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Abstract. In this paper, we study generating forms and generating functions
for volume preserving mappings in Rn. We derive some parametric classes

of volume preserving numerical schemes for divergence free vector fields. In

passing, by extension of the Poincaré generating function and a change of

variables, we obtained symplectic equivalent of the theta-method for differential

equations, which includes the implicit midpoint rule and symplectic Euler A

and B methods as special cases.

1. Introduction. Generating functions have been known for a long time in the
context of symplectic integration. These functions possess many nice properties:
they describe entirely the dynamics of mechanical systems, they are smooth solu-
tions of the Hamilton-Jacobi differential equations, they are directly connected to
any symplectic map (see for instance [1, 13], and the more numerically oriented
[15, 10, 8]).

The scope of this paper is a study of the method of generating functions (and
forms) to preserve canonical volume forms by numerical integrators. Because of
no-go theorems [3, 9], it is not possible to construct volume preserving methods
for generic divergence free vector fields within the class of B-series methods. B-
series methods include all classical integrators like Taylor-expansion based methods,
Runge–Kutta methods and multistep methods. Splitting methods do not fall in
the class of B-series methods and several methods based on such approach have
been proposed, see for instance [12], the more recent [22], and references therein.
Generating functions and generating forms have the property that they include B-
series type methods as well as splitting methods as particular cases. It is therefore
reasonable that such approach can be used to obtain new numerical methods that
preserve volume.

Differently from the symplectic case, the generating function (and generating
form) approach for volume forms is not well understood. Some earlier works on this
topic are [17, 18], extending the Hamiltonian technique of [4, 7], that used linear
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maps in the product space, to volume preserving forms, thus obtaining an equiva-
lent of the Hamilton-Jacobi differential equation [18]. To obtain a first and second
order scheme, Shang imposed simplifying conditions, requiring the transformation
matrix to be a special case of Hadamard matrix. More recent work on the topic,
though from a different perspective, is by Carroll [2] who gave the representation
for the n dimensional volume preserving transformations by n − 1 potential func-
tions. In [11], Lomeli and Meiss studied exact volume preserving mappings and
gave thirty-six generating forms on R3. The latter paper paves the background for
our investigations.

The paper is organized as follows. We will present some background and no-
tation on volume preservation and generating functions (resp. forms) in Section
1. In Section 2, we discuss the volume preserving generating form approach of
[2, 11]. The generating forms are associated to generic volume preserving maps and
there is a-priori no immediate connection between them and the vector field of a
given divergence free differential equation. Our contribution is to identify a class of
primitive forms which we can directly associate to a given vector field. This class
of primitives corresponds to a splitting in two-dimensional Hamiltonian systems,
treated by symplectic Euler schemes, thus recovering a volume preserving splitting
method originally proposed by Feng and Shang [5].

In Section 3, we recall the definition of the Poincaré’s generating function [19].
By using a linear change of variables, we generalise the approach to obtain a one-
parameter-family of methods, the symplectic ϑ-methods. A similar change of vari-
ables is used to obtain some new classes of generating forms for the volume preserv-
ing case. Lastly, we give some conclusions and future plans in Section 4.

1.1. Background and notation. We study ordinary differential equations of the
form

ẋ = a(x), x(0) = x0, (1)

where x ∈ Rn and a : Rn → Rn, a(x) = [a1(x), . . . , an(x)]
T , is subject to the

divergence free condition

∇ · a =

n∑
i=1

∂xi
ai(x) = 0. (2)

It is well known that divergence free equations preserve volume (see for instance
[8]), and it is our interest to study numerical methods (maps x �→ X) that share
the same property.

Recall that a volume form Ω on a n-dimensional manifold M is a fully skew-
symmetric, non-degenerate, n-form. For convenience, we have collected some basic
definitions and properties of differential forms and differential calculus in Appen-
dix A.

Definition 1.1. (Volume preservation). A volume form Ω on a manifold M is
preserved by a diffeomorphism f : M �→ M if

f∗Ω = Ω, (3)

where f∗ denotes the pullback of f . Such a map f is called a canonical transforma-
tion.

Assume M = Rn, and consider the canonical coordinates x1, x2, . . . , xn and the
canonical volume form Ω = dx1 ∧ dx2 ∧ · · · ∧ dxn. For any n vectors, v1, . . . ,vn,
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Ω(v1, . . . ,vn) = dx1 ∧ · · · ∧ dxn(v1, . . . ,vn) = det[v1, . . . ,vn]. The volume preser-
vation condition (3) for the map f : (x1, x2, . . . , xn) �→ (X1, X2, . . . , Xn), becomes

dX1 ∧ dX2 ∧ · · · ∧ dXn = dx1 ∧ dx2 ∧ · · · ∧ dxn, (4)

and it is equivalent to requiring that f has unit Jacobian determinant,∣∣∣∣∂(X1, X2, . . . , Xn)

∂(x1, x2, . . . , xn)

∣∣∣∣ = 1, (5)

as the vectors v1, . . . ,vn are transported by the linearization (Jacobian matrix) of
f . Thus volume preserving maps can be constructed either using the algebraic rules
of the differential forms (4) or directly using the Jacobian determinant condition
(5). In this paper we will address the problem using differential forms.

A special case of volume preservation is the symplectic case. Consider the column
vectors p = [p1, p2, . . . , pd]

T and q = [q1, q2, . . . , qd]
T . The map f : (p,q) �→ (P,Q)

is symplectic if
dP ∧ dQ = dp ∧ dq. (6)

i.e. f preserves the canonical two-form ω = dp∧ dq. If ω is an arbitrary symplectic
form (not necessarily canonical), then the symplecticness condition of the map f is
similar to (3), namely, f∗ω = ω.

When ω is exact (ω = dν), a map f : (p,q) �→ (P,Q) obeying (6) is an exact
symplectic map. Thus, assume ω = dν, where ν is a one-form. We obtain f∗dν−dν =
0, from which d(f∗ν − ν) = 0, that is,

f∗ν − ν = dS, (7)

The 0-form (function) S is called a generating function. For instance, the one form
ν = pT dq, which is obviously a primitive of ω, one has

PT dQ− pT dq = dS, (8)

where S = S(q,Q).
A similar procedure can be extended to the volume form case.

Definition 1.2. [11]. Let Ω be a volume form and ν a primitive, i.e. Ω = dν. A
diffeomorphism f : Rn �→ Rn is ν-exact volume preserving if there exists a n − 2
form λ on Rn such that

f∗ν − ν = dλ. (9)

Primitives ν of a differential n-form are not uniquely determined. This motivates
the generalization below.

