScp and osPop. For Xn(y) = 0 we take zero steps. For Xp(y) we use
the secondary induction hypothesis to get {N,A}  ∗P {N ′, A′} where
Σ{N ′, A′}(y) = N(y) + Y p(y). By the rule osScp this leads to a sequence
{M, {N,A}} ∗P {M, {N ′, A′}} with (M + Σ{N ′, A′} −M)(y) = N(y) +
Y p(y) = Xp(y).

�

Corollary 7.9 If E is valid, Γ = t(P ), Γ ` {[ ], E} and {[ ], E}  ∗P {M,E′},
then Σ{M,E′} ⊆ Γ(E)p.

8 Related work and Concluding Remarks

8.1 Related Work

Static analysis is a well-established subject, actually too broad to be reviewed
as a whole here. Recall that our main objective is counting instances of software
components, and that we are able to detect, to some extent, unsafe deallocation
and memory leaks. We are not aware of related work having the same main
objective as ours, and we will restrict attention to related work on memory
usage and on safety of deallocation.
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The most important approaches to static analysis of memory usage seem to
be [19, 12, 16, 33] for functional languages, [9, 17, 7] for the imperative paradigm,
and [4, 2] aiming at the bytecode (assembly) level. They aim at predicting upper
bounds for memory usage (our Xp(u)). All are targeted at low-level models late
in the development process, when many details are known and controlled.

Safety of deallocation (our Xn) and memory leaks (our Xh) have also been
treated statically by others, for example, [30, 11, 6, 36, 35, 8]. Most of this work
is at a lower abstraction level than ours.

It seems fair to say that these approaches are able to obtain more detailed
results, but of less generality. For example, some approaches require program
annotations. None of them treat parallel composition. We think that our tech-
niques are more suitable in the first phase of the design of a software system,
and less in the later, more concrete phases, where the other approaches might
be more in place. In other words, the UML example 4.3 is presumably more
representative than the C++ example 7.2. In C++ programs one will very soon
encounter constructions that are hard to model in our abstract language (the
same seems to be true for the other approaches).

The language we have defined shares the CCS-operators +, ‖ with the π-
calculus [27]. A π-calculus is a theory of mobile processes. The main result
in papers on π-calculi is usually a characterization of bisimilarity of two such
processes. Bisimilarity has little to do with the information our type system
provides. It is certainly possible to make a π-calculus resource-sensitive. This
has actually been done in, for example, [29, 22, 15, 13]. In most cases the
resource analysis concerns communication, which is absent in our language.
See the next subsection for a detailed discussion of [15], followed by a short
comparison the other references.

In the following we give some more details about the main related works.
In summary, our approach has the following four salient features of which all
other approaches lack at least two: parallel composition, full compositionality,
automatic type inference (in quadratic time), sharpness of all bounds.

The π-Calculus

Before comparing to the π-calculus we have to discuss one technicality first.
Our language has full sequential composition in the style of ACP [5], whereas
π-calculi have CCS-style action prefix. The difference between the two can be
illustrated by the example (a ‖ b) c. Without full sequential composition but
with action prefix, the equivalent expression is abc+bac, the parallel composition
completely spelled out. Worse is that such expressions can become exponen-
tially long, even for simple prefixes. In richer process languages such as the
π-calculus there are clever workarounds. One of them is using communication,
say, with actions s for sending and r for receiving along some dedicated channel:
as ‖ bs ‖ rra is then equivalent to (a ‖ b) c after abstracting away the commu-
nication. Another workaround uses recursive processes with data parameters
and guarded commands, where the data encodes the state of the operational
semantics. These technicalities complicate the comparison of our language with
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the π-calculus. However, we think full sequential composition is for our purpose
a natural choice.

The π-calculus closest to our approach is πcost from Hennessy & Gaur [15].
In πcost the use of channels or resources must be paid for. The translation π()
given in Fig. 3, translates a component program to a system in [15]. The aim
of the translation is to clarify the similarities and dissimilarities between our
system and [15]. We also wish to explain which extra information our type
analysis gives beyond the cost analysis in [15].

We refer the reader to [15] for definitions used in the translation. The essence
of the translation is to model components as channels, and component instanti-
ation as communication over the corresponding channel. There are some minor
complications in the translation due to, f.e., prefix multiplication used in [15].
These could lead to a process expression π′P (E) which is much larger than E.
Underscores denote unspecified expressions. This is used to translate the non-
determinism inherent in our choice operator and for the messages communicated
over the channels. (These messages have no parallel in our component expres-
sions, and this is also the reason why we do not consider a converse translation.)
πcost requires that the size of the subscriptions be specified in the system. The
corresponding information is not part of our component programs, since this is
inferred by the type system. Therefore π(P ) contains parameters in Γo and in
the subscribe-statements.

The translation of delc to subscribe(o, c, 1) deserves some explanation. Delet-
ing an instance makes it possible to create a new instance without violating any
bounds, while subscription sets up resources for communicating over channel c.
Since communication models component instantiation, it makes sense to model
deletion with the subscription of the cost of the communication. The correct
intuition is here: refill after use. There is only one owner o.

Assume a component program P = c1 −≺ E1, . . . , cn −≺ En. Let C′ =⋃
c∈C{cdel , cnew} (assuming C ∩ C′ = ∅) and define a component program P ′

with component names in C ∪ C′. The components from C′ have declarations
of the forms cdel −≺ nop and cnew −≺ nop in P ′. The other declarations are
the same as in P , but for each c ∈ C, every instance of delc is prefixed with
newcdel , and every instance of newc is prefixed with newcnew . Let X,Y such that
t(P ) ` newcn :X and t(P ′) ` newcnewn newcn :Y . Instances of components in C′
are never deleted and are used for counting: For any c ∈ C, Y h(cdel) = Y p(cdel)
is the maximum number of transitions inferred using osDel with component c in
a run of the program P . Similarly, Y h(cnew ) = Y p(cnew ) is the maximum num-
ber of instances of osNew with component c in a run of the program P . Xp(c)
is, as explained before, an upper bound to the number of instances of c during
a run of P . We can use the results from Theorem 6.4 in the following way: For
any x, x1, . . . , xn, x

′ ∈ N such that x′ =
∑n

i=1 xi, X
p ⊆ [x1c1, . . . , xncn] and

x′+
∑n

i=1 Y
h(cdeli ) ≤ x, we have safe termination in the sense that all maximal

execution traces are of the form

π(P ) −→∗ 〈Γ′c,Γ′o,Γ′s,Γ′r〉 . stop
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where ∑
c∈C

Y l(cnew ) ≤ Γ′r ≤
∑
c∈C

Y h(cnew ) (1)

x− x′ −
n∑

i=1

Y h(cdeli ) ≤ Γ′o(o) ≤ x− x′ −
n∑

i=1

Y l(cdeli ) (2)

and for every i ∈ {1, . . . , n},

xi −Xh(ci) ≤ Γ′s(o)(ci) ≤ xi −X l(ci) (3)

Moreover, for each i ∈ {1, . . . , n}, xi − Xp(ci) and xi − Xn(ci) are lower and
upper bound, respectively, to the subscription the owner has on ci during exe-
cution.

To understand (1), recall that component instantiation is translated to com-
munication over a channel, that all communication has cost 1, and that the
“r”-part of the cost environment contains the accumulated total costs. To un-
derstand (2), recall that Γo(o) starts at x, then x′ is subtracted by the initial
subscriptions, and finally, all delete statements are translated into subscriptions,
which also subtract from the “o”-part. To understand (3) we must recall that
the “s”-part of the cost environment after the initial subscriptions maps o to
the mapping

⋃n
i=1{ci 7→ xi}. After that, all communication over a channel

decreases the corresponding value, while subscriptions increase it.
In summary, [15] gives a bisimulation-based preorder which makes it possible

to compare the costs of processes that exhibit the same behaviour. Typing π(P ),
our method can compute sharp bounds on the costs in quadratic time. We can
moreover compute the exact costs required for the safe termination of π(P ),
that is, for π(P ) to terminate regularly and not by running out of resources.

In [13] de Vries et al. describe a type system for a π-calculus extended with
primitives for allocation and deallocation of channels. The type system can
guarantee safety of deallocation, which means that values are communicated
only over existing channels. They state type safety (Theorem 2) and subject
reduction (Theorem 3), but not progress. Deallocation of a non-existing channel
is operationally blocked but goes undetected by the type system. Their type
system does not give any quantitative information on the number of allocated
channels, such as our type system does.

By modifying the mapping π′ slightly and using the rules below for new and
del we obtain a mapping θ into a fragment of the π-calculus described in [13].

θ′p(newxE) ::= alloc(x).θ′P (AE), where x−≺A ∈ P
θ′P (delxE) ::= freex.θ′P (E)

θ(P ) ::= θ′P (newx), where x is the last component declared in P

For the translated programs our type system can ensure that only existing
channels are deallocated, and gives upper and lower bounds to the number of
allocated channels during and after execution.
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π′P (nop) ::= stop

π′P (nopE) ::= π′P (E)

π′P ((E1E2)E3) ::= π′P (E1 (E2E3))

π′P ((E1+E2)E3) ::= if = then π′P (E1E3) else π′P (E2E3)

π′P ((E1‖E2)E3) ::= (new d : 〈0, {}〉)(π′P (E1 d!〈 〉) | π′P (E2 d!〈 〉) | d?( ).d?( ).E3)

π′P (newcE) ::= c!〈 〉.c?( ).π′P (AE), where c−≺A ∈ P
π′P (delcE) ::= subscribe(o, c, 1).π′P (E)

π(P ) ::= Γ . 〈new-s〉〈subscribe-s〉.π′P (newcn nop)

where

the channel name d is fresh for every occurrence of the pattern

Chan = C = {c1, . . . , cn}, P = c1 −≺ E1, · · · , cn −≺ En,

Own = {o},Γ = 〈∅, {o 7→ x},∅, 0〉, R = 〈1, {o 7→ 0}〉,
〈new-s〉 = (new c1 : R) · · · (new cn : R), and

〈subscribe-s〉 = subscribe(o, c1, x1). · · · .subscribe(o, cn, xn)

Figure 3: A translation from component programs to the systems from [15].

Teller [29] also describes a type system for bounding resource usage in the π-
calculus. However, the operators ν and k concerning channels are substantially
different from our new and del. The operator k is used to ‘wait for the recovery
of now-unused resources’ [29, p. 2]. The paper states a form of subject reduction
(Theorem 2), but not progress.

In [22] by Kobayashi et al., the types of expressions in the π-calculus are CCS
processes describing what kind of communication and resource access a process
may perform. For each resource x the CCS processes define a trace set of actions
using x, and these trace sets are to be compared to the set of safe traces for each
x. The latter sets can be specified by, for example, regular expressions. It will
be difficult and unnatural to encode the quantitative information given by our
types in the sets of safe traces. Moreover, this can quickly make type inference
infeasible. Therefore we refrain from a more detailed comparison.

Functional Languages

Hughes and Pareto [19] introduce a strict, first-order functional language MML
with explicit regions and give a type system with space-effects that guarantees
that well-typed programs use at most the space specified by the programmer. A
region is a temporary heap that programmers can create, put values on and, fi-
nally, can discard explicitly. The work combines the technique of sized types [20]
and region-based memory management for a functional language [30], whereas
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we address de/allocation of instances of components in a possibly imperative
setting. Moreover, their approach requires program annotations; automatic type
inference is not explicitly dealt with.

In Fig. 4 we define a translation µ() from component programs to MML
programs. The component programs cannot have deallocation or parallel com-
position, since these are absent in MML. On the other hand, the translation
µ() employs only a small fraction of the full language MML. We use the exten-
sion for cumulative resources from Section 7.3, with the mapping m : C → N
specifying how much each component uses of some cumulative resource (here:
memory). Again the aim of the translation is to clarify the similarities and dis-
similarities between our system and MML, both in terms of the language and
the information the type analysis can give.

We refer the reader to [19] for definitions used in the translation. The essence
of the translation is to model components as functions, and component instan-
tiation as a function call. Underscores denote unspecified expressions. Like
for π(), underscores are used to translate the non-determinism inherent in our
choice operator. The expression m(c) denotes an abstract data structure using
m(c) words (units u) on the heap, e.g. a m(c)-tuple. Similarly to π(P ) above,
µ(P )is parameterized, with parameters describing the sizes of the declared re-
gions. This corresponds to the fact that in MML, these sizes must be specified
in the program, whereas for our component programs, the corresponding infor-
mation is inferred by the type system. Now one can prove the following result:
for any component program P = c1−≺E1, . . . , cn−≺En without del and ‖, and
for any x, x1, . . . , xn, µ(P ) is well-typed if and only if for t(P ) ` newcn :X we
have Xh ⊆ [xu, x1c1, . . . , xncn]. In the above result, x is an upper bound to the
heap space and xi to the number of instances of ci.

Crary and Weirich [12] treat time as a resource. Their system certifies a
time limit for a complete functional program, by using program annotations of
time limits for each individual function. They claim the work can be generalized
to stack space and even heap space when it is combined with the region-based
memory management from [30].

In [16], Hofmann and Jost use a linear type system to compute linear bounds
on heap space for a first-order functional language. One significant contribution
of this work is an inference mechanism through a linear programming technique.
The work is later extended in [17] to an object-oriented language, see below.

Unnikrishnan et al. [33] deal with a first-order, call-by-value, garbage-collected
functional language. They create a space-bound function that takes a set of
inputs of the original program and returns an upper bound on the memory
consumption of the program with that input data. Their approach is based on
program analysis and model checking, while ours is type-based. A limitation of
this work is that the space-bound function may not give results for some inputs.

Imperative, Object-Oriented Languages

In [9], Wei-Ngan Chin et al. treat explicit memory management in a core object-
oriented language MemJ. Their work uses alias annotations to insert explicit
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µ′P (nop,C) ::= 0

µ′P (newc,C) ::= c r rc1 · · · rcn
µ′P (E0 + E1,C) ::= case of → µ′P (E0,C) 8 → µ′P (E1,C)

µ′P (E0E1,C) ::= let = µ′P (E0,C) in µ′P (E1,C)

µ′P (c−≺ E,C) ::=
c r rc1 · · · rcn = let = 1rc in let = m(c)r in
µ′P (E,C)

µ(P ) ::= µ′P (c1 −≺ E1,C) · · ·µ′P (cn −≺ En,C)〈letreg-s〉µ′P (newcn,C)

where

C = {c1, . . . , cn},
P = c1 −≺ E1, · · · , cn −≺ En, and

〈letreg-s〉 = letreg rc1 = x1 in · · · letreg rcn = xn in letreg r = x in

Figure 4: The translation µ() from component programs to MML

deallocation statements where appropriate. Programmers have to annotate the
memory usage and size relations for methods. Their types have a bag for the
maximum amount of memory that the method consumes, which is similar to Xp

in our types, and a bag for the minimum amount of memory that the method
will recover at the end of the method invocation, which can be computed from
our types by a simple operation Xp −Xh.

In [17], Hofmann and Jost apply their work [16] to an object-oriented lan-
guage with explicit deallocation. The work combines amortised analysis, linear
programming and functional programming to calculate the heap space bound
as a function of the input. However, feasibility of type inference is not clear
and, as the authors concede, their bounds can be over-approximated.

Braberman et al. [7] deal with imperative, object-oriented programs. The
authors present an algorithm to statically compute memory consumption of a
method as a non-linear function of the method’s parameters. Even though their
experimental results are good, the bounds are not sharp. Besides, their language
does not include explicit deallocation.

Bytecode Languages

In [4], Barthe et al. use program logics to give a precise analysis of the memory
consumption of sequential bytecode programs annotated with pre- and post-
conditions on resource usage. Explicit deallocation and parallel composition are
mentioned as future work.

Albert et al. [2] compute memory consumption of a program as a function
of its input data. They also refine the program’s functions by using escape
analysis [10] to collect objects that do not escape their scopes. The bytecode
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language has no explicit deallocation.

Safety of Deallocation and Memory Leak Detection

In [30], Tofte and Talpin introduce a static type system for a functional language
based on ML that allows programmers to explicitly allocate and deallocate re-
gions of memory while ensuring the safety of region-deallocation. A region
contains a group of objects and deallocating a region frees all objects in the
region. Regions are organized in a LIFO stack similar to our scope mechanism.
Their type system ensures the safety of deallocation. The technique was later
extended to other object-oriented languages, see e.g. [6].

Crary et al. [11] apply region-based memory management to a statically-
typed intermediate language with explicit allocation and deallocation of regions
called Capability Calculus. Regions need not be strictly organized as a LIFO
stack (such as in [30]) and deallocation is guaranteed safe by unforgeable keys
or ‘capabilities’.

The papers [36], [35] and [8] are about statically detecting memory leaks.
The difference with our approach is considerable. To get a better picture of
the difference, we take a closer look at the latter paper. Cherem et al. [8] use
flow analysis to detect correct deallocation of allocated heap memory in (single-
threaded) C programs. They use Control Flow Graphs (CFGs) to represent
programs. The nodes in CFGs are of the types assignment, call, return, and
switch. Calls, returns, and switches can be modeled in our system by instanti-
ation, nop, and choice, respectively. More specifically, let the set of component
names be all the function names used in the CFG, and let their declarations
correspond to the function bodies. Calls to malloc and free are modeled by
newmalloc and delmalloc, respectively. Using this translation, our type sys-
tem can identify the error in the first example in [8]. Since we have abstracted
away identity, assignment does not have any parallel in our system, and aliasing
cannot be treated properly. Neither does our system handle what is called path-
sensitivity in [8], that is, identifying correlated choices. On the other hand, the
system in [8] cannot compute the upper bounds to the allocated memory. Our
system will actually compute the algebraic sum of the number of allocations and
deallocations, while the system in [8] checks that allocated memory is always
deallocated exactly once. Furthermore, our system has parallel composition
and it is not obvious how to extend [8] to multi-threaded C programs. Finally,
our type inference is PTIME, whereas [8] depends on NP-hard SAT solving in
propositional logic. In the worst case, the latter can be as inefficient as checking
all paths in the flow graph.

8.2 Concluding Remarks and Future Research

The current paper is based on [32], but has been rewritten completely. The
treatment of the scope operator is new, memory, loops and tail recursion have
been added, as well as the examples in Section 4.3 and Section 7.2. The lan-
guage in [32] is in Truong [31] extended with a primitive for reuse of component
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instances.
The language we introduced is clearly inspired by CCS [23], with the atomic

actions interpreted as component instantiation and deallocation. The basic
operators are sequential, alternative and parallel composition, later extended
with loops, tail recursion and a scope operator.

We have presented a type system for this language that predicts sharp
bounds on the number of instances of components, and allows automatic type
inference in quadratic time. The operational semantics is SOS-style [25], with
the approach to soundness similar in spirit to [34]. The type system is given
close to the traditional style of [3]. However, there are some significant differ-
ences with the usual type systems for functional languages [24]. First, there are
no function types since there is no lambda abstraction. Variables (component
names) are bound to expressions in the declarations. Second, the types contain
quantitative rather than qualitative information. We see no connection of our
types with linear types or linear logic.

Validation and experimentation with implementations is a natural and in-
teresting direction for future work. In addition, a number of important aspects
of processes have not been treated in this paper. One of them is communica-
tion between processes, but in fact every operator from process theory can be
considered as a candidate for extension of our language. One can also extend
the language with other primitives. One candidate is an atomic action which
reuses an instance of x if there is one, and creates a new instance otherwise.
(See [31] for a system with a primitive reux.) Yet another approach, pursued in
[18], consists in adding primitives for inclusive and exclusive usage of component
instances. Inclusive usage means that more than one process can use the same
instance, whereas exclusive usage means that at most one process can use an
instance.
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