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Preface

Introduction

Algebraic K-theory of a ring captures several important properties of the ring. The
zeroth group K0 is concerned with the projective modules over the ring, while the
first group K1 is related to the general linear group over the ring. By methods of
Quillen and Waldhausen, these groups can be extended to a family of groups Ki for
each natural number i. Although the K-theory of a ring has a very natural definition,
it’s almost impossible to compute it directly, so people have sought approximations
that are easier to compute.

One approximation is Hochschild homology, another is cyclic homology, and there
exists a map fromK-theory to Hochschild homology, called the Dennis trace map, that
factors through negative cyclic homology. Hochschild homology and cyclic homology
are possible to calculate due to their algebraic nature, and by results of Goodwillie in
[Goo86], rational relative K-theory is isomorphic to rational relative cyclic homology.

It’s possible to generalize the definition of K-theory to the category of ring spectra,
and K-theory of rings then becomes a special case by associating to each ring R,
the Eilenberg Mac Lane spectrum HR of the ring. One can then hope to mimic
the construction of Hochschild homology and cyclic homology in the category of ring
spectra, and in the unpublished article [Bök86a], Bökstedt was able to define THH,
the topological Hochschild homology, of some special spectra. In a modern framework
with highly structured ring spectra, topological Hochschild homology of a commutative
ring spectrum R can be defined as the tensor S1 ⊗ R, see [MSV97]. For a space X
we will write ΛXR for the spectrum defined in Section 4.6 in [BCD10], which is non-
equivariantly equivalent to the tensor X ⊗ R. Martin Stolz analyzed the categorical
constructions of the functor ΛXR in his PhD thesis [Sto11].

The cyclic group Cn with n elements act on S1 through multiplication with the n-th
roots of unity, and this induces an action of Cn on THH. Topological cyclic homology
TC of a spectrum, was invented by Bökstedt, Hsiang and Madsen in [BHM93], and
is defined as a limit over certain maps between the Cn fixed points of THH, where n
varies over the natural numbers. Similarly to the non-topological versions, there is a
map from K-theory to THH, which factors through TC, and by a result in [DGM13],
the map from K-theory to TC is an equivalence in the nilpotent relative case.

Bökstedt calculated THH of the Eilenberg Mac Lane spectra HFp and HZ, in

v
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[Bök86b], and building on these calculations Bökstedt and Madsen in [BM94] with the
help of Tsalidis [Tsa94], was able to calculate TC(Z)∧p , the topological cyclic homology
of the integers completed at a prime p, for all odd primes p. Later Rognes did the case
p = 2 in [Rog99]. Hesseholt in [Hes97] and Hesselholt and Madsen in [HM97a, HM03]
have calculated TC completed at a prime p for free associative F-algebras, perfect fields
of characteristic p > 0, truncated polynomial rings of perfect fields of characteristic
p > 0, and certain local fields, more specifically complete discrete valuation fields of
characteristic zero with perfect residue field k of characteristic p > 2.

Several people have put a lot of effort into computing the homotopy groups of
topological Hochschild homology of various ring spectra. Some examples are calcu-
lating the mod p homotopy groups of THH of the Adams summand � in [MS93], the
mod v1 homotopy groups of THH of connective complex K-theory in [Aus05] and the
integral homotopy groups of THH(�) and the 2-local homotopy groups of THH(ko)
in [AHL10].

Related to the fixed points of THH is the now proven Segal conjecture. One version
says that for a cyclic group Cp of prime order p, the canonical map THH(S0)Cp →
THH(S0)hCp , from the fixed points to the homotopy fixed points, where S0 is the
equivariant sphere spectrum, is a p-adic equivalence. In [LNR11] the authors prove
similarly that THH(MU)Cp → THH(MU)hCp and THH(BP )Cp → THH(BP )hCp

are p-adic equivalences, where MU is the complex cobordism spectrum, and BP is
the Brown-Peterson spectrum, at the prime p. Another calculation in [HM97b] of
similar flavour, is that for a perfect field k of characteristic p, the map THH(k)Cpn →
THH(k)hCpn induces an equivalence of connective covers.

Let C2 act on ΛS2HF2 via the free action on S2 given by the antipodal map. In
Chapter 2 we make the following calculation: There are ring isomorphisms

π∗((ΛS2HF2)
C2) ∼= PZ/4(α)⊗Z/4 EZ/4(β)/(2α, 2β, α

2, αβ)

π∗((ΛS2HF2)
hC2) ∼= PZ/4(t, α)⊗Z/4 EZ/4(β)/(2t, 2α, 2β, α

2, αβ)

where |t| = −2, |α| = 2 and |β| = 3, and the homomorphism

Γ∗ : π∗((ΛS2HF2)
C2)→ π∗((ΛS2HF2)

hC2)

is given by mapping α to α and β to β. Since tβ is not in the image of Γ∗, it is not an
isomorphism in non-negative degrees.

In Chapter 3 we calculate the homotopy groups of iterated topological Hochschild
homology of HFp, which is isomorphic to π∗(ΛTnHFp), where T n is the n-torus. We
do these calculations for n ≤ p when p ≥ 5 and n ≤ 2 when p = 3. These groups are
as expected, in the sense that the spectral sequence calculating them collapses at the
E2-term and π∗(ΛTnHFp), is abstractly isomorphic as an Fp-algebra to the E∞-page
as an algebra. Here abstractly isomorphic means that the Fp-algebra isomorphism
between E∞ and π∗(ΛTnHFp) is not necessarily given by the canonical isomorphism
between E∞ and the associated graded complex of π∗(ΛTnHFp), coming from the
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filtration giving rise to the spectral sequence. There is a natural map of spectra
ω : S1

+ ∧ ΛTn−1HFp → ΛTnHFp, which is important when calculating the homotopy
fixed points, and we attain explicit formulas for the induced map in homotopy.

After the proof of the periodicity theorem in [HS98], periodic phenomena play a
prominent role in stable homotopy theory. The chromatic viewpoint on stable homo-
topy theory, is an organizing principle that let us see only information with particular
periodicity properties. In [CDD11], the authors construct higher topological cyclic
homology of a ring spectrum R, as a limit of fixed points of ΛTnR. It is hoped that
higher topological cyclic homology increases the chromatic type of a spectrum.

Fix a prime p and let k(n) be the n-th connective Morava K-theory. One version
of periodicity as defined in Section 6 in [BDR04] is that of telescopic complexity of a
spectrum X, and this is related to the chromatic type of a spectrum. If a spectrum
X has telescopic complexity n, then the map k(n)∗(Σ2pn−2X)→ k(n)∗(X) induced by
multiplication of vn is an isomorphism in high degrees.

There is an obvious action of T n+1 on ΛTn+1HFp, and it is expected that the
homotopy fixed points (ΛTn+1HFp)

hTn+1
has telescopic complexity n. In the last section

of Chapter 3 we show that in the range were we have calculated π∗((ΛTn+1HFp)
hTn+1

)
the self map

k(n)∗(Σ2pn−2(ΛTn+1HFp)
hTn+1

)→ k(n)∗((ΛTn+1HFp)
hTn+1

)

induced by multiplication of vn maps 1 to something non-zero, supporting the conjec-
ture that (ΛTn+1HFp)

hTn+1
has telescopic complexity n.

The calculation of π∗(ΛTnHFp) should be possible to generalize to a calculation
of the mod p homotopy groups V (0)∗(ΛTnHZ) and the mod v1 homotopy groups
V (1)∗(ΛTn�) in some range for n depending on p.

Organization

In Chapter 1 we give a short introduction to the Loday functor with some associated
results. After that we introduce the bar spectral sequence, and prove some results
about spectral sequences that we need later. In the last two sections we define the
isotropy separation diagram of an equivariant spectrum, and some spectral sequences
associated with it.

Chapter 2 begins in Section 2.1 by identifying the first possible non-zero differential
in the Tate spectral sequence for an equivariant S1 or S3 spectrum. Continuing in
Section 2.2 we find a family of non-zero differentials in V (0)∗(ΛSnHF2) for all n ≥ 1.
We finish the chapter by calculating the homotopy groups of the Tate fixed points,
homotopy fixed points, geometric fixed points, and actual fixed points of ΛS2HF2, and
identify the homomorphism π∗((ΛS2HF2)

C2)→ π∗((ΛS2HF2)
hC2).

Chapter 3 is the main part of this thesis, both in length, difficulty and technicality.
The first section introduces multifold Hopf algebras, which is a way to encode the
connection between the Hopf algebra structures coming from the different circles in
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ΛTnHFp. In Section 3.2 we prove that the structure of a multifold Hopf algebra puts
restriction on the possible coalgebra structures that can appear in π∗(ΛTnHFp). In
Section 3.3 we explicitly calculate π∗(ΛSnHFp) for n ≤ 2p, and state several technical
lemmas that are needed in Section 3.4, where we explicitly calculate π∗(ΛTnHFp)
for n ≤ p when p ≥ 5 and n ≤ 2 when p = 3. The calculation is spread over several
lemmas, and consists of showing that a bar spectral sequence collapses on the E2-page,
and then find a suitable Fp-algebra basis for π∗(ΛTnHFp) that allows us to identify the
algebra structure. Section 3.5 shows that there is an element in the second column of
the homotopy fixed points spectral sequence that is a cycle and not a boundary, and
represents vn in k(n)(ΛTn+1HFp).

The appendix contains the definition of a Hopf algebra, and the bar complex. In
addition we define a spectral sequence, state some convergence theorems and define an
algebra and coalgebra spectral sequence. After that, we define the Bökstedt spectral
sequence and continuous homology of a Tate spectrum, two constructions that are
needed in some proofs, but doesn’t play a very prominent role in the thesis.

Notation and Convention

We let � denote strict inclusion and ⊆ denote inclusion when equality is allowed. We
let N denote the natural numbers including 0, and N+ denote the strictly positive
natural numbers. Given n ≥ 1 we let n denote the set {1, . . . , n} of natural numbers.
Given a set S and an element s ∈ S we will often write S \ s for S \ {s} to make the
formulas more readable.

Given an element x in a (bi)graded module M , we let |x| denote the (bi)degree of
x. Given a graded module M we let Mn denote the part in degree n, and let M≤n

denote the module
⊕

i≤n Mn, and similarly for other inequalities <,> and ≥.
Let R be a commutative ring, let x and y be of even and odd degree, respectively.

We let PR(x) be the polynomial ring over R and let ER(y) be the exterior algebra
over y. When R is clear from the setup we often leave it out of the notation and write
Pp(x) = P (x)/(xp) for the truncated polynomial ring. Furthermore, we let Γ(x) be the
divided power algebra over R, which as an R-module is generated by the elements γi(x)
in degree i|x| for i ≥ 0, with R-algebra structure given by γi(x)γj(x) =

(
i+j
j

)
γi+j(x),

and R-coalgebra structure given by ψ(γk(x) =
∑

i+j=k γi(x)⊗ γj(x).
Homology is always with Fp coefficients, where p is a prime which is clear from the

setting. The differentials in a spectral sequence is only given up to multiplication with
a unit.
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Chapter 1

Preliminaries

In this chapter we define the Loday functor and state the properties we need from
orthogonal ring spectra. After that we introduce the spectral sequences that are used
throughout the thesis. See the appendix for the definition and convergence properties
of a spectral sequence.

1.1 The Loday Functor

We will work in the category of orthogonal spectra, but since our goal is to calculate
homotopy groups of certain spectra, we could have chosen another model. See [MM02]
and [MMSS01] for details. In [MMSS01] they prove that the category of orthogonal
commutative ring spectra is enriched over topological spaces, and is tensored and
cotensored.

Given a simplicial set X and an commutative ring spectrum R we define the Loday
functor ΛXR as in the beginning of Section 4.6 in [BCD10]. When X is a topological
space, we write ΛXR for Λsin(X)R, where sin(X) is the singular set of X.

Proposition 1.1.1. The Loday functor has the following properties.

1. If R is a cofibrant commutative ring spectrum then there is a natural equivalence
ΛXR 
 X ⊗R.

2. A weak equivalence X → Y of simplicial sets induces a weak equivalence ΛXR→
ΛYR.

3. Given a cofibration L → X and a map L → K between simplicial sets there is
an equivalence ΛX

∐
L KR 
 ΛXR ∧ΛLR ΛKR.

Proof. The first and second part follows from Corollary 4.4.5 and Lemma 4.6.1 in
[BCD10], respectively. The last part follows from the equivalence ΛXR 
 X ⊗ R and
the fact that tensor commutes with colimits.

1



2 Chapter 1. Preliminaries

Definition 1.1.2. Let X be simplicial sets, and let R a commutative ring spectrum.
The inclusion {x} → X induces a map Λ{x}R→ ΛXR, and these maps assemble to a
natural map

ωX : X+ ∧R ∼=
∨
x∈X

R ∼=
∨
x∈X

Λ{x}R→ ΛXR.

Let Y be a simplicial set. Composing ωX : X+ ∧ ΛYR → ΛX×YR with the map
induced by the map X × Y → X × Y/(X ∨ Y ) ∼= X ∧ Y yields a natural map

ω̂X : X+ ∧ ΛYR→ ΛX∧YR.

The map ωX was first constructed in Section 5 of [MSV97]. Given a simplicial set
X the cofiber sequence X+ → S0 → ΣX induces a stable splitting X+ 
 S0 ∨X.

Definition 1.1.3. Composing the maps ωS1 and ω̂S1 with the stable splitting S1
+ 


S1 ∨ S0, induce maps in homotopy

π∗(S1 ∧R) ∼= H∗(S1)⊗Fp π∗(R)→ π∗(ΛS1R)

π∗(S1 ∧ ΛYR) ∼= H∗(S1)⊗Fp π∗(ΛYR)→ π∗(ΛS1∧YR).

Given z ∈ π∗(R) and y ∈ π∗(ΛYR) we write σ(z) and σ̂(y) for the image of [S1] ⊗ z
and [S1]⊗ y under the respective maps, where [S1] is a chosen generator of H1(S

1).

The following statement was proven in Proposition 5.10 in [AR05] for homology,
but the same proof works for homotopy.

Proposition 1.1.4. Let R be a commutative ring spectrum. Then σ : π∗(R) →
π∗(ΛS1R) is a graded derivation, i.e.,

σ(xy) = σ(x)y + (−1)|x|xσ(y)

for x, y ∈ π∗R. From this it follows that the composite σ : π∗(ΛS1R)→ π∗(ΛS1×S1R)→
π∗(ΛS1R) where the last map is induced by the multiplication in S1 is also a derivation.

Proposition 1.1.5. Let n ≥ 1 and let R be a commutative ring spectrum, and assume
that π∗(ΛSnR) is flat as a π∗(R)-module. Then π∗(ΛSnR) is an π∗(R)-Hopf algebra
with unit and counit induced by choosing a base point in Sn and collapsing Sn to
a point, respectively. The multiplication and coproduct is induced by the fold map
∇ : Sn ∨ Sn → Sn and the pinch map ψ : Sn → Sn ∨ Sn, respectively, and the
conjugation map is induced by the reflection map − id : Sn → Sn.

Proof. We have ΛSn∨SnR 
 ΛSnR ∧R ΛSnR and since π∗(ΛSnR) is flat as a π∗(R)-
module, π∗(ΛSnR ∧R ΛSnR) ∼= π∗(ΛSnR) ∧π∗(R) π∗(ΛSnR) by Corollary 1.2.2. That
the various diagrams in the definition of a π∗(R)-Hopf algebra commutes, now follows
from commutativity of the corresponding diagrams on the level of simplicial sets.
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Proposition 1.1.6. Let R be a commutative ring spectrum, and assume that π∗(ΛS1R)
is flat as a π∗(R)-module. Given z in π∗(R), then σ(z) is primitive in the the π∗(R)-
Hopf algebra π∗(ΛS1R).

Proof. The diagram

S1
+ ∧R

ω ��

ψ+∧id
��

ΛS1R

ΛψR

��
(S1 ∨ S1)+ ∧R

ω �� ΛS1∨S1R

commutes. Hence, ψ(σ(z)) = σ(z)⊗ 1 + 1⊗ σ(z).

1.2 The Bar Spectral Sequence

In this section we introduce the bar spectral sequence which is the most important
tool in our calculations.

Let X∗ be a simplicial spectrum and define the simplicial abelian group πt(X∗) to
be πt(Xq) in degree q with face and degeneracy homomorphisms induced by the face
and degeneracy maps in X∗. Write |X∗| for the realization of the simplicial spectrum
X∗. See Chapter X in [EKMM97] for more details.

The spectral sequence below is well known for spaces, and appears for spectra in
Theorem X.2.9 in [EKMM97].

Proposition 1.2.1. Let X∗ be a simplicial spectrum, and assume that sks(X∗) →
sks+1(X∗) is a cofibration for all s ≥ 0. There is a strongly convergent spectral sequence

E2
s,t(X∗) = Hs(πt(X∗))⇒ πs+t(X∗).

Let R be a simplicial ring spectrum.
If X∗ is a simplicial R-algebra, then E2

s,t(X∗) is an π∗(R)-algebra spectral sequence.

Proof. The skeleton filtration sk0 X∗ ⊆ sk1 X∗ ⊆ sk2 X∗ ⊆ . . . of X∗ gives rise to an
unrolled exact couple

A0

��

�� A1

��

�� A2

��

�� . . .

E1
0 E1

1

��

E1
2

��

where As,t = πs+t(sks X∗) and E1
s,t = πs+t(sks X∗/ sks−1 X∗) when s ≥ 0 and 0 oth-

erwise. That the d1-differential is the differential in the chain complex associated to
πt(X∗) follows from a diagram chase as in Theorem 11.14 in [May72].

This spectral sequence is concentrated in the right half plane. By Theorem A.3.6,
the associated spectral sequence converges strongly to the colimit colims As = π∗(X∗)
since the limit lims As = 0. We have the usual filtration F0 ⊆ F1 ⊆ Fs ⊆ . . . of the
colimit colims As as constructed in Section A.3.
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Recall the definition of an algebra spectral sequence in Definition A.3.7. Given
a ∈ πt(sks X∗) and b ∈ πv(sku X∗) represented by maps of simplicial sets St → sks X∗
and Sv → sku X∗, the product ab ∈ πt+v(sks+u X∗) is represented by the composition
St ∧ Su → sks X∗ ∧R sku X∗ → sks+u X∗ ∧R ∧X∗ →, where the first map is the smash
product, the second is the inclusion, and the last map is the product map in X∗.

If X∗ is a simplicial R-algebra, the product thus respects the filtration, i.e., φ(Fs,t⊗
Fu,v) ⊆ Fs+u,t+v. Using the crossproduct in homology we get a product

E2
s,t(X∗)⊗ E2

u,v(X∗)→ E2
s+t,u+v(X∗ ∧R X∗)→ E2

s+t,u+v(X∗)

where the last homomorphism is the standard shuffle product of simplicial modules.
Thus the product satisfies the Leibniz rule, and we define the rest of the products as
the homology of the product on the E2-page. It coincide with the induced product
on the associated graded complex coming from the filtration of colimAs since both
products have the same geometric origin from a map of simplicial spectra.

We are interested in the special case when R is a commutative ring spectrum, M a
cofibrant right R-module, N is a left Rmodule and B(M,R,N) is the bar construction.
I.e., B(M,R,N) is the simplicial spectrum which in degree q is equal to M ∧R∧q ∧N ,
and where the face and degeneracy maps are induced by the same formulas as in the
algebra case using the unit map and multiplication map. By Lemma 4.1.9 in [Shi07]
there is an equivalence |B(M,R,N)| 
 |M ∧R N |.
Corollary 1.2.2. Let R be a bounded below ring spectrum, M a right R-module and
N a left R-module. Then there is a strongly convergent spectral sequence

E2
s,t = Torπ∗R

s (π∗M,π∗N)t ⇒ πs+t(M ∧L
R N).

Remark 1.2.3. If π∗(X∗) is flat as an π∗(R)-module, this corollary yields an isomor-
phism π∗(X∗ ∧R X∗) ∼= π∗(X∗)⊗π∗(R) π∗(X∗).

If X∗ is a simplicial R-coalgebra, i.e., there is a coproduct map ψ : X∗ → X∗∧RX∗
with a counit map X∗ → R making the obvious diagrams commute up to homotopy,
and π∗(X∗) is flat as an π∗(R)-module, then π∗(X∗) is an π∗(R)-coalgebra with coprod-
uct induced by ψ followed by the isomorphism π∗(X∗ ∧R X∗) ∼= π∗(X∗)⊗π∗(R) π∗(X∗).

Corollary 1.2.4. Assume that X∗ is a simplicial R-coalgebra, and assume that the
map sks(X∗)→ sks+1(X∗) is a cofibration for all s ≥ 0. If each term Er(X∗) for r ≥ 1
is flat over π∗(R) then E2(X∗) is an π∗(R)-coalgebra spectral sequence. If in addition,
π∗(X∗) is flat as an π∗(R)-module, then the spectral sequence converges to π∗(X∗) as
an π∗(R)-coalgebra.

Proof. Recall the definition of a coalgebra spectral sequence in Definition A.3.8. Let
skn(X∗∧RX∗) be the colimit of the diagram consisting of the spectra ski(X∗)∧Rskj(X∗)
with i + j ≤ n, and with one map ski(X∗) ∧R skj(X∗) → ski′(X∗) ∧R skj′(X∗) when
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i ≤ i′ and j ≤ j′ with i′+j′ ≤ n, induced by the inclusion of the skeletons. The natural
map skn(X∗∧RX∗)→ skn+1(X∗∧RX∗) is a cofibration since it can be constructed as a
pushout of cofibrations, by adding the extra spectra in the diagram for skn+1(X∗∧RX∗)
one by one.

This yields a sequence of cofibrations

sk0(X∗ ∧R X∗)→ sk1(X∗ ∧R X∗)→ sk2(X∗ ∧R X∗)→ . . .

with colimit equal to X∗ ∧R X∗. We let As,t = πs+t(sks(X∗ ∧R X∗)) and E
1

s,t =

π∗(sks(X∗ ∧R X∗)/sks−1(X∗ ∧R X∗)) and the chain complex E
1
is equal to the total

complex of E1(X∗)⊗π∗(R)E
1(X∗), since sks(X∗∧RX∗)/sks−1(X∗∧RX∗) is the wedge of

ski(X∗)∧R skj(X∗) with i+j = n divided by the images of lower dimensional skeletons.
This corresponding spectral sequence converges strongly

E
1
(X∗ ∧R X∗)⇒ π∗(X∗ ∧R X∗),

with and since each term E1(X∗) for r ≥ 1 is flat over π∗(R), the Künneth isomorphism
induces an isomorphism E

r
(X∗ ∧R X∗) ∼= Er(X∗)⊗π∗(R) E

r(X∗).
From Proposition 1.2.1 we have a spectral sequence

E1(X∗ ∧R X∗)⇒ π∗(X∗ ∧R X∗)

coming from the skeleton filtration of X∗ ∧R X∗.
There is map from the filtration ski(X∗ ∧R X∗) to the skeleton filtration ski(X∗ ∧R

X∗) induced by the natural maps ski(X∗) ∧R skj(X∗) → ski+j(X∗ ∧R X∗). It induces

the shuffle map from E
1
(X∗ ∧R X∗) to E1(X∗ ∧R X∗), which is a chain equivalence

with inverse given by the Alexander Whitney map.
The composition

Er
s,t(X∗)→ Er

s,t(X∗ ∧R X∗)
∼=−→
⊕

u+x=s,v+y=t

Er
u,v(X∗)⊗π∗(R) E

r
x,y(X∗)

where the first map is induced by the map X∗ → X∗ ∧R X∗, and the second map is
induced by the Alexander Whitney map defines a π∗(R)-coalgebra structure on Er(X∗)
satisfying the the assumption of an R-coalgebra spectral sequence in Definition A.3.8.

If in addition π∗(X∗) is flat as an π∗(R)-module, then π∗(X∗) is an π∗(R)-coalgebra
as observed in Remark 1.2.3. Let

F0 ⊆ . . . ⊆ Fs−1 ⊆ Fs ⊆ Fs+1 ⊆ . . . ⊆ π∗(X∗)

be the filtration associated with the skeleton filtration of X∗, let

G0 ⊆ . . . ⊆ Gs−1 ⊆ Gs ⊆ Gs+1 ⊆ . . . ⊆ π∗(X∗ ∧R X∗)

be the filtration associated with the skeleton filtration of X∗ ∧R X∗, and let

F 0 ⊆ . . . ⊆ F s−1 ⊆ F s ⊆ F s+1 ⊆ . . . ⊆ π∗(X∗ ∧R X∗)
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be the filtration associated with the filtration sk(X∗∧RX∗). Since the spectral sequence
E2(X∗ ∧R X∗) is isomorphic to E

2
(X∗ ∧R X∗), and they both converge strongly to

π∗(X∗ ∧R X∗) we have a commutative square⊕
s≥0 Gs/Gs−1

∼= ��

∼=
��

⊕
s≥0 E

∞
s (X∗ ∧R X∗)/E∞

s−1(X∗ ∧R X∗)

∼=
��⊕

s≥0 Hs/Hs−1

∼= ��
⊕

s≥0 E
∞
s (X∗ ∧R X∗)/E

∞
s−1(X∗ ∧R X∗)

so Gs = Fs for all s ≥ 0. Since the coproduct map ψ : X∗ → X∗ ∧R X∗ preserves
the skeleton filtration, this implies that on homotopy groups ψ(Fs) ⊆ Gs = Hs. Now
Hs/Hs−1

∼= ⊕s Fs/Fs−1, so the spectral sequence converges to π∗(X∗) as an π∗(R)-
coalgebra.

In particular, for B(R,ΛXR,R) 
 ΛS1∧XR we have the following proposition.

Proposition 1.2.5. Let R be a commutative ring spectrum and let X be a simplicial
set. The operator

σ̂ : π∗(ΛXR)→ π∗(ΛS1∧XR)

takes z to the class of [z] in

E2
s,t = Torπ∗(ΛXR)(π∗(R), π∗(R))⇒ πs+t(ΛS1∧XR),

where [z] is in the reduced bar complex B(π∗(R), π∗(ΛXR), π∗(R)).

Proof. Using the minimal simplicial model for S1 we get a simplicial spectrum S1
+ ∧

ΛXR which in simplicial degree q is equal to (S1
q )+ ∧ ΛXR ∼= (ΛXR)∨q, the q-fold

wedge of ΛXR. In the E2-term of the spectral sequence in Proposition 1.2.1 associated
with this simplicial spectrum, the element [S1] ⊗ z is represented by 1 ⊕ z in E1

1,∗ ∼=
π∗(ΛXR ∨ ΛXR) ∼= π∗(ΛXR) ⊕ π∗(ΛXR), where the second factor corresponds to the
non-degenerate simplex in S1

1 .
Similarly, there is a simplicial model for the spectrum ΛS1∧XR, which in simplicial

degree q is equal to ΛS1
q∧XR

∼= Λ∨
q X

R ∼= (ΛXR)∧Rq−1, the (q− 1)-fold smash product

over R. The map ω̂ : S1
+ ∧ ΛXR → ΛS1×XR is given on these simplicial models in

degree q by the natural map

(ΛXR)∨q → (ΛXR)∧q → (ΛXR)∧Rq−1

where the first map is induced by the inclusion into the various smash factors using
the unit maps, and the second map is induced by the map ΛXR → Λ{pt}R on the
factor indexed by the degenerate simplex. The element σ̂(z) in the spectral sequence
from Proposition 1.2.1 associated with this simplicial spectrum, is thus represented by
the element z in E1

1,∗ ∼= π∗(ΛXR).
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Now we have to compare this last spectral sequence, with the spectral sequence
coming from the bar complex B(R,ΛXR,R). In simplicial degree q, B(R,ΛXR,R) is
equal to R ∧ ΛXR

∧q−1 ∧ R ∼= ΛS0�(
∐

q X)R. The equivalence between B(R,ΛXR,R)

and the model above is induced by the map S0 �∐q X → ∨q X identifying S0 and
the basepoints in X to the base point in

∨
q X. The element σ̂(z) is thus represented

by the class of [z] in

E2
s,t = Torπ∗(ΛXR)(π∗(R), π∗(R))⇒ πs+t(ΛS1∧XR),

where [z] is in the reduced bar complex B(π∗(R), π∗(ΛXR), π∗(R)).

1.3 Hopf Algebra Spectral Sequences

This section contains some results about calculations in spectral sequences with a Hopf
algebra structure. The first result is well known, and will be a cornerstone in reducing
the number of potential non-zero differentials in the bar spectral sequence and the
Bökstedt spectral sequence.

Proposition 1.3.1. Let E2 be a first quadrant connected R-Hopf algebra spectral se-
quence. The shortest non-zero differentials in E2 of lowest total degree, if there are
any, are generated by differentials from an indecomposable element in E2 to a primitive
element in E2.

Proof. If there are no di-differentials for i < r, then Er = E2 is still an R-Hopf algebra
spectral sequence. Let z be an element in Er of lowest total degree with dr(z) �= 0. If
z can be decomposed as z = xy, with both x and y in positive degrees, then by the
Leibniz rule dr(xy) = dr(x)y ± xdr(y), so if dr(xy) �= 0, then dr(x) or dr(y) must be
non-zero, contradicting the minimality of the degree of z.

We have ψ(z) = 1 ⊗ z + z ⊗ 1 +
∑

z′ ⊗ z′′ for some elements z′ and z′′ of lower
degree than z. Now,

ψ(dr(z)) = dr(ψ(z)) = 1⊗ dr(z) + dr(z)⊗ 1 +
∑

dr(z′)⊗ z′′ ± z′ ⊗ dr(z′′).

If dr(z) is not primitive we must have that dr(z′) or dr(z′′) are not zero, contradicting
the minimality of the degree of z.

Thus the shortest differential in lowest total degree is from an indecomposable
element to a primitive element.

The next proposition shows that in certain circumstances the coalgebra structure
of the abutment in a spectral sequence is determined by the algebra structure of the
dual spectral sequence. We will use it to calculate the Fp-Hopf algebra structure of
π∗(ΛSnHFp).
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Proposition 1.3.2. Let R be a field, and let

0 �� A0
i ��

=
��

A1

j
��

i �� A2

j
��

�� . . .

E1
0 E1

1

k
��

E1
2

k
��

be an unrolled exact couple of connected cocommutative R-coalgebras which are finite in
each degree. The unrolled exact couple gives rise to a spectral sequence E2 converging
strongly to colims As by Theorem A.3.6.

Assume that in each degree t the map As,t → As+1,t eventually stabilizes, i.e., is the
identify for all s ≥ u for some u depending on t. Assume the E2-term of the spectral
sequence is isomorphic, as an R-coalgebra, to a tensor product of exterior algebras
and divided power algebras, and there are no differentials in the spectral sequence,
i.e., E2 = E∞. Then there are no coproduct coextensions in the abutment. Hence,
colims AS

∼= E∞ as an R-coalgebra.

Proof. The colimit colims AS of R-coalgebras is constructed in the underlying category
of R-modules. Applying D(−) = homR(−, R) to the unrolled exact couple in the
proposition yields an unrolled exact couple . . . → A−2 → A−1 → A0 of commutative
R-coalgebras with A−s = D(As). By Theorem A.3.6 the associated spectral sequence
converges strongly to lims As = D(colims As) since it is a spectral sequence with exiting
differentials. Since R is a field, cohomology is the dual of homology, so E

r

−s,−t =
D(Er

s,t).