Definition 1.3. [11]. Suppose that dν = dν̃ = Ω (volume form). A diffeomorphsim
f : Rn �→ Rn is exact volume preserving with respect to (ν, ν̃) if

f∗ν̃ − ν = dλ, (10)

for a n− 2 form λ. λ is called a generating form.

For the symplectic case, there are two primitives to consider (up to the d- of a
scalar function), pT dq and −qT dp. Thus, all possible cases can be summarized in
a table, see Table 1.

Remark 1. Our ultimate goal is to devise numerical methods where P = P(Δt) →
p and Q = Q(Δt) → q as Δt → 0, namely maps that are consistent with the
identity map. Note that the generating functions of type I. and IV., Table 1, are
not consistent with the identity map. For instance, for case I., which is described
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f∗ν̃ ↓ ν → pT dq −qT dp

PT dQ

I. S(q,Q)

P = ∂QS(q,Q)
p = −∂qS(q,Q)

∂p
∂Q = 0

II. S(p,Q)

P = ∂QS(p,Q)
q = ∂pS(p,Q)

∂q
∂Q = 0

−QT dP

III. S(q,P)

Q = ∂PS(q,P)
p = ∂qS(q,P)

∂p
∂P = 0

IV. S(p,P)

Q = ∂PS(p,P)
q = −∂pS(p,P)

∂q
∂P = 0

Table 1. The four classical types of generating functions for the
canonical symplectic form ω = dp ∧ dq.

by (8), the determining equations for p and P do not yield in the limit, since dq
and dQ are not independent. Nevertheless, they can be used to obtain symplectic
numerical methods, which, however, are singular in the limit. Such generating
functions have been used, among others, by [1, 14] and in the context of discrete
Lagrangian methods, see [10]. In this paper, however, we will focus only on maps
that are compatible with the identity.

In the volume case, one can generate similar tables, starting from ν = (−1)n−1 ·
xndx1 ∧ dx2 ∧ · · · ∧ dxn−1, and taking ν̃ as ν with permutation of the variables.
Differently from the symplectic case, which is characterized by a single scalar func-
tion for any of the cases in Table 1, the n-dimensional volume preserving case is
determined by n−1 functions: for instance, fi can be determined by other functions
f1, . . . , fi−1, fi+1, . . . , fn due to (5). There are several ways to choose the indepen-
dent functions and they are related to the coefficient functions of the n − 2 forms
λ. The n = 3 case is described at length in [11]: for a fixed choice of ν and ν̃, the
1-form λ is written as the sum of two 1-forms in four essentially different ways. For
each of the two 1-forms, a coefficient function (the analogous of S in the symplectic
case) is needed. In other words, the two coefficient functions of λ can be systemat-
ically chosen out of a set of functions, A,B,C,D, in four different ways. As there
are three possible choices of ν and ν̃ (giving nine choices of (ν, ν̃)), this gives a total
of 36 possible generating forms just for the n = 3 case. Fortunately, it suffices to
tabulate the four choices of the 1-form λ when ν = ν̃ = x3dx1 ∧ dx2 (corresponding
to case I. in the symplectic setting). All the other cases can be obtained from this
basic table by applying a permutation of the indices to the lowercase and uppercase
variables.

In the symplectic case, the generating function S is related to the Hamilton-
ian H of the system, either directly (for instance, S = QTp − ΔtH(Q,p) in case
II., yielding a first order symplectic Euler method), or implicitly through Legendre
transforms as in case I. [13, 10], see Table 1. This relation between the generating
function and the Hamiltonian function can then be used to obtain numerical meth-
ods for a given Hamiltonian vector field. From Table 2, one realises that there is
no immediate connection between the components ai(x) of the vector field (1) and
the functions A,B,C,D even in the case n = 3. Our goal is to identify generating
forms that can be associated systematically to the components of a vector field, so
to obtain a numerical method, as in the Hamiltonian setting.
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(123,123) Adx1 Bdx2

CdX1

λ = A(x1, x2, X1)dx1

+ C(x1, X1, X2)dX1

x3 = ∂x2A
∂X1

A = ∂x1
C

X3 = −∂X2
C

∂X1

∂x3
= 0, ∂x1

∂X3
= 0

λ = B(x1, x2, X1)dx2

+ C(x2, X1, X2)dX1

x3 = −∂x1B
∂X1

B = ∂x2
C

X3 = −∂X2
C

∂X1

∂x3
= 0, ∂x2

∂X3
= 0

DdX2

λ = A(x1, x2, X2)dx1

+D(x1, X1, X2)dX2

x3 = ∂x2
A

∂X2
A = ∂x1

D
X3 = ∂X1D

∂X2

∂x3
= 0, ∂x1

∂X3
= 0

λ = B(x1, x2, X2)dx2

+D(x2, X1, X2)dX2

x3 = −∂x1
B

∂X2
B = ∂x2

D
X3 = ∂X1D

∂X2

∂x3
= 0, ∂x2

∂X3
= 0

Table 2. The four basic types of generating 1-forms λ for ν =
ν̃ = x3dx1 ∧ dx2, adapted from [11]. These forms are the volume
preserving “equivalent” of the generating functions of type I. for
the symplectic case. All the other tables are obtained by applying
cyclic permutations to the variables (x1, x2, x3) and (X1, X2, X3).

Our findings in Section 2 can be summarised as follows. The type II. and III.
generating functions of the symplectic case correspond to the case ν̃ = ν. For n = 3,
these (6 tables, 24 cases) are be obtained from Table 2 by applying a permutation
of the indices:

(123, 231), (231, 123),

(123, 312), (312, 123),

(231, 312), (312, 231),

(11)

where the first term in each ordered couple corresponds to the corresponding permu-
tation of the x variables and the second permutation refers to the X. For instance,
(312, 231) means that (x1, x2, x3) �→ (x3, x1, x2) and (X1, X2, X3) �→ (X2, X3, X1).
For each such table, containing four possible generating 1-forms, we identify the

unique 1-form having the property ∂Xi

∂xi
= 0,

∂xj

∂Xj
= 0 for two of the indices

i, j ∈ {1, 2, 3}. It is exactly these 1-forms we solve for and associate to a diver-
gence free vector field in a suitable representation.

Out of these six cases associated to the permutations in (11), we recognise that
those in the left column of (11) correspond to different normalisations of the diver-
gence free vector field:

ẋ1 = ∂F (1)

∂x2

ẋ2 = −∂F (1)

∂x1
+ ∂F (2)

∂x3

ẋ3 = −∂F (2)

∂x2

(123, 231), A-D

ẋ1 = −∂F (1)

∂x2
+ ∂F (2)

∂x3

ẋ2 = ∂F (1)

∂x1

ẋ3 = −∂F (2)

∂x1

(123, 312) B-C

ẋ1 = ∂F (1)

∂x3

ẋ2 = −∂F (2)

∂x3

ẋ3 = −∂F (1)

∂x1
+ ∂F (2)

∂x2

(231, 312) A-D
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Concerning the cases listed in the second column of (11), note that the role of
the lower case and upper case variables is interchanged. In the context of numer-
ical integrators, they correspond to the adjoint numerical methods. For instance,
(231, 123) will generate the adjoint method of (123, 231), under the appropriate
normalization of the vector field.

2. Volume-preserving mappings by the generating functions (resp. forms)
approach.

2.1. Carroll’s generating function. For n = 3, Carroll [2] studied the transfor-
mation

X1 = f1(x1, x2, x3),

X2 = f2(x1, x2, x3),

X3 = f3(x1, x2, x3),

subject to the volume preserving condition (5),∣∣∣∣ ∂(x1, x2, x3)

∂(X1, X2, X3)

∣∣∣∣ = 1. (12)

To solve (12), Carroll introduced the intermediate variables (x
′
1, x

′
2, x

′
3),

x1 = x
′
1, x2 = x

′
2, x3 = h(x

′
1, x

′
2, x

′
3), (13)

and a ‘pseudo-planar’ deformation

X1 = g1(x
′
1, x

′
2, x

′
3), X2 = g2(x

′
1, x

′
2, x

′
3), X3 = x

′
3. (14)

The Jacobian satisfies ∣∣∣∣∂(X1, X2, X3)

∂(x
′
1, x

′
2, x

′
3)

∣∣∣∣ =
∣∣∣∣∣∂(x

′
1, x

′
2, x

′
3)

∂(x1, x2, x3)

∣∣∣∣∣ . (15)

Substituting (13) and (14) into (15) gives∣∣∣∣ ∂(g1, g2)∂(x1, x2)

∣∣∣∣ =
∣∣∣∣ ∂h

∂X3

∣∣∣∣ , (16)

which implies x3 = h(x1, x2, X3). Introducing a potential function Φ(x1, X2, X3),
it is showed that the solution of (16) is given as

X1 =
∂

∂X2
Φ(x1, X2, X3),

∫
∂

∂X3
h(x1, x2, X3) =

∂

∂x1
Φ(x1, X2, X3).

Equations (13) and (14) imply

x3 = h(x1, x2, X3).

By introducing another potential function Ψ(x1, x2, X3) and setting h(x1, x2, X3)
= ∂

∂x2
Ψ(x1, x2, X3), the general solution now takes the form

X1 =
∂

∂X2
Φ(x1, X2, X3),

∂

∂x1
Φ(x1, X2, x3) =

∂

∂X3
Ψ(x1, x2, X3),

x3 =
∂

∂x2
Ψ(x1, x2, X3),

(17)
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under the twist conditions

∂2

∂x1∂X2
Φ(x1, X2, X3) = 0,

∂2

∂x2∂X3
Ψ(x1, x2, X3) = 0, (18)

which are necessary in order to solve the second equation of (17).

Remark 2. Note that the conditions (17)-(18) are precisely those in the A-D case
in Table 2 for the permutation (123, 231).

Remark 3. For the choice Φ = x1X2 and Ψ = x2X3, the generating function
approach generates the identity map. This property is crucial since we are inter-
ested in obtaining numerical schemes for the differential equations, with consistence
properties in the limit when X → x, see also Remark 1.

The approach can be generalized to Rn as follows.

Theorem 2.1. [11]. Let Φ(1), . . . , Φ(n−1) be C2 functions on Rn. If the conditions

∂2

∂xr∂Xr+1
Φ(r)(x1, . . . , xr, Xr+1, . . . , Xn) = 0, r = 1, . . . , n− 1,

are satisfied, the n− 2 generating form

λ =
n∑

k=1

Φ(k)dx1 ∧ · · · ∧ dxk−1 ∧ dXk+2 ∧ · · · ∧ dXn (19)

generates a canonical map (X1, . . . , Xn) = f(x1, . . . , xn) implicitly given by the n
equations

X1 = ∂X2Φ
(1)(x1, X2, . . . , Xn), (20)

∂xk
Φ(k)(x1, . . . , xk, Xk+1, . . . , Xn) = ∂Xk+2

Φ(k+1)(x1, . . . , xk+1, Xk+2, . . . , Xn),(21)

∂xn−1
Φ(n−1)(x1, . . . , xn−1, Xn) = xn, (22)

for k = 1, . . . , n− 2.

Remark 4. As in Remark 3, choosing Φ(i) = xiXi+1 in (20)-(22) generates the
identity map.

2.2. First order volume preserving mappings. In this subsection, we focus
on the construction of first-order volume preserving integrators for divergence free
differential equations using (19) and (20)–(22). As already mentioned in Section 1.1,
these conditions need be associated to a specific representation of the given vector
field (1) to give meaningful numerical maps. We will identify the representation of
the vector field a(x) in (1) naturally associated to (20)-(22), as

ẋ1 =∂x2F
(1)(x1, x2, . . . , xn),

ẋ2 =− ∂x1F
(1)(x1, x2, . . . , xn) + ∂x3F

(2)(x1, x2, . . . , xn),

...

ẋn−1 =− ∂xn−2F
(n−2)(x1, x2, . . . , xn) + ∂xnF

(n−1)(x1, x2, . . . , xn),

ẋn =− ∂xn−1F
(n−1)(x1, x2, . . . , xn).

(23)

The above representation of a divergence free vector field was proposed by Feng
and his co-authors [6, 5, 16], and is just one of the many possible. A priori, it is
not immediate to determine which representation is most natural for a given couple
of differential forms (ν, ν̃) and for this reason, it is illustrative to describe a general
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procedure. For every divergence free field a = (a1, a2, . . . , an)
T , there corresponds

an anti-symmetric tensor field B = (bi,j)i,j=1,...,n, bi,j = −bj,i, such that

ai =

n∑
j=1

∂bi,j
∂xj

, i = 1, . . . , n.

Now, (1) becomes

ẋi =
n∑

j=1

∂bi,j
∂xj

, bi,j = −bj,i, i = 1, . . . , n. (24)

The matrix B can be split into skew-symmetric sub-matrices,

B=

⎛
⎜⎜⎜⎜⎝

0 b1,2 0 . . . 0
−b1,2 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0 0 b1,3 . . . 0
0 0 0 . . . 0

−b1,3 0 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠+ . . . (25)

= B1,2 +B1,3 + · · ·+Bn−1,n,

which are not uniquely determined (there are n(n−1)/2 such matrices for a system
of dimension n).2 Feng and Shang [5] proposed Weyl’s normalization [20], with

b1,2 =

∫ x2

0

a1(x1, s2, x3, . . . , xn)ds2,

bk,k+1 =

∫ xk+1

0

(ak +
∂bk−1,k

∂xk−1
)(x1, . . . , xk, sk+1, xk+2, . . . , xn)dsk+1,

2 ≤ k ≤ n− 2,

bn−1,n =

∫ xn

0

(an−1 +
∂bn−2,n−1

∂xn−2
)(x1, . . . , xn−1, sn)dsn

−
∫ xn−1

0

an(x1, . . . , xn−2, sn−1, 0)dsn−1,

and all the other elements bi,j = 0. Thus, the divergence free differential equation
can be written as

ẋ1 =
∂b1,2
∂x2

,

ẋ2 = −∂b1,2
∂x1

+
∂b2,3
∂x3

,

...

ẋn−1 = −∂bn−2,n−1

∂xn−2
+

∂bn−1,n

∂xn
,

ẋn = −∂bn−1,n

∂xn−1
.

Setting F (1) = b1,2, F
(2) = b2,3, . . . , F

(n−1) = bn−1,n, we recover (23).

2McLachlan and Quispel [12] gave another way to construct tensor field in Appendix A, page

429-430.
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Theorem 2.2. Given (23), the (n− 2) generating form (19) generates a canonical
transformation f : (x1, . . . , xn) �→ (X1, . . . , Xn). Further, the choice

Φ(r)(x1, . . . , xr, Xr+1, . . . , Xn) = xrXr+1 +ΔtF (r)(x1, . . . , xr, Xr+1, . . . , Xn) (26)

yields the first order volume preserving method for (23),

X1 = x1 +Δt∂X2F
(1)(x1, X2, . . . , Xn),

X2 = x2 −Δt∂x1F
(1)(x1, X2, . . . , Xn) + Δt∂X3F

(2)(x1, x2, X3, . . . , Xn),

...

Xn−1 = xn−1 −Δt∂xn−2F
(n−2)(x1, . . . , xn−2, Xn−1, Xn)

+ Δt∂XnF
(n−1)(x1, . . . , xn−1, Xn),

Xn = xn −Δt∂xn−1
F (n−1)(x1, . . . , xn−1, Xn),

where Δt is the time step of integration.

Proof. The choice of functions (26) obviously satisfies (20)–(22), which give directly
the above mentioned numerical method. Details about how the functions Φ(r) are
derived from (20)–(22) can be found in Appendix B.

In other words, it is the generating form that dictates the normalization of the
divergence free vector field. Thus, a normalization of the type

ẋ1 = ∂xn
F (1)(x1, x2, . . . , xn),

ẋ2 = ∂xnF
(2)(x1, x2, . . . , xn),

...

ẋn−1 = ∂xnF
(n−1)(x1, x2, . . . , xn),

ẋn = −
n−1∑
i=1

∂xi
F (i)(x1, x2, . . . , xn),

does not fit in (20)–(22).

Remark 5. The method of Theorem 2.2 is the n-variables equivalent of the (123,
231) A-D case in Table 2, corresponds to ν = (−1)n−1xndx1 ∧ · · · ∧ dxn−1, ν̃ =
x1dx2∧· · ·∧dxn, and is associated to the Weyl normalization (23). The other cases
in (11) can be obtained by cyclic permutations of the indices and are the ν = ν̃
cases that extend to n-dimensions in a straightforward manner.

As explained earlier, this gives a partial understanding of the connection between
volume preserving generating forms and numerical methods. For instance, in the
n = 3 case, for the table corresponding to (123, 231), there are still three cases,
A-C, B-C, B-D for which the connection between the vector field and generating
forms is not yet well understood and currently under investigation [21].

The result of the above theorem is not new insofar numerical methods are con-
cerned. The volume preserving method in Theorem 2.2 can be interpreted as a
composition of n− 1 steps of a symplectic Euler applied to a splitting of the vector
field (23) in (n− 1) two-dimensional Hamiltonians due to Feng and Shang (see also
[8], pp. 230–231). The splitting of a divergence free vector field in two-dimensional
Hamiltonians, each approximated by a symplectic method, was one of the earli-
est techniques to obtain volume preserving integrators. See also [16] for a further
discussion about this method and an extensive discussion on local structures.
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3. Extension of Poincaré’s generating function. We review Poincaré’s gen-
erating function [19] for symplectic maps. Inspired by the form (29) of Poincaré’s
generating function and using linear transformations, we obtain more general gen-
erating 0-forms (functions) for the symplectic case. The generating 0-form has the
symplectic Euler-A method, the symplectic Euler-B method and the Implicit Mid-
point Rule method as special cases. Thereafter, we extend such generalization to
the case of volume forms.

3.1. Symplectic maps. Consider the vicinity of the point 0 in a 2n dimensional
manifold M with a canonical symplectic structure ω,

ω =

n∑
i=1

dxi ∧ dxn+i.

Introducing the skew-symmetric 2n× 2n matrix [ωij ] defined as

ωij =

⎧⎨
⎩

0 i = j ± n,
1 i = j − n,
−1 i = j + n,

one can rewrite the symplectic structure as

ω =
1

2

2n∑
i,j=1

ωijdxi ∧ dxj . (27)

Recall from Section 1 that a canonical transformation f : x ∈ V �→ X ∈ M,
where V is an open neighborhood of 0 in M, satisfies f∗ω = ω. Now, rewrite the
f∗ω − ω = 0 as

L =
1

2

2n∑
i,j=1

ωij [dXi ∧ dXj − dxi ∧ dxj ] = 0. (28)

There exists a 1-form φx(f) such that dφx(f) = L, where

φx(f) =

2n∑
i,j=1

ωij(Xi − xi)d[
1

2
(Xj + xj)]. (29)

Since dφx(f) = L = 0, there is an uniquely determined function Sx(f) : V −→ R
such that Sx(f)(0) = 0 and dSx(f) = φx(f).

Definition 3.1. [19]. Given φx(f) as in (29), the function Sx(f) such that dSx =
φx(f), is called Poincaré’s generating function for f , relative to the canonical coor-
dinate system x.

We illustrate the two dimensional case in detail, the generalization to the n-
dimensional case is straightforward. To use the standard symplectic notation, we
set p = x1, q = x2, P = X1 and Q = X2. Assume that the map f : (q, p) �→ (Q,P )
is a canonical transformation, that is dP ∧ dQ = dp ∧ dq. Then, (29) becomes

φ(p,q)(f) = (P − p)d[
1

2
(Q+ q)]− (Q− q)d[

1

2
(P + p)].
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Set

P̃ =P − p,

Q̃ =
Q+ q

2
,

q̃ =−Q+ q,

p̃ =
P + p

2
,

(30)

then φ(p,q)(f) becomes

φ(p,q)(f) = P̃ dQ̃+ q̃dp̃.

This corresponds to the choice of primitives p̃dq̃ and −q̃dp̃ in Table 1, hence to
generating functions of type II. in the (̃ )-variables. Thus, there exists a function S
(the same as the Poincare’s generating function Sx of Definition 3.1 when considered
a function in the regular variables) such that

P̃ dQ̃+ q̃dp̃ = dS(P̃ , Q̃, p̃, q̃). (31)

From the left side of (31), we have dS(P̃ , Q̃, p̃, q̃) = ∂P̃SdP̃+∂Q̃SdQ̃+∂p̃Sdp̃+∂q̃Sdq̃.

By comparing both sides of (31), we can see that the function S depends only on p̃

and Q̃, and

P̃ =∂Q̃S(p̃, Q̃),

q̃ =∂p̃S(p̃, Q̃).
(32)

Easily, we obtain the relations

P − p =∂2S(
P + p

2
,
Q+ q

2
),

Q− q =− ∂1S(
P + p

2
,
Q+ q

2
).

(33)

Here ∂1 is the partial derivative with respect to the first variable p̃, while ∂2 is
the partial derivative with respect to the second variable Q̃. The above equations
(33) generate the identity map for S = 0. The relations (33) generate the well
known implicit midpoint rule method (IMR), which is a symplectic method. See
also [15, 8].

3.2. Generalization of Poincaré’s generating function for the symplectic
case. We observe that the Q̃ and q̃ in (30) are linear combinations of Q and q, and

P̃ and p̃ are linear combinations of P and p. We search for more general methods
by considering the linear transformation,

P̃ =α1P + α2p,

p̃ =γ1P + γ2p,

Q̃ =β1Q+ β2q,

q̃ =δ1Q+ δ2q,

(34)

where α1, α2, β1, β2, γ1, γ2, δ1, δ2 are some coefficients to be determined. We look
for coefficients such that

dP̃ ∧ dQ̃− dp̃ ∧ dq̃ = dP ∧ dQ− dp ∧ dq. (35)

Thus,

dP̃ ∧ dQ̃− dp̃ ∧ dq̃ = 0,
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implies

dP ∧ dQ− dp ∧ dq = 0. (36)

The transformation from the original variables to the (̃ )-variables need not be
canonical. Thus (35) is a simplifying condition, as it allows us to generate a sym-

plectic map (p̃, q̃) �→ (P̃ , Q̃) with any of the known techniques for the generating
functions in Table 1. For consistency with the approach in the previous subsec-
tion (cfr. also Remark 3), we consider a map obeying (31) (symplectic generating
functions type II.)

The condition for the Poincaré generating function to be consistent with the
identity map was that P̃ , q̃ → 0 when (P,Q) → (p, q). In our setting, this translates
to

α1 = −α2 = θ,

δ1 = −δ2 = η,

where θ and η are some constants. Hence, we have

dP̃ ∧ dQ̃− dp̃ ∧ dq̃ = (θβ1 − γ1η)dP ∧ dQ+ (−θβ1 − ηγ2)dp ∧ dQ

+ (θβ2 + ηγ1)dP ∧ dq + (−θβ2 + ηγ2)dp ∧ dq

= dP ∧ dQ− dp ∧ dq.

Comparing both sides of the above equations, we deduce⎛
⎜⎜⎝

θ 0 −η 0
0 −θ 0 η
0 θ η 0
θ 0 0 η

⎞
⎟⎟⎠

⎛
⎜⎜⎝

β1

β2

γ1
γ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ .

Both the matrix and the augmented matrix of the above linear system have rank
3, therefore there exists a one-parameter family of solutions to the above linear
equation. Setting γ2 = −ε, we have⎛

⎜⎜⎝
P̃

Q̃
p̃
q̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

θ 0 −θ 0
0 ηε

θ 0 1− ηε
θ

ε− 1
η 0 −ε 0

0 η 0 −η

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P
Q
p
q

⎞
⎟⎟⎠ . (37)

By changing p̃ �→ −p̃, (32) becomes

P̃ = ∂Q̃S(p̃, Q̃),

q̃ = −∂p̃S(p̃, Q̃).

In conclusion, we obtain the following family of symplectic methods.

Theorem 3.2. For any θ, η = 0 and any ε, the scheme

P =p+
1

θ
∂2S((

1

η
− ε)P + εp,

ηε

θ
Q+

1− ηε

θ
q),

Q =q − 1

η
∂1S((

1

η
− ε)P + εp,

ηε

θ
Q+

1− ηε

θ
q).

(38)

generates a canonical transformation.

In the context of numerical integration, the constants θ, η in (38) should be close
to 1 to have consistent numerical methods.

There are some special cases which are very interesting to study.
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Corollary 1 (Two-parameter-family of symplectic Euler methods). The symplectic
schemes

P = p+
1

θ
∂2S(

1

η
P,

1

θ
q), Q = q − 1

η
∂1S(

1

η
P,

1

θ
q) (39)

P = p+
1

θ
∂2S(

1

η
p,

1

θ
Q), Q = q − 1

η
∂1S(

1

η
p,

1

θ
Q). (40)

have the symplectic Euler B and A methods, respectively, as the special case.

Proof. In both cases, let S = −ΔtH, where H is the Hamiltonian function of the
system, and let θ = η = 1. When setting ε = 0 in (38), we recover the symplectic
Euler B, while setting ε = 1

η , we obtain the symplectic Euler A.

Corollary 2 (Symplectic theta method). For any choice of ϑ, the scheme

P =p+ ∂2S(ϑP + (1− ϑ)p, (1− ϑ)Q+ ϑq),

Q =q − ∂1S(ϑP + (1− ϑ)p, (1− ϑ)Q+ ϑq),
(41)

is symplectic. Moreover, letting S = −ΔtH, the choices ϑ = 1
2 , 1, 0 yield the IMR,

the symplectic Euler A and B respectively.

Proof. The proof follows immediately from (38): choosing θ = η = 1 and ε to
1− ϑ

In passing, we mention that a particular case of the above symplectic theta
method (41) for separable Hamiltonian systems was derived in [10] using the frame-
work of discrete Lagrangians.

3.3. Extension to volume preserving mappings. Following the procedure of
last subsection, we use the technique of changing variables by linear transforma-

tions. Let M =

(
A B
C D

)
∈ GL(2n), where A,B,C,D some arbitrary n × n

matrices. Consider change of variables (x1, x2, . . . , xn) �→ (x̃1, x̃2, . . . , x̃n) and

(X1, X2, . . . , Xn) �→ (X̃1, X̃2, . . . X̃n) given by(
X̃
x̃

)
= M

(
X
x

)
(42)

where X = (X1, X2, . . . , Xn)
T , x = (x1, x2, . . . , xn)

T , X̃ = (X̃1, X̃2, . . . X̃n)
T and

x̃ = (x̃1, x̃2, . . . , x̃n)
T . Such linear variable transformations have been used at great

length by Feng and Shang, see [17]. In their derivation of the methods, they do not
use differential forms, but the equivalent condition (5) directly. The generic case is
very hard to tackle with, because of the large number of unknowns, hence simplifying
conditions are needed. Shang [17] requires a Hadamard matrix condition. Our
simplifying condition is the equivalent of (35), as explained in the lemma below.

Lemma 3.3 (Simplifying condition). Assume that the map (x̃1, x̃2, . . . , x̃n) �→
(X̃1, X̃2, . . . X̃n) satisfies

∧n X̃− ∧nx̃ = 0 (43)

where ∧nX = dX1 ∧ dX2 ∧ · · · ∧ dXn. If

∧n X̃− ∧nx̃ = ∧nX− ∧nx, (44)

then
∧n X− ∧nx = 0. (45)

i.e. the map f : x �→ X is volume preserving.
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Because of Remark 5, it is sufficient to analyze the n dimensional case with

ν = (−1)n−1xndx1 ∧ · · · ∧ dxn−1, ν̃ = x1dx2 ∧ · · · ∧ dxn, (46)

associated to the Weyl normalization (23). We commence with the n = 3 case. The
following negative result holds.

Theorem 3.4. Let n = 3. Consider an implicitly defined transformation (42)
with A,B,C,D diagonal matrices. There is no nonzero choice of coefficients in
the matrices that is consistent with the identity map and satisfies the simplifying
conditions (43).

Proof. We write the implicitly defined transformation as⎛
⎜⎜⎜⎜⎜⎜⎝

X̃1

X̃2

X̃3

x̃1

x̃2

x̃3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 0 0 β1 0 0
0 α2 0 0 β2 0
0 0 α3 0 0 β3

γ1 0 0 δ1 0 0
0 γ2 0 0 δ2 0
0 0 γ3 0 0 δ3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (47)

and consider (46) in the (̃ )-variables, for which solutions are known, see Theo-
rem 2.2. Without loss of generality, we can assume (the same principle as for the
symplectic case),

α1 = 1, β1 = −1,

γ3 = 1, δ3 = −1.
(48)

The simplifying conditions (43) yield a set of 8 quadratic equations in 8 unknowns.
It can be shown by direct computation that the nonzero solution are not compatible
with (48).

Lemma 3.5. Let n = 3 and assume that the transformation matrix M in (42) has
the block diagonal form

M =

(
Δ1 0
0 Δ2

)
.

(First class). The following choices of Δi, i = 1, 2,⎛
⎝ 1

θi
θi

1

⎞
⎠,
⎛
⎝ 0 1

θi
0

0 0 θi
1 0 0

⎞
⎠,
⎛
⎝ 0 0 1

θi
θi 0 0
0 1 0

⎞
⎠,
⎛
⎝ 0 0 1

θi
0 −θi 0
1 0 0

⎞
⎠,
⎛
⎝ 0 1

θi
0

−θi 0 0
0 0 1

⎞
⎠

(θi = 0), obey the simplifying condition (44), hence yield volume preserving methods.
Similarly, if M has the form

M =

(
0 Δ3

Δ4 0

)
,

(Second class), the choices⎛
⎝−1

θi
θi

1

⎞
⎠,
⎛
⎝ 0 1

θi
0

0 0 −θi
1 0 0

⎞
⎠,
⎛
⎝ 0 0 1

θi−θi 0 0
0 1 0

⎞
⎠,
⎛
⎝ 0 0 1

θi
0 θi 0
1 0 0

⎞
⎠,
⎛
⎝ 0 1

θi
0

θi 0 0
0 0 1

⎞
⎠

(θi = 0), also obey the simplifying conditions (44) and yield canonical (volume
preserving) transformations.
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Proof. For the case of First class, the form of Δ1 implies

X̃1 = 1
θ1
X1,

X̃2 = θ1X2,

X̃3 = X3,

X̃1 = 1
θ1
X2,

X̃2 = θ1X3,

X̃3 = X1,

X̃1 = 1
θ1
X3,

X̃2 = θ1X1,

X̃3 = X2,

X̃1 = 1
θ1
X3,

X̃2 = −θ1X2,

X̃3 = X1,

X̃1 = 1
θ1
X2,

X̃2 = −θ1X1,

X̃3 = X3,

and it is easily verified that dX̃1 ∧ dX̃2 ∧ dX̃3 = dX1 ∧ dX2 ∧ dX3. Similarly, the
forms of Δ2 imply that dx̃1∧dx̃2∧dx̃3 = dx1∧dx2∧dx3. Obviously, (44) is satisfied
by matrices of the First class.

With the same procedure, we can easily see that the forms of Δ3 imply dX̃1 ∧
dX̃2 ∧ dX̃3 = −dx1 ∧ dx2 ∧ dx3 and the forms of Δ4 imply dx̃1 ∧ dx̃2 ∧ dx̃3 =
dX1 ∧ dX2 ∧ dX3, and (44) is also satisfied by matrices of Second class.

The following theorem holds.

Theorem 3.6. Given the divergence free differential equation

ẋ1 = ∂x2F
(1)(x1, x2, x3),

ẋ2 = −∂x1F
(1)(x1, x2, x3) + ∂x3F

(2)(x1, x2, x3),

ẋ3 = −∂x2F
(2)(x1, x2, x3),

the method

X1 = x1 +
Δt

θ2
∂x2F

(1)(
1

θ1
X1, θ2x2,

1

θ2
x3),

X2 = x2 − Δt

θ2
∂X1

F (1)(
1

θ1
X1, θ2x2,

1

θ2
x3) +

Δt

θ1
∂x3

F (2)(
1

θ1
X1, θ1X2,

1

θ2
x3),

X3 = x3 − Δt

θ1
∂X2

F (2)(
1

θ1
X1, θ1X2,

1

θ2
x3),

is volume preserving. Moreover, if θ1, θ2 = 1+O(Δt), the method has order at least
one.

Proof. In order to obtain the volume preserving numerical schemes, we choose the
matrix M as the First class as

Δ1 =

⎛
⎝ 1

θ1
θ1

1

⎞
⎠ , Δ2 =

⎛
⎝ 1

θ2
1
θ2

⎞
⎠ .

Then, (42) implies,

X̃1 =
1

θ1
X1, x̃1 = x1, (49)

X̃2 = θ1X2, x̃2 = θ2x2,

X̃3 = X3, x̃3 =
1

θ2
x3.

Because of Remark 5, we have the generating one-form

λ = B(X̃1, x̃2, x̃3)dx̃3 + C(X̃1, X̃2, x̃3)dX̃1. (50)

(case (231,123) B-C, see Table 2, or [11] ). Theorem 2.2 holds in the (̃ )-variables.
Thus the first part of the statement follows immediately by substituting (49) in
place of the (̃ )-variables.

For the order statement, note that for θ1 = θ2 = 1 we recover precisely the
adjoint method of Theorem 2.2 for R3 (case (123,231) A-D), which is a composition



1244 HUIYAN XUE AND ANTONELLA ZANNA

of symplectic Euler steps and has order one. Clearly, as long as θi = 1 + O(Δt),
i = 1, 2, the order of the method (49) is at least one.

For the Rn case, the matrix M has similar structure as the three dimensional
case and similar techniques can be used to obtain the generating forms and the
numerical schemes. From Lemma 3.5 and its proof, we see that there can be up to
2(n − 2) coefficients for each of the two classes. Different ways of choosing those
coefficients and matrix forms gives us different M ’s. For instance, if we choose M
in the first class, with

Δ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
θ1

θ1
1

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

, Δ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
θ2

1
θ2

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

then we can solve the divergence free differential equations (23) by the first order
volume preserving scheme

X1 = x1 +
Δt

θ2
∂x2F

(1)(
X1

θ1
, θ2x2,

x3

θ2
, x4, . . . , xn),

X2 = x2 − Δt

θ2
∂X1F

(1)(
X1

θ1
, θ2x2,

x3

θ2
, x4, . . . , xn)

+
Δt

θ1
∂x3F

(2)(
X1

θ1
, θ1X2,

x3

θ2
, x4, . . . , xn),

X3 = x3 − Δt

θ1
∂X2F

(2)(
X1

θ1
, θ1X2,

x3

θ2
, x4, . . . , xn)

+ Δt∂x4
F (3)(

X1

θ1
, θ1X2, X3, x4, . . . , xn),

X4 = x4 −Δt∂X3
F (3)(

X1

θ1
, θ1X2, X3, x4, . . . , xn)

+ Δt∂x5F
(4)(

X1

θ1
, θ1X2, X3, X4, . . . , xn),

...

Xn−1 = xn−1 −Δt∂Xn−2F
(n−2)(

X1

θ1
, θ1X2, X3 . . . , Xn−2, xn−1, xn)

+ Δt∂xnF
(n−1)(

X1

θ1
, θ1X2, X3, . . . , Xn−1, xn),

Xn = xn −Δt∂Xn−1
F (n−1)(

X1

θ1
, θ1X2, X3, . . . , Xn−1, xn),

where Δt is time step and θ1, θ2 = 1 + O(Δt). In general, we can choose any two
n× n matrices

Δ1 =

⎛
⎜⎜⎜⎜⎝

θ1
θ2

. . .
θn−1

1

⎞
⎟⎟⎟⎟⎠ , Δ2 =

⎛
⎜⎜⎜⎜⎝

1
η1

η2
. . .

ηn−1

⎞
⎟⎟⎟⎟⎠
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subject to
∏n−1

i=1 θi = 1 and
∏n−1

i=1 ηi = 1. For the divergence-free differential
equation (23), we have a first order volume preserving scheme

X1 = x1 +
1

η1
Δt∂x2F

(1)(θ1X1, η1x2, . . . , ηn−2xn−1, ηn−1xn),

X2 = x2 − 1

η1
Δt∂X1F

(1)(θ1X1, η1x2, . . . , ηn−2xn−1, ηn−1xn)

+
θ1
η1η2

Δt∂x3
F (2)(θ1X1, θ2X2, η2x3 . . . , ηn−2xn−1, ηn−1xn),

...

Xn−1 = xn−1− ηn−1Δt

θn−2θn−1
∂Xn−2F

(n−2)(θ1X1,. . . ,θn−2Xn−2,ηn−2xn−1,ηn−1xn)

+
1

θn−1
Δt∂xn

F (n−1)(θ1X1, θ2X2, . . . , θn−1Xn−1, ηn−1xn),

Xn = xn − 1

θn−1
Δt∂Xn−1F

(n−1)(θ1X1, θ2X2, . . . , θn−1Xn−1, ηn−1xn).

As above, we require θi = 1 +O(Δt) and ηi = 1 +O(Δt).

4. Conclusion. In this paper, we have presented a study of the generating function
approach for symplectic and volume preserving mappings. Starting from [11], we
have derived some classes of first order volume preserving methods through the
differential forms assuming that the transformations are consistent with the identity
map, recovering an approach already proposed by K. Feng using a decomposition
in 2D Hamiltonians and symplectic methods.

We have then considered a generalization of Poincaré generating functions which
generate IMR in the symplectic case. It is well known that the theta-method
(weighted method)

yn+1 = yn +Δtf((1− ϑ)yn + ϑyn+1),

is symplectic if and only if ϑ = 1
2 , as it coincides with the IMR [7]. In this paper,

by extending Weinstein’s definition [19] of Poincaré’s generating function, we have
obtained a symplectic generalization,

pn+1 = pn +Δtf1(ϑpn+1 + (1− ϑ)pn, (1− ϑ)qn+1 + ϑqn)

qn+1 = qn +Δtf2(ϑpn+1 + (1− ϑ)pn, (1− ϑ)qn+1 + ϑqn)

where y = (p,q)T and f = (f1, f2)
T . The symplectic theta method above is a

(symplectic) partitioned Runge–Kutta method, and has the IMR, the symplectic
Euler-A and B methods as special cases. We have adapted the approach to the
volume preserving case, and, under some simplifying assumptions, we have found
some new linear transformations which generate volume preserving methods. The
general case is hard to investigate, because of the number of free parameters in-
volved, and is far from being understood. In the future, we plan to investigate the
other choices of differential forms and their connections with other classes of meth-
ods (like generating functions of type I. and discrete Lagrangians in the context of
symplectic methods).

The methods presented in this paper are first order methods. There are several
ways to obtain higher order methods. Besides the standard construction of com-
position by the adjoint method, it is possible to construct higher order methods
using for instance the method of modified vector fields together with the conditions
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(20)-(22), or the Hamilton–Jacobi differential equation. It is not obvious what are
the Hamilton–Jacobi equations for these volume preserving forms. Although Shang
[17] derived the Hamilton–Jacobi equation for his special class of volume preserving
methods, it is not clear how these are related with the approach of differential forms
presented here. We plan to investigate this issue in the future.

Acknowledgments. H.X. would like to thank J. Meiss, who introduced her to
[11]. Both authors thank the IFS of Massey University for the hospitality received
during their visits in Palmerston North in 2011, in particular Robert McLachlan for
useful discussion and comments.

Appendix A. Elements of differential calculus. For convenience, we recall the
definitions of differential form, wedge product and exterior derivative, and describe
some of their most important properties.

Definition A.1 (Differential form). Given a smooth manifold M, a differential
form ω of order k on M is a field of alternating k-linear maps. Denote TxM the
tangent space to M at x, then define

ωx : TxM× · · · × TxM �→ R

such that for all permutations σ of {1, . . . , k}
∀(u1, . . . , uk) ∈ (TxM)k, ωx(uσ(1), . . . , uσ(k)) = sgn(σ)ωx(u1, . . . , uk)

where sgn(σ) denotes the sign of σ and ωx is linear with respect to each augment
ui, i = 1, . . . , k.

Definition A.2 (Wedge (or exterior) product). The wedge product of a k-form
ω and a l-form η on M is a (k + l)-form such that for all x ∈ M and for all
(u1, . . . , uk+l) ∈ (TxM)k+l,

(ω ∧ η)x(u1, . . . , uk+l) =
∑

σ∈Sk,l

sgn(σ)ωx(uσ(1), . . . , uσ(k)) · ηx(uσ(k+1), . . . , uσ(k+l)),

where the Sk,l is the subset of permutations σ of {1, . . . , k + l}, such that σ(1) <
· · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

In particular, ω ∧ η = (−1)klη ∧ ω.

Definition A.3 (Pullback). If f denotes a C1 map from a smooth manifold M
onto a smooth manifold N , and ω a differential form of order k on N , then the
pullback of ω by f at x is defined as

∀(u1, . . . , uk) ∈ (TxM)k, (f∗ω)x(u1, . . . , uk) = ωf(x)(dfx(u1), . . . , dfx(uk)),

where dfx is the usual differential of f at x.

Definition A.4 (Exterior derivative). The exterior derivative d is unique mapping
of a k-form ω to k + 1-form dω on M such that:

1. If ω is a 0-form (i.e. ω = f , where f is a function), then the one-form df is
the differential of f .

2. d is linear, that is, d(c1ω + c2η) = c1dω + c2dη.
3. If ω is k-form and η is l-form, d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
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If ω is given in canonical coordinates as ω =
∑

i1<···<ik
ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

then

dω =
∑
j

∑
i1<···<ik

∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

The exterior derivative is natural with respect to the pullback, d(f∗ω) = f∗dω.
Moreover, for any k-form ω, it is true that

d2ω = d(dω) = 0.

Definition A.5 (Exact form and closed form). A differential k-form ω is exact if
there exists a (k−1)-form ν such that ω = dν. Any such ν is also called a primitive
(or potential form) of ω. A differential form ω is closed if dω = 0.

Thus, closed forms are the kernel of d, while exact forms are the image of d. Since
d2 = 0, any exact form is also closed (Poincaré lemma). Further, if M is simply
connected, any closed form is also exact. In particular, if M = Rn, any closed form
is exact.

The fundamental theorem of calculus generalizes to differential forms as Stoke’s
theorem: ∫

S
dω =

∫
∂S

ω,

where ∂S is the oriented boundary of the oriented domain S ⊆ M.

Appendix B. Proof of Theorem 2.2.

Proof. Assume that the new variables X1, X2, . . . , Xn are close enough to the old
ones x1, x2, . . . , xn (we consider transformations which can generate the identity
map, see Remark 1), that is,

∂X1

∂x1
,
∂X2

∂x2
, . . . ,

∂Xn

∂xn
= 1 +O(Δt), (51)

for sufficiently small Δt. Similarly, assume for the inverse map, ∂x1

∂X1
, ∂x2

∂X2
, . . . , ∂xn

∂Xn
=

1 +O(Δt).
Now, the first equation of (20) becomes

∂x1X2Φ
(1) = 1 +O(Δt).

We integrate both sides with respect to x1 and X2. Then, there exists an order
O(Δt) function ψ(1) such that

Φ(1) = x1X2 + ψ(1)(x1, X2, . . . , Xn).

From the second equation of (20)-(22), we have

X2 + ∂x1
ψ(1)(x1, X2, . . . , Xn) = ∂X3

Φ(2)(x1, x2, X3, . . . , Xn).

Integrating both sides with respect to X3, and by noticing that Φ(2) depends on the
variables x1, x2, X3, . . . , Xn, we obtain

Φ(2) = x2X3 +

∫
(∂x1ψ

(1)(x1, x2, X3, . . . , Xn) +O(Δt))dX3,

= x2X3 + ψ(2)(x1, x2, X3, . . . , Xn),

where

ψ(2)(x1, x2, X3, . . . , Xn) =

∫
(∂x1ψ

(1)(x1, x2, X3, . . . , Xn) +O(Δt))dX3.
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Similarly, we can assume the functions ψ(3), . . . , ψ(n−1) such that

Φ(3) = x3X4 + ψ(3)(x1, x2, x3, X4, . . . , Xn),

. . .

Φ(n−2) = xn−2Xn−1 + ψ(n−2)(x1, . . . , xn−2, Xn−1, Xn),

Φ(n−1) = xn−1Xn + ψ(n−1)(x1, . . . , xn−1, Xn).

Substituting the above equations into (20)-(22), we obtain the new variables after
time Δt

X1 = x1 + ∂X2ψ
(1)(x1, X2, . . . , Xn),

X2 = x2 − ∂x1
ψ(1)(x1, X2, . . . , Xn) + ∂X3

ψ(2)(x1, x2, X3, . . . , Xn),

. . .

Xn−1 = xn−1 − ∂xn−2ψ
(n−2)(x1, . . . , xn−2, Xn−1, Xn)

+ ∂Xn
ψ(n−1)(x1, . . . , xn−1, Xn),

Xn = xn − ∂xn−1ψ
(n−1)(x1, . . . , xn−1, Xn).

By comparing the above equations with (23), we immediately see that by the choice
ψ(i) = ΔtF (i), i = 1, . . . , n− 1, we obtain a volume preserving numerical scheme of
(23) of order one.
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