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Abstract 

Salmon farming has expanded dramatically in recent years, increasing the demand for 

both traditional feed ingredients and alternative proteins and oils. Developing new 

feed requires a deep understanding of appetite, feed intake, growth, and physiology in 

Atlantic salmon Salmo salar. Regulation of appetite involves interactions between 

peripheral signals and the brain that influence feed intake and metabolism. The brain 

and primarily the hypothalamus produce orexigenic or anorexigenic neuropeptides 

that inhibit or stimulate food intake. Feed intake can also be affected by peripheral 

hormones, such as leptin and ghrelin. In this study individual Atlantic salmon were 

placed in tanks and feed intake was monitored until feed intake stabilized, after which 

each individual was injected intraperitoneally with recombinant salmon LEPA1 or 

rainbow trout Oncorhynchus mykiss GHRL1 emulsified in vegetable oil. Feed intake 

was monitored for a further four days after which fish were removed 4 hours after 

feeding for sampling. Brain, liver and stomach samples were taken for QPCR analysis 

of appetite related genes. Plasma samples were analysed for ghrelin, triglycerides, 

glucose, free fatty acids, lactate and D-3-Hydroxybutyrate. This study reports that 

administered rsLEPA1 causes a significant reduction in feed intake and SGR in 

Atlantic salmon. POMCA1 and POMCA2 expression in brain was only upregulated in 

fish with a significant reduction in feed intake and we suggest that POMC expression 

is linked to appetite reduction. Hepatic LEPA1 and LEPA2 mRNA expression was 

upregulated in rsLEPA1 administered fish which also showed a reduction in feed 

intake and growth, therefore we suggest that hepatic expression of LEP isoforms are 

linked to metabolism. PYY mRNA expression was down-regulated in brain tissue in 

fish with a significant reduction in feed intake and could be involved in the leptin-

signaling pathway at a central level. Significantly higher mRNA expression of 

GHRL1A and GHRLIB was found in the stomach of rtGHRL administered fish 

compared to control, and mRNA expression of both genes was only up-regulated 

when plasma ghrelin levels were found to be elevated. Rainbow trout GHRL1 

administered IP was not found to affect feed intake in Atlantic salmon in this study. 

CCKL and CCKN mRNA expression was downregulated in the brain tissue of 

rtGHRL administered fish which also showed elevated plasma ghrelin levels. 

Furthermore we have validated a method incorporating an individual based system 

and IP administration of hormones with minimal stress on fish which allows Atlantic 

salmon to resume feeding within hours of being returned to the tanks.   
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1. Introduction 

 

1.1 General background  

The salmon farming industry has expanded dramatically during the past few decades, 

thus the demand for feed and major feed ingredients such as fishmeal and fish oil 

have risen (Waagbo et al., 2001). Marine feed ingredients are a limited resource and 

have become increasingly expensive as supplies have diminished, which has resulted 

in the increased use of alternative proteins and oils, such as soybean meal or rapeseed 

oil in the fish feed industry (Carter and Hauler, 2000, Bell et al., 2002). The use of 

alternative oils and proteins into feed requires that developers of new feed have a 

deep understanding of how plant based ingredients may interact with and affect the 

appetite, feed intake, growth and physiology of Atlantic salmon Salmo salar (Sissener 

et al. 2013; Hevrøy et al. 2008).  

 

The regulation of appetite is a complex process involving a number of interactions 

between peripheral signals and the brain, these signals influence metabolism and 

determine growth in vertebrates, including Atlantic salmon (Volkoff et al., 2005). The 

brain, primarily the hypothalamus produces orexigenic or anorexigenic neuropeptides 

that inhibit or stimulate food intake respectively (Volkoff et al., 2005). Feed intake is 

also affected by external factors such as environment, season, time of day, availability 

of food, and stress, or internal factors such as circulating levels of glucose or 

hormones such as leptin and ghrelin (Hoskins and Volkoff, 2012). The nervous 

system, gastrointestinal (GI) tract, adipose tissue and external environment mediate 

afferent signals that are involved in maintaining energy homeostasis (Valen et al., 

2011). A number of studies have dealt with the effects of external factors such as 

photoperiod, temperature and stress on the appetite and feed intake of Atlantic 

salmon, however the knowledge of neuropeptides and their role in appetite regulation 

is still limited (Volkoff et al., 2005). In terms of optimizing and developing feed for 

farmed aquaculture species such as Atlantic salmon it is important to understand the 

processes that regulate feed intake, metabolism and growth. As knowledge of 

neuropeptides and their influence on the regulation of feed intake and metabolism in 

teleosts is limited, it is very important  to focus on this area of research. In vertebrates 

hormones produced by the brain and peripheral organs that regulate feeding behaviour 

and food intake are defined as appetite regulating hormones (Hoskins and Volkoff, 
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2012). These include appetite stimulators or orexigenic factors such as ghrelin, 

neuropeptide Y (NPY), agouti-related peptide (AGRP) and appetite inhibitors or 

anorexigenic factors such as leptin, cocaine and amphetamine regulated transcript 

(CART), pro-opiomelanocortin (POMC) and cholecystokinin (CCK). Leptin and 

ghrelin specifically are peptide hormones with key regulatory effects on feed intake 

and energy homeostasis in mammals (Murashita et al., 2008; Kaiya et al., 2008). 

Further investigation of these hormones and their effects in teleosts will increase the 

understanding of how feed intake and appetite is regulated in an economically very 

important aquaculture species, such as the Atlantic salmon.   

 

1.2 Leptin 

Leptin is a 16-kDa protein hormone belonging to the class-1 helical cytokine family 

of proteins (Trombley et al., 2012). Leptin was first discovered in the mouse Mus 

musculus by Zhang et al., (1994) and has a central role in the regulation of appetite, 

energy metabolism, body composition, immune functions and reproduction in 

mammals (Trombley et al., 2012, Pelleymounter et al., 1995, Barb et al., 2001, 

Leininger et al., 2009, Miller et al., 2002, Yu et al., 1997, Amstalden et al., 2002). 

Leptin is primarily produced in adipose tissue and is secreted into the blood stream 

after cleavage of the 21 amino acid signal peptide (Barb et al., 2001), secretion occurs 

in response to changes in body fat levels or energy status (Zhang et al., 1994, Barb et 

al., 2001). Leptin acts as an anorexigenic signal through a negative feedback loop to 

the appetite centre in the hypothalamus causing long term and short-term effects on 

feed uptake and energy homeostasis (Trombley et al., 2012). Elevated plasma leptin 

levels inhibit continued feeding and regulate body weight in the long term as well as 

promoting postprandial satiety (Trombley et al., 2012). Low leptin levels are 

associated with low body fat levels and starvation (Kolaczynski et al., 1996), 

signaling energy insufficiency and stimulating appetite in humans (Dardeno et al., 

2010) rats Rattus spp. (Shiraishi et al., 2000) and pigs Sur spp. (Ramsay et al., 2004). 

The leptin gene is highly conserved across mammalian species, and the mouse Mus 

spp. protein exhibits 83% homology with human Homo sapiens leptin (Zhang et al., 

1994). The gene contains three exons, separated by two introns (Green et al., 1995).  

 

In teleosts, leptin was first discovered by Kurokawa et al., (2005), who identified a 

cDNA coding homologue to mammalian leptin in the pufferfish Takifugu rubripes. 



  11 

Phylogenetic analysis revealed that the degree of amino acid (aa) conservation was 

low between fish and higher vertebrates, with only 13.2% sequence identity between 

pufferfish and the human sequence. Leptin has since been described in a number of 

teleost species such as; Atlantic salmon, rainbow trout Oncorhynchus mykiss, Striped 

bass Morone saxatilis, Orange-spotted grouper Epinephelus coioides, Grass carp 

Ctenopharyngodon idellus and Yellow catfish Pelteobagrus fulvidraco. (Ronnestad et 

al., 2010; Murashita et al., 2008; Won et al., 2012; Zhang et al., 2013; Li et al., 2010; 

Gong et al., 2013). Leptin in teleost species generally shows low aa identity between 

species and with human leptin, LEP in striped bass for example is 52% homologous 

to LEP in Atlantic salmon LEP and 46% homologous to the human LEP sequence 

(Won et al., 2012).  

 

 

The first study on Atlantic salmon identified two paralogues for leptin, LEPA1 and 

LEPA2, where the 171 aa sequence for LEPA1 and 175 aa sequence for LEPA2 shared 

71,6% identity with each other and 22,4% and 24.1% identity to human leptin, 

respectively (Rønnestad et al., 2010). Recently, Angotzi et al., (2013) also identified 

LEPB duplicated leptin genes in Atlantic salmon, which have 98% aa identity 

between LEPB variants. As mentioned leptin belongs to the class-1 helical cytokine 

family, which possesses a distinctive α-helix bundle in the 3D structure, this tertiary 

structure is generally conserved throughout leptin orthologs across species. Leptin in 

pufferfish and Atlantic salmon both closely resemble mammalian leptin in structure 

based on in silico analysis (Kurokawa et al., 2005; Rønnestad et al., 2010). Later 

Angotzi et al., (2013) examined the structure of LEPB and found it too was a four 

helical cytokine and that the basic structural pattern of the protein was similar to that 

of human leptin and leptin orthologs in other teleost species. LEPB has also been 

found in japanese medaka Oryzias latipes (Kurokawa and Murashita, 2009), zebrafish 

Danio rerio (Gorissen et al., 2009) and Orange spotted grouper (Zhang et al., 2013).  

 

In teleosts leptin is expressed in a variety of tissues and there is much variation in 

areas of expression between species and variation in the expression of the different 

leptin orthologues. Unlike mammals the major site of leptin expression in Pufferfish, 

rainbow trout and Atlantic salmon is the liver (Kurokawa et al., 2005, Murashita et 

al., 2008, Kling et al., 2012, Trombley et al., 2012). Won et al., 2012 found that 
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mRNA expression of leptin occurred solely in the liver of Striped bass and suggest 

that the liver is the major site of leptin production in bass and other teleosts. Gong et 

al., (2013) found that LEP was expressed in a wide range of tissues but the highest 

levels of expression were found in the liver of yellow catfish. Rønnestad et al., (2010) 

found that LEPA1 and LEPA2 were expressed in a range of tissues and organs in 

Atlantic salmon although at very low levels. The highest mRNA levels of LEPA1 

were observed in the brain, however white muscle; liver and ovaries also had high 

expression. mRNA levels of LEPA2 where generally found to be lower than LEPA1 

except in the stomach, midgut and kidney (Rønnestad et al., 2010). The multiple 

expression sites for the different orthologues indicate that leptin may have multiple 

roles in Atlantic salmon. However the identification of high LEPA2 expression in the 

stomach is concurrent with results in mammals, as leptin is also produced in the 

stomach and released into the gastric juice following a meal, and it is suggested that 

leptin may act in regulating the absorptive capacity for nutrients in the intestine, 

thereby indirectly affecting energy homeostasis (Rønnestad et al., 2010). In Atlantic 

salmon specifically there are varying results in terms of the main site of expression, 

Trombley et al., (2012) found that LEPA1 and LEPA2 genes were mainly expressed 

in the liver of juvenile Atlantic salmon. Furthermore Kling et al., (2012) also found 

highest levels of LEPA1 expression in the liver of juvenile rainbow trout. However 

life history stage may influence the level of different isoforms of LEP expression in a 

given region of the body. 

  

In mammals, leptin informs the hypothalamus (Baskin et al., 1998; Barb et al., 2001) 

about the amount of fat stored in the body through short and long forms of leptin 

receptor, LEPR (Roubos et al., 2012). Six LEPR mRNA transcripts that produce 

various LEPR protein isoforms have been identified in mammals (Zabeau et al., 2003, 

Roubos et al., 2012).  According to Robertson et al., (2008) the isoform LEPRB has 

no enzymatic activity but propagates downstream leptin signals through LEPRB 

associated tyrosine kinase JAK2. In mammals LEPRB expressing neurons mediate 

leptin action and different brain centres elicit different responses, the hindbrain is in 

control of satiety along with the hypothalamus, but the hypothalamus also controls 

glycemic, thyroid, reproductive functions by leptin signaling through LEPRB and 

JAK2 pathway. In fish LEPR and the associated leptin receptor overlapping transcript 

(LEPROT) are found mostly in the pituitary rather than the hypothalamus as is 



  13 

common in mammalian counterparts and physiological actions of leptin are mediated 

the membrane bound leptin receptors or LEPR (Rønnestad et al., 2010, Gong et al., 

2013). The anorexigenic effects of leptin are mostly mediated through the neurons 

expressing the long isoform of LEPR (Robertson et al., 2008). A leptin receptor 

ortholog has also been identified in Atlantic salmon (Rønnestad et al., 2010), with 

24,2% amino acid sequence similarity to human LEPR, however Atlantic salmon is a 

tetraploid species as the genome has been duplicated at some point in its life history 

and it has two LEPR genes (Rønnestad et al., 2010). In yellow catfish only one copy 

of the LEPR gene has been discovered (Gong et al., 2013). Atlantic salmon LEPR is 

also highly expressed in tissues such as the brain, eye, gill and visceral adipose tissue 

(Rønnestad et al., 2010). By further examining the expression of LEPA1, LEPA2, 

LEPR1 and LEPR2 in stomach, liver and brain tissue, it may be possible to shed light 

on the signaling pathways of leptin and describe what effects this signaling pathway 

may have on the regulation of appetite and metabolism in Atlantic salmon. 

 

In teleosts including Atlantic salmon it is unclear how the leptin systems are 

influenced by tissue-specific energy status as data on leptin in teleosts is to scarce to 

allow a generalization (Rønnestad et al., 2010). One approach to exploring the 

physiological role of leptin has been to analyse plasma leptin levels during periods of 

feeding and fasting and in fish fed different amounts of feed. Trombley et al., (2012) 

found an increase in LEPA1 expression and higher levels of plasma leptin in feed 

restricted fish, while LEPA2 expression decreased in feed restricted and normal fed 

fish, and suggest that LEPA1 and leptin plasma levels behave in an opposite way to 

that observed in mammals. These findings are supported by Kling et al., (2009) who 

found that plasma leptin was elevated in rainbow trout during fasting, and suggest that 

the relation between circulating leptin levels and energy status differs from mammals; 

in cows for example fasting causes a decrease in leptin plasma concentrations 

(Chelikani et al., 2004). Kling et al., (2012) found that feed restriction causes an 

upregulation of the LEPA1 gene expression as well as an increase of plasma leptin, 

and state that liver-derived leptin reflects plasma levels. Furthermore Kling et al., 

(2009, 2012) proposed that leptin is linked to energy balance, but that it may not act 

as an adiposity signal in salmonids, which could point to a functional divergence 

between ectothermic and endothermic vertebrates. On the other hand Tinoco et al., 

(2012) could find no correlation between nutritional status and the leptin system in 
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goldfish, Carassius auratus, and suggested that leptin may signal short term changes 

in food intake but seem to operate independently of fasting and overfeed conditions. 

 

Rønnestad et al., (2010) reported that Atlantic salmon fed on a moderately restricted 

feeding regime (60%) resulted in lower growth and lower LEPA1 expression in the 

main lipid storing tissues. Furthermore they found central effects of plasma leptin on 

energy homeostasis acting through LEPR in the brain, as Atlantic salmon fed on 

rationed diets showed lower LEPR expression in the brain than fully fed fish. These 

results suggest that regulation of LEPR at the level of the brain may form part of the 

regulatory system for leptin on energy homeostasis in line with the mammalian 

model. Re-evaluation of the method used for qPCR assay of LEPA1 in this study may 

however question the validity of this result and this should be reassessed in a new 

study (Rønnestad et al., unpublished data) 

 

The large variability in the AA sequence between teleosts and humans leads to the 

question to what extent the function of leptin is conserved across species, although a 

conserved 3D structure indicates similarities. Leptin may play a different role in the 

regulation of physiological functions compared with their endothermic mammalian 

counterparts. It is important to further examine the possible multiple physiological 

functions of leptin in order to have a better understanding of the underlying 

mechanisms that control the metabolic physiology of teleosts 

 

1.2.1 Leptin- interactions with neuropeptides, gut peptides and appetite regulatory 

effects 

Neuropeptides are peptides utilised by neurons for communication, they are 

essentially neuronal signalling molecules. Neuropeptides are also referred to as 

peptide hormones. Neuropeptides are involved in many brain functions including 

appetite, food intake and metabolism. The hypothalamus produces neuropeptides that 

stimulate and inhibit feeding. These peptides include, NPY, AGRP, POMC and CART 

amongst others. Peripheral signals, meaning signals coming from outside of the brain 

include CCK, PYY, leptin and ghrelin (Volkoff, 2006). Peptides acting as satiety 

signals primarily originate from the GI tract, but are also synthesized in the brain, 

which is why they are designated “gut-brain peptides” (Volkoff, 2006). Peripheral 

signals such as leptin can influence the brains release of appetite-related 
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neuropeptides and therefore also control food intake (Volkoff, 2006). Gut/brain 

peptides interact with specific receptors on major nerves or reach the brain directly 

via the bloodstream (Volkoff, 2006).  

 

Cholecystokinin (CCK) is secreted by the proximal intestine and is an anorexigenic 

GI peptide. The physiological role of CCK involves regulation of food intake, 

satiation and digestion; it has a key role in the regulation of the intestinal phase 

(Murashita et al., 2009; Webb et al., 2010). CCK stimulates the exocrine pancreas and 

discharge of bile from the gallbladder and also affects smooth muscle contraction in 

the jejunum and pyloric sphincter (Murashita et al., 2009). CCK-L and CCK-N in 

Atlantic salmon were described by Murashita et al., (2009) and were found to be 

highly expressed in the brain. Peptide YY (PYY) and NPY are peptide hormones 

belonging to the NPY family. NPY is mainly expressed in the hypothalamus and has 

strong orexigenic functions, while PYY is mainly expressed in the brain and anterior 

part of the intestine, including pyloric caeca and has anorexigenic functions. In 

mammals leptin activates the long form of leptin receptor LEPRB on central nervous 

system (CNS) neurons to mediate most leptin action. The LEPRB expressing neurons 

lie in regions associated with the regulation energy balance, such as the mediobasal 

hypothalamic (MBH) arcuate nucleus satiety centre (ARC) and lateral hypothalamic 

area (LHA) feeding centre. In mammals it seems that leptin action in the MBH is 

regulated through the LEPRB pro-opiomelanocortin POMC expressing neurons and 

their opposing LEPRB agouti-regulated protein (AGRP) neuropeptide Y (NPY) in the 

ARC (Leininger et al., 2009). These neurons are active in controlling satiety response 

and mediate the anorectic response to leptin, and also modulate energy expenditure 

and glucose homeostasis (Leininger et al., 2009). This is supported by Valen et al., 

(2011) who found that food intake and processing in Atlantic salmon causes a change 

in the mRNA expression of neuropeptides, NPY, cocain-amphetamine regulated 

transcript (CART) and PYY. CART, CCKL, POMCA1 and POMCB were found to 

increase within 3 hours of feeding while feed was in the stomach suggesting that these 

neuropeptides play a central anorexogenic role, similar to higher vertebrates (Valen et 

al., 2011). NPY and AGRP isoforms described as playing orexigenic roles in 

mammals were up regulated after feeding, which is opposite to the effect in mammals.  
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In mammals leptin reduces food intake through the hypothalamus orexigenic 

NPY/AGRP and anorexigenic POMC/CART neurons. Studies have indicated that 

similar mechanisms may to some extent also exist in salmon where leptin decreases 

hypothalamic NPY/AGRP mRNA and increases POMC/CART mRNA (Murashita et 

al., 2011). Atlantic salmon administered leptin through intraperitoneal (IP) osmotic 

pumps, showed increased expression of POMCA1 when compared to controls and 

also a significantly decreased growth rate (Murashita et al., 2011). Based on these 

results the authors suggested that leptin decreases food intake through the POMC 

pathway, which means that LEPA1 may have an anorexigenic role in the regulation of 

bodyweight in Atlantic salmon that compares with mammals. A direct effect of 

injected leptin on short-term feed intake still remains to be shown for Atlantic salmon. 

 

1.3 Ghrelin 

Ghrelin producing cells can be found in the oxyntic glands of the stomach in rats 

(Date et al., 2000) and colocalize with chromogranin A-immunoreactive cells, which 

suggests that ghrelin is produced by endocrine cells in the stomach (Date and 

Kangawa, 2012). Four types of cells have been identified in the oxyntic gland, the 

X/A cell is one of these and because there are similarities in the ultra structural 

features of ghrelin cells and X/A cells, ghrelin cells are believed to be a type of X/A 

cell (Date and Kangawa, 2012). Ghrelin was first described as an endogenous ligand 

for the growth hormone secretagogue receptor 1a or GHSR1A, the 28 amino acid long 

peptide with a unique fatty acid modification at the N-terminal third amino acid that 

comprises ghrelin was first discovered by Kojima et al., (1999). Ghrelin stimulates 

growth hormone (GH) release in vivo and in vitro, which supports that the hormone 

acts as an orexigen factor (Kaiya et al., 2008, Kaiya et al., 2013). Ghrelin is derived 

from pre-progrelin and undergoes a post-translational modification where a serine-3 

residue is covalently linked to octanoic acid. This post-translational acylation is 

unique to ghrelin and is necessary for the ghrelin to bind to the GHSR1A and cross the 

blood brain barrier (Karra and Batterham, 2010). In mammals ghrelin is the only 

gastrointestinal hormone known to increase feeding (Date and Kangawa, 2012) and 

has therefore been coined the “hunger hormone” in humans. In non-mammalian 

vertebrates the amino acid sequence of ghrelin has been reported in reptiles, birds, 

amphibians and fish including goldfish and rainbow trout (Kaiya et al., 2008) and 

Atlantic salmon (Hevrøy et al. 2011, Murashita et al. 2009). The ghrelin gene in 



  17 

Goldfish, catfish, and seabream Sparidae spp. has four exons and three introns as in 

humans, the sequence identity of the short non coding 1st exon found in human and 

rodents ghrelin gene is not evident in the mentioned fish genes (Kaiya et al., 2008). 

However the ghrelin gene in rainbow trout is comprised of five exons and four introns 

as in humans, salmonids and rodents (Kaiya et al., 2008).  

 

Ghrelin producing cells have been found in the hypothalamic arcuate nucleus which is 

an appetite regulating centre in the brain (Kojima et al., 1999). Ghrelin cells have also 

been found in the duodenum, pancreatic A-cells, kidney and pituitary (Kaiya et al., 

2008). In teleosts ghrelin mRNA expression has mainly been found in the stomach or 

intestine, however ghrelin expression in other non-mammalian vertebrates has also 

been found in a variety of organs such as brain, hypothalamus, heart, pancreas, 

spleen, head kidney, trunk kidney, and gills of rainbow trout (Murashita et al. 2009, 

Kaiya et al., 2008). In tilapia Oreochromis niloticus ghrelin expression has been 

found in the brain, stomach, and gill and in the goldfish ghrelin expressions has been 

found in brain, hypothalamus, spleen, liver, head, gill and intestine (Kaiya et al., 

2008) 

 

The growth hormone secretagogue receptor (GHSR) which mediates the biological 

actions of growth hormone secretagogue (GHS) and ghrelin have been reported in 

teleosts such as rainbow trout, pufferfish and Atlantic salmon (Kaiya et al., 2008; 

Hevrøy et al., 2011). The GHS-R gene has two exons and one intron in seabream, 

pufferfish, tilapia, rainbow trout and Atlantic salmon. In rainbow trout the ghrelin 

receptor is called GHSR- like receptor, due to uncertainties in GHSRLR mRNA 

responses in a functional study in rainbow trout, and the same applies to Atlantic 

salmon because of the 99 % sequence similarities (Hevrøy et al. 2011). 

 

1.3.1 Ghrelin- interactions with neuropeptides and appetite regulatory effects 

Ghrelin is the only gastrointestinal hormone known to increase feeding (Date and 

Kangawa, 2012). In humans plasma ghrelin levels have been found to increase prior 

to meals and decrease after meals, indicating that ghrelin acts as a signal of 

expectations of meal (Shiiya et al., 2000). The fibres that contain ghrelin innervate 

neurons that produce NPY and AGRP, neuropeptides that are associated with 

increasing feeding (Zhou et al., 2013) and ghrelin administered to the brain activates 
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NPY and AGRP producing neurons in rats (Date and Kangawa, 2012). Ghrelin has 

also been shown as the only peripheral gut hormone to stimulate GH release in rats, 

indirectly through the vagal nerve afferent (Date et al., 2002) and directly through its 

action on the pituitary gland (Date et al., 2006). Ghrelin also stimulates GH release in 

fish, specifically in rainbow trout in vivo and in vitro (Kaiya et al., 2003) and hybrid 

striped bass Morone chrysops X saxatilis in vivo and in vitro (Picha et al., 2009). 

 

Ghrelin has orexigenic effects in mammals and promotes feed intake, weight gain and 

adiposity. In higher vertebrates such as humans intravenous infusions of ghrelin cause 

an increase in feed intake (Wren et al., 2001), and in rats Rattus spp. ghrelin 

intracerebroventricular (ICV) injections increase food intake and body weight (Locke 

et al., 1995), also with orexigenic properties that are independent of GH releasing 

properties (Torsello et al., 1998). In goldfish, Matsuda et al., (2006) found that ICV 

and IP administration of ghrelin stimulated food intake and suggest circulating ghrelin 

derived from peripheral tissues acts via primary sensory afferent pathways on feeding 

centres in the brain. This is further supported by Murashita et al., (2009) who found 

that a six day starvation period led to increased expression of GHRL1 in the GI tract, 

suggesting an orexigenic role of ghrelin in Atlantic salmon. However the picture is 

not complete concerning the role of ghrelin in salmonids. In rainbow trout ghrelin 

injections and implants have been found to reduce food intake (Jönsson et al., 2007; 

Kling et al., 2012), while circulating plasma ghrelin levels seem to peak after short 

time starvation (Pankhurst et al., 2008). In Atlantic salmon circulating ghrelin 

concentrations are higher after two days of food deprivation but no ghrelin peaks were 

shown after fourteen days of starvation (Hevrøy et al., 2011). Hevrøy et al., (2011) 

also found a down-regulation of stomach ghrelin1 mRNA in food deprived fish after 

two days but no effect after fourteen days and no effects on GHSR1aLR mRNA 

expression, however in a study on salmon kept at elevated temperatures fish 

developed low feed intake at nineteen degrees which was associated with a lower 

ghrelin plasma concentration and down-regulation of stomach GHRL1 and 

hypothalamic GHSR1aLR mRNA expression (Hevrøy et al., 2012). Murashita et al., 

(2009) found a significant up-regulation of stomach ghrelin-1 mRNA after six days of 

food deprivation. The results of increased plasma ghrelin concentrations and stomach 

ghrelin mRNA responses may suggest that ghrelin is a short time energy regulator 



  19 

during starvation in Atlantic salmon and ghrelin suppression may be related to energy 

homeostasis (Hevrøy et al., 2012) 

 

1.4 Plasma metabolites as an indicator of metabolic status 

Plasma metabolites such as glucose, lactate, free fatty acids (FFA), triglycerides and 

D-3-Hydroxybutyrate are indicators of metabolic status and energy balance in 

teleosts. Glucose functions as a source of energy and is usually available through the 

diet. However when fish go through periods of starvation or intense activity such as 

burst swimming available glucose reserves may become depleted and further 

synthesis of glucose is maintained through gluconeogenesis. This is the process of 

synthesizing glucose from non-carbohydrate sources such as lactate or glucogenic 

amino acids (Morata et al., 1982). When glucose is in limited supply evidence from 

teleosts suggest the organs of several fish use β-hydroxybutyrate and acetoacetate as 

fuels. β-hydroxybutyrate utilization has been measured in rainbow trout brain and 

occurs at 1% the rate of glucose and lactate metabolism, which is a contrast to 

mammals where oxidation rates of ketone bodies are comparable to those of glucose 

and lactate (Soengas and Aldegunde, 2002). The lypolitically-generated FFA are 

important sources of energy for cells and are substrates for lipid biosynthesis (Chung 

et al., 1998). Fatty acids also play a significant role in glucose homoeostasis and 

triglycerides specifically enable the transfer of adipose fat and blood glucose from the 

liver (Menoyo et al., 2006). Changes in the levels of triglycerides in plasma indicate a 

change in glucose metabolism, thus measuring triglyceride levels in blood can give an 

indication of metabolic status in vertebrates such as fish. Plasma free fatty acids are 

considered to be the most dynamic form of lipid transport from the lipid depots to the 

various utilising tissues. In fish, red muscle fibres are known to possess a high 

capacity for FFA catabolism. In contrast to mammals, which possess a specialised 

adipose tissue, the lipid reserves of fish may be located in several tissues including 

mesenteric fat, liver and red muscle (Van Rajj, 1994). Compared with higher 

vertebrates in which plasma FFA levels usually range between 0.4 and 0.6 µmol/ml, 

plasma levels of fish are much more variable. Levels ranging from 0.09 to 2.84 

µmol/ml have been reported. In fish most reports are that plasma levels range between 

0.3 and 1.0 µmol/ml. The replacement time of plasma FFA is within minutes and fatty 

acid metabolism is of major importance for the energy metabolism in fish, thus the 
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level and fatty acid composition of plasma FFA form a very dynamic reflection of 

lipid metabolism (Van Rajj, 1994). In fatty fish such as salmonids starvation 

stimulates lipid metabolism and white muscle protein catabolism (Echevarria et al., 

1997), so high levels of FFA and triglycerides in the plasma could indicate lack of 

feeding. When oxidation of carbohydrates and lipids are unbalanced acetoacetate and 

β-hydroxybutyrate serve as transportable units of fat for oxidation in peripheral 

tissues (Willmott et al., 2005). Some metabolites also function as an indicator of 

stress, as glucose and lactate form part of the secondary stress response in salmonids 

(Iversen et al., 2005). It is important to consider indicators of stress as changes in the 

levels of metabolites may not necessarily be due to experimental parameters and 

stress could produce confounding results, especially when examining metabolic 

functions. 

 

1.5 An individual-based system as a method of studying peptide hormone effects 

in Atlantic salmon 

Atlantic salmon are an important aquaculture species in Norway and globally, and 

serve as a model species for the potential cultivation of other teleosts. Leptin and 

ghrelin are peptide hormones with key regulatory effects on feed intake and energy 

homeostasis in salmonids (Murashita et al., 2008; Kaiya et al., 2008).Whether 

administration of leptin or ghrelin will affect feed intake in Atlantic salmon, remains 

unknown.  

 

There are different routes of delivery when administrating peptide hormones, which 

are known to cause different methodological challenges. The methodological 

challenges may  in turn yield varying physiological  results. Hormones such as leptin 

and ghrelin can be administered ICV or IP, as hormone and gut-brain peptide 

injection studies have yielded results in mammals such as rats Rattus spp. (Rüter  et 

al., 2003). In non mammalian vertebrates ICV and IP studies have also been 

conducted on Nile Tilapia Oreochromis niloticus, hybrid striped bass, grass carp 

Ctenopharyngodon idella, Atlantic salmon, coho salmon Oncorhynchus kisutch  with 

varying effects on appetite regulating systems (Shved et al., 2011; Picha et al., 2009; 

Zhou et al., 2013; Einarsson et al., 1997; Baker et al., 2000). Baker et al., (2000) 

found that recombinant human leptin administered to coho salmon did not affect 

growth or food intake, energy stores, gonad weight, pituitary content of FSH or 
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plasma levels of IGF1, GH or thyroxine. Therefore Murashita et al., (2011) suggested 

that in order to obtain accurate results for leptin, species-specific peptides must be 

applied. The protocol for the production of recombinant leptin was established by 

Murashita et al., (2008) in rainbow trout, since then the technique has also been 

utilised for Atlantic salmon (Murashita et al., 2011). The cDNA sequence of Atlantic 

salmon LEPA1 was utilised in order to produce recombinant Atlantic salmon LEPA1 

in Escherichia coli (Murashita et al., 2011). This method was also applied for the 

current study.  

 

Ghrelin has been purified and characterized in a number of fish including, japanese 

eel Anguilla japonica, channel catfish Ictalarus punctatus and rainbow trout (Miura et 

al., 2009). The protocol for purifying ghrelin from the stomach of rainbow trout was 

established by Kaiya et al., (2003) and was utilized for the production of ghrelin for 

this study. Two types of ghrelin have been found in rainbow trout, rtGHRL and des-

VRQ-rtGHRL Kaiya et al., (2003) and according to Murashita et al., (2009) the 

GHRL1 and GHRL2 found in Atlantic salmon were similar to those in rainbow trout 

and the deduced mature peptide sequences were identical in both species. Due to the 

similarity of ghrelin found in rainbow trout and Atlantic salmon, purified rainbow 

trout ghrelin most likely have similar effects when injected IP in Atlantic salmon.  

 

A good experimental setting for testing any effect on appetite must also permit 

accurate registrations of feed intake. A method for measuring the feed uptake of 

individual salmonids is virtually non-existent, because it is extremely difficult to get 

Atlantic salmon to feed individually in tanks. Fish are increasingly used in a range of 

laboratory experiments yet there is little data and information on how fish should be 

housed. Housing conditions can influence the behaviour and physiology of laboratory 

animal, thus enriching empty environments by providing structural complexity or the 

companionship of other individuals is considered beneficial as it could decrease 

abnormal behaviour. It is important to evaluate the housing environment as it may 

influence the validity of experimental data, especially if housing with an unsuitable 

environment produces abnormal behaviour (Brydges and Braithwaite, 2009). Roberts 

et al., (2011) showed that changes in rearing conditions had rapid and marked effects 

on risk-taking behaviour in Atlantic salmon, which indicates it is possible to modify 

at least one component of behaviour known to have clear adaptive implications 
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through environmental enrichment. An individual based method was developed in 

association with the aquaculture research station at Matre, in a pilot study with IP 

injected leptin. In the wild, parr show marked territoriality, occupy fixed positions 

faced into current flows and can be highly aggressive. When the salmon smoltify 

these behaviours change and the fish display schooling behaviour with downstream 

orientation and also swim with the current. This behaviour can be observed in tanks 

on farms during smoltification, at the same time appetite is stimulated and fish begin 

to feed more intensively (Stead and Laird, 2002). Prior to being placed in tanks 

individually, three juvenile Atlantic salmon were kept together encouraging schooling 

and feeding behaviour. After feeding behaviour was attained one individual juvenile 

Atlantic salmon was placed in each tank and hand fed, allowing each fed pellet to be 

counted and excess uneaten feed to be collected.  

 

Netting and handling in connection with experimentation for weighing and injections 

may impose severe stress to fish. Salmon is known to be particularly sensitive to such 

stress and it is well known that they may cease to eat for a long period after 

experimental handling. In the current experiment we used a sedation protocol 

including both AQUI-s and MS-222 that allowed for the careful removal of each fish 

from the tank causing minimum stress so as not to interfere with feeding. The fish 

could be removed, injected with a recombinant peptide hormone, in this case leptin or 

ghrelin, thereafter replaced in the tank for recovery. Thus feed intake prior to and 

after treatment was accurately recorded and measured for each individual fish, with 

minimum interference. The recent development of such a model for Atlantic salmon 

(Hevrøy et al., unpublished) is of great importance in order to accurately measure the 

hormone effects on feed intake and was used in the current work. 

 



  23 

1.6 Aims and objectives 

The main aim of this project was to examine the effects of administered leptin and 

ghrelin on appetite, feed intake and neuropeptides in Atlantic salmon. The research 

will help provide a better understanding of the mechanisms that regulate appetite and 

feed intake in salmonids. 

 

Main objective 

• Assess the appetite effect of recombinant hormones LEPA1 and rainbow trout 

GHRL1A in Atlantic salmon in an individual based system, in order to better 

understand appetite regulation and feed intake in salmon. 

Minor objectives 

• Investigate the effects of recombinant leptin and ghrelin on feed intake in 

salmon 

• Examine the underlying effects of observed changes in feed intake focusing on 

the neuropeptides involved in appetite regulation in the brain  

• Identify to what extent energy metabolism is influenced by leptin and ghrelin 

in selected tissues and organs including liver, stomach and brain. 
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2. Materials and Methods 

 

In order to examine the function of leptin and ghrelin in Atlantic salmon individual 

injection experiments were performed in order to evaluate feed intake response.  The 

performance response was confirmed through the collection of organ and plasma 

samples The individual feed intake model (Figure 1) utilized for this experiment was 

developed in collaboration with Matre Aquaculture Research Station. 

Figure 1 Overview of experimental setup (Hevrøy, unpublished) 

 

Atlantic salmon were selected from stock and distributed throughout experimental 

tanks, three fish in each tank. After an acclimation period, during which most of the 

fish established a regular feed intake, individual fish were sampled during which 

weight and length was measured. One individual from each tank was selected for the 

next phase of the experiment. The selected fish had displayed feeding behaviour 

during the acclimation period and was within the mean size range of the group. The 

fish were fed individually and once the feeding had stabilized, the fish were sedated 

and anesthetized, weighed and measured before they were injected with hormone (IP) 

and returned to the tank. Feeding resumed rapidly and the fish were monitored for a 

further three to four days before they were removed and killed for final sampling.  

 

2.1 Fish and experimental conditions 

Two experiments were conducted. Both experiments were conducted at the IMR - 

Matre Aquaculture Research Station, Matre, Norway (60,87º N 5,58º E). The first 
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experiment was conducted during December 2011, and the second during January 

2012.  

 

2.1.1 Experiment one  

On the 1st of December 2011, 48 post smolts (NLA strain, 0+) with an approximate 

body weight of 90-100g where randomly distributed in 16, 0.5 x 0.5 x 0.4 m indoor 

tanks with 85 L flow-through water volume, so that each tank contained three 

individuals.  The water temperature was held constant at 12 °C and oxygen was added 

in order to keep the saturation above 90 %. Artificial light with natural day length was 

applied. The fish were kept on a 20/4 light regime prior to competition period. During 

the first 4 days of acclimation the light was kept on a 12/12 regime, however this 

interfered with the first feeding at 09:00 so the light regime was changed to 16/8. The 

light regime remained the same throughout the first and second experimental period.  

 

The fish were handfed four times a day at 09:00, 12:00, 15:00 and 18:00. After 8 days 

all the individual fish had established a regular and high daily feed intake and 

consumed between 100 and 130 pellets per tank per day. Prior to removal of fish, 

pellets were hand fed into each tank and feeding behaviour was observed. Fish from 

tanks in which all three fish showed competitive feeding behaviour where selected for 

further experimentation. To prevent stress the fish were sedated in the tanks prior to 

netting as follows: Water flow was stopped and 1/3 of water was drained from the 

tank. 4 ml of AQUI-S (12 mg L-1) (AQUI-S, New Zealand) dissolved in warm water 

was administered into each tank permitting all individuals to be sedated while they 

were in the tank. This normally took 3 to 5 min. After the fish had been removed from 

the tank, waterflow was returned to the original level to wash out remnants of 

sedating compound and volume to return to normal levels. After netting, the fish were 

anaesthetized with (FINQUEL) MS 222 (50 mg L-1) before weight (OHAUS – 

Sterner Fishtech, Norway) and fork lengths were registered. Fish weighing more than 

150 grams and less than 100 grams were discarded. The mean weight at the start of 

the experimental period was 130g±12.8g. One feeding individual was selected and 

returned to the tank. This procedure was repeated with all tanks, untill each of the 16 

tanks contained one fish. 
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The experimental period started on the 8th of December and fish were handfed for 

another 7 days until the 14th of December at which point feeding had stabilized. At 

that point all fish were being fed 160 pellets a day (the uneaten pellets were removed 

and counted before the next meal) and the mean consumed pellets was 60.5±28.4. 

Fish were being fed until satiety. The fish were sedated and collected according to the 

method described previously, then they were injected with leptin, ghrelin or a sham 

injection for the control group. The fish were injected using a random design.  The 

fish were handfed for another 3 days then netted, and quickly killed with a blow to the 

head on the 4th day (19th of December) 4 h post feeding. Blood was carefully 

withdrawn using a syringe. Aliquots of blood where stored in eppendorf tubes that 

were kept in ice before centrifugation and plasma was prepared for further analysis. 

Samples of brain, liver and stomach were rapidly but carefully removed, collected and 

flash-frozen in liquid nitrogen stored at -80º and then transferred to a -80º freezer 

where they were kept until they were analyzed.  

 

2.1.2 Experiment two 

For Experiment two the start of the acclimation period was monitored by personnel at 

IMR - Matre Aquaculture Research Station. The average size and weight of fish 

entering the acclimation period was not registered. The feed consumption during the 

acclimation period was not registered. Weight and length measurements were 

recorded for each of the 3 individuals from the selected tank, fish weighing more than 

210 grams and less than 150 grams were discarded. The mean at the start of the 

experimental period was 191.5g±16.4g. The experimental period was started on the 

13th of January and fish were handfed for 13 days (26th January) until feeding had 

stabilized. At that point fish were being fed 190 pellets a day and the mean pellet 

consumption was 70.9±32.2. The fish were sedated, netted, injected and replaced 

according to the method described previously. Fish were handfed for 4 days post 

injection then netted, and quickly killed with a blow to the head on the 5th day (31st 

January) 4 h post feeding .  

 

2.2 Feeding 

The salmon where fed in excess four times a day at 09:00, 11:00, 13:00 and 15:00 

using hand feeding and waste feed collectors. All fish were fed a commercial standard 



  27 

diet, Nutra Parr LB 3 3.0 5mg 3.0mm (Skretting, Norway) with a mean dry weight of 

0.0196 g. 

 

2.3 Preparation for administration of leptin and ghrelin.  

Recombinant leptin was prepared according to the published protocol (Murashita et 

al., 2011) Crisco All Vegetable Shortening (solid at room temperature) was heated to 

50C in a water bath and mixed 50:50 with Vegetable oil and temperature adjusted to 

37C. Then, the appropriate amount of rsLEPA1 was weighed and dissolved in 0.5 ml 

NaOH (0.01N) and HCl (0.1N) solution. The dissolved hormone was transferred to 

the shortening solutions to achieve doses of 1 and 5µg rsLEPA1/rtGHRL per gram 

body weight. Solutions were made in order to be able to inject 5µl per gram body 

weight. The protocol for preparing hormone in vegetable oil was also followed for 

rtGHRL. 

 

2.4 Administration of leptin and ghrelin 

The recombinant Atlantic salmon specific leptin dosage was set by a pilot trial (July 

2011 – Data not shown). Based on previous experiments it was presumed there would 

be dose-dependent effects on feed intake as for ex. recombinant LEP injected ICV in 

chickens produced a dose-dependent reduction in feed intake, with the highest dose  

(10µg total injected recombinant human leptin per chicken) producing the most 

prominent reduction in feed intake (Denbow et al., 2000). Individuals in treatment 

groups were given a specific dose, however in the present study there did not appear 

to be any clear dose-response relationship or trend (data not shown) so results are 

analysed and presented as the mean of a treatment.  

 

2.4.1 Experiment one 

Leptin (rsLEPA1; 150 amino acids; 16780 Da) and ghrelin (purified rainbow trout 

GHRL, 23 amino acids; 2082 Da) was administered at equal molar levels: 0.08, 0.16, 

0.24, 0.32 and 0.40 nmol/g fish. This gave dosages of 1.34, 2.68, 4.03, 5.37 and 6.71 

µg/g fish with leptin and 0.17, 0.33, 0.50, 0.67 and 0.83 µg/g fish with ghrelin.  

 

2.4.2 Experiment two 

Leptin doses were set and administered at the following molar levels: 0.02, 0.04, 0.16, 

0.24, 0.32 and 0.40 nmol/g fish. This gave dosages of 0.34, 0.67, 2.68, 4.03, 5.37 and 
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6.71 µg/g fish. Ghrelin doses were set and administered at the following equal molar 

levels: 0.06, 0.13, 0.19, 0.26 and 0.32 nmol/g fish. This gave dosages of 0.17, 0.33, 

0.50, 0.67 and 0.83 µg/g fish.  

 

2.5 Sampling and anesthesia  

All fish were sedated using ISO-eugenol (in tank) and anaesthetized with MS 222 

before weight and length registration and sampling of tissue and organs. Fish that 

were used for blood and RNA samples were not anesthetized, but killed with a blow 

to the head. 

 

2.6 Feed uptake and growth  

Feed intake was recorded daily in a MS Excel spreadsheet (Appendix 1). 

• Specific growth rate (SGR)  

• Feed uptake, feed factor (feed efficiency), FCR feed conversion rate 

 

2.7 Sampling: Energy partitioning and physiology 

• Samples for gene expression analyses in whole brain, liver and stomach   

• Blood plasma: nutrient metabolites (FFA, triglycerides, glucose, lactate and 

D-3-Hydroxybutyrate) and hormone (ghrelin) 

Tissues for sampling of RNA (Liver, brain, stomach) were kept on liquid nitrogen 

before storage at – 80 °C. 

 

2.8 Gene expression analysis: qPCR 

Expression analysis for the selected genes was conducted as described below. Sample 

preparation (starting from RNA extraction) of the brain tissue was performed at the 

MDB laboratories at BIO, Bergen, Norway; sample preparation and analysis of liver 

and stomach was performed at the molecular lab at NIFES, Bergen, Norway. 
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2.8.1 Brain samples 

RNA extraction from collected brain samples was performed using the Tri-Reagent 

protocol according to manufacturer’s recommendations. Tri-Reagent (Sigma Aldrich, 

St luis, USA) is an improved version of the single-step total RNA isolation reagent 

developed by (Chomczynski and Sacchi, 1987). Homogenisation was done using a 

Fast Prep machine (Savant Instruments, Holbrook, NY, USA). The remaining pellet 

was reconstituted in nuclease free H20, heated for 55-60ºC for 10-15 minutes and then 

the optical density (OD)value was assessed using the Nanodrop® ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Samples had a 

concentration between 400 and 1000 ng/µl with A260/A280 values between 1.9 and 2.1. 

For A260/A230 a value of 2.3 for was considered optimal. For storage samples were 

precipitated with 3M NaAC pH 5.5 a 1/10 of sample volume and EtOH at 2.5 times 

the total volume of the sample. DNA removal was performed using an optimized 

protocol for the Turbo DNA-free kit (Life technologies, Carlsbad, California, USA). 

RNA integrity was assessed using the 6000 Nano Labchip kit on the Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). All samples had RIN 

values above 8.80. cDNA synthesis was performed using the Invitrogen Superscript 

III Reverse transcriptase kit (Invitrogen Life Technologies, California, USA) 

according to the manufacturer’s instructions. A minus reverse transcriptase (minus 

RT) control was created. The cDNA was incubated using the following reaction 

protocol, 60 minutes at 50ºC, 15 minutes at 70ºC. 

 

Duplicates of each sample were run in 25 µl reactions, consisting of 1X Power SYBR 

Green Master Mix (Life technologies, UK), 400 nM primers and water. Sample and 

dilution curve dilutions are given in Table 1.  For ghrelin like receptor assays in brain 

we used 200 nM of primers. A negative control of pooled RNA from all samples and 

no reverse transcriptase was included. A negative template control (NTC) was 

included on all plates. No signal was observed in the negative controls. A between 

plate control (BPC) was used on all plates existing of pooled cDNA from all samples 

from both experiments. 5 step dilution curves were constructed, and consisted of 

pooled cDNA from all samples from both experiments. 

 

PCR parameters for all assays, except POMC-B were as follows; a first denaturation  

at 95 °C for 5 min then 45 cycles at 95 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s. 
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POMC-B had an annealing temperature of 62 °C. A melting curve was performed for 

each assay, in order to verify the absence of primer dimers (60–95 °C read every 

0.5 °C and held for 0,5 s). The melting curve analysis showed a single peak for each 

assay, confirming PCR specificity (data not shown). 

 
Table 1 Criteria set for the construction of dilution curves, and sample dilution factors   

Gene 

Input 
RNA in 
to cDNA 
synthesis 
(ug) 

dilution 
curve, initial 
dilution 

dilution factor 
in dilution 
curve 

sample 
dilution 

POMCA1 4  1:4 10  1:5 
POMCA2 4  1:4 10  1:5 
AGRP1 4  1:4 10  1:5 
NPY 4  1:10 2  1:20 
CART 4  1:10 2  1:20 
LEPR1 2  1:5 2  1:10 
LEPR2 2  1:5 2  1:10 
β-ACTIN 4  1:100 2  1:400 
RPL13 4  1:100 2  1:400 
EF1AB 4  1:100 2  1:400 
POMCB 4  1:4 10  1:5 
POMCA2S 4  1:4 10  1:5 
AGRP2 4  1:4 10  1:5 
CCKL 4  1:10 2  1:20 
CCKN 4  1:10 2  1:20 
PYY 4  1:5 2  1:10 
GHSR1A-LR 4  1:10 2  1:20 

 

2.8.2 Liver and stomach  

RNA was extracted from samples using a Qiazol reagent and DNA removal was 

performed using the EZ1 cleaning robot. 750µl quiazol was added to precellys tubes 

containing 3-4 beads. For liver 50µg of tissue were added to tubes and for stomach 

100µg tissue were added to the tubes. The samples were homogenized using the 

precellys. The blank supernatant was transferred to 2ml sample tubes for the EZ1 

robot. DNase was added to tubes for the EZ1 robot. Elution tubes were also added to 

the EZ1 robot. Dnase removal program was run for 45 minutes on the EZ1 robot.  

 

Prior to synthesizing cDNA sample RNA integrity was assessed using the Agilent 

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) RNA Nano assay. 
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Only samples with RIN values above 7 were utilized for further analysis. All samples 

had RIN values above 7.  

 

cDNA synthesis was performed using the Roche reverse transcriptase  AMV kit 

according to the manufacturer’s instructions (Roche Applied Science, Bavaria, 

Germany). Stomach and liver samples from each fish were run in duplicates or 

triplicates (250 ng) on 96 well plates for Reverse transcription. A minus reverse 

transcription control (–RT) was created. A No template control (NTC) and No 

amplification control (NAC) were also created. The PCR plate was placed in the PCR 

machine and the RT reaction was run at 50°C for 50 minutes. qPCR amplification and 

analysis was performed on a LightCycler 480 Real-time PCR system (Roche Applied 

Science, Bavaria, Germany). The LightCycler 480 SYBR Green master mix kit 

(Roche Applied Science, Bavaria, Germany) was utilized according to the 

manufacturer’s instructions, the mastermix contained gene specific primers at a final 

concentration of 500 nM. Two µl of cDNA from each well were transferred to a 

realtime plate and ten µl of realtime master mix was added by a pippetting robot. The 

qPCR protocol in Table 2 was employed. Efficiency of qPCR was monitored using 2-

fold dilution curves comprised of a pool of all RNA using a five point dilution range, 

500ng – 31.25 ng/µl. PCR parameters for all assays were as follows; a first 

denaturation at 95 °C for 5 min, then 45 cycles at 95 °C for 10 s, 60 °C for 10 s and 

72 °C for 10 s.  
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2.9 Primers  

PCR primers for target genes insulin-like growth factor 1 (IGF1), insulin-like growth 

factor 2 (IGF2), growth hormone receptor 1 (GHR1), growth hormone receptor 2 

(GHR2) were designed at NIFES with the Primer Express software and Biosoft 

software as previously described by Hevrøy et al., (2008). Ghrelin1 (GHRL1A) and 

ghrelin2 (GHRL1B) were designed with the Primer Express software based on 

sequences of Atlantic salmon as described by Hevrøy et al., (2011). Leptin A1 

(LEPA1), leptin A2 (LEPA2), leptin receptor 1 (LEPR1), leptin receptor 2 (LEPR2) 

were designed and described at the MDB lab by Rønnestad et al., (2010). 

Proopiomelanocortin a1 (POMCA1), proopiomelanocortin a2 (POMCA2), 

proopiomelanocortin a2s (POMCA2S), proopiomelanocortin b (POMCB), agouti-

related peptide 1 (AGRP1), agouti-related peptide 2 (AGRP2), cocaine and 

amphetamine related transcript (CART), neuropeptide Y (NPY), peptide YY (PYY), 

cholecystokinin (CCKL and CCKN) as described previously by Murashita et al., 

2009a; 2009b.; 2011). Ribosomal protein L13 (RPL-13), beta actin (β-actin) and 

elongation factor 1 alpha beta (EF1-αb) were used as reference genes as described 

previously by Hevrøy et al., (2011).  

 
Table 2 Primer sequences of reference and target genes used for RT-PCR mRNA expression in brain, 

stomach and liver of Atlantic salmon. Reference genes; ribosomal protein L13 (RPL-13), beta actin (β-

ACTIN), elongation factor 1 alpha beta (EF1-αb). Target genes; leptin A1 (LEPA1), leptin A2 

(LEPA2), leptin receptor 1 (LEPR1), leptin receptor 2 (LEPR2), growth hormone receptor 1 (GHR1), 

growth hormone receptor 2 (GHR2), insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 

(IGF2), ghrelin1a (GHRL1A), ghrelin1b (GHRL1B), proopopmelanocortin a1 (POMCA1), 

proopopmelanocortin a2 (POMCA2), proopopmelanocortin a2s (POMCA2S), agouti-related peptide 1 

(AGRP1), agouti-related peptide 2 (AGRP2), cocaine and amphetamine related transcript (CART), 

neuropeptide Y (NPY), cholecystokinin-L (CCK-L).  

Target Sequence of primers 
Primer 
efficiency 

RPL-13 Forward 5′-CCAATGTACAGCGCCTGAAA 96% 

 Reverse 5′-CGTGGCCATCTTGAGTTCCT  

β-ACTIN Forward 5′-CCAAAGCCAACAGGGAGAA 94% 

 Reverse 5′-AGGGACAACACTGCCTGGAT  

EF1AB Forward 5′-TGCCCCTCCAGGATGTCTAC 101% 

 Reverse 5′-CACGGCCCACAGGTACTG  

LEPA1 Forward 5′-TTGCTCAAACCATGGTGATTAGGA 91% 

 Reverse 5′-GTCCATGCCCTCGATTAGGTTA  

LEPA2 Forward 5′-TGGGAATCAAAAAGCTCCCTTCCTCTT 106% 
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 Reverse 5′-GCCTCCTATAGGCTGGTCTCCTGCA  

LEPR1 Forward 5′-TAGAGGTAATTGAGGAGAAGGACCTCT 99% brain 

 Reverse 5′-AACATAGAGTCCTGACTCCCGAGCAA 109% liver 

LEPR2 Forward 5′-GGAGGAGAAGGACCTGGATTACCT 83% 

 Reverse 5′-AACATAGAGTCCCGACACCCAAGTAG 104% liver 

GHR1 Forward 5′-TGGACACCCAGTGCTTGATG 111% 

 Reverse 5′-TCCCTGAAGCCAATGGTGAT  

GHR2c Forward 5′- 106% 

 Reverse 5′-  

IGF1 Forward 5′-TGACTTCGGCGGCAACA 186% 

 Reverse 5′-GCCATAGCCCGTTGGTTTACT  

IGF2 Forward 5′-TGCCAAACCTGCCAAGTCA 96% 

 Reverse 5′-GGCACCATGGGAATGATCTG  

GHRL1A Forward 5′- CCCTCCCAGAAACCACAGGTA 84% 

 Reverse 5′- TATTGTGTTTGTCTTCCTGGTGAAG  

GHRL1B Forward 5′- TCCCAGAAACCACAGGGTAAA 85% 

 Reverse 5′- GAGCCTTGATTGTATTGTGTTTGTCT  

POMCA1 Forward 5′-TGGAAGGGGGAGAGGGAGAG 114% 

 Reverse 5′-CGTCCCAGCTCTTCATGAAC  

POMCA2 Forward 5′-CTGGAGGCTGGGACTGCGGA 94% 

 Reverse 5′-CGTCCCAGCTCTTCATGAAC  

POMCA2S Forward 5′-AGACGAGAGCTGGGGGGAGT 190% 
 Reverse 5′-CGTCCCAGCTCTTCATGAAC  

POMCB Forward 5′- GACTAAGGTAGTCCCCAGAACCCTCAC 84% 
 Reverse 5′-GACAGCGGTTGGGCTACCCCAGCGG  

AGRP1 Forward 5′-GCGTTCTCCCCGTCGCTGTA 107% 

 Reverse 5′-TGTTAGGGGCGCCTGTGAGC  

AGRP2 Forward 5′-GCGGTGTGGTCGTCTGATGG 95% 

 Reverse 5′-GGGCCCAGTCTCCAGCAGTG  
CART Forward 5′-AGCAACTGCTTGGAGCACTACATGAC 98% 

 Reverse 5′-CAGTCGCACATTTTGCCGATTCTCGCGCCC  

NPY Forward 5′-ACTGGCCAAGTATTACTCCGCTCTCA 89% 
 Reverse 5′-CTGTGGGAGCGTGTCTGTGCTCTCCTTCAG  

PYY Forward 5′-AGACCAGCGATTTGCTGCAAAGACACCAGT 96% 
 Reverse 5′-AGACCAGCGATTTGCTGCAAAGACACC  

CCK-L Forward 5′-CAGCCACAAGATAAAGGACAGAGA 86% 

 Reverse 5′-GGTCCGTATGTTTCTATGAGGAGTACG 
 

 
CCK-N Forward 5′- AGAAGTCCCTTCATCCCTCTCTCAAACACT 85% 

 Reverse 5′- AGAAGTCCCTTCATCCCTCTCTCAAACACT  
GHRLR Forward 5′-GCACACAGGGACAAGAGCAA 83% 

 Reverse 5′-CCTCGGAGGAATGGGACATA  
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2.10 Plasma Ghrelin 

Ghrelin in plasma was measured with a heterologous assay using a 125I-

radioimmunoassay kit for human ghrelin (Linco Research Inc., St. Charles, Missouri) 

which is specfic for biologically active (octanoylated) ghrelin. The assay has been 

validated for use in Atlantic salmon (Pankhurst et al., 2008; Hevrøy et al., 2011) 

 

2.11 Plasma metabolites  

Triglycerides and glucose in plasma were measured with the MAXMAT 

immunoassay kit for human triglycerides and glucose (MAXMAT S.A. Zac du 

Millenaire 290, rue Alfred Nobel, 34000 Montpellier, France). FFA in plasma was 

measured with the DIALAB immunoassay kit for FFA (DIALAB, A-2351 Wiener 

Neudorf, Austria). Lactate in plasma was measured with the SPINREACT 

immunoassay kit for human lactate (SPINREACT , S.A.U, Ctra. Santa Coloma, 7 E-

17176 Sant esteve de bas (GI), Spain). D-3-Hydroxybutyrate was measured with the 

RANDOX immunoassay kit for D-3-Hydroxybutyrate (Randox laboratories limited, 

55 Diamond road, Crumlin, County Antrim, BT29 4QY, United Kingdom).  
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2.12 Calculations  

2.12.1 TGC ratio 

The somatic growth of the fish was measured as the thermal growth coefficient ratio: 

 

w2 =    final weight  

w1 =    initial weight 

∑T =    sum of daydegrees 

 

ratio =  

 

postinjectionTGC =  the thermal growth coefficient prior to injection 

preinjectionTGC =  the thermal growth coefficient post injection 

 

2.12.2 Daily feed intake  

Feed intake was measured as DFI % of BW with the following formula.  

 

 

fu = feed uptake 

iw = initial weight 

fcr = feed conversion ratio 

 

can also be calculated as: 

 

 

 

pf = pellets fed 

pc = pellets collected 

paw = pellet average weight 

iw = initial weight of fish 

fi = feed intake 

g = growth 
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2.13 Statistical analysis 

Statistical analysis was carried with the use of the software IBM SPSS statistics 19 

(IBM corporation, New York, USA), graphs and tables where generated in Microsoft 

Excel 2003 (Microsoft, Redmond, Washington, USA). Each treatment group, leptin, 

ghrelin and a control, represents an independent statistical unit. In Experiment one, 

control n=6, leptin n=3, ghrelin n=5. In Experiment two, control n=4, leptin n=6, 

ghrelin n=5. A 95% confidence level was chosen for all tests, p<0.05 for statistical 

significance. All data was tested for a normal distribution, because parametric tests 

for a difference depend on a normally distributed dataset. In order to visually examine 

the distribution of the data a frequency distribution was created in SPSS, to determine 

whether the frequency distribution departed from normality the Shapiro-wilk was 

used. If the distribution did not differ significantly from a normal distribution 

(p<0.05), then the data set was considered normal and a general parametric one-way 

ANOVA was utilised to test for a difference between a treatment group and the 

control. If the data set differed significantly from a normal distribution (p>0.05), then 

the data set was considered not to conform to a normal distribution and the Mann-

Witney U test (a general non-parametric test for two groups) was utilised to test for a 

difference between a treatment group and the control.  
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3. Results  

 

3.1 Feed intake 

Daily feed intake (DFI) expressed as % of bodyweight (BW) gradually increased and 

stabilized in leptin, ghrelin and control groups in experiments one and two (Figure 2). 

When feed intake stabilized at day 8 all fish where injected IP. Injection of leptin 

appears to lead to reduced feed intake in both experiments. However, a significant 

decrease in feed intake was only observed in the leptin group in Experiment two 

(Figure 2C; p=0.001 ANOVA). In Experiment two there was no significant difference 

in feed intake in the sham injected control group (Figure 2C: p=0.193 one way 

ANOVA). No significant difference in feed intake was found post injection in the 

leptin or ghrelin treated groups in Experiment one or in the ghrelin treated group in 

Experiment two (Figure 2A, B, D; p>0.05 ANOVA) 

 

 
Figure 2 Daily feed intake of Atlantic salmon in % of bodyweight. Experiment one, leptin treated n=3, 

ghrelin treated n=5, sham treated control n=6. Experiment two, leptin treated n=6, sham treated control 

n=4. D Experiment two, ghrelin treated n=5, sham treated control n=4. Mean ± SE represented by bars, 

the mean is represented by DFI%BW each day of each fish in a treatment group. The comparison for a 

difference in feed intake is made between mean feed intake three days prior to injection and three days 

post injection. The arrow in each figure represents the point of injection. Significantly lower feed 

intake in leptin treated group, Experiment two.  
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3.2 Growth 

Somatic growth of the fish was expressed as the thermal growth coefficient (TGC) 

ratio (Figure 3). In Experiment one (Figure 3A) no significant difference in growth 

was observed between treatments and control, (Figure 3A; p>0.05 ANOVA). In 

Experiment two a significantly decreased growth ratio was found in the leptin treated 

group (Figure 3B; p=0.032 ANOVA), however no significant difference in growth 

was found in the ghrelin treated group (Figure 3B; p=0.971 ANOVA).  

 
Figure 3 Mean TGC ratio of Atlantic salmon. A=Experiment one, control n=6, leptin n=3, ghrelin n=5. 

B=Experiment two, control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by bars.  
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3.3 Plasma Metabolites 

There were no significant differences in plasma metabolites between treatments in 

Experiment one (Table 3; p>0.05 ANOVA). A significantly lower concentration of 

circulating D-3-Hydroxybutyrate was measured in the ghrelin treated group in 

Experiment two (Table 4; p=0.024 ANOVA). A similar trend in D-3-

Hydroxybutyrate concentration was also observed in the ghrelin treated group in 

Experiment one and the difference could be considered significant (Table 3; p=0.053 

ANOVA)  

 
Table 3 Mean Plasma metabolites in mmol/L, Experiment one. Control n=6, Leptin n=3, Ghrelin n=5. 

Mean ± SE. No significant differences were observed.  

Plasma metabolite concentrations Experiment one 
Metabolite Control Leptin Ghrelin 

FFA 0.21 ± 0.01 0.19 ± 0.03 0.17 ± 0.00 
Triglycerides 1.46 ± 0.14 1.71 ± 0.06 1.61 ± 0.13 

Glucose 5.14 ± 0.26 5.12 ± 0.26 5.62 ± 0.26 
Lactate 1.79 ± 0.17 1.91 ± 0.14 1.68 ± 0.13 

D-3-Hydroxybutyrate 0.065 ± 0.007 0.094 ± 0.012 0.053 ± 0.011 
 

Table 4 Mean Plasma metabolites in mmol/L, Experiment two. Control n=4, Leptin n=6, Ghrelin n=5. 

Mean ± SE. Bold superscript denotes a significant difference in D-3-Hydroxybutyrate levels in the 

ghrelin treated group.  

Plasma metabolite concentrations Experiment two 
Metabolite Control Leptin Ghrelin 

FFA 0.13 ± 0.01 0.12 ± 0.00 0.12 ± 0.01 
Triglycerides 1.65 ± 0.28 1.52 ± 0.18 1.68 ± 0.28 

Glucose 5.43 ± 0.44 5.47 ± 0.18 5.43 ± 0.31 
Lactate 1.81 ± 0.19 2.12 ± 0.20 1.93 ± 0.19 

D-3-Hydroxybutyrate 0.096 ± 0.015 0.101 ± 0.018 0.054 ± 0.005 
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3.4 Plasma ghrelin 

A significantly higher concentration of circulating ghrelin was found in the ghrelin 

treated group in Experiment one (Figure 4A; p=0.013 ANOVA). No significant 

difference was found between leptin and control in Experiment one, or between 

injected groups and control in Experiment two (Figure 4B; p>0.05 ANOVA). 

 
Figure 4 Mean plasma ghrelin in pg/ml. A=Experiment one. Control n=6, leptin n=3, ghrelin n=5. 

B=Experiment two. Control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by bars. The letter b 

denotes a significant difference from control marked a.  
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3.5 Gene expression 

3.5.1 Leptin expression in liver and stomach 

No significant difference in the expression of LEP in liver and LEP receptors in liver 

and stomach between treatment and control were found in Experiment one (Figure 

5; p>0.05 ANOVA). LEPR1 appeared to be highly expressed in liver in the leptin 

treated group (Figure 5C and Figure 6C), but the expression is not significantly 

different from the control. LEPR2 appears to be highly expressed in the stomach 

tissue of the ghrelin treated group (Figure 5D and Figure 6D), however expression is 

not significantly higher than in the control group. 

 

 
Figure 5 Mean relative expression of leptin and leptin receptors in liver and leptin receptors in 

stomach, Experiment one. Control n=6, leptin n=3, ghrelin n=5. Mean ± SE represented by bars. There 

were no significant differences between treatment groups and control group. 
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Expression of LEPA1 was significantly highler in the liver of the leptin treated group 

compared to control (Figure 6A; p=0.021 ANOVA). Expression of LEPA2 was also 

significantly higher in the liver of both the leptin and ghrelin treated group compared 

to control (Figure 6B; 0.005 ANOVA, p=0.019 ANOVA). No significant difference 

in the expression of LEPR1 and LEPR2 compared to control was found in liver or 

stomach in Experiment two (Figure 6; p>0.05 ANOVA)  

 
 

 
Figure 6 Mean relative expression of leptin and leptin receptors in liver and leptin receptors in 

stomach, Experiment two. Control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by bars. Letter 

b denotes a significant difference from the control marked a.  
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3.5.2 Ghrelin expression in liver and GH and IGF expression in stomach 

The expression of GHRL1A and GHRL1B was significantly higher in the stomach 

tissue of the ghrelin treated group (Figure 7E; p=0.027 ANOVA and Figure 7F; 

p=0.016 ANOVA). No significant difference in the expression of GHR1, GHR2, 

IGF1 and IGF2 compared to control in liver or stomach tissue were found in 

Experiment one (Figure 7; p>0.05 ANOVA) 

 

 
Figure 7 Mean relative expression of growth hormone and Insulin-like growth factor in liver and 

ghrelin in stomach, Experiment one. Control n=6, leptin n=3, ghrelin n=5. Mean ± SE represented by 

bars. The letter b denotes a significant difference from control marked a.  

 

No significant difference in the expression of GHR1, GHR2, IGF1, and IGF2 in liver 

and GHRL1A and GHRL1B in stomach were found in Experiment two (Figure 8; 

p>0.05 one way ANOVA). 
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Figure 8 Mean relative gene expression of growth hormone and insulin –like growth factor in liver and 

ghrelin in stomach, Experiment two. Control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by 

bars. There were no significant differences between treatment groups and control group. 
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3.5.3 Neuropeptides 

3.5.3.1 Anorexigenic Neuropeptides 

No significant differences in the expression of neuropeptides; POMCA1, POMCA2, 

POMCA2S, POMCB, CART, PYY, LEPR1, LEPR2 were found in Experiment one 

(Figure 9; p>0.05 ANOVA). 

 
Figure 9 Mean relative gene expression of anorexigenic neuropeptides in brain, Experiment one. 

Control n=5, leptin n=3, ghrelin n=5. Mean ± SE represented by bars. There were no significant 

differences between treatment groups and control group.  



  46 

POMCA1 and POMCA2 appear to be up regulated in the leptin treated group 

compared to control (Figure 10A; p=0.067 Mann-Whitney U and Figure 10B; 

p=0.067 Mann-Whitney U). PYY was down regulated in the leptin treated group 

(Figure 10F; p=0.038 Mann-Whitney U) and the ghrelin treated group (Figure 10F; 

p=0.016 Mann-Whitney U). No significant differences in the expression of 

neuropeptides; POMCA2S, POMCB, CART, LEPR1 and LEPR2, were found in 

Experiment two (Figure 10; p>0.05 ANOVA). 

Figure 10 Mean relative gene expression of anorexigenic neuropeptides in the brain, Experiment two. 
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Control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by bars. The letter b denotes a significant 

difference from control marked a.  
 

No significant difference in the expression of CCKL and CCKN expression were 

found in the leptin treated group compared to the control in Experiment one (Figure 

11; p>0.05 Mann-Whitney U, p>0.05 ANOVA). Expression of CCKL and CCKN in 

the ghrelin treated group was significantly lower than in the control, indicating a 

down regulation of CCKL and CCKN in the ghrelin treated group in Experiment one 

(Figure 11; p=0.004 ANOVA, p=0.048 ANOVA). 

 
Figure 11 Mean relative expression of neuropeptides Cholecystokinin-L and Cholecystokinin-N in the 

brain, Experiment one. Control n=5, leptin n=3, ghrelin n=5. Mean ± SE represented by bars. Letter b 

denotes a significant difference from control marked a. Treatment group marked a denotes no 

significant difference from control also marked a.  
 

No significant difference in the expression of CCKL and CCKN were found between 

treatment groups and control in Experiment two (Figure 12; p>0.05 Mann-Whitney 

U). 

 
Figure 12 Mean relative expression of neuropeptides Cholecystokinin-L and Cholecystokinin-N in the 

brain, Experiment two. Control n=4, leptin n=6, ghrelin n=5. Mean ± SE represented by bars. No 

significant differences between treatment and control. 
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3.5.3.2 Orexigenic Neuropeptides 

Expression of AGRP1 was significantly higher in the leptin treated group than the 

control, indicating an upregulation of AGRP1 (Figure 13A; p=0.047 ANOVA). No 

significant differences in the expression of AGRP2, NPY and GHRLR were found in 

the leptin or ghrelin treated groups compared to the control (Figure 13B, C, D 

p>0.05).  

 
Figure 13 Mean relative gene expression of orexigenic neuropeptides in the brain. Control n=5, leptin 

n=3, ghrelin n=5. Mean ± SE represented by bars. The letter b denotes a significant difference from 

control marked a.  
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No significant differences in the expression of AGRP1, AGRP2, NPY or GHRLR 

where found in the leptin or ghrelin treated groups compared to the control in 

Experiment two (Figure 14A,B,C,D p>0.05 ANOVA).  

 
Figure 14 Mean relative gene expression of orexigenic neuropeptides in the brain. Control n=4, leptin 

n=6, ghrelin n=5. Mean ± SE represented by bars. No significant difference between treatment and 

control. 
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4. Discussion 

 

4.1 Feed intake 

This is the first report that demonstrates by direct measurement that rsLEPA1 injected 

IP leads to a reduced feed-intake in Atlantic salmon. This was observed in 

Experiment two where there was a significant reduction in feed intake in rsLEPA1 

treated Atlantic salmon while the sham treated control had no change in feed intake. 

The data in Experiment one had trends suggesting similar results, but these were not 

significant. Murashita et al., (2008) found a rapid suppression of feed intake post 

rsLEPA1 injection indicating a strong short term anorexic effect, so one could expect 

to see the greatest reduction in feed intake the day after injection, which is not the 

case in Experiment one in this study, However Murashita et al., (2008) injected 

recombinant rainbow trout leptin in phosphate buffered saline which may be released 

quicker than a hormone in vegetable oil. Although the results were not the same in 

Experiment one and two the results in Experiment two show that recombinant 

rsLEPA1 injected IP causes a significant reduction in feed intake in Atlantic salmon 

(Appendix 1). These results support the findings that recombinant LEP treatment 

reduces feed intake in teleosts such as rainbow trout (Murashita et al., 2008), goldfish 

(Vivas et al., 2011) and Atlantic salmon (Murashita et al., 2011) and suggest that LEP 

treatment in salmon produces a reduction in feed intake similar to that observed in 

higher vertebrates such as mammals; pigs Sus spp. (Barb et al., 1998), rats Rattus spp. 

(Watzler et al., 2004) and birds; chickens Gallus spp. (Denbow et al., 2000), great tits 

Parus major (Lõhmus et al., 2003).  

 

Fish treated with ghrelin showed no alteration in feed intake compared to the control 

group (Appendix 1). These findings are contradictory to other studies in teleosts, as 

rainbow trout injections and implants have previously been found to both decrease 

food intake (Kling et al., 2012) and increase feed intake in goldfish (Matsuda et al., 

2006). Ghrelin has also been found to increase feed intake in higher vertebrates such 

as humans (Wren et al., 2001) and rats (Locke et al., 1995). There does not seem to 

be such a clear relationship between the injection of purified rainbow trout and an 

increase in feed intake in Atlantic salmon. This may be due to the fact that rainbow 

trout ghrelin was administered to Atlantic salmon in this study, thus species specific 

ghrelin may be required to produce any effects on appetite. Ghrelin injected IP in 
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goldfish at 10 pmol/g BW produced an increase in feed intake (Matsuda et al., 2006) 

and rainbow trout ghrelin injected with 0.05 or 5 nmol/kg− 1 IP (Jönsson et al., 2007) 

produced no increase in feed intake. It is unlikely that the dose set in this study was 

too low as Jönsson et al., (2007) achieved similar results with lower dosages. It is 

possible that the effect of ghrelin on food intake varies with the route of 

administration, source of hormone, species and dose (Jönsson et al., 2007) 

 

4.2 Growth 

The somatic growth of fish was significantly reduced in the LEP injected group in 

Experiment two. The growth rate appeared to be reduced in Experiment one but the 

reduction was not significantly compared to the control. The reduced growth rate of 

LEP treated fish in Experiment two is likely a consequence of the reduced feed intake 

that was also observed in Experiment two, which further supports that ssLEPA1 

causes a reduction in appetite and consequently reduces growth in Atlantic salmon. 

These results are supported by Murashita et al., (2011) who also found that 

recombinant ssLEPA1 administered IP significantly reduced the growth rate of 

Atlantic salmon. The reduction in growth observed in this study suggests that the role 

of LEP is comparable to that in other teleosts such as rainbow trout (Murashita et al., 

2008) and fine flounder Paralichthys adspersus and in higher vertebrates, such as 

humans (Dardeno et al., 2010, Lee et al., 2002), pigs (Barb et al., 2001, Ramsay et 

al., 2004) and mice (Leinninger et al., 2009).  

 

Fish in the ghrelin injected group showed no significant difference in growth 

compared to the control, this could be expected as ghrelin treated fish showed no 

alteration in feed intake. These results are in contrast to other studies as Jönsson et al., 

(2007) found that long-term peripheral ghrelin treatment of rainbow trout reduced 

feed intake, which was reflected in a ghrelin-inudced drecrease in weight growth rate. 

However Jönsson et al., (2007) utilized native rainbow trout ghrelin in their study and 

ghrelin may well have species specific effects. Ghrelin is generally considered to 

cause growth through the stimulation of GH secretion from the pituitary in mammals, 

birds, amphibians and teleosts (Kaiya et al., 2013). Ghrelin in Atlantic salmon may 

not function in a manner comparable to other species, but the evidence drawn from 

this study is not enough to make any conclusions.  
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4.3. IP injection – time and release  

Leptin and ghrelin both form part of a feedback regulated loops, so one could expect 

that injecting these hormones would increase the level of the hormone in blood 

plasma. The levels of these hormones in plasma will in turn feedback to central 

systems possibly altering the regulation of appetite and affecting other pathways 

involved in appetite regulation. Previously, the method of administering peptide or 

steroid hormones emulsified in vegetable oil has worked well in terms of release and 

uptake in circulation in Atlantic salmon (McCormick, 1996; McCormick et al., 2008; 

Specker et al., 1994). This method of administrating hormones causes extended 

elevation of the hormone in plasma, for approx. 1-2 weeks depending on water 

temperature and can be considered the best method for administrating hormones in 

Atlantic salmon (Nilsen, T.O personal communication). Injecting hormones in an oil 

emulsion makes endogenous time of release difficult to determine. However it has 

been shown that by administering a certain volume of fat emulsion per gram of fish 

one can obtain a pellet of relatively the same size in the abdomen of the injected fish, 

therefore one can argue that the time of release should be the same in any given 

individual (Nilsen, T.O. personal communication). Variation can always occur but by 

measuring plasma levels of the given hormone one can find out if the hormone has 

been released at equally, in this study the different doses were set for each individual 

so one should expect to see different levels of hormone in plasma.  

 

4.4 Plasma metabolites  

The concentration of plasma metabolites FFA, Triglycerides, Glucose, Lactate and D-

3-Hydroxybutyrate were similar in the LEP treated group and control. These results 

are comparable to those found in mammals as Tanida et al., (2000) found that LEP 

injected into white adipose tissue (WAT) did not cause any change in the 

concentration of insulin, glucose and lactate in in Rattus spp. LEP may not influence 

neuroendocrine regulation through this route, but rather directly through sensors in 

afferent nerves (Tanida et al., 2000). In the GHRL treated group no difference in the 

concentration of FFA, triglycerides, glucose or lactate where found compared to the 

control. However the concentration of D-3-hydroxybutyrate in plasma was 

significantly lower in the GHRL treated group in Experiment one and two.  
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Hydroxybutyrate is a ketone body, which is produced in the liver mainly from the 

oxidation of fatty acids and is exported to surrounding tissues as a source of energy 

(Guthrie and Jordan, 1972). Normal ketosis can indicate that lipid metabolism has 

been activated and the pathway of lipid degradation is intact, and is often found 

during fasting, prolonged exercise or a high fat diet (Galan et al., 2001). As the 

concentration of D-3-hydroxybutyrate was significantly lower in the GHRL treated 

group, in both experiments it is likely that purified rainbow trout ghrelin somehow 

influences ketone metabolism in Atlantic salmon. As D-3-hydroxybutyrate is 

synthesized under nutritional states where carbohydrates and lipid oxidation are 

unbalanced (Willmott et al., 2005) these results suggest that the GHRL treated fish do 

not have a reduced glucose or lipid metabolism, but a reduced lipid catabolism. In 

humans ghrelin has an effect on fatty acid release and ketone body formation and 

ghrelin infusions have been coupled with a significant increase in 3-hydroxybutyrate 

ketone bodies in plasma (Huda et al., 2011), these findings could suggest that ghrelin 

has an alternative role in the stimulation of ketosis in teleosts.  

 

4.5 Metabolites and Stress 

Handling and physical disturbances can cause stress in fish (Barton and Iwama, 1991; 

Evans and Clairborne, 2006). In response to the stressor the fish will undergo 

biochemical and physiological changes in order to cope with the stress factor. The 

initial response includes a neuroendocrine response that includes a release of 

catecholamines and cortisol into circulation (Evans and Clairborne, 2006). A rise in 

cortisol following chronic stress has been linked to higher plasma glucose and energy 

mobilisation (McCormick et al., 1998), thus changes in plasma glucose concentration 

have been used as an indicator of a metabolic response to stress in fish. Elevated 

cortisol levels that occur due to stress may reduce growth and administration of 

cortisol reduces growth in Orynchus mykiss and channel catfish Ictalurus punctatus. 

Unstressed sockeye salmon Oncorhynchus nerka have plasma glucose concentrations 

of 110 mg/ml in males and 103 mg/ml in females, when stressed the concentrations 

gradually increase to 150 mg/ml and 142 mg/ml after 15-30 minutes of stress 

(Kubokawa et al., 1999). In the current study glucose concentrations in the LEP 

injected group were not elevated compared to the control in Experiment one or two. 

Throughout treatment and control groups plasma glucose levels were below 1 mg/ml 

in both Experiment one and Experiment two. The low and steady glucose 
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concentrations found in this study in control, rsLEPA1 and GHRL1 treated groups 

may indicate that the fish were not stressed by the experimental method and as such 

validate that the method used for sedating the fish in the tank before anesthesia and 

injection is not stressful to salmon. This is also verified by the fact that the salmon 

started to eat within a few hours after they were returned to the tanks post injection. 

Normal recovery back to pre-handling feeding levels takes days in Atlantic salmon. 

As a decreased growth rate was observed in the LEP treated group in Experiment two 

but the plasma glucose concentrations did not differ between treatment group and 

control and were not elevated it is likely that decreased growth was not caused by 

stress and elevated glucose levels, but by the recombinant rsLEPA1 injection. 

 

4.6 Plasma Ghrelin  

Elevated levels of plasma ghrelin where found in the ghrelin injected fish in 

Experiment one, but not Experiment two. Fish that have been injected with ghrelin 

could be expected to show elevated levels of plasma ghrelin. In Experiment one 

GHRL1A and GHRL1B were upregulated in the stomach tissue of ghrelin injected 

fish, however these genes were not upregulated in Experiment two. As ghrelin is 

primarily produced in endocrine cells in the gastric glands or the mucosoal folds in 

the stomach the elevated concentration of ghrelin in blood plasma is likely related to 

elevated levels of ghrelin mRNA found at the main site of production. As GHRL1A 

and GHRL1B were not upregulated in the stomach tissue of ghrelin injected fish in 

Experiment two and no change in ghrelin plasma concentration levels where found 

further suggests that expression of ghrelin in the stomach and plasma ghrelin levels 

may be related. Matsuda et al., (2006) suggest that the ghrelin signal that leads to 

increased food intake in goldfish is mediated through the afferent vagus nerve rather 

than the bloodstream, however we found no difference in feed intake between ghrelin 

injected fish and the control. The results in this study show no link between 

expression of ghrelin in stomach, elevated levels of plasma ghrelin and any short-term 

change in feed intake. However Hevrøy et al., (2012) found reduced plasma ghrelin 

and stomach ghrelin mRNA levels in Atlantic salmon exhibiting voluntary fasting at 

elevated temperatures. Murashita et al., (2009) also found that mRNA levels of 

GHRL1 but not GHRL2 increased after 6 days fasting in Atlantic salmon. It is 

possible that elevated levels of ghrelin in plasma may be related to feed intake on a 
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longer time scale rather than short term. However the increased levels of ghrelin in 

plasma observed in this study may be due to the injection of rtGHRL. 

 

4.7 Gene expression 

 

4.7.1 Recombinant IP administered leptin and neuropeptide expression  

This study reports significantly higher expression of LEPA1 and LEPA2 in the liver of 

rsLEPA1-injected fish compared to control. In mammals leptin is expressed mainly 

by adipose tissue which is reflected by the fact that mammals deposit and store energy 

in adipose tissue. Adipose tissue and plasma leptin concentrations are dependent on 

the amount of energy stored as fat as well as the energy balance, this means that leptin 

levels are higher in obese individuals and increase with overfeeding (Ahima and Flier, 

2000; Ahima and Osei, 2004), thus leptin functions as an endocrine indicator of 

adipose energy reserves (Won et al., 2013) Many teleost fish utilize the liver as a 

major lipid storage site and the liver is also considered a major site of leptin 

production as LEP genes have been found to be highly expressed in the livers of 

pufferfish (Kurokawa et al., 2005), striped bass (Won et al., 2012) and yellow catfish 

Gong et al., (2013). On the other hand fatty fish such as Atlantic salmon mainly 

deposit and store energy in muscle tissue and visceral adipose tissue, which is to some 

extent reflected by a high expression of LEPA1 in muscle tissue. In contrast to other 

teleosts LEP expression is lower in tissues containing more adipocytes, visceral 

adipose tissue for example consists almost entirely of adipocytes but displays a much 

lower expression of LEP than muscle and liver tissue (Rønnestad et al., 2010). 

Whether leptin is produced or secreted in relation to the hepatic lipid content or 

adipose content of fish is still unknown (Won et al., 2012). Although Atlantic salmon 

utilise the liver to minor extent for energy storage, hepatic expression of LEPA1 is 

significant and comparable to the expression found in white muscle (Rønnestad et al., 

2010). Previous research has shown that pufferfish hepatocytes contain abundant oil 

droplets and LEP has been detected in hepatocytes (Kurokawa et al., 2005), indicating 

that liver expression of LEP is linked to energy metabolism of the hepatocytes. Our 

findings further support the hypothesis that expression of LEP in the liver is linked to 

metabolism.  
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Two experiments were performed in this study; in experiment one no significant 

reductions in feed intake or growth rate were found and LEPA1 and LEPA2 

expression in liver were not affected. Plasma levels of leptin were not measured as 

part of this study so it is difficult to speculate on how leptin plasma levels were 

affected by exogenous administration of LEPA1, however we can assume that the 

levels were altered as POMC isoforms were upregulated at a central level in 

Experiment two and that these possibly form part of an appetite regulating pathway as 

feed intake was reduced. One might expect that LEPA1 mRNA levels would be 

reduced at the sites of production such as in the liver due to external administration of 

LEPA1 however in Experiment two a significant upregulation of LEPA1 and LEPA2 

in liver was found, along with a reduction in feed intake and lower growth rate.  

These results suggest that LEP expression in the liver could be linked to the 

expression of POMC at a central level and short term changes in feed intake and 

metabolism. Previously Ronnestad et al., (2010) found that LEPA2 mRNA levels in 

the liver were higher in a group of Atlantic salmon with reduced rations over an 

extended period of time, this study shows that LEPA2 expression in liver may also be 

involved in short term changes in appetite in a manner comparable to that found in 

higher vertebrates. Our findings are also supported by Kullgren et al., (2013) who 

found that leptin acted as a signaling factor contributing to reduced food intake in 

Atlantic salmon.  

 

We found that administration of rsLEPA1 did not affect mRNA expression of NPY, 

AGRP isoforms, or CART in brain tissue in Experiment two, which is supported by 

Murashita et al., (2011) who also found that administration of rsLEPA1 did not affect 

NPY, AGRP and CART mRNA expression in the brain. However in Experiment one 

we found that rsLEPA1 injected fish had upregulated mRNA expression of AGRP1 in 

the brain. Leptin inhibits the NPY/AGRP1 neuron from releasing orexigenic peptides, 

the fact that AGRP1 is upregulated in Experiment one suggests that injected leptin 

may not be in circulation which is supported by the fact that feed intake is neither 

decreased, as one could expect in fish with increased leptin levels, or increased as one 

could expect with increased expression of AGRP1. Plasma leptin levels were not 

measured as part of this study, so no conclusions can be made based on plasma levels 

of leptin.   
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POMC may play a more important role in the short-term leptin-signaling pathway and 

could function independently of AGRP/NPY expressing neurons in Atlantic salmon as 

when the expression of POMCA1 and POMCA2 is upregulated a significant reduction 

in feed intake is also observed. The results presented in this study supports those of 

Murashita et al., (2011), who also found increased expression of POMCA1 in Atlantic 

salmon administered rsLEPA1. Previously IP injections of rsLEPA1 reduced short-

term food intake with increased expression of POMCA1 and POMCA2 and decreased 

expression of NPY in rainbow trout, meanwhile Atlantic salmon fasted for 6 days 

showed no significant change in the expression of NPY (Murashita et al., 2011; 

Murashita et al., 2009). Valen et al., (2011) also found that POMCA1 and POMCB 

were upregulated within 3 hours of feeding, which supports that these neuropeptides 

are involved in a short-term appetite regulating pathway. In relation to the 

upregulation of POMCA1 and POMCA2 it is important to note that the fish were fed 

one meal in the morning at the 09:00 and slaughtered at within 4 hours of the meal in 

both experiments, we found that POMC-type genes were only upregulated in 

Experiment two in which LEP-type genes were also upregulated and feed intake was 

reduced.  

 

We found that PYY expression in the brain was downregulated in leptin injected fish 

in Experiment two. PYY is associated with a reduction of feed intake in mammals 

(Cummings and Overduin, 2007). Previous studies of Atlantic salmon show that 

fasting and feeding have minimal effects on PYY mRNA expression in the brain 

(Murashita et al., 2011; Valen et al., 2011). However Valen et al., (2011) did find 

postprandial changes in PYY expression in the GI tract, and suggest that PYY responds 

differently to feed intake depending on peripheral or central expression, but that PYY 

plays a minor role in the central control of short-term food intake in Atlantic salmon. 

These results are in contrast to the findings in this study where PYY is downregulated 

in fish with a significant reduction in feed intake and upregulation of hepatic LEPA1 

and LEPA2 and POMC isoforms. PYY concentration in plasma increases after feeding 

and decreases during fasting in mammals (Murphy and Bloom, 2006), our findings 

are to some extent in line with the mammalian model as the apparent rsLEPA1 

induced reduction in feed intake could be considered involuntary fasting and thus may 

be involved in the reduced levels of PYY mRNA observed in the brain. It is possible 

that leptin-signaling pathway affects the expression of PYY at a central level. 
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4.7.2 Purified IP administered ghrelin and neuropeptide expression  

This study reports significantly higher mRNA expression of GHRL1A and GHRLIB in 

the stomach of rtGHRL-injected fish compared to control. Two experiments were 

performed and the expression of GHRL1A and GHRLIB was only upregulated in the 

experiment in which plasma ghrelin levels were found to be elevated. Significant 

changes in the mRNA expression of neuropeptides associated with orexigenic 

functions AGRP1, AGRP2, NPY and receptor GHRL1R were not found in rtGHRL 

treated fish. However mRNA expression of the anorexigenic peptides CCK and 

CCKL was significantly lower than the control in Experiment one and also appeared 

to be lower in Experiment two, although not significantly.  

 

Previously Gao et al., 2012 found that ghrelin supplemented in the diet of grouper 

Epinephelus coioides caused an increase in the expression of hypothalamic NPY 

mRNA and also an increase in feed intake and weight. Furthermore Terova et al., 

(2008) found mRNA levels of ghrelin in stomach were upregulated during negative 

energy balance, such as starvation, and downregulated during positive energy balance, 

such as refeeding and suggest that ghrelin has an orexigenic role in the regulation of 

food intake in sea bass. In salmonids the possible orexigenic function of ghrelin is not 

so clear. mRNA levels of GHRL1 but not GHRL2 have been found to increase during 

fasting in Atlantic salmon (Murashita et al., 2009) indicating a possible orexigenic 

role in Atlantic salmon (Kaiya et al., 2011). However injections of rtGHRL have 

decreased feed intake in rainbow trout and long-term peripheral IP implants of 

rtGHRL have also reduced daily feed intake compared to controls (Jönsson et al., 

2010). Furthermore Jönsson et al., (2010) suggest that ghrelin may act on the GHS-R 

in the CNS in rainbow trout as an anorexigenic hormone and that elevated periheral 

ghrelin leads to decreased feed intake in the long term (14 days). The inhibitory 

mechanism of ghrelin on food intake described in rainbow trout is similar to that 

demonstrated in the chicken (Kaiya et al., 2011).  

 

As mentioned previously ghrelin is produced primarily in the stomach in response to 

hunger and circulates in the blood in mammals. Plasma ghrelin levels increase during 

fasting and decrease after ingesting glucose and lipid, but not protein. The efferent 

vagus nerve contributes to the fasting-induced increase in ghrelin secretion. Ghrelin 

secreted by the stomach stimulates the afferent vagus nerve and promotes feed intake. 



  59 

The vagal circuit between the central nervous system and stomach has a crucial role 

in regulating plasma plasma ghrelin levels (Nonogaki, 2007). Thus it could be 

expected that the injected rtGHRL would cause an elevation of ghrelin plasma levels 

as the fish assimilate the cholesterol pellet formed by an IP injection. Based on this 

feedback mechanism one might expect to see a reduction in the fishes own production 

of ghrelin in the stomach and a downregulation of GHRL1A and GHRLIB in stomach 

tissue assuming that the fish did not have a hungersignal four hours after feeding at 

the point of sampling. Hevrøy et al., (2012) found a reduced plasma ghrelin 

concentration and reduced GHRL1 expression in stomach of Atlantic salmon kept at 

19° C after 21 days and suggest this may be due to long-term neuropeptide signaling. 

It is possible that the potential orexigenic or anorexigenic effects of elevated plasma 

ghrelin only become evident after a longer period of time, bearing in mind that fish in 

this study were sampled after four days in Experiment one and five days in 

Experiment two. 

 

Peripheral ghrelin can interfere with the CCK related mechanism in the regulation of 

satiety and food intake but also with other neuropeptides involved in homeostatic 

regulation of energy intake and expenditure (Kobelt et al., 2005). Gastrointestinal 

peptides such as CCK can suppress ghrelin secretion, however the effects may be 

indirect and/or have been difficult to reproduce and the physiological relevance 

remains unclear (Engelstoft et al., 2013). Known signals inhibiting ghrelin secretion 

are mainly endocrine and paracrine, known stimulatory signals are mainly neuronal 

(Engelstoft et al., 2013). Sympathetic nerve and vagal stimulation increase ghrelin 

secretion. Sympathetic stimulation most likely occurs directly at the ghrelin cell via 

beta1 adrenergic receptors. Vagal stimulation depends on colinergic muscarinic 

mechanisms, but whether this effect is direct or indirect is unclear (Engelstoft et al., 

2013). Inhibition of these pathways prevents fasting-induced elevation of plasma 

ghrelin (Engelstoft et al., 2013) 

  

CCK exists in the endocrine cells of the GI tract and within the central and peripheral 

nervous system (Lin et al., 2000). CCK acts as a satiation factor at the levels of the 

gut and centrally in specific brain regions in mammals (Lin et al., 2000). In goldfish 

IP and ICV injections of CCK8 acutely suppresses food intake, supporting that CCK 

acts as a satiety factor in fish. Furthermore Peyon et al., (1999) had previously found 
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an acute increase in CCK mRNA levels in the olfactory bulbs, telencephalon-preoptic 

region, hypothalamus, and posterior brain 120 minutes after a meal. This evidence 

supports that CCK synthesis and release occur following a meal (Lin et al., 2000). 

However Nguyen et al., 2013 did not find any data that could support brain CCK 

acting as a satiety signal in Cobia Rachycentron canadum but these fish were sampled 

only once 15 minutes after a meal and changes in CCK expression may take longer to 

occur. There is evidence that CCK has a similar anorexigenic function in salmonids; 

Jönsson et al., (2006) found a postprandial elevation of plasma CCK levels most 

evident after 4 and 6 hours in rainbow trout. Their results indicated that the endocrine 

release of gastrointestinal CCK was increased during feeding. CCK regulation also 

occurs at a central level postprandially, Valen et al., (2011) found that CCKL 

expression in the brain was higher than in unfed controls 0.5, 1.5, 3, 6, 9 and 12 hours 

post feeding in Atlantic salmon. However Murashita et al., (2009) found no change in 

the expression of CCK isoforms in the GI tract and brain of Atlantic salmon, but these 

fish were sampled after 6 days of fasting, and according to Valen et al., (2011) this is 

due to CCK acting within a shorter timeframe. In immature rainbow trout oral 

administration of CCK antagonists increases feed intake in immature rainbow trout 

(Gelineau and Boujard, 2001) 

 

In mammals the satiation effect of CCK depends on signaling via the vagus nerve and 

the vagal afferent-dependent mechanisms may be involved in peripheral ghrelin-

induced increase in food intake (Kobelt et al., 2005). Furthermore Kobelt et al., 2005 

claim there could be an antagonistic interaction between ghrelin and CCK to regulate 

food intake. Kobelt et al., 2005 found that ghrelin injected IP exerted an orexigenic 

effect in freely fed rats. However, in rats injected with both ghrelin and CCK feed 

intake was reduced. They conclude that the stimulation of food intake and neuronal 

activity in the ARC induced by ghrelin administered intraperitoneally is abolished by 

intraperitoneal CCK.  

 

In this study CCKL and CCKN were downregulated in brain tissue of rtGHRL treated 

fish in Experiment one. All the fish in this study were sampled four hours post 

feeding and according to the mentioned studies one might expect to see an 

upregulation of CCK, however no changes in mRNA expression of CCKL and CCKN 

were found in control or treatment groups except for in the ghrelin treated fish which 
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also had elevated plasma ghrelin levels and upregulated expression GHRL1A and 

GHRLIB in stomach tissue. It is possible that there could be a similar antagonistic 

relationship between ghrelin and CCK as described in rats by Kobelt et al., 2005. 

However the downregulation of CCK isoforms in brain, upregulation of GHRL1A and 

GHRLIB in stomach and elevated plasma ghrelin levels did not coincide with any 

short term change in feed intake in this experiment. The data found in this study 

indicates that plasma ghrelin could have an effect on postprandial changes in CCK 

expression at a central level, which in turn could influence feeding regulation as CCK 

is generally found to increase postprandially and have inhibitory effects on further 

food intake in fish, although changes in appetite were not found in ghrelin injected 

fish in this experiment.  
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5. Conclusion 

In summary the present study reports that administered rsLEPA1 causes a significant 

reduction in feed intake and SGR in Atlantic salmon. POMC isoforms seem to be  

involved in the leptin-signaling pathway as mRNA expression of POMCA1 and 

POMCA2 is only upregulated when a significant reduction in feed intake is also 

observed in rsLEPA1 administered Atlantic salmon. Hepatic LEPA1 and LEPA2 

mRNA expression was upregulated compared to control in rsLEPA1 administered 

fish which also showed a reduction in feed intake and growth linking hepatic 

expression of LEP isoforms to metabolism. PYY mRNA expression was 

downregulated in brain tissue in fish with a significant reduction in feed intake and 

could be involved in the leptin-signaling pathway at a central level.  

 

Significantly higher mRNA expression of GHRL1A and GHRLIB was found in the 

stomach of rtGHRL-injected fish compared to control, and mRNA expression was 

only upregulated when plasma ghrelin levels were found to be elevated. Rainbow 

trout GHRL1 administered IP was not found to affect feed intake in Atlantic salmon 

in this study. CCKL and CCKN mRNA expression was downregulated in the brain 

tissue of rtGHRL treated fish which also showed elevated plasma ghrelin levels. D-3-

hydroxybutyrate levels in plasma were elevated in GHRL1 administered fish 

suggesting that ghrelin has a role in the regulation of ketosis in Atlantic salmon.  

 

The method incorporating an individual based system and IP administration of 

hormones was validated. Low and steady glucose and lactate concentrations were 

found in both control and hormone administered fish, indicating that the fish were not 

stressed. Furthermore salmon started to eat within hours of being returned to the 

tanks.   
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Appendix 1 
 
Table 1 Feed (g) eaten per fish per day Experiment 1 pre and post injection 

 
Table 2 Feed (g) eaten per fish per day Experiment 2 pre and post injection 

 
 

 

 

 

 

 

 

 

 

 

 

 
 