Now, since E2 ∼=⊗I E(xi)⊗
⊗

J Γ(yj), we have E
2 ∼=⊗I E(x∗

i )⊗
⊗

J P (y∗j ), where
x∗
i is the dual of xi, and (y∗j )

k is the dual of γk(yj). Since there are no differentials in E2,

there are no differentials in E
2
, so E

2
= E

∞
. Since colimAs is cocommutative, lims As

is commutative, and hence (x∗
i )

2 = 0 in the abutment lims As since x
∗
i is in odd degree.

Furthermore, y∗j is not nilpotent, so there is an algebra isomorphism lims As
∼= E

∞
.

Since the maps As → As+1 eventually stabilizes, D(lims As) ∼= colims As, so we can
dualize again, and get that there is an R-coalgebra isomorphism colims As

∼= E∞.

The final two lemmas are one standard homological calculation, and one easy
homological calculation that are used to identify the Ep-term of the Bökstedt spectral
sequence.

Lemma 1.3.3. Let

E2 = A⊗R ΓR(x0, x1, . . .)⊗ ER(y1, y2, . . .)

be a connected R-algebra spectral sequence with xi and yi in filtration 1 and R a field.
Assume there are differentials

dp−1(γp+k(xi)) = γk(xi)yi+1,
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for all k, i ≥ 0. Then

Ep ∼= A⊗ PR(x0, x1, . . .)/(x
p
0, x

p
1, . . .).

Proof. Consider the R algebra ΓR(xi) ⊗ ER(yi+1) with differentials dp−1(γp+k(xi)) =
γk(xi)yi+1. The cycles are γk(xi) for k ≤ p − 1 and γk(xi)yi+1 for all k, but this last
family are also boundaries, so the homology is PR(xi)/(x

p
i ). The lemma now follows

from the Künneth isomorphism, since R is a field.

In the next lemma we have a family of differentials dp−1(γp+k(xi)) given by certain
formulas, and then another family of differentials dp−1(γp+k(z)) with image in the
module generated by the images of all the differentials in the first family. The lemma
states how we can construct new cycles such that we are not bothered by the last
family of differentials.

Lemma 1.3.4. Let

E2 = A⊗ ΓR(x0, x1, . . .)⊗ ER(y1, y2, . . .)⊗ ΓR(z)

be a connected R-algebra spectral sequence. Assume there are differentials

dp−1(γp+k(xi)) = γk(xi)yi+1

dp−1(γp+k(z)) = γk(z) ·
∑
l∈N

rld
p−1(γp(xl)),

where rl are elements in R.
Then there are cycles

γpk(z
′) =

pk−1∑
j=0

(
(−1)jγpk−pj(z)

∑
α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(xi)
)
, (1.3.5)

where |α| = ∑k∈N αi, and the convention is that 00 = 1, γ0(x) = 1, and γi(x) = 0
when i < 0.

Furthermore, this formula induces an R-algebra isomorphism

A⊗ΓR(x0, x1 . . .)⊗ER(y1, y2, . . .)⊗ΓR(z
′) ∼= A⊗ΓR(x0, x1 . . .)⊗ER(y1, y2, . . .)⊗ΓR(z).

Proof. First we show that the elements γpk(z
′) are cycles. By the Leibniz rule

dp−1(γpk(z
′)) = dp−1

( pk−1∑
j=0

(
(−1)jγpk−pj(z)

∑
α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(xi)
))

=

pk−1∑
j=0

(
(−1)jdp−1(γpk−pj(z))

∑
α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(xi)
)

+

pk−1∑
j=0

(
(−1)jγpk−pj(z)

∑
α∈NN,|α|=j

dp−1
(∏

i∈N
rαi
i γpαi

(xi)
))

.
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Using the formula for dp−1(γpk−pj(z) and the Leibniz rule once more,

dp−1(γpk(z
′)) =

pk−1∑
j=0

(
(−1)jγpk−p(j+1)(z)

(∑
l∈N

rld
p−1(γp(xl))

) ∑
α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(xi)
)

+

pk−1∑
j=0

(
(−1)jγpk−pj(z)

∑
α∈NN,|α|=j

∑
l∈N

rαl
l γp(αl−1)(xl)d

p−1(γp(xl))
∏

l �=i∈N
rαi
i γpαi

(xi)
)
,

(1.3.6)

and there are no extra signs here since all the factors in the expression of γpk(z) are
in even degrees.

In the first sum in equation 1.3.6 observe that(∑
l∈N

rld
p−1(γp(xl))

) ∑
α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(xi)

=
∑
l∈N

∑
α∈NN,|α|=j

rαl+1
l dp−1(γp(xl))γpαl

(xl)
∏

l �=i∈N,
rαi
i γpαi

(xi)

=
∑
l∈N

∑
α∈NN,|α|=j+1

rαl
l dp−1(γp(xl))γp(αl−1)(xl)

∏
l �=i∈N

rαi
i γpαi

(xi)

Substituting this expression into equation 1.3.6 and increasing the summation index
in the first sum with one, the differential is given by

dp−1(γpk(z
′)) =

pk−1+1∑
j=1

(
(−1)j−1γpk−pj(z)

∑
α∈NN,|α|=j

∑
l∈N

rαl
l γp(αl−1)(xl)d

p−1(γp(xl))
∏

l �=i∈N
rαi
i γpαi

(xi)
)

+

pk−1∑
j=0

(
(−1)jγpk−pj(z)

∑
α∈NN,|α|=j

∑
l∈N

rαl
l γp(αl−1)(xl)d

p−1(γp(xl))
∏

l �=i∈N
rαi
i γpαi

(xi)
)
.

The j = pk−1+1 summand in the first sum is zero because γpk−(pk−1+1)p(z) = γ−p(z) =
0. Similarly, the j = 0 summand in the last sum is zero because 0 = j = |α| implies
that αl = 0 for all l, and hence γp(αl−1)(xl) = γ−p(xl) = 0.

The rest of the summands cancel pairwise, due to the factors (−1)j−1 and (−1)j.
Thus dp−1(γpk(z

′)) = 0.
That (γpk(z

′))p = 0 is clear by the Frobenius formula, since every summand in the
expression for γpk(z

′) contain a factor from a divided power algebra.
The composite

ΓR(z)
γ
pk

(z) →γ
pk

(z′)
�� ΓR(x0, x1, . . .)⊗ ER(y1, y2, . . .)⊗ ΓR(z)

prΓR(z) �� ΓR(z)
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equals the identity. Hence, the map induced by equation 1.3.5 induces an R-algebra
isomorphism

A⊗ΓR(x0, x1 . . .)⊗ER(y1, y2, . . .)⊗ΓR(z
′) ∼= A⊗ΓR(x0, x1 . . .)⊗ER(y1, y2, . . .)⊗ΓR(z).

1.4 The Isotropy Separation Diagram

Everything in this section about finite groups can be found in Section 4 in [LNR12]
or in Part 1 of [GM95]. Recall from Section II.2 in [MM02] what it means for an
equivariant orthogonal G-spectrum X to be indexed on various universes. We let i be
the inclusion of the trivial G-universe into a complete G-universe, let i∗ be the forgetful
functor from G-spectra indexed on a complete universe, to a G-spectra indexed on the
trivial G-universe and let i∗ be the left adjoint of i∗. See Section V.1 in [MM02] for
more details.

Let EG be a free, contractible G-CW complex. The collapse map from EG to a
point gives a homotopy cofiber sequence

EG+ → S0 → ẼG (1.4.1)

of based G−CW complexes where ẼG is the unreduced suspension of EG+ with one
of the cone points as a base point.

Definition 1.4.2. Let X be an orthogonal G-spectrum and define the spectra

XhG = (EG+ ∧ i∗X)/G (homotopy orbit)

XhG = F (EG+, X)G (homotopy fixed points)

X tG = [ẼG ∧ F (EG+, X)]G (Tate spectrum).

We have a commutative diagram

[EG+ ∧X]G ��

�
��

XG ��

Γ

��

[ẼG ∧X]G

Γ̂
��

[EG+ ∧ F (EG+, X)]G �� F (EG+, X)G �� [ẼG ∧ F (EG+, X)]G,

with horizontal cofiber sequences coming from 1.4.1, where F (Y,X) is the mapping
spectrum from Y to X and the vertical map is induced by the map X ∼= F (S0, X)→
F (EG+, X) given by collapsing EG to a point.

The left map is an equivalence by Proposition IV.6.7 in [MM02]. We also have the
Adams equivalence, Equation VI 4.6 in [MM02],

τ : (ΣadGEG+ ∧ i∗X)/G
�→ [i∗(EG+ ∧ i∗X)]G
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where adG denotes the adjoint representation of G. When G is finite, the adjoint
representation is trivial, so the diagram above can be rewritten for any genuine G-
spectrum X, as the isotropy separation diagram

XhG
�� XG ��

Γ

��

[ẼG ∧X]G

Γ̂
��

XhG
�� XhG Rh

�� X tG.

Our goal is to compute the homotopy groups of XG and to do this we introduce
some spectral sequences, first introduced in [GM95], that converges to the homotopy
groups of the bottom row of the isotropy separation diagram.

1.5 Tate Spectral Sequence and Homotopy Fixed

Points Spectral Sequence

In this section we will define three spectral sequences that calculates the homotopy
groups of the three spectra in the lower half of the isotropy separation diagram. These
were originally constructed in [GM95].

To define one of these spectral sequences we need the notion of a complete resolution
and Tate cohomology of a finite group G with coefficients in a G-module M . This can
be found in Chapter IV in [Bro82].

A complete resolution for G is an acyclic complex P = (Pi)i∈Z of projective Fp-
modules together with a surjective homomorphism ε : P0 → Z such that P = (Pi)i∈N
is an ordinary resolution of F with augmentation ε. From the definition there is a
monomorphism η : Fp → P−1 such that the diagram

· · · �� P1
d �� P0

d ��

ε
����

P−1
d �� · · ·

Fp

��

η
��

commutes.

Definition 1.5.1. Given an Fp-module M and a complete resolution (P∗, d∗) of G,
the Tate cohomology groups of M are defined by

Ĥn(G;M) = Hn(HomFp(P∗,M)),

and the Tate homology groups are defined by

Ĥn(G;M) = Hn(P∗ ⊗Fp M).
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These groups are independent of the chosen resolution of G, and there is an iso-
morphism

Ĥn(G;M) ∼= Ĥ−n−1(G;M).

We will not distinguish between a G-space and its suspension spectrum. Let G be
a finite group, Ẽn be the n-skeleton of ẼG for n ≥ 0, while Ẽ−n = D(Ẽn) = F (Ẽn, S

0)

is its function dual. Splicing the skeleton filtration of ẼG with its function dual gives
the finite terms in the Greenlees filtration of G:

D(ẼG)→ . . .→ Ẽ−1 → Ẽ0 = S0 → Ẽ1 → . . .→ ẼG. (1.5.2)

The successive cofibers of 1.5.2 are

Ẽn/Ẽn−1 = G+ ∧ (∨Sn). (1.5.3)

So, applying homology to the filtration yields a spectral sequence E1
s,t = Hs+t(Ẽs/Ẽs−1)

that is concentrated on the horizontal axis. Since both ẼG 
 hocolimn Ẽn and
D(ẼG) 
 holimn Ẽn are non-equivariantly contractible, this spectral sequence col-
lapses at the E2-term, giving us a long exact sequence

· · · �� H2(Ẽ2/Ẽ1)
d �� H2(Ẽ1/Ẽ0)

d ��

����

H2(Ẽ0/Ẽ−1)
d �� · · ·

H0(S)
��

��

of finitely generated free Fp[G]-modules. Letting Pn = Hn+1(Ẽn+1/Ẽn) yields a com-
plete resolution (P∗, d∗) of Fp = H0(S

0).
We are also interested in the non-finite, groups of units in C and H. Let K be one

of the fields C or H and let k = dimK. Let G = S(K) be the group of units in K and
let SK be the one point compactification of K thought of as the unreduced suspension
of S(K). Given a G-spectrum X, the Greenlees filtration of ẼG = SK∞

is defined as

Ẽks = Ẽks+1 = . . . = Ẽk(s+1)−1 = SsK , (1.5.4)

with maps iks : Ẽks−1 → Ẽks equal to the natural inclusion S(s−1)K → SsK .
We now construct the Tate spectral sequence. Let G be a finite group, S(C)

or S(H), and let X be an orthogonal G-spectrum. Smashing the cofiber sequence
Ẽs−1 → Ẽs → Ẽs/Ẽs−1, coming from the Greenless filtration, with F (EG+, X) and
taking G-fixed points, yields the cofiber sequence

[Ẽs−1 ∧ F (EG+, X)]G → [Ẽs ∧ F (EG+, X)]G → [Ẽs/Ẽs−1 ∧ F (EG+, X)]G.

Theorem IV 2.11 in [MM02] and Corollary II 1.8 in [LMSM86] combines to give a
non-equivariant equivalence i∗i∗(X)→ X, and the map collapsing EG to a point gives
a non-equivariant equivalence F (S0, X)→ F (EG+, X). Hence we get an equivalence

[Ẽs/Ẽs−1 ∧ F (EG+, X)]G 
 [Ẽs/Ẽs−1 ∧X]G 
 [Ẽs/Ẽs−1 ∧ i∗i∗(X)]G
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Since Ẽs/Ẽs−1 is G-free, the Adams equivalence, equation VI 4.6 in [MM02] gives an
equivalence

[Ẽs/Ẽs−1 ∧ i∗i∗(X)]G 
 (ΣadGẼs/Ẽs−1 ∧ i∗(X))/G.

The Greenless filtration yields a filtration

∗ �� · · · �� [Ẽs−1 ∧ F (EG+, X)]G �� [Ẽs ∧ F (EG+, X)]G �� · · · �� X tG ,

where the identification of the homotopy (co)limits follows from Lemma 4.4 in [LNR12].
Applying homotopy to this sequence gives rise to an unrolled exact couple of graded

groups

. . . �� As−1
�� As

��

�� As+1

��

�� . . .

Ê1
s−1

��

Ê1
s

��

where As,t = πs+t([Ẽs−1 ∧ F (EG+, X)]G) and Ê1
s,t = πs+t(Σ

ad(G)Ẽs/Ẽs−1 ∧ i∗(X))/G).
The dotted line is a degree 1 homomorphism.

More general versions of the spectral sequences in the next proposition can be
found in Theorem 10.3 in [GM95]. Furthermore, Theorem 10.5 and 10.6 in [GM95]
proves the claim about the multiplicative property of the spectral sequences involved.

Proposition 1.5.5. Let G be a finite group, and let X be a G spectrum. Assume
that X is bounded below and with finite homotopy groups in each degree. Let M be the
sphere spectrum or V (0) the mod p Moore spectrum. Then there are strongly convergent
spectral sequences

Ê2
s,t
∼= Ĥ−s(G;Mt(X))⇒Ms+t(X

tG) Tate spectral sequence

E2
s,t
∼= H−s(G;Mt(X))⇒Ms+t(X

hG) homotopy fixed point spectral sequence

E2
s,t
∼= Hs(G;Mt(X))⇒Ms+t(XhG) homotopy orbit spectral sequence,

where the first come from the Greenlees filtration, and the second and third come from
the skeleton filtration of EG.

If X is a G-ring spectrum, the first two are M0(X)-algebra spectral sequences.
The restriction map Rh : XhG → X tG induces the standard homomorphism

Ĥ−s(G;Mt(X))→ H−s(G;Mt(X))

which is an isomorphism for s ≤ −1 (see Section 4 in [Bro82]).

Proof. We only do the argument for the Tate spectral sequence. We do the proof for
homotopy groups, but all the arguments work equally well for V (0), since it is a finite
spectrum.
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When G is finite, the adjoint representation is trivial, so equation 1.5.3 lets us
rewrite the Ê1 term as

Ê1
s,t
∼= Hs(Ẽs/Ẽs−1)⊗FpG πt(X) = Ps−1 ⊗FpG πt(X),

with the d1 differential being induced by the differential in the complete resolution
(P∗, d∗). Thus,

Ê2
s,t
∼= Ĥs−1(G; πt(X)) ∼= Ĥ−s(G; πt(X)),

where Ĥ is Tate-(co)homology.
To show that this spectral sequence converges conditionally we must show that

limAs = 0 and Rlims As = 0. We have, by Theorem IX.3.1 in [BK72], an exact
sequence

0 �� Rlims As,∗+1
�� π∗(holims[Ẽs ∧ F (EG+, X)]G) �� lims As,∗ �� 0 .

This exact sequence also holds for V (0)∗ since it is a finite spectrum.
Since holims[Ẽs−1∧F (EG+, X)]G is contractible π∗(holims[Ẽs−1∧F (EG+, X)]G) =

0 so both Rlims As and lims As are zero. The Tate spectral sequence is concentrated
in the upper half plane, so by Theorem A.3.5 the spectral sequence converges strongly
when Rlimr E

r = 0, which is the case since Ê2 is finite in each bi-degree. That the
Tate spectral sequence is an algebra spectral sequence when X is a G-ring spectrum,
follows from Proposition 4.3.5 in [HM97b] or from [GM95].

For the homotopy fixed point spectral sequence, homotopy orbit spectral sequence
see Theorem 10.3-10.6 in [GM95], and the claim about the restriction homomorphism
Rh, is proven in Section 2 in [BM94].

By Lemma 2.12 in [BM94], the spectral sequence we get from the skeleton filtration
of EG is isomorphic to the spectral sequence we get from the negative part of the
Greenlees filtration

. . .→ [Ẽ−1 ∧ F (EG+, X)]G → [Ẽ0 ∧ F (EG+, X)]G = F (EG+, X)G = XhG.

The next proposition also appears in [GM95] as Theorem 14.2 and 14.9 in combi-
nation with Theorem 10.3

Proposition 1.5.6. Let K be one of the fields C or H, let G be the group S(K) and
let k = dimK.

Assume that X is a G-spectrum that is bounded below and with finite homotopy
groups in each degree. The Greenlees filtration induces a strongly convergent Tate
spectral sequence

Ê2
s,t
∼= P (t, t−1)⊗ πt(X)⇒ πs+t(X

tG).

where |t| = (−k, 0).
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Proof. We have to identify the E2-term. The cofiber Ẽ1/Ẽ0 may be identified with
ΣG+. In general, for k = dimK, iks = idS(s−1)K ∧ ik so the cofiber Ẽks/Ẽks−1 may be
identified with ΣG+ ∧ S(s−1)K . Thus, the action map induces an isomorphism

Σad(G)G+ ∧G i∗(S(s−1)K ∧X) ∼= |ΣkS(s−1)K ∧X| = Σks|X|.
Here |X| denotes the underlying spectra of the G-spectra i∗(X). Hence the Ê2-term
is equal to P (u, u−1)⊗ π∗(X). To show that the spectral sequence converges strongly,
we can use the same argument as in the finite case.

Now we want to construct the homotopy fixed points spectral sequence for the
group T n, the n-fold torus. We use the setup in [BR05]. Let the unit sphere S(C∞) be
our model for ES1 with the S1-action given by the coordinatewise action. The space
S(C∞) is equipped with a free S1-CW structure with one free S1-cell in each even
degree, and the 2k-skeleton is the odd sphere S(C2k+1). The 2k-skeleton is attained
from the 2k− 2-skeleton S(C2k−1) by attaching a cell S1×D2k via the T n-action map

S1 × ∂D2k → S(Ck).

We use the product S(C∞)n as a model for ET n with the product T n-CW structure.
Thus the 2k cells in S(C∞)n are T n × D2k1 × . . . × D2kn , where k1 + . . . + kn = k.
In particular there are 2n number of 2-cells in ET n, and they are attached by the
T n-equivariant extension of the inclusion S1 → T n of the i-the circle.

We now get a T n-equivariant filtration

∅ ⊆ E0T
n ⊆ . . . ⊆ E2k−2T

n ⊆ E2kT
n ⊆ . . .

with colimit ET n, and T n-equivariant cofiber sequences

E2k−2T
n → E2kT

n → T n
+ ∧ (∨S2k)

where the wedge sum runs over all 2k-cells in ET n. Here T n acts trivially on the space
(∨S2k).

Proposition 1.5.7. Let X be a bounded below T n-spectrum with finite homotopy
groups in each degree. The skeleton filtration of ET n induces a strongly convergent
homotopy fixed point spectral sequence

E2
s,t
∼= P (t1, . . . , tn)⊗ πt(X)⇒ πs+t(X

tG).

where |ti| = (−2, 0). Let M be any homology theory. When restricted to the 2-skeleton
of ET n there is a strongly convergent spectral sequence

E2
s,t
∼= Z{1, t1, . . . , tn} ⊗Mt(X)⇒Ms+t(F (E2T

n
+, X)T

n

).

When n = 1 the restriction map Rh induces the inclusion map P (t) ⊗ πt(X) →
P (t, t−1)⊗πt(X) on spectral sequences from the homotopy fixed points spectral sequence,
to the Tate spectral sequence.
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Proof. Applying F (−, X)T
n
to the skeleton filtration of ET n

+ yields a filtration

. . .→ F (EkT
n
+, X)T

n → F (Ek−1T
n
+, X)T

n → . . .→ F (E0T
n
+, X)T

n → {pt},

with the homotopy fixed point spectrum as its limit

XhTn

= lim
k

F (EkT
n
+, X)T

n

.

From the cofiber sequences

Ek−1T
n → EkT

n → EkT
n/Ek−1T

n

we get cofiber sequences of spectra

F (EkT
n/Ek−1T

n, X)T
n → F (EkT

n
+, X)T

n → F (Ek−1T
n
+, X)T

n

.

When k is odd the last map is an equality and F (EkT
n/Ek−1T

n, X)T
n
is contractible.

When k is even EkT
n/Ek−1T

n ∼= T n ∧ ∨Sk, and since T n acts freely on T n
+ ∧ (∨Sk),

there are equivalences of spectra F (T n
+ ∧ (∨Sk), X)T

n 
 F (∨Sk, X) 
 ∨Σ−kX.
We define an unrolled exact sequence

. . . �� A2s−1
= �� A2s

��

�� A2s+1

��

= �� . . .
= �� A0

E1
2s

		

E1
2s

		

E1
0

		

by As,t = πs+t(F (E−sT
n
+, X)T

n
) and E1

s,t = πs+t(F (E−sT
n/E−s+1T

n, X)T
n
)The dotted

arrow is a degree 1 homomorphism, and when s is odd or s > 1 then E1
s,t = 0,

and when s is even and non-positive, then E1
s,t = πs+t(F (E−sT

n/E−s+1T
n, X)T

n
) ∼=

πs+t(∨ΣsX) ∼= πt(∨X).
This spectral sequence converges conditionally to the limit lims As = π∗(XhTn

)
since colims As = 0. By Theorem A.3.5 it converges strongly since Rlimr E

r = 0.
By Theorem 9.8 in [GM95] There is an isomorphism E2 ∼= H−∗(BT n, π∗(X)) ∼=

P (t1, . . . tn)
⊗

π∗(X), where the last isomorphism follows from the fact that the action
of T n on π∗(X) is trivial.

That the spectral sequence for the 2-skeleton is as desribed is clear since ET n only
contain even degree cells. Convergence is not a problem since it is concentrated in two
columns.





Chapter 2

Homotopy Groups of C2-fixed
Points of ΛS2HF2

In this chapter we will use the isotropy separation diagram for the spectrum ΛS2HF2

to calculate the homotopy groups π∗((ΛS2HF2)
C2), where the non-trivial action of

C2, the cyclic group with two elements, is induced by the antipodal map on S2. In
Section 2.2 we construct a family of non-zero differentials in the Tate spectral sequence
calculating V (0)∗((ΛS2HF2)

tC2). In Section 2.3 we use the bar spectral sequence to
calculate π∗(ΛS2HF2), and from this we calculate the homotopy groups of ΛRP 2HF2,
which is one of the spectra in the isotropy separation diagram. In the last section
this enables us to determine all the entries, except for the actual fixed points, in the
isotropy separation diagram, and the various maps connecting them, and in turn this
determines π∗((ΛS2HF2)

C2).

2.1 A Differential in the S1 and S3 Tate Spectral

Sequence

In this section we will show that given a G-spectrum X, where G is S1 or S3, the first
possible non-zero differential in the Tate spectral sequence converging to π∗(X tG) is
given by the action of G. The argument is a generalization to the field of quaternions
H of an argument given for the complex plane C in [Hes96]. Originally we needed
the result in this section to calculate π∗((ΛS2HF2)

tC2), but we have changed that
calculation. We choose to include it anyway, since it has independent interest.

Let K be one of the fields C or H and let k = dimK. Let G = S(K) be the group
of units in K and let SK be the one point compactification of K thought of as the
unreduced suspension of S(K). These spaces fits into a cofiber sequence G+ → S0 →
SK . For dimension reasons the last map is zero in homotopy, so the induced long
exact sequence of stable homotopy groups splits into short exact sequences. From the

19
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equivalence SK 
 ΣG this gives a splitting

π∗G+
∼= π∗G⊕ π∗S0. (2.1.1)

Let η and ν be the respective Hopf maps S2k−1 → Sk. Let [G] and ηK in πk−1G+

denote the elements which reduces to (id, 0), and (0, η) or (0, ν), respectively. Recall
that adG is the adjoint representation of G.

Proposition 2.1.2. In the Tate spectral sequence

Ê2 ∼= P (u, u−1)⊗ π∗(X)⇒ π∗(X tG),

where |u| = (0, k), the first potentially nonzero differential dkks,t; Ê
k
ks,t → Êk

k(s−1),t+k−1,
is given by the composite

πtX
[G]+nηK�� πt+k−1(G+ ∧ i∗X) ∼= πt+2k−2(Σ

adGG+ ∧ i∗X)
μ �� πt+2k−2 Σ

adGX ∼= πt+k−1X,

where the first map is exterior multiplication and the second map μ is induced by the
diagonal action of G+ on ΣadG and X.

When G = S1, the adjoint representation is trivial since S1 is abelian. When X
is an HFp-module, it is equivalent as a spectrum to a wedge of suspensions of HFp,
so ηK acts trivially on X, since it acts trivially on each HFp summand for dimension
reasons. Thus when X is an HFp module and G = S1, the differential is just exterior
multiplication by [S1] followed by the action map on X. This is the case we are
interested in.

Proof. The identification of the Ê2-term is done in Proposition 1.5.6 as follows: In the
Greenlees filtration of ẼG in 1.5.4, the cofiber of iks : Ẽks−1 → Ẽks is ΣG+ ∧ S(s−1)K ,
and we have the Adams equivalence

σ : ΣΣadGG+ ∧G i∗(S(s−1)K ∧X)→ i∗(ΣG+ ∧ S(s−1)K ∧X)G,

and the action map of G gives an isomorphism

Σad(G)G+ ∧G i∗(S(s−1)K ∧X) ∼= |ΣkS(s−1)K ∧X| = Σks|X|.
After desuspending once these maps are the vertical maps in the diagram

[G+ ∧ i∗i∗(S(s−1)K ∧X)]G ∂ �� [i∗i∗(S(s−1)K ∧X)]G
j �� [ΣG+ ∧ i∗i∗(S(s−2)K ∧X)]G

ΣadGG+ ∧G S(s−1)K ∧ i∗X ∂ ��

μ̃
∼=





�
		

(ΣadGS(s−1)K ∧ i∗X)/G
j �� ΣΣadGG+ ∧G S(s−2)K ∧ i∗X

μ̃
∼=

��

�
		

ΣadGG+ ∧ S(s−1)K ∧ i∗X ∂ ��

pr

		

ΣadGS(s−1)K ∧ i∗X
j �� ΣΣadGG+ ∧ S(s−2)K ∧ i∗X

pr

		

|ΣadGS(s−1)K ∧X|
ι

		

Σ|ΣadGS(s−2)K ∧X|.
ι
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The map ι is induced by the unit map S0 → G+, and ∂ and j comes from the cofiber

sequence induced by the Greenlees filtration of ẼG.

After applying homotopy πks+t to this diagram, the left hand side is equal to E2
ks,t,

the right hand side is E2
k(s−1),t+k−1, and the differential dkks,t is the composition across

the top of this diagram, which due to the equivalences is equal to the composition of
maps from the lower left hand corner to the lower right hand corner. The composition
∂ι is equal to the identity and since the homomorphism j is defined by the cofiber
sequence giving the splitting in equation 2.1.1, it represents exterior multiplication
with [G].

Hence, it suffices to look at the composition μ̃ ◦ pr. If one ignores suspension, this
composition is equal to

ΣadGG+ ∧ S(s−2)K ∧ i∗X
ξs−2∧id �� ΣadGS(s−2)K ∧G+ ∧ i∗X Δ∧id ��

ΣadGG+ ∧G+ ∧ S(s−2)K ∧ i∗X id τ∧id �� ΣadGG+ ∧ S(s−2)K ∧G+ ∧ i∗X
μ∧id∧μ ��

ΣadGS(s−2)K ∧ i∗X,

where τ interchanges G+ and S(s−2)K , Δ is the diagonal map, and ξs−2 is defined as
the composition

ξs−2 : G+ ∧ S(s−2)K Δ∧id �� G+ ∧G+ ∧ S(s−2)K id∧μ �� G+ ∧ S(s−2)K .

We will prove that under the isomorphism in the splitting 2.1.1

ξs−2 =

(
1 0

(s− 2)η 1

)
ξs−2 =

(
1 0

(s− 2)ν 1

)

when G is equal to S1 and S3 respectively, and the matrix multiplies from the right.
Every entry except the one in the lower left corner is clear from the expression of ξs−2

To understand ξs−2 it suffices to consider the case s = 3 since the case s > 3
follows by composition and s < 3 follows by smashing with SNK for large N as seen
by the following argument: For n > 1, ξn is equal to the n-th iterated composition
of ξ1 ∧ S(n−1)K with shuffle maps inserted so that G+ acts once on every SK factor.
When n ≤ 0 we choose N such that N + n > 1 and get, when ignoring the required
shuffle maps, that (ξN ∧ SnK) ◦ (ξn ∧ SNK) = ξN+n. Now the matrix for ξn is clear
since the matrices for ξN and ξN+n are known.

We will now identify the lower left entry in the matrix for ξ1.

Let R ⊆ K be the ray from the origin given by the non-negative part of the first
coordinate axis in K, and let the the intersection of {0} × R and S(K × K) be the
basepoint in S(K × K). The map j that defines the splitting in 2.1.1 fits into the
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commutative diagram

ΣG+ ∧ SK

SK×K � ��

j
��

ΣS(K ×K)
Σpr �� ΣS(K ×K)/(0× S(K))

Σf

		

(K ×K)c � �� ((K ×K)/(0×R))c
pr �� ((K ×K)/(0×K))c,

(2.1.3)

where the superscript c indicates compactification, pr is the projection map, and f
is the weak equivalence given by (z, w) �→ ( z

|z| ,
w
|z|), with z = 0 being mapped to the

basepoint.
The lower left entry of ξ1 is the composite of the left, bottom and right map in the

following commutative diagram

S(K ×K)
ηK ��

f◦pr
��

SK

G+ ∧ SK

μ
��

Δ∧id �� G+ ∧G+ ∧ SK id∧μ �� G+ ∧ SK ,

pr

		

where the top map is identified as the respective Hopf map η or ν by diagram 2.1.3.

2.2 A Differential in the Spectral Sequence Calcu-

lating V (0)∗((ΛSnHF2)
tC2)

In this section we use the map ω : Sn
+ ∧HF2 → ΛSnHF2 to find a family of non-zero

differential in the Tate spectral sequence calculating V (0)∗((ΛSnHF2)
tC2), where the

C2-action is given by the antipodal action on Sn.

Proposition 2.2.1. For n ≥ 1, there is an F2-module isomorphism

π∗(ΛSnHF2) ∼= F2 ⊕ F2{zn} ⊕ A,

where |zn| = n+ 1 and A is some F2-module which is zero in degree less than n+ 2.
When n ≥ 2, zn is equal to σ̂(zn−1).

Proof. Use induction on n. By proposition A.4.6, π∗(ΛS1HF2) ∼= P (μ) with |μ| = 2.
Assume we have proved it for m ≤ n. The bar spectral sequence in Corollary 1.2.2
coming from applying the functor Λ−HF2 to the pushout

Sn ��

��

Dn+1

��
Dn+1 �� Sn+1,
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begins
E1(Sn+1) = B(F2, π∗(ΛSnHF2)F2).

Furthermore, E1
0,∗ ∼= F2, and when s > 0 we have

E1
s,t
∼=
{
F2 t = 0, n

0 0 < t < n.

From this we can read off π∗(ΛSnHF2) in degree less than or equal to n + 1. That
πn+1(ΛSnHF2) is generated by the image of σ̂ follows from Proposition 1.2.5.

Proposition 2.2.2. Let n ≥ 1. There are Tate spectral sequences

Ê2(n) = P (u, u−1)⊗ E(xn)⇒ π∗(Sn
+ ∧HF2)

tC2

Ê2(V (0), n) = P (u, u−1)⊗ E(τ 0)⊗ E(xn)⇒ V (0)∗(Sn
+ ∧HF2)

tC2 ,

where |u| = (−1, 0), |xn| = (0, n) and |τ 0| = (0, 1). The differentials are given by

dn+1(ui) = ui+n+1xn and dn+1(τ 0u
i) = τ 0u

i+n+1xn

for all i ∈ Z.

Proof. We identify the E2-terms using Proposition 1.5.5, and the fact that the C2

action on τ 0 is trivial. Hence the Tate cohomology is as above. The spectral sequences
are not multiplicative spectral sequences, since Sn

+ ∧ HF2 is not an equivariant ring
spectrum.

By Proposition 2.4 and Theorem 5.6 in [GM95], π∗((Sn
+ ∧HF2)

tC2) = 0, since the

action of C2 on Sn and thus on Sn
+ ∧HF2, is free. Since the spectral sequence Ê2(n)

is concentrated in vertical degree 0 and n− 1, the above pattern of differentials is the
only one possible in this case.

We prove the proposition for Ê2(V (0), n) by induction.
The inclusion E2(1)→ E2(V (0), 1) determines the differentials d2(ui) = ui+2x1 in

E2(V (0), 1). Since V (0)∗((S1
+ ∧HF2)

tC2 = 0, the other differentials must be as stated
in the proposition.

For dimension reasons E2(V (0), n) = En−1(V (0), n). If we have proved the case
n − 1, then E2(V (0), n − 1) = En−1(V (0), n − 1), and the map En−1(V (0), n − 1) →
En−1(V (0), n) is an isomorphism in vertical degree 0 and 1, and zero elsewhere. Hence,
dn−1(τ 0u

i) = 0 in En−1(V (0), n), since dn−1(τ 0u
i) = τ 0u

i+nxn−1 in En−1(V (0), n− 1),
and τ 0u

i+nxn−1 is mapped to zero in En−1(V (0), n). From the inclusion E2(n) →
E2(V (0), n) there are differentials dn+1(ui) = ui+n+1xn in E2(V (0), n), and since
V (0)∗((Sn

+ ∧ HF2)
tC2) = 0 the other differentials must be as stated in the proposi-

tion.

Corollary 2.2.3. Let n ≥ 1. The Tate spectral sequence

E2 = P (u, u−1)⊗ E(τ 0)⊗ π∗(ΛSnHF2)⇒ V (0)∗(ΛSnHF2)
tC2

has differentials generated by dn+1(τ 0) = un+1zn where zn is the non-zero element in
V (0)n+1(ΛSnHF2) ∼= F2.
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Proof. The natural map
ω : Sn

+ ∧HF2 → ΛSnHF2

is an equivariant map, so it induces a map of Tate spectral sequences. It follows
from Corollary A.4.7, see Theorem 5.2 in [HM97b], that μ in V (0)2(ΛS1HF2) is the
image of [S1] ⊗ ξ1 under the map ω∗ : V (0)∗(S1

+ ∧ HF2) ∼= H∗(S1
+) ⊗ V (0)∗(HF2) →

V (0)∗(ΛS1HF2). There is a commutative diagram

(S1
+)

∧n ∧HF2

ω

��

�� Sn
+ ∧HF2

ω

��
(S1

+)
∧n−1 ∧ ΛS1HF2

ω̂ �� (S1
+)

∧n−2 ∧ ΛS2HF2
ω̂ �� . . . ω̂ �� ΛSnHF2

where the top horizontal map is induced by the quotient map T n → T n/T n
n−1

∼= Sn.

By Proposition 2.2.1, zn ∈ V (0)∗(ΛSnHF2) is the image of [S1]⊗n ⊗ ξ1 under the
composition of the left and bottom maps in this diagram. Hence, zn is the image of
[Sn]⊗ ξ1 under the map ω∗ : V (0)∗(Sn

+ ∧HF2)→ V (0)∗(ΛSnHF2).
On the level of Tate spectral sequences ω thus induces a map which is an inclusion

except in vertical degree n−1, so we can read off the differentials in the corollary from
the differentials in Proposition 2.2.2.

The above statements can also be made for odd primes and odd dimensional spheres
with some adjustments.

2.3 Calculating the Homotopy Groups of ΛRP 2HF2

In this section we will use the bar spectral sequence to calculate π∗(ΛS2HF2) and use
this to show that there is an equivalence ΛRP 2HF2 
 ΛS1HF2 ∧HF2 ΛS2HF2.

Proposition 2.3.1. There is an isomorphism of F2-Hopf algebras

π∗(ΛS2HF2) ∼= E(β),

where |β| = 3.

Proof. From Corollary A.4.7 there is an isomorphism π∗(ΛS1HF2) ∼= P (μ) where |μ| =
2. The pushout

S1 ��

��

D2

��
D2 �� S2

yields by Corollary 1.2.2 a bar spectral sequence

E2 = Torπ∗(ΛS1HF2)(F2,F2) ∼= TorP (μ)(F2,F2) ∼= E(β)⇒ π∗(ΛS2HF2),
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where the identification of the E2-term follows from Proposition A.2.10. Now, there
are no room for any differentials or (co)multiplicative (co)extensions, since the spectral
sequence is concentrated in bidegrees (0, 0) and (1, 2).

To calculate the homotopy groups of ΛRP 2HF2 we need to know which P (μ)-module

structure the attaching map S1 ·2→ S1 in the standard CW-structure of RP 2 induces on
π∗(ΛS1HF2). Recall that by Proposition 1.1.5, π∗(ΛSnHF2) is an HF2-Hopf algebra,
since F2 is a field.

Lemma 2.3.2. For n ≥ 1, the degree two map from Sn to Sn induces the map ε ◦ η,
on π∗(ΛSnHF2).

Proof. By calculation π∗(ΛS1HF2) is cocommutative as an F2-coalgebra, and in general
when n ≥ 2 we have that π∗(ΛSnHF2) is cocommutative as an F2-coalgebra since the
pinch map on Sn is homotopy cocommutative.

An example of a degree two map from Sn to Sn is the composite

Sn ψ �� Sn ∨ Sn− id∨ id�� Sn ∨ Sn ∇ �� Sn ,

where ψ is the pinch map, − id is the reflection map, and ∇ is the fold map. Applying
the functor Λ−HF2 yields

π∗(ΛSnHF2)
φ◦(χ⊗id)◦ψ �� π∗(ΛSnHF2),

and since this is a Hopf algebra, this composite is equal to ε ◦ η.

Using the two previous results we can deduce the following proposition.

Proposition 2.3.3. There is an equivalence

ΛRP 2HF2 
 ΛS1HF2 ∧ ΛS2HF2.

Proof. Let R be a commutative simplicial ring. Theorem 4.5 in [Sch99] gives a Quillen
equivalence between simplicial R-algebras and algebras over the Eilenberg Maclane
spectrum HR. In the paragraph following Theorem 5.2 in [HM97b] they show that
ΛS1HF2 is equivalent to H of the free F2-algebra generated by an element in degree 2.
By Lemma 2.3.2 the attaching map S1 → S1 for RP 2, yields a map ΛS1HF2 → ΛS1HF2

which is zero in homotopy. Therefore the attaching map factors stably through HF2,
so

ΛRP 2HF2 
 ΛS1HF2 ∧HF2 ΛS2HF2.
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2.4 Calculating the Homotopy Groups of (ΛS2HF2)
C2

In this section we will find a differential in the Tate spectral sequence calculating
π∗((ΛS2HF2)

tC2), and use this to identify the homotopy groups of the spectra in the
isotropy separation diagram associated with ΛS2HF2, and the maps between them. In
this section tensor products and algebras are over F2, unless otherwise specified.

We will consider the following Tate spectral sequence and homotopy fixed points
spectral sequences:

Ê2 = Ĥ∗(C2; π∗(ΛS2HF2)) ∼= P (u, u−1)⊗ E(β)⇒ π∗((ΛS2HF2)
tC2)

E2 = H−∗(C2; π∗(ΛS2HF2)) ∼= P (u)⊗ E(β)⇒ π∗((ΛS2HF2)
hC2)

E
2
= H−∗(C2;V (0)∗(ΛS2HF2)) ∼= P (u)⊗ E(β)⊗ E(τ 0)⇒ V (0)∗((ΛS2HF2)

hC2),

where |u| = (−1, 0), |τ 0| = (0, 1) and |β| = (0, 3).

Lemma 2.4.1. There is an isomorphism

π0((ΛS2HF2)
hC2) ∼= Z/4.

Proof. For dimension reasons E2
s,t
∼= E2

s,t when s ≥ 3, in the homotopy fixed points
spectral sequence. Hence, there is an isomorphism π∗((ΛS2HF2)

hC2) ∼= F2 when ∗ =
1, 2, 3, and π0((ΛS2HF2)

hC2) has order 4.
We use S(R∞) as a model for EC2, with the antipodal action. The space S(R∞)

is equipped with a free C2-CW structure with one free C2-cell in each degree, and the
k-skeleton is the k-sphere. Restricting the skeleton filtration to the 3-skeleton, yields
a filtration

{pt} �� S0
+

�� S1
+

�� S2
+

�� S3
+

which gives rise to two spectral sequences

′E2 = P (u)/(u4)⊗ E(β)⇒ π∗(F (S3
+,ΛS2HF2)

C2)

′E
2
= P (u)/(u4)⊗ E(β)⊗ E(τ 0)⇒ V (0)∗(F (S3

+,ΛS2HF2)
C2),

which are equal to E2
s,t and E

2

s,t, restricted to the columns −3 ≤ s ≤ 0. For dimension
reasons, there are no differentials in ′E2.

The inclusion S3
+ → (EC2)+ induces a map of spectral sequence

E
2
= P (u)⊗ E(β)⊗ E(τ 0)→′ E

2
= P (u)/(u4)⊗ E(β)⊗ E(τ 0),

which is the quotient map. By Corollary 2.2.3, there is a differential d3(τ 0) = u3β in
the first of these spectral sequences, and thus also in the latter. Hence, the element

represented by u3β in ′E2 is zero in ′E
2
, so π0(F (S3

+,ΛS2HF2)
C2) ∼= Z/4. Since the

inclusion S3
+ → (EC2)+ induces a ring map π∗(F (S3

+,ΛS2HF2)
C2)→ π0((ΛS2HF2)

hC2),
the unit in π0((ΛS2HF2)

hC2) has order at least four.
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We are now ready to do the following calculation.

Proposition 2.4.2. The nonzero differentials in Ê
r
are generated by d4u = u5β.

Hence, there are ring isomorphisms

π∗((ΛS2HF2)
tC2) ∼= P (t, t−1)⊗ E(β)

π∗((ΛS2HF2)
hC2) ∼= PZ/4(t, α)⊗Z/4 EZ/4(β)/(2t, 2α, 2β, α

2, αβ)

with |t| = −2, |α| = 2 and |β| = 3. Furthermore, π∗((ΛS2HF2)hC2)
∼= F2 for all ∗ ≥ 0,

and the restriction homomorphism Rh : π∗((ΛS2HF2)
hC2)→ π∗((ΛS2HF2)

tC2) is given
by mapping t to t, β to β and α to zero.

Proof. Since π0(ΛRP 2HF2) ∼= F2, the ring map π0(ΛRP 2HF2) → π0((ΛS2HF2)
tC2)

proves that the unit in π0(ΛS2HF2)
tC2 has order at most 2. By Lemma 2.4.1 there

is an isomorphism π0((ΛS2HF2)
hC2) ∼= Z/4, and since Rh : π0((ΛS2HF2)

hC2) →
π0((ΛS2HF2)

tC2) is a ring map, π0((ΛS2HF2)
tC2) ∼= F2. Hence, there are non-zero

differentials in Ê
r
, and since this is a multiplicative spectral sequence, the only possi-

ble non-zero differentials are those generated by d4u = u5β.
These differentials also gives rise to non-zero differentials in the homotopy fixed

point spectral sequence and the homotopy orbit spectral sequence, giving us the mod-
ule structures in the proposition.

The element t is represented by u2. There are no room for any additive or multi-
plicative extensions, except for π0((ΛS2HF2)

hC2) ∼= Z/4.

The proof that Γ̂∗ is injective, hinges on proving that Γ̂∗ of some element is non-
zero in continuous homology. So before we prove this we state two lemmas needed in
the proof. Consider the two C2-spectra ΛC2×S2HF2 and ΛS2∨S2HF2, where C2 acts on
the C2-factor in the first spectrum and by interchanging the two wedge factors in the
second spectrum.

Lemma 2.4.3. There are A∗-isomorphisms

H∗(ΛC2×S2HF2) ∼= A∗ ⊗ A∗ ⊗ E(z1, z2)

H∗(ΛS2∨S2HF2) ∼= A∗ ⊗ E(z1, z2),

where |z1| = |z2| = 3, and the map induced by identifying the subspace C2 ⊆ C2 × S2

to a point, is given by multiplication of the A∗-factors.

Proof. Since ΛS2HF2 is an HF2-module H∗(ΛS2HF2) ∼= A∗ ⊗ E(z) where z is the
image of β ∈ π3(ΛS2HF2) under the Hurewicz homomorphism. By flatness we have

H∗(ΛS2∨S2HF2) ∼= H∗(ΛS2HF2)⊗H∗(F2) H∗(ΛS2HF2)
∼= (A∗ ⊗ E(z1))⊗A∗ (A∗ ⊗ E(z2)) ∼= A∗ ⊗ E(z1, z2).



28 Chapter 2. Homotopy Groups of C2-fixed Points of ΛS2HF2

Similarly,

H∗(ΛC2×S2HF2) ∼= H∗(ΛS2HF2)⊗H∗(ΛS2HF2) ∼= A∗ ⊗ A∗ ⊗ E(z1, z2).

That the homomorphism is multiplication of the A∗-factors follows from the com-
mutative diagram

ΛC2HF2
��

��

Λ{pt}HF2

��
ΛC2×S2HF2

�� ΛS2∨S2HF2.

Lemma 2.4.4. The Ê2-page in the Tate spectral sequence that calculates the con-
tinuous homology Hc

∗((ΛS2∨S2HF2)
tC2) is equal to P (u, u−1) ⊗ A∗ ⊗ E(z1z2), where

|u| = (−1, 0) and |z1z2| = (0, 6). For all i, the elements ui ⊗ z1z2 survives to the Ê∞

page.

Proof. Observe that since the C2-action on ΛS2∨S2HF2 is given by interchanging the
two wedge factors, it interchanges z1 and z2 in homology. A complete free F2[C2]
resolution of F2 is given by

. . .
1+t �� F2[C2]

1+t �� F2[C2]
1+t �� F2[C2]

1+t �� . . .

where t is a generator of C2. Thus the Ê2-page is equal to P (u, u−1)⊗ A∗ ⊗ E(z1z2).
By Proposition A.5.3 the Tate-spectral sequence calculating Hc

∗((ΛC2×S2HF2)
tC2)

collapses at the Ê2-page, and is given by

Ê2 = Ĥ∗(C2; (A∗ ⊗ E(z))⊗2) ∼= P (u, u−1)⊗ F2(x
⊗2),

where x runs through a F2 basis of A∗ ⊗E(z). By Lemma 2.4.3 the element ui ⊗ z1z2
is the image of the infinite cycle ui ⊗ z2, and is thus an infinite cycle itself.

If ui ⊗ z1z2 is a boundary it must be the image of a differential which have
P (u, u−1) ⊗ A∗ as a source. But this is impossible since the Tate spectral sequence
computing Hc

∗((Λ{pt}HF2)
tC2), have Ê2-page equal to P (u, u−1) ⊗ A∗, and there is a

splitting

P (u, u−1)⊗ A∗ → P (u, u−1)⊗ A∗ ⊗ E(z1z2)→ P (u, u−1)⊗ A∗

induced by the C2-map {pt} → S1 ∨ S1 → {pt}.

Given a space X with a free C2 action, Lemma 5.2.5 in [BCD10] yields an equiva-
lence

[ẼC2 ∧ ΛXHF2]
C2 
 ΛX/C2HF2.

Hence Γ̂ is a map from ΛRP 2HF2 to (ΛS2HF2)
tC2 , and we have the following proposi-

tion.
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Proposition 2.4.5. The homomorphism

Γ̂∗ : π3(ΛRP 2HF2)→ π3((ΛS2HF2)
tC2)

is an isomorphism.

Proof. The pinch map S2 → S2 ∨ S2 induces a homomorphism π3((ΛS2HF2)
tC2) →

π3((ΛS2∨S2HF2)
tC2), where the C2-action on S2∨S2 interchanges the two wedge factors.

We will show that β the generator of π3(ΛRP 2HF2) survives to π3((ΛS2∨S2HF2)
tC2),

under the composition of Γ∗ followed by the homomorphism induced by the pinch map
on S2, and is thus non-zero in π3((ΛS2HF2)

tC2).
There is a commutative cube of C2-spaces and C2-equivariant maps

C2 × S1 ��

��


S1

��

��
C2 ×D2

��

�� {pt}

��
C2 ×D2


�� S2

��
C2 × S2 �� S2 ∨ S2,

(2.4.6)

where C2 acts on the C2-factor on the left face, with the antipodal action on S1 and
S2, and by interchanging the two wedge-factors in S2 ∨ S2. The maps in the left face
are inclusions, and the top map on the back face is the identity on {e} × S1, where e
is the identity element in C2. The rest of the maps are defined by requiring the left,
front, right and back face to be pushouts of C2-spaces.

Taking C2-orbits in the back face of the cube 2.4.6 and then applying Λ−HF2,
yields a pushout diagram

ΛS1HF2

��

�� ΛS1HF2

��
ΛD2HF2

�� ΛRP 2HF2.

(2.4.7)

By Theorem 5.13 in [LNR12] there is a 2-adic equivalence of spectra

(ΛC2×XHF2)
tC2 
 ΛXHF2,

when X = S1, S2, D2. Applying the functor (Λ−HF2)
tC2 to the top and left edge of

the front face of diagram 2.4.6, and then taking the pushout, thus yields a pushout
diagram

ΛD2HF2
��

��

(Λ{pt}HF2)
tC2

��
ΛS2HF2

�� (ΛS2HF2) ∧HF2 (Λ{pt}HF2)
tC2 .

(2.4.8)

The homomorphism Γ̂∗ together with the cube 2.4.6 and the universal property of
pushouts induces a sequence of maps

ΛRP 2HF2
f �� (ΛS2HF2) ∧HF2 (Λ{pt}HF2)

tC2
g �� (ΛS2∨S2HF2)

tC2 ,
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and we will first show that f∗(β) �= 0.
The Tate spectral sequence computing (Λ{pt}HF2)

tC2 is concentrated on the x-axis
and hence π∗(Λ{pt}HF2)

tC2 ∼= P (u, u−1) where |u| = −1. By flatness

π∗((ΛS2HF2) ∧HF2 (Λ{pt}HF2)
tC2) ∼= E(β)⊗ P (u, u−1),

so if f∗(β) �= 0, then f∗(β) = β.
To show that f∗(β) is non-zero we will look at the map f induces on bar spectral

sequences. From the 2-adic equivalence of ring spectra (ΛC2×XHF2)
tC2 
 ΛXHF2, we

get that applying the functor (Λ−HF2)
tC2 to the left face of the cube 2.4.6, yields a

pushout diagram of ring spectra. Composing this pushout diagram with the pushout
diagram 2.4.8 thus yields a pushout diagram

ΛS1HF2
��

��

(Λ{pt}HF2)
tC2

��
ΛD2HF2

�� (ΛS2HF2) ∧HF2 (Λ{pt}HF2)
tC2 .

(2.4.9)

By Corollary 1.2.2 there is a bar spectral sequence associated with this pushout di-
agram. Since the top map in this diagram factors through ΛD2HF2 
 HF2, the
P (μ)-module structure on P (u, u−1) is the trivial one, so the E2-page is isomorphic to

E2 = TorP (μ)(P (u, u−1),F2) ∼= P (u, u−1)⊗E(β′)⇒ π∗((ΛS2HF2)∧HF2 (Λ{pt}HF2)
tC2).

From the previous calculation of the abutment π∗((ΛS2HF2) ∧HF2 (Λ{pt}HF2)
tC2), we

know that the spectral sequence must collapse, so E2 ∼= E∞.
The pushout diagram 2.4.7 gives rise to a bar spectral sequence

E2(RP 2) ∼= TorP (μ)(P (μ),Fp)⇒ π∗(ΛRP 2HF2),

By Lemma 2.3.2 the degree two map on S2 induces the trivial module structure on
P (μ). Hence,

E2(RP 2) = P (μ)⊗ TorP (μ)(Fp,Fp) ∼= P (μ)⊗ E(β′).

By Proposition 2.3.1, there are no differentials in E2(RP∞), so E2(RP 2) ∼= E∞(RP 2),
and β ∈ π3(ΛRP 2HF2) is represented by β′ in the spectral sequence. Now, on the
E∞-pages the homomorphism

f∗ : E∞(RP 2) ∼= E(β′)⊗ P (μ)→ E∞ ∼= E(β′)⊗ P (u, u−1)

maps β′ to β′. Thus, f∗(β) is non-zero, so it must be equal to β.
It is left to prove that g∗(β) �= 0. This is equivalent to showing that the image of

β is non-zero under the map

ΛS2HF2 
 (ΛC2×S2HF2)
tC2 �� (ΛS2∨S2HF2)

tC2 ,
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coming from the lower map on the front face of the cube 2.4.6. To achieve this we
consider the diagram

π3(ΛS2HF2)

h
��

∼= �� π3(ΛC2×S2HF2)
tC2

h
��

�� π3(ΛS2∨S2HF2)
tC2

h
��

H3(ΛC2×S2HF2)
tC2

ε∗ �� Hc
3(ΛC2×S2HF2)

tC2 �� Hc
3(ΛS2∨S2HF2)

tC2 ,

where h is induced by the Hurewicz homomorphism. Now,

h : π∗(ΛC2×S2HF2)
tC2 → H∗(ΛC2×S2HF2)

tC2 ∼= A∗ ⊗ π3(ΛC2×S2HF2)
tC2

maps β to z = 1⊗ β. If we show that the image of z is nonzero in Hc
3(ΛS2∨S2HF2)

tC2 ,
we know that the image of β is nonzero in π3(ΛS2∨S2HF2)

tC2 , finishing the proof.
By Proposition A.5.3 the Tate spectral sequence calculating Hc

∗(ΛC2×S2HF2)
tC2 is

equal to
Ê2 = P (u, u−1)⊗ F2{x2} ⇒ Hc

∗(ΛC2×S2HF2)
tC2 ,

where x runs over a basis for the elements in Hc
∗(ΛS2HF2). Furthermore, this spectral

sequence collapses on the E2-page and ε∗(z) is represented by u3 ⊗ z2.
Finally, by Lemma 2.4.4 the element u3 ⊗ z2 survives to the element u3 ⊗ z1z2 on

the Ê∞-page of the spectral sequence computing Hc
∗((ΛS2∨S2HF2)

tC2). Thus g∗(β) is
non-zero and hence Γ̂∗(β) is non-zero and thus equal to β ∈ π3((ΛS2HF2)

tC2).

Together with results by Hesselholt and Madsen in [HM97b] this lemma enables
us to calculate Γ̂∗.

Proposition 2.4.10. The map

Γ̂∗ : π∗(ΛRP 2HF2) ∼= P (μ)⊗ E(β)→ π∗((ΛS2HF2)
tC2) ∼= P (t, t−1)⊗ E(β)

is given by mapping μ to t−1, and β to β.

Proof. The inclusion S1 → S2 gives a commutative diagram

π2(ΛS1HF2) ��

Γ̂∗
��

π2(ΛRP 2HF2)

Γ̂∗
��

π2((ΛS1HF2)
tC2) �� π2((ΛS2HF2)

tC2).

In Lemma 5.4 in [HM97b] they prove that π2((ΛS1HF2)
tC2) ∼= P (t, t−1), where t is

represented by u2 in the Tate spectral sequence. (They actually state the lemma
for odd primes, but everything works out for p = 2 with the obvious renaming of
elements). The left map is then proved to be an isomorphism in Proposition 5.3 in
[HM97b]. By Proposition 2.3.3 the top map is an isomorphism and the bottom map
is an isomorphism if you look at the Tate spectral sequences, since both groups are
represented by the infinite cycle u−2 in their respective Tate spectral sequences. Hence,
the right map is also an isomorphism so μ is mapped to t−1. That β is mapped to β
follows from Proposition 2.4.5.
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Finally, we are able to calculate π∗((ΛS2HF2)
C2) using the isotropy separation

diagram. Recall that there is a ring isomorphism

π∗((ΛS2HF2)
hC2) ∼= PZ/4(t, α)⊗Z/4 EZ/4(β)/(2t, 2α, 2β, α

2, αβ).

Theorem 2.4.11. There is a ring isomorphism

π∗((ΛS2HF2)
C2) ∼= PZ/4(α)⊗Z/4 EZ/4(β)/(2α, 2β, α

2, αβ)

where |α| = 2 and |β| = 3, and the homomorphism

Γ∗ : π∗((ΛS2HF2)
C2)→ π∗((ΛS2HF2)

hC2)

is given by mapping α to α and β to β.

Proof. From the isotropy separation diagram we get a commutative diagram

π∗((ΛS2HF2)hC2) �� π∗((ΛS2HF2)
C2) ��

Γ∗
��

π∗((ΛRP 2HF2) ��

Γ̂∗
��

π∗−1((ΛS2HF2)hC2)

π∗((ΛS2HF2)hC2) �� π∗((ΛS2HF2)
hC2) �� π∗((ΛS2HF2)

tC2) �� π∗−1((ΛS2HF2)hC2),

where the horizontal lines are parts of two long exact sequences.
From Proposition 2.4.10 the homomorphism Γ̂∗ : π∗(ΛRP 2HF2)→ π∗((ΛS2HF2)

tC2)
is an isomorphism when ∗ ≥ 0 and ∗ �= 1. By the five lemma we thus get that
π∗((ΛS2HF2)

C2) ∼= π∗((ΛS2HF2)
hC2) when ∗ ≥= 2. Since π1(ΛRP 2HF2) = 0 and

π0((ΛS2HF2)hC2) and π0(ΛRP 2HF2) are isomorphic to F2, we know that the order
of π0((ΛS2HF2)

C2) is four. Now, Γ∗ is a ring homomorphism, so this implies that
π0((ΛS2HF2)

C2) ∼= Z4

Examining the long exact sequence in the top row we get π1((ΛS2HF2)
C2) =

π1(ΛRP 2HF2) = 0.



Chapter 3

Homotopy Groups of ΛTnHFp and
Periodic Elements

In this chapter we calculate π∗(ΛTnHFp) when p ≥ 5 and 1 ≤ n ≤ p, and p = 3
and 1 ≤ n ≤ 2. These calculations take a lot of effort, and every section but the
last revolves around it. The argument is based on the bar spectral sequence, and is
heavily dependent on the Hopf algebra structures of π∗(ΛTnHFp). We have one Hopf
algebra structure for each circle factor, and the first two sections concerns the interplay
between these Hopf algebra structures. In Section 3.3 we calculate π∗(ΛSnHFp) for
n ≤ 2p, before we calculate π∗(ΛTnHFp) in Section 3.4.

In the last section we use this to show that vn is non-zero in k(n)∗(ΛTn+1HFp),
where k(n) is the n-th connective Morava K-theory.

It’s recommended to skip the first two sections on your first read, and rather go
back to it when you need it.

3.1 Multifold Hopf Algebras

The homotopy groups of the spectrum ΛTnHFp will have several Hopf algebra struc-
tures coming from the various circles. These structures will be interlinked, and this
section sets up an algebraic framework for this interlinked structure. Our main goal
is to be able to state Proposition 3.2.5 which is a crucial ingredient in the calculation
of the multiplicative structure of π∗(ΛTnHFp).

Multifold Hopf algebras have more structure than we show below. In particular,
it would be interesting to have a good description of the module of elements that
are primitive in all the Hopf algebra structures simultaneously. In that regard a
generalization of the very special case in Lemma 3.3.12 would be welcomed.

Let CRings be the category of commutative rings. In this section we will assume
that all our Hopf algebras are connected and commutative.

First we construct a category of Hopf algebras, and show that it as all small colimits.
Objects in this category are ordinary Hopf algebras, but we need the morphisms to

33
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define a multifold Hopf algebra.

Definition 3.1.1. We define the category of Hopf algebras to have objects pairs of
commutative rings (A,R) where A is given the structure of a commutative connected
R-Hopf algebra. A morphism from (A,R) to (B, S) consists of two maps f : A → B
and g : R → S such that f is a map of R-algebras and S-coalgebras, where the R-
algebra structure on B and the S-coalgebra structure on A are induced by g.

Proposition 3.1.2. The category of Hopf algebras has all small colimits, and the
colimit colimJ(Aj, Rj) is equal to the pair (colimJ Aj, colimJ Rj), of colimits in the
category of commutative rings.

Proof. The ring colimJ Aj is a colimJ Rj-algebra. Since colimits commute, there is an
isomorphism

β : colim
J

(Aj ⊗Rj
Aj) ∼= colim

J
Aj ⊗colimJ Rj

colim
J

Aj,

and we define the counit and coproduct in colimJ(Aj, Rj) to be equal to colimJ(εj)
and β ◦ colimJ(ψj), respectively. That the required diagrams in the definition of a
(colimJ Rj)- Hopf algebra commute, follows by functoriality of the colimits.

The only thing left to prove is that given a Hopf algebra (A,R) which is a cone
over (Aj, Rj) with j ∈ J , the homomorphism (f, g) from (colimJ Aj, colimJ Rj) to
(A,R) induced by the universal property of colimit of commutative rings, is actually
a homomorphism of Hopf algebras.

By the universal property of colimits of commutative rings, there is unique map
h : colimJ(Aj ⊗Rj

⊗Aj) → A ⊗R A, since A ⊗R A is a cone over Aj ⊗Rj
⊗Aj with

j ∈ J . From the fact that the coproduct and counit are algebra homomorphisms, and
by functoriality of colimits, there are commutative diagrams

colimJ Aj
f ��

colimψj

��

A

ψA

��
colimJ(Aj ⊗Rj

Aj)

β
��

h �� A⊗R A

(colimJ Aj)⊗colimJ Rj
(colimJ Aj)

f⊗f
��

colimJ Aj
f ��

colim εj
��

A

εA

��
colimJ Rj

g �� R.

Thus, (f, g) is a homomorphism of Hopf algebras.

Our multifold Hopf algebras will be functors from the following category. Let S
be a finite set a and define V (S) to be the category with objects subsets of S and
morphisms from U to V given by U ∩V , where composition is intersection. Let [2]S be
the category with objects subsets of S and morphisms inclusions of sets. The category
V (S) is isomorphic to the category of spans in [2]S.

The next definition is only a stepping stone towards the final definition of an S-fold
Hopf algebra in 3.1.13.
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Definition 3.1.3. Let S be a finite set. A pre S-fold Hopf algebra A is a functor
A : V (S)→ CRings, such that:

For every v ∈ V ⊆ S, the pair (A(V ), A(V \ v)) is equipped with the structure of a
Hopf algebra with unit and counit induced by the inclusion V \ v → V , such that with
this structure the composite

V (S)× S
Δ×S �� V (S)× V (S)× S

V (S)×(−\−) �� V (S)× V (S)
A×A �� CRings×CRings,

becomes a functor to the category of Hopf algebras. Here Δ is the diagonal functor
and the functor (− \ −) takes (U, u) to U \ u.

We write A(V ) = AV , and let ψv
V , φv

V , ηvV and εvV denote the various structure
maps in (A(V ), A(V \ v)).
Definition 3.1.4. A map from a pre S-fold Hopf algebra A to a pre S-fold Hopf
algebra B is a natural transformation from A to B such that for every v ∈ V ⊆ S the
induced map from (AV , AV \v) to (BV , BV \v) is a map of Hopf algebras.

The example we have in mind is the functor π∗(ΛT−HFp) : A : V (S) → CRings
that maps U ⊆ S to π∗(ΛTUHFp). We show in Proposition 3.4.2 that this is a (pre) S-
fold Hopf algebra, where the different Hopf algebra structures, comes from the different
circles.

Let T (S) be the full subcategory of [2]S × [2]S with objects pairs (U, V ) with
U ∩ V = ∅. There is an inclusion [2]S → V (S) given by sending a morphism U ⊆ V
to the morphism U from U to V .

Example 3.1.5. Let S = {u, v}. Then, the category V (S) is equal to

∅ ��

��

{v}��

��
{u}

��

�� {u, v},

��

��

and the inclusion [2]S → V (S) is given by picking all the inner arrows going away from
∅.

We will now define some commutative rings AU
V that will be the source and targets

for iterated coproducts in a pre S-fold Hopf algebra. These commutative rings are
constructed from functors from [2]S to the category of commutative rings. Using the
inclusion [2]S → V (S) this construction applies to any pre S-fold Hopf algebra A.

Definition 3.1.6. Let S be a finite set and A a functor A : [2]S → CRings. Given
finite sets U ⊆ V ⊆ S we define the functor FU

A,V to be the composite

T (U)
−∪− �� [2]U

−∪(V \U) �� [2]S A �� CRings,

and define AU
V to be the colimit of the functor FU

A,V .
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Example 3.1.7. Let U = {u, v} ⊆ V . The source category T (U) of FU
A,V is the

diagram on the left, and the image of FU
A,V in commutative rings is the diagram on

the right:

{u, v}, ∅ {u}, ∅ ���� {u}, {v}

{v}, ∅

		

��

∅, ∅ ��

��

		

�� ∅, {v}

		

��
{v}, {u} ∅, {u} ���� ∅, {u, v}

AV AV \v ���� AV

AV \u

		

��

AV \{u,v} ��

��

		

�� AV \u

		

��
AV AV \v ���� AV .

In our example, π∗(ΛT−HFp)
U
V
∼= π∗(ΛTV \U×(S1∨S1)×UHFp).

We will now describe a helpful way to think about the rings AU
V .

Definition 3.1.8. The power set, P (U) of U , can be thought of as a discrete category,
with objects the subsets of U . There is a functor G from P (U) to T (U) given by
mapping W ⊆ U to the pair (U \ W,W ). The composite FU

A,V ◦ G is the constant

functor AV , so this induces a surjective map on colimits from A
⊗P (U)
V to AU

V .

An element in AU
V can thus be represented by an element in A

⊗P (U)
V , and we write

the image of these representatives as cubes with an element of AV in each corner,
indexed by the subset of U .

Example 3.1.9. Let U = {u, v} ⊆ V . An element of AU
V is represented by a sum of

cubes [
x∅ x{v}
x{u} x{u,v}

]
,

where all the x’s are elements of AV . The four entries in the cube correspond to the
four corners in the right diagram in Example 3.1.7, and the subscripts are given by the
second set in the four corners in the left diagram. Multiplication is done component
wise, and we have the following identifications[

aux∅ x{v}
x{u} x{u,v}

]
=

[
x∅ aux{v}
x{u} x{u,v}

] [
x∅ x{v}

aux{u} x{u,v}

]
=

[
x∅ x{v}
x{u} aux{u,v}

]
[
avx∅ x{v}
x{u} x{u,v}

]
=

[
x∅ x{v}

avx{u} x{u,v}

] [
x∅ avx{v}
x{u} x{u,v}

]
=

[
x∅ x{v}
x{u} avx{u,v}

]
when au is an element in AV \{u} ⊆ AV , and av is an element in AV \{v} ⊆ AV . Observe
that if a is an element in AV \{u,v} we can move the element between all four corners
of the cube.

Observe that the colimits of the columns in the right diagram in Example 3.1.7 are

A
{u}
V Au

V \{v} ���� A
{u}
V .
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Given a map of diagrams

AV

ψV
��

AV \v ����

ψV \v
��

AV

ψV
��

A
{u}
V A

{u}
V \v ���� A

{u}
V ,

we will write the map on the colimits of the horizontal direction as[
ψV ψV

]
: A

{v}
V → A

{u,v}
V .

Lemma 3.1.10. For U ⊆ V and v ∈ V \U , the universal property of colimits induces
an isomorphism

AU
V ⊗AU

V \v
AU

V
∼= AU∪v

V

of commutative rings.

Proof. Both sides are the colimit of the functor FU∪v
A,V . On the left hand side the colimit

is evaluated in two steps, evaluating the v-th direction in the diagram T (U ∪ v) last.
More explicitly, the middle term AU

V \v is the colimit of the functor FU∪v
A,V precom-

posed with the inclusion T (U)→ T (U ∪v). The two outer terms AU
V are the colimit of

the functor FU∪v
A,V precomposed with the two maps T (U)→ T (U ∪ v), given by adding

v to the first and second set in T (U), respectively.

Given a pre S-fold Hopf algebra A, there are some related multifold Hopf algebras.
You can think of a pre S-fold Hopf algebra as an S-cube, with corners indexed by
the subset of S, of commutative rings with extra structure. The first part of the next
proposition says that every face is a pre multifold Hopf algebra in a natural way.

Proposition 3.1.11. If U and W are subsets of S, the composite

V (W )
−∪U �� V (S) A �� CRings

is a pre W -fold Hopf algebra. If U is a subset of S the functor

AU : V (S \ U)→ CRings

given by AU(V ) = AU
V ∪U is a pre S \ U-fold Hopf algebra.

Proof. The first case is clear by definition. In the second case, for every U ⊆ V ⊆ S
and v ∈ V \ U , we need to give a Hopf algebra structure to the pair

(
AU

V , A
U
V \v
)

satisfying the definition of a pre S \ U -fold Hopf algebra.
We claim there is a pushout diagram(

AU
V \u, A

U
(V \u)\v
)

��

��

(
AU

V , A
U
V \v
)

��(
AU

V , A
U
V \v
)

��
(
AU∪u

V , AU∪u
V \v
)
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of Hopf algebras.
The identification of the pushout follows from Lemma 3.1.10. The case U = ∅

follows from the definition of a pre S-fold Hopf algebra. The rest are by induction on
the number of elements in U .

The universal property of pushouts guarantees that these Hopf algebras combines
to a functor satisfying the definition of a pre S \ U -fold Hopf algebra.

Composing the various coproducts in a pre S-fold Hopf algebra, gives rise to several
homomorphisms that we now introduce. An S-fold Hopf algebra is a pre S-fold Hopf
algebra where these various homomorphisms agree.

Definition 3.1.12. Let A be a pre S-fold Hopf algebra. Given a pair of sets U ⊆ V ⊆
S with v ∈ V \ U we define

ψU,v
V : AU

V → AU
V ⊗AU

V \v
AU

V
∼= AU∪v

V

to be the composition of the coproduct in the Hopf algebra
(
AU

V , A
U
V \v
)
with the isomor-

phism from Lemma 3.1.10
Given a sequence of distinct elements u1, u2, . . . , uk ∈ V ⊆ S, we define

ψu1,...,uk

V : AV → A
{u1,...,uk}
V

by the recursive formula

ψui,...,uk

V = ψ
{ui+1,...,uk},ui

V ◦ ψui+1,...,uk

V .

Similarly, we define
ψ̃u1,...,uk

V : AV → A
{u1,...,uk}
V

using the reduced coproducts ψ̃
{ui+1,...,uk},ui

V .

Definition 3.1.13. Let S be a finite set. An S-fold Hopf algebra A is a pre S-fold
Hopf algebra A with the additional requirement that for every sequence u1, u2, . . . , uk

of distinct elements in V ⊆ S, and all permutations α of k,

ψ
uα(1),...,uα(k)

V = ψu1,...,uk

V : AV → A
{u1,...,uk}
V .

We denote this map
ψU
V : AV → AU

V ,

where U = {u1, . . . , uk}.
In the case of ΛT−HFp, where the different coproducts come from the pinch map on

the different circles, the extra requirement in the definition of an S-fold Hopf algebra,
amounts to the fact that all the ways to go from ΛTV HFp to Λ(S1∨S1)×V HFp by pinching
each circle once, are equal up to homotopy.
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Definition 3.1.14. A map from an S-fold Hopf algebra A to an S-fold Hopf algebra
B is a map of pre S-fold Hopf algebras.

It shouldn’t come as a surprise that when the composition of the coproducts agree,
the composition of the reduced coproducts agree. More precisely:

Proposition 3.1.15. Let A be an S-fold Hopf algebra, and let u1, u2, . . . , uk be a
sequence of distinct elements in V ⊆ S. Then

ψ̃
uα(1),...,uα(k)

V = ψ̃u1,...,uk

V .

for all permutations α of k.

Proof. By Proposition 3.1.11, it suffices to check the claim for transpositions, since
A{ui,...,uk} is an S \ {ui, . . . , uk}-fold Hopf algebra for every i ≤ k. Let i, j ∈ V ⊆ S.
In cube notation this amounts to showing that

ψ̃i,j
V = ψ̃

{j},i
V ◦ ψ̃j

V =
( [

ψi
V ψi

V

]−[id id
1 1

]
−
[
1 1
id id

])
◦
( [

ψj
V

]− [id 1
]− [1 id

] )
=
([ψj

V

ψj
V

]
−
[
id 1
id 1

]
−
[
1 id
1 id

])
◦
( [

ψi
V

]− [id
1

]
−
[
1
id

])
= ψ̃

{i},j
V ◦ ψ̃i

V = ψ̃j,i
V ,

where the horizontal direction of the cube is the j-th direction, the vertical direction

is the i-th direction,
[
ψi
V ψi

V

]
= ψ

{j},i
V , and

[
ψj
V

ψj
V

]
= ψ

{i},j
V .

Expanding the first two parentheses in the above expression we get

ψ̃i,j
V =
[
ψi
V ψi

V

]◦[ψj
V

]−([id id
1 1

]
+

[
1 1
id id

])
◦[ψj

V

]−[ψi
V ψi

V

]◦( [id 1
]
+
[
1 id
] )

+

[
id 1
1 1

]
+

[
1 id
1 1

]
+

[
1 1
id 1

]
+

[
1 1
1 id

]
.

Since A is an S-fold Hopf algebra we have

ψi,j
V =
[
ψi
V ψi

V

] ◦ [ψj
V

]
=

[
ψj
V

ψj
V

]
◦ [ψi

V

]
= ψj,i

V .

By naturality we have that[
ψi
V ψi

V

] ◦ ( [id 1
]
+
[
1 id
] )

=
([id 1

id 1

]
+

[
1 id
1 id

])
◦ [ψi

V

]
,

and similarly for j, thus finishing the proof.

We end this section by constructing some special S-fold Hopf algebras. In the
case we are interested in, π∗(ΛT−HFp), the simplest version correspond to the functor
π∗(ΛT−

k
HFp).
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Definition 3.1.16. Let S be a finite set. We define a subcategory Δ of V (S) to be
saturated if it has the property that when W ∈ Δ then V (W ) ⊆ Δ.

Definition 3.1.17. Let S be a finite set and let Δ be a saturated subcategory of V (S).
Define a partial S-fold Hopf algebra A : Δ → CRings, to be a functor A which for
every W ∈ Δ, is a W -fold Hopf algebra when restricted to W . Let Δ be the subcategory⋃

W∈Δ [2]W ⊆ Δ.
The functor

A : V (S)→ CRings

defined by A(W ) = colimU⊆W,U∈Δ A(U) has the structure of an S-fold Hopf algebra
and we denote it the extension of A to S.

Given an S-fold Hopf algebra A, we define the restriction of A to Δ to be the S-fold
Hopf algebra which is the extension of the functor

A|Δ : Δ→ CRings .

Since the category of Hopf algebras has all small colimits, and these are given as
pair of colimits in commutative rings, it is clear that the extension of A is an S-fold
Hopf algebra. All the properties of an S-fold Hopf algebra follows from functoriality
of the colimit.

Definition 3.1.18. Let S be a finite set, and let m be a positive even integer. Let
Δ ⊆ V (S) be the full subcategory containing all sets with at most one element. Let
A : Δ → CRings be the functor given by A(∅) = R and A({s}) = PR(μs), with
|μs| = m.

We define PR(μ−), the polynomial S-fold Hopf algebra over R in degree m, to be
the extension of the functor A to all of S.

When m = 2, the functor π∗(ΛT−
1
HFp) is isomorphic to P (μ−).

Note that for U = {u1, . . . , uk} there is an isomorphism PR(μU) ∼= PR(μu1 , . . . , μuk
),

and for u ∈ U the element μu is primitive in the Hopf algebra (PR(μU), PR(μU\u)).

3.2 Coproduct in a Multifold Hopf Algebra

In this section we will state a proposition that we need when we calculate the multi-
plicative structure of π∗(ΛTnHFp).

First we give Lucas’ theorem about binomial coefficients, see Lemma 3C.6 in
[Hat02] for a proof.

Proposition 3.2.1. If p is a prime, then
(
n
k

)
=
∏

i

(
ni

ki

)
mod p where n =

∑
i nip

i

and k =
∑

i kip
i with 0 ≤ ni < p and 0 ≤ ki < p are the p-adic representations of n

and k.
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The convention is that
(
n
k

)
= 0 if n < k, and

(
n
0

)
= 1 for all n ≥ 0.

Given an integer n divisible by p, we write n
p
for the image of n

p
under the ring map

Z → Fp. In the polynomial Fp-Hopf algebra PFp(μ), we write ψ̃(μpi )
p

for the image of

ψ̃(μpi )
p

under the ring map PZ(μn)→ PFp(μn) given by mapping μn to μn. This is well

defined since
(
pi

k

)
is divisible by p for all i and k with 0 < k < pi.

Lemma 3.2.2. Let M be an Fp-module, and let n be a natural number greater than 2.
Let {rk,n−k}0<k<n be a set of elements in M which satisfy the relations

(
a+b
b

)
ra+b,c =(

b+c
b

)
ra,b+c for all a+ b+ c = n and 0 < a, c < n. Then the following relations hold:

1. If n = pm+1 for some m ≥ 0, then

rk,n−k =

(
n
k

)
p

rpm,(p−1)pm

for all 0 < k < n.

2. If n = pm1 + pm2 with m1 < m2 and k �= pm1 , pm2, then rk,n−k = 0.

3. If n �= pm+1, pm1 + pm2 with m1 < m2, then

rk,n−k =

(
n

k

)
n−1
m rpm,n−pm

for all 0 < k < n, where n = n0+n1p
1+ . . .+nmp

m with 0 ≤ ni < p and nm �= 0
is the p-adic representation of n.

The only case which is not covered by the lemma is n = pm1 + pm2 with m1 �= m2,
when the relations in the lemma doesn’t give any relation between rpm1 ,pm2 and rpm2 ,pm1 .

Proof. Given a set {rk,n−k}0<k<n of elements in an abelian group, let ∼ be the equiva-
lence relation generated by

(
a+b
b

)
ra+b,c ∼

(
b+c
b

)
ra,b+c. Let Fp{r1,n−1, . . . , rn−1,1} be the

free Fp-module on the set {r1,n−1, . . . , rn−1,1}. Since M is an Fp-module, there is a
homomorphism

Fp{r1,n−1, . . . , rn−1,1}/∼ →M

defined by mapping rk,n−k to rk,n−k. Hence it suffices to prove the lemma for the
module M = Fp{r1,n−1, . . . , rn−1,1}/∼.

Let
k = k0 + k1p

1 + . . .+ kjp
j

with 0 ≤ ki < p and kj �= 0, be the p-adic representations of k. Similarly, let

n = n0 + n1p
1 + . . .+ nmp

m

with 0 ≤ ni < p and nm �= 0 be the p-adic representation of n, except that when n is
a power of p we express it as n = pm+1.
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The proof consists of two part. First we prove that unless both k and n − k are
powers of p, there is a sequence of equations expressing rk,n−k as a multiple of rpm,n−pm .
The second part is to identify the factor in this equation in terms of

(
n
k

)
.

We will now use the relations
(
a+b
b

)
ra+b,c =

(
b+c
b

)
ra,b+c to express rk,n−k as a multiple

of rpm,n−pm . By Proposition 3.2.1
(

k
k−pj

)
=
(
k
pj

)
= kj, giving us the equation

rk,n−k =

(
n−pj

k−pj

)(
k

k−pj

)rpj ,n−pj .

If j = m we are done. Otherwise, if n > pj + pm, the m-th coefficient in the p-adic
expansion of n− pj is at least 1. Hence

(
n−pj

pm

) �= 0, and we have two equations

rpj ,n−pj =

(
pj+pm

pm

)(
n−pj

pm

) rpj+pm,n−pj−pm rpj+pm,n−pj−pm =

(
n−pm

pj

)(
pj+pm

pj

)rpm,n−pm .

If n < pj + pm there is an i < j such that ni �= 0 and the i-th coefficient in the
p-adic expansion of n − pj is ni. Hence

(
n−pj

pi

)
= ni and

(
n−pi

pm

)
= nm and the four

equations below move these powers of p back and forth

rpj ,n−pj =

(
pj+pi

pi

)(
n−pj

pi

) rpj+pi,n−pj−pi rpj+pi,n−pj−pi =

(
n−pi

pj

)(
pj+pi

pj

)rpi,n−pi

rpi,n−pi =

(
pi+pm

pm

)(
n−pi

pm

) rpi+pm,n−pm−pi rpi+pm,n−pi−pm =

(
n−pm

pi

)(
pi+pm

pi

)rpm,n−pm .

Combining three or five equations, respectively, we get when (k, n) �= (pj, pj + pm)
with j < m, the equation

rk,n−k = urpm,n−pm

where u is some element in Fp.
To determine u we will take a detour through Z(p), the integers localized at p. In

the Q-module Q{r1,n−1, . . . , rn−1,1}/∼ we let r1,n−1 = nr. The formula
(
k
1

)
rk,n−k =(

n−k+1
1

)
rk−1,n−k+1 and induction, give the equality

rk,n−k =
n− k + 1

k
rk−1,n−k+1 =

n− k + 1

k

(
n

k − 1

)
r =

(
n

k

)
r

in Q{r1,n−1, . . . , rn−1,1}/∼.

Thus, if n = pm+1, then rk,n−k =
(p

m+1

k )
(p

m+1

pm )
rpm,(p−1)pm =

(p
m+1

k )
p

(p
m+1−1
pm−1 )

rpm,(p−1)pm , and when

n is not a power of p, rk,n−k =
(nk)
( n
pm)

rpm,n−pm =
(
n
k

)
n−1
m rpm,n−pm .
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By Proposition 3.2.1,
(
pm+1

k

)
is divisible by p for every k, but neither

(
pm+1−1
pm−1

)
nor

nm are divisible by p. Hence these relations exists in Z(p){r1,n−1, . . . , rn−1,1}/∼ ⊆
Q{r1,n−1, . . . , rn−1,1}/∼.

By the universal property of localization we get a map

f : Z(p){r1,n−1, . . . , rn−1,1}/∼ → Fp{r1,n−1, . . . , rn−1,1}/∼
by mapping rk,n−k to rk,n−k.

By Proposition 3.2.1,
(
pm+1−1
pm−1

)
= 1 mod p and

(
n

nmpm

)
= 1 mod p. So when n is

not a power of p, f

(
(nk)

( n
nmpm)

)
=
(
n
k

)
= u proving part 3. In particular when k �= pj, pm

the binomial coefficients
(
pj+pm

k

)
are equal to 0, proving part 2 of the lemma.

When n = pm+1, then f

⎛⎝ (p
m+1

k )
p

(p
m+1−1
pm−1 )

⎞⎠ =
(p

m+1

k )
p

= u proving part 1.

Definition 3.2.3. Let A and B be R-algebras. An R-algebra homomorphism from A
to B in degree less than or equal to q, is an R-module homomorphism f : A → B
which induces an R-algebra homomorphism on the quotients A/A>q → B/B>q. We
define the similar notion for coalgebras and Hopf algebras.

First we state a similar proposition about ordinary Hopf algebras. Let P denote
the set of integers {p0, p1, p2 . . .} ⊆ N.

Proposition 3.2.4. Let R be an Fp-algebra and let A be an R-Hopf algebra such that:

1. There is a sub R-Hopf Algebra PR(μ) ⊆ A.

2. As an R-algebra in degree less than or equal to q, this is part of a splitting
PR(μ) ⊆ A

pr→ PR(μ).

3. In degree less than or equal to q− 1 this is a splitting as an R-Hopf algebra, i.e.,
the following diagram commutes

A
pr ��

ψA

��

PR(μ)

ψPR(μ)

��
A⊗ A

pr⊗ pr �� PR(μ)⊗ PR(μ)

in degree less than or equal to q − 1.

Let x be an element in degree q in ker(pr). Then there exists elements rn ∈ R for
n ∈ N+, and t(n1<n2) ∈ R for pairs (n1 < n2) ∈ P× P, such that the coproduct satisfy

(prPR(μ)⊗ prPR(μ)) ◦ψ(x) =
∑
n∈N+

rnψ̃(μ
n)+
∑
n∈P

rn
ψ̃(μn)

p
+
∑

(n1<n2)∈P×P

t(n1<n2)μ
n1 ⊗μn2 .
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Recall that ψ̃(μn) =
∑n−1

k=1

(
n
k

)
μk ⊗ μn−k and that when n is a power of p,

(
n
k

)
is

divisible by p for all 0 < k < n. Hence, ψ̃(μn)
p

is well defined.

Observe, that since ψ̃(μpi) = 0 for all i ≥ 1, the first sum is independent of the
values of rpi . An example where this proposition applies is the dual Steenrod algebra

A∗ with P (ξ1) ⊆ A∗. Then ψ̃(ξ2) = ξ1 ⊗ ξ
p

1 so t1,p = 1.

Proof. In general (prPR(μ)⊗ prPR(μ))◦ψ(x) =
∑

n∈N
∑

a+b=n ra,bμ
a⊗μb, for some ra,b ∈

R. Since (ε⊗ id)ψ = (id⊗ε)ψ = id and x ∈ ker(pr), we must have that r0,n = rn,0 = 0
for all n.

In degree less than or equal to q, there is a factorization of ψ̃ as

A≤q
ψ̃−→
∑
k+l=q
k,l>0

A≤k ⊗ A≤l ⊆ (A⊗ A)≤q.

Tensoring the diagram from assumption 3 in the proposition with A≤l, gives a
commutative diagram∑

k+l=q
k,l>0

A≤k ⊗ A≤l

∑
ψ̃⊗id ��

∑
pr⊗ pr

��

∑
k+l=q
k,l>0

∑
i+j=k
i,j>0

A≤i ⊗ A≤j ⊗ A≤l

∑
pr⊗ pr⊗ pr

��∑
k+l=q
k,l>0

PR(μ)≤k ⊗ PR(μ)≤l

∑
ψ̃⊗id ��
∑
k+l=q
k,l>0

∑
i+j=k
i,j>0

PR(μ)≤i ⊗ PR(μ)≤j ⊗ PR(μ)≤l.

There is also a similar diagram for id⊗ψ̃. Hence we have

(pr⊗ pr⊗ pr)(ψ̃ ⊗ id)ψ̃(x) =
∑
n∈N

∑
d+c=n

rd,c
∑

a+b=d

(
d

b

)
μa ⊗ μb ⊗ μc,

and

(pr⊗ pr⊗ pr)(id⊗ψ̃)ψ̃(x) =
∑
n∈N

∑
a+d=n

ra,d
∑
b+c=d

(
d

b

)
μa ⊗ μb ⊗ μc.

From coassociativity of ψ̃ we know that the coefficients in front of μa ⊗ μb ⊗ μc

in the two expressions above must be equal. Hence there are relations
(
a+b
b

)
ra+b,c =(

b+c
b

)
ra,b+c, for all a, c ≥ 1 and b ≥ 0.

Given such relations, if n = pm+1, then by Lemma 3.2.2 rk,n−k =
(nk)
p
rpm,(p−1)pm ,

and we let rn = rpm,(p−1)pm . If n = pm1 + pm2 with m1 < m2, then rk,n−k = 0 when
k �= pm1 , pm2 . We let rn = rpm2 ,pm1 and t(pm1<pm2 ) = rpm1 ,pm2 − rpm2 ,pm1 . Otherwise, let
n = n0+n1p

1+ . . .+nmp
m, with 0 ≤ ni < p and nm �= 0, be the p-adic representation

of n. Then rk,n−k =
(
n
k

)
n−1
m rpm,n−pm , and we let rn = n−1

m rpm,n−pm .
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The next Proposition is similar to the previous proposition, but involves S-fold
Hopf algebras. Although they are similar, when S contains exactly one element the
next proposition doesn’t specialize to the previous proposition, since in assumption 2
in the next proposition, Ã = R giving an impossible splitting PR(μ)→ R→ PR(μ).

Given a finite set U = {u1, . . . , uk} we write PR(μU) for the polynomial ring
PR(μu1 , . . . , μuk

), and given an element m ∈ NV where U ⊆ V , we let μm
U in PR(μU)

denote the product μ
mu1
u1 · · ·μmuk

uk .

Proposition 3.2.5. Let A be an S-fold Hopf algebra such that:

1. R = A∅ is an Fp-algebra.

2. There is a splitting of S-fold Hopf algebras PR(μ−)
f→ Ã

pr→ PR(μ−), where Ã is
the restriction of A, as in Definition 3.1.17, to the full subcategory of V (S) not
containing S.

3. In degree less than or equal to q, the map pr can be extended to AS, i.e., in degree
less than or equal to q, there is an R-algebra homomorphism pr : AS → PR(μS)
(see Definition 3.2.3) such that the following diagram commutes

ÃS
��

prS
��

AS

pr
��

PR(μS),

in degree less than or equal to q.

4. For all s ∈ S, the map pr :
(
AS, AS\s

) → (PR(μS), PR(μS\s)
)
is a map of Hopf

algebras in degree less than or equal to q − 1.

Let x be an element in
⋂

s∈S ker(ε
s
S : AS → AS\s) ⊆ AS of degree q. If x ∈ ker(pr)

and s ∈ S, then there exist elements rb ∈ R for b ∈ N×S
+ such that for every s ∈ S,

[
pr pr
] ◦ ψs

S(x) =
∑

b∈N×S
+

rbμ
b
S\sψ̃

s(μbs
s ) +
∑
b∈P×S

rb,sμ
b
S\s

ψ̃s(μbs
s )

p

+
∑

b∈PS\s

∑
c1<c2∈P×P

tb,c1<c2,sμ
b
S\s
[
μc1
s μc2

s

]
, (3.2.6)

where bs is the s-th component of b, and rb,s and tb,c1<c2,s are elements in R.

An important observation is that in the first sum, the coefficients rb are independent
of the element s. The P×S part in the first sum is zero since ψ̃s(μpi

s ) = 0 for all i ≥ 0.
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Proof. In this proof we will compare ψ̃i,k(x) with ψ̃k,i(x) for all pair of elements i �= k

in S, where the definition of ψ̃k,i
S is found in Definition 3.1.13.

For every element i ∈ S the ring AS is an AS\i-Hopf algebra and AS\i is an Fp-
algebra since R = A∅ = Fp. Assumption 2 and the unit ηiS : AS\i → AS induces an

inclusion PAS\i(μi) ∼= PR(μS) ⊗PR(μS\i) AS\i → ÃS → AS so assumption 1 in Propo-
sition 3.2.4 is satisfied for the Hopf algebra (AS, AS\i). The splitting in assumption
2 in Proposition 3.2.4 comes from the homomorphism AS → PR(μS)⊗PR(μS\i) AS\i ∼=
PAS\i(μi) induced by εiS and the splitting in assumption 2. From assumption 4 this
splitting induces a map of Hopf algebras(

AS, AS\i
)→ (PR(μS)⊗PR(μS\i) AS\i, PR(μS\i)⊗PR(μS\i) AS\i

) ∼= (PAS\i(μi), AS\i
)
,

satisfying assumption 3 in Proposition 3.2.4.
By Proposition 3.2.4, there exist elements rb,i and tb,c1<c2,i in R such that[
pr
pr

]
◦ ψi

S(x) =
∑
b∈NS

rb,iμ
b
S\iψ̃(μ

bi
i ) +

∑
b∈NS\i|bi∈P

rb,iμ
b
S\i

ψ̃(μbi
i )

p

+
∑
b∈NS

∑
c1<c2∈P×P

tb,c1<c2,iμ
b
S\i

[
μc1
i

μc2
i

]
. (3.2.7)

Observe that if bi = 1, we can choose rb,i arbitrary.
We will now show that if bi ≥ 2 and bk = 0 for some k �= i, then rb,i = 0.

The counits εkS and εkS\i induce a map of Hopf algebras (AS, AS\i) → (AS\k, AS\{i,k}).
Since x is in

⋂
s∈S ker(ε

s
S : AS → AS\s), we have ψi

S\k ◦ εkS(x) = 0. If rb,i �= 0, then

εkS ⊗ εkS(ψ
i
S(x)) �= 0 so the commutative diagram

AS

ψi
S ��

εkS
��

AS ⊗AS\i AS

εkS⊗εkS
��

AS\k
ψi
S\k �� AS\k ⊗AS\{i,k} AS\k

gives a contradiction. Thus rb,i = 0.
From assumption 4 in the proposition, we get a commutative diagram

ker(εiS)
ψ̃i
S ��

ψ̃i
S

��

A
{i}
S

ψ̃
{i},k
S �� A

{i,k}
S

pr

��
A

{i}
S

pr �� PR(μS)
{i} ψ̃

{i},k
S �� PR(μS)

{i,k},

in degree less than or equal to q, where the composition of the two morphisms on the
top is the definition of ψ̃k,i

S . The diagram commute in degree less than or equal to q,
and not just q − 1, since we use the reduced coproduct.
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From this diagram we have the formula[
pr pr
pr pr

]
◦ ψ̃k,i

S (x) =
∑
b∈NS

+

∑
0<ai<bi

∑
0<ak<bk

rb,i

(
bk
ak

)(
bi
ai

)
μb
S\{i,k}

[
μai
i μ

ak
k μbk−ak

k

μbi−ai
i 1

]

+
∑

b∈NS
+|bi∈P

∑
0<ai<bi

∑
0<ak<bk

rb,i

(
bk
ak

)(bi
ai

)
p

μb
S\{i,k}

[
μai
i μ

ak
k μbk−ak

k

μbi−ai
i 1

]

+
∑

b∈NS\i
+

∑
c1<c2∈P×P

∑
0<ak<bk

tb,c1<c2,i

(
bk
ak

)
μb
S\{i,k}

[
μc1
i μ

ak
k μbk−ak

k

μc2
i 1

]
.

The three lines correspond to the three summands in equation 3.2.7.
Since A is an S-fold Hopf algebra, ψ̃k,i

S = ψ̃i,k
S so[

pr pr
pr pr

]
◦ ψ̃k,i

S (x) =

[
pr pr
pr pr

]
◦ ψ̃i,k

S (x).

In this equation we will now compare the coefficient in front of μb
S\{i,k}

[
μai
i μ

ak
k μbk−ak

k

μbi−ai
i 1

]
for b ∈ NS

+, with 0 < aj < bj.
We will say that an integer bi ≥ 2 is type 1 if bi is equal to a power of the prime p,

type 2 if bi is equal to a sum of two distinct powers of p, and type 3 otherwise.
Case 1, both bi and bk are type 3:
We get the equation (

bk
ak

)(
bi
ai

)
rb,i =

(
bi
ai

)(
bk
ak

)
rb,k.

Since neither bi nor bk are of type 1, there exists integers 0 < ai < bi and 0 < ak < bk
such that

(
bi
ai

) �= 0 and
(
bk
ak

) �= 0. Thus rb,i = rb,k.
Case 2, bi is type 2 and bk is type 3:
Let bi = pj + pl with j < l. When ai = pj we get the equation(

bk
ak

)(
bi
pj

)
rb,i +

(
bk
ak

)
tb,pj<pl,i =

(
bi
pj

)(
bk
ak

)
rb,k,

and when ai = pl we get the equation(
bk
ak

)(
bi
pl

)
rb,i =

(
bi
pl

)(
bk
ak

)
rb,k.

From Proposition 3.2.1 we know that
(
bi
pj

)
=
(
bi
pl

)
= 1. Since bk is not of type 1, there

exists an ak such that
(
bk
ak

) �= 0. The last equation thus gives rb,i = rb,k, and the second
equation becomes rb,i + tb,pj<pl,i = rb,k, so tb,pj<pl,i must be equal to 0.
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Case 3, bi is type 1 and bk is type 3:
We get the equation (

bk
ak

)(bi
ai

)
p

rb,i =

(
bi
ai

)(
bk
ak

)
rb,k.

Since bi is equal to a power of p,
(
bi
ai

)
= 0 for all 0 < ai < bi. Hence the right hand

side of the equation is always 0. Since bk is not of type 1, there exists an ak such that(
bk
ak

) �= 0, and if bi = pm+1, we have
( bi
pm)
p

= 1. Thus rb,i = 0.
Case 4, both bi and bk are type 2:
Very similar to case 2. Let bi = pji + pli and bk = pjk + plk with ji < li and jk < lk.

When ai = pji and ak = plk we get the equation(
bk
plk

)(
bi
pji

)
rb,i +

(
bk
plk

)
tb,pji<pli ,i =

(
bi
pji

)(
bk
plk

)
rb,k,

and when ai = pli and ak = plkwe get the equation(
bk
plk

)(
bi
pli

)
rb,i =

(
bi
pli

)(
bk
plk

)
rb,k.

From Proposition 3.2.1 we know that
(
bi
pji

)
=
(
bi
pli

)
=
(
bk
pjk

)
=
(
bk
plk

)
= 1. The last

equation thus gives that rb,i = rb,k, and so tb,pji<pli ,i must be equal to 0.
Case 5, bi is type 2 and bk is type 1:
Let bi = pj + pl with j < l. When ai = pj we get the equation(

bk
ak

)(
bi
pj

)
rb,i +

(
bk
ak

)
tb,pj<pl,i =

(
bi
pj

)(bk
ak

)
p

rb,k,

and when ai = pl we get the equation(
bk
ak

)(
bi
pl

)
rb,i =

(
bi
pl

)(bk
ak

)
p

rb,k.

From Proposition 3.2.1 we know that
(
bi
pj

)
=
(
bi
pl

)
= 1. Since bk = pm+1 for some

m,
(
bk
ak

)
= 0 for all 0 < ak < bk, but

( bk
pm)
p

= 1. In the last equation the left hand
side is always equal to zero, and hence rb,k = 0. The first equation doesn’t give any
information about rb,i and tb,pj<pl,i.

Case 6, both bi and bk are type 1:
We get the equation (

bk
ak

)(bi
ai

)
p

rb,i =

(
bi
ai

)(bk
ak

)
p

rb,k.
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Both sides are 0 for all 0 < ai < bi and 0 < ak < bk, so we don’t get any information
about rb,i nor rb,k.

From these six cases we will now deduce equation 3.2.6 in the proposition.
Consider an S-tuple b ∈ NS

+. These fall in five classes:

1. All bi’s are equal to 1.

2. At least one bi is of type 3.

3. No bi is of type 3, but at least two are of type 2.

4. Exactly one bi is of type 2 and the rest are of type 1 or equal to 1.

5. All bi-s of type 1 or equal to 1.

We will now consider these cases one by one.

1. We can choose rb,i arbitrary, since they don’t affect the sum so we let rb = 0.

2. Case 2 shows that for all bk = pj+pl of type 2, tb,pj<pl,k = 0 and rb,k = rb,i. From
case 3, rb,k = 0 for all k with bk of type 1. Finally, case 1 says that rb,k = rb,i for
all bk of type 3, so we let rb = rb,i. This correspond to the first sum in equation
3.2.6.

3. Assume bi = pji < pli and bk = pjk < plk are of type 2. Then using case 4 twice,
we get that tb,pj<pl,k = tb,pj<pl,k = 0 and rb,k = rb,i. If bj is of type 1, case 5 shows
that rb,j = 0. We choose rb = rb,i, and this also correspond to the first sum in
equation 3.2.6.

4. Assume bi is of type 2. By case 5, for all bk of type 1 rb,k = 0, but nothing can
be said about rb,i nor tb,pj<pl,i. We choose rb = rb,i, and this correspond to one
summand in the first sum and one summand in the last sum in equation 3.2.6.

5. This correspond to the middle sum in equation 3.2.6.

3.3 Calculating the Homotopy Groups of ΛSnHFp

In this section we will calculate π∗(ΛSnHFp), when n ≤ 2p and p is odd. First we
describe an Fp-Hopf algebra Bn, and then we show that L(Sn) ∼= Bn. In the end of
this section we state several lemmas, which we need in the next section, about the
degree of certain elements in Bn. Given a space X, we write L(X) for the graded ring
π∗(ΛXHFp).

Definition 3.3.1. Given the letters μ, �, �k and ϕk for k ≥ 0. Define an admissible
word to be a word such that
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1. It ends with the letter μ.

2. The letter μ is immediately preceded by �.

3. The letter � is immediately preceded by �k.

4. The letters �k and ϕk are immediately preceded by � or ϕl for some l ≥ 0.

We define a monic word to be admissible word that begins with one of the letters
�, �0, ϕ0 or μ.

We define the degree of μ to be 2, and recursively define the degree of an admissible
word by the rules

|�x| = 1 + |x|
|�kx| = pk(1 + |x|)
|ϕkx| = pk(2 + p|x|).

An example of an admissible word of length 6 is �ϕmϕl�k�μ.

Lemma 3.3.2. The following statements hold:

1. An admissible word of length at least 3 always ends with the letter combination
�k�μ

2. There is at most n−1
2

occurrences of the letter � in an admissible word of even
degree of length n.

3. Every admissible word of length n has degree at least n+ 1

4. IAll admissible words of odd degree begin with the letter �.

5. Given 0 ≤ k < p. A monic word of degree 2k modulo 2p is either equal to
(�0�)k−1μ, or starts with the letter combination (�0�)k−1ϕ0 or (�0�)k. A monic
word of degree 2k+ 1 modulo 2p is either equal to �(�0�)k−1μ, or starts with the
letter combination �(�0�)k−1ϕ0 or �(�0�)k.

Proof. All but the last statement is obvious. The last statement follows from the
observation that the degree of a word starting with ϕl or �l� is 0 modulo 2p, when
l ≥ 1, and the degree of a word starting with ϕ0 is 2 modulo 2p.

Definition 3.3.3. We define B1 to be the polynomial Fp-Hopf algebra P (μ), with
|μ| = 2. Given n ≥ 2, we define the Fp-Hopf algebra Bn to be equal to the tensor
product of exterior algebras on all monic words of length n of odd degree, and divided
power algebras on all monic words of length n of even degree.

For example, the monic words of length 4 are ��k�μ and ϕ0�k�μ. Hence, B4 =⊗
k≥0(E(��k�μ)⊗ Γ(ϕ�k�μ)).
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Proposition 3.3.4. When n ≥ 2 there is an isomorphism of Fp-Hopf algebras

Bn
∼= TorBn−1(Fp,Fp).

Proof. By Lemma 3.3.2, the odd degree monic words are those starting with �, while
the even degree monic words are those starting with �0, ϕ0 or μ. From Proposi-
tion A.2.10, we get that B2 = E(�μ) ∼= TorP (μ)(Fp,Fp). When n ≥ 3,

Bn−1 =
⊗
i∈I

E(yi)⊗
⊗
j∈J

Γ(zj) ∼=
⊗
i∈I

E(yi)⊗
⊗
j∈J

⊗
k≥0

Pp(γpk(zj)),

where yi runs over all admissible words of length n−1, starting with � and zj runs over
all admissible words of length n − 1 starting with �0 or ϕ0. The isomorphism is only
an isomorphism of Fp-algebras. By Proposition A.2.10, and the Künneth isomorphism
we have an isomorphism of Fp-Hopf algebras

TorBn−1(Fp,Fp) ∼=
⊗
i∈I

Γ(σyi)⊗
⊗
j∈J

⊗
k≥0

E(σγpk(zj))⊗ Γ(ϕγpk(zj)),

where |σx| = 1 + |x| and |ϕx| = 2 + p|x|.
Now, there is an homomorphism of Fp-Hopf algebras Tor

Bn−1(Fp,Fp) → Bn given
by mapping the element σyi to the monic word �0yi, and if zj = �0z′j we map σγpk(zj)
to the monic word ��kz′j and ϕγpk(zj) to the monic word ϕ0�kz′j, while if zj = ϕ0z′j we
map σγpk(zj) to the monic word �ϕkz′j and ϕγpk(zj) to the monic word ϕ0ϕkz′j.

The monic words of odd degree of length n is equal to the set of words �x, where
x runs over all admissible words of length n− 1 starting with �k or ϕk. Similarly, the
monic words of even degree of length n is equal to the set of words �0x and ϕ0z where
x runs over all admissible words that starts with � and z runs over all admissible words
that starts with �k or ϕk for k ≥ 0. Hence, the homomorphism above is an Fp-Hopf
algebra isomorphism TorBn−1(Fp,Fp) ∼= Bn.

Before we calculate L(Sn), we state a technical lemma which is needed in the proof.
Given a graded module A, we will write Ai for the part in degree i. Recall that P (Bn)
is the submodule of primitive elements.

Lemma 3.3.5. If 2 ≤ n ≤ 2p , then P (Bn)2pi−1 = P (Bn)2pi = 0 for all i ≥ 2.

Proof. In a divided power algebra Γ(x), the only primitive element is γ1(x), so, by
Proposition A.1.8 and 3.3.4, the primitive elements in Bn are linear combinations of
monic words of length n.

We will show that the shortest monic word in degree 0 modulo 2p and of degree
greater than 2p, has length 2p+ 2.

By part 5 of Lemma 3.3.2, a monic word of degree 0 modulo 2p must either be
equal to (�0�)p−1μ, or start with the letter combination (�0�)p−1ϕ0 or (�0�)p.
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The word (�0�)p−1μ has degree 2p, so the shortest monic word in degree 0 modulo
2p of degree greater than 2p, is thus (�0�)p−1ϕ0�k�μ0, for k ≥ 1, and it has length
2p+ 2.

By a similar argument, we get that the shortest monic word in degree −1 modulo 2p
of degree greater than 2p, is �(�0�)p−2ϕ0�k�μ0, for k ≥ 1, and it has length 2p+1.

Applying the functor Λ−HFp to the cofiber sequence

Sn−1 �� Dn �� Sn

gives rise to a bar spectral sequence

E2(Sn) = TorL(S
n−1)(Fp,Fp)⇒ L(Sn),

by Corollary 1.2.2.
The pinch map ψ induces vertical maps of cofiber sequences

Sn−1 ��

ψ
��

Dn ��

��

Sn

ψ

��
Sn−1 ∨ Sn−1 �� Dn ∨Dn �� Sn ∨ Sn,

and this in combination with the reflection map on Sn, gives a map of simplicial spectra

B(HFp,ΛSn−1HFp, HFp)→ B(HFp,ΛSn−1HFp, HFp) ∧HFp B(HFp,ΛSn−1HFp, HFp)

that endows this spectral sequence with a Fp-Hopf algebra structure as explained in
Corollary 1.2.4. Flatness is no problem, since Fp is a field.

Theorem 3.3.6. When n ≤ 2p, there are no differentials in the spectral sequence
E2(Sn), and there is an Fp-Hopf algebra isomorphism

π∗(ΛSnHFp) ∼= Bn.

Proof. The proof is by induction on n. Corollary A.4.7 gives us that π∗(ΛS1HFp) ∼=
P (μ) = B1.

Assume we have proved the theorem for n − 1. The bar spectral sequence then
becomes

E2(Sn) = TorBn−1(Fp,Fp) ∼= Bn ⇒ π∗(ΛSnHFp).

By Proposition 1.3.1, the shortest differential in lowest total degree goes from an
indecomposable element to a primitive element. We have E2(Sn)0,∗ ∼= Fp, so the
indecomposable elements in Bn that can support differentials, are generated by �kw
and ϕkw, with k ≥ 1, where w is some admissible word of length n− 1. By part 3 in
Lemma 3.3.2 these elements are all in degrees greater than or equal to 4p, and equal to
0 modulo 2p since k ≥ 1. Thus if z is an indecomposable element, dr(z) is in degree −1
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modulo 2p, greater than or equal to 4p− 1. By 3.3.5 there are no primitive elements
in these degrees when n ≤ 2p, so there are no differentials in the spectral sequence.
Hence, E2(Sn) = E∞(Sn).

To solve the multiplicative extensions we must determine (�kw)p and (ϕkw)p for
all k ≥ 0, and w an admissible word of length n− 1.

Assume z is one of the generators �kw or ϕkw of lowest total degree with zp �= 0.
Then by Frobenius

ψ(zp) = ψ(z)p = (1⊗ z + z ⊗ 1 +
∑

z′ ⊗ z′′)p = 1⊗ zp + zp ⊗ 1 +
∑

(z′)p ⊗ (z′′)p

= 1⊗ zp + zp ⊗ 1,

so zp must be a primitive element in degree 0 modulo 2p. By Proposition 3.3.5, this
is impossible when n ≤ 2p and |zp| ≥ 4p, so there are no multiplicative extensions.

When n ≥ 2 the pinch map ψ : Sn → Sn ∨ Sn is homotopy cocommutative, i.e.
the following diagram commutes

Sn ∨ Sn

τ

��
Sn

ψ ��

ψ 


Sn ∨ Sn,

where τ interchanges the two factors. Cocommutativity is shown by suspending a ho-
motopy between the identity and antipodal map on S1, picking one of the endpoints of
the suspension as the basepoint in Sn, and identifying the suspension of two antipodal
points on S1 to a point, to define ψ.

From this is it follows that L(Sn) is cocommutative as an Fp-coalgebra when
n ≥ 2. Since E2(Sn) is a tensor product of exterior algebras and divided power
algebras, Proposition 1.3.2 says that there are no coproduct coextensions. Thus
L(Sn) ∼= E∞(Sn) = E2(Sn) ∼= Bn as an Fp-Hopf algebra.

We finish this section by proving five technical statements about the degrees of
certain admissible words. They are used in later sections in arguments about differ-
entials and multiplicative extensions in spectral sequences. The first two lemmas can
obviously be generalized to all n, but we only need them for n ≤ p, so we keep their
formulations as simple as possible.

Lemma 3.3.7. Let n ≤ 2p− 2, and let x be an admissible word in Bn of even degree.
Let l be the number of occurrences of the letter � in the word x. The sum of the
coefficients in the p-adic expansion of the number |x|

2
is equal to n− l.

Proof. The proof is by induction on n. It is true for n = 1 since l = 0 and |μ| = 2.
Assume it is true for all 1 ≤ m ≤ n − 1. An admissible word x in Bn of even degree
is, by part 4 in Lemma 3.3.2, either equal to ϕky or �k�z for some k ≥ 0, where y and
z are admissible words in Bn−1 and Bn−2, respectively.
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First, |ϕky|
2

= pk(1+p |y|
2
), so if the sum of the coefficients in the p-adic expansion of

|y|
2
is n−1− l, where l is the number of occurences of � in y, the sum of the coefficients

in the p-adic expansion of |ϕky|
2

is n− l

Second, |�k�z|
2

= pk(1+ |z|
2
), so if the sum of the coefficients in the p-adic expansion

of |z|
2
is n− 2− (l − 1) = n− 1− l, where l − 1 is the number of occurences of � in z,

then the sum of the coefficients in the p-adic expansion of |�k�z|
2

is n− l, unless there

was carrying involved in the addition 1 + |z|
2
.

There is only carrying involved if the degree of z is equal to −2 modulo 2p, and by
part 5 in Lemma 3.3.2 this implies that z is equal to (�0�)p−2μ, or starts with (�0�)p−1

or (�0�)p−2ϕ0. In these cases �0�z has length at least 2p − 1, so there is no carrying
involved when n ≤ 2p− 2.

Lemma 3.3.8. Let Q(Bn) be the module of indecomposable elements in Bn. If 2 ≤ n ≤
2p, then Q(Bn)2pi−1 = 0 for all i and

⊕
i≥1 Q(Bn)2pi is equal to the module generated

by all non-monic admissible words of length n.

Proof. The module of indecomposable elements is generated by all admissible words
of length n. All non-monic words are in degree 0 modulo 2p. All monic words are
primitive, so by 3.3.5 they are not in degree −1 or 0 modulo 2p when 2 ≤ n ≤ 2p.

Lemma 3.3.9. The sum of the coefficients in the p-adic expansion of the number
|μpj1

1 μpj2
2 ...μpjn

n |
2

, where ji ≥ 0 and |μi| = 2 for 1 ≤ i ≤ n, is equal to n when 0 < n < p
and n or n− p+ 1 when p ≤ n < 2p.

Proof. If less than p of the numbers ji are equal, we get the case n, and if at least p
of the numbers ji are equal, we get the case n− p+ 1.

Corollary 3.3.10. Let x be an admissible word in Bn of even degree.

If 1 ≤ n ≤ p, then the degree of x is not equal to the degree of μpj1
1 μpj2

2 . . . μpjn
n ,

where ji ≥ 0 for 1 ≤ i ≤ n.
If p ≥ 5, 1 ≤ n ≤ p and 1 ≤ s ≤ n, then the degree of x is not equal to the degree

of (μpj1
1 μpj2

2 . . . μpjn
n )μpjn+1

s , where ji ≥ 0 for 1 ≤ i ≤ n+ 1.

Proof. By Lemma 3.3.7 the sum of the coefficients in the p-adic expansion of |x|
2

is
equal to n − l where l is the number of occurences of the letter � in x. Part 2 in
Lemma 3.3.2 says that 1 ≤ l ≤ n−1

2
, so n+1

2
≤ n − l ≤ n − 1. By Lemma 3.3.9 the

sum of the coefficients in the p-adic expansion of
|μpj1

1 μpj2
2 ...μpjn

n |
2

is equal to n when
0 < n < p and n or 1 when n = p. Now, n− l ≤ n− 1 < n < n + 1 and when n = p
then 1 < n+1

2
= p+1

2
≤ n− l, proving the first claim.

The sum of the coefficients in the p-adic expansion of
|(μpj1

1 μpj2
2 ...μpjn

n )μp
jn+1

i |
2

is equal
to n+1 when 0 < n < p−1 and n+1 or n−p+2 when p−1 ≤ n ≤ p. When n = p−1 ≥ 4
then 1 < n+1

2
= p

2
≤ n − l and when n = p ≥ 5 then 2 < n+1

2
= p+1

2
≤ n − l, proving

the second claim.
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Definition 3.3.11. Given a finite ordered set S = {s1 < . . . < sn} we define an
S-labeled admissible word to be an admissible word of length n, where the first letter
is labeled with sn, the second with sn−1, and so forth. We define BS to be the Fp-Hopf
algebra that is a tensor product of exterior algebras on all S-labeled admissible monic
words of odd degree and divided power algebras on all S-labeled admissible monic words
of even degree. We let B∅ = Fp be generated by the empty word in degree zero.

Forgetting the labels on the letters induces an Fp-Hopf algebra isomorphism be-
tween BS and Bn. An example of an S-labeled word of length 3 is �ks3�s2μs1 .

Lemma 3.3.12. Let n ≤ p, and let P ⊆⊗U�n BU be the Fp-submodule generated by
all products zU1 · · · zUk

, where U1, . . . , Uk is a partition of n, and, zUi
is a primitive

element in BUi
, for every i. Then P2pi−1 = 0 for every i ≥ 2, and the module

⊕
i≥2 P2pi

is contained in the module generated by all the elements μpj1
1 μpj2

2 . . . μpjn
n , where ji ≥ 0

for 1 ≤ i ≤ n.

Proof. In a divided power algebra Γ(x), the only primitive element is γ1(x), and in
a polynomial algebra P (x) the primitive elements are generated by xpj . By Proposi-
tion A.1.8, the primitive elements in BUi

are thus linear combinations of monic words

wi of length |Ui| when |Ui| > 1, and μpji
Ui

when |Ui| = 1. Assume without loss of
generality that z is a product of such elements.

Observe that the degree of a word starting with ϕk, �k� or μpk is 0 modulo 2p when
k ≥ 1. Thus multiplication with one of these words will not change the degree of the
product modulo 2p. The degree of ϕ0x and μ is 2 modulo 2p, and finally the degree
of �0�x is 2 + |x| modulo 2p.

Except for the products μpj1
1 . . . μpjn

n , the smallest n where the degree of z is 0

modulo 2p is thus n = p + 2 where z may be equal to μ1 · · ·μp−2 · μpk

p−1 · �0p+2�p+1μp.
Similarly, the smallest n where the degree of z can be −1 modulo 2p is n = p + 1,

where z might be equal to μ1 · · ·μp−2 · μpk

p−1 · �p+1μp.

3.4 Calculating the Homotopy Groups of ΛTnHFp

In this section we will calculate the homotopy groups π∗(ΛTnHFp) for n ≤ p. We will
use the bar spectral sequence, and the multifold Hopf algebra structure of π∗(ΛTnHFp)
to make the calculation.

Fix a basepoint on the circle S1. Let I be the category with objects finite sets of
natural numbers, and morphisms inclusions.

We define the functor T : I → Top by T (∅) = {pt}, and when U �= ∅, T (U) =
TU , the U -fold torus. On morphisms it takes an inclusion U ⊆ V to the inclusion
inV

U : TU → T V , where we use the basepoint in the factors not in U .
Given a finite subcategory Δ ⊆ I, we define

TΔ = colim
U∈Δ

TU .
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Given a finite set U we define Δ|U , the restriction of Δ to U , to be the full subcategory
of Δ with objects {V ∩U |V ∈ Δ}. The dimension of Δ, is the the maximal cardinality
of the sets in Δ.

If U has cardinality k, there is a quotient map

gU : TU → TU/TU
k−1

∼= SU ,

where SU is the U -sphere, and if U ⊆ V , there is a projection map

prVU : T V → TU .

Given a map of spaces f : X → Y we will, when there are no room for confusion,
write f for both the induced maps ΛfHFp : ΛXHFp → ΛYHFp and L(f) : L(X) →
L(Y ).

Proposition 3.4.1. For each u in U ∈ I, if L(TU) is flat as an L(TU\u)-module, the
ring L(TU) is a commutative L(TU\u)-Hopf Algebra where:

1. Multiplication is induced by the fold map TU�TU\u TU ∼= TU\u×(S1∨S1)→ TU .

2. Coproduct is induced by the pinch map S1 → S1 ∨ S1 on the u-th circle in TU .

3. The unit map is induced by choosing a basepoint in the u-th circle in TU .

4. The counit map is induced by collapsing the u-th circle in TU to a point.

Proof. Since ΛTUHFp
∼= ΛS1ΛTU\uHFp this follows from Proposition 1.1.5.

Recall the definition of the category I in Section 3.1. Given a finite set S ∈ I and
a full subcategory Δ of V (S) we also write Δ for the full subcategory of I containing
all the sets in Δ.

Proposition 3.4.2. Let W be an object in I, and let Δ be a saturated subcategory
of V (W ), see Definition 3.1.16. Define the functor L(T−) : Δ → CRings on objects
by L(T−)(U) = L(TU) and on a map U : V → W by inU

W ◦ prVU . The functor L(T−)
is a partial W -fold Hopf algebra, when equipped with the Hopf algebra structures in
Proposition 3.4.1, and we let L(TΔ) denote its extension to W . Thus, L(TΔ)(U) =
L(TΔ|U ).

Furthermore, the map gW induces a map of Hopf algebras(
L(TW ), L(TW\j)

)→ (L(S|W |),Fp

)
.

Proof. It suffices to show that L(T−) is a W -fold Hopf algebra when Δ = V (W ).
Given U ⊆ V ⊆ W and v ∈ V we get two homomorphisms of Hopf algebras(
L(TU), L(TU\v)

)→ (L(T V ), L(T V \v)
)→ (L(TU), L(TU\v)

)
induced by the inclusion

U \ v → V \ v. Hence, L(T−) is a pre W -fold Hopf algebra.
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Given a set U ⊆ V ⊆ W , the ring L(T V )U , as defined in Definition 3.1.6, is
isomorphic to L(T V \U × (S1 ∨ S1)U), since L(−) commutes with colimits, and the
colimit of the composite

T (U)
−∪− �� [2]U

−∪(V \U) �� [2]S T−
�� Top.

is T V \U × (S1 ∨ S1)U , where the definitions are as in Definition 3.1.6.
That L(T−) is a W -fold Hopf algebra, follows from the geometric origin of the

coproducts ψi
V for i ∈ V ⊆ W . Given a sequence u1, u2, . . . , uk of distinct elements in

V ⊆ W , let U = {u1, u2, . . . , uk}. The map

ψu1,u2,...,uk

V : L(T V )→ L(T V )U ∼= L(T V \U × (S1 ∨ S1)U),

defined in Definition 3.1.12, is induced by the pinch map on every circle in TU ⊆ T V .
Hence, it is independent of the order of the elements ui in ψu1,u2,...,uk

V .

Ultimately we are interested in L(T n), so we only do the next constructions for
the finite sets n. We will now construct a family of bar spectral sequences that will
be the backbone in our calculations of L(T n).

Give the circle S1 the minimal CW -structure, and give the U -fold torus TU the
product CW -structure.

The attaching maps in the CW -structures yield cofiber sequences

Sn−1 fn
�� T n

n−1
�� T n.

giving an equivalence of commutative HFp-algebra spectra

B(ΛDnHFp,ΛSn−1HFp,ΛTn
n−1

HFp) 
 ΛTnHFp.

By Corollary 1.2.2, there is an Fp-algebra bar spectral sequences

E2(T n) = TorL(S
n−1)(L(T n

n−1),Fp)⇒ L(T n).

For each i ∈ n, the pinch of the i-th circle in T n induces a map of cofiber sequences

Sn−1 fn
��

��

T n
n−1

��

�� T n

��
Sn−1 ∨ Sn−1 �� T n

n−1 �Tn\i T n
n−1

�� T n �Tn\i T n,

inducing a map of simplicial spectra

B(HFp,ΛSn−1HFp,ΛTn
n−1

HFp)

→ B(HFp,ΛSn−1HFp ∧HFp ΛSn−1HFp,ΛTn
n−1

HFp ∧Λ
Tn\iHFp ΛTn

n−1
HFp)


 B(HFp,ΛSn−1HFp,ΛTn
n−1

HFp) ∧Λ
Tn\iHFp B(HFp,ΛSn−1HFp,ΛTn

n−1
HFp).
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Hence by Corollary 1.2.4, if Er(T n) is flat as an L(T n\i)-module then E2(T n) is a
spectral sequence of L(T n\i)-Hopf algebras, and if L(T n) is flat as an L(T n\i)-module,
then L(T n) is an L(T n\i)-Hopf algebra and the spectral sequence converges to L(T n)
as an L(T n\i)-Hopf algebra.

In light of part 3 in the next theorem, we will abuse notation and write BU ⊆ L(T V )

for the injective homomorphism BU →
⊗

W⊆V BV

α∼= L(T V ), when U ⊆ V .

Theorem 3.4.3. Given 1 ≤ k ≤ p when p ≥ 5 and 1 ≤ k ≤ 2 when p = 3, let Δ a
finite subcategory of I of dimension at most k and let V ⊆ W be two non-empty sets
in I of cardinality at most k.

1. The map L(fk) : L(Sk−1)→ L(T k
k−1) factors through Fp.

2. When k ≥ 2, the spectral sequence E2(T k) collapses on the E2-term.

3. There is a natural Fp-algebra isomorphism

α : L(T V ) ∼=
⊗
U⊆V

BU ,

where BU is described in Definition 3.3.11. These isomorphisms induce an Fp-
algebra isomorphism

L(TΔ) ∼= colim
U∈Δ

L(TU) ∼=
⊗
U∈Δ

BU .

4. Assume |V | ≥ 2 and let v be the greatest integer in V .

The operator
σ : L(T V \v)→ L(T V )

is determined by the fact that σ is a derivation and that σ(z) = �vz and σ(z) =
�0vz when ∅ �= U ⊆ V \ v and z is an U-labeled admissible word in BU ⊆ L(T V \v)
of even and odd degree, respectively.

In particular, for any z ∈ L(T V \v), σ(z) is in the kernel of the homomorphism

pr : L(T V )
α∼=
⊗
U⊆V

BU →
⊗
i∈V

B{i}.

5. There is a commutative diagram

L(TW ) α ��

prWV
��

⊗
U⊆W BU

pr

��
L(T V ) α ��

⊗
U⊆V BU .
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6. There is a commutative diagram

L(T V ) α ��

gV

��

⊗
U⊆V BU

pr

��
L(SV )

∼= �� BV ,

where the bottom isomorphism is the one from Theorem 3.3.6, together with the
canonical isomorphism B|V | ∼= BV given by labeling the words in B|V |.

Part 3 and 5 are equivalent to α being a natural transformation of functors from
the category V (k) to the category of Fp-algebras.

The range k ≤ p comes from all the lemmas in Section 3.3 concerning the degree of
primitive elements. It is possible that this range could be improved by getting better
control of the degree of the primitive elements.

When k = p = 3 part 1 and 2 of the theorem still holds, but we are not able to
determine the multiplicative structure of L(T 3) ∼= E∞(T 3) ∼= L(T 3

2 ) ⊗ B3. This is

because the degree of γpk+1(�0�μ) ∈ Γ(�0�μ) = B3 equals the degree of μ
pk+pk+1

1 μpk

2 μpk

3 .
Thus, we can’t use Proposition 3.2.5 to show that (γpk+1(�0�μ))p is a simultaneously
primitive element.

The idea to look at the simultaneously primitive elements to show that the spectral
sequence collapses on the E2-term originated from a note by John Rognes, where he
showed that the spectral sequence E2(T 3) collapses on the E2-term.

Remark 3.4.4. It should be possible to prove a similar result for V (0)∗(ΛTnHZ). The
difference would be the degree of the elements in the rings, and thus the degree of the
simultaneously primitive elements. The arguments in Section 3.3 would thus have to
be adjusted for these new elements, and possibly you would want to work modulo 2p2

instead of modulo 2p.

Before we prove this theorem, we give a very short sketch of the proof. We use
the Bökstedt spectral sequence to identify the E2-term E2(T n) and to show that all
d2-differentials are zero. The S-fold Hopf algebra structure on L(T n) will help us prove
that there are no other non-zero differentials, and hence E2(T n) ∼= E∞(T n).

From E∞(T n) we get a set of Fp-algebra generators for L(T n). In several steps we
exchange this set of generators with other sets. The elements in these new sets have
extra properties, and using these extra properties we are able to prove the various
statements in the theorem. In particular, we need the S-fold Hopf algebra structure
and Proposition 3.2.5 to get hold of the multiplicative structure to prove part 3.

We begin the proof by stating two lemmas with corresponding corollaries. The
first lemma concerns the Bökstedt spectral sequence calculating H∗(ΛTnHFp).

Lemma 3.4.5. Given n, assume that Theorem 3.4.3 holds for 1 ≤ k ≤ n− 1, then:
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1. The Bökstedt spectral sequence calculating H∗(ΛTnHFp) has E2-term

E
2
(T n) ∼= A∗⊗L(T n−1)⊗

⊗
∅�=U⊆n−1

BU∪{n}⊗E(σnξ1, σnξ2, . . .)⊗Γ(σnτ 0, σnτ 2, . . .),

2. There are no differentials dr when r < p− 1, so E
2
(T n) = E

p−1
(T n).

3. There are differentials

dp−1(γpl(σnτ i)) = σnξi+1 · γpl−l(σnτ i).

If, in addition, given m ≥ 0 the homomorphism fn : L(Sn−1) → L(T n
n−1) factors

through Fp in degree less than or equal to 2pm − 1 and the spectral sequence E2(T n)
collapses in total degree less than or equal to 2pm − 1 (that is E2(T n) = E∞(T n) in
these degrees) then:

4. The only other possible non-zero differentials in E
p−1

(T n) starting in total degree
less than or equal to 2p(m+ 1)− 1, are

dp−1(γpl(σnx)) = γpl−p(σnx)
∑
i

rx,id
p−1(γp(σnτ i)),

where x is a generator in L(T n−1) of odd degree and rx,i ∈ L(T n−1) ⊂ E
p−1

0,∗ (T n).

5. Let B′
U � E

2
(T n) be the algebra, isomorphic to BU , that has the same generators

as BU , except that we exchange the generators γpl(σnx) in degree less than 2p(m+
1) with the infinite cycles

γpl((σnx)
′) =

pl−1∑
j=0

(
(−1)jγpl−pj((σnx)

′)
∑

α∈NN,|α|=j

∏
i∈N

rαi
i γpαi

(σnτ i)
)
,

where |α| =∑i∈N αi, and the convention is that 00 = 1, γ0(x) = 1, and γi(x) = 0
when i < 0.

When s+ t ≤ 2p(m+ 1)− 2 we get an isomorphism

E
∞
s,t(T

n) ∼= A∗ ⊗ L(T n−1)⊗
⊗

∅�=U⊆n−1

B′
U∪{n} ⊗ Pp(σnτ 0, σnτ 1, . . .).

Proof. By Proposition A.4.1 and the Künneth isomorphism there are isomorphisms of
H∗(ΛTn−1HFp) ∼= A∗ ⊗ L(T n−1)-Hopf algebras

E
2
(T n) = HH∗(H∗(ΛTn−1HFp)) ∼= H∗(ΛTn−1HFp)⊗ TorA∗⊗L(Tn−1)(Fp,Fp)

∼= A∗ ⊗ L(T n−1)⊗
⊗

U⊆n−1

TorBU (Fp,Fp)⊗ TorA∗(Fp,Fp)

∼= A∗ ⊗ L(T n−1)⊗
⊗

∅�=U⊆n−1

BU∪{n} ⊗ E(σnξ1, σnξ2, . . .)⊗ Γ(σnτ 0, σnτ 2, . . .),
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where the empty set is left out in the tensor product in the last line, since TorB∅(Fp,Fp)
is isomorphic to Fp.

Proof of 2: The Bökstedt spectral sequence E
2
(T n) is an A∗ ⊗ L(T n−1)-Hopf-

algebra spectral sequence. By Proposition 1.3.1, the shortest differential is therefore
from an indecomposable element to a primitive element. By Proposition A.1.8 the
primitive elements are linear combinations of the monic words in

⊗
∅�=U⊆n−1 BU∪{n},

and the elements σnξi+1 and γ1(σnτ i) for i ≥ 0. The primitive elements are thus in
filtration 1 and 2. The indecomposable elements are linear combinations of the Fp-
algebra generators in

⊗
∅�=U⊆n−1 BU∪{n}⊗E(σnξ1, σnξ2, . . .)⊗Γ(σnτ 0, σnτ 1, . . .), given

by the admissible words in
⊗

∅�=U⊆n−1 BU∪{n} together with the elements σnξj and
γpk(σnτ j), and they are in filtration 1, 2 and pi for i > 0. The indecomposable elements
in filtration p are generated by γp(σnx) for a generator x in A∗⊗L(T n−1) of odd degree.

By Theorem A.4.5, these elements survive to E
p−1

(T n), so E
2
(T n) = E

p−1
(T n).

Proof of 3: Theorem A.4.5 also gives us the differentials

dp−1(γp+k(σnτ i)) = uiσnξi+1 · γk(σnτ i), (3.4.6)

where ui are units in Fp.
Proof of 4: When m = 0, there is nothing to prove, since all elements in filtration p

and higher are in degree at least 2p. Since ΛTnHFp is an HFp-module it is an Eilenberg
Mac Lane spectrum, so the Hurewicz homomorphism induces an isomorphism between
the Fp-modules A∗ ⊗ L(T n) and H∗(ΛTnHFp).

From the assumption that fn factors through Fp in degree less than or equal to
2pm−1 and that E2(T n)<2pm

∼= E∞(T n)<2pm, we know the dimension of H∗(ΛTnHFp)
as an Fp-module in degree less than 2pm. We will show that if there are other differ-

entials in the spectral sequence E
2
(T n) than those in part 3 and 4 of the lemma, the

dimension of E
∞
(T n) is smaller than the abutment of the spectral sequence, which is

equal to H∗(ΛTnHFp), thus giving us a contradiction.

Assume the only dp−1-differentials in the Bökstedt spectral sequence E
2
(T n) are

those generated by 3.4.6. Lemma 1.3.3 yields an isomorphism

E
p
(T n) ∼= A∗ ⊗ L(T n−1)⊗

⊗
∅�=U⊆n−1

BU∪{n} ⊗ Pp(σnτ 0, σnτ 1, . . .).

Proposition 3.3.4 together with the assumption that fn factors through Fp in degree
less than 2pm − 1 and that E2(T n)<2pm = E∞(T n)<2pm, gives us an Fp-module iso-
morphism

L(T n)<2pm
∼= E∞(T n)<2pm = E2(T n)<2pm = (L(T n

n−1)⊗ Bn)<2pm

∼=
(⊗

U⊆n

BU

)
<2pm

∼=
( ⊗

U⊆n−1

BU ⊗
⊗

∅�=U⊆n−1

BU∪{n} ⊗ B{n}
)
<2pm

∼=
(
L(T n−1)⊗

⊗
∅�=U⊆n−1

BU∪{n} ⊗ B{n}
)
<2pm

.
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Now, there is an Fp-module isomorphism from Pp(σnτ 0, σnτ 1, . . .) to B{n} given

by mapping σnτ i to μpi

n , and this isomorphism yields an Fp-module isomorphism
E

p
(T n)<2pm

∼= (A∗ ⊗ L(T n))<2pm
∼= H∗(ΛTnHFp)<2pm.

Assume there is a dp−1-differential with image in E
p−1

(T n)<2pm, which doesn’t have

image in the ideal (σnξ1, σnξ2, . . .) ⊆ E
p−1

(T n), which is the ideal generated by the
images of all the differentials in equation 3.4.6. Then, in the degree of the target of
this differential, the dimension of the Fp-module E

∞
(T n)<2pm would be smaller than

the dimension of H∗(ΛTnHFp)<2pm
∼= E

p
(T n)<2pm, giving us a contradiction.

To find all possible dp−1-differentials with target in (σnξ1, σnξ2, . . .) it suffices to
look at differentials from indecomposable elements. Possible non-zero dp−1-differentials

with image in E
p−1

<2pm are thus generated by dp−1(γpk(�
0
nx)) and dp−1(γpk(φnx)) where

x is an U -admissible word in BU ⊆ L(T n−1) for some ∅ �= U ⊂ n− 1 of odd degree

at most 2mp1−k − 1 and even degree at most 2mp1−k−2
p

, respectively, and k ≥ 1. From
the calculation

ψ(dp−1(γpk(φnx))) = dp−1(ψ(γpk(φnx))) = dp−1(
∑

i+j=pk

γi(φnx)⊗ γj(φnx)),

we see by induction on k, that dp−1(γpk(φnx)) must be primitive. Thus it is zero,
since when k ≥ 1, it is in filtration greater than or equal to p+ 1, while the primitive
elements are in filtration 1 and 2.

For the elements γpk(�
0
nx), Theorem A.4.5 yields the formula

dp−1(γp+k(�
0
nx)) = (σβQ

|x|+1
2 x) · γk(�0nx),

so γp+k(�
0
nx) is a cycle if and only if γp(�

0
nx) is a cycle.

In E
p−1

1,∗ (T n), the ideal generated by the elements σnξ1, σnξ2, . . . is equal to A∗ ⊗
L(T n−1){σnξ1, σnξ2, . . .}. Thus, if dp−1(γp(�

0
nx)) is non-zero, σnβQ

|x|+1
2 x must be an

element in A∗⊗L(T n−1){�nξ1, �nξ2, . . .}. Since differentials from a A∗-comodule prim-

itive has target an A∗-comodule primitive, σnβQ
|x|+1

2 x must actually be an element in
L(T n−1){σnξ1, σnξ2, . . .}. Hence,

σnβQ
|x|+1

2 x =
∑
i

rx,id
p−1(γp(σnτ i)),

where rx,i are elements in L(T n−1).
Proof of part 5: By Lemma 1.3.4, the elements γpl((σnx)

′) in part 5 are cycles, and

E
p−1

is isomorphic as an algebra to

E
p−1

(T n) ∼= A∗ ⊗ L(T n−1)⊗
⊗

∅�=U⊆n−1

B′
U ⊗ E(σnξ1, σnξ2, . . .)⊗ Γ(σnτ 0, σnτ 2, . . .).

In total degree less than or equal to 2p(m + 1)− 1, all elements in
⊗

∅�=U⊆n−1 B
′
U

are cycles. Thus, when s+ t ≤ 2p(m + 1)− 2, the only differentials are those in part
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3, so by Lemma 1.3.3 there is an isomorphism

E
p
(T n) ∼= A∗ ⊗ L(T n−1)⊗

⊗
∅�=U⊆n−1

B′
U ⊗ Pp(σnτ 0, σnτ 1, . . .),

in total degree less than 2p(m+ 1)− 2.
All the algebra generators in filtration greater than 2 are in total degree zero modulo

2p. All generators in total degree less than or equal to 2pm must be cycles, because
otherwise, in the degree of the target of this non-zero differential, the dimension of
the Fp-module E

∞
(T n)<2pm will be smaller than the dimension of H∗(ΛTnHFp)<2pm

∼=
E

p
(T n)<2pm. Thus there are no more differentials with source in total degree less than

or equal to 2p(m+ 1), so E
p
(T n)≤2p(m+1)−2

∼= E
∞
(T n)≤2p(m+1)−2.

We only need this lemma to prove the following corollary, which we need to identify
the E2-term E2(T n) and show that there are no d2-differentials.

Corollary 3.4.7. Given n, assume Theorem 3.4.3 holds when 1 ≤ k ≤ n− 1. Given
m ≥ 0, if fn : L(Sn−1) → L(T n

n−1) factors through Fp in degree less than or equal to
2pm − 1 and the spectral sequence E2(T n) collapses in total degree less than or equal
to 2pm− 1 (that is E2(T n) = E∞(T n) in these degrees), then:

1. The map fn : L(Sn−1)→ L(T n
n−1) factors through Fp in degree less than or equal

to 2p(m+ 1)− 2.

2. The spectral sequence E2(T n) collapses in total degree less than or equal to 2p(m+
1)− 2.

Proof. From the Proposition we know that as an Fp-module

H∗(ΛTnHFp)≤2p(m+1)−2
∼= (A∗ ⊗

⊗
U⊆n

B′
U))≤2p(m+1)−2.

Since ΛTnHFp is a generalized Eilenberg Mac Lane spectrum, the Hurewicz homomor-
phism induces an isomorphism between the Fp-modules A∗ ⊗ L(T n) ∼= A∗ ⊗ E∞(T n)
and H∗(ΛTnHFp).

The E1-terms of the bar spectral sequence E1(T n) is the two-sided bar complex

E1
s,∗(T

n) = B(L(T n
n−1), Bn−1,Fp) ∼= L(T n

n−1)⊗fn B⊗s
n−1 ⊗ Fp.

and the differential d1 : E1
s,t(T

n)→ E1
s−1,t(T

n) is given by

d1(a⊗b1⊗· · ·⊗bs+1) = afn(b1)⊗b2⊗· · ·⊗bs+1+
∑

(−1)ia⊗b1⊗· · ·⊗bibi+1⊗· · ·⊗bs+1.

If fn factors through Fp in degree less than l, then

E2(T n) = TorL(S
n−1)(L(T n

n−1),Fp) ∼= L(T n
n−1)⊗ TorL(S

n−1)(Fp,Fp) = L(T n
n−1)⊗ Bn.
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in bidegree (s, t) with t < l. Furthermore,

E2
0,l(T

n) ∼= L(T n
n−1)/ im(fn)

If fn doesn’t factor through Fp in degree l ≤ 2p(m+ 1)− 2 then the dimension of
A∗⊗E2(T n) in total degree l is smaller than the dimension of H∗(ΛTnHFp) in degree
l, giving us a contradiction.

Thus fn factors through Fp in degree less than or equal to 2p(m+ 1)− 2.
By a similar argument, if there are any non-zero dr-differentials in E2(T n). starting

in total degree less than or equal to 2p(m + 1)− 1, the dimension of A∗ ⊗ E2(T n) in
the degree of the image of this differential, will be smaller than the dimension of
H∗(ΛTnHFp) in this degree.

Thus the spectral sequence E2(T n) collapses in total degree less than or equal to
2p(m+ 1)− 2.

This lemma is about which elements in L(T n
n−1) are simultaneously primitive in

all n Hopf algebra structures. For example μ1μ
p
2μ

p2

3 is simultaneously primitive in
L(T 3) since it’s a product of elements that are primitive in the different circles. We
only gain control over the degree of the elements, but that is sufficient for our needs.
It’s probably a very special case of a more general statement about simultaneously
primitive elements in an S-fold Hopf algebra, but a more general statement has eluded
us.

Lemma 3.4.8. Assume Theorem 3.4.3 holds for 1 ≤ k ≤ n− 1. Let S be an object in
I and let Δ be a saturated subcategory (see Definition 3.1.16) of V (S) with dimension
at most n− 1.

Let V ∈ I and define NV ⊆ N to be the set of degrees of monic words in BV when
|V | ≥ 2, and the set {2pi}i≥0, the set of degrees of μpi

v when V = {v}. Let NΔ ⊆ N be
the set

NΔ =
{ ∑

Ui∈{U1,...,Uj}
rUi

∣∣∣U1, . . . Uj, is a partition of S with Ui ∈ Δ and rUi
∈ NUi

}
.

If z ∈ L(TΔ) is S-fold primitive, then |z| ∈ NΔ.

Proof. We prove it by induction on the number of sets in Δ. If S\(⋃U∈Δ U
)
= W �= ∅,

there are no S-fold primitive elements in L(TΔ), since L(TΔ|S\j) = L(TΔ) for any
j ∈ W , so ψj

S = id: L(TΔ) → L(TΔ). If S = {s} and Δ = S the lemma holds since
L(TΔ) = B{s} = P (μs), and the primitive elements are generated by μpi

s for i ≥ 0.

Let V ∈ Δ be a maximal set in Δ, i.e., if V ⊆ W ∈ Δ then V = W . Let Δ̂ be the
full subcategory of Δ not containing V .

Let zV0 , z
V
1 , . . . be the monomials in BV ⊆ L(T V ) ∼= ⊗U⊆V BU ordered so that

|zVi | ≤ |zVi+1| for all i ≥ 0. Note that zV0 = 1.
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When z �= 0 we can write z uniquely as

z = zVl x
V̂
l + zVl−1x

V̂
l−1 + . . .+ zV0 x

V̂
0 , (3.4.9)

where xV̂
i are elements in L(T Δ̂) ∼=⊗U∈Δ,U �=V BU , and xV̂

l �= 0. This is possible since

L(TΔ) ∼= L(T Δ̂) ⊗ BV . If l = 0, then z ∈ L(T Δ̂) and we are done by the induction
hypothesis.

Otherwise, given j ∈ V , assume xV̂
l �∈ L(TΔ|S\j) ⊆ L(TΔ). Then

ψj
S(z) = ψj

S(z
V
l )ψ

j
S(x

V̂
l ) + ψj

S(z
V
l−1)ψ

j
S(x

V̂
l−1) + . . .+ ψj

S(z
V
0 )ψ

j
S(x

V̂
0 )

=
(
1⊗ zVl + zVl ⊗ 1 +

∑
(zVl )

′ ⊗ (zVl )
′′)(1⊗ xV̂

l + xV̂
l ⊗ 1 +

∑
(xV̂

l )
′ ⊗ (xV̂

l )
′′)

+ . . .

= 1⊗ zVl x
V̂
l + zVl x

V̂
l ⊗ 1 + zVl ⊗ xV̂

l + xV̂
l ⊗ zVl + . . .

Now, ψj
S : L(T Δ̂) → L(T Δ̂) ⊗

L(T
̂Δ|S\j )

L(T Δ̂), so the expression on the last line can

not be equal to z ⊗ 1 + 1 ⊗ z due to the summands zVl ⊗ xV̂
l and xV̂

l ⊗ zVl and the
fact that zVl , . . . , z

V
0 is part of a basis and zVl is of highest degree. Hence we get

a contradiction and xV̂
l ∈ L(TΔ|S\j) ⊆ L(TΔ). Doing this for all j gives us that

xV̂
l ∈ L(TΔ|S\V ) ⊆ L(TΔ).

For U ∈ Δ, the projection maps prUU\V : TU → TU\V combines into a map

pr : T Δ̂ :→ TΔ|S\V .

Since this map collapses T V
|V |−1 to a point, the map gV : T V → S|V | together with pr

induces a map

pr : TΔ → S|V | ∨ TΔ|S\V .

For j ∈ V the pinch map ψj on the j-th circle induces a commutative diagram

TΔ

ψj

��

pr �� SV ∨ TΔ|S\V

ψ∨id
��

SV ∨ SV ∨ TΔ|S\V

TΔ �
T

Δ|S\j T
Δ pr� pr�� (SV ∨ TΔ|S\V )�

T
Δ|S\V (SV ∨ TΔ|S\V ).

∼=

		

Similarly, for j ∈ S \ V the pinch map ψj on the j-th circle induces a commutative
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diagram

TΔ

ψj

��

pr �� SV ∨ TΔ|S\V

id∨ψj

��
SV ∨ (TΔ|S\V �

T
Δ|(S\V )\j T

Δ|S\V )

TΔ �
T

Δ|S\j T
Δ pr� pr�� (SV ∨ TΔ|S\V )�

SV ∨TΔ|(S\V )\j (S
V ∨ TΔ|S\V ).

∼=
		

Applying the functor L(−) to these two diagrams yields for j ∈ V a commutative
diagram

L(TΔ)

ψj
S

��

pr �� BV ⊗ L(TΔ|S\V )

ψBV
⊗id

��
L(TΔ)⊗

L(T
Δ|S\j ) L(T

Δ)
pr⊗ pr�� BV ⊗ BV ⊗ L(TΔ|S\V ),

(3.4.10)

and for j ∈ S \ V a commutative diagram

L(TΔ)

ψj
S

��

pr �� BV ⊗ L(TΔ|S\V )

id⊗ψj
S\V

��
L(TΔ)⊗

L(T
Δ|S\j ) L(T

Δ)
pr⊗ pr�� BV ⊗ (L(TΔ|S\V )⊗

L(T
Δ|(S\V )\j ) L(T

Δ|S\V )).

(3.4.11)

We have proved that xV̂
l ∈ L(TΔ|S\V ), so

pr(z) = zVl x
V̂
l + zVl−1 pr(x

V̂
l−1) + . . .+ zV0 pr(xV̂

0 ),

is non-zero since zVl , . . . , z
V
0 is part of a basis. From Diagram 3.4.10 we know that

pr(z) must be primitive in the L(TΔ|S\V )-Hopf algebra BV ⊗L(TΔ|S\V ), where the Hopf
algebra structure is induced by the Fp-Hopf algebra structure on BV

∼= B|V | ∼= L(SV ).

By Proposition A.1.8, this implies that if pr(xV̂
i ) is non-zero then zVi is a V -labeled

monic word when |V | ≥ 2 or an element μpm

v for some m when V = {v}. It follows

from Diagram 3.4.11 that when pr(xV̂
i ) �= 0 it is S \ V -fold primitive. By induction

the Lemma holds for pr(xV̂
i ), finishing the proof.

Corollary 3.4.12. Given n ≤ p, assume Theorem 3.4.3 holds for 1 ≤ k < n. Let y
be an n-fold primitive element in L(T n

n−1). If x is an admissible word of length n and
degree 0 modulo 2p, , then |x| − 1 �= |y|. If z is an admissible word of length n and of
even degree, then |zp| �= |y|.
Proof. When 2 ≤ n ≤ p, Lemma 3.3.8 says the admissible words of length n and
degree 0 modulo 2p are those that start with ϕi or �i for i ≥ 1. Hence x = �ix′ or
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x = ϕix′ for x′ some admissible word of length n − 1. The element �ix′ is in degree
greater than or equal to 4p. By Lemma 3.4.8 and 3.3.12, there are no n-fold primitive
elements in L(T n

n−1) in dimension 2pm− 1 for m ≥ 2, and hence |x| − 1 �= |y|.
If z is an admissible word of length n and of even degree Lemma 3.3.8 says the

admissible words of length n and degree 0 modulo 2p are those that start with ϕi or �i

for i ≥ 0. Hence z = �iz′ or z = ϕiz′ for z′ some admissible word of length n− 1. So
|zp| = |�i+1z′| or |zp| = |ϕi+1z′|. By Lemma 3.4.8 and 3.3.12 the degree of the n-fold

primitive elements in L(T n
n−1) is equal to the degree of a product μpj1

1 . . . μpjn
n . By

Corollary 3.3.10 neither �i+1z′ nor ϕi+1z′ is in the same degree as one of the products

μpj1
1 . . . μpjn

n , and hence |zp| �= |y|.
Proof of Theorem 3.4.3. The proof is by induction. Given n, with 1 ≤ n ≤ p when
p ≥ 5 and 1 ≤ n ≤ 2 when p = 3, assume the theorem holds for all k with 1 ≤ k < n.
The only place in the proof where there is a difference between p = 3 and p ≥ 5 is
when we invoke Corollary 3.3.10 in the proof of Lemma 3.4.13.

When n = 2, the theorem holds since L(TU
1 ) ∼= P (μU).

Proof of part 1 and 2 : We prove it by induction on the degree of elements in part
1 and total degree in part 2. Given m, assume that part 1 and 2 holds in degree less
than or equal to 2pm− 1. This is trivially true when m = 0.

By Corollary 3.4.7, part 1 and 2 holds in (total) degree less than or equal to
2p(m+ 1)− 2. We must thus show that they hold in degree 2p(m+ 1)− 1.

The attaching map fn : L(Sn−1)→ L(T n
n−1) is determined by what it does on the

set of algebra generators in L(Sn−1) given by the monic words of length n− 1, and by
Lemma 3.3.8 there are no such element in degree −1 modulo 2p, and hence fn factors
through Fp in degree less than or equal to 2p(m+1)−1. So, in vertical degree less than
or equal to 2p(m+1)− 1 Proposition A.2.10 together with the Künneth isomorphism
yields an L(T n

n−1)-module isomorphism

E2(T n) = TorL(S
n−1)(L(T n

n−1),Fp) ∼= L(T n
n−1)⊗ TorL(S

n−1)(Fp,Fp) ∼= L(T n
n−1)⊗ Bn.

.
It remains to show that there are no dr-differentials in E2(T n) starting in total

degree 2p(m + 1). For every i in n, E2(T n) is an L(T n\i)-Hopf algebra spectral se-
quence, since E2(T n) is flat over L(T n\i). The Hopf algebra structure on E2(T n) is
the tensor product of the L(T n\i)-Hopf algebra structures on L(T n

n−1) and the Fp Hopf
algebra structure on Bn. Thus, by Proposition 1.3.1, a shortest non-zero differential
in lowest total degree, must go to a primitive element in the L(T n\i)-Hopf algebra
structure. Hence, if a shortest non-zero differential starts in total degree 2p(m + 1),
there must elements in degree 2p(m + 1) − 1 that are primitive in the L(T n\i)-Hopf
algebra structure for all i ∈ n.

The L(T n\i)-primitive elements in L(T n
n−1) ⊗ Bn are by Proposition A.1.8 lin-

ear combinations of primitive elements in L(T n
n−i) and Bn. By proposition A.1.8

the module of L(T n\i)-primitive elements in Bn is L(T n\i){xj}, where xj runs over
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the monic words in Bn. The intersection
⋂

i∈n L(T
n\i){xj} is equal to Fp{xj} since⋂

i∈n L(T
n\i) = Fp. Thus, the module of elements in Bn ⊆ E2(T n) that are primi-

tive in the L(T n\i)-Hopf algebra structure for every i ∈ n is Fp{xj} ⊆ Bn, which is
isomorphic to the module of Fp-primitive elements in Bn, under the projection map
E2(T n)→ Bn. By Proposition 3.3.5 there are no Fp-primitive elements in Bn in degree
−1 modulo 2p when n ≤ 2p. Hence, there are no differentials starting in total degree
2p(m+ 1) that have target in filtration 1 or higher.

It remains to show that there are no differentials starting in total degree 2p(m+1)
that have target in filtration 0. This is only possible if there are n-fold primitive
elements in L(T n

n−1) in the target of the differential. If z is an indecomposable element
in Bn in degree 2p(m+1), Corollary 3.4.12 says there are no n-fold primitive elements
in L(T n

n−1) in degree 2p(m+ 1)− 1 when n ≤ p.
Hence, there are no differentials in E2(T n) when n ≤ p, so E2(T n) collapses on the

E2-term. Since E2(T n) ∼= L(T n), L(T n) is flat as an L(T n\i)-module, so the spectral
sequence converges to L(T n) as an L(T n\i)-Hopf algebra.

Proof of part 3- 6: We will only show the theorem for the set V = n.

1. Let Godd
1,0 and Geven

1,0 and be all admissible words of length n starting with � or �0,
respectively.

2. Let G2,−1 be all admissible words of length n that starts with ϕi or �i+1 for i ≥ 0.

3. Define G1,0 = Godd
1,0 ∪ Geven

1,0 .

The set G2,−1 only contain even degree elements. These three sets generate Bn as an
Fp-algebra.

We can also think of Godd
1,0 and Geven

1,0 as sets of elements in E2
1,∗(T

n) of odd and
even degree, respectively, while G2,−1 is a set of elements in E2

s,∗(T
n) with s ≥ 2, and

together they generate E2(T n) as an L(T n
n−1)-algebra.

Given an element z ∈ Bn, we let z denote the corresponding element in L(T n)

under the Fp-module isomorphism L(T n) ∼= E2(T n) ∼= L(T n
n−1) ⊗ Bn. We let Godd

1,0 ,

Geven

1,0 and G2,−1 be the set of elements in L(T n) corresponding under this isomorphism,

to Godd
1,0 , Geven

1,0 and G2,−1, respectively. Let E(Godd

1,0 ) and Pp(Geven

1,0 ∪G2,−1) be the exterior
algebra and truncated polynomial algebra on the respective sets. Note that there is

an Fp-algebra isomorphism Bn
∼= E(Godd

1,0 ) ⊗ Pp(Geven

1,0 ∪ G2,−1) given by the bijections

G1,0 ∼= G1,0 and G2,−1
∼= G2,−1.

Given two sets G1,i, and G2,j of elements in L(T n) where all elements in G2,j are of
even degree, we define an L(T n

n−1)-module homomorphism

αi,j : L(T
n
n−1)⊗ E(Godd

1,i )⊗ Pp(Geven

1,i ∪ G2,j)→ L(T n)

by mapping the monomial ax1 . . . xm, where a ∈ L(T n
n−1) and xl ∈ G1,i ∪ G2,j to

the corresponding element ax1 . . . xm in L(T n
n−1). This is not necessarily an algebra

homomorphism since αi,j(x)
p might not be zero for x ∈ Geven

1,i ∪ G2,j.
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Given admissible words x1, . . . , xm in Bn, then the product x1 . . . xm is equal to
x1 . . . xm modulo everything in filtration lower than the filtration of x1 . . . xm. Thus,
α0,−1 is an isomorphism of L(T n

n−1)-modules.
We will prove part 3-6 of the theorem using the following lemma, which we prove

after finishing the proof of the theorem.

Lemma 3.4.13. Assume everything in this proof up to this point. Let G1,1 be the set
of elements σ(zn−1) in L(T n), where zn−1 runs over all admissible words in Bn−1 ⊆
L(T n−1). For every l ≥ 0, there exist sets G2,l of elements in L(T n) with bijections
β1,1 : G1,0 → G1,1 and β2,l : G2,l−1 → G2,l such that:

1. For any x ∈ Gi,j−1 the element x is equal to βi,j−1(x) in L(T n) modulo the ideal
generated by the non-units in L(T n

n−1).

2. Given σ(zn−1) ∈ G1,1, if z ∈ Bn−1 is the unlabeled version of the admissible word
zn−1, then gn(σ(zn−1)) ∈ L(Sn) ∼= Bn is equal to �z or �0z, when σ(zn−1) is of
odd or even degree, respectively.

3. For every l ≥ 0 and V � n, the elements in G1,1 and G2,l are mapped to zero
under the homomorphism prnV : L(T n)→ L(T V ).

4. When l ≥ −1, the homomorphism α1,l is an L(T n
n−1)-algebra isomorphism in

degree less than pl.

5. When l ≥ 1, the bijection β2,l is the identity on all elements not in degree l − 1.

6. Composing the isomorphism α−1
1,l with the projection homomorphism

L(T n
n−1)⊗ E(Godd

1,1 )⊗ Pp(Geven

1,1 ∪ G2,l)→ L(T n
n−1)

α∼=
⊗
U�n

BU →
⊗
i∈n

B{i} ∼= P (μn),

yields an Fp-algebra homomorphism prP (μn) : L(T
n)→ P (μn) in degree less than

pl, and for every i ∈ n, this homomorphism induces a homomorphism of Hopf
algebras

(
L(T n), L(T n\i)

)→ (P (μn), P (μn\i)
)
in degree less than l.

Note that the homomorphism prP (μn) doesn’t come from a map of spaces, but is
purely an algebraic construction. The bijections β2,l will be identities when l is not
equal to 0 or 2 modulo 2p, since G2,l only contain elements in degree 0 and 2 modulo
2p. Furthermore, the bijections β1,1 and β2,l are used for book keeping, and there is
no particular relation between them and the homomorphism α1,l.

Now we continue the proof of Theorem 3.4.3. We define G2,∞ to be equal to G2,l+1

in degree less than or equal to l, and by part 5 in Lemma 3.4.13 G2,∞ is well defined.
Define β : G1,0 ∪ G2,−1

∼= G1,1 ∪ G2,∞ to be the bijection given by all the βi,j’s. Recall
that when we constructed G1,0 and G2,−1, we also showed that there was an Fp-algebra

isomorphism E(Godd

1,0 ) ⊗ Pp(Geven

1,0 ∪ G2,−1) ∼= Bn. Together with β this induces an

Fp-algebra isomorphism E(Godd

1,1 )⊗ Pp(Geven

1,1 ∪ G2,∞) ∼= Bn.



70 Chapter 3. Homotopy Groups of ΛTnHFp and Periodic Elements

Now, the map gn : ΛTnHFp → ΛSnHFp induces the projection homomorphism on
spectral sequences E∞(T n) = E2(T n) ∼= L(T n

n−1) ⊗ Bn → Bn
∼= E2(Sn) = E∞(Sn).

Thus, the homomorphism gn : L(T n)→ L(Sn) is surjective and maps L(T n
n−1) ⊆ L(T n)

to Fp. Since Bn is finite in each degree, and we observed above that there is an Fp-

algebra isomorphism E(Godd

1,1 )⊗Pp(Geven

1,1 ∪G2,∞) ∼= Bn, there exists another Fp-algebra

isomorphism δ : E(Godd

1,1 ) ⊗ Pp(Geven

1,1 ∪ G2,∞) ∼= Bn such that the following diagram of
Fp-modules commutes

L(T n)
gn �� L(Sn)

∼=
��

L(T n
n−1)⊗ E(Godd

1,1 )⊗ Pp(Geven

1,1 ∪ G2,∞)
pr ��

α1,∞

		

E(Godd

1,1 )⊗ Pp(Geven

1,1 ∪ G2,∞) δ �� Bn,

where the rightmost isomorphism is the one in Theorem 3.3.6.
By part 4 in Lemma 3.4.13 the homomorphism α1,∞ is an algebra isomorphism.

We define the Fp-algebra isomorphism α in part 3 of the theorem to be the composite
of Fp-algebra isomorphisms

α : L(T n)
α1,∞←− L(T n

n−1)⊗ E(Godd

1,1 )⊗ Pp(Geven

1,1 ∪ G2,∞)
id⊗δ−→ L(T n

n−1)⊗ Bn

id⊗ζ−→ L(T n
n−1)⊗ Bn

α⊗id−→
⊗
U⊆n

BU ,

where ζ is the isomorphism given by labeling the words in Bn, and the last isomorphism
comes from the induction hypothesis.

Part 6 of the theorem is satisfied for V = n, since α was deliberately constructed
to satisfy it.

To prove part 4 of the theorem it suffices, by the induction hypothesis, to show
that under the isomorphism α, σ(zn−1) = �nzn−1 and σ(zn−1) = �0nzn−1 for any
n-labeled admissible word zn−1 in Bn−1 ⊆ L(T n−1). Let z be the underlying unla-
beled admissible word of zn−1. As we see from the construction of G1,1, the element

α−1
1,∞(σ(zn−1)) is equal to σ(zn−1) in E(Godd

1,1 )⊗Pp(Geven

1,1 ). By part 2 of Lemma 3.4.13,

δ pr(α−1
1,∞(σ(zn−1))) is thus equal to �z or �0z, in Bn, when σ(zn−1) is of odd or even

degree, respectively. Hence, α(σ(zn−1)) is equal to �nzn−1 or �0nzn−1 in Bn ⊆ L(T n),
respectively. This proves part 4 of the theorem

By the induction hypothesis and part 5 in Theorem 3.4.3, the following diagram

L(T n
n−1)

α ��

prnV
��

⊗
U�n BU

pr

��
L(T V ) α ��

⊗
U⊆V BU .

commutes for any set V � n. From part 3 of Lemma 3.4.13 we have that the non-units
in Bn ⊆ L(T n) is mapped to zero under the homomorphism prnV . Hence, part 5 of the
theorem holds for V = n.
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Proof of Lemma 3.4.13. After we have proven part 1 for the bijection β1,1, we know
that given x ∈ G1,0, then β1,1(x) is equal to x in L(T n) modulo the ideal generated
by the non-units in L(T n

n−1). Since α0,−1 is an L(T n
n−1)-module isomorphism, this

implies that α−1
1,−1 ◦ α0,−1 is an L(T n

n−1)-module isomorphism, and hence α1,−1 is an
L(T n

n−1)-module isomorphism.
It follows by induction, that if we prove part 1 for all l ≤ m, then α1,m is an

L(T n
n−1)-module isomorphism. Hence, to prove part 4 it suffices to prove that α1,l is

an algebra homomorphism on the various quotients.
First we prove part 1-3 for G1,1.
Recall that the set G1,0 consists of the elements �z and �0z where z runs over all

admissible words of length n − 1 of even and odd degree, respectively. The bijection
β1,1 is given by mapping �z and �0z to σ(zn−1), where zn−1 ∈ Bn−1 is the labeled
version of the word z. By part 6 of Theorem 3.4.3, gn−1(zn−1) = z ∈ L(Sn) ∼= Bn.

By Proposition 1.2.5 and the commutative diagram

S1
+ ∧ ΛTn−1HFp

ω ��

S1
+∧gn−1

��

ΛTnHFp

gn

��
S1
+ ∧ Λsn−1HFp

ω̂ �� ΛSnHFp,

the element gn(σ(zn−1)) is equal to �gn−1(zn−1) = �z. This proves part 2 of the
lemma.

The map gn induces the projection map from E∞(T n) = E2(T n) ∼= L(T n
n−1)⊗ Bn

to E∞(Sn) = E2(Sn) ∼= Bn. Hence, gn(�z) = �z ∈ L(Sn), since �z is represented
by �z in E∞

1,∗(T
n), and there is nothing in positive degree in filtration 0 or lower in

E2(Sn).
Hence, σ(zn−1) is equal to �gn−1(z) in L(T n) modulo the ideal generated by the

non-units in L(T n
n−1), and we have proved part 1 for the set G1,1.

Observe that the diagrams

S1
+ ∧ ΛTn−1HFp

ω ��

S1
+∧prn−1

n−1\i
��

ΛTnHFp

prn
n\i

��
S1
+ ∧ ΛTn−1\iHFp

ω �� ΛTn\iHFp

S1
+ ∧ ΛTn−1HFp

ω ��

pr+ ∧ id

��

ΛTnHFp

prnn−1

��
S0 ∧ ΛTn−1HFp

∼= �� ΛTn−1HFp,

commute for all i ∈ n− 1. Let y be an element in L(T n−1). By part 5 in Theo-
rem 3.4.3, prn−1

n−1\i(y) = 0. Let σ(z) be an element in G1,1. From the left diagram, we

conclude that prnn\i(σ(z)) is zero when i �= n. From the right diagram we conclude

that prnn−1(σ(z)) is zero, since H1(S
0) = 0. This proves part 3 of the lemma for the

set G1,1.
Second, we construct the set G2,0 and prove part 1 and 3 for the set G2,0.
Given x ∈ L(T n), we define

x̂ =
∑
U⊆n

(−1)n−|U | inn
U prnU(x).
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Now, let G2,0 be the set of elements x̂ where x runs over the elements in G2,−1 and
the bijection β2,0 is given by sending x to x̂. For every U � n we have inn

U prnU(x) ∈
L(T n

n−1), so x̂ is equal to x in L(T n) modulo the ideal generated by the non-units in
L(T n

n−1). This proves part 1 for the set G2,0.
The diagram

T n
prnU ��

prnU∩V

��

TU
innU �� T n

prnV
��

TU∩V inVU∩V �� T V

commutes. Hence, if V � n, then

prnV (x̂) =
∑
U⊆n

(−1)n−|U | prnV inn
U prnU(x) =

∑
S⊆V

∑
W⊆n\V

(−1)n−|S|−|W | inV
S prnS(x) = 0,

since
∑

W⊆n\V (−1)n−|S|−|W | =
∑n−|V |

i=0 (−1)n−|S|−i
(
n−|V |

i

)
= 0. This proves part 3 for

the set G2,0.
Third, we will prove the lemma by induction on l. When l = 0, part 5 and 6 are

empty statements. The first three parts was proven previously in the proof, while the
isomorphism in part 4 is just an isomorphism of L(T n

n−1)-modules.
Now, assume that we have proven the lemma for 0 ≤ l ≤ m. We will construct

the set G2,m+1, and prove that the lemma holds for l = m + 1. By Proposition 3.4.2,
L(T−) is an n-fold Hopf algebra. By part 3 in Theorem 3.4.3, every element in⊗

U�n,|U |�=1 ⊆ L(T n
n−1) is nilpotent. Hence, there is a splitting of n-fold Hopf algebras

PFp(μ−) → L(T−
n−1) → PFp(μ−), since no element in PFp(μn) is nilpotent. Since

L(T−
n−1) is the restriction, see Definition 3.1.17, of L(T−) to the full subcategory of

V (n) not containing n, assumption 2 in Proposition 3.2.5 is thus satisfied for the n-fold
Hopf algebra L(T−).

By part 4 and 6 in the lemma, assumption 3 and 4 in Proposition 3.2.5 holds for
the n-fold Hopf algebra L(T−) when q = m.

For x ∈ G2,m, the degree of x is equal to the degree of an element in G2,−1 which
is equal to the degree of an admissible word in Bn � E2(T n) of even degree. By

Corollary 3.3.10, x is thus not in the same degree as any of the elements μpj1
1 μpj2

2 · · ·μpjn
n

or (μpj1
1 μpj2

2 · · ·μpjn
n )μpjn+1

s , where 1 ≤ s ≤ n and ji ∈ N for all 1 ≤ i ≤ n+ 1.
From part 3 in the lemma we have x ∈ ⋂i∈n ker(ε

i
n : L(T n)→ L(T n\i)). By part 6,

if x is in degree m, then x ∈ ker(prP (μn)). Hence, Proposition 3.2.5 gives us that

(prP (μn)⊗P (μn\i) prP (μn)) ◦ ψi
n(x) =

∑
b∈Nn

+

rb,xμ
b
n\iψ̃

i(μbi
i )

for some rb,x in Fp, and we define

x̃ = x−
∑
b∈Nn

+

rb,xμ
b
n.
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Obviously, x̃ is equal to x modulo the ideal generated by the non-units in L(T n
n−1).

We define the set G2,m+1 to be the set that contains all elements in G2,m in degree not
equal to m, together with the elements x̃, where x runs over all the elements in degree
m in G2,m. This construction gives a bijection β2,m+1 : G2,m

∼= G2,m+1 satisfying part 1
and 5.

In the construction of x̃ we only sum over positive integers so prnV (x̃) = prnV (x) = 0
for all V � n. Thus, part 3 holds for the set G2,m+1.

We will now prove part 4 and 6 for l = m+1. Since, β2,m+1 is the identity in degree
less than m, it suffices to prove this for elements in degree m. That the homomorphism
pr in part 6 is an Fp-algebra homomorphism in degree less than p(m+1), follows from
proving part 4 for l = m+ 1.

If x is an element in G2,m+1 of degree m, then by construction

(prP (μn)⊗P (μn\i) prP (μn)) ◦ ψi
n(x) = 0. (3.4.14)

Let σ(z) ∈ G1,1 be an element in degree m. By Proposition 1.1.4, σ : π∗(ΛTn−1HFp)→
π∗(ΛTnHFp) is a derivation. Hence, if ψi

n−1(z) = 1⊗z+z⊗1+
∑

z′i⊗z′′i for i ∈ n− 1,
then

ψi
n(σ(z)) = σ(ψi

n(z)) = 1⊗ σ(z) + σ(z)⊗ 1 +
∑

σ(z′i)⊗ z′′i ± z′i ⊗ σ(z′′i ).

Recall that by Proposition 3.3.4, the Fpalgebra L(T
n−1) ∼=⊗U⊆n−1 BU is generated

by all U -labeled admissible words for U ⊆ n− 1. Since σ is a derivation and z is
of degree m − 1, to show that σ(z′i) and σ(z′′i ) are in the kernel of the projection
homomorphism prP (μn), it suffices to show that σ(xU) is in the kernel of prP (μn) for all
U -labeled admissible words xU of dimension less than m− 1, where U ⊆ n− 1.

Now, by part 4 of Theorem 3.4.3, if U �= n− 1, then σ(xU) is in the kernel of
prP (μn). Otherwise, σ(xn−1) is an element in G1,1 by the construction of G1,1. By the
induction hypothesis and part 6 of Lemma 3.4.13, σ(xn−1) is thus in the kernel of
prP (μn). Hence, σ(z

′
i) and σ(z′′i ) are in the kernel of prP (μn), so

(prP (μn)⊗P (μn\i) prP (μn)) ◦ ψi
n(σ(z)) = 0 (3.4.15)

when i ∈ n− 1. This equation also holds for i = n, since, by Proposition 1.1.6 σ(z) is
primitive as an element in the L(T n−1)-Hopf algebra L(T n).

By equation 3.4.14 and 3.4.15, the homomorphism prP (μn) induces a map of Hopf

algebras
(
L(T n), L(T n\i)

) → (P (μn), P (μn\i)
)
in degree less than m + 1, and hence

we have proved part 6 for l = m+ 1.
To prove part 4 for m+1, we must show that when y ∈ G1,1 ∪G2,m+1 and |y| = m,

then yp = 0 and y2 = 0 when y is of even or odd degree, respectively. The claim is
obvious when y is of odd degree, since the ring is graded commutative.

In degree less than m the only elements in L(T n) that are non-zero when raised
to the power of p are the elements in the subring P (μn) ⊆ L(T n), as we see from the
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homomorphism α1,m. Thus, by Frobenius and part 6 of Lemma 3.4.13 for l = m+ 1,

ψi
n(y

p) = ψi
n(y)

p = (1⊗ y + y ⊗ 1 +
∑

y′ ⊗ y′′)p = 1⊗ yp + yp ⊗ 1,

in all L(T n\i)-Hopf algebra structures. Hence, yp is primitive in the L(T n\i)-Hopf
algebra structure for every i ∈ n.

Let yp be represented by y0 + . . .+ ys ∈ E∞(T n), where yi ∈ E∞
i,∗(T

n) and ys �= 0.

Then, since yp is primitive in the L(T n\i)-Hopf algebra structure, ys must be primitive
in the L(T n\i)-Hopf algebra E∞(T n) for every i ∈ n. Otherwise, ψi

n(y
p) would not be

equal to ys ⊗ 1 + 1⊗ ys in filtration s.
The L(T n\i)-primitive elements in L(T n

n−1) ⊗ Bn are by Proposition A.1.8 lin-
ear combinations of primitive elements in L(T n

n−i) and Bn. By proposition A.1.8
The module of L(T n\i)-primitive elements in Bn is L(T n\i){xj}, where xj runs over
the monic words in Bn. The intersection

⋂
i∈n L(T

n\i){xj} is equal to Fp{xj} since⋂
i∈n L(T

n\i) = Fp. Thus, the module of elements in Bn ⊆ E2(T n) that are primi-
tive in the L(T n\i)-Hopf algebra structure for every i ∈ n is Fp{xj} ⊆ Bn, which is
isomorphic to the module of Fp-primitive elements in Bn, under the projection map
E2(T n)→ Bn

The degree of yp is zero modulo 2p and the degree of z is at least four, so by
Lemma 3.3.5 there are no Fp-primitive elements in Bn in degree 0 modulo 2p.

Hence, yp must be equal to an n-fold primitive element in L(T n
n−1). By Corol-

lary 3.4.12, the degree of yp is not equal to the degree of any n-fold primitive element
in L(T n

n−1) when n ≤ p. Thus yp = 0, so α1,m+1 is an algebra isomorphism in degree
less than p(m+ 1) proving part 4 when l = m+ 1.

3.5 Periodic Elements

The connective n-th Morava K-theory k(n) is a ring spectrum with coefficient ring
k(n)∗ = PFp(vn) where |vn| = 2pn − 2. The unit map of the ring spectrum ΛTnHFp

induces a homomorphism PFp(vm)→ k(m)∗(ΛTnHFp) and we denote the image of vm

with vm. In this section we show that the class of t1μ
pn−1

1 +t2μ
pn−1

2 + . . .+tnμ
pn−1

n in the
homotopy fixed points spectral sequence calculating k(n−1)∗(F (E2T

n
+,ΛTnHFp)

Tn
) is

not hit by any differential, and that this implies that vn−1 ∈ k(n− 1)∗((ΛTnHFp)
hTn

)
is non-zero.

See [JW75] for the following details about Morava K-theory. We have H∗(k(n)) =
A∗, where A∗ is the dual Steenrod algebra A∗, without the generator τn. Multiplication
by vn yields a cofiber sequence

Σ2pn−2k(n)→ k(n)→ HFp

which in homology decomposes into short exact sequences

0→ A∗ → A∗ → Σ2pn−1A∗ → 0.
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Since ΛTnHFp is an HFp-module spectrum, we have k(m)∗(ΛTnHFp) ∼= k(m)∗(HFp)⊗
L(T n).

By Proposition 1.5.7, there is a homotopy fixed point spectral sequence

E2 = H−∗(T n, H∗(ΛTnHFp)) ∼= P (t1 . . . tn)⊗H∗(ΛTnHFp)⇒ π∗((HFp∧ΛTnHFp)
hTn

)

where |ti| = (−2, 0). Similarly as in Section A.5, the right hand side is called the
continuous homology of (ΛTnHFp)

hTn
and denoted with Hc

∗((ΛTnHFp)
hTn

).
Give ES1 = S(C∞) the free S1-CW structure given by the odd spheres filtration,

and use S(C∞)n as a model for the free contractible T n-CW complex ET n. Let EkT
n

denote the k-skeleton of ET n.
By Proposition 1.5.7 the filtration E0T

n
+ → E2T

n
+ yields a spectral sequence

E2(M,n) = M∗(ΛTnHFp){1, t1, . . . tn} ⇒M∗(F (E2T
n
+,ΛTnHFp)

Tn

)

when M is HFp or k(m).
First we show that in our case it suffices to look at the first two columns in the

homotopy fixed points spectral sequence, to determine whether vn−1 is non-zero in the
homotopy fixed points.

Proposition 3.5.1. Assume x in E2
−2,2pn−1(k(n − 1), n) survives to E3(k(n − 1), n).

If d2(τn−1) = x in E2(HFp, n), then x = uvn−1 for some unit u.

Proof. The cofiber sequence

Σ2pn−1−2k(n− 1) ∧ ΛTnHFp
vn−1∧ΛTnHFp�� k(n− 1) ∧ ΛTnHFp

i �� HFp ∧ ΛTnHFp

preserves the filtration used to construct the spectral sequences, so it descends to a
map of spectral sequences.

Now E∞
0,2pn−1−2(k(n− 1), n) ∼= E∞

0,2pn−1−2(HFp, n), and, since E
2
−2,2pn−1(k(n− 1), n)

maps injectively to E2
−2,2pn−1(HFp, n), the class of d2(τn−1) = x generates the kernel

of

k(n)2pn−1−2(F (E2T
n
+,ΛTnHFp)

Tn

)→ H2pn−1−2(F (E2T
n
+,ΛTnHFp)

Tn

).

The difference between E2
0,2pn−1−1(k(n − 1), n) and E2

0,2pn−1−1(HFp, n) is τn−1, so

since d2(τn−1) = x and x is not hit by any differential in E2(k(n− 1), n), the map i is
an isomorphism on E2

0,2pn−1−1. Thus the edge homomorphism maps E2
0,2pn−1−1(HFp, n)

to zero in E2
0,0(k(n− 1), n), so it must map 1 ∈ E2

0,0(k(n− 1), n) to kernel of i, which
is generated by x.

Definition 3.5.2. Let M be a homology theory. The homomorphism

(ωTn)∗ : M∗(T n
+ ∧ ΛTnHFp)→M∗(ΛTn×TnHFp)
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in Definition 1.1.3, together with the stable splitting T n
+ 
 T n ∨ S0 and the multiplica-

tion map in the group T n, induces a homomorphism

H∗(T n)⊗M∗(ΛTnHFp)→M∗(ΛTnHFp).

Given j ∈ n and x ∈M∗(ΛTnHFp) we write σj(x) for the image of [S1
j ]⊗x under this

map, where [S1
j ] ∈ H∗(T n) is the image of a fundamental class [S1] ∈ H∗(S1) under

the inclusion of the j-th circle.

Let p ≥ 5 and 1 ≤ n ≤ p or p = 3 and 1 ≤ n ≤ 2, and define p to be the kernel of
the projection homomorphism

H∗(ΛTnHFp) ∼= A∗ ⊗ L(T n) ∼= A∗ ⊗
⊗
U⊆n

BU →
⊗
i∈n

B{i},

where the isomorphism α : L(T n) ∼=⊗U⊆n BU comes from Theorem 3.4.3.
We will now show that the image of the d2-differential in the homotopy fixed points

spectral sequence is usually contained in the ideal p.

Proposition 3.5.3. Let p ≥ 5 and 1 ≤ n ≤ p or p = 3 and 1 ≤ n ≤ 2. If x is in the
subring P (ξ1, ξ2, . . .)⊗L(T n) ⊆ A∗⊗L(T n) ∼= H∗(ΛTnHFp), then σj(x) is in p for all
j ∈ n.

Proof. Since σj is a derivation by Proposition 1.1.4, it suffices to check the claim for
the set of Fp-algebra generators in P (ξ1, ξ2, . . .) ⊗ L(T n) ∼= P (ξ1, ξ2, . . .) ⊗

⊗
U⊆n BU

consisting of ξi for i ≥ 1 together with all U -labeled admissible words, where U ⊆ n.
By Proposition A.4.4, the element σ(ξi) for i ≥ 1 is represented by σξi in filtration

1 in the Bökstedt spectral sequence calculating H∗(ΛS1HFp). By Proposition A.4.6 the
element σξi is a boundary in the Bökstedt spectral sequence, and hence σ(ξi) ∈ A∗.
It must thus be equal to zero since it is the image of [S1]⊗ ξi, and [S1] is mapped to
zero on the left hand side in the commutative diagram

H∗(S1
+)⊗H∗(HFp)

ω∗ ��

pr⊗ id

��

H∗(ΛS1HFp)

pr⊗ id

��
H∗(S0)⊗H∗(HFp)

ω∗ �� H∗(Λ{pt}HFp).

Hence σj(ξi) = 0 for all i ≥ 1 and 1 ≤ j ≤ n.
We prove the proposition by induction on the degree m of an element x in L(T n) ∼=⊗

U⊂n BU . When m = 0, there is nothing to check since σj is trivial on units.
Assume the proposition holds for all elements in degree less than m. If m is

even, the proposition holds because σj(x) is then of odd degree, and
⊗

i∈n B{i} is
concentrated in even degrees. Assume m is odd, and that x is a U -labeled admissible
word of degree m for some U ⊆ n. By Proposition 3.3.2, x is thus equal to �ky, where
k is the greatest element in U and y is a U \ k-labeled admissible word of even degree.
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By part 4 of Theorem 3.4.3, x is equal to σk(y) where we think of y as being an element
in BU\k ⊆ L(TU\k) ⊆ L(T k−1).

If j > k, the element σj(x) = σj(σk(y)) is in p by part 4 of Theorem 3.4.3.
The element σj(σk(y)) is equal to the image of [S1

j ] · [S1
k ] ⊗ y, where [S1

j ] · [S1
k ] is

the product in H∗(T n). When k = j, σj(σk(y)) is thus zero since [S1
j ]

2 = 0.
When j < k, we have σj(σk(y)) = ±σk(σj(y)) since the ring H∗(T n) is graded

commutative. Now, σj(y) is in L(T k−1), so by part 4 in Theorem 3.4.3, the element
σk(σj(y)) is in p. Hence, σj(σk(y)) is in p.

Proposition 3.5.4. The differential in E2(HFp, n) is given by

d2(x) = t1σ1(x) + . . .+ tnσn(x),

for x ∈ E2
0,∗(HFp, n).

Thus, if p ≥ 5 and 1 ≤ n ≤ p or p = 3 and 1 ≤ n ≤ 2, and x is in the subring
P (ξ1, ξ2, . . .)⊗ L(T n) ⊆ H∗(ΛTnHFp) ∼= E2

0,∗(HFp, n), then d2(x) is in p{t1, . . . , tn}.
Proof. There is a surjective homomorphism from the spectral sequence

E2 = H−∗(T n, H∗(ΛTnHFp)) ∼= P (t1 . . . tn)⊗H∗(ΛTnHFp)⇒ π∗((HFp∧ΛTnHFp)
hTn

),

to E2(HFp, n). Inclusion of fixed points induces the projection homomorphism from
E2 to

′E2 = H−∗(S1, H∗(ΛTnHFp)) ∼= P (ti)⊗H∗(ΛTn)⇒ π∗((HFp ∧ ΛTnHFp)
hS1

))

where S1 acts on the i-th circle in T n. Now ′E2 maps injectively to the Tate spectral
sequence, so by Proposition 2.1.2, the d2-differential in ′E2 is induced by the operator
σj.

The formula for the differential in E2(HFp, n) is thus

d2(x) = t1σ1(x) + . . .+ tnσn(x),

and the second claim now follows by Proposition 3.5.3.

We will now show that the element t1μ
pn−1

1 + t2μ
pn−1

2 + . . .+ tnμ
pn−1

n in E2(HFp, n)
is not hit by any differential in the homotopy fixed points spectral sequence. The
idea of the proof is that by the previous propositions only τ i can hit an element in
P (μ1, . . . μn){t1, . . . tn}. For dimension reasons this can only happen when i ≤ n− 2,
but since we have one fewer variable τ i than μj, these will not add up correctly.

Proposition 3.5.5. Let p ≥ 5 and 1 ≤ n ≤ p or p = 3 and 1 ≤ n ≤ 2. The element

t1μ
pn−1

1 + t2μ
pn−1

2 + . . .+ tnμ
pn−1

n in

E2(k(n−1), n) ∼= k(n−1)∗(ΛTnHFp){1, t1, . . . , tn} ⇒ k(n−1)∗(F (E2T
n
+,ΛTnHFp)

Tn

)

is not hit by any differential, is obviously a cycle, and thus represents a non-zero
element in k(n− 1)∗(F (E2T

n
+,ΛTnHFp)

Tn
).
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Proof. Since k(n − 1)∗(ΛTnHFp) ⊆ H∗(ΛTnHFp), the differentials in E2(k(n − 1), n)
are determined by the differentials in E2(HFp, n). By Proposition A.4.6 and A.4.4,

σi(τ j) = μpj

i , so Proposition 3.5.4 yields d2(τ j) =
∑n

i=1 tiμ
pj

i . Assume z is an element

in k(n − 1)∗(ΛTnHFp) with differential d2(z) =
∑n

i=1 tiμ
pn−1

i . It can be written, not
necessarily uniquely, as

z = τ 0z0 . . . τn−2zn−2 + z′,

where z′ is in P (ξ1, ξ2, . . .)⊗L(T n). By Proposition 3.5.4, d2(z′) is in p{t1, . . . , tn}, so
we must have

d2(τ 0)z0 + . . .+ d2(τn−2)zn−2 =
n−2∑
j=0

(t1μ
pj

1 + . . .+ tnμ
pj

n )zj =
n∑

i=1

tiμ
pn−1

i + y, (3.5.6)

for some y in p{t1, . . . , tn}.
Write the elements zi in the monomial basis in A∗ ⊗ L(T n) ∼= A∗ ⊗

⊗
U⊆n BU .

For equation 3.5.6 to hold, at least one of the zi-s must have a non-zero coefficient in

front of μpn−1−pi

1 . We let k1 ≥ 0 be the greatest integer i such that this coefficient is
non-zero.

Let k2 < k1 be the greatest integer where the coefficient in front of μpn−1−pk1
1 μpk1−pk2

2

in zk2 is non-zero. Such an integer must exist, because the coefficient in front of

t2μ
pk1
2 μpn−1−pk1

1 on the left hand side in equation 3.5.6 would otherwise be non-zero
due to the contribution from d2(τ k1)zk1 .

Continuing in this way we get that, since there are n variables ti, there must be a
sequence of integers k1 > . . . > kn such that the coefficient in front of the monomial

μpn−1−pk1
1 μpk1−pk2

2 · · ·μpkn−pkn
n in zkn is non-zero. But this is impossible since there are

only n− 1 number of variables zi.
We thus get a contradiction, so there is no element z in k(n − 1)∗(ΛTnHFp) with

differential d2(z) =
∑n

i=1 tiμ
pn−1

i .

Theorem 3.5.7. Let p ≥ 5 and 1 ≤ n ≤ p or p = 3 and 1 ≤ n ≤ 2. Then vn−1 in
k(n− 1)∗((ΛTnHFp)

hTn
) is non-zero. Equivalently, the homomorphism

k(n− 1)∗(Σ2pn−1−2F (E2T
n
+,ΛTnHFp)

Tn
)

vn−1 �� k(n− 1)∗(F (E2T
n
+,ΛTnHFp)

Tn
)

maps 1 to something non-zero.

Proof. The unit map S0 → (ΛTnHFp)
hTn

and the inclusion E2T
n → ET n induces the

vertical homomorphisms in the commutative diagram

k(n− 1)∗(Σ2pn−1−2S0)
vn−1 ��

��

k(n− 1)∗(S0)

��
k(n− 1)∗(Σ2pn−1−2(ΛTnHFp)

hTn
)

vn−1 ��

��

k(n− 1)∗((ΛTnHFp)
hTn

)

��
k(n− 1)∗(Σ2pn−1−2F (E2T

n
+,ΛTnHFp)

Tn
)

vn−1 �� k(n− 1)∗(F (E2T
n
+,ΛTnHFp)

Tn
).
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By Proposition 3.5.5 and 3.5.1 the homomorphism vn−1 maps 1 in the lower left hand

corner to the non-zero element represented by the cycle t1μ
pn−1

1 +t2μ
pn−1

2 + . . .+tnμ
pn−1

n

in the lower right hand corner. Hence, the image of vn−1 must be non-zero in the middle
group on the right hand side of the diagram.





Appendix A

Tools for Calculation

A.1 Hopf Algebras

We will now recall the definition, and some basic properties, of a Hopf Algebra. See
[MM65] and Chapter 20 in [MP12] for more details. The spectral sequences we en-
counter later will often have extra structure coming from a Hopf algebra, and this will
aide us in our calculations.

Our ground ring will be graded, so there will be some small differences between
our treatment and the classical treatments of Hopf algebras. Our constructions could
be made more general, but we restrict the attention to the cases we are interested in.

We will work with graded objects, and all our objects will be non-negatively graded.
Let R be a fixed graded commutative field, i.e., a graded commutative ring such that
every graded R-module is free, and write ⊗ for ⊗R.

Definition A.1.1. An R-algebra is a graded R-module A together with morphisms of
graded R-modules φ : A⊗A→ A, called the multiplication, and η : R→ A, called the
unit such that the following diagrams are commutative

A⊗ A⊗ A
id⊗φ ��

φ⊗id
��

A⊗ A

φ
��

A⊗ A
φ �� A

R⊗ A
η⊗id ��

∼= ��

A⊗ A

φ
��

A⊗R
id⊗η��

∼=��
A.

A morphism of R-algebras f : A → B is a morphisms of graded R-modules, such
that the following diagrams commute

A⊗ A
φA ��

f⊗f

��

A

f

��
B ⊗ B

φB �� B

A

f

��
R

ηA ��

ηB ��
B.

81
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Given two R-modules A and B we define the twist map τA,B : A⊗B → B ⊗A by
the formula τ(a⊗ b) = (−1)klb⊗ a where a is an element in A of degree k and b is an
element in B of degree l

Given two R-algebras A and B, then A ⊗ B is an R-algebra with multiplication
the composition

A⊗ B ⊗ A⊗ B
A⊗τ⊗B �� A⊗ A⊗ B ⊗ B

φA⊗φB �� A⊗ B

and unit

R ∼= R⊗R
ηA⊗ηB �� A⊗ B .

An R-algebra A is said to be commutative if the diagram

A⊗ A
φ




τ

��
A

A⊗ A
φ

��

commutes.
An R-algebra A is said to be connected if η : : R0 → A0 is an isomorphism, and is

said to be augmented if there is an R-algebra map ε : A→ R such that εη = id. Given
an augmentation ε, the kernel ker(ε) is denoted I(A) and is called the augmentation
ideal. The splitting εη = id induces an isomorphism A ∼= R⊕ I(A).

Definition A.1.2. An R-coalgebra is a graded R-module A together with morphisms
of graded R-modules ψ : A→ A⊗ A, called the coproduct, and ε : A→ R, called the
counit such that the following diagrams are commutative

A
ψ ��

ψ

��

A⊗ A

ψ⊗id
��

A⊗ A
id⊗ψ �� A⊗ A⊗ A

A

ψ

��

∼=
��

∼=
��

R⊗ A A⊗ A
ε⊗id�� id⊗ε �� A⊗R

A morphism of R-coalgebras f : A→ B is a morphisms of graded R-modules, such
that the following diagrams commute

A
ψA ��

f

��

A⊗ A

f⊗f

��
B

ψB �� B ⊗ B

A εA
��

f

��
R

B.
εB

��

Given two R-coalgebras A and B, then A ⊗ B is an R-coalgebra with coproduct
the composition

A⊗ B
ψA⊗ψB �� A⊗ A⊗ B ⊗ B

A⊗τ⊗B �� A⊗ B ⊗ A⊗B
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and counit

A⊗ B
εA⊗εB �� R⊗R ∼= R .

An R-coalgebra A is said to be cocommutative if the diagram

A⊗ A

τ

��
A

ψ ��

ψ 


A⊗ A.

commutes.
An R-coalgebra A is said to be connected if ε : : A0 → R0 is an isomorphism., and

is said to be unital if there is an R-coalgebra map η : R→ A such that εη = id. Given
such a map, the cokernel Coker(η) is denoted J(A). The splitting εη = id induces an
isomorphism A ∼= R⊕ J(A)

Definition A.1.3. Let A be an augmented R-algebra. We define the R-module Q(A)
of indecomposable elements in A by the exact sequence

I(A)⊗ I(A)
φ �� I(A) �� Q(A) �� 0.

Let A be a unital R-coalgebra. We define the R-module P (A) of primitive elements
in A by the exact sequence

0 �� P (A) �� J(A)
ψ �� J(A)⊗ J(A).

Let A be a unital R-coalgebra and let I(A) = ker ε. We say that an element x in
I(A) is primitive if its image in J(A) lies in P (A).

Definition A.1.4. Given an R-coalgebra A with coproduct ψ, we define the reduced
coproduct ψ̃ : A→ A⊗ A to be equal to ψ̃ = ψ − id⊗1− 1⊗ id.

Lemma A.1.5. If A is a unital R-coalgebra, the primitive elements in I(A) is equal

to the kernel of ψ̃. I.e., if x ∈ I(A) is primitive, then

ψ(x) = x⊗ 1 + 1⊗ x.

Proof. This is clear from the definitions.

Definition A.1.6. An R-Hopf algebra is a graded R-module A together with mor-
phisms of graded R-modules

φ : A⊗ A→ A ψ : A→ A⊗ A

η : R→ A ε : A→ R
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such that the morphisms φ, η and ε makes A into an augmented R-algebra, ψ, ε and η
makes A into a unital R-coalgebra, and the following diagram commutes

A⊗ A
φ ��

ψ⊗ψ

��

A
ψ �� A⊗ A

A⊗ A⊗ A⊗ A
id⊗τA,A⊗id

�� A⊗ A⊗ A⊗ A.

φ⊗φ

		

Commutativity of the last diagram is equivalent to ψ being a morphism of R-
algebras, or φ being a morphism of R-coalgebras.

We say that an R-Hopf algebra is connected if A is connected as an R-algebra, or
equivalently as an Rcoalgebra. We say A is commutative if A is commutative as an
R-algebra, and cocommutative if A is cocommutative as an R-coalgebra.

Proposition A.1.7. If A is a connected commutative R-Hopf algebra, there is an
R-module map χ : A → A called the conjugation such that χ2 = id and the following
diagram commutes

A
ε ��

ψ
��

R
η �� A

A⊗ A
id⊗χ �� A⊗ A.

φ

		

Proof. We have A ∼= I(A) ⊕ R. Let x be an element in I(A) of degree q. Then
ψ(x) = x ⊗ 1 + 1 ⊗ x +

∑
x′ ⊗ x′′, and since A is connected, 0 < |x′′| < q. We

inductively define χ by the formula χ(x) = −x −∑ x′χ(x′′). That χ2 is the identity
follows from Section 8 in [MM65]. The generalization to a graded ground ring R is
straightforward.

Proposition A.1.8. Let A and B be unital R-coalgebras. Then there is a split short
exact sequence of R-modules

0 �� P (A)
P (A⊗ηB) �� P (A⊗ B)

P (εA⊗B) �� P (B) �� 0,

where the splitting is given by P (ηA ⊗ B).

Proof. When R is concentrated in degree zero, a more general statement is given in
Proposition 3.12 in [MM65], and the proof below is an adaption of the proof of this
proposition.

Let iA = A⊗ ηB and prB = εA ⊗ B.
Exactness of the short exact sequence in the proposition is clear except at the

middle term. That P (prB) ◦ P (iA) = 0 is clear since prB ◦iA = ηB ◦ εA
The only thing left to prove is that ker(P (prB)) ⊆ im(P (iA)). Observe that there

is an exact sequence of R-modules

0 �� A
iA �� A⊗ B

f �� A⊗ B ⊗ B



A.2 The Bar Complex 85

where f is given by f = idA⊗B ⊗1 − (idA⊗B ⊗ prB) ◦ ψA⊗B. Exactness is clear except
for ker(f) ⊆ im(iA). The composite

A⊗ B
f �� A⊗ B ⊗ B

idA ⊗εB⊗idA �� A⊗R⊗ B ∼= A⊗ B

is equal to prA⊗1− id, and the kernel of this map is equal to im(iA), hence ker(f) ⊆
im(iA).

If x ∈ P (A ⊗ B) satisfy P (prB)(x) = 0, then prB(x) = 0 so f(x) = 0. Hence
x ∈ A ∩ P (A⊗ B), so x is an element in P (A). Thus ker(P (prB)) ⊆ im(P (iA)).

A.2 The Bar Complex

In this section we let k be a field. Everything in this section can be found in Chapter
VIII and X in [ML95].

Definition A.2.1. A simplicial k-module M is a family of k-modules Mn, n ≥ 0
together with k-module homomorphisms

di : Mn →Mn−1, i = 0, . . . , n, called face maps and

sj : Mn →Mn+1, j = 0, . . . , n, called degeneracy maps,

satisfying the simplicial identities. See Section VIII.5. in [ML95] for more details.

Associated to every simplicial k-module M we have an associated chain complex
(M∗, d), called the Moore complex, with differential

d =
n∑

i=0

(−1)idi.

Let M be a simplicial k-module and denote with DMn the submodule of Mn

generated by the degenerate simplices, i.e., DMn = s0Mn−1 + . . . Sn−1Mn−1. The
relations between the face and degeneracy maps show that DM∗ is a subcomplex of
M∗. We call the complex M∗/DM∗ the normalized complex of M∗.

Proposition A.2.2. The canonical projection M∗ →M∗/DM∗ is a quasi-isomorphism.

Proof. See Theorem VIII.6.1 in [ML95].

Given two simplicial k-modulesM andN their productM×N is defined component
wise, i.e (M ×N)n = Mn ⊗Nn, dn = dn ⊗ dn and sn = sn ⊗ sn.

Before we define the shuffle product, we must give the definition of a shuffle. Let
m and n be two non-negative integers. An (m,n)-shuffle (μ, ν) is a partition of the set
{0, . . . ,m+ n− 1}, into two disjoint subsets μ1 < . . . μm and ν1 < . . . , νn of m and n
integers, respectively. The sign of this permutation is denoted with sgn(μ, ν).
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Theorem A.2.3. There is a natural map of chain complexes sh : M∗ ⊗N∗ → (M ×
N)∗, called the shuffle map, given by

sh(a⊗ b) =
∑
(μ,ν)

sgn(μ, ν)(sνn . . . sν1(a)⊗ sμm . . . sμ1(b),

where a ∈ Mm, b ∈ Nn and the sum runs over all (m + n) shuffles. The map is
associative, graded commutative and a chain equivalence.

Proof. See Theorem VII.8.8 in [ML95].

This map induces a map on normalized chain complexes as well.

Corollary A.2.4. The shuffle map induces a chain transformation on the normalized
chain complexes

sh : DN∗ ⊗DM∗ → (DN ×DM)∗.

Proof. See Corollary VII.8.9 in [ML95].

If M is a simplicial k-algebra then composing the shuffle product with the algebra
product gives M∗ a k-algebra structure.

Write d̃ for the “last” face map in a simplicial module. That is if a ∈ Nn then
d̃a = dna.

Theorem A.2.5. There is a natural map of chain complexes f : (M×N)∗ →M∗⊗N∗,
called the Alexander-Whitney map, given by

f(a× b) =
n∑

i=0

d̃n−ia⊗ di0b, a ∈ Nn, b ∈Mn.

Proof. See Theorem VII.8.5 in [ML95].

Corollary A.2.6. The Alexander-Whitney map induces a chain transformation on
the normalized chain complexes

f : (DN ×DM)∗ → DN∗ ⊗DM∗.

Proof. See Corollary VII.8.6 in [ML95].

We will now elaborate on a particular simplicial module. Let R be a k-algebra let
M be a left R-module and N a right R-module, and define the simplicial k-module A
by An = M ⊗R⊗n ⊗N . The face and degeneracies are given by

di(a0 . . . , an+1) = (a0, . . . , aiai+1, . . . , an+1) for i = 0, . . . , n− 1,

sj(a0 . . . , an+1) = (a0, . . . , aj, 1, aj+1, . . . , an+1) for j = 0, . . . , n,

where a0 ∈M and an+1 ∈ N .
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The (normalized) two-sided Bar complex is defined to be the associated chain com-
plex of the normalization of this simplicial module, and is denoted with B(M,R,N).
It is a standard fact that B(M,R,N)n = M ⊗ (R/k)⊗n ⊗N , where R/k is the coker-
nel of the augmentation k → R. An element in B(M,R,N)n is written l[a1| . . . |an]r
with l ∈ N , ai ∈ R and r ∈ M , and these elements are normalized in the sense that
l[a1| . . . |an]r = 0 when any one ai ∈ k.

Proposition A.2.7. The chain complex B(R,R,M), respectively B(M,R,R), is a
free resolution, of left, respectively right, modules, of N .

Corollary A.2.8. There is an isomorphism

TorR(M,N) ∼= H∗(B(M,R,N))

There is a standard coproduct in the bar complex, and by the next proposition
this coproduct is “unique”.

Proposition A.2.9. Let R be a k-coalgebra. The composition of B(k, ψR, k) and
the Alexander-Whitney map, induces the standard coproduct on the bar complex ψ :
B(k,R, k)→ B(k,R, k)⊗R B(k,R, k), which is given by

[a1| . . . |an] �→
n∑

i=0

[a1| . . . |ai]⊗ [ai+1| . . . |an].

Since we work over the field k, it descends to a coproduct in homology via the Künneth
isomorphism.

Proof. See Corollary 7.12 in [McC01].

Proposition A.2.10. Let x and y be of even and odd degree, respectively. For all
primes p there are isomorphisms of Fp-Hopf algebras

E(σx) ∼= TorP (x)(Fp,Fp) ∼= H∗(B(Fp, P (x),Fp))

Γ(σy) ∼= TorE(y)(Fp,Fp) ∼= H∗(B(Fp, E(y),Fp)),

and when p is odd there is an isomorphism of Fp-Hopf algebra

E(σx)⊗ Γ(ϕx) ∼= TorPp(x)(Fp,Fp) ∼= H∗(B(Fp, Pp(x),Fp)),

given by sending σx to the class of [x], γ1(σy) to the class of [y] and γ1(ϕx) to the
class of [xp−1|x] in the bar complex.

Proof. The differentials in the bar complexes B(Fp, P (x),Fp) and B(Fp, E(y),Fp) are
all zero, giving us the Fp-module structure in the first two cases.

There is a free resolution

. . . �� xp+1Pp(x) �� xp+1Pp(x) �� xpPp(x) �� xPp(x) �� Pp(x)
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of Fp giving us the Fp-module structure of TorPp(x)(Fp,Fp).
In the first case, there is only one possible Fp-Hopf algebra structure.
In the second case we have to check that the homomorphism respects the multi-

plicative structure. Let y[i] = [y| . . . |y] (i-fold product). Then the product on the right
hand side is given by

sh(y[n] ⊗ y[m]) =
∑
(μ,ν)

sgn(μ, ν)(sνm . . . sν1(y
[n])⊗ sμm . . . sμ1(y

[m]))

=
∑
(μ,ν)

(sgn(μ, ν))2(y[n+m]) =

(
n+m

n

)
y[n+m]

where the extra sgn(μ, ν) come from the graded product in E(y)⊗n+m when we shuf-
fle the non-degenerate factors in sμm . . . sμ1(y

[m]) past the non-degenerate factors in
sνm . . . sν1(y

[n]).
The coalgebra structure follows from Proposition A.2.9.
For the Fp-Hopf algebra structure of TorPp(x)(Fp,Fp), we refer to Proposition 7.24

in [McC01].

A.3 Spectral Sequences

The construction of a spectral sequence and the convergence properties of a spectral
sequence are from Boardmans paper [Boa99]. The algebra and coalgebra properties of
spectral sequences are from [McC01].

Definition A.3.1. An unrolled exact couple is a diagram of graded abelian groups
and homomorphisms of the form

. . .
i �� As−1

i �� As

j
��

i �� As+1

j
��

�� . . .

E1
s

k
��

E1
s

k

��

where j or k is a homomorphism of degree 1, while the other two are of degree 0, and
where each triangle As+1 → As → Es → As+1 is a long exact sequence.

Note that we use a different indexing than Boardman.
An unrolled exact couple as above gives rise to a spectral sequence {Er, dr}. That

is a sequence of differential bigraded abelian groups Er
s,t for r ≥ 1 with differential

dr : Er
s,t → Er

s−r,t+r−1 such that Er+1 ∼= H∗(Er, dr).
When we draw our spectral sequence on a grid in the plane, we will put the group

Er
s,t in the (s, t)-coordinate. Thus our differentials will go up and to the left.
We will say that a spectral sequence is concentrated in a half plane or a quadrant,

if E2
s,t is zero outside of the half plane or quadrant, respectively.
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We denote the s-th grade the horizontal grade and the t-th grade the vertical grade.
For readers who are unfamiliar with the construction of a spectral sequence from

an unrolled exact couple, we point to Boardmans paper [Boa99].

Definition A.3.2. Given an unrolled exact couple as in A.3.1 we

1. Filter the colimit colims As by the subgroups FsA∞ = im[As → colims As], i.e.,
there is a sequence of inclusions

. . . ⊆ Fs−1 ⊆ Fs ⊆ Fs+1 ⊆ . . . ⊆ colim
s

As.

2. Filter the limit lims As by the subgroups FsA−∞ = ker[A∞ → lims As], i.e., there
is a sequence of inclusions

. . . ⊆ Fs−1 ⊆ Fs ⊆ Fs+1 ⊆ . . . ⊆ lim
s

As.

The homomorphisms As → colims As and lims As → As are the canonical ones coming
from the colimit and limit construction, respectively.

Given a filtration . . . ⊆ Fs−1 ⊆ Fs ⊆ Fs+1 ⊆ . . . ⊆ H of the group H, we write
GrH for the associated graded complex

GrH =
⊕
s

Fs/Fs−1.

We will write RlimAs for the the derived limit of the sequence As, see [Boa99] for
more details.

Definition A.3.3. Given an unrolled exact couple we say that the associated spectral
sequence (Er, dr) converges strongly to H where H = colims As or H = lims As if

1. There is an isomorphism colims Fs
∼= H.

2. There are isomorphisms E∞
s
∼= Fs/Fs−1.

3. We have lims Fs = Rlims Fs = 0.

When a spectral sequence converges strongly, we have by the second property above
an isomorphism

GrH ∼=
⊕
s

E∞
s .

We will now give two theorems that suffices to prove strong convergence in the
cases we are interested in. Before we do that we need the definition of conditionally
convergence which together with some extra properties will guarantee strong conver-
gence.



90 Chapter A. Tools for Calculation

Definition A.3.4. Given an unrolled exact couple, we say the resulting spectral se-
quence converges conditionally to the colimit colims As if lims As = Rlims As = 0. We
say that the spectral sequence converges conditionally to the limit lims As if colims As =
0.

The next two theorems are Theorem 6.1 and 7.1 in [Boa99], rephrased in the
language of half plane spectral sequences.

Theorem A.3.5. Given an unrolled exact couple, suppose the resulting spectral se-
quence is concentrated in the right half plane, or the lower half plane.

1. If lims As = 0, the spectral sequence converges strongly to the colimit colims As

2. If colims As = 0, the spectral sequence converges strongly to the limit lims As.

Theorem A.3.6. Given an unrolled exact couple, suppose the resulting spectral se-
quence is concentrated in the left half plane or the upper half plane, and that it con-
verges conditionally to the colimit colims As or the limit lims As. If Rlimr E

r = 0, the
spectral sequence converges strongly.

Note that Rlimr E
r = 0 if Er

s,t is finite for all s and t, which will always be the case
in our applications.

We finish this section by defining what it means for a spectral sequence to have an
algebra and coalgebra structure. This extra structure will be crucial for our calcula-
tions. See Section 2 of [McC01] for more details.

A differential bigraded R-algebra {E∗,∗, d} is a bigraded R-module with a product
structure φ : Es,t ⊗R Eu,v → Es+u,t+v such that d is a derivation, i.e., satisfies the
Leibniz rule

d(xy) = d(x)y + (−1)s+txd(y)

when x ∈ Es,t and y ∈ Eu,v, and such that it satisfies the usual associativity and unit
conditions.

Definition A.3.7. Assume we have an unrolled exact couple of graded R-algebras,
with a spectral sequence (Er, dr) converging strongly to H where H = colims As or
H = lims As, such that the product φ on H satisfy

φ(Fs,t ⊗R Fu,v) ⊆ Fs+u,t+v.

We say that the spectral sequence is an R-algebra spectral sequence if:

1. For every r ≥ 1, {Er
∗,∗, d

r} is a differential bigraded R-algebra.

2. The homomorphism φr+1 is given as the composite

Er+1
s,t ⊗R Er+1

u,v
∼= H∗(Er

s,t)⊗R H∗(Er
u,v)→ H∗(Er

s,t ⊗R Er
u,v)

H∗(φr)−→ H∗(Er
s+u,t+v)

∼= Er+1
s+u,t+v

where the unlabeled homomorphism is the cross product in homology.
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3. The induced pairing on E∞ makes the following diagram commute

Grs Ht ⊗Gru Hv
φ ��

∼=
��

Grs+u Ht+v

∼=
��

E∞
s,t ⊗ E∞

s,t

φ∞
�� E∞

s+u,t+v

where the vertical isomorphisms comes from strong convergence.

Dually, a differential bigraded R-coalgebra {E∗,∗, d} is a bigraded R-module with
a coproduct structure

ψ : Es,t →
⊕

u+x=s
v+y=t

Eu,v ⊗R Ex,y

such that if ψ(x) =
∑

x′ ⊗ x′′ then ψr(d(x)) =
∑

d(x′) ⊗ x′′ + (−1)|x′|x′ ⊗ d(x′′)
where |x′| = u+ v is the total degree of x′ ∈ Eu,v, and such that it satisfies the usual
coassociativity and counit conditions.

Definition A.3.8. Assume we have an unrolled exact couple of graded R-coalgebras,
with a spectral sequence (Er, dr) converging strongly to H where H = colims As or
H = lims As. We say that the spectral sequence is an R-coalgebras spectral sequence
if:

1. For every r ≥ 1, {Er, dr} is a differential bigraded R-coalgebra.

2. The R-module Er
s,t is flat

3. The homomorphism ψr+1 is given as the composite

Er+1
s,t

∼= H∗(Er
s,t)

H∗(ψr)→ H∗(
⊕

u+x=s
v+y=t

Er
u,v ⊗R Er

x,y)

∼=
⊕

u+x=s
v+y=t

H∗(Er
u,v)⊗R H∗(Er

x,y)
∼=
⊕

u+x=s
v+y=t

Er+1
u,v ⊗R Er+1

x,y

where the second to last isomorphism is the Künneth isomorphism, which exists
since Er

s,t is flat as an R-module.

If H is an Rcoalgebra we say that an R-coalgebra spectral sequence converges to H
as an R-coalgebra if the coproduct ψ on H satisfy

ψ(Fs,t) ⊆
⊕

u+x=s
v+y=t

Fu,v ⊗R Fx,y.
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and the induced pairing on E∞ makes the following diagram commute

Grs Ht
ψ ��

∼=

��

⊕
u+x=s
v+y=t

Gru Hv ⊗R Grx Hy

∼=

��

E∞
s,t

ψ∞
��
⊕

u+x=s
v+y=t

E∞
u,v ⊕ E∞

x,y

where the vertical isomorphisms comes from strong convergence.

Observe that if the definition only holds for Er when r ≤ r0, the coalgebra structure
still gives valuable information about the differentials in this range.

A.4 Bökstedt Spectral Sequence

In this section we define the Bökstedt spectral sequence, and give some results about
it.

Let R be a graded commutative ring and let A be a augmented R-algebra. See
[Lod98] for the definition of the A-Hopf algebra HH∗(A), the Hochschild homology of
A.

All the information we need about Hochschild homology can be found in the fol-
lowing proposition, which is similar to Proposition 2.1 in [MS93].

Proposition A.4.1. Let A be a commutative augmented Fp-algebra. There is an
isomorphism of A-Hopf algebras

HH∗(A) ∼= A⊗ TorA(Fp,Fp).

Proof. There is an isomorphism HH∗(A) ∼= TorA⊗Aop

(Fp,Fp) by Proposition 1.1.13 in
[Lod98], and by Theorem X.6.1 in [CE56] there is an isomorphism TorA⊗Aop

(Fp,Fp) ∼=
TorA(A′,Fp) where A

′ is A with the trivial A-module structure. Hence, TorA(A′,Fp) ∼=
A⊗ TorA(Fp,Fp).

There is a Bökstedt spectral sequence first introduced in [Bök86b].

Proposition A.4.2. Let R be commutative ring spectrum. There is a strongly con-
vergent spectral sequence

E2
s,t = HHs(Ht(R))⇒ Hs+t(ΛS1R).

An overview of this spectral sequence can be found in [AR05], and their Theorem
4.5 states:
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Theorem A.4.3. Let R be a commutative ring spectrum.

1. If H∗(ΛS1R) is flat over H∗(R), then H∗(ΛS1R) is an A∗-comodule H∗(R)-Hopf
algebra.

2. If each term Er for r ≥ 2 in the Bökstedt spectral sequence calculating H∗(ΛS1R)
is flat over H∗(R), then Er is an A∗-comodule H∗(R)-Hopf algebra spectral se-
quence. In particular, the differentials dr respect the coproduct ψ.

From Proposition 4.9 in [AR05] we have

Proposition A.4.4. Let R be a commutative ring spectrum. Given x in H∗(R) the
element σ(x) in H∗+1(ΛS1R) is represented by σx in HH1(H∗(R)).

A helpful tool for calculations is Theorem 1 in [Hun96], which is a generalization
of an argument by Bökstedt in [Bök86b].

Theorem A.4.5. Suppose x ∈ Hn(R) with n odd and positive. Then in the Bökstedt
spectral sequence

HH∗(H∗(R))⇒ H∗(ΛS1R)

the element γpk(σx) lives to Ep−1 and

dp−1(γpk(σx)) = σ(βQ
n+1
2 x)γpk−p(σx).

Given a prime p, let A∗ be the dual Steenrod algebra, see [Mil58] for details. When
p is odd A∗ = P (ξ1, ξ2, . . .)⊗E(τ 0, τ 1, . . .) where |ξi| = 2pi− 2 and |τ i| = 2pi− 1, and
when p is even A∗ = P (ξ1, ξ2, . . .) where |ξi| = 2i − 1. Bökstedt proved the following
in [Bök86b]. See Theorem 5.2 in [HM97b] for a published account.

When p is odd the Bökstedt spectral sequence calculating

Proposition A.4.6. When p is odd, the Bökstedt spectral sequence calculating the
A∗-comodule H∗(ΛS1HFp) begins

E2 = HH∗(A∗) ∼= A∗ ⊗ E(σξ1, σξ2, . . .)⊗ Γ(στ 0, στ 1, . . .),

and the only non-zero differential is given by Theorem A.4.5, so the E∞ page is equal
to

E∞ ∼= A∗ ⊗ Pp(στ 0, στ 1, . . .).

There is an isomorphism of A∗-comodules

H∗(ΛS1HFp) ∼= A∗ ⊗ P (στ 0),

where (στ 0)
pi is represented by στ i on E∞.

Similarly, when p = 2 there is an isomorphism of A∗-comodules

H∗(ΛS1HF2) ∼= A∗ ⊗ P (σξ1).

We can use this to calculate the homotopy groups.

Corollary A.4.7. For any prime p, there is an isomorphism of Fp-algebras

π∗(ΛS1HFp) ∼= P (μ).
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A.5 Continuous Homology of Tate Spectra

In this section we define continuous homology of a Tate spectrum, and state some
results about the corresponding homological Tate spectral sequence. See [LNR12]
for more details. We will need continuous homology in Section 2.4 to show that a
homomorphism is not zero.

When G is a finite group, the Greenlees filtration of G gives rise to a filtration

X tG → · · · → [ẼG/Ẽn−1 ∧ F (EG+, X)]G → [ẼG/Ẽn ∧ F (EG+, X)]G → · · · → ∗
where the identification of the homotopy (co)limit follows from Lemma 4.4 in [LNR12].

The next definition is Definition 4.7 in [LNR12].

Definition A.5.1. Let G be a finite group and X an orthogonal G-spectrum whose
underlying non-equivariant spectrum is bounded below and of finite type over Fp. By
the continuous homology of X tG we mean the complete A∗-comodule

Hc
∗(X

tG) = lim
n→−∞

H∗([ẼG/Ẽn−1 ∧ F (EG+, X)]G).

The following proposition is part of Proposition 4.15 in [LNR12]

Proposition A.5.2. Let G be a finite group and X a G-spectrum. Assume that X is
bounded below and of finite type over Fp. Then the homological Tate spectral sequence

Ê2
s,t(X) = Ĥ−s(G;Ht(X))⇒ Hc

s+t(X
tG)

converges strongly to the continuous homology of X tG as a complete A∗-comodule.

When X = B ∧ B for some spectrum B, with the action of C2 being permutation
of the two factors, there is more to say about this spectral sequence. The examples we
are interested in are are ΛC2×XHFp 
 (ΛXHFp)∧ (ΛXHFp) for some space X. Below
we state the homological version of Proposition 5.14 in [LNR12].

Proposition A.5.3. Let B be a bounded below spectrum of finite type over F2. The
homological Tate spectral sequence

Ê2 = Ĥ−s(C2;H∗(B)⊗2)⇒ Hc
∗((B ∧B)tC2)

collapses at the Ê2-term. Hence the Ê2 = Ê∞-term is given by

Ê∞ = P (u, u−1)⊗ F2{α}
where α runs through an Fp-basis for H∗(B).

The map ε∗ : H∗((B ∧ B)tC2) → Hc
∗((B ∧ B)tC2) maps an A∗-comodule primitive

element z ∈ Hn((B ∧B)tC2) to the element represented by un⊗ z2 in the Tate spectral
sequence.

Proof. The identification of the spectral sequence, and the fact that it collapses is part
of Proposition 5.14 in [LNR12]. By Corollary 2.9 in [LNR12] continuous homology is
the dual of continuous cohomology. We can now read of the formula for ε∗ from
Proposition 5.12, Formula 3.8 and Proposition 5.14 in [LNR12].
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