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Abstract 

Background: Monogenic diabetes (Maturity onset diabetes in the young, MODY) are 

autosomal dominantly inherited diabetes syndromes characterized by diabetes due to 

beta cell dysfunction, with typical onset of diabetes before 25 years of age. Two 

MODY subtypes, HNF1B-MODY and CEL-MODY, have been associated with 

exocrine pancreatic dysfunction. Assessment of exocrine pancreatic function is a 

challenge due to few available tests with acceptable feasibility and diagnostic value.  

Aims: In the present study we wanted to evaluate two novel methods for measuring 

pancreatic exocrine function; a rapid endoscopic secretin test and a dynamic magnetic 

resonance imaging (MRI) based protocol. We further wanted to use these two 

methods to assess the degree and nature of exocrine pancreatic dysfunction in CEL-

MODY and HNF1B-MODY. 

Materials and methods: We recruited 52 consecutive patients with suspected chronic 

pancreatitis, 23 patients with CEL-MODY and 8 patients with HNF1B-MODY. 

Suspected chronic pancreatitis patients underwent the endoscopic procedure only, 

while MODY patients were offered endoscopy and MRI procedure. In addition, 25 

healthy controls underwent endoscopy and 20 healthy controls underwent the MRI 

protocol. In patients with suspected chronic pancreatitis, a renowned multimodal 

clinical score was used as reference standard. In MODY patients results from the 

examinations were compared to nutritional status as achieved from patient records 

before any treatment with pancreatic enzyme supplements. The endoscopic procedure 

started 30 minutes after secretin stimulation, with 15 minutes collection of duodenal 

juice. Duodenal juice was analyzed for bicarbonate in chronic pancreatitis patients, 

and for bicarbonate and digestive enzyme activities in MODY-patients and healthy 

controls. The MRI protocol consisted of anatomical imaging, followed by dynamic 

imaging before and after secretin stimulation. The dynamic series consisted of 

repeated duodenal fluid volume quantification with magnetic resonance 
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cholangiopancreaticography (MRCP) and measuring apparent diffusion coefficient 

(ADC) in pancreatic tissue using diffusion-weighted imaging. 

Results: Using bicarbonate as diagnostic marker, the rapid endoscopic secretin test 

had acceptable diagnostic value in detecting chronic pancreatitis, and performed 

significantly better than fecal elastase 1. In healthy controls, increase in secretin 

stimulated duodenal fluid volumes correlated well with changes in ADC after secretin 

stimulation. In CEL-MODY patients we found moderately low bicarbonate levels and 

reduced pancreatic fluid output, and severely reduced digestive enzyme activity levels 

compared to controls. With exception from low levels of vitamin E, CEL-MODY 

patients revealed no signs of malnutrition. In HNF1B-MODY patients we found 

moderately reduced bicarbonate levels, reduced pancreatic fluid output and 

moderately reduced levels of digestive enzyme activities compared to controls. 

Pancreatic gland volumes were small in all but one HNF1B-MODY patients, but 

pancreatic volume output per gland size was increased. 

Conclusions: Both rapid endoscopic secretin test and the MRI protocol are feasible 

and well tolerated examination modalities reflecting pancreatic exocrine function. 

CEL-MODY patients have moderately reduced ductal and severely reduced acinar 

pancreatic function, but compensated nutritional status. HNF1B-MODY patients have 

moderately reduced ductal and acinar pancreatic function, partly compensated by 

hypersecretion from a hypoplastic pancreas. 
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1. Introduction 

1.1 The normal pancreas 

1.1.1 Structure and function 

The pancreas is located retroperitoneally, deep into the upper abdomen. The location 

of the pancreas, its shared blood supply with other organs and its poor tolerance to 

manipulation make it one of the most unavailable abdominal organs for diagnostic 

and interventional procedures (figure 1). 

 

Figure 1. Classic illustration of the pancreas, showing its localisation and 
relation to other organs. The deep localisation of the pancreas in the 
abdomen is one of the reasons for its unavailability. Reprinted from (1) with 
permission from bartleby.com. 

 

The pancreas is a mixed exocrine and endocrine organ. The exocrine compartment 

comprises >95 % of the gland, and consists of acinar cells, secreting enzymes, and 

ductal cells secreting a bicarbonate rich fluid. These are constitutes of pancreatic 
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juice, that is secreted to the duodenum and takes part in digestion of nutrients. The 

endocrine compartment consists of the islets of Langerhans, dispersed through the 

gland and produces hormones that primarily regulate glucose uptake in cells. This 

compartmentalising of the organ into two very different functional units is puzzling 

(2), but in some way both compartments take part in the same process, namely 

achievement and utilisation of nutrients.   

 

The exocrine pancreas 
The functional unit in the exocrine pancreas is the acinus with its draining ductule. 

The acini form berry-like structures connected to the ductuli, which comprise a 

branching drainage system to the main pancreatic duct, leading to the duodenum. The 

acini constitute 80 % of the pancreas (3), while ducts constitute 5 % (4).  

Acinar compartment 
The acinar cell has the highest rate of protein synthesis and excretion in the human 

body (3, 5), which is reflected by a highly developed endoplasmatic reticulum system 

(5). The main role of the acinar cells is to synthesize and excrete digestive enzymes to 

the pancreatic juice; enzymes that play a significant role in the intraintestinal 

digestion of nutrients. The main classes of digestive enzymes from the pancreas are 

proteases, lipases, amylase and nucleases (summarized in table 1) (3, 6). Proteases are 

excreted as proenzymes (3). Trypsinogen is activated to trypsin through proteolysis by 

enteropeptidase (or enterokinase) in the duodenal brush border (7). The other 

proteases are in turn activated by trypsin (6). This cascade of protease activation from 

proenzymes ensures that there is no uncontrolled proteolysis inside the pancreas, and 

failures in this system result in premature activation of proteases which can cause 

autodigestion and pancreatitis (8). 
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Enzymes Cleavage site / Action Product 

Proteases   

   Endopeptidases   

        Trypsin Lysine and arginine. Activates 
other proteases 

Oligopeptides 

        Chymotrypsin Aliphatic amino acids Oligopeptides 

        Elastase Small amino acid residues Oligopeptides 

   Exopeptidases   

       Carboxypeptidase A Aromatic amino acids from C-
terminal end 

Aromatic amino acids 

       Carboxypeptidase B Arginine and lysine from C-
terminal end 

Arginine and lysine 

Lipases   

       Pancreatic triglyceride lipase Fatty acids at sn1 and sn3 of 
glycerides 

Fatty acids 

       Colipase Facilitates action of pancreatic 
triglyceride lipase 

 

       Carboxyl-ester lipase Glycerides, galactolipids, 
phospholipids, vitamin esters, 
cholesterol esters, ceramide 

Fatty acids 

       Phospholipase A2 Phospholipids in sn2 position Fatty acids 

Amylases   

       α-amylase Starch Glucose 

Nucleases   

       Deoxyribonuclease DNA Nucleic acids 

       Ribonuclease RNA Nucleic acids 

 

Table 1. Some of the major pancreatic acinar cell products and their action. Adapted from 
(3, 6). 

Ductal compartment 
Ductal cells deliver the gross of fluid, bicarbonate and electrolytes to the pancreatic 

juice (3). The ductal cells are unique in their ability to produce large amounts of fluid 
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with bicarbonate concentration >140 mmol/L, which is way above bicarbonate 

concentrations in fluids from other cells in the gastrointestinal tract (4). This is 

exploited in pancreatic function tests, measuring peak bicarbonate concentrations in 

duodenal juice after pancreas stimulation. 

Bicarbonate has an important role in neutralizing acidic chyme from the ventricle 

bringing it to near pH optimum for digestive enzymes and bile acids (9, 10). 

 

Regulation of pancreatic secretion 

Secretin 

Secretin was discovered by Bayliss and Starling in 1902 (11), being the first 

demonstration of a hormone effect (12). Secretin is a peptide hormone, secreted from 

enteroendocrine cells as a response to acidic chyme entering the duodenum. Other 

stimulants to secretin secretion are bile acids and fatty acids (13). Secretin stimulates 

fluid secretion from pancreatic duct cells by stimulating the secretin-receptor. This in 

turn increases cytosolic cyclic AMP, activating protein kinase A (14). Protein kinase 

A opens the cystic fibrosis transmembrane regulator channel (CFTR) (15). The ion 

fluxes through CFTR and other ion channels as response to secretin stimulation are 

complex, and not fully understood (3, 4, 16). Exogenous bolus secretin stimulation 

causes a rapid increase in fluid secretion from the pancreas to the duodenum (17). 

Bicarbonate concentration in the duodenal fluid after secretin stimulation increases 

more gradually, and reaches a peak plateau 20-30 minutes after a bolus of secretin 

(figure 2) (17, 18).   
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Figure 2: Changes in endoscopically collected duodenal juice after secretin 
bolus stimulation. Bicarbonate concentration reaches a peak plateau 20-30 
minutes after secretin bolus. Chloride concentration decreases reciprocally. 
Reprinted from (18) with permission from Elsevier Inc. 

 

 In addition to its effects on duct cells, secretin also has effects on other cell types 

(19). Acinar cells are stimulated by secretin to increase enzyme secretion (20), which 

can be demonstrated by increased enzyme output in pancreatic juice after secretin 

stimulation in man (21, 22). Secretin also has choleretic effects by stimulating 

cholangiocytes to secrete bicarbonate rich fluid into the bile (23), but secretin does 

probably not stimulate the gallbladder to contract (24, 25). 

Cholecystokinin 

Cholecystokinin is also a peptide hormone released from enteroendocrine cells (26). It 

is secreted as a response to food elements, particularly fat and amino acids (27). The 

effects of cholecystokinin on human acinar cells are thought to be mainly via vagal 

neurons, stimulating through acetylcholine (28), but cholecystokinin receptors have 

also been demonstrated on human acinar cells, suggesting direct stimulatory effects as 

well (29). Cholecystokinin induces release of pancreatic enzymes to the pancreatic 

juice through calcium-mediated signalling (28). As its name indicates, 
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cholecystokinin causes gallbladder contractions, but also has choleretic effects, and 

potentiates secretin induced pancreatic ductal secretion (26).  

Other hormones involved in pancreatic secretion 

Receptors activated by vasoactive intestinal peptide (VIP) and gastrin releasing 

peptide (GRP) are located on human acinar cells and stimulate exocytosis (3). Similar 

receptors are also found on ductal cells (13).   

The endocrine pancreas 

Islets of Langerhans 
The islets of Langerhans were described by Paul Langerhans, still a medical student, 

in 1869 (30). The cells in the islets secrete hormones regulating glucose homeostasis 

in the body. The islets of Langerhans are 100 to 200 μm in diameter (2), and 

constitute 2 % of total pancreas weight (31). They are spread throughout the gland, 

but are most abundant in the tail of the pancreas. The islets consist of four different 

types of hormone-producing cells, of which the insulin-producing beta cell is the most 

abundant, constituting about 50-60 % of the islet cells. In addition, there are alpha 

cells producing glucagon, pancreatic polypeptide (PP) producing cells and delta cells 

producing somatostatin (32). At least in mice, beta cells are evenly spread in all islets 

of Langerhans, but alpha cells are most abundant in the portions of the pancreas from 

the dorsal anlage (tail, body and superior part of the head), while PP-producing cells 

are most abundant in the part from the ventral anlage (inferior portion of the head, or 

duodenal pancreas) (33).  

The secretion of insulin from beta cells is primarily regulated by the glucose 

concentration in the blood, keeping the blood glucose levels within tight limits. There 

are, however, many other mechanisms modulating insulin secretion from the beta cell. 

Insulin causes uptake of glucose into liver, muscle and fat, and inhibits glucose 

production in the liver (31). Glucagon is secreted primarily as a response to 

hypoglycaemia, activating glycogenolysis and gluconeogenesis which in turn 

increases the blood glucose.  
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Almost all arterial blood supply to the pancreas is led via the islets of Langerhans, 

indicating an insulo-acinar port vein system, supported by many observations 

indicating that insular hormones regulate growth and function of the exocrine 

pancreatic tissue (34). 

The entero-insular axis 
There are many modulators of insulin secretion. The islets are innervated by both 

vagal and enteropancreatic fibres. In addition, hormones also modulate insulin 

secretion (34). There is an old observation that orally ingested glucose is associated 

with a much greater increase in insulin response than equimolar amounts of glucose 

given intravenously. This has been named the incretin effect. Two incretin hormones 

have been identified, namely glucose-dependent insulotropic polypeptide (GIP) and 

glucagon-like peptide 1 (GLP-1). Both of these hormones are secreted as a response 

to ingestion of food, especially food rich in carbohydrates and fat. Secretion of GIP 

seems more specifically to be induced by absorption of nutrients; hence secretion of 

this hormone may be reduced in malabsorption. GIP and GLP-1 both have effects on 

the beta cell by enhancing glucose-dependent insulin secretion. Both hormones induce 

beta cell proliferation, and inhibit beta cell apoptosis, in addition to many extra-

pancreatic effects (35). 

1.2 Clinical assessment of the exocrine pancreas 

1.2.1 Imaging 

Overview 
Imaging is one of the cornerstones in diagnosis of pancreas disease, especially in the 

evaluation of chronic pancreatitis, and the differentiation between focal pancreatitis 

and malignant tumour (36). Several imaging modalities have been used, reflecting the 

difficulty of reaching an exact diagnosis in some cases. Traditionally transabdominal 

ultrasound (US), computer tomography (CT) and endoscopic retrograde 
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cholangiography (ERCP) have been the modalities of choice. However, many new 

modalities have emerged, increasing the possibilities but also the complexity in 

imaging of the pancreas. The different imaging techniques, their indications, 

advantages and disadvantages are summarized in table 2.  

 Indications Advantages Disadvantages 

US First evaluation of 
suspected pancreatic 
disease 

Often very useful in 
children 

Useful in evaluating 
biliary tree 

No radiation 

Cheap 

Widely available 

 

 

Operator-dependent 

Visualization may be 
impaired due to 
abdominal fat or bowel 
gas 

Limited accuracy in 
detection of parenchymal 
pathology 

CT Most used modality in 
pancreas imaging in 
adults 

Diagnosis and staging of 
pancreatic cancer (may 
detect small masses 
early) 

Widely available 

Increasing resolution 

Detects calcifications 

Contrast-enhanced 
imaging reveals 
vascularity and perfusion 
properties of lesions 

Radiation 

Poor identification of 
ductal anomalies 

Limited sensitivity to 
early changes in chronic 
pancreatitis 

ERCP Allows cytology, stone 
extraction and 
procedures on the papilla 

Gold standard for 
detecting ductal 
anomalies 

Invasive. Significant risk 
for iatrogenic acute 
pancreatitis 

EUS Detection and staging of 
neoplasms 

Lymph node staging 

Detection and staging of 
chronic pancreatitis 

Sensitive to parenchymal 
changes 

Allows fine needle 
aspirations and core 
biopsies 

Allows contrast 
enhancement and 
elastography 

Invasive. Operator- 
dependent 

Limited availability 

Need for further 
evaluation of specificity 
of subtle changes 

MRI  

MRCP 

Evaluation of ducts 

Acute and chronic 
pancreatitis 

Diagnosis of neoplasms 

No radiation 

Visualization of ducts  

Early detection of 
chronic pancreatitis 

Cost 

Time consuming 
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 Indications Advantages Disadvantages 

S-MRCP Evaluation of ductal 
system 

Quantification of 
exocrine pancreatic 
function 

No radiation 

No contrast 

Excellent visualization of 
ducts 

Cost  

Time consuming 

Need for further 
validation and 
optimalisation 

DWI Evaluation of lesions and 
parenchymal properties 

Discriminates well 
between benign and 
malignant lesions 

Promising in evaluation 
of cystic lesions 

Promising, but further 
evaluation needed 

Intraductal 
pancreatic 
endoscopy, US 
and OCT 

 

Evaluation of intraductal 
and periductal lesions 

Promising with regard to 
diagnosis and staging 

Possibility to perform 
procedures and take 
biopsies 

Invasive. Not widely 
available 

Complications 

FDG-PET Early detection of 
pancreatic cancer 

Most sensitive modality 
in early pancreatic 
cancer 

Not very widely 
available 

Less sensitive to more 
advanced cancers 

Table 2. Imaging modalities. Abbreviations: US: Ultrasound; CT: Computerized 
tomography; ERCP: Endoscopic retrograde cholangiography; EUS: Endoscopic ultrasound; 
MRI: Magnetic resonance imaging; MRCP: Magnetic resonance 
cholangiopancreaticography; DWI: Diffusion weighted imaging; OCT: Optical coherence 
tomography; FDG-PET: 18Fluorodeoxyglucose positron emission tomography. Based on 
(37-40) 

 

Endoscopic ultrasound 
Endoscopic ultrasound (EUS) is particularly suitable for evaluating the pancreas, due 

to the organ’s proximity to the ventricle and duodenum, and the high image resolution 

of this method (40, 41). EUS also gives the opportunity of taking fine needle 

aspiration samples and core biopsies, doing elastography of the gland and to perform 

contrast enhanced imaging (41, 42). Many of the examinations needing EUS will 

probably be done by transabdominal US in the future, due to emerging advances in 

this modality (43). 
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Magnetic resonance imaging 
Magnetic resonance imaging (MRI) of the pancreas has an increasing role in pancreas 

diagnostics. Evaluation of parenchyma is best done with T1-weighted sequences due 

to high protein contents in the tissue (44). These sequences are also used to determine 

pancreatic volumes by MRI (45). Dixon techniques, determining the relative 

differences between resonance frequencies of fat and water (46, 47), can be used to 

determine fat to water ratios of the parenchyma, and are used to detect and quantify 

pancreatic lipomatosis (45, 48). 

In magnetic resonance cholangiopancreaticography (MRCP), T2 weighting and fat 

suppression causes water signal to brighten up. The water then becomes a contrast 

agent in water-containing compartments, causing the water filled pancreatobiliary tree 

to brighten up (44). This technique has made the invasive and potentially acute 

pancreatitis-provoking endoscopic retrograde cholangiopancreaticography (ERCP) 

almost obsolete as an imaging procedure, reserving ERCP to interventions in 

pancreatic disease (49-51). By administering secretin, increase of fluid pressure in the 

pancreatic duct system makes ectasias and stenoses become more evident, and 

changes in the ductal tissue compliance can be detected as altered calibre change after 

stimulation (52). In addition, secretin stimulation during MRCP gives the opportunity 

to evaluate pancreatic function, which will be dealt with in the next chapter of this 

thesis.  

In diffusion-weighted imaging (DWI), the MR signal is sensitized to movement of 

water molecules. This mode detects whether movement of water molecules are 

random and unrestricted (Brownian movements), or if they are restricted by cell 

membranes or matrix. Signals can be detected at different water movement 

sensitivities, b-values, where low b-values detect large motions or long diffusion 

distances for water molecules and high b-values detect small motions or short 

diffusion distances. By obtaining two or more uptakes of the same area at different b-

values, the apparent diffusion coefficient (ADC) can be calculated for a voxel through 

logarithmic regression analysis. The ADC is an estimate for the net water movement 
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within a voxel. For unvascularized tissues, the ADC would represent the diffusivity or 

true diffusion coefficient in the voxel, but as perfusion also contributes to water 

movement, the ADC is a combination of the perfusion and diffusion in the tissue. The 

higher b-values used, the lesser the perfusion affects the ADC (and the closer this 

value reflects the true diffusion coefficient). However, the noise to signal ratio 

increases with increasing b-values (53). The diffusion-weighted images are presented 

as ADC-value heat maps. As these images reflect the tissue properties, it has the 

potential to differentiate between pathological processes for example fibrosis 

restricting water movement with lower ADC values, whereas acute inflammation 

gives higher ADC values due to oedema (53). Diffusion-weighted imaging 

discriminates well between pancreatic cancer and benign lesions of the pancreas (54, 

55), and also between different cystic lesions of the pancreas (56, 57). Secretin 

stimulated DWI is discussed in the exocrine pancreatic function section. 

1.2.2 Exocrine pancreatic function testing 

Clinical assessment of exocrine function of the pancreas has been performed for 

several decades (17). Tests can be divided into non-invasive and invasive based on 

the test procedure. The terms “direct” and “indirect” are often used, but definitions of 

these terms are diverse (58-60). I will discuss imaging function tests in the end of this 

chapter, as these new non-invasive procedures give results otherwise achieved 

through invasive function testing only.    

Non-invasive exocrine pancreatic function testing 
Non-invasive exocrine pancreatic function tests are appealing, as they are easy to 

perform, less time consuming and do not cause much physical discomfort for the 

patient. Many non-invasive tests have been developed, probably reflecting the lack of 

the “perfect” non-invasive test, that is cheap, easy to perform, and has an acceptable 

diagnostic accuracy. Generally, non- invasive tests have a rather good ability to detect 

severe pancreatic dysfunction, leading to pancreatic insufficiency (61, 62), but do 
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perform poorly on mild to moderate pancreatic dysfunction with limited or no 

detectable pancreatic insufficiency.  

Faecal fat determination 
Quantification of fat in faeces is the oldest of the indirect exocrine pancreatic function 

tests still in use. Modified versions of the van de Kamer method (63, 64) seem to be 

the most common to determine fat content, but near infrared (65, 66) and MRI (67) 

spectroscopy methods are also used. In a healthy individual eating normal western 

diet, faecal fat excretion is not altered by fat intake, and is about 4 g/day, which 

probably results from the digestive process, rather than the diet (68). In the case of fat 

malabsorption, ingested fat passes to the faeces and will, hence, be correlated to the 

intake (69). As faecal fat excretion is a result of increased faecal volume, rather than 

increased faecal fat concentration (64, 70), collection of faeces over a time period is 

necessary to determine faecal fat output. There are also day-to-day variations in gut 

motility causing variations in output of faeces, which necessitates three days 

collection of faeces and homogenisation of the samples to get a reliable estimate of 

faecal fat output (64). These practical and aesthetical obstacles to this test make the 

use of it limited. The van de Kamer test is considered the gold standard to detect 

steatorrhoea in patients (64), but as 90 to 95 % of the gland function needs to be 

diminished before steatorrhoea occurs (71, 72), determination of faecal fat excretion 

only detects severe pancreatic dysfunction leading to pancreatic insufficiency. Tests 

using spot samples to detect steatorrhoea have been studied. Microscopy of a Sudan 

dyed faecal sample (73) and acid steatocrit (74) are two examples. These tests will 

usually detect overt steatorrhoea, but do not have the accuracy of the three day 

collection method in milder forms (61, 75-77).  

Breath tests 
Breath tests using substrates marked with uncommon carbon isotopes represents 

another indirect approach to studying exocrine pancreatic function. The principle of 

these tests is that the subject investigated ingests a meal with a defined amount of a 

substrate marked with an uncommon carbon isotope, usually the non-radioactive 
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isotope 13C. The substrate then needs to be digested and absorbed, before it is 

metabolized (78). By quantifying the amount of isotope in the carbondioxide of the 

expired air from the subject investigated, the ratio of metabolized substrate can be 

determined, reflecting the ratio of digestion and absorption.  The most commonly 

used of these tests, is the 13C mixed triglyceride breath test (79). In this test, 13C 

marked octanoic acid has been placed in the second glycerol position in a triglyceride 

between two long chain fatty acids. The triglyceride has to be hydrolyzed by lipase in 

duodenum at the 1 and 3 position before the 13C octanyl monoglyceride can be 

absorbed. Being a medium chain fatty acid, the substrate then undergoes rapid beta-

oxidation in the liver, and the concentration of expired 13CO2 reaches a peak after 

about 3.5 hours. To determine the ratio of digested substrate, a cumulative amount of 
13CO2 is determined by collecting expired air every 30 minutes for 6 hours after 

ingestion of the substrate. The 13C mixed triglyceride breath test has performed well 

when compared with the faecal fat excretion test (80), and has been suggested to be a 

less cumbersome alternative to the latter. More interestingly, Keller et al. (81) recently 

found indications that by increasing the amount of 13C-marked fat ingested, and 

keeping the subjects at rest while collecting samples, the 13C mixed triglyceride test 

performed well in detecting moderate pancreatic dysfunction when compared to a 

classic secretin test. However, the patient material was small, and the specificity of 

the test has not been tested in patients with non-pancreatic causes of fat-

malabsorbtion. 

Faecal elastase 1 
Human pancreatic elastase 1 is one of the proteolytic enzymes from the exocrine 

pancreas. The enzyme undergoes no significant intestinal digestion, hence, faecal 

elastase 1 levels are five to six times higher than concentrations in pancreatic juice 

(82). Immunological measuring of elastase 1 in faeces is a diagnostic test for 

pancreatic function (83). Elastase 1 concentrations can be measured in a small spot 

sample of faeces, samples are stable for several days in room temperature, and the 

results are not disturbed by use of oral pancreatic enzyme substitution therapy (83). 
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Hence, the test is feasible, easy to perform and relatively cheap, making it a popular 

test in a clinical setting (84). The test exhibits excellent sensitivity (82-100 %) in the 

case of severe pancreatic dysfunction, but has lower sensitivity in the case of 

moderate (33-100 %) and mild (0-65 %) pancreatic dysfunction (85). Specificity of 

the test has been difficult to assess, and values ranging between 29 and 96 % have 

been published (62, 85). Poor specificity in some studies has been attributed to two 

possible explanations. Firstly, watery diarrhoea causes dilution of the faecal samples, 

resulting in lower values of elastase 1 in the faecal samples. Lyophilisation of faecal 

samples has been demonstrated to prevent these false positives (86). Secondly, the 

faecal elastase 1 test seems to differ poorly between pancreatic and intestinal 

malabsorption, possibly due to secondary pancreatic dysfunction as result of 

disturbances in the entero-acinar axis (87-89). Lüth et al demonstrated that faecal 

elastase 1 test had a positive predictive value for primary pancreatic dysfunction of 50 

% in their material of patients under investigation for possible pancreatic 

malabsorption, when compared to a secretin-caerulin test (87), concluding that the test 

is too inaccurate to be suitable for screening in such a patient material. In a recent 

pediatric material, the positive predictive value of lyophilized faecal elastase 1 was 

only 14 % in a retrospective material when compared to a short endoscopic secretin 

test evaluating digestive enzymes (90). This probably reflects that exocrine pancreatic 

dysfunction is a rare cause of malabsorption in children when compared to 

enteropathy and other causes of false positive faecal elastase 1. 

Faecal chymotrypsin 
Faecal chymotrypsin activity is also used as a tubeless test to assess exocrine 

pancreatic function. The principles and properties of the test are similar to the faecal 

elastase 1 test, but enzyme activity is measured instead of protein concentration 

detected immunologically. The sensitivity and specificity of the test is considered 

lower or in the same range as the faecal elastase 1 test (59, 62). Besides, the assay is 

not specific to human pancreatic chymotrypsin, making it mandatory to quit 



 24 

pancreatic enzyme therapy several days before the sample is collected (if the test is 

not performed to monitor compliance) (62).  

Invasive exocrine pancreatic function testing 

Overview 
Tests to evaluate pancreatic output to the duodenum have been developed over many 

decades (17). The principle for these tests is intubation of the duodenum to collect 

duodenal juice after stimulation of the pancreatic gland, either with hormones or 

nutrients (91). There are several tests available (61), and there has been no established 

standardization of the tests, with possible exception of that suggested by the Japanese 

Pancreatic Society (59). Despite this, the secretin test with or without the use of 

caerulein or another CCK analogue, has for a long time (and almost undisputedly 

(92)) been considered the gold standard in exocrine pancreatic function testing (93). 

The classic invasive tests are performed by intubating the duodenum with a two or 

three channels’ tube. The most proximal channel opening keeps the ventricle empty 

by suctioning. The most distal channel opening is placed near the ligament of Treitz, 

and continuously collects duodenal juice by suctioning for analysis. Analysis is 

performed on peak concentrations or total output of bicarbonate and/or digestive 

enzymes in the collection period. In some modifications of the test, a channel 

proximal to the collection channel adds a solution of a carrier substance (most often 

polyethyleneglycol) at a constant rate to estimate recovery rate of duodenal juice (94). 

Collection time for these tests is one to two hours (59, 61).    

Under these conditions, the classic, invasive pancreatic function tests are technically 

difficult to perform. Moreover they are expensive, time consuming and considered to 

be very unpleasant for patients. Hence, the use of them is very limited today (60). 

Methods for stimulation of the exocrine pancreas 
Several strategies for stimulation of the exocrine pancreas have been used. Use of 

nutrients, most commonly modifications of the Lundh test (95),  seems to be less 

reliable in testing exocrine pancreatic function than intravenous secretagogues (59), 
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and is not common today (59, 96). To evaluate both ductal (volume and bicarbonate) 

and acinar (digestive enzymes) function, various combinations of secretin and CCK 

analogues have been used (59), however stimulation by secretin alone also produces 

an increase in secretion of digestive enzymes (81, 97, 98).   

Peak concentrations or output? 
Both total output and peak concentrations of bicarbonate and enzymes have been used 

to evaluate pancreatic function (60, 61). Schibli and co-workers (99) performed a 

retrospective evalutation of their tube based method, using both secretin and 

pancreozymin as stimulants, and estimating recovery rate by using 

polyethyleneglycol. They found that by measuring concentrations instead of total 

output of bicarbonate and digestive enzymes, there would be an increased variability, 

and also misclassifications of patients with cystic fibrosis, as these patients may 

secrete very small volumes of hyperconcentrated pancreatic fluid (100). The report 

did, however, not describe at what time points the concentration measures were made, 

and peak concentration was not used. The same authors argue that to determine 

output, a carrier substance is necessary to correct for intestinal losses, to avoid 

misclassifications of patients (99), increasing the complexity of their test. After all, 

peak concentrations of at least bicarbonate has proven to be useful and reliable, and 

makes the performance of the invasive tests easier and less prone to technical errors 

(59). Normal peak bicarbonate levels after secretin stimulation has by many been 

established to be 80-130 mEq/L (59, 61), though also this range lacks standardization 

(93). 

Modifications of the invasive tests 

Endoscopic tests 

Several modifications have been tried to make these tests easier to perform. Use of an 

endoscope instead of the classic Dreiling tube eases duodenal intubation, and ensures 

correct placement for sample collection (93, 101, 102). This modification resulted in 

shorter examination time, and similar results as the Dreiling tube test with respect to 
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bicarbonate peak concentrations and output in a crossover study of healthy subjects 

(102) and in patients evaluated for chronic pancreatitis (103).  

Intraductal collection 

Intraductal collection of pure secretin stimulated pancreatic juice have been used 

(104), but the diagnostic value of this test has been demonstrated to be limited (105). 

In addition, the test carries a risk for complications associated with cannulation of the 

pancreatic duct.  

Shortening collection time (“rapid collection”) 
There have been several attempts to shorten collection time. In paediatrics, a test 

analysing digestive enzymes in duodenal juice collected for 10-15 minutes after 

secretin and/or CCK-analogues has been used to some extent for more than 20 years 

(22, 90, 97, 106). However, several studies have found unacceptably low diagnostic 

accuracy when shortening collection time to 10-20 minutes (99, 107-109). In all these 

studies, collection of duodenal juice has been performed immediately after 

stimulation.  

Optimizing time of collection after stimulation 

There have also been attempts to determine the optimal timing for collection of 

duodenal juice after secretin stimulation. One study demonstrated peak concentrations 

of bicarbonate occurring in different individuals with abdominal pain and suspected 

chronic pancreatitis at 15 minutes, 30-40 minutes and 45-55 minutes during one hour 

collection of duodenal juice after secretin stimulation, concluding that extended 

collection is necessary for acceptable diagnostic accuracy (109). The diagnostic 

accuracy of collecting at one of these time points was, however, not determined. 

Stevens and co-workers (110) demonstrated retrospectively that collection of 

duodenal juice at 30 and 45 minutes after secretin stimulation gave a sensitivity of 94 

% and a specificity of 85 % when compared to one hour collection time. This was 

based on the “rediscovery” that bicarbonate concentration increases for 20-30 minutes 

after secretin stimulation and before it reaches a peak plateau (17, 18). Identical 
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timing in increases of bicarbonate concentration to a peak plateau was found in 

healthy subjects, patients at risk for chronic pancreatitis, chronic pancreatitis patients 

and patients with manifest steatorrhoea (110). Hence, the poor reliability of the other 

short endoscopy tests described above can be attributed to the fact that duodenal juice 

was collected while bicarbonate concentration was still increasing. As a result of this 

observation, Jensen and co-workers (111) performed a rapid endoscopic secretin test 

in patients with suspect and manifest chronic pancreatitis. Duodenal juice was 

collected through an endoscope in one, single portion from 30 to 40 minutes after 

secretin stimulation. The samples were analyzed for bicarbonate, lipase, elastase and 

zinc. The results from this test were compared to results from the Lundh test as a 

reference standard. Bicarbonate concentration was the biomarker with best diagnostic 

value. There was a positive predictive value of 88 % and negative predictive value of 

83 % when bicarbonate concentration of 60 mEq/L was chosen as a cut off.  

Duodenal lipase concentration from the endoscopic test did not have much diagnostic 

value in itself, but correlated acceptably with duodenal lipase from the Lundh test, 

and performed well in detecting patients with pancreatic exocrine insufficiency 

compared with patients having normal or reduced (but sufficient) pancreatic function. 

Even though the latter study has some limitations in methods and reference standard 

that will be dealt with later in this thesis, it represents a promising approach to the 

rapid endoscopic stimulation test of the pancreas. 

Image-based exocrine pancreatic function testing 

Secretin-stimulated MRCP 
Pancreatic fluid output to the duodenum can also be demonstrated by MRI based 

techniques.  By imaging with a fluid sensitive MRI protocol at defined time points 

before and after secretin stimulation, increase of fluid content in the duodenum can be 

measured semi-quantitatively (112-114) or quantitatively (115-117). The semi-

quantitative method is based on grading duodenal filling after which anatomical 

landmarks that obtain fluid signals (e.g. Grade 0: no fluid filling in duodenum, Grade 

1: fluid signal in duodenal bulb, Grade 2: fluid filling up to genu inferius duodeni, 
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Grade 3: Fluid filling beyond genu inferius) (112). Quantification of output can be 

performed by simply measuring the increase in the duodenal width after secretin 

stimulation (117). However, increase in volume can also be determined by imaging 

coronal slices, defining a region of interest (ROI) containing duodenum and proximal 

jejunum, and relating increase in water intensity per voxel to water intensity in a 

voxel from a compartment containing pure water (115, 116). Volumes determined by 

this method have demonstrated excellent linearity with volumes instilled through a 

duodenal tube in healthy volunteers (115), as has determination of ingested water 

(118). As the main volume of the pancreatic excretion originates from the ductal cells 

(3), determination of volume increase in the duodenum most probably reflects ductal 

function (119), which has been confirmed indirectly by a significant correlation 

between MRI-estimated volume output and bicarbonate concentration in pure 

pancreatic juice (114).  

Several groups have tried to evaluate the diagnostic value of MRI-estimated 

pancreatic fluid output. Two small materials have compared the semi-quantitative 

MRI method to invasive secretin-stimulated function tests. In one of them, a 

considerable overlap was found between normal and reduced pancreatic function 

using the intraductal secretin test as the reference standard (114), giving a sensitivity 

and specificity of 72 % and 87 % respectively. A more recent study demonstrated no 

overlap between normal and reduced pancreatic function in patients with suspected 

chronic pancreatitis, using a full time endoscopic secretin test as reference standard 

(113). There are also few studies comparing quantitative MRI tests to invasive tests. 

One small study compared duodenal width 10 minutes after secretin to results from 

the Lundh test, finding excellent discrimination between normal and reduced 

pancreatic function, but poor discrimination between mild and severe exocrine 

dysfunction (117). A recent study with 65 patients demonstrated a highly significant 

correlation between  peak bicarbonate concentration from a 60 minutes endoscopic 

secretin test and increase in duodenal volumes 10 minutes after secretin stimulation 

(119). The discriminating properties of the test were, however, not shown in this 

study. 
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Some studies have demonstrated that function testing with secretin stimulated MRCP 

performs well when compared to non-invasive tests (120-123). As indirect tests 

perform poorly in detecting mild and moderate exocrine pancreatic dysfunction, the 

value of these studies is limited in evaluating diagnostic accuracy.  

Several studies have evaluated the secretin-stimulated MRCP function test’s ability to 

detect chronic pancreatitis when this diagnosis is determined by a multimodal 

approach (119, 124, 125). In two of these studies, patients with established and severe 

chronic pancreatitis were well discriminated from subjects with no detected 

pancreatic disease, but mild to moderate or early chronic pancreatitis did overlap 

considerably with subjects with no known pancreatic disease (119, 124). 

Diffusion-weighted imaging 
Function testing with DWI before and after secretin stimulation has also been 

evaluated. In a small study, Erturk and co-workers (126) demonstrated increase in 

ADC after secretin stimulation to a peak, followed by a decrease in healthy subjects. 

This peak in ADC was observed between 90 seconds and four minutes after secretin 

stimulation, while in patients with severe chronic pancreatitis, there was no such peak 

during 10 minutes observation time. Interestingly, in patients at risk for chronic 

pancreatitis because of chronic alcohol abuse, a delayed peak (appearing more than 

four minutes after secretin stimulation) was observed, discriminating healthy controls 

from subjects at risk and chronic pancreatitis patients (126). This delayed peak in 

subjects at risk may reflect early changes in the pancreas found on EUS in patients 

with chronic alcohol abuse (127). In another study, the discriminatory properties of 

time to peak after secretin stimulation was not reproduced between healthy controls 

and patients with mild and moderate chronic pancreatitis, even though quite similar 

protocols were used (128). Both studies suffer from the lack of other functional 

evaluation of the pancreas. This secretin induced peak in ADC does, however, 

deserve further investigation, as diffusion weighted imaging gives an opportunity to 

evaluate the direct pancreatic tissue response to stimulation. 
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1.2.3 Analysis of duodenal juice 

Bicarbonate analysis 
Bicarbonate concentration in duodenal juice may reach 140 mM or even higher (3). 

Bicarbonate is the one of the two salts of carbonic acid: 

CO2↑ + H2O ↔ H2CO3 ↔ HCO3
- + H+ ↔ CO3

2- + 2H+   

According to the Henderson-Hasselbalch equation most of the carbonic acid is in the 

bicarbonate form at pH 8-9, as in duodenal juice (this is also the case at pH 7.3 as in 

serum) (129). Measuring bicarbonate concentration has traditionally been done by 

back titration (130), modified from a method originally described by van Slyke almost 

100 years ago (131). This method exploits the volatility of carbonic acid as shown in 

the carbonic acid equation.  

The pH in the sample is measured, before the sample is acidified with a given amount 

of hydrochloric acid, and shaken vigorously. This almost completely left-skews the 

carbonic acid equation, and allows the carbon dioxide to evaporate, for practical 

purposes eliminating all the carbonic acid from the solution. The solution is then 

titrated back to the original pH, using sodium hydroxide. The difference between 

amount of hydrochloric acid used to acidify and sodium hydroxide used to titrate back 

to original pH equals the amount of carbonic acid lost in the acidification process 

(130). Back-titration is time consuming, and demands a large amount of duodenal 

juice, which is not always readily available. Recently, two papers have been published 

presenting promising results on automation of bicarbonate determination, one of them 

using a “blood-gas” machine, measuring partial pressure of carbon dioxide and pH in 

appropriately diluted samples of duodenal juice (132), the other measuring 

bicarbonate concentration using the phosphoenol pyruvate carboxylase enzyme 

reaction (133, 134). 
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Digestive enzyme analysis 
Action of enzymes is linked to lowering the activation energy threshold in a chemical 

reaction. Enzymes may speed up a chemical reaction already going on, or initiate a 

reaction when this activation energy threshold is too high for the reaction to occur 

spontaneously (135). Several digestive enzymes have been used as indicators of 

exocrine pancreatic function. Which of these enzymes that are best for determining 

exocrine function is unclear (59). Enzymes may either be determined by 

quantification of amount or catalytic activity analyses. In exocrine function testing, 

enzyme catalytic activity is the most used (faecal elastase 1 is an important exception) 

(59).  

The principle for an enzyme activity assay is incubating the enzyme with substrate(s) 

for the enzymatic reaction, and measure decrease of substrate or increase of end 

product resulting from the enzymatic reaction. This is preferably done in a first order 

reaction system, because of the close to linear reaction rate when substrate is in excess 

(136).  

There is a large number of test principles available, exemplified by a review on lipase 

assays (137). No standard method exists for assessment of digestive enzymes in 

duodenal juice (138). In enzyme catalytic activity assays, factors like temperature, pH, 

substrate saturation, presence of other substances and salt concentrations need to be 

controlled, as they may all alter enzyme activity(136).  

Enzyme catalytic activity can be measured continuously, measuring reaction products 

at different time points, or by measuring reaction products after termination of the 

reaction (136). Enzyme catalytic activity is measured in units (U) or katal (kat). One 

U is defined as the amount of enzyme that catalytically transforms one micromole of a 

substrate per minute under standard conditions. To comply with SI units, the katal 

unit was made, in where one katal equals the catalytic activity that will raise the rate 

of reaction by one mole per second in a specified assay system (139).  
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Stability considerations and conservation of duodenal juice 
Special measures are needed in the handling of duodenal juice for analysis. 

Bicarbonate is unstable, and will evaporate when the samples are acidified. Activated 

proteases are abundant; ready to proteolyse other enzymes and indeed themselves. 

Stability of bicarbonate 
According to the Henderson-Hasselbalch equation, at pH 8-9, most of the carbonic 

acid is in the bicarbonate form, and negligible amounts are prone to evaporate (129). 

This is confirmed by the observation that bicarbonate samples are stable for at least 6 

hours on ice and in room temperature (140). Further escape of carbon dioxide is 

avoided by storing samples in gas tight containers. Contaminations that lower the pH 

of the duodenal juice will cause a left-skew of the carbonic acid equation, leading to 

more instability of the sample. Samples with pH < 6-7 will, hence, be unstable, and 

results from analysis will not be reliable. To my knowledge, little data exist on 

freezing samples for analysis on bicarbonate. 

Stability of digestive enzymes 
Several factors must be taken into consideration when storing samples of duodenal 

juice for analysis of digestive enzymes, as wrong storing conditions will irreversibly 

destroy the samples. Among the most commonly measured digestive enzymes, 

pancreatic lipase is the most unstable one, as demonstrated both in vitro (17, 141) and 

in vivo (142).  

Effect of proteolysis 

Pancreatic lipase is subject to rapid proteolysis catalyzed by proteases, especially 

chymotrypsin, effectively inactivating catalytic activity and binding to colipase (143, 

144). Also trypsin is inactivated trough chymotrypsin catalyzed proteolysis (145). 

Amylase (146) and chymotrypsin (141) activity are relatively stable to degradation. 
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Also the amounts of elastase measured quantitatively by immunological methods are 

stable to degradation in faeces and duodenal juice (82).  

Effect of temperature 

Storage of duodenal juice at room temperature rapidly inactivates lipase and trypsin, 

but not amylase, as is also the case with storage at 4°C (146). Decline in lipolytic 

activity in untreated duodenal juice has been demonstrated at - 20°C (141), and even 

at -80°C when stored for more than four months (147).  

Effect of additions 

Lipase activity was protected by addition of a chymotrypsin inhibitor and was further 

correlated to amount of lipase measured by quantitative methods, suggesting that loss 

of lipase activity during storage at -20°C is due to proteolysis (141). Addition of 

glycerol (17) and food substrates (148) seem to stabilize activity of digestive enzymes 

in duodenal juice during storage. 

Effect of thawing and refreezing 

Freezing at -80°C, thawing and refreezing did reduce activity of lipase, chymotrypsin 

and trypsin, but not amylase in pure pancreatic juice. However, in this material, the 

effect on activity of the first freezing compared to fresh, never frozen pancreatic juice 

was not determined (138). 

1.2.4 Exocrine pancreatic insufficiency 

The exocrine pancreas has a large functional reserve capacity. Excess losses of lipids 

in the faeces, steatorrhoea, is the clinically most important symptom, and also occurs 

as the primary symptom of malabsorbtion caused by exocrine pancreatic insufficiency 

(149).   DiMagno showed in the early seventies that >90 % of the lipase output had to 

be abolished before steatorrhoea occurred (71, 150). However, the lipase output 

threshold for developing steatorrhoea seems to be somewhat variable between 

individuals (72).  
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Fat malabsorption 
The development of fat malabsorption has been suggested to be caused by several 

interacting mechanisms (151). In alcoholic chronic pancreatitis, lipase seems to be 

more vulnerable to the disease process than at least trypsin, as shown by decreased 

lipase/trypsin ratio in chronic pancreatitis compared to healthy controls (150). 

Destruction of ductal compartments in pancreatic disease cause bicarbonate output to 

decline, causing lower pH levels in the duodenum (9). Pancreatic lipase is very pH 

sensitive, and may be irreversibly destroyed if pH gets to low (152). The ability of 

bile acids to form micelles is also less in the acidic duodenal environment found in 

patients with exocrine pancreatic insufficiency (10). Pancreatic lipase is also subject 

to earlier inactivation in the intestinal lumen than proteases and amylase (142), partly 

due to high susceptibility to proteolysis (143, 153). Human gastric lipase may play a 

modifying role in development of fat malabsorption. There are observations 

indicating that amount and efficacy of gastric lipase may be up-regulated in severe 

chronic pancreatitis, compensating for some of the loss of pancreatic lipase (154, 

155). The quantitative contribution of gastric lipase in severe pancreatic insufficiency 

does, however, still remain controversial (156). 

Malabsorption of other nutrients 
Loss of nitrogen in the faeces, creatorrhea, does usually not occur until late in the 

development of pancreatic insufficiency (71). This has been attributed to gastric 

protease activity (149). However, recent studies using a breath test based on 15N 

labelled casein in pancreatic insufficient patients indicate that creatorrhea 

underestimates loss of protein due to maldigestion, as colonic fermentation of proteins 

causes production of ammonia which is subsequently exhaled. Hence, the role of 

protein malabsorption may be larger than assumed earlier (157). Starch malabsorption 

due to low levels of pancreatic amylase has also been demonstrated (158). The role of 

salivary amylase is questionable in pancreatic insufficiency (159). However, there are 

findings indicative of substantial colonic salvage of short-chain fatty acids produced 



 35 

by fermentation of carbohydrates in patients with exocrine pancreatic insufficiency, 

resulting in less energy loss (160). 

Contributing drivers to malabsorption 
Intestinal bacterial overgrowth seems to be a common complication in exocrine 

pancreatic insufficiency, aggravating diarrhea and malabsorption (161).  Also 

postprandial motility responses are altered in chronic pancreatitis, possibly 

aggravating postprandial pain and intestinal malabsorption (162). Figure 3 gives an 

overview of the different drivers to malabsorption in exocrine pancreatic 

insufficiency. 
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Figure 3: Mechanisms of faecal nutrient loss in exocrine pancreatic 
dysfunction. Panel A. The situation in the healthy individual, with addition of 
salivary, gastric and pancreatic enzyme systems and bile as the chyme 
passes. Pancreatic bicarbonate is a substantial contributor to optimal pH 
for digestive processes in duodenum. In addition, intestinal enzymes cause 
some digestion, leading to absorption of most of the nutrients. Colonic 
salvation is probably negligible. Panel B. The situation in pancreatic 
exocrine insufficiency. The destructive process in the pancreas leads to low 
output of digestive enzymes and bicarbonate. Lack of digestive enzymes 
causes maldigestion, which is further aggravated by lower duodenal pH, 
causing digestive enzymes and bile salts to function sub-optimally. 
Increased amount of nutrients not absorbed promotes bacterial overgrowth 
which causes diarrhoea and binding of bile salts. In addition motility 
disorders may play a role. The net result is less substrate available  for 
absorption, and increased faecal loss of nutrients. To compensate, gastric 
lipase activity increases, and there is a substantial increase in colonic 
salvation of short fatty acids from fermented carbohydrates. The figure is 
based on (151).      
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1.3 Diseases affecting exocrine pancreatic function 

1.3.1 Disorders of pancreas morphogenesis 

Pancreas hypoplasia and agensis 
The pancreas is of endodermal origin, starting as a dorsal and a ventral budding 

evaginating from the endoderm. The dorsal budding subsequently develops into the 

dorsal anlage, eventually becoming the tail, body and superior part of the head of the 

pancreas. The ventral anlage becomes the inferior or duodenal part of the head of the 

pancreas. Normally, the ducts from the two anlagen fuse into the common duct of 

Wirschung (163, 164). Most of the knowledge about pancreas developmental biology 

originates from studies on mice (164), the frog Xenopus laevis (165) and Zebrafish 

(166). The finding that a mutation in the genes PDX1, EIF2AK3, PTF1A, HNF1B, 

RFX6 and GATA6 can cause agenesis or hypoplasia of the pancreas has 

demonstrated their crucial role also in human pancreatic development (table 3) (163, 

167). Functional studies of endocrine and exocrine function in the remaining pancreas 

in patients with these mutations may increase our understanding of how these genes 

affect pancreas morphogenesis. 

Mutated gene Phenotype related to pancreas Reference 

PDX1 Neonatal diabetes. Pancreas: agenesis/ hypoplasia of body and tail/ 
normal 

(165, 168, 
169) 

EIF2AK3 Neonatal diabetes. Pancreas: hypoplasia/normal (170) 

PTF1A Pancreas: agenesis (171) 

HNF1B Neonatal diabetes/MODY. Pancreas: hypoplasia (?)/normal (172, 173) 

RFX6 Neonatal diabetes. Islet agenesis. Pancreas: hypoplasia/small normal (174, 175) 

GATA6 Neonatal diabetes/MODY. Pancreas: agenesis/hypoplasia (176, 177) 

Table 3: Genes which, when mutated, cause agenesis or hypoplasia of pancreas. 

Phenotype is caused by haploinsufficiency in the case of HNF1B and GATA6, and 

homozygous mutations in the other genes. 
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Pancreas divisum 
Pancreas divisum is a very common anomaly of the pancreas, affecting 1.5 – 6.0 % of 

healthy individuals (178). A cause for this incomplete fusion of the dorsal and ventral 

anlagen has not been identified, but it is interesting to note that mice with 

haploinsufficiency in hedgehog signalling develops a similar phenotype (163). 

Pancreas divisum has been regarded as a risk factor for pancreatitis, but this is 

controversial, and recent studies may indicate that this common variant probably must 

be regarded as an incidental finding rather than a cause in pancreatitis (178). 

Annular pancreas 
Annular pancreas is a rather rare anomaly, characterized by encirclement of the 

duodenum by pancreatic tissue from the ventral anlage. The anomaly may be a result 

of defective hedgehog signalling, reducing the integrity of the duodenal wall. This 

has, however, not been demonstrated in man. Duodenal obstruction symptoms are the 

most common presentation of annular pancreas (179). 

1.3.2 Inborn primary exocrine pancreatic diseases 

Cystic fibrosis 
Cystic fibrosis is the most common lethal genetic disease in the white population. 

Cystic fibrosis is an autosomal recessive disease, caused by mutations in the cystic 

fibrosis transmembrane regulator (CFTR) encoding gene (CFTR), causing impaired or 

lost function of the CFTR. There are >1500 mutations in the CFTR, but only some of 

them are known to be associated with disease development. Disease causing 

mutations are classified after how they affect function of CFTR, a classification that 

also may predict disease severity (180). By not fully elucidated mechanisms, impaired 

or lost function of CFTR results in thick, poorly soluble mucus, blocking lumina of 

hollow organs (180, 181). This in turn eventually leads to reduced or destroyed organ 
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function, inflammation and opportunistic infections. Organs commonly involved 

include, lungs, sinuses, gastrointestinal tract, liver, pancreas, sweat glands and 

reproductive organs (180). There are great differences in vulnerability of the different 

organs to CFTR mutations. While male cystic fibrosis patients are almost inevitably 

infertile due to destroyed vas deference, genetic and environmental modifiers may 

cause very different phenotypes of liver or intestinal disease in patients with the same 

mutations, even among siblings (182). Lung insufficiency is the main cause of death 

in cystic fibrosis patients, and as environmental factors modify lung function to a 

great extent, lung drainage and aggressive treatment of opportunistic infections is one 

of the cornerstones in cystic fibrosis treatment (180). 

In the pancreas, thick mucus may block the ducts, eventually leading to destruction of 

the gland. Both ductal and acinar compartments are then affected (100), and many 

patients develop diabetes in early adult age, indicating that also islets are affected by 

the destructive process (183). 

To what extent the exocrine pancreatic function is affected is more predictable from 

genotype than most other manifestations, and homozygote loss-of-function mutations 

in CFTR will almost inevitably cause intrauterine destruction of pancreas, and 

pancreatic insufficiency from birth or early childhood (182, 184, 185). Patients with 

milder mutations are most often pancreatic sufficient, but some of these patients 

develop exocrine pancreatic insufficiency later in life (184, 186, 187). Pancreatic 

sufficient, but not pancreatic insufficient patients with cystic fibrosis are prone to 

pancreatitis (185).  Pancreatic insufficiency causes maldigestion, which is often 

aggravated by other gastrointestinal manifestations associated with cystic fibrosis 

(182, 188).  

Poor nutritional status caused by maldigestion, but also by increased energy demands, 

is common in cystic fibrosis patients (189). Before modern cystic fibrosis treatment, 

malnutrition was the major cause of death, illustrating the importance of treating 

maldigestion and providing nutritional support (180).  
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Treatment based on understanding of the genetic and pathogenetic factors in cystic 

fibrosis has lead to an incredible improvement of life expectancy in these patients the 

last decades (180, 190). 

Other inborn diseases of the exocrine pancreas 

Shwachman-Diamond syndrome 
The Shwachman-Diamond syndrome (191) is characterized by low number of one or 

more haematological cell lines, increased susceptibility to severe infections, 

pancreatic dysfunction, skeletal abnormalities and poor growth. The phenotype is 

variable, and manifestations tend to improve during childhood (192). However, there 

is an increased risk for leukaemia and myelodysplastic syndrome in these patients 

(193). Pancreatic dysfunction in Shwachman-Diamond syndrome is an isolated acinar 

defect, with low levels of digestive enzyme output, but normal bicarbonate secretion 

(159, 194), and probably not increased diabetes risk (195). Shwachman-Diamond 

syndrome is a recessive trait, and most patients have mutations in the SBDS gene 

(159, 196). These mutations cause impaired assembly of ribosomes, which is probably 

the pathogenetic basis for the disease (197).   

Johanson-Blizzard syndrome 
The Johanson-Blizzard syndrome is a rare syndrome characterized by absent alae nasi, 

teeth anomalies, pancreatic dysfunction, deafness, hypothyroidism, mental retardation 

and several other malformations (198). Also in Johanson-Blizzard syndrome, the 

pancreatic dysfunction is an isolated acinar defect, with seemingly normal function of 

ducts and islets (199, 200).The syndrome is autosomal recessive, caused by mutations 

in the UBR1 gene which codes for one of the ubiquitin ligases (201). 

Pearson syndrome 
Pearson marrow-pancreas syndrome is a disorder caused by mutations in 

mitochondrial DNA. The syndrome is characterized by bone-marrow disease in 

addition to multi-organ failure, among them, the pancreas. The prognosis is generally 

poor (202). 
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Histiocytosis-lymphadenopathy plus syndrome 
The histiocytosis-lymphadenopathy plus syndrome (earlier named H-syndrome or 

pigmented hypertrichosis with insulin-dependent diabetes mellitus, PHID) is caused 

by homozygous mutations in the SLC29A3 gene, which codes for a nucleoside 

transporter (203). The syndrome phenotype is very heterogeneous, and is associated 

with histiocyte infiltration and multi-organ failure, among them diabetes and 

pancreatic exocrine dysfunction (demonstrated by low faecal elastase), as reviewed in 

(204). 

Isolated enzyme deficiencies 
There are some reports on isolated, inborn pancreatic enzyme deficiencies (163). 

Insufficient enteropeptidase activity in the intestinal mucosa causes impaired 

activation of trypsinogen, with resulting lack of active digestive proteases. The 

condition is associated with severe malabsorbtion in infancy (205), and is linked to 

mutations in the proenteropeptidase gene (206). 

1.3.3 Chronic pancreatitis 

Chronic pancreatitis is a progressive inflammatory disease of the pancreas leading to 

fibrosis and loss of pancreatic exocrine and eventually endocrine function (207). The 

progressive destruction of the gland has been regarded as the hallmark of chronic 

pancreatitis versus acute pancreatitis. However, severe acute pancreatitis and 

recurrent acute pancreatitis may induce chronic pancreatitis, and novel insights in 

causative factors and different disease mechanisms has altered the understanding of 

acute and chronic pancreatitis to being a disease continuum rather than two distinct 

conditions (207-209).  

Clinical features of chronic pancreatitis 
Pain is the main symptom in patients with chronic pancreatitis (207). The pain may 

come in attacks, or be more chronic. The pain is often excruciating, hence, opiate 

demanding, and seems to be a combination of nociceptive and neuropathic pain (210). 
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With progressive destruction of the gland, exocrine dysfunction develops, and 

eventually exocrine and endocrine insufficiency (211).  Often the pain then recedes. 

This is thought to be a burnout phenomenon, indicating that the destruction of 

pancreatic tissue is a part of the pain causing process, though this hypothesis is 

controversial (210, 212). 

Pathophysiology 
The pathophysiology of chronic pancreatitis is linked to pancreastasis, misdirection of 

zymogens, and intracellular and interstitial activation of zymogens (207, 213, 214), 

leading to activation of multiple signalling pathways causing further pancreastasis 

with activation of zymogens, inflammation and cell death (215, 216). This again leads 

to fibrosis, eventually causing destruction of the architecture of the gland (chirrosis) 

(217). 

Etiology 
Alcohol abuse is the most common cause of chronic pancreatitis (207, 218). The 

mechanism of alcohol in inducing chronic pancreatitis is, however, not fully 

understood (219), and as <10 % of alcohol abusers develop chronic pancreatitis (220), 

other genetic and/or environmental factors must have triggering effects in addition. 

Also cigarette smoking is an independent factor associated with chronic pancreatitis 

(221, 222). Drugs may also induce pancreatitis, though most often mild acute 

pancreatitis (223). Taken together, the toxic effects of these substances may point 

towards a role of the pancreas as a vulnerable xenobiotic-metabolizing organ (207, 

224).  

Autoimmune pancreatitis is a rather novel disease entity, characterized by focal or 

global inflammation in the pancreas and increase in immunoglobulin G4 and other 

serological markers (225). Autoimmune pancreatitis has been estimated to cause 2-4 

% of cases with chronic pancreatitis, but these prevalence numbers will probably 

increase with the increasing awareness of this condition among clinicians (226).  

Several genetic risk factors for chronic pancreatitis have been identified. Severe 
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mutations in the cationic trypsinogen gene (PRSS1) are the only known causes of 

hereditary pancreatitis (due to high penetrance), while the other mutations are 

regarded as genetic risk factors for pancreatitis, depending on other genetic factors or 

environmental factors to cause chronic pancreatitis (216, 227). With increasing 

knowledge about risk factors for pancreatitis, the idiopathic chronic pancreatitis group 

is declining (207). Tropical calcific pancreatitis has been regarded as an idiopathic 

entity observed in patients in low income countries in the tropical parts of the world. 

The condition has been attributed to cassava intoxication and malnutrition (228). 

However, recent studies weaken these associations (229), and findings of genetic risk 

factors in a substantial part of these patients, question whether tropical calcific 

pancreatitis actually is a disease entity on its own (230).  

Diagnostic approach 
The diagnosis of chronic pancreatitis may be challenging. In moderate to severe large 

duct disease (most common manifestation of alcoholic chronic pancreatitis), the 

development of pancreatic calcifications and ductal abnormalities visible on imaging 

often make the diagnosis evident with commonly available modalities. On the other 

hand small duct disease may have remarkably normal findings on imaging, and the 

diagnosis is often challenging (231). Early chronic pancreatitis findings are also often 

non-specific (207).  

Demonstrating histological changes in representative biopsies form the pancreas has 

been defined as the reference standard in diagnosing chronic pancreatitis. However, 

the difficult accessibility of the pancreas, the high risk of complications and the risk 

of not getting a representative specimen justifies this approach only in cases of 

suspected pancreatic cancer (231). Hence, imaging and function testing are the 

cornerstones in the diagnosis of chronic pancreatitis.  
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Imaging 

Cambridge criteria 

The Cambridge criteria came in 1983, and were based on parenchymal changes found 

on CT and US examinations, and ductal changes found on ERCP (232). These criteria 

have later been revised and are still in use (table 4) (233). As MRCP is the modality 

of choice in evaluating pancreatic duct anatomy, the ERCP criteria have been adapted 

for MRCP and secretin stimulated MRCP (44). MRI has also been shown to be very 

sensitive in revealing parenchymal changes in chronic pancreatitis (44). 
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Terminology CT or US ERCP  Additional features 

  Main duct Abnormal side 
branches 

 

Normal Main pancreatic duct < 2 mm 

Normal gland size and shape 

Homogeneous parenchyma 

Normal None  

Equivocal Only one of: 

 Main pancreatic duct 
between 2 to 4 mm 

 Gland enlargement < 
2x normal 

 Heterogeneous 
parenchyma 

 

Normal <3  

Mild Two or more above Normal >3  

Moderate Cavities <10 mm 

Duct irregularity 

Focal acute pancreatitis 

Increased echogenity of duct 
wall 

Contour irregularity 

Abnormal >3 None 

Marked As above + one or more of: 

 Cavities > 10 mm 
 Gland enlargement >2x 

normal 
 Intraductal filling 

defects or calculi 
 Duct obstruction, 

stricture, gross 
irregularity 

 Contiguous organ 
involvement  

Abnormal >3 One or more of: 

 Large cavity 
 Obstruction 
 Filling 

defects 
 Severe 

dilatation 
 Irregularity 

Table 4. Cambridge imaging criteria for chronic pancreatitis (233). 
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Endoscopic ultrasound 

Endoscopic ultrasound is very sensitive for detecting parenchymal changes of the 

pancreas. This may actually be a problem, as small changes in the pancreatic tissue 

can be seen in subjects with no other signs of pancreatic disease, in whom changes 

may be due to old age (234) or risk factors for chronic pancreatitis, such as alcohol 

abuse (127). Hence, standard criteria for chronic pancreatitis have been riddled with 

too many false positives (41, 235). To increase specificity, the more restrictive (and 

complicated) Rosemont criteria have been proposed (table 5) (236), but further 

evaluation is needed to see if these criteria actually are more specific (237). 
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 EUS finding Description Correlation Strength 

Parenchymal 
criteria 

Hyperechoic foci with 
shadowing 

Length or width >2 mm Calcifications Major A 

Lobularity with 
honeycombing (>3 
contiguous lobules) 

Structures >5 mm with 
enhancing rim and echo-
poor centre 

None Major B 

Lobularity without 
honeycombing 

As above None Minor 

Hyperechoic foci 
without shadowing 

As above None Minor 

Hyperechoic strands Lines > 3 mm in at least 2 
different directions 

None Minor 

Intraparenchymal cysts None None Minor 

Ductal criteria Main pancreatic duct 
calculi with shadowing 

None None Major A 

Irregular main 
pancreatic duct/ectatic 
contour 

None None Minor 

>3 dilated side 
branches 

None Side branch 
ectasias 

Minor 

Main pancreatic duct 
dilatation 

>4 mm head, >3.5 mm  
body, >1.5 mm tail  

None Minor 

Hyperechoic main 
pancreatic duct margin 

Echogenic structure 
covering >50 % of entire 
main duct 

Ductal fibrosis Minor 

Strictures None None Minor 

 

Table 5. Rosemont criteria for chronic pancreatitis (236).  

Consistent: 1 Major A + ≥ 3 Minor; 1 Major A + 1 Major B; 2 Major A.  

Suggestive: 1 Major A + < 3 Minor; 1 Major B + ≥ 3 Minor; ≥5 Minor. 

Indeterminate: 3-4 Minor; 1 Major B + 0-3 Minor. 

Normal: ≤ 2 Minor 
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Exocrine pancreatic function testing 
Reduced bicarbonate output as measured through the classic secretin stimulation test 

has been regarded the most sensitive marker for chronic pancreatitis (61). The 

addition of cholecystokinin or one of its analogues and measuring digestive enzymes 

has been done in many protocols (59). Lankisch and co-workers used reduced output 

of one or more digestive enzymes as the first sign of diminishing exocrine pancreatic 

function in chronic pancreatitis, followed by reduction in bicarbonate output (238). 

However, at least in the 60-minute secretin endoscopic test, addition of 

cholecystokinin and measuring digestive enzymes did not enhance the test in 

comparison to secretin alone (239). These conflicting results probably reflect the lack 

of standardization of tests and reference standards, but may also partly be due to 

different courses of early chronic pancreatitis with respect to acinar or ductal 

involvement (240). As non-invasive tests detect only moderate to severe pancreatic 

dysfunction (62), these tests detect late changes in chronic pancreatitis, leading to 

substantial loss of exocrine tissue (61). 

Validation of diagnostic modalities 
There have been some attempts to validate the different diagnostic modalities against 

histopathological changes of the pancreas. There are fairly good correlations between 

histopathological changes and chronic pancreatitis found on ERCP (241), EUS (242-

244) and invasive pancreatic function tests (244-246). However sensitivity for 

minimal change pancreatitis and early chronic pancreatitis is limited for all 

modalities. There also seem to be differences between patients whether structural or 

functional changes are most evident in the early phases of chronic pancreatitis (240, 

244, 247). Furthermore, patients may have calcifications on pancreatic imaging with 

normal exocrine pancreatic function (248, 249). 

Multimodal approach 
As chronic pancreatitis can be challenging to diagnose, a multimodal approach is 

often needed. Layer and co-workers (250) published a clinical scoring system, 

weighing the different clinical findings according to their specificity for chronic 
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pancreatitis (table 6). As pancreatic calcification (visible on imaging available in the 

late 1970s and early -80s) and typical histological changes are regarded as 

pathognomonic for chronic pancreatitis, these findings alone were considered enough 

for establishing the diagnosis. This scoring system is quite simple, and has been found 

to be useful in modified forms in later studies (251, 252). Other clinical scoring 

systems have also been proposed (217, 233). To my knowledge, none of these scoring 

systems have been validated. 

Clinical findings Score 

Pancreatic calcification 4 

Typical histological changes 

Characteristic findings on ERCP 3 

Steatorrhoea (> 7 g/day) or 

Abnormal cholecystokinin test 

2 

Recurrent acute pancreatitis attacks or chronic abdominal pain 

Diabetes mellitus 1 

Table 6. The Mayo clinic scoring system for chronic pancreatitis (or Layer score) (250). 

A sum of scores ≥ 4 suggests chronic pancreatitis. 

1.3.4 Diabetes mellitus 

Diabetes mellitus comprises a heterogeneous group of metabolic disesases 

characterized by hyperglycaemia. The hyperglycaemia results from defects in insulin 

secretion, insulin action on target organs or both. The disease process causes 

abnormal metabolism of carbohydrates, fat and protein. The diagnostic criteria for 

diabetes mellitus are related to presence of hyperglycaemia or increased levels of 

glycosylated haemoglobin (HbA1C) (253): 
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1. HbA1C ≥ 6.5 %      
2. OR: Fasting (>8 hours) plasma glucose ≥ 7.0 mmol/L 
3. OR: Plasma glucose ≥ 11.1 mmol/L two hours after oral glucose tolerance test 
4. OR: Plasma glucose ≥ 11.1 mmol/L in random sample and diabetes suspect 

symptoms 
 

Inappropriate hyperglycaemia or elevated HbA1C not fulfilling the above criteria 

classifies as impaired glucose tolerance or prediabetes. Short-term complications to 

diabetes are related to hyperglycaemia, ketoacidosis and intracellular starvation, in 

addition to iatrogenic hypoglycaemia. Long-term diabetes-associated complications 

are caused by microvascular injury, namely nephropathy, retinopathy and neuropathy, 

and by macrovascular injury; cardiovascular disease. Good metabolic control is the 

key to prevent complications  (253). Diabetes is one of the most common chronic 

diseases in the world, and there is a global increasing incidence of diabetes and its 

complications, especially in developing countries (254, 255). By far the most cases of 

diabetes are type 1 or type 2 (253). 

Type 1 and type 2 diabetes mellitus 
Type 1 diabetes accounts for 5-10 % of cases with diabetes. It is caused by 

autoimmune destruction of beta cells in the islets of Langerhans (type 1A), or is 

idiopathic (type 1B). Several genetic risk factors have been identified, the strongest 

among them related to the HLA system, but these risk factors only represent a 

vulnerability to develop diabetes. Hence, environmental factors must also exist, but 

the hunt for the “smoking gun” has not identified any yet. As the insulin producing 

beta cells are destroyed by the disease process, and insulin sensitivity normally is 

unaffected, insulin supplementation is the only medical treatment option (256).   

Type 2 diabetes is estimated to account for 80-90 % of diabetes cases. However, the 

real number may be lower, as non-type 1 and non-type 2 diabetes may mimic type 2 

diabetes. Type 2 diabetes represents an imbalance between insulin production and 

peripheral insulin sensitivity, principally caused by an imbalance between intake and 

expenditure of nutrients. Insulin resistance in liver, adipose tissue and muscle is the 

primary manifestation, and diabetes occurs when beta cells cannot compensate with 
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insulin. With progression of disease, beta cell function also declines. Overnutrition 

and obesity is a risk factor. Also, many genetic risk factors for type 2 diabetes have 

been identified, telling us that type 2 diabetes is a very heterogeneous disease, and 

that genetic risk is difficult to predict from other sources than family history. 

Treatment is primarily by reducing overnutrition. Drugs increasing insulin effect and 

reducing insulin resistance may be used. Eventually insulin supplementation may be 

needed to achieve metabolic control (257).  

Diabetes and the exocrine pancreas 

Pancreatic diabetes 
Pancreatic diabetes, or type 3C diabetes, is diabetes secondary to destructive 

processes in the exocrine pancreas. Chronic pancreatitis is the most common cause, 

but pancreatic diabetes may also be caused by other pancreatic diseases, pancreatic 

malformations, pancreatic trauma and pancreatectomy (258). The prevalence of 

pancreatic diabetes has been estimated to be 0.5-1.2 % of diabetes patients, but recent 

reports suggest the number to be higher (259). In a recent, retrospective study diabetes 

patients were reclassified, and 9 % of the patients were classified as pancreatic 

diabetes patients (260). However, because of the retrospective design of this study, 

with seemingly no possibility to find out whether changes in the exocrine pancreas 

were primary or secondary to endocrine disease, this number may be spuriously high. 

There have been several studies estimating that the risk for developing diabetes in 

patients with chronic pancreatitis ranges from 41-86 % (261). The risk estimates will 

necessarily depend on diagnostic criteria for chronic pancreatitis, time of follow up 

and therapeutic traditions in the cohort studied. Diabetes is also a common 

complication in cystic fibrosis. One study showed that in cystic fibrosis patients ≥ 30 

years of age, 43 % had developed diabetes, and 27 % were glucose intolerant (262). 

The primary cause of pancreatic diabetes is insulin deficiency. In chronic pancreatitis, 

the beta cell mass is reduced due to chronic inflammation and development of fibrosis 

of the islets. Beta cells seem to be the most vulnerable cell type in islets of 
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Langerhans to these noxious processes (263). Secondarily, hepatic insulin resistance 

often develops in pancreatic diabetes, possibly as a result of reduced pancreatic 

polypeptide from the islets (264). In addition, insulin stimulation may be impaired by 

reduced secretion of the incretin hormones, GIP and GLP-1, as a result of 

maldigestion in patients with pancreatic exocrine insufficiency, as has been 

demonstrated by increased incretin and insulin response to pancreatic enzyme 

replacement therapy (265-267). 

Exocrine pancreatic function in diabetes 
It has been known for a very long time that diabetes patients may develop pancreatic 

dysfunction (268). Mild exocrine pancreatic dysfunction was found in 43 % of type 1 

diabetes patients undergoing a secretin pancreozymin test (269), and there was no 

progression of exocrine pancreatic dysfunction at follow-up 20 years later. The 

authors concluded that mild, non-progressive exocrine pancreatic dysfunction is 

common among diabetes patients, but that most of them do not need therapy (270). 

Hardt and co-workers demonstrated low levels of faecal elastase and steatorrhoea in 

type 1 and type 2 diabetes patients (271, 272), but demonstrated no clinical effect of 

pancreatic enzyme therapy (273). However, low faecal elastase and steatorrhoea has 

been disputed as a marker of exocrine pancreatic dysfunction in diabetes patients 

(274). 

The cause of impaired exocrine pancreatic function in diabetes is not known. 

Pancreas volume is reduced in diabetes patients, and has been demonstrated to be 

correlated to faecal chymotrypsin levels (275). Loss of trophic effects of insulin and 

other hormones have been suggested as a mechanism, as has diabetic neuropathy and 

microangiopathy (276). Misclassification of pancreatic diabetes may also be one 

reason (258). 



 53 

Maturity onset diabetes in the young (MODY) 

Overview 
Maturity onset diabetes in the young (MODY) is a group diseases with autosomal 

dominant inheritance characterized by onset of non-ketotic diabetes in at least one 

family member before age of 25 years and evidence of primary beta cell dysfunction 

(277). Molecular studies have identified genetic background for MODY in at least 13 

genes (table 7) (278, 279). Prevalence of known MODY mutations is difficult to 

assess, as clinical suspicion and availability of genetic testing may vary in a 

population (280). From the large Norwegian health survey for Nord-trøndelag County 

(HUNT2), clinical criteria for MODY was present in 2.2 % of participants with 

diabetes.  The most common form, HNF1A-MODY was confirmed genetically in 0.4 

% of diabetic subjects (281). In studies from the Norwegian childhood diabetes 

registry, the minimum prevalence of monogenic diabetes was recently estimated to be 

1.1 % of the diabetic child population, HNF1A-MODY being most abundant also 

among the childhood MODYs (282). GCK-MODY is also rather frequent in a 

diabetes population, while HNF4A-MODY and HNF1B-MODY occur sporadically. 

The other MODY forms are reported in only one or few families, and for some genes, 

the link between genotype and phenotype may even be unconvincing (278).  

MODY is often due to mutation in a transcription factor (283, 284). Study of disease 

mechanisms in MODY may therefore increase our knowledge both on how factors of 

the transcriptional network are essential for development and function of beta cells, 

and also on other intracellular mechanisms crucial for normal beta cell function. 

Identifying MODY patients may also have clinical implications. For example, 

HNF1A-MODY patients often respond excellently to treatment with sulfonylurea, due 

to the mutation induced dysfunction upstream to the sulfonylurea receptor (285, 286). 

Another example is GCK-MODY patients who develop mild fasting hyperglycaemia, 

but usually no need for treatment or diabetes associated complications (287, 288).   
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Common name Alternative name Gene mutated 

MODY1 HNF4A-MODY HNF4A 

MODY2 GCK-MODY GCK 

MODY3 HNF1A-MODY HNF1A 

MODY4 PDX1-MODY PDX1 

MODY5 HNF1B-MODY HNF1B 

MODY6 NEUROD1-

MODY 

NEUROD1 

MODY7 KLF11-MODY KLF11 

MODY8 CEL-MODY CEL 

MODY9 PAX4-MODY PAX4 

MODY10 INS-MODY INS 

MODY11 BLK-MODY BLK 

MODY12 ABCC8-MODY ABCC8 

MODY13 KCNJ11-MODY KCNJ11 

Table 7. The different known MODY forms, adapted from (278, 279). A clinical MODY 

phenotype with unknown genetic background is designated MODY X.   
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MODY and the exocrine pancreas 
There are few studies on exocrine pancreatic function in subjects with MODY 

mutations. Two of the MODY forms, HNF1B-MODY and CEL-MODY, have been 

attributed to exocrine insufficiency. 

HNF1A-MODY 
In mice, the hnf1a gene is expressed in both exocrine and the endocrine pancreas 

during development to adult stage, indicating roles in both exocrine and endocrine 

pancreas development (289). Despite this, our group demonstrated only moderately 

high prevalence of faecal elastase deficiency and steatorrhoea, as well as moderately 

reduced pancreas volume in HNF1A-MODY patients compared to type 1 diabetes 

patients. These findings, and the observation that faecal elastase deficiency was more 

abundant in patients with long lasting diabetes, indicate that exocrine pancreatic 

dysfunction in HNF1A-MODY is secondary to diabetes, and not a primary result of 

the mutation in HNF1A (290, 291). 

HNF1B-MODY 
Reduced pancreas volume is a well-known finding in most HNF1B-MODY patients, 

but not all, and has been attributed to atrophy (292, 293). Haldorsen and co-workers 

demonstrated lack of pancreatic tissue corresponding to the body and tail of the 

pancreas in mutation carriers, suggesting that volume reduction is due to agenesis of 

the dorsal pancreas, and not diffuse atrophy (173). This is supported by demonstration 

of hypoplastic pancreata in two fetuses with mutations in HNF1B (172), and that 

hnf1b deficiency in mice leads to pancreas agenesis (294). 

Low levels of faecal elastase have been demonstrated in many, but not all HNF1B-

MODY patients, compatible with exocrine pancreatic dysfunction (173, 292, 293). 

Low levels of vitamin D and vitamin E have also been demonstrated in HNF1B-

MODY patients (173). However, the few reported levels of faecal fat excretion have 

been normal or nearly normal, indicating that severe exocrine pancreatic insufficiency 

is probably not common (292, 295, 296). 



 56 

Whether pancreatic exocrine dysfunction precedes diabetes in HNF1B-MODY has to 

my knowledge not been addressed before the works of the present thesis.  

Diabetes development in HNF1B-MODY seems to be a combination of reduced beta 

cell mass and increased peripheral insulin resistance (297-299). 

CEL-MODY 
Carboxyl-ester lipase (CEL) is a digestive enzyme secreted by acinar cells of the 

pancreas. In the pancreas, the CEL-gene is expressed in acinar cells only, but not in 

ductal or islet cells (300). In 2006 Ræder and co-workers described a syndrome of 

exocrine pancreatic dysfunction and development of diabetes from young adult age 

caused by heterozygous mutations in the variable number of tandem repeats (VNTR) 

region of the CEL-gene. The syndrome was named CEL-MODY or MODY8, and was 

demonstrated in two families (301). In CEL-MODY, low faecal elastase and 

lipomatosis of the pancreas develops from childhood, preceding diabetes (45). There 

is a severe pancreatic insufficiency in CEL-MODY patients, demonstrated by low 

faecal elastase, high levels of faecal fat, and low levels of vitamin E (301, 302). CEL-

MODY is a rare condition (303), and to my knowledge, no patients from other 

families than the two described in (301) have been published. 

How mutations in CEL cause pancreatic disease is unknown. Recently, Johansson and 

co-workers published functional studies, demonstrating altered physico-chemical 

properties of the mutant protein, and high propensity to form aggregates, suggesting 

that misfolded proteins may be the noxious factor (304). The CEL-MODY phenotype 

has not been reproduced in cel knockout- or transgenic mutated cel mouse models 

(305, 306). The expression of the CEL-gene only in the acinar cells of the pancreas, 

and the exocrine pancreatic dysfunction preceding diabetes, suggests that diabetes in 

CEL-MODY may be secondary to exocrine pancreatic disease, type 3C.  
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2. Aims of the present study 

Since the first molecular backgrounds for MODY were discovered in the 1990’s, this 

group of diseases has served as an invaluable tool for understanding biology and 

function of the beta cell. The MODYs are well suited as disease models, showing 

different mechanisms in diabetes development, as the phenotype is caused by a single 

mutation only. This contrasts the very complex genotype-phenotype relationship in 

type 1 and type 2 diabetes. In addition, research on MODY phenotypes has had direct 

implications for treatment of these subtypes of diabetes. There are few similar models 

for exocrine pancreatic function. Cystic fibrosis, Shwachman-Diamond and Johanson 

Blizzard syndromes are all majorly confounded by other contributions to the 

phenotype than exocrine pancreatic dysfunction. As the exocrine pancreas is affected 

in HNF1B-MODY and CEL-MODY, we wanted to investigate these two conditions 

as models of disease in the exocrine pancreas. To do this, we needed develop a 

feasible test battery able to reveal the different aspects of exocrine pancreatic disease. 

Hence, the aims of this study were to: 

 

1. Develop a rapid endoscopic secretin test protocol, and evaluate its feasibility 

and diagnostic accuracy in detecting exocrine pancreatic dysfunction in 

patients with chronic pancreatitis 

2. Develop an MRI-based protocol, involving anatomical uptakes, secretin- 

stimulated MRCP and secretin-stimulated DWI, and to evaluate this protocol 

in healthy controls 

3. Use the rapid endoscopic secretin test and the MRI protocol to evaluate the 

degree and nature of exocrine pancreatic dysfunction in patients with  CEL-

MODY 
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4.  Use the rapid endoscopic secretin test and the MRI protocol to evaluate the 

degree and nature of exocrine pancreatic dysfunction in patients with HNF1B-

MODY 

5. Relate the volume of the small pancreases in patients with HNF1B-MODY to 

their exocrine and endocrine pancreatic function, and to study whether the 

small pancreas in patients with HNF1B-MODY is attributable to hypoplasia or 

atrophy. 

6. Relate exocrine pancreatic dysfunction to signs of malnutrition in patients with 

CEL-MODY and HNF1B-MODY 
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3. Main results 

Paper I describes the use of a rapid endoscopic secretin test protocol in diagnosing 

chronic pancreatitis. Consecutive patients with suspected chronic pancreatitis and 

healthy controls underwent the rapid endoscopic secretin test. Three samples of 

duodenal juice were collected through the endoscope, starting 30 minutes after 

secretin stimulation. Bicarbonate concentration was measured in all samples, and the 

highest bicarbonate concentration was designated the peak, and used as a marker for 

exocrine pancreatic function. The results from the endoscopic test were compared to 

faecal elastase 1 concentration in the same patients and controls. A well recognized 

multimodal clinical scoring system for chronic pancreatitis was used as reference 

standard. The rapid endoscopic secretin test performed well in diagnosing chronic 

pancreatitis, and performed significantly better than faecal elastase.  

 

Paper II describes the use of secretin stimulated MRCP and secretin stimulated DWI 

for testing pancreatic function in healthy controls, relating the results to pancreatic 

morphology and to peak bicarbonate concentrations from the rapid endoscopic test 

described in paper I. On secretin stimulated MRCP, post secretin volume increase in 

duodenal fluid filling, reflecting pancreatic secretion rate, was highest 1-5 minutes 

after secretin stimulation, before declining through the 13 minutes observation time. 

On secretin stimulated DWI, the ADC values increased after secretin stimulation, 

reaching a peak after one minute, before declining to pre-stimulation level at the next 

observation points. The increases in duodenal fluid volumes were positively 

correlated with ADC values at all time points. There was also a weak, but significant 

positive correlation between peak bicarbonate concentrations from the endoscopic 

tests and duodenal fluid volume increase one minute after secretin stimulation.  
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Paper III describes evaluation of exocrine pancreatic function in patients with CEL-

MODY and healthy controls with rapid endoscopic secretin test, secretin stimulated 

MRCP and secretin stimulated DWI. In the duodenal juice samples, bicarbonate 

concentration and activity of digestive enzymes were measured. The results were 

related to body mass index and clinical chemical markers of nutrition status in the 

patients, obtained before commence of pancreatic enzyme therapy. A severe acinar 

and moderate ductal pancreatic dysfunction was demonstrated in CEL-MODY 

patients compared to healthy controls. This is compatible with severe steatorrhoea in 

CEL-MODY patients. Despite this, the patients were seemingly well nourished, and 

low vitamin E levels were the only clinical chemical marker indicating malnutrition. 

Vitamin E levels correlated significantly with duodenal lipase levels. 

 

Paper IV describes evaluation of exocrine pancreatic function in patients with 

HNF1B-MODY and healthy controls with rapid endoscopic secretin test, secretin 

stimulated MRCP and secretin stimulated DWI. Results were related to pancreas 

gland volume of the patients and their nutritional status. Small pancreases, lacking 

body and tail, were found in all but one of the patients. Acinar and ductal function 

was moderately reduced in HNF1B-MODY. Ductal function, but not acinar function 

correlated positively with pancreatic gland volume. There was a non-significant trend 

towards earlier onset of diabetes in patients with smaller pancreas volume adjusted for 

body surface area. Total duodenal fluid volume increase to pancreatic gland volume 

ratios were higher in patients than in controls, suggesting compensatory 

hypersecretion in the remaining gland. 
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4. General discussion 

4.1 Rapid endoscopic secretin test in the evaluation of 
exocrine pancreatic function 

4.1.1 Methodological aspects 

Endoscopic procedure 
There has been a lack of feasible direct methods for determining exocrine pancreatic 

function. Indirect tests may have good enough diagnostic accuracy in the case of  high 

pre-test probability of  exocrine dysfunction (for example in cystic fibrosis (307, 

308)), but the sensitivity and specificity of these tests are poor in general screening 

(62, 90). Despite being “gold standards” the traditional invasive tests have mostly 

been abandoned from daily clinical practice, due to the challenges in using them (93).  

In our test, we aimed to collect secretin stimulated duodenal juice when the 

bicarbonate concentration reaches a peak plateau (18, 110). This gradual increase in 

bicarbonate concentration was first described in early works on secretin response 

(17). Stevens and co-workers (110) retrospectively calculated the optimal collection 

period for duodenal juice after secretin stimulation, while Jensen and co-workers 

(111) actually were the first to publish the use of delayed, rapid endoscopy test. In this 

study, one sample was collected between 30 and 40 minutes after secretin stimulation, 

and analyzed for levels of bicarbonate, elastase and lipase. The test was validated 

against the Lundh test (111).  

Secretin stimulation alone has also been demonstrated to induce secretion of digestive 

enzymes (20-22), but an optimal period for collection of duodenal juice after a single 

dose of secretin has not been determined. However, Jensen and co-workers (111) 

achieved acceptable agreement between lipase levels achieved from the Lundh test 

and the rapid endoscopic secretin test. This finding suggests that digestive enzyme 
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activity determined in samples from a rapid endoscopic secretin test may be a 

representative estimate of pancreatic acinar status.  

 

One important improvement in our endoscopic secretin test protocol was collecting 

three samples of duodenal juice. Bicarbonate is difficult to assess, as acidic 

contamination of the sample will left skew the equilibrium of the carbonic acid 

equation, causing carbon dioxide to evaporate: 

 

CO2↑ + H2O ↔ H2CO3 ↔ HCO3
- + H+ ↔ CO3

2- + 2H+   

 

Contamination of the duodenal juice will come from the ventricle, the duodenal 

mucosa and the biliary system, but contamination from the ventricle constitutes the 

largest error source, as both volume and acid effects will take part. We took measures 

to avoid contaminations from the ventricle by emptying it thoroughly by suctioning. 

However, we collected duodenal juice through the same suctioning channel. To avoid 

contamination from the endoscope, we saturated the suctioning channel with 

duodenal juice by discarding the juice collected the first 15 seconds. Still, there may 

have been remnants of gastric fluid in the endoscope. Furthermore, the gastric fluid 

which had entered the duodenum before the procedure commenced had been 

neutralized by pancreatic juice, with resulting loss of bicarbonate. In Steven’s 

retrospective material, the ventricle had been emptied before secretin stimulation. 

Furthermore, the duodenum had been emptied two times in connection with collection 

of samples before 30 minutes had passed (110). These measures may have caused the 

duodenal juice collected at 30 minutes in Stevens’ material to be purer samples of 

pancreatic juice than the first sample collected in a rapid endoscopy test. This 

suggestion is supported by our finding, that the first sample collected had significantly 

lower bicarbonate levels than the next two samples in 29 healthy controls (figure 4A, 
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unpublished results). It may also explain the lower reference level in the material 

from Jensen et al. (111), where only one sample was collected. In the healthy controls, 

we found peak bicarbonate concentrations in sample one, two and three (figure 4B).  

Figure 4. A. All bicarbonate results in 29 healthy control subjects who 
underwent rapid endoscopic secretin test. B. Peak bicarbonate results in 
the same control subjects. Peak bicarbonate concentrations were most 
common in sample 2 and 3. Using peak values of bicarbonate from three 
samples collected over 15 minutes gave acceptable specificity, with only 
one peak value under the cut-off value among the healthy controls. The 
dashed line represents the cut-off value of 80 mEq/L. 

By using only the first sample for analysis, 11 out of 29 healthy controls (38 %) 

would have been misdiagnosed as having pancreatic exocrine dysfunction by using 

the cut-off of 80 mEq/L. By using only the two first samples, one of the healthy 

controls (3 %) would have been misdiagnosed. As the peak bicarbonate level is used, 

the accuracy of the test will increase with increasing number of samples, and hence, 

increased time used for sampling. Our fifteen minutes of sampling resulted in 

acceptable specificity of the test among the healthy controls (1 healthy control (3 %) 

was misdiagnosed), within slightly more than normal endoscopy duration. The bias 

caused by contamination of the working channel of the endoscope could be overcome 

by inserting a tube through the working channel to collect duodenal juice, as was done 

by Raimondo et al. (107). This, however, would complicate the procedure, as the 
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diameter of the collection tube would be smaller than the working channel, and extra 

external suction would have to be applied. 

 

Conservation of duodenal juice 
Samples collected through the endoscopic procedure were immediately sealed with an 

air tight screw cap and placed on ice. If possible, bicarbonate was determined the 

same day. Alternatively, the samples were stored in air tight containers, snap frozen 

on liquid nitrogen and stored till day of analysis. Pilot studies from our laboratory 

have not revealed any systematic changes in bicarbonate concentration between fresh 

samples and samples analyzed after conservation procedures described above 

(unpublished results).  

Digestive enzymes were not possible to determine on the same day, and needed to be 

conserved. Deterioration of lipase activity attributed to proteolysis has been 

demonstrated to occur even at -20°C (141). To avoid destruction of samples, we 

added a commercially available cocktail of protease inhibitors (cOmplete, Roche 

diagnostics). This effectively inhibited chymotrypsin activity, as shown in figure 5.  

In addition, samples were snap-frozen and stored on liquid nitrogen till day of 

analysis, to avoid any proteolytic inactivation of enzyme activity during storage. 

Samples were thawed on melting ice before analysis to keep pre-analytic proteolysis 

on a minimum. We have not determined the effect of snap-freezing, storage on liquid 

nitrogen and thawing procedures, but all samples were treated equally. Once thawed 

and then re-freezed duodenal juice samples were not used for enzyme activity 

analyses (138). 
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Figure 5. Relative chymotrypsin activity in 10 triplets of samples treated 
with cOmplete protease inhibitor cocktail (Roche) compared to the same 
untreated samples. The protease inhibitor cocktail reduced chymotrypsin 
activity to 3.8 % (SD: 1.7 %) of activity measured in untreated samples.  

 

Determination of bicarbonate concentrations in duodenal juice 
We used back-titration of samples to determine bicarbonate concentrations by a 

method modified from Van Slyke (130, 131). This method is considered as a 

reference standard in bicarbonate determination (132, 133). However, back-titration is 

time consuming as one sample takes 30 minutes to analyze. Back-titration is also 

technically challenging and demands a substantial sample volume, as at least 0.5 mL 

(preferably 1 mL) of duodenal juice is needed (130). 

 

Determination of digestive enzyme activities in duodenal juice 
We analyzed activities of several digestive enzymes to evaluate whether there was a 

global enzyme deficiency or if only one or few enzymes were affected. In addition, 

this approach gave us the opportunity to cross-validate our enzyme activity results. 

We chose to analyze enzymes with major roles in digestion of triglycerides, starch and 
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protein. Duodenal elastase activities were also analyzed, because faecal elastase 1 is a 

marker used to detect exocrine pancreatic dysfunction in CEL-MODY (301) and 

HNF1B-MODY (173, 292, 293).  

To analyze enzyme activities, we wanted to use swift assays with possibility to 

measure several samples at the same time. In addition we wanted to use small sample 

volumes, as duodenal juice was not always abundant when sampling. To achieve this 

we fitted enzyme assays to 96 wells microplate. Commercially available enzymes 

were used as standards on each microplate to reduce inter-assay variation caused by 

incidental differences in assay conditions. However, the assays were not validated 

against other external standards, making comparison of our results to results from 

other laboratories difficult. To determine intra-assay variation, we measured each 

sample in triplicates. 

As described in paper III and paper IV, all four enzyme assays had excellent linearity 

determined from dilution series of standard enzymes within measuring range. The 

intra-assay variance was also acceptable for all enzyme assays with possible exception 

from the pancreatic lipase assay (coefficient of variance: 14.7 %). The large intra-

assay variance in the lipase kit may have been caused by incomplete emulsification of 

the substrate. Lipid droplets in a well of the microplate may then have caused altered 

fluorescence properties in the sample. Incomplete emulsification of substrate is a 

well-known cause of inaccuracy in lipase assays (137). To improve emulsification, we 

sonicated the pancreatic lipase substrate for 30 seconds, but it may still have been 

incompletely emulsified. Using larger volumes of the pancreatic lipase substrate and 

duodenal juice samples could possibly have improved intra-assay variation, as single 

lipid droplets then would constitute a smaller part of the total volume. However, then 

the assay would not fit into a microplate setting. Inter-assay variations have not been 

determined.      

 

 



 67 

4.1.2 Diagnostic aspects 

Diagnostic value of the rapid endoscopic secretin test 

Peak bicarbonate concentration as diagnostic marker in chronic pancreatitis 
In paper I, we used a rapid and easy to perform endoscopic secretin test in the 

diagnostic work-up of patients with suspected chronic pancreatitis. In lack of a 

feasible gold standard for the test, we determined the diagnostic value of the test in 

comparison to a much used multimodal diagnostic score (250-252). We found a 

specificity of 100 % for the test in our material when using a peak bicarbonate 

concentration cut-off value of 80 mEq/L. The peak bicarbonate value is a result of 

secretory capacity of the pancreatic ducts (3). Shortening collection time increases the 

risk of not sampling when the bicarbonate concentration has reached the peak value, 

hence reducing the specificity of the test. Poor specificity has in fact been one of the 

main problems with earlier rapid endoscopic tests of exocrine pancreatic function (99, 

107, 108). Hence a high specificity of our test is very promising. Using the same cut-

off, the sensitivity of the test was found to be 73 %. Comparing sensitivity of our test 

to other tests is difficult, as no gold standard for exocrine function has been used in 

our study, and there are observations indicating that 10-20 % of unselected patients 

with chronic pancreatitis do not have exocrine pancreatic dysfunction (252).  

Concerns regarding the multimodal approach 
We evaluated whether the patients had chronic pancreatitis or not by using a modified 

version of the Mayo score (or Layer score) (250). The patients were classified as 

having chronic pancreatitis if they were scored ≥4. Our modification of the score is 

quite similar to the Lüneburg score proposed by Lankisch et al (251).  

The scoring system deserves some concerns. We used both faecal elastase < 200 μg/g 

and duodenal bicarbonate < 80 mEq/L as signs of pancreatic exocrine dysfunction in 

the evaluation of diagnostic value of duodenal bicarbonate. This is a circular 

reasoning that spuriously may elevate the sensitivity and the specificity of the test, as 

a positive test will elevate the score by 2 points. This could be solved by using only 
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faecal elastase as a measure of reduced exocrine function. However, as faecal elastase 

has poor sensitivity and specificity, and would hence reduce the validity of the 

reference standard (62). In addition, the diagnostic value of faecal elastase is also 

tested in our material for comparison. Hence, the diagnostic value for faecal elastase 

could be spuriously elevated if this was the only marker for exocrine dysfunction. 

Another solution could have been using and external marker for exocrine dysfunction, 

for example three day faeces collection for determination of faecal fat. However, the 

sensitivity and specificity of faecal fat is also poor in chronic pancreatitis (71, 72, 

252). In addition, most of the participants in the study declined to collect faeces for 

three days (Erchinger F. et al. unpublished results). We were aware of this circle 

reasoning problem when we chose to use both duodenal bicarbonate and faecal 

elastase in the scoring system. To avoid misclassification, we offered examination 

with EUS and classification with Rosemont score as an external classification system 

to patients where different results from faecal elastase and duodenal bicarbonate 

caused discrepancy in the classification of whether or not they had chronic 

pancreatitis.  

The Layer score is quite conservative due to its multimodal approach (251), and is 

much based on changes in the pancreas visible on imaging. This may have resulted in 

misclassifying small duct disease and early chronic pancreatitis as normal in our 

material (231), because imaging classification may be equivocal or normal despite 

present disease. As MRI  is considered a more sensitive method in detecting 

parenchymal changes (44), inclusion of MRI results as a criterion in our modified 

score may have counteracted this tendency to misclassification.  

The rapid endoscopic test beyond chronic pancreatitis 
In paper I, we demonstrated that the rapid endoscopic secretin test had very good 

diagnostic value in the diagnosis of chronic pancreatitis. By measuring the peak 

bicarbonate values, we only evaluate the ability of the pancreatic duct to make 

bicarbonate rich fluid.  This has been shown to be a reliable and sensitive parameter 

of exocrine pancreatic function in chronic pancreatitis (61), and evaluation of acinar 
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function does not seem to enhance the test (239). This is not necessarily the case in 

the evaluation of other conditions. In Shwachman-Diamond and Johansson-Blizzard 

syndromes, the acinar function is impaired, but not the ductal function, leading to 

normal bicarbonate values (199). In cystic fibrosis, small output of highly 

concentrated pancreatic juice may cause high bicarbonate concentrations in some 

patients, even though the total ductal function is severely impaired (99, 100). Hence, 

in evaluating the nature of the exocrine pancreatic dysfunction in different conditions, 

we need estimates for output of digestive enzymes and fluid volume output from the 

pancreas.  

4.2 Imaging evaluation of exocrine pancreatic function 

4.2.1 Methodological aspects 

Secretin stimulated increase in duodenal fluid volume 
We used a magnetic resonance imaging (MRI) protocol to examine pancreas 

morphology and function. In paper II we used this protocol on 20 healthy subjects 

with assumed normal exocrine pancreas. 

Pancreatic fluid volume output was estimated by calculating intraintestinal fluid 

volume increase in the duodenum and proximal jejunum at defined time points after 

secretin stimulation. By drawing regions of interests (ROI) around duodenum and 

proximal jejunum in six 10 mm thick slices in the coronal plane, the whole duodenum 

and most of the proximal jejunum were included for calculations of volume increase, 

allowing a non-invasive estimation of pancreatic volume output. We found a mean 

secretion rate in healthy subjects of 6.4 mL/min during the first 13 minutes after 

secretin stimulation, which is comparable with maximal flow of approximately 4 

mL/min after secretin stimulation demonstrated earlier by fluid collection (309). Our 

results are also comparable with other secretin stimulated MRCP materials (116, 118, 

121). 
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As ductal cells are by far the main contributor of water in pancreatic juice (3), 

increase in duodenal fluid volume after secretin stimulation probably mainly reflects 

ductal function, which is also to some degree supported by the correlation between 

duodenal fluid filling after one minute and peak bicarbonate concentrations from 

rapid endoscopic secretin test.  

The increase in fluid volume in the duodenum and proximal jejunum is an estimate of 

pancreatic fluid output. Any secretin-induced changes of fluid volume in the ROI not 

caused by pancreatic output will confound this estimate. Extra-pancreatic fluid may 

come from proximal to the ROI (e.g. the ventricle), or may be lost distal to the ROI 

(e.g. more distal parts of jejunum). In addition, increased secretion from the duodenal 

and jejunal mucosa and the biliary system may confound our results. Secretin has 

been shown to slow gastric emptying in animal models (310, 311); hence, gastric fluid 

from above the region of interest does probably not constitute a major confounder to 

this estimate. Some fluid may have spilled out distal to the region of interest, leading 

to underestimation of fluid output. However, the region of interest was drawn to 

include all intestinal segments with changes in water signal through the imaging 

series, probably making at least systematic effects of this possible confounder 

negligible. Fluid filling beyond the duodenal genu inferius at 15 minutes after secretin 

stimulation has been used as a landmark for normal pancreatic function (312). It is 

therefore unlikely that undetected fluid filling in intestinal segments distal to the 

proximal jejunum cause significant underestimation of total fluid increase after 

secretin stimulation. 

Secretion of bicarbonate rich mucoid fluid from the duodenal mucosa is one of the 

main mechanisms protecting from acid mediated injury in the duodenum (313), but no 

effect of secretin has been demonstrated on this epithelial bicarbonate secretion (314).  

Bile is another possible confounder to the estimated pancreatic output. Secretin has 

choleretic properties (23, 315, 316), but the choleretic effect of secretin is probably 

equal in patients and controls, and therefore has probably no influence on differences 

of total volume increase between the groups. However, increased biliary output may 
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confound the results of the secretin stimulated duodenal volume increase per 

pancreatic gland volume ratio presented in paper IV. In this ratio, the effect of 

increased biliary flow will increase both with lower pancreatic output and with 

smaller pancreas gland size. From studies performed on patients with surgical biliary 

drainage, the maximum increase in biliary flow after secretin stimulation has been 

estimated to be approximately 10 mL/15 minutes (315, 316), which is a relatively 

small amount compared to the total increase in duodenal volume. When correcting for 

bile flow by subtracting 10 mL from increase in duodenal fluid volumes 13 minutes 

after secretin stimulation in HNF1B mutation carriers and healthy controls, the 

increase in duodenal fluid volume to pancreatic volume ratios are (SD) 3.5 mL/cm3 

(2.7) mL/cm3 and 1.1 (0.7) mL/cm3 respectively, the difference still being significant 

(p=0.04).  

Diffusion weighted imaging and apparent diffusion coefficient – what do 
we measure? 
We also evaluated pancreatic tissue properties by diffusion weighted imaging (DWI) 

before and after secretin stimulation in healthy controls. The apparent diffusion 

coefficient (ADC) was calculated from two uptakes with b-values of 50 and 800 

sec/mm2 respectively. The ADC value is a result of the net sum of water movement in 

a voxel (53). We detected an increase in ADC after secretin stimulation in healthy 

controls. This increase is probably a combination of increased tissue perfusion and 

increased tissue diffusivity as a response to secretin. The latter may reflect the 

movement of water from the bloodstream to the ducts occurring instantly after 

secretin stimulation (4). In DWI, higher b-values detect smaller water movements 

(53). As perfusion causes larger movements of water than diffusion, our ADC values 

are probably more reflecting changes in diffusion properties of the tissue than the 

results from Erturk and co-workers (126) who used b-values of 0 and 400 sec/mm2 

respectively when calculating ADC. 

We demonstrated significantly positive correlations between increase in duodenal 

fluid volume and ADC values in the pancreatic tissue. As suggested in paper II, this 
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may indicate that diffusion and perfusion properties of the pancreas may predict the 

pancreatic tissue secretory capacity. This notion is supported by the results from 

Akisik and co-workers (128) who demonstrated lower pre- and post-secretin ADC 

values in chronic pancreatitis patients compared to patients with normal pancreases. 

However in paper III, we demonstrated a non-significant trend towards higher pre-

secretin ADC values in CEL-MODY patients, even though their secretory capacity is 

reduced. This indicates that pre-secretin ADC values are also resulting from other 

tissue properties than secretory capacity alone. 

 

4.3 Pancreatic disease in CEL-MODY and HNF1B-MODY 

4.3.1 Evaluation of exocrine pancreatic function 

Acinar and ductal function 
In paper III and IV, we demonstrated significantly lower peak bicarbonate 

concentrations in duodenal juice in both CEL-MODY and HNF1B-MODY patients 

than in controls, indicating reduced ductal function. The mean bicarbonate levels 

seem to be moderately reduced in both CEL-MODY and HNF1B-MODY patients. 

This is supported by significantly lower, but still present duodenal fluid volume 

increase after secretin stimulation observed on MRCP.   

We used duodenal juice collected in the rapid endoscopy test for determination of 

digestive enzyme activity levels. In paper III, we describe a large, global digestive 

enzyme deficiency in CEL-MODY patients compared to healthy controls, indicating 

severe acinar failure in this condition. In paper IV, HNF1B patients had significantly 

lower activity levels of pancreatic lipase and elastase, and there was also a non-

significant trend towards lower levels of amylase and chymotrypsin, indicating that 

digestive enzyme levels are reduced in this condition, but not as much as in CEL-
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MODY. As we did not quantify the amount of digestive enzymes in duodenal juice in 

patients with CEL-MODY and HNF1B-MODY, lower levels could theoretically be 

due to reduced activity in normal amounts of enzymes. However, this is unlikely, as 

low faecal elastase levels have been demonstrated in both CEL-MODY (301) and 

HNF1B-MODY (173, 292). 

Diagnostic value of endoscopic test and imaging studies in detecting 
CEL-MODY and HNF1B-MODY 

Peak bicarbonate concentrations and duodenal fluid volume increase 
We demonstrated significant differences in secretin stimulated pancreatic fluid 

volume output between healthy controls and CEL-MODY patients, and between 

healthy controls and HNF1B-MODY patients, confirming reduced ductal function as 

demonstrated by reduced peak bicarbonate concentration levels in the endoscopic test. 

In the CEL-MODY group, there was considerable overlap between patients and 

healthy controls, in contrast to the bicarbonate results. This is demonstrated by the 

receiver operating characteristic curves (Figure 6A). There was a similar, non-

significant trend in the HNF1B-MODY group (Figure 6B). This may represent poorer 

diagnostic accuracy of secretin stimulated pancreatic output volume compared to peak 

bicarbonate concentration, as has also been suggested in a recent work by Lieb and 

co-workers (317). In this study, peak bicarbonate concentration had better diagnostic 

value than total volume of duodenal juice collected for one hour after secretin 

stimulation in patients with chronic pancreatitis classified after multimodal clinical 

criteria. However, there are several weaknesses in this study worth mentioning: No 

duodenal carrier substance was used, making quantification of fluid lost from 

collection impossible, hence underestimating the volume secreted (99). In addition 

collection time was one hour, even though the peak flow of pancreatic juice after 

secretin stimulation occurs almost immediately, followed by a slow decline in flow 

(17). If reduced peak flow is the main indicator of reduced exocrine function, the 

signal to noise ratio will be lowered by one hour collection time. 
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Figure 6: Receiver operating characteristic curves demonstrating 
differences in ability to discriminate patients from controls between peak 
bicarbonate concentrations achieved from rapid endoscopic secretin test, 
and increases in duodenal fluid volume 13 minutes after secretin 
stimulation achieved from magnetic resonance imaging. Panel A 
demonstrates that using peak bicarbonate concentrations detect patients 
with CEL-MODY significantly better than duodenal fluid volume increase. 
There is a non-significant trend towards a similar difference in HNF1B-
MODY as demonstrated in panel B. 

 

On the other hand, use of peak bicarbonate concentration may have overestimated the 

pancreatic exocrine dysfunction in CEL-MODY and HNF1B-MODY. As MRI based 

secretin stimulated exocrine pancreatic function testing is appealing because of its 

non-invasiveness, further studies are warranted to evaluate diagnostic accuracy, and 

also to optimize timing for imaging after secretin stimulation. 

Digestive enzyme activity levels 
As is the case with faecal elastase concentrations (301), digestive enzyme activity 

levels in duodenal juice were excellent diagnostic markers for CEL-MODY as there 

was virtually no overlap between the CEL-MODY patients and the controls. As with 
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bicarbonate, there was considerable overlap between the HNF1B-MODY patients and 

controls with respect to digestive enzymes, fitting well with these patients’ clinical 

phenotype and our conclusion that pancreatic function is only moderately reduced. 

4.3.2 Pathophysiological aspects in CEL-MODY and HNF1B-MODY 

Pancreatic function in CEL-MODY 

Acinar and ductal dysfunction 
In paper III, we demonstrate that peak bicarbonate concentration is reduced in CEL-

MODY patients to a median of 38 mEq/L, which is 33% of the median in healthy 

controls. This reduction is less than the median lipase level in CEL-MODY, which 

was only 2.4 % of the median in healthy controls. This apparently indicates that ductal 

function is reduced to a less degree than acinar function in CEL-MODY. There are, 

however, other bicarbonate-containing contributors to duodenal juice that could bias 

the peak bicarbonate concentration. I have discussed bile as a contaminant before in 

this thesis. Results from biliary drainage studies indicate that after secretin 

stimulation, bile bicarbonate concentration increases to a mean peak level of 

approximately 30-40 mEq/L (315, 316). This could cause a relatively higher median 

for bicarbonate concentration. However, there are observations indicating that the 

increase in biliary flow and bicarbonate concentration reaches a peak within 10 

minutes after a single dose secretin stimulation, before it decreases, and reaches basal 

state before 30 minutes, when we start collecting duodenal juice (318). Another 

possible contaminator is bicarbonate rich mucoid secretions from the duodenal 

mucosa, but due to the pH gradient effect of this layer (313), the contribution to total 

bicarbonate concentration in duodenal juice is difficult to estimate. We do, however, 

demonstrate a mean increase in duodenal fluid volume  in CEL-MODY patients that 

is 70% of the mean volume increase in healthy controls. Regardless of contaminants 

biasing this result, this observation supports the notion that ductal function is more 

preserved than acinar function in CEL-MODY. 
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CEL-MODY may be a primary acinar disease 
From our clinical studies of CEL-MODY, we observe that there is a severe reduction 

of pancreatic acinar function and relatively moderate reduction of ductal function, 

both of which have been observed to precede diabetes. This may indicate that the 

disease process is primarly in the acinar compartment with secondary destruction of 

the ductal and beta-cell compartment, fitting well with the observation that the CEL 

gene is expressed in acinar cells of the pancreas, but not in ductal cells or in the beta-

cells (300). This contrasts the situation in Shwachman-Diamond syndrome (194) and 

Johansson-Blizzard syndrome (199). These are also conditions causing primary 

disease in the acinar compartment of the pancreas, but ductal cell function is intact, 

and diabetes risk is probably not increased (195, 200). How this primarily acinar 

defect causes a global pancreatic dysfunction is not known. We have demonstrated 

that the mutated CEL in CEL-MODY has amyloid properties and easily form 

aggregates, and that the mutant protein is excreted, and found in pancreatic and 

duodenal juice (304). The secondary effect on ductal cells and beta-cells could be 

directly cytotoxic, by similar effects as the hypothesized mechanisms of islet amyloid 

polypeptide in type 2 diabetes (319), but misfolded self-protein may also resemble 

pathogen-associated molecular patterns, initiating chronic inflammation and cell 

senescence, as is one of the models for explaining Alzheimer’s disease (320). 

Development of diabetes mellitus in cystic fibrosis and chronic pancreatitis are both 

conditions associated with beta-cell failure secondary to exocrine pancreatic 

dysfunction. The pathophysiological mechanisms of secondary diabetes development 

in these conditions are complex, involving beta cell dysfunction secondary to chronic 

inflammation and destruction of beta- cells secondary to fibrosis (263), but possibly 

also loss of beta-cell maintenance signalling from the exocrine tissue (321).    

Pancreatic function in HNF1B-MODY 

The size matters 
In paper IV we demonstrate a strong correlation between pancreatic gland volumes 

and both secretin stimulated peak bicarbonate concentrations and duodenal fluid 
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volume increase 13 minutes after secretin stimulation. Both correlations indicate that 

ductal function is dependent on pancreatic gland size. In our material, we did not find 

correlations between digestive enzymes and pancreatic gland volumes. It is, however, 

not unlikely that such a correlation applies to acinar function as well. The amount of 

digestive enzymes excreted undergo changes as a result of diet composition (322), 

probably causing more variability in excreted digestive enzymes in a population. This 

increased variability may have obscured a correlation between duodenal digestive 

enzyme activity and pancreatic gland volume. Relation between pancreatic size and 

faecal chymotrypsin levels have been demonstrated in diabetes patients in a recent 

paper from Philippe and co-workers (275). It is also well known that a substantial part 

of patients undergoing pancreatic resections develop exocrine pancreatic insufficiency 

(323). However, in addition to the volume of remaining pancreatic tissue, the degree 

of exocrine pancreatic insufficiency is dependent on type of surgery e.g. preservation 

of ventricle and duodenum (323), and  status of the remaining pancreas after surgery 

(324). In one study examining six children who had undergone 85-95 % 

pancreatectomy due to hyperinsulinism, all children had reduced pancreatic exocrine 

function, and four of them had pancreatic function test compatible with pancreatic 

exocrine insufficiency (325). 

The observed trend towards earlier age of diabetes onset in subjects with reduced 

pancreatic volumes suggests a possible relation between reduced pancreatic volume 

not only to pancreatic exocrine function but also to endocrine function. Such a 

relationship could be explained by lower beta cell mass in a smaller pancreas, but may 

also be due to similar defects in the transcriptional network causing pancreatic 

hypoplasia, peripheral insulin resistance and beta cell dysfunction (295, 297-299, 

326).  

Pancreatic hypersecretion in HNF1B-MODY 
The pancreatic hypersecretion observed in HNF1B-MODY patients may be a 

compensatory mechanism to reduced pancreatic mass, at least in the ductal 

compartment. This is supported demonstration of pancreatic hypersecretion after 
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pancreatic resection in dogs (327), but also in man there are observations supporting 

pancreatic tissue plasticity, leading to recovery of functional parameters in both ductal 

and acinar compartments after pancreatic resection (328).  

Hypersecretion from the pancreas has been demonstrated in patients with liver 

cirrhosis and other severe liver disease (329, 330), and also in hemochromatosis (329, 

331), but even though mild liver affection is a common finding in HNF1B mutation 

carriers (292, 293, 332), liver disease do not explain the relative hypersecretion we 

observe in these patients. 

The demonstration of hypersecretion from small pancreases of HNF1B-MODY 

patients indicates normal or nearly normal function of the exocrine pancreatic tissue, 

compensating for reduced pancreatic mass. This observation supports the earlier 

suggestion from our group (173), that pancreas volume is reduced due to hypoplasia 

and not atrophy in HNF1B-MODY. 

Normal function of exocrine pancreatic tissue is further confirmed by the 

demonstration of the same post-secretin increase in ADC to a post-secretin peak in 

HNF1B-MODY patients, in contrast to no increase in ADC in CEL-MODY patients, 

which has also been demonstrated in chronic pancreatitis patients (126).  

4.3.3 Exocrine pancreatic function and sufficiency in CEL-MODY 
and HNF1B-MODY 

In CEL-MODY patients, we demonstrate a negative rank correlation between faecal 

fat loss and peak duodenal juice pancreatic lipase activity. This finding directly 

demonstrates that the exocrine pancreatic dysfunction found in CEL-MODY patients 

causes pancreatic insufficiency. This is further supported by subnormal vitamin E 

levels in untreated CEL-MODY patients (301, 302), and the positive linear 

correlation between lipid-adjusted α-tocopherol and peak duodenal pancreatic lipase 

activity levels we demonstrate in paper III. 
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Several of the HNF1B-MODY patients participating in our study were, 

understandably, reluctant to collect faeces for three days, making estimation of faecal 

fat loss impossible in this small group. However, other materials have demonstrated 

that faecal fat loss is within normal or nearly normal limits in HNF1B-MODY 

patients (292, 295, 296), indicating that pancreatic exocrine function is probably 

sufficient in these patients. This is also supported by the absence of abdominal 

symptoms in the HNF1B-MODY patients described in paper IV. The demonstration 

of subnormal levels of vitamin D and E found in HNF1B-MODY patients (173), and 

our demonstration of a positive linear correlation between 25-hydroxyvitamin D and 

peak duodenal pancreatic lipase activity do, however, oppose this notion.    

As we have not quantified the fat intake in patients when determining faecal fat loss, 

we are not able to quantify the fat absorption rate in CEL-MODY patients (64), 

hence, we are not able to estimate a threshold value for how much duodenal peak 

pancreatic lipase activity must be impaired for fat malabsorption to occur. A reduction 

of pancreatic lipase output to 5-10 % of normal value has long been established as a 

threshold for impaired absorption of fat, hence, pancreatic insufficiency (71, 72). Our 

peak values from spot samples of duodenal digestive enzyme activities in patients 

compared to healthy may be good enough estimates for digestive enzyme output. This 

is supported by the finding of pancreatic insufficiency in CEL-MODY patients with a 

median peak duodenal pancreatic lipase acitivity level of 2.4 % of the median in 

healthy controls, and apparent exocrine pancreatic sufficiency in HNF1B-MODY 

patients, of whom all subjects had duodenal pancreatic lipase activity levels above 10 

% of the median in healthy controls. However, in CEL-MODY and HNF1B-MODY, 

these peak values probably overestimate the enzyme output, as we also demonstrate 

less fluid volume output in patients than in healthy controls. 
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4.4 Clinical consequences of exocrine insufficiency 

It is well established that exocrine pancreatic dysfunction leads to pancreatic 

insufficiency, causing increased faecal losses of nutrients, which may subsequently 

lead to malnutrition. This is the case in both chronic pancreatitis (207, 333-336) and 

cystic fibrosis (189). Malnutrition may be divided into negative energy balance 

leading to weight loss and poor physical performance, and micronutrient deficiency 

(337). 

4.4.1 Macronutrient status 

In paper III we discuss the macronutrient status in CEL-MODY. It is somewhat 

puzzling that despite severe exocrine insufficiency in CEL-MODY patients, with 

substantial steatorrhoea (301) and severely reduced digestive enzyme activity levels 

and bicarbonate concentration in the duodenum, they seem to be well nourished. 

Before any pancreas enzyme replacement treatment, most of the patients did have 

body mass indexes within normal limits, some were even overweight and obese, and 

as a group, they did not differ from the healthy controls (301). Weight gain after 

treatment with pancreas enzymes was also rather modest, and occurred only in some 

patients (302). In paper I, we found that the mean body mass index in chronic 

pancreatitis patients was not significantly different from the healthy controls. 

However, we did not determine how many of these patients actually had severe 

exocrine pancreatic dysfunction leading to insufficiency. It is also worth noting that 

three of the chronic pancreatitis patients were underweight, with body mass indexes 

between 15 and 18.  

In contrast to CEL-MODY, weight loss is a common complication in pancreatic 

insufficient patients with chronic pancreatitis (207, 333) and cystic fibrosis (189), 

leading to considerably increased morbidity (338). 

To further discuss the different clinical outcomes in chronic pancreatitis, cystic 

fibrosis and CEL-MODY, three conditions causing severe exocrine pancreatic 



 81 

insufficiency, we need to look into the factors affecting energy balance. Energy 

balance, or macronutrient status, may, according to the first law of thermodynamics, 

be decomposed into the following equation: 

 

Food intake [Energy in]  

=  

(Faecal loss + Energy expenditure) [Energy out] + Weight gain [Energy stored] 

 

In the question of macronutrient nutritional status over time, the status of energy 

storages e.g. whether there is weight gain or weight loss, is one indicator of this 

balance, as shown in figure 7. 

Figure 7: Model demonstrating energy balance in the healthy, adult 
individual. Food intake is balanced to loss of nutrients and energy 
expenditure. There is no net gain or loss of energy storages, hence no 
weight gain or weight loss. In the child, growth is also on the expenditure 
side of the balance, necessitating increased food intake. 

Food intake 
Food intake over time is strictly regulated, leaving the body weight in adults 

remarkably stable (339). This homeostasis of appetite regulation over time is 

regulated through complex central nervous mechanisms reviewed in (340), and seems 

to be more protective against weight loss than weight gain (341, 342). Cytokines from 

chronic inflammation may counteract this homeostasis, causing reduced appetite, 

leading to anorexia (343).  
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Faecal loss of nutrients 
In exocrine pancreatic insufficiency, substantial amounts of nutrients may be lost in 

faeces. Mechanisms leading to faecal loss of nutrients in exocrine pancreatic 

insufficiency have been discussed in chapter 1.2.4. If additional gastrointestinal 

disorders are present, they may add on to the poor uptake of nutrients further 

increasing faecal loss (182). 

Energy expenditure 
Total energy expenditure comprises three elements; resting energy expenditure (or 

resting metabolic rate), energy expended on physical activity and thermogenesis 

(344). In inflammatory conditions, resting energy expenditure is increased, probably 

as a result of increased metabolic needs from activated leukocytes, as reviewed in 

(345). 

Energy balance in exocrine pancreatic insufficiency 

Energy balance in chronic pancreatitis 
Cytokines from the chronic inflammatory process in chronic pancreatitis may 

counteract the homeostatic increase in food intake (343, 346). Severe postprandial 

pain is also common in chronic pancreatitis, often leading to anorexia (347). In many 

patients with chronic pancreatitis , nutritional status is further deteriorated by chronic 

alcoholism (333). Exocrine insufficiency leads to increased faecal loss of nutrients. 

Resting energy expenditure has been demonstrated to be increased in chronic 

pancreatitis, probably as a result of chronic inflammation, though alcoholism may 

play a role also in this matter (348). Hence, there are several drivers to negative 

energy balance which may exceed the homeostatic mechanisms, causing 

decompensation and weight loss as illustrated in figure 8. 
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Figure 8: Drivers to negative energy balance in chronic pancreatitis. 
Increased faecal loss of nutrients and increased energy expenditure lead to 
increased demand for food. However, postprandial pain, chronic 
inflammation and alcoholism counteract the homeostatic appetite 
regulation which may lead to decompensation and weight loss in chronic 
pancreatitis. 

 

Energy balance in cystic fibrosis  
Also in cystic fibrosis, cytokines from chronic inflammation as well as from acute 

exacerbations probably counteracts homeostatic increase in food intake (349). 

Gastrointestinal disorders causing pain in association with food intake, as esophagitis 

and distal intestinal obstruction syndrome, are quite common in cystic fibrosis 

patients, often restricting food intake (189). Exocrine pancreatic insufficiency cause 

faecal loss of nutrients, which may be further increased by viscous mucus impairing 

nutrient absorption, and also by cystic fibrosis associated liver disease (189). It is well 

known that resting energy expenditure is increased in cystic fibrosis patients (344). 

The reason for this is complex, and has been associated with inflammation (350) and 

deteriorating lung function (351). The energy imbalance that occurs when this 

situation decompensates in cystic fibrosis is illustrated in figure 9. 
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Figure 9. Drivers to negative energy balance in cystic fibrosis. Also in cystic 
fibrosis, need for food intake is increased due to increased loss of nutrients 
and increased energy expenditure. Chronic inflammation and inflammation 
caused by exacerbations counteract homeostatic appetite regulation. In 
addition, postprandial pain is common in cystic fibrosis, also leading to less 
food intake and energy balance decompensation. 

 

Energy balance in CEL-MODY 
The process causing destruction of the pancreas in CEL-MODY is not fully 

characterized, but may involve chronic inflammation. However severe pain and other 

inflammatory signs are not present, and food intake is probably not much negatively 

affected in CEL-MODY. Results from paper III confirms that faecal fat loss is caused 

by pancreatic insufficiency. There are no signs of other mechanisms leading to 

increased faecal loss of nutrients. Many of the patients develop diabetes, but low 

values of HbA1C (301) indicate good glycemic control, and energy loss through 

glycosuria must therefore be negligible if present. We have not measured the resting 

energy expenditure in CEL-MODY patients, but as inflammation, if present, is 

probably not severe, resting energy expenditure is probably not increased very much 

in comparison to healthy subjects. A proposed model of the energy balance in CEL-

MODY is illustrated in figure 10.    
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Figure 10. Proposed model of energy balance in CEL-MODY. Pancreatic 
insufficiency causes increased faecal loss of nutrients. This is 
compensated by homeostatic appetite regulation leading to increased food 
intake. CEL-MODY may prove to be a purer model disease for pancreatic 
exocrine insufficiency than chronic pancreatitis and cystic fibrosis. 

 

CEL-MODY as a model disease for pancreatic insufficiency 
According to this model, there are several additional drivers besides exocrine 

pancreatic insufficiency to decompensation, causing malnutrition in chronic 

pancreatitis and cystic fibrosis. In CEL-MODY, we have not found other drivers for 

malnutrition than exocrine pancreatic insufficiency, which may explain why CEL-

MODY patients compensated and did not lose weight, despite no treatment with 

pancreatic enzyme supplements. A similar compensated situation can be demonstrated 

indirectly by the need for additional strict diet, and still a rather modest effect of the 

lipase inhibitor orlistat in treatment of obesity (352-354), despite the strong inhibition 

of gastric and pancreatic lipases by orlistat in vivo (355, 356).  

Due to no known extrapancreatic manifestations, CEL-MODY may prove to be an 

excellent model disease for isolated severe exocrine pancreatic insufficiency. These 

beneficial conditions for studying consequences of exocrine pancreatic insufficiency 

are further strengthened by the fact that the diagnostic work-up of the patients was 

performed before knowledge about the patients’ exocrine pancreatic status was 

established, and therefore not biased by treatment with pancreatic enzyme 

replacement therapy.   
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Our observations that untreated CEL-MODY patients compensated their energy 

balance despite severe, untreated exocrine pancreatic insufficiency emphasize the 

importance of addressing all contributors to a decompensated nutritional status in 

patients with chronic pancreatitis and cystic fibrosis in addition to providing 

pancreatic enzyme replacement therapy.  

4.4.2 Micronutrient status 

Vitamin E 
Our group has earlier demonstrated vitamin E deficiency in CEL-MODY patients 

(301, 302). A significant increase in vitamin E levels in CEL-MODY patients 

resulting from treatment with pancreatic enzymes (302), suggests that vitamin E status 

in CEL-MODY is dependent on exocrine pancreatic function. In paper III, we 

demonstrated a strong correlation between pre-pancreatic enzyme treatment lipid-

adjusted α-tocopherol levels and duodenal lipase levels, further supporting that the 

low vitamin E levels are due to pancreatogenic fat malabsorption. We used α-

tocopherol as a marker for vitamin E status, because this is the most biologically 

active of the tocopherols (357). Lipid adjusted levels were used, as α-tocopherol is 

transported via lipoproteins, hence, the concentration is dependent on lipid status 

(358). This correction is probably important in the CEL-MODY patients studied, as 

they had a trend towards lower cholesterol levels than healthy controls (301). We did 

not find any significant or suggestive correlation between duodenal lipase levels and 

total cholesterol, LDL cholesterol or HDL cholesterol (not shown). Low levels of 

vitamin E were earlier demonstrated in two HNF1B-MODY patients (173), but was 

not found in the HNF1B patients described in paper IV. One possible reason for this 

may be that earlier investigations in HNF1B-MODY patients have made them aware 

of their small pancreases, causing them to take supplements, such as cod liver oil. 

However, as vitamin E levels in (173) were not corrected for lipid status, they may 

have been erroneously low if any of the patients had altered lipid profiles. 
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The dependency of the pancreas in the uptake of vitamin E has been known for 

several decades (359, 360), and negative correlations between vitamin E status and 

faecal fat loss have been demonstrated in chronic pancreatitis earlier (335, 360, 361). 

However, increased oxidative stress has been suggested to be an additional 

contributor to low levels of vitamin E in patients with chronic pancreatitis (362-365) 

and cystic fibrosis (366, 367).   

Lack of vitamin E may be associated with neuropathy. In CEL-MODY patients, 

demyelinising neuropathy was a common finding (302), but no significant correlation 

between neurophysiological status and vitamin E status was found (unpublished 

results). It is, however, worth noticing that peripheral neuropathy (though axonal) also 

seems to be common in cystic fibrosis (368). As an antioxidant, vitamin E may also 

be a disease modifier in chronic pancreatitis and cystic fibrosis (364, 367). It therefore 

seems prudent to diagnose and treat vitamin E deficiency in conditions associated 

with pancreatic exocrine insufficiency.  

Vitamin D 
There was no difference in 25-hydroxyvitamin D levels between CEL-MODY 

patients and healthy controls (301). One would expect malabsorption of vitamin D in 

severe exocrine pancreas insufficiency, as vitamin D deficiency is common in cystic 

fibrosis (369) and chronic pancreatitis (370, 371). However, the precursor of 25-

hydroxyvitamin D, previtamin D, is synthesized in the skin from UVB exposure from 

the sun (372), and samples from CEL-MODY patients were drawn in September, 

after months of sun exposure. There are great seasonal changes in 25-hydroxyvitamin 

D levels (373), and during the six darkest months of the year, the UVB exposure is 

not adequate to provide a sufficient vitamin D status at our latitude (372). Hence, an 

adequate intake and absorption of vitamin D is necessary to sustain normal vitamin D 

levels in the winter months, and probably would 25-hydroxyvitamin D deficiency in 

untreated CEL-MODY patients be more common in this period of the year. 
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In paper IV, we describe three HNF1B-MODY patients with 25-hydroxy vitamin D 

deficiency, as has also been found before (173). In this material, all samples were 

drawn in the period November to April, when vitamin D levels are dependent on 

ingested and absorbed nutrients. We demonstrated a positive correlation between 

duodenal lipase levels and serum levels of 25-hydroxyvitamin D, suggesting the 

dependence on normal exocrine pancreatic function. However, in HNF1B-MODY 

patients, levels of duodenal lipase were only moderately reduced compared to healthy 

controls, and none of the patients had duodenal lipase levels below 10 % of the 

median from the controls. This may indicate that vitamin D absorption is more 

sensitive to reduced exocrine pancreatic function than fat absorption in general. One 

possible cause of this is linked to the sterol binding capacity of elastase 1, possibly 

facilitating uptake of 25-hydroxyvitamin D (374). However, our finding may also 

reflect that peak lipase activity concentration underestimates the level of pancreatic 

dysfunction in HNF1B-MODY as discussed earlier. Finally, the finding may be 

coincidental, as vitamin D deficiency is quite common at our latitude during winter 

months (375, 376). 

The most obvious consequence of vitamin D deficiency is osteoporosis, which is 

common in both chronic pancreatitis (336) and cystic fibrosis (369). In one study, low 

faecal elastase and low levels of 25-hydroxy vitamin D was more abundant in patients 

with osteoporotic fractures compared to controls, but occult celiac disease, causing 

both low faecal elastase and osteoporosis, may have been a confounding factor (377).  

Osteoporosis was diagnosed in three and osteopenia in two of the nine CEL-MODY 

patients participating in the study by Vesterhus and co-workers (302) (not published). 

Vitamin D is also important in many extra-skeletal processes, like cell cycle 

regulation and immune regulation (372), and there is increased risk for cancer and 

autoimmune diseases in case of vitamin D deficiency (378). Interestingly, recent 

results indicate that improving vitamin D status may have beneficial effects on beta 

cell function and insulin resistance in type 2 diabetes patients (379-381). As 

consequences of vitamin D deficiency may be detrimental, and this is a common 

finding in patients with exocrine pancreatic dysfunction (maybe even in only 



 89 

moderate exocrine pancreatic dysfunction), screening for and treating vitamin D 

deficiency seems reasonable in patients with exocrine pancreatic disease. 

Vitamin A 
The vitamin A family comprises carotenoids and retinoids. Only one of the untreated 

CEL-MODY patients had vitamin A (retinol) deficiency, but the mean vitamin A 

level was significantly lower in patients than in controls (301). Vitamin A deficiency 

is common in chronic pancreatitis (335, 382) and cystic fibrosis (383, 384). At least in 

alcohol induced chronic pancreatitis, vitamin A levels seem to be less affected than 

vitamin E levels (335), as was found in CEL-MODY patients. This may partly be 

explained by brush border retinyl hydrolases in the small intestine (385). However, it 

is unclear how much this enzyme system compensates for lacking pancreatic lipase 

activity. 

Night blindness is the most commonly detected effect of vitamin A deficiency (386), 

but vitamin A is also involved in cell differentiation, immune function, pulmonary 

function and bone health (387). None of the CEL-MODY patients had physical 

findings compatible with clinical vitamin A deficiency. As antioxidants, carotenoids 

may also have disease modifying properties in chronic pancreatitis and cystic fibrosis 

(364, 367). 

Vitamin K 
Vitamin K is an important cofactor in posttranslational modification of coagulation 

factors. Gut flora is the main provider of vitamin K. No parameters on vitamin K 

status have been measured in CEL-MODY patients. On the other hand, no bleeding 

disorders have been reported by the patients.  

Vitamin K deficiency is a concern in patients with cystic fibrosis, probably due to the 

combination of  pancreatogenic malabsorption and frequent use of antibiotics 

affecting gut flora (387). 
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Cobalamins 
Cobalamin deficiency was detected and treated parenterally in one of the CEL-

MODY patients in (302). Cobalamin status has not been investigated systematically in 

the other patients, but casuistically, we know about three CEL-MODY patients  

receiving regularly injections of cobalamin supplements (not published). Pancreatic 

proteases take part in the complex mechanism binding cobalamin to intrinsic factor 

(388), and cobalamin deficiency has been attributed to pancreatic exocrine 

insufficiency (388, 389), though this is probably not a common complication (347). 

The observation is interesting, as neuropathy in CEL-MODY patients could also be 

explained by cobalamin deficiency. 

4.4.3 Should we treat with pancreatic enzyme supplements? 

In paper III, we detect pancreatic insufficiency with severe lipase deficiency, 

negatively correlated with faecal fat, and positively correlated with vitamin E status in 

CEL-MODY patients. Probably also vitamin D status is affected by this condition, as 

discussed above. Intuitively, recommending pancreatic enzyme supplement therapy to 

all CEL-MODY patients seems reasonable.  

However, we need to define an indication for treatment and a treatment goal. The 

steatorrhoea does not cause weight loss despite being severe. We have detected 

micronutrient deficiency in CEL-MODY patients, and at least vitamin E status seems 

to be caused by pancreatic insufficiency. Some, but not all the patients present 

subjective symptoms of diffuse abdominal pain or discomfort and diarrhoea.  

Three systematic reviews, have evaluated the effect of pancreatic enzyme 

supplements on faecal fat loss, two of them in chronic pancreatitis and one of them in 

chronic pancreatitis and cystic fibrosis. All three conclude that enzyme supplements 

reduce faecal fat loss (390-392). One of them also evaluates the effect on weight loss 

and quality of life in chronic pancreatitis, finding no significant effect of treatment 

(391). The results are, however, based on few studies. Effect of pancreatic enzyme 
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supplements on pain in chronic pancreatitis has also been evaluated in a systematic 

review (393), concluding with no significant effect. To my knowledge, no studies 

have evaluated the effect of pancreatic enzyme treatment on fat-soluble vitamin status 

or other micronutrients; on the contrary, there are observations that fat soluble 

vitamins may be deficient despite enzyme supplements (366, 382).  

It seems reasonable to treat pancreatic insufficient patients with cystic fibrosis and 

chronic pancreatitis with pancreatic enzyme supplements, as energy balance is 

threatened in these conditions, and faecal losses are reduced by therapy. It is probably 

also reasonable to try pancreatic enzyme supplements in CEL-MODY patients with 

abdominal symptoms as well, as there is a reasonable linkage between the symptoms 

they present and the deficiency of pancreatic enzymes demonstrated in paper III. In 

addition, abdominal symptoms were improved on enzyme therapy in the majority of 

CEL-MODY patients participating in the treatment study (302). The correlation 

between lipid adjusted vitamin E status and duodenal lipase levels in CEL-MODY 

patients demonstrated in paper III indicate a lipase dependent uptake of vitamin E, 

which was also demonstrated by improvement of vitamin E levels on pancreatic 

enzyme supplements (302). The positive correlation between 25-hydroxyvitamin D 

and duodenal lipase in HNF1B-MODY patients demonstrated in paper IV may 

indicate a similar lipase dependency for uptake of this vitamin, necessary for adequate 

vitamin D status at least in the dark months of the year. Hence, poor fat-soluble 

vitamin status despite adequate vitamin supplementation may be an indication for 

trying pancreatic enzyme supplements in the otherwise asymptomatic CEL-MODY 

and HNF1B-MODY patient. Our findings also emphasize the importance of clinical 

follow-up of these patients despite stable weight, as they are at high risk to develop 

micronutrient deficiencies.  

In children and adolescents with CEL-MODY, our group has detected low faecal 

elastase and pancreatic lipomatosis (45). The children and adolescents with CEL-

MODY participating in the study referred to in paper III, also had reduced fluid 

output from the pancreas compared to age matched controls (data for subgroup not 
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shown). It is probably reasonable to treat children and adolescents with CEL-MODY 

with pancreatic enzyme supplements, as they have higher energy requirement per kg 

than adults (394), possibly making them more prone to imbalance in the equation 

above. As protein-energy malnutrition has detrimental effects on growth (395), and 

lack of fat soluble vitamins may cause osteopenia with later osteoporosis (396), 

clinical follow-up with anthropometry and determination of fat soluble vitamins on 

regular basis is crucial in children and adolescents with CEL-MODY. 

Another subgroup of CEL-MODY patients that might have additional benefit from 

treatment with pancreatic enzyme supplements is patients with prediabetes and mild 

diabetes. Treatment with pancreatic enzyme supplements may cause increased meal 

induced levels of GIP and GLP-1, subsequently increasing insulin secretion. 

Increased incretin and insulin secretion following a meal has been demonstrated in 

patients with pancreatic exocrine insufficiency due to chronic pancreatitis (265, 266) 

and cystic fibrosis (267). However, no effect on long-term glycaemic regulation has 

been demonstrated as a result of pancreatic enzyme treatment.  

In paper IV we demonstrate only moderately reduced levels of digestive enzymes in 

patients with HNF1B mutations, and no gastrointestinal symptoms were reported. 

These patients do probably not need supplements with pancreatic enzymes, but will 

also need clinical follow-up of nutritional status, especially in childhood and 

adolescence, as fat-soluble vitamins are low in some of them. From our findings, this 

especially applies to patients with small pancreas volumes adjusted for body surface 

area. 
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5. Conclusions 

Through the work presented in the present thesis, we demonstrate that our modified 

rapid endoscopic secretin test using peak bicarbonate as diagnostic marker, is 

feasible, well tolerated by the patients and has acceptable diagnostic accuracy in 

diagnosing chronic pancreatitis. We further demonstrate that measuring duodenal 

fluid volume increase by secretin stimulated MRCP and ADC values by secretin 

stimulated DWI give correlated results, both probably reflecting exocrine pancreatic 

function. By using these two methods in evaluating exocrine pancreatic function in 

CEL-MODY patients we demonstrate severely reduced acinar function and 

moderately reduced ductal function, while function of both these compartments are 

only moderately reduced in HNF1B-MODY. In HNF1B-MODY, ductal function is 

dependent on pancreas volume, and there is compensatory hypersecretion. We find 

support that the pancreas in HNF1B-MODY is small due to hypoplasia and not 

atrophy. Despite severe pancreatic insufficiency in CEL-MODY patients, they show 

remarkably few signs of malnutrition, probably due to increased food intake. Fat-

soluble vitamin levels are vulnerable to exocrine pancreatic insufficiency, and should 

be monitored closely in patients with CEL-MODY and HNF1B-MODY. 
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6.  Future perspectives 

Improving the diagnostic methods 
Despite its potential role in diagnosing exocrine pancreatic disease, invasive 

pancreatic function testing is almost never used in clinical settings. This is probably 

due to lack of feasibility of most invasive pancreatic function tests (93). Further 

development of our feasible, rapid endoscopic secretin test therefore seems 

reasonable. We are planning to perform measurements of enzyme activities in 

duodenal juice from patients with suspected chronic pancreatitis to evaluate whether 

this improves diagnostic value of the test. 

To do this, we need to evaluate and improve pre-analytic measures and methods for 

analysis of bicarbonate and digestive enzymes. By treating duodenal juice samples 

with protease inhibitor before snap-freezing and storing on liquid nitrogen, we were 

able to conserve them well enough to discriminate well between healthy controls and 

patients with pancreatic disease. However, the effect of these measures needs further 

evaluation. Also the precision and accuracy of the digestive enzyme activity assays 

need to be evaluated further. Both bicarbonate analysis and digestive enzyme activity 

assays have been done by rather work intensive methods, and automation of these 

analyses would be a major improvement.  

To evaluate the nature of exocrine pancreatic dysfunction in MODY patients, we 

needed an estimate of pancreatic fluid output. We used a functional MRI protocol to 

achieve this. By diffusion-weighted imaging we were also able to directly study tissue 

response to stimulation. Despite some concerns regarding diagnostic value of the 

secretin stimulated MRCP protocol, our MRI protocol represents a promising 

approach to exocrine pancreatic function testing. The MRI protocol is appealing as it 

is non-invasive with minimal discomfort for the patient, as well as it combines 

function testing with state of the art imaging modalities in one procedure. We plan to 

further optimize the secretin stimulated MRCP protocol, and to evaluate it in other 
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patient groups with exocrine disease, such as patients with cystic fibrosis and chronic 

pancreatitis. 

As a paediatrician, I also see the need to evaluate exocrine pancreatic function in 

children with more precise tools than what is available today. Further evaluating the 

rapid endoscopic secretin test and the MRI protocol in children with suspected 

pancreatic disease would therefore be of interest. 

Duodenal juice beyond function testing 
As secretin stimulated duodenal juice is not only expressing the result of exocrine 

pancreatic function, but also represents fluid proximal to the processes going on in the 

pancreas, we have stored samples of duodenal juice in a biobank for further 

investigation. There are a few studies using these properties by measuring cytokines 

in duodenal juice in patients with chronic pancreatitis (397-399). We plan to 

investigate the disease causing process in CEL-MODY by measuring the cytokine 

profile in these patients compared to healthy controls. Similar profiles may be 

measured in duodenal juice from patients with chronic pancreatitis and cystic fibrosis. 

We have also searched for protein fingerprints from the disease process with 

discovery proteomics of the duodenal juice from a few of the CEL-MODY patients, 

and are currently validating the results in a larger CEL-MODY patient material. 

Clinical investigations in MODY patients 
The phenotype of HNF1B-MODY is heterogeneous. Patients recruited to the present 

study have been identified through our MODY registry, thus with diabetes as 

important part of the phenotype. Hence, the HNF1B-MODY patients described in this 

thesis may represent a group with more affected pancreases than the HNF1B mutation 

carrier population in general. A supplementary estimate of the prevalence of pancreas 

hypoplasia in these patients could be made by imaging studies in HNF1B mutation 

carriers recruited through for example kidney disease registers. In HNF1B-MODY 

patients we demonstrated a non-significant trend towards earlier debut age of diabetes 
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with smaller body surface area adjusted pancreas volume. A similar correlation could 

be done in a larger patient material to increase power of the analysis; as 

demonstrating such a relationship would be of prognostic value for the patients. 

The compensated nutritional status in patients with CEL-MODY is intriguing. CEL-

MODY may be a purer model disease for global pancreatic exocrine dysfunction than 

chronic pancreatitis and cystic fibrosis, and energy balance studies in nearly 

asymptomatic patients with CEL-MODY with and without pancreatic enzyme 

supplement treatment would be informative with respect to contribution of pancreatic 

insufficiency to negative energy balance, and clinical effect of enzyme supplements. 
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