
Enhancing Content Management in DPG

Ana G. Pino

Department of Informatics
University of Bergen

Norway

Long Master thesis
November 2013



2



Foreword

This document is the result of my master degree studies in the Department of
Informatics at the University of Bergen.

I would like to thank my supervisor Khalid A. Murgal for his patience and
guidance through this process. I would also like to thank my fellow master students,
in particular those in the JAFU office for making this experience a good one and
always being willing to provide help.

To my friends and family my warm gratitude for their continued support and
understanding. Special thanks to Louise Iden and Line Eeg-Larsen for being my
family away from home.

Ana G. Pino
Bergen, 19. November 2013

3



Contents

1 Introduction and Background 13
1.1 Dynamic Presentation Generator (DPG) . . . . . . . . . . . . . . . . 14
1.2 Presentation Pattern and Presentations . . . . . . . . . . . . . . . . 15

1.2.1 Presentation Pattern . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Presentation Content Editor (PCE) 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 PCE use context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Workflows in PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Content management . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Pattern management . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Current Design and implementation . . . . . . . . . . . . . . . . . . 29
2.4.1 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 FormElements . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Analysis of PCE 35
3.1 Data Gathering and Analysis . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Usability aspects . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Lack of feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Unnecessary page loads . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Difficult to find entity-instance . . . . . . . . . . . . . . . . . . . . . 42

4



Contents

3.5.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Cross site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Solution Design 48
4.1 Proposed Solutions for enhancing PCE . . . . . . . . . . . . . . . . . 48
4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Asynchronous JavaScript and XML (AJAX) . . . . . . . . . 50
4.2.2 Single page applications (SPA) . . . . . . . . . . . . . . . . . 50

4.3 Refactoring to a SPA . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Current Navigational Model . . . . . . . . . . . . . . . . . . . 52
4.3.2 Presentation Model . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Content Model . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 New Navigational Model . . . . . . . . . . . . . . . . . . . . . 58

4.4 New Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Entity-instances collapse/expand . . . . . . . . . . . . . . . . 58
4.4.2 Adding Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.3 Entity-instances ordering . . . . . . . . . . . . . . . . . . . . 60
4.4.4 Entity-instances search . . . . . . . . . . . . . . . . . . . . . 61

4.5 Persistent XSS Solution . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Implementation 63
5.1 MV* and Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 JSON vs XML . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Underscore Templates . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Methodologies and Tools Used . . . . . . . . . . . . . . . . . . . . . 66
5.2.1 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Object Oriented CSS . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Testing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Experience, Future Work and Conclusion 71
6.1 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Update client on server change . . . . . . . . . . . . . . . . . 72
6.2.2 Implement Cascading Search and Security Solution . . . . . . 72
6.2.3 Use Modules to load Plugins . . . . . . . . . . . . . . . . . . 72
6.2.4 Implement Plugins and PV in the client . . . . . . . . . . . . 73
6.2.5 Integration of PCE and PV . . . . . . . . . . . . . . . . . . . 73

5



Contents

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 74

6



List of Figures

1.1 DPG subsystems based on illustration in [52] . . . . . . . . . . . . . 14
1.2 Components defined by the Presentation Pattern Specification and

their relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 A page component seen in PV. Red marks a title field. Blue marks a

messageEntity. Green marks the listMessageEntity. Yellow marks a
view. Orange marks the page. . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Screenshot of the listContent.html webpage. . . . . . . . . . . . . . . 24
2.2 Screenshot of the viewDetails.html webpage. . . . . . . . . . . . . . . 26
2.3 Screenshot of the editContentForm.html webpage. . . . . . . . . . . 27
2.4 Screenshot of the editContentSubmit.html webpage. . . . . . . . . . 27
2.5 Activity diagram describing the workflow of managing content in DPG 28
2.6 Activity diagram describing the workflow of pattern management in

DPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Files generated by DPG for the all-in-one presentation . . . . . . . . 30
2.8 Diagram of component structure in a view persistence file . . . . . . 31
2.9 Sequence diagram describing the creation of forms in PCE for edit-

Content.html. Image based in the sequence diagram found in [56] . . 34

3.1 Two screen shot of the editContentForm.html web page. On the top
in Add state with the feedback to the user explaining which fields are
required. On the bottom in Edit state without any feedback. . . . . 40

3.2 Screen shot of an entity-instance in the listWeekView view of the
course pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Example of XSS attack in the listContent.html web page. Screen shot
from [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Differences between the presentation of content in the viewDetails.html
and editContentForm.html web pages. . . . . . . . . . . . . . . . . . 54

4.2 ADV and ADV charts of the main UI components of the Presentation
Model for the client side application. . . . . . . . . . . . . . . . . . . 56

4.3 Class diagram of proposed Content Model for the client side application. 57

7



List of Figures

4.4 Activity diagram describing proposed workflow of Content Manage-
ment tasks in DPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8



List of Tables

2.1 PCE Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Use Case - User login and entering PCE . . . . . . . . . . . . . . . . 23

3.1 Usability aspects as mentioned by [16] and their perceived relevance
in PCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 List of PCE Content Management URLs and their parameters. . . . 53

9



Listings

1.1 messageEntity in pattern.xml. . . . . . . . . . . . . . . . . . . . . . . 15
1.2 contactEntity and contactListEntity in pattern.xml. . . . . . . . . . 16
4.1 Current code that interprets the statusMessage parameter. . . . . . 49
4.2 Proposed code to interpret the statusMessage parameter. . . . . . . 49
5.1 Code in pom.xml needed to set up Jackson. . . . . . . . . . . . . . . 66
5.2 Code in web.xml needed to set up RESTful services in DPG. . . . . 66
5.3 Render implementation of the FieldValueModel. . . . . . . . . . . . 68
5.4 Underscore template for the String Plugin . . . . . . . . . . . . . . . 69
5.5 Underscore template for the FieldValueView . . . . . . . . . . . . . . 69
5.6 getView method in the EditContentRestController . . . . . . . . . . 69

10



Definitions

ADO: Abstract Data Object
ADV: Abstract Data Views
AJAJ: Asynchronous JavaScript and Jason
AJAX: Asynchronous JavaScript and XML
API: Application Programming Interface
CMS: Content Management System
CSS: Cascading Style Sheets
CRUD: Create, Read, Update, Delete
DAO: Data Access Object
DOM: Document Object Model
DPG: Dynamic Presentation Generator
HTML: HyperText Markup Language
HTTP: Hypertext Transfer Protocol
HP: Hewlett-Packard
JAFU: Java i Fjernundervisningen
JPA: Java Persistence API
LSM: Learning Management System
PCE: Presentation Content Editor
POJO: Plain Old Java Object
PM: Presentation Manager
PV: Presentation Viewer
RAT: Repository Administration Tool
SCA: Static Code Analyser
SPA: Single Page Application)
TA: Teacher Assistant
UI: User Interface
UML: Unified Modelling Language
URI: Uniform Resource Identifier
URL: Uniform Resource Locator
XSLT: Extensible Stylesheet Language Transformations
XHTML: Extensible HyperText Markup Language
WYSIWYG: What you see is what you get
XML: Extensible Markup Language

11



Listings

ZAP: Zed Attack Proxy

12



1
Introduction and Background

Java i Fjernundervisningen (JAFU) a project within the Department of Informatics
at the University of Bergen (UiB) with the objective of providing distant learning
courses to students that cannot attend classes at the university. The project has
been active since 1999 and currently offers two courses on Java programming each
Spring semester, INF-100F and INF-101F. Since the beginning, several tools have
been used and developed to fulfil this objective. The system currently in use is
Dynamic Presentation Generator (DPG).

Its first version was developed by Yngve Espelid in 2004 but in 2008 after evaluating
the system, Karianne Berg [7], Bjorn Ove Ingvaldsen [23] and Bjorn Christian Sebak
[52] made the decision of reimplementing the system from the ground up; this led to
version 2.0. DPG has continued to be extended and improved since then by several
students through their master theses [53] [56], focusing mostly on making the system
more robust, improving the plugin architecture and adding functionalities. However,
since its development, little attention has been given to the user interface and ease
of use.

13



Chapter 1. Introduction and Background

Figure 1.1: DPG subsystems based on illustration in [52]

1.1 Dynamic Presentation Generator (DPG)

DPG is a Content Management System (CMS) that allows the creation, modifica-
tion, general maintenance and management of web content that can be presented to
users that have access to the system. DPG consists of four subsystems:

• Lobby It is the entry point to DPG and handles authentication and autho-
rization of the users, currently this can be done from Mi Side [38] or through
Webucator [33]

• Presentation Viewer (PV) Renders the content of presentations and dis-
plays it to the user.

• Presentation Content Editor (PCE) It allows the user to create, edit or
delete content from presentations.

• Presentation Manager (PM) Provides the functionality of creating, con-
figuring and deleting presentations.

14



1.2. Presentation Pattern and Presentations

The system defines three different roles that have increasing access to the different
subsystems of the DPG.

• Reader It can view the content of presentations it is authorized to see. Access
to PV.

• Publisher It can view and modify content of the presentation that it pub-
lishes. Access to PV and PCE.

• Administrator It can view and modify the content of all presentation and
create, configure and delete presentations. Access to PV, PCE and PM.

1.2 Presentation Pattern and Presentations

DPG was developed as an implementation of the concept of Presentation Patterns
[37] as first defined by Khalid A. Mughal in 2003. The main idea of presentation
patterns is to allow the separation of content and presentation so that they can be
reused without depending on the other.

1.2.1 Presentation Pattern

A presentation pattern (from now on pattern) describes the data structures that will
be used in the presentations based on it, and how the data will be organized. These
elements are defined using the components outlined by the Presentation Pattern
Specification. In figure 1.2 on the following page is possible to see the different
components and how they relate to each other.

Type, field and entity are used to define data structures. For example in listing
1.1 it is possible to see the definition of messageEntity in pattern.xml. The
messageEntity is composed of two fields, title and content, and each field has
a type, string and xhtml respectively, that defines the values the field can take
when the entity is instantiated.

Listing 1.1: messageEntity in pattern.xml.

1 <entity id="messageEntity">
2 <field type="string" required="true">title</field>
3 <field type="xhtml">content</field>
4 </entity>

15



Chapter 1. Introduction and Background

Type Field Entity

Entity-InstanceViewPage

1...1 1...1
1...1

0...* 1...*

0...*

1...1 1...* 0...*1...1

0...* 0...1

Figure 1.2: Components defined by the Presentation Pattern Specification and their
relationships

There are two special types called subentity and list, that when instantiated can take
the value of one or more entity instances. In these cases the field also declares the
entity that will be used as the data structure for the instances. An example of this
case can be seen in listing 1.2 on line 7.

Listing 1.2: contactEntity and contactListEntity in pattern.xml.

1 <entity id="contactEntity">
2 <field type="string" required="true">name</field>
3 <field type="string">email</field>
4 </entity>
5

6 <entity id="contactListEntity">
7 <field type="list" entity-id="contactEntity">contactList</

field>
8 </entity>

The componentsentity-instance, view and page describe how to organize the data to
present it to the user. Entity-instance, as the name implies, declares an instance of
an entity and gives it an id. It is these instances that will be used to map the data
structure given by the entity to the content. Views connect an entity-instance with
a transformation file that is in charge of transforming the content of the instance
into a format that can be presented to the user.

In the case of DPG the content is persisted in XML files and the transformations
are XSLT files that transform the XML into XHTML to be presented as web con-
tent. Views give the system the possibility of presenting the same information using
different formats since the same entity-instance can be mapped to several views,
allowing for example to only display the title of a messageEntity in one view while

16



1.3. Motivation

Figure 1.3: A page component seen in PV. Red marks a title field. Blue marks a
messageEntity. Green marks the listMessageEntity. Yellow marks a view. Orange
marks the page.

presenting all the data in another.

Views are not presented directly to the user, they are organized in pages. Pages can
contain one or more views and the views can be in one or more pages. This allows
for the same views to be shown together with different data in different pages.

1.2.2 Presentation

A presentation is an instantiation of a pattern and uses the pattern to structure and
organize its content. Several presentations can be created from the same pattern. For
example the course pattern is currently used to provide the structure for INF100F
and INF101F presentations each semester.

Figure 1.3 shows how all the components come together in DPG. It is a screen shot of
the page allMessages from the presentation INF100F based on the course pattern.

1.3 Motivation

Since its first version, DPG has gone through several modifications that have made it
a more dynamic tool for presenting and reusing content and structures increasing in

17



Chapter 1. Introduction and Background

complexity and functionality. However little attention has been given to the methods
used to create presentation content and how to make the job of adding content more
intuitive and less time consuming for the publisher user since the development of
version 2.0.

This aspect is one of the success factors of any CMS since their main functionality is
to facilitate content management, and the first step in the management is allowing
the user to enter the content into the system without adding complexity that takes
away attention from the content itself.

1.4 Objectives

The main purpose of this thesis is to improve content management capabilities in
DPG and in particular that of the PCE so that it becomes a more reliable tool. For
this reason the following goals were established:

• Analyse current use of PCE

• Propose solutions to the issues found in the analysis

• Implement proposed solutions

• Evaluate the implemented solutions

The aim is to make the DPG a flexible system for content management, that is
user-friendly for non-technical users.

18



2
Presentation Content Editor (PCE)

2.1 Introduction

This Chapter will explain the current functionality, structure and user workflows of
the Presentation Content Editor (PCE), paying special attention to usability and
security aspects.

PCE is in charge of maintenance and management of presentations in DPG. It is
used mostly by publisher users, and when necessary, by administrator users.

The current version of PCE was first developed by Bjorn Christian Sebak [52] in
2008 as an improvement of the existing system at the time called Repository Ad-
ministration Tool (RAT) developed in 2004 by Yngve Espelid [11]. The main goals
were to create an editing tool that could be used without having knowledge of the
underlying technologies and improve usability.

Since 2008 several other students have worked with DPG for their master thesis,
but none of them worked on PCE directly, therefore, the changes this subsystem
has sustained since its creation are minimal.

19



Chapter 2. Presentation Content Editor (PCE)

2.2 PCE use context

ISO 9241-11 [24] defines the use context of a work system as the description of
the conditions where the system is to be used. The conditions include the set of
users, tasks, equipment and environment where the systems are to be used. For the
purpose of this analysis the rest of DPG will be considered as static; meaning that
the structure of the patterns and the functionalities of the system will remain the
same, only how PCE deals with these elements and how they are presented to the
user will be analysed.

2.2.1 Tasks

Task describe the actions that can be taken within the system to reach an objective.
The objective will be used as the name of the task. A list of all the tasks in PCE
can be seen in Table 2.1.

The tasks in PCE can be divided into two categories. Pattern Management and
Content Management.

2.2.1.1 Content Management

Entity-instance selection As it was explained in section 1.2, DPG divides the
content in different levels (Presentation, Page, View, Entity-Instance, Field), the
content can not be modified until the user gets to the Entity-Instance level that
actually contains the data. The other levels contain information about how that
data is organized for the viewer user. This task allows the user to navigate to the
Entity-Instance level so that it can proceed with other tasks.

Content CRUD - Allows the user to create, read, update and delete content by
managing the data in the different existing entity-instances, adding entities-instances
to the existing ones and deleting the ones that are not needed.

2.2.1.2 Pattern management

This category of actions relate to changing the default settings of the pattern.

Disable Page/View: Hides the element from the viewer user in PV.

Enable Page/View: Shows the element to the viewer user in PV.

20



2.2. PCE use context

Name Frequency of Use Dependencies

Content selection Twice a week None

Content creation Twice a week Content Selection

Content modification Twice a week Content Selection

Content deletion Indeterminate Content Selection

Enable Page/View Once per semester Content Selection

Disable Page/View Once per semester Content Selection

Change Page/View name Once per semester Content Selection

Table 2.1: PCE Tasks

Change name of Page/View: Changes the label of the element to the user.

2.2.2 Users

In this section the characteristics of the different users of PCE will be described so
that they can be taken into consideration during the rest of the analysis.

2.2.2.1 Primary User

Teacher Assistants: This PCE user has knowledge of the content to be introduced
to the system but not necessary of the system itself. They tend to use the system
during one semester, the time that their assistantship lasts. The majority has had
previous contact with at least one LMS or CMS before. Example of these are Mi
side [38] and It’s learning [25] since they are used at the University of Bergen and
at College of Bergen, respectively. In DPG they are assigned the publisher role.

2.2.2.2 Secondary Users

System Administrator: They have knowledge of how the system works and its
workflows but no direct knowledge of the content. They tend to do the tasks regard-
ing pattern adjustments at the start of the semester to adapt the new presentation
to the desires of the publisher running the course. In DPG they are assigned the
administrator role and as such can modify any presentation.

Lecturer: Occasional user with knowledge of the content but not necessarily of the
system. They use the system for as long as they have courses that use the platform.
In practice the task of maintaining the DPG is delegated to the TAs so the lecturer

21



Chapter 2. Presentation Content Editor (PCE)

rarely has contact with the system. In DPG they are assigned the publisher role.

2.2.3 Equipment

As part of a web application, PCE requires as minimum a computer that has an
Internet connection and the capabilities to support a compatible browser. The
client application of PCE, and DPG in general, are currently based on JQuery [28].
Browser compatibility can be checked in the jQuery Browser Support webpage [27].

2.3 Workflows in PCE

The work of the publisher as such is mostly limited to PCE where the necessary
tools to create, improve and delete content are located.

Most of the work flows for the different scenarios will be described as starting from
the listContent.html webpage after the user has archived a successful login and
entered in PCE. The details of the use case describing the procedure the user needs
to follow to get to the listContent.html webpage can be seen in Table 2.2.

The UML activity diagrams [14] used to represent user interface navigation work-
flows are based on the ones described in [31] with the addition of some stereotypes
that make it easier to identify at first glance exactly what type of user interface they
represent. An example of an added stereotype is <<js:alert>> that represents a
Javascript alert window.

2.3.1 Content management

The content of each presentation is updated by modifying the entity-instances in
the presentation. The scenarios in this category include the tasks Content Selection
and CRUD of Content as described in 2.2.1. The activity diagram in Figure 2.5
shows the workflows for these tasks.

2.3.1.1 Content Selection

1. System: Displays the webpage pce/listContent.html (Figure 2.1) that con-
tains a list of all the pages with all the views contained in the presentation.

22



2.3. Workflows in PCE

Use Case Access PCE

Main Scenario

User System

1. User directs browser to navigate to
DPG

2. System displays /lobby/login.html
3. User enters correct credentials

4. System displays lobby/presenta-
tions.html with a list of all presenta-
tions of the user

5. User selects the presentation they
want to modify and clicks link ”Edit
Content”

6. System displays pce/listCon-
tent.html with a list of all pages and
views of the selected presentation.

Alternative Scenarios

3a. The credentials were invalid.
3a1. System displays an error message in /lobby/login.html.
3b2. User enters right credential.

Table 2.2: Use Case - User login and entering PCE

23



Chapter 2. Presentation Content Editor (PCE)

Figure 2.1: Screenshot of the listContent.html webpage.

24



2.3. Workflows in PCE

2. User: Locates a page that contains a view that uses the entity-instance that
it is interested in modifying and click on the Edit Content link next to the
name of the view.

3. System: Displays the pce/content/viewDetails.html (Figure 2.2)webpage
which contains a list of all the entities instances in the view, its fields and its
sub-entities.

4. User: Scrolls to find the section containing the type of instance it wants to
work with and then click on one of the three possibilities that correspond to
the desired task (add new, edit or delete).

2.3.1.2 Create and Update

1. System: Displays pce/content/editContentForm.html (Figure 2.3) which
shows a form with a form element for each field in the entity-instance. In
update use case they will appear already containing the information currently
in the system.

2. User: Enters the new data and clicks on the Submit button.

3. System: Validates data

(a) If the data is correct system: Displays the pce/content/editContentSubmit
.html webpage.

2.3.1.3 Delete

1. System: Prompts the user with a Javascript alert asking whether it is sure
that it wants to complete the deletion.

2. User: Answers the prompt.

(a) If answer is affirmative: System displays pce/content/deleteContent
.html. ( pce/content/deleteContent.html and pce/content/

editContentSubmit.html currently have the same format). They pro-
vide links for the user to go back to PCE or to go to PV as seen in Figure
2.4)

25



Chapter 2. Presentation Content Editor (PCE)

Figure 2.2: Screenshot of the viewDetails.html webpage.

26



2.3. Workflows in PCE

Figure 2.3: Screenshot of the editContentForm.html webpage.

Figure 2.4: Screenshot of the editContentSubmit.html webpage.

27



Chapter 2. Presentation Content Editor (PCE)

Click 
"Edit Content"

Click "Add"

<<page>>
viewDetails.html

<<page>>
listContent.html

<<js:alert>>
Confirm deletion

Click "Edit" 

Click "Delete" 

<<page>>
editContentForm.html

<<page>>
editContentSubmit.html

Click "Submit" 

No Yes

Figure 2.5: Activity diagram describing the workflow of managing content in DPG

2.3.2 Pattern management

Since the workflows for the actions are the same whether they are applied to a
page or a view to avoid duplication the word element will be used to represent
the mentioned pattern components. this means that for the next two subsections
the word element can be replaced by either view or page. The activity diagram in
figure 2.6 on the next page shows the workflows for these tasks.

2.3.2.1 Disable and enable Views and Pages

1. User: Clicks on the link for the respective action in listConent.html.

2. System: Presents a javascript alert window asking for confirmation of the
action.

3. User: Replies to the promt.

4. System: Returns to listContent.html.

(a) If the confirmation was given: System executes the action and a message
is displayed for a couple of seconds, stating the new status of the element
and in the list the element appears as disabled or enabled.

28



2.4. Current Design and implementation

Click "Enable Element"

<<page>>
listContent.html

<<js:alert>>
Confirm action

Click "Disable Element" 

Click "Change element label" <<page>>
editElementLabel.html

Click "Save changes" 

No

Yes

Figure 2.6: Activity diagram describing the workflow of pattern management in
DPG

2.3.2.2 Editing names of Views and Pages

The label of elements can be changed in the presentation without affecting the name
given by the pattern. This can be done from listContent.html.

1. User: Clicks on the link with the text ”Change element label”.

2. System: Displays editElementLabel.html with an HTML form with an
input box with the current label of the element.

3. User: Enters the new label and click on the ”Save changes” button.

4. System: Displays listContent.html where a message will be displayed stat-
ing that the label has been changed and the new label will be shown in the
list of pages and views.

2.4 Current Design and implementation

The components of the design and implementation of PCE can be subdivided in
three levels of abstraction from raw data to the HTML elements that are presented

29



Chapter 2. Presentation Content Editor (PCE)

Figure 2.7: Files generated by DPG for the all-in-one presentation

to the user. The first level deals with how the data is stored by the system. The
second level represents how the system interprets the data and the last level handles
how the data will be presented in the user interface so that the user can interact
with it.

2.4.1 Persistence

The majority of raw content data in DPG is stored in XML files, the exception are
resource files defined in the pattern and the plugins. For example, files that can be
made available to the user for direct download.

Figure 2.7 shows the file structure created by DPG to store the content data. The
presentation.xml file contains the information regarding pattern managements,
a list of the views and pages with their label and enabled attributes.

The files in the content folder hold the content data. Each file represents the data
of one entity-instance. In Figure 2.8 shows the structure of a content file. While
the components in presentations share the names with the pattern specification ones
presented in section 1.2, they are not the same and they do not relate to each other
in the same manner.

Each entity-instance can contain fields which have type, value and an attribute that
express whether the field is required. Fields can also contain entity-instances when
the type in the pattern was defined as subentity or list. There is also another case,
when the plugin that is used by DPG to interpret the type returns its own structure,
this last case will be farther discussed in section 2.4.2.

30



2.4. Current Design and implementation

FieldEntity-Instance
1...1 1...*

1...10...*

Type
1...* 1...1

Figure 2.8: Diagram of component structure in a view persistence file

2.4.2 Plugins

In DPG all field types are handled by plugins. The plugin architecture has been the
focus of several theses, most recently [56] in 2011. This architecture is based on the
plugin pattern by David Rice and Matt Foemmel and described in [13] by Martin
Fowler. It was first implemented by Bjorn Ove Ingvaldsen [23] and it was selected
due to its flexibility. It allows to update existing plugins or add new ones without
the necessity of recompiling the main application.

As dictated by the plugin pattern, an interface defines the behaviours that will be
different in each implementation of the plugin. In the case of DPG this interface is
called FieldPlugin and it defines seven methods that need to be implemented.

• generateElement: Returns a JDOM [26] element containing the DOM ele-
ments that will be presented in PV.

• getParameters: Returns a list of the parameters that can be used to configure
the plugin in the file pluginConfig.xml of the pattern.

• getFormElement: Returns the FormElement that will be presented in PCE.

• getXmlContent: Returns the content of the plugin in XML based on the input
FormElement.

• setPluginresourceDao: Used by FieldPluginManager to give the plugin
access to resources DAO.

• setPluginResourceJpaDao: Used by FieldPluginManager to give the plu-
gin access to resource JPA DAO [39].

• generatePatternStructure: In the case that the plugin requires more than
one field this method returns a list of JDOM elements defining the structure
of fields.

DPG also provides a standard implementation of this interface AbstractFieldPlugin
that most plugins extend.

31



Chapter 2. Presentation Content Editor (PCE)

2.4.3 FormElements

As it was explained in the previous section, each plugin returns a JDOM element
for their presentation in PV. This element is then transformed to HTML using
XSLT [63].

In PCE, the two webpages that present content employ very different methods. The
viewDetails.html page uses the XML content files and the PceTransformationUtil
-view.txt XSLT file to display the content. The plugin system is not involved in
the process and as a result the content is presented as raw data, without interpre-
tation.

The editContent.html webpage on the other hand uses the FormBuilder class to
create a form according to the structure provided by each plugin. The sequence dia-
gram in figure 2.9 shows the interaction between the EditContentFormController
class, controller of the editContent.html webpage, the FormBuilder class, in
charge of creating the form, and the FieldPlugin interface that is implemented by
all plugins. The main steps are as follows.

1. EditContentFormController request the new form from the FormBuilder

class by calling the createForm method with several parameters amongst
them the XPath [61] of the entity instance. FormBuilder then calls the
resolveEntity method of the EntityPathResolver class which returns the
entity instance

2. FormBuilder calls the generatePatternStructure method in the corre-
sponding FieldPlugin implementing class according to the entity instance.
This method can return null, in which case then the system infers that the
plugin uses the default pattern structure, the current default structures is one
text field. It can also return a list of JDOM elements each representing one
field of the structure needed by the entity instance.

3. For each of the fields required by the entity instance, the FormBuilder class
executes the handlePluginEntity method. This methods requests the plugin
for the field to return the FormElement needed to represent it on a form.

4. FormBuilder adds all the form elements into an instance of the Form class
and returns it to EditContentFormController that transforms it into an
XHTML form ready to be displayed to the user.

The FormElement class extends the abstract class XmlConvertible that as the
name indicates, provides it with a method that converts the element into an XML

32



2.4. Current Design and implementation

node. The node is later used in combination with an XSLT to display the field as
an HTML form element.

33



Chapter 2. Presentation Content Editor (PCE)

Figure 2.9: Sequence diagram describing the creation of forms in PCE for editCon-
tent.html. Image based in the sequence diagram found in [56]

34



3
Analysis of PCE

The previous chapters have established the structure and purpose of DPG and more
specifically of PCE. This chapters analyses the current use of PCE and its usability
from the point of view of the publisher.

3.1 Data Gathering and Analysis

The usability of the system was evaluated in two different ways. The first one was
feedback from current publisher users through unstructured interviews with open
questions. There are four users that have worked with PCE and they were consulted
regarding their experiences. The second method was testing by the candidate using
two patterns. First the pattern that is currently in use, the Course pattern. This
pattern contains all the basic plug-ins and has been in use in production for several
semesters. The second pattern was created for the purpose of testing some of the
plug-ins that are not contained in the Course pattern and is called All-in-one Pattern.

35



Chapter 3. Analysis of PCE

Usability Aspect Importance in PCE

Navigability High Importance

Effectiveness High Importance

Credibility High Importance

Understandability High Importance

Learnability Moderate Importance

Accessibility Low Importance

Customization Low Importance

Table 3.1: Usability aspects as mentioned by [16] and their perceived relevance in
PCE.

3.2 Usability

The focus of usability is the ease of use of a system according to its target audience.
It is an abstract concept that can not be measured directly and it is therefore usually
divided in different components that can be more easily observed. The components
differ depending on the source and there are several studies and recommendations
including ISO 9241-11 [24] that describe possible frameworks to analyse the usability
of user-system interfaces. For the purpose of analysing PCE we will use the aspects
mentioned in [16] taking into consideration that according to the ISO recommenda-
tion each system has to be evaluated according to the context in which it is meant
to be used. A summary of the importance of the different usability aspects for PCE
can be found in Table 3.1.

3.2.1 Usability aspects

According to [16] there are seven usability aspects that need to be taken into consid-
eration when refactoring web applications for usability. They were analysed taking
into consideration the use context described in the previous chapter. What follows
is a brief descriptions of these aspects and their importance for PCE and the scope
of this thesis.

3.2.1.1 High Importance

• Effectiveness: is the degree to which the system provides the necessary tools
for experienced users to accelerate the process towards archiving the desired
effect. In the case of PCE steps that the publisher needs to follow are always
the same and once learned should not present any impediments for the user to

36



3.2. Usability

repeat them in an expedite fashion. In PCE it is the content that is important,
not the process itself, for this reason effectiveness is one of the most important
usability factors.

• Navigability: describes the organization of the web application and the ex-
tent to which the user is presented with, and understands the use of, links and
navigation tools and how they can be used to follow the application process
towards its conclusion, or simply towards finding the content it is looking for.
This aspect is particularly important in PCE because the user is trying to
achieve a goal: improve the content that is presented to the viewer. If at some
point during the process the publisher is not able to understand what the next
step is then this goal can not be reached.

• Credibility: relates to the ability of the web application to gain the trust
of the user in that it will perform the tasks in a reliable manner. During the
creation of content this aspect is of particular interest in two ways. First, the
publisher needs to trust that the content it is creating is going to be saved and
used in the manner it is intended and second, from the point of view of the
viewer, the content needs to be that which the publisher intended for them.

• Understandability: describes the degree to which the layout and other vi-
sual elements of the system allow the user to comprehend how the application
works, what it can do and what is its current state. This is of especial impor-
tance in PCE since if the user does not understand how to manage the content
then it will not create it.

3.2.1.2 Medium Importance

• Learnability: is the extend towards which the system makes it easy for a
new user to learn its use and to guide it towards the desired action or content.
Regarding PCE this is particularly important when the publisher is confronted
with a new plug-in. Details like how the information should be entered and
what kind of information the system is expecting are necessary to allow the
publisher to do its work without delays.

3.2.1.3 Low Importance

• Accessibility: examines the ease to access and work with a system, in the
case of web applications, it relates mostly to users with different disabilities
and the use of standards that facilitate the interaction with assistant software.
Even though on the open web this is an important factor, it does not affect

37



Chapter 3. Analysis of PCE

DPG as it is currently used, for this reason, while desirable, it is not a primary
goal due to time limitations.

• Customization: implies the capacity of the system to deliver especial content
targeted towards the user based on previous use of the system or other data
gathered regarding the wishes and objectives of the user. In the case of PCE
this aspect of usability does not have priority since the actions to be taken are
straight forward, although there could be small details like short cuts towards
the content most recently modified, they would not add much value since once
an entity-instance is created it is usually not modified.

The next section describes the issues found in PCE. The aspects of usability
that they influence will be analysed, the current situation will be explained
and sources and possible solutions will be discussed.

3.3 Lack of feedback

This issue relates mainly to the following usability aspects:

• Credibility : If the system feedback to the actions of the user does not commu-
nicate in clear and consistent way about the current status, the user will not
be able to trust that the system is working in the desired manner.

• Understandability : Feedback is one of the main tools that any system has to
communicate with the user so that it understands what the current situation is
and the steps that it needs to take to achieve the desired goal. If the feedback
fails to be understandable then the user can be lost as to what to do next.

• Learnability : The inexperienced user needs feedback to learn how the system
works and what is the expected input. If the communications from the system
is not clear then it is not possible to learn how it functions.

3.3.1 Current Situation

On submitting a new entity-instance or changes in an already existing one there are
two possibilities: the submission is a success, the changes are accepted and persisted;
or it fails, be it because of failing validation or other reasons. In the case of success
the user is redirected to editContentSubmit.html (Figure 2.4 on page 27). In the
case of failure, editContentForm.html (Figure 2.3 on page 27) is reloaded without
the changes made by the user.

38



3.3. Lack of feedback

During the different stages of the process there are several deficiencies in the feedback
information provided to the user.

• Before the data is submitted in the editContentForm.html web page the
required fields are not marked as such. This is true when an existing entity-
instance is edited but not when a new entity-instance is created, adding in-
consistency of feedback to the problem. This is shown in Figure 3.1

• If a submission of editContentForm.html fails, the web page is reloaded but
there is no error information or any indication that there was an error, the
data entered by the user is lost and the old data is reloaded.

• If a submission is a success the editContentSubmit.html web page is loaded
but the new data is not displayed. It is only available by following the links
to go back to the viewDetails.html web page or to PV subsystem.

3.3.2 Discussion

Feedback relates to giving information to the user about the result of an action it
has taken and allows it to continue with other activities. To explain the importance
of feedback in a system [48] compares it with real life situations. For example if it
took a couple of seconds between the moment that a person starts writing and the
words appear in the paper it would be difficult to continue writing without knowing
where the words are located and if they were correctly written.

In the case of PCE there is some feedback but it is insufficient and does not provide
the user with all the information that it needs. There have been several studies on
the best practices of form feedback, two examples are [66] [20]. They examine several
methods of form validation and explain the different moments where feedback can
be given and the reaction of users.

In particular [66] did user testing to evaluate different methods of validation and
feedback. Six different forms where used for the test with the control version using
after submit validation and the others using different inline validation methods. The
results show that inline validation was better in every aspect.

In respect to the moment when the feedback is given to the user, the method used
currently by PCE falls into the category of after submit validation and not all the
data is provided to the user as explained in section 3.3.1

Selected Solution

39



Chapter 3. Analysis of PCE

Figure 3.1: Two screen shot of the editContentForm.html web page. On the top in
Add state with the feedback to the user explaining which fields are required. On
the bottom in Edit state without any feedback.

40



3.4. Unnecessary page loads

Add inline validation and feedback in the different forms of PCE and the data
missing as explained in section 3.3.1.

3.4 Unnecessary page loads

This issue relates to the effectiveness usability aspect. Unnecessary page loads delay
the completion of a procedure by incrementing the amount of times that the client
needs to communicate with the server without adding to the functionality.

3.4.1 Current Situation

In section 2.3.1 on page 22 it is explained that it is necessary to pass through four
different web page loads to add or edit content in a presentation. The first three
pages have the same functionality, help the user find the atomic unit of content (the
entity-instance) that it wants to modify. They are part of the task Content Selection.
This is accomplished by narrowing the scope of the elements from the presentation
pattern shown in each web page. The listContent.html web page displays pages
and views, the viewDetails.html web page displays entity-instances in a view
and the editContent.html web page displays only one entity-instance with all the
fields that it contains.

After the user has completed editing and submits the changes, there is one last web
page in the work-flow, editContentSubmit.html, its functionality is to provide
the user with feedback regarding the result of the changes that the user executed
and links to see the content in the PV.

3.4.2 Discussion

A family of design patterns called In-Page Editing is described in [51] based on the
design principle “Allow input wherever you have output” presented by Alan Cooper
in [9]. As the principle advocates that if it is possible to see the content then it
should be possible to edit it in the same place. This would imply that the best place
to allow the edition of content in DPG is PV; however this is not a trivial task due
to the implementation of the Presentation Pattern and the separation of roles in the
system.

At least two roles are involved when creating a new presentation pattern. The first
role is the Pattern Designer, it is in charge of creating the data structure for the

41



Chapter 3. Analysis of PCE

pattern. The knowledge required of this role regards how the content should be
organized and the XML syntax used to describe such structure.

The second role is the Graphic Designer whose task is to desing and create the
XSLT and CSS files necessary to present the data in PV. The knowledge required
in this role are the data structure, and the languages used by the system, HTML,
XSLT and CSS.

To display content in PV the system uses a method similar to that employed by
viewDetails.html explained in 2.4.3. As consequence, in order to allow edition
in PV, the XSLT would have to include some kind of link or anchor to inform the
system that it should allow edition. For this to be possible the Graphic Designer
would have to know how the system works which would nullify the separation of
concerns in the creation of a new pattern.

As a matter of fact, the system is already capable of doing this, however, because the
designers of the pattern currently in use were not aware of this fact, this functionality
is not used. As a result an alternative solution would be preferable.

In PCE the content is presented in the third loaded web page, viewDetails.html,
nevertheless editing currently is not possible until loading the fourth web page of
the workflow. Using the Single-Field pattern presented in [51] the fourth page could
be removed from the work flow.

Selected Solution Integrate the functionalities of viewDetails.html with those of
editContentEdit.html into only one web page using the In-Page family of patterns
[51].

3.5 Difficult to find entity-instance

Several usability aspects are affected by the ability to locate entity-instances, mainly
effectiveness due to the amount of effort that is necessary for the user to find the
desired entity-instance.

Other aspects affected are learnability and understandability especially by how the
entity-instances are ordered. This will be explained with more details in the discus-
sion in section 3.5.2.

42



3.5. Difficult to find entity-instance

3.5.1 Current Situation

The responsibility of the viewDetails.html web page (figure 2.2) in the Content
selection task is to provide the user with the necessary elements to find the desired
entity-instance. For this purpose the page displays a list of all the entity-instances in
a view. Currently the web page shows all the field values and sub-entities contained
in the view.

3.5.2 Discussion

The viewDetails.html web page accomplishes its objective, however, it fails in
making this task effective due to the volume of information presented and the size
of the web page itself. For example the viewDetails.html that displays the content
in the listWeekView of the presentation INF101-F, v̊aren 2013 based on the course
pattern contains 14 entity-instances, each of which has two sub-entities and holds
178 fields in total. In a monitor at 1366x768 resolution it takes 24 screen scrolls
to see all the content in the page. A listWeekView entity-instance can be seen in
figure 3.2

Even though the myth of the page fold that stated that users tend to avoid scrolling
has been proven false. It has also been proven that the real state before the fold
is important and should give as much important information as possible without
overloading the user and should invite the user to continue scrolling [8] [55]. In the
case of the viewDetails.html the most important information is an overview of
the entity-intances in the view not all the details of each one.

Another factor that diminishes effectiveness is that after a user has selected an
entity-instance to work with and modifies it, on returning to viewDetails.html

the entities-instances have been reorganized. This is because they are presented in
the same order as they are in the underlining XML content file. This behaviour
increases the difficulty of finding the next desired entity-instance since they are
no longer in the expected position. This is aggravated in cases where the entity-
instances have an apparent order. A clear example of this can be found in the
previously mentioned listWeekView which is organized in week entity-instances.
The first field of the week entity is WeekNumber after updating information in the
system PCE shows these weeks ordered by default and not by week number that
would be the logical choice.

In summary there are three issues that make the task for the user difficult: Infor-
mation Overload, Size of the web page and Entity reorganization. The second is a
consequence of the first, and possible mitigation measures are:

43



Chapter 3. Analysis of PCE

Figure 3.2: Screen shot of an entity-instance in the listWeekView view of the course
pattern.

44



3.5. Difficult to find entity-instance

• Show only fields of first level entity-instances: While this reduces the size of
the web page to some degree, a quick test shows that it is not enough, for
example in the listWeekView the size is reduced from 24 screens to 11 and the
number of fields displayed from 178 to 70 but it still requires for a visual scan
of 11 screens of content.

• Add collapse/expand functionality : This would allow the user to collapse all
the data of each entity-instance into a limited amount of fields that are iden-
tified as the most important for that type of entity-instance. However, due
to the characteristics of the presentation pattern specification it is impossible
to know a priori which fields are important to recognize an entity-instance.
There are several possible solutions for this, the optimal one includes changing
the specification to allow the pattern creator to add a property to each field
that describes it as “important” and update the course pattern, the only one
currently in use, to reflect this change.

• Better use of white spaces: The importance of the correct use of white space
for comprehension in web pages with important amount of content has been
discussed by several authors [65]. In viewDetails.html there is no lack of
white space, but it is homogeneous in the distance between fields of the same
entity-instance and between the entity-instances themselves. This gives the
possibility of reducing the space between fields to allow for the user to easily
group the fields of one entity-instance as the same cognitive unit while at the
same time reduce the size of the web page.

Possible solutions for Entity reorganization are:

• Create a default order : Either by adding the possibility in the presentation
pattern specification for the pattern creator to select a criteria by which the
entity-instances should be ordered. This approach would take into considera-
tion how the entity-instances were designed to be used but not how they are
actually used and the two are not necessarily the same.

• Allow the user to select the order : Add the functionality of ordering the first
level of entity-instances according to a field of their choosing. This option
allows for the user preferences to be taken into consideration and it does not
require deep changes to the system.

The measures mentioned so far target existing problems in the existing solution and
add new functionalities to mitigate those issues. It is possible nevertheless, to go a
step farther and add a search functionality. By allowing the user to type what they
are looking for and filtrating the content to only show the search results.

45



Chapter 3. Analysis of PCE

Selected Solution

Only display first level entity-instances by default and implement collapse/expand,
order and search functionalities.

3.6 Cross site Scripting

This issue influences the credibility of the system. The user needs to be able to trust
as much as possible that the website will not allow third parties to inject attacks
into the process. Vulnerabilities to XSS leave the system open to attacks that may
ultimately diminish the credibility of the site.

3.6.1 Current Situation

The security of PCE has been the object of several reports, most recently [47], and
one master thesis [57]. One issue that is discussed in both but has yet to be solved
is the vulnerability of the system to Cross Site Scripting (XSS) attacks.

3.6.2 Discussion

A successful XSS attack is the result of an attacker being able to inject code into
a client application of a trusted website. Once this is achieved, the client browser
can not differentiate whether the code comes from the original, trusted site or from
an attacker and will treat and execute both in the same manner; allowing them
access to ambient authentication, cookies and other data related to the original site.
Any application that uses data entered by the user as part of its output could be
vulnerable to Cross-site Scripting attacks.

In [47], done in collaboration with Anne Elise Weiss, PCE was analysed using HP
Fortify Static Code Analyser (SCA) [45] and OWASP Zed Attack Proxy (ZAP) [44]
for penetration testing. One example of reflected XSS [43] was discovered in the
listContent.html web page since it receives a get parameter that is inserted into
the body of the page without any sanitation. This problem is easy solvable by chang-
ing the method which is employed to display the status message. An example of an
attack can be seen in 3.3. The url requested in that attack is localhost:8080/
dpg2/pce/content/listContent.html?pid=219_definitive&statusMessage=
This+message+is+inserted+with+Reflected +XSS.

A more serious threat to the DPG users however is the vulnerability that PCE presents
to persistent XSS attacks [43]. This type of attack is successful when the malicious code

46



3.6. Cross site Scripting

Figure 3.3: Example of XSS attack in the listContent.html web page. Screen shot
from [47].

can be persisted into the system. As a consequence all users that access the content of the
website after the attack are affected by it. The reason for this vulnerability is usually lack of
sanitation, validation and canonization of data entered by an untrusted source before being
stored. This situations happens in all fields of PCE except those that provide a reduced list
of possible values and are displayed in combo boxes. These values are corroborated against
the list of possible choices and if they do not match, they return an error. This is the only
case in PCE where there is data validation.

Selected Solutions

Remove the statusMessage from the listContent.html web page and find already
existing frameworks that could sanitize the user input on the server side.

47



4
Solution Design

In the previous chapter the problems with the usability of the current implementation of
PCE were discussed, together with possible solutions for each of these problems and the
best options were selected for implementation. This chapter takes the selected solutions and
analyses the changes needed to the current system in order to implement them.

4.1 Proposed Solutions for enhancing PCE

The proposed solutions selected in the previous chapter are:

1. Integrate the functionalities of the viewDetails.html, editContentEdit.html
and editContentSubmit.html web pages using the In-Page Editing family of

patterns [51].

2. Add inline validation and feedback in the editContentForm.html web page.

3. Only display first level entity-instances by default

4. Implement collapse/expand.

5. Implement ordering of entity-instances

6. Implement search for entity-instances.

7. Remove the statusMessage from the listContent.html web page.

8. Research already existing frameworks for sanitizing user input on the server side.

48



4.2. Definitions

While solution 7 can be easily implemented by changing the expected data type of the
statusMessage parameter from a string to an integer and change the code used to display
the message from the one shown in Listing 4.1 to the one shown in Listing 4.2; implemen-
tations of the others solutions are not so straight forward. As a consequence of solution 1,
functionalities that before were distributed amongst three web pages, and their correspond-
ing controllers, are now in one, and due to solutions 2 to 6 new functionalities will also be
implemented into viewDetails.html.

Listing 4.1: Current code that interprets the statusMessage parameter.

1 <% if (request.getParameter("statusMessage") != null) { %>
2 <center>
3 <span class="statusMessage">${param.statusMessage}</span>
4 </center>
5 <% } %>

Listing 4.2: Proposed code to interpret the statusMessage parameter.

1 <% if (request.getParameter("statusMessage") == 1) { %>
2 <center>
3 <span class="statusMessage">The element has been enabled</

span>
4 </center>
5 <% else if (request.getParameter("statusMessage") == 2) { %>
6 <center>
7 <span class="statusMessage">The element has been disabled</

span>
8 </center>
9 <% } %>

4.2 Definitions

The current implementation of PCE is founded on the traditional HTTP [60]/HTML web
page architecture, based on a thin client that is only responsible for presenting HTML to
the user and dispatching requests to the server with synchronous interaction. This leaves
the business logic, data state and data storage on the server side.

This approach is not optimal for implementing the proposed solutions since it would imply
that for each action from the user, an HTTP request to the server would have to be made,
the client would have to wait for the HTTP response and the response would include data
that the client had in a previous page load and presentation HTML together with the new
information.

49



Chapter 4. Solution Design

4.2.1 Asynchronous JavaScript and XML (AJAX)

Asynchronous JavaScript and XML (AJAX) [46] [40] as the name insinuates is a combination
of several pre-existing technologies that has evolved into an Internet standard in the last 15
years. AJAX utilizes XMLHttpRequest [62] to request data asynchronously from a server.
This data is transported in XML format and a combination of Javascript, XHTML and
Cascading Style Sheets (CSS) [58] are used to manipulate the Document Object Model
(DOM) [59] [64] to display the data.

AJAX provides the opportunity of reducing the size of the data being transmitted between
the server and the client, since everything that has to do with presentation and functionality
can be sent to the client only once; on the first page load. The rest of the requests would
be for state changes of the application, and the data will only contain relevant information
that describes the modification to the state since the last request.

Another advantage of this approach is that from the point of view of the user the page is
not reloaded, enhancing the experience. An example of the improvements perceived in the
usability is the scrolling of pages. As explained in Section 3.5 on page 42 one of the factors
that make finding entity-instances more difficult is the amount of information presented in
the viewDetails.html web page, and moving through that page. Even though steps are
going to be taken to improve the situation and reduce the size of the web page, using AJAX
and eliminating page loads will add the benefit that the user will never loose the place in
the page being displayed.

4.2.2 Single page applications (SPA)

A consequence of the introduction of AJAX into web development is the apparition of Single
Page Applications (SPA) [54]. These applications are composed of a single web page that
in itself contains several independent components with their own functionality that support
intermediary states.

The increasing complexity of the web page has several disadvantages, mainly that it makes
it difficult to develop and maintain the applications if it is not designed from the beginning
taking into consideration a clear knowledge of the different components and their states. As
it happens in the server, it is necessary to separate the concerns of data.

Since what before was a simple static HTML page has become an application it is necessary
to apply applications solutions to the problems that this new conception brings. One of the
solutions to this problem has been to adapt the concepts presented by the MVC pattern.
This will be discussed in more depth in Chapter 5.

50



4.3. Refactoring to a SPA

4.3 Refactoring to a SPA

There are two types of tasks to accomplish during the implementation of the client side ap-
plication for this project: the first one is to refactor the already existing functionalities into a
SPA unifying the viewDetails.html, editContentEdit.html and editContentSubmit
.html web pages into one and adjusting some of its behaviour (Solutions 1, 2, 3 in Section 4.1
on page 48); the second requires the implementation of new functionalities (Solutions 4 to
6 listed Section 4.1 on page 48).

There has been several studies and papers describing different approaches that can be used
to create SPA and refactor multi-page web applications into SPA [49] [34] [32], also called
Rich Internet Applications (RIA) [15].

A 5 step migration process is delineated in [34].

1. Retrieving Pages: Examine the application from the point of view of the user and use
static analysis to follow links to other pages and dynamic analysis to retrieve pages
that require parameters.

2. Navigational Path Extraction: Understanding how the user navigates from one page
to the other and what are the different paths that it follows.

3. UI Component Model Identification: Identify the portion of the web pages that
changes when navigating to the next page in the navigational Path.

4. Single-page UI Model Definition: Select an AJAX component that will represent the
components identified in the previous step. This component should be defined in
an abstract model so that it is not dependent of the tools that will be used for the
implementation and should describe state changes and navigational paths inside the
component.

5. Target UI Model Transformation: Transform the abstract model described in the
previous step to the platform-specific elements. This step will be explained in Chapter
5.

No abstract model is specified for step 4 of the process in the approach presented by [34].
The approach described in [49] however suggests Abstract Data Views (ADVs) as described
by [10]. ADVs are objects that specify the presentation and presentation behaviour of a
RIA interface component, however they do not deal with the data or business logic of the
element, this is the responsibility of the Abstract Data Object (ADO). Each ADV declares
an ADO owner, defines how it will be presented in the UI and interacts with it, being able
to change its state or trigger its behaviours.

The UI transformations that ADVs go through can be described using ADV charts. For
each possible interaction with the ADV the chart defines an event that triggers the trans-
formation, a precondition that has to be met before the transformation can take place and
a postcondition that describes the new state of the interface. An example of an ADV chart
can be seen in Figure 4.2 on page 56.

51



Chapter 4. Solution Design

Since ADVs are related to ADOs, it is necessary to also model the data of the application.
As a result of following the steps defined by [34] and using ADV for modelling the interface
components and ADOs to model the content four diagrams are created:

• Navigational Path Diagram for the current application

• User Interface Components in the form of ADVs

• Data Object Diagram in the form of ADOs

• Navigational Path Diagram for the new implementation

The last three elements coincide with the three models described in [16]. Since these names
are easier to recognize and understand at first glance they will be used instead:

1. Presentation Model

2. Content Model

3. Navigational Model

It is important to mention that the Content Model will be created based on the data needed
by the client application and not as it is modelled in the Server.

4.3.1 Current Navigational Model

To do step 1 of the process [34] recommends using automatic tools to map the possible
Navigational Paths in the system. However PCE has a very straight forward navigational
model. The URLs within Content Managment tasks in PCE can be seen in table 4.1 and
the activity diagram for the user workflow shown in Figure 2.5 on page 28, also serves as
the Navigational Model for the current system.

4.3.2 Presentation Model

In the workflow in Figure 2.5 on page 28 it is possible to see that there are currently
five transitions between web pages. From listContent.html to viewDetails.html
, from viewDetails.html to editContentForm.html, from editContentForm.
html to editContentSubmit.html (on add or on edit), from viewDetails.html
to editContentSubmit.html (on delete) and lastly from editContentForm.html to
editContentForm.html (on error).

In analysing these transitions more closely, it can be observed that only the header and the
footer of the page do not change from listContent.html to viewDetails.html. The
level of content presented changes from displaying Pages and Views to displaying entity-
instances. It is still possible to model this in a single page with the client requesting the data
from the server and keeping the presentation aspects from changing. However, the benefits

52



4.3. Refactoring to a SPA

URL Param Param Description

/pce/content/listContent.html pid Id of the presentation

/pce/content/viewDetails.html pid Id of the Presentation

pageId Id of the page

viewId Id of the View

/pce/content/editContentForm.html presentationId Id of the presentation

pageId Id of the page

viewId View Id

entityInstanceId Id of the entityInstance

entityPath Indicates the location of the entity

instance in the view

entityAction Indicates whether the user is

adding a new entity-instance

(ADD) or editing an existing one

(EDIT)

/pce/content/editContentSubmit.html presentationId Id of the presentation

pageId Id of the page

viewId View Id

entityInstanceId Id of the entityInstance

entityPath Indicates the location of the entity

instance in the view

entityAction Indicates whether the user added

a new entity-instance (ADD) or

edited an existing one (EDIT)

Table 4.1: List of PCE Content Management URLs and their parameters.

53



Chapter 4. Solution Design

Figure 4.1: Differences between the presentation of content in the viewDetails.html
and editContentForm.html web pages.

to the usability would not be substantial and due to the time constrains this transition will
be left out of the solution design of the new PCE.

The second transition however has more promise. There are two paths to transition from
viewDetails.html to editContentForm.html. Update entity-instance and Add entity-
instance. We will take a look at each of them separately.

Update entity-instance
As can be seen in figure 4.1 the content displayed in the editContentForm.html web
page is already presented in the viewDetails.html web page, only the presentation itself
changes. In viewDetails.html the value of the fields are displayed as simple text and
can not be edited, while in the editContentForm.html web page they are presented in
form HTML elements or WYSIWYG and it is possible to edit the values. As explained in
4.3 this identifies the representation of the fields as UI components.

Add entity-instance
This transition is different in that the content does not exist in the viewDetails.html
web page since the user has not yet created it. To add the new content it is necessary to know
the data structure of the entity-instance to be created. This means that the viewDetails
.html web page will need to have information not only of the content of already existing
entity-instances but also of their structure and the structure of the possible entity-instances
that can be added to the view.

The transitions from editContentForm.html to editContentSubmit.html and from
viewDetails.html to editContentSubmit.html, happen on Update or on Add, in
the first case and on Delete on the last. The transitions are currently alike in that the

54



4.3. Refactoring to a SPA

new content is not displayed on the editContentSubmit.html web page. Showing the
changes made to the content is something that is desired because of the reasons explained
in Section 3.3.1. However this is something that falls into the category of new functionality
and will be analysed in 4.4. The on add case is different since space is needed to add
the new fields for the new entity-instance, this can be solved using an overlay window as
recommended and detailed by [51] in cases where there is not enough space for the edition
of content to take place.

The last transition, from editContentForm.html to editContentForm.html hap-
pens when there is an error on the form submit. In this case there is no change in the
current system, except for the loss of the content entered by the user.

The results following this analysis confirms that solution 1 described in 4.1 coincide with the
necessary steps of transforming the viewDetails.html web page into a SPA in charge of
modifying the content within a view. They also provide the necessary information to create
the ADV charts that will be the basis for the implementation of the different UI components.
Figure 4.2 shows some of the ADVs and ADV charts of the Presentation Model.

For example the first diagram on the top left represents the BasicPluginFieldADV.
This ADV acts as the parent of all the FieldPlugins in the new system and shows their
interaction with the user. The diagram shows that the component has two internal states
and can transform from one to the other in any direction. The transformations are described
in the ADV chart under the diagram: Transformation 1 happens on the MounseClick event if
the parent of the FieldPlugin has Focus. If the precondition is met and the event is triggered
then the postcondition will be applied; the DisplayElement used to show the content will
be taken from the web page and a WISIWYG that allows editing will be added to the web
page.

4.3.3 Content Model

The Content Model needed for PCE has one particularity, the structure of an entity-instance
or even a field is not known since they depend on the definition of the entity in the cor-
responding pattern and the plugin respectively. It is important to remember that on the
Presentation layer of DPG when talking about the field level of content it refers to the
plugins so each different type of field has its own plugin implementation, and plugins have
the ability of defining their own structure. As a consequence it will be necessary for the
client application to be informed of the structure of entity-instances and fields that the view
contains.

A similar model exists in the server as was explained in Section 2.4 on page 29. However, the
current implementation has several issues, related mainly to the dependency that currently
exists between the storage technology (XML) and the presentation technology (XSLT). Cre-
ating a new PCE presents the opportunity to separate both concerns completely and allow
the content model implementation to be independent. As a consequence the presentation
content model and the previously existing one are different.

The proposed content model is diagrammed in the form of a UML [17] class diagram [18]

55



Chapter 4. Solution Design

BasicPluginFieldADV (Chart)

Display

DisplayElement

Editable

WISIWYG

1

2

Event: MouseClick
PreCond: Focus ((parent:PluginFieldADV).value)
PostCond: perCont = perCont - DisplayElement + WISIWYG

Event: MouseClick
PreCond: Focus ((parent:PluginFieldADV).Submit)
PostCond: perCont = perCont + WISIWYG - DisplayElement

PluginFieldADV

Label: value: BasicPluginFieldADV (1 - n )

Default_PluginUIFieldsADV

Label: value: PluginFieldADV (1 - n )

Default_PluginUIEntitiesADV (Chart)

Label: value: EntityInstanceADV (1 - n )

EntityInstanceADV

Label: value: PluginUIADV (1 - n )

delete: Link

add: Link

Event: MouseClick
PreCond: Plugin.maxEntityInstance < currentAmount & Focus (add)
PostCond: perCont = perConte + Overlay(entity)

Event: MouseClick
PreCond: Plugin.minEntityInstance > currentAmount & Focus (delete(n))
PostCond: perCont = perConte - Label(n) - value(n) - delete(n)

1

2

 perCont: Represents the current state of the 

                  presentation layer of the application

 (x - n):    The UI components can be present 

                  x to n times 

Figure 4.2: ADV and ADV charts of the main UI components of the Presentation
Model for the client side application.

56



4.3. Refactoring to a SPA

Field

+name: String

+value: FieldValue

+plugin: PluginUI

PluginUI

+name: String

+valid(values:Array([pluginField:String,

        value: FieldValue])): String

PluginField

+label: String

+type: BasicPluginField

+required: Boolean

FieldValue

+label: String

+value: PluginDefined*

+errorMessage: String

+required: Boolean

Entity

+name: String

+fields: Array(Field)

Entity-Instance

+entity-path: String

+name: String

+fields: Array(Field)

+entity: Entity

PluginUI_Entities

+entity: Entity

+maxEntityInstances: Integer

+minEntityInstances: Integer

PluginUI_Fields

+structure: Array(PluginFields)

BasicPluginField

+name: String

+valid(value:? ***): String

Figure 4.3: Class diagram of proposed Content Model for the client side application.

57



Chapter 4. Solution Design

and can be seen Figure 4.3. It defines the main structure and value classes that will be used
to represent the different elements in PCE.

• BasicPluginField : Represents a basic or primitive type of data, for example String
or Date. It contains its own validation logic that restrict the values that data of a
BasicPluginField type can take.

• PluginField : Provides the necessary structure for the fields that are specified in a
Plugin.

• PluginUI : Contains the logic and data that all specifications of plugins have in com-
mon.

• PluginUI Fields: Represents the types of plugins that are composed of PluginField.
The homologue of the presentation pattern type of field that are not list or entity.

• PluginUI Entities: Represents the types of plugins that contain entity-instances as
part of their structure for example the current list or entity types.

• Field : Provides the structure for the field that is part of an entity. And connects the
field with the plugin that is used to represent it.

• FieldValue: Represents the content data that correspond to a field in the entity.

• Entity : Provides the structure for the entity-instance.

• Entity-Instance: Main content unit. It is an instance that takes the structure provided
by entity and takes the values entered by the user.

4.3.4 New Navigational Model

The new Navigational Model shown in Figure 4.4 presents itself after the creation of the
ADVs and simplifies the previously existing one by unifying viewDetails.html, editContentForm
.html and editContentForm.html and adds the overlay UI for adding new entity-
instance.

4.4 New Functionalities

4.4.1 Entity-instances collapse/expand

In Section 3.5.2 on page 43 one possible implementation of this functionality was discussed.
It implied changing the Specification Pattern to allow the Patter Designer to specify which
fields in each entity-instance should be considered important and would be displayed when
the entity-instance was in collapsed state. The implementation of this option would imply
changing several parts of the system and the presentations already created for DPG. Because
of this issues another option was conceived.

58



4.4. New Functionalities

Click 
"Edit Content" 

<<page>>
viewDetails.html

<<page>>
listContent.html

Click "Edit Field"

<<overlay>>
viewDetails.html

Click "Add"

Click "Cancel"

Click "Add"

Click "Delete" <<js:alert>>
Confirm deletion

Click "Cancel"

Click "Delete"

Figure 4.4: Activity diagram describing proposed workflow of Content Management
tasks in DPG

59



Chapter 4. Solution Design

It is safe to assume, and it has been the case so far, that the pattern designers will put the
most important fields of each entity-instance first in its definition. And it could also be set
as a rule from this point on for future creations of patterns. Taking this into consideration
when entity-instances are collapsed the first field defined by the pattern will be the one
displayed.

The changes necessary to implement this functionality are then only to the presentation
model, where each entity-instance will have a new interactive element that will allow the
user to change the state from collapsed to expanded and vice versa.

4.4.2 Adding Feedback

In Section 3.3.1 several instances where feedback to the user could be improved where
mentioned. Here is a summary of the ones that where selected to be implemented:

• Mark required fields in all form instances.

• Add inline validation messages for submission errors.

• After successful modification of content, the new content should be shown.

The changes required to implement the mentioned functionalities involve the Content Model
and the Presentation Model. In the Content Model, two attributes need to be added to the
field ADO; one that will mark the field as required and another that will contain messages
from the server in case of error. The modifications to the Presentation Model include adding
UI elements that can be used to show both messages.

4.4.3 Entity-instances ordering

Several factors need to be taken into consideration when deciding on the implementation of
this functionality, here is a brief list:

• What is going to be ordered?

• What UI component will be responsible for ordering?

• What criteria will be used for ordering?

To reply to the first two questions, lets take a look at how entity-instances are organized.
Each view can only have one entity-instance and each entity-instance can have 1 to n fields,
the fields can be simple, have one attribute, composite, have their own structure, or complex,
have children entity-instances. There are two types of complex fields in the system so far,
the entity type, that can have one sub-entity or the list type that can have 0 to n entities.
It is this last case that is of interest to this functionality, as the list type is the only case

60



4.5. Persistent XSS Solution

where entity-instances of the same entity type are together and they are the ones that need
to be ordered.

The responsibility for ordering the entity-instance as a consequence should be allocated to
the PluginUI in charge of the list field type. This opens the door for the necessity of making
the different PluginUI have their own implementation in the new PCE system.

Regarding what criteria to use to order the entity-instances it is impossible to know a priori
their structure and what the user is going to be looking for. One possibility as in the
previous case would be to order them according to the first field; another possibility would
be to let the user choose what field they would rather use. The second possibility offers
more flexibility without adding much complexity to the implementation and as such is the
best option to be implemented.

For the purpose of creating this functionality the following changes need to be done: different
plugins/fields need to have different ADVs in the client and they need to have control over
their behaviour. Not all plugins/fields will need especial treatment so a default ADV can be
created for those cases. An ADV will be created for the list plugin with the corresponding
ordering UI component.

4.4.4 Entity-instances search

This functionality has several coinciding points with the previous one and the same questions
need to be answered.

• What is going to be searched?

• What UI component will be responsible for searching?

• What criteria will be used for searching?

The PCE user that will be employing this functionality will most likely be searching for
an element of the content that they want to edit or delete and will have by this point in
the process found the view that the content is in. It can be inferred that what should be
searchable then is all the content within the view and the main responsibility would befall
the view ADV and ADO. There is one problem with this, the plgins ADVs will define how
the content is to be displayed and are the only ones that have the information about what
information within their content is relevant to be searched. The best solution would be for
the view ADO to ask the different plugin ADOs to look within themselves and the ADV to
show when the searched query has been match.

4.5 Persistent XSS Solution

Aleksander Vines did a thorough analysis of the security of DPG in his thesis [57]. Amongst
the possible solutions that he proposed of the Persistent XSS attacks were the use of OWASP

61



Chapter 4. Solution Design

AntiSamy Project [42] to sanitize the HTML/CSS code of content entered by the user in
the system. OWASP AntiSamy is API for cleaning suspect HTML code, the definition of
what is considered dangerous code is provided by a policy files. OWASP AntiSamy provides
predefined policy files that range from strict, that only allows for a subset of HTML tags,
to more liberal approaches, that allow everything except javascript.

OWASP AntiSamy presents a good solution for the HTML and string plugin, however other
plugins can have a more strict approach through their validation logic. As an example
lets take the youtube plugin, all that it needs is a URL that points towards the desired
video. Said URL should start with http://www.youtube.com/ and should not have
any characters that are not alpha-numeric in the name or value of its parameters. It is
important nevertheless that the core system is protected and to do that the plugin creators
need to be thought of as a possible attack vector. It is for this reason that in the server a
three layer protection is proposed.

1. Plugin validation: It is the first line of defence, the responsibility relies on the plugin
creator.

2. AntiSamy sanitation: Clears the code of dangerous HTML and CSS tags and code.

3. Storage sanitation: Even though the proposed solutions until now protect the user,
the system also needs to be protected and not all content is safe to save in XML code.
For example the CDATA tag can not be used inside content without corrupting the
data inside.

The approaches mentioned here protect DPG and the user from presentation content in the
form off different type of strings. There are other plugins however that are not taken into
the scope of the project due to time constrains, for example the file plugin.

62



5
Implementation

The result of the previous chapter was the design of a new single page application that will
replace the current PCE implementation. This chapter concentrates on the development
of the new PCE, the tools used during this process, the problems faced and necessary
modifications to the current server-side implementation.

5.1 MV* and Backbone

When using plain Javascript and HTML or even JQuery and HTML to create sophisticated
applications the result in inevitably spaghetti code mixing both Javascript and HTML in ways
that decreases the scalability and maintainability of the application. In order to solve this
issue, as client side applications increased in complexity, Javascript framworks were created.
Some of these frameworks offer variations of the MVC pattern, providing the developer with
means to separate the concerns of the application. However due to the nature of Javascript
the role of the controller is not as independent as in the server and Javascript framworks offer
what is referred to as MV* where the * changes according to the flavor of MVC implemented
by the framework.

There are several Javascript frameworks, choosing the correct one for the implementation is
important. In order to make this decision three actions were taken. The criteria given in the
Journey Through The Javascript MVC Jungle [41] article were followed. The article proposes
a set of variables that can be used to choose the correct framework for an implementation.
The variables can be divided in two groups, general and development dependent. Examples
of the general variables are: quality of documentation, maturity of the framework, size, good

63



Chapter 5. Implementation

community. Examples of development dependent factors are: flexibility vs opinionated,
developers experience, capabilities. The second action was to revise the examples in the
TODO MVC [5] web site. TODO MVC provides the examples of the same application
developed with the different frameworks. The third step was to read opinions on the web,
for example [50]. The conclusion was the choice of Backbone [2]. Backbone is a mature
framework with an active community, good documentation and minimal size. The developer
did not have experience with any framework so this factor was not taken in consideration,
however Backbone has a small learning curve. Backbone is also a flexible framework, this
means that it does not impose a file structure on the developer and can be applied to only
part of a web site, which is not the case with other frameworks.

The core components of Backbone are:

• Model : Contains the data of the applications and the logic necessary to interpret its
behaviours and manage it, for example validation, access control, etc.

• Collections: They are lists used to order models. Each collection can define the type
of model that it will accept and can listen to the different events triggered by the
models.

• View : The views represent the different UI components in the application and are the
intermediary between the DOM and the data. Backbone allows the use of templates
for views, which permits the separation of concerns between logic and presentation.
It is agnostic regarding the template technology used.

• Events: The event module is embedded in the other modules and allows for the
communication between components. Events can be triggered by the user on a view,
for example a mouse click, or by other modules, for example on change, when a model
is modified.

Backbone by default utilizes RESTful web services to communicate with the server. RESTful
Web services are based on the Representational State Transfer (REST) architecture [12] and
are designed to work with stateless transfer protocols. The service exposes system resources
that can be accessed by their Universal Resource Identifier (URI) and can be manipulated
using the CRUD operations, each of them mapped by Backbone to an HTTP method:
Create to POST, read to GET, update to PUT and delete to DELETE.

5.1.1 JSON vs XML

Backbone works natively with the Javascript Object Notation (JSON) [3] format to parse
data into their objects and communicate with the server. On the other hand DPG and the
different classes that are used for presentation and logic of fields and plugins are designed
to work with XML; and as it was explained in Section 2.4.3 the viewDetails.html web
page uses XSLT to show the content data. This leaves the following possibilities to make
Backbone and the DPG server application compatible:

64



5.1. MV* and Backbone

Backbone with XML Backbone is an extremely flexible library and it is possible
to configure it to work with XML by redefining the parse and fetch implantations in the
Collection module to work with XML. This approach offers the advantage of not having to
modify how the server processes the XML data today, as the XML could be sent to the
client. However this would leave the responsibility of converting the XML data into logic
units to the client application. It would also imply that Backbone could not be used out of
the box since extra configuration would be required making it more difficult in the future
to update to a new version of the library.

XML to JSON In Java there are libraries that allow the transformation of XML to
JSON and vice-versa. Two examples are Xml2Json [22] and Json In Java [21]. One of this
libraries would fulfil the function that is currently served by the PceTransformationUtil
-view.txt XSLT file; to prepare the XML content to be presented. In the current imple-
mentation the content output is XHMTL and in the new system it would be JSON. The
advantage of this implementation would be that the code in the server would not have to
be significantly changed since it would use the same logic as it is currently using. The
disadvantages are that the XML to JSON transformation would have to be adapted to the
current specification of the Presentation Pattern and this specification is something that
has changed through time making the realization of this transformation dependent on fu-
ture changes. Also, the problem with the list and entity plugin would not be solved since
special codes to deal with those plugins would have to be created.

XML to POJO to JSON This option would include an intermediary step between the
XML data and the JSON object in the form of a Plain Old Java Object (POJO) and it would
require an implementation closer to the one used currently for the editContentForm
.html web page explained in Section 2.4.3. Currently each plugin defines its XHTML
code by using their own XSLT file or returning their own structure made out of XSLT of
elements that are already defined. The advantage of this approach would be the separation of
concerns between the presentation layer using JSON and the storage technology using XML.
The disadvantage would the necessity of creating a new FormBuilder class from scratch,
creating the POJO classes and modifying the plugins to return their editable structure with
the POJO structure.

Even though the last option requires more development it has been selected because it keeps
and even improves the separation of concerns in the system. Providing the possibility of
completely decoupling DPG from XML in the future if PV is changed to using POJOs.

5.1.1.1 System Dependencies

Dynamic Presentation Generator, HP Fortify and ZAP [19], is a report based on an analysis
of the security in DPG. One of the weaknesses mentioned regarding the implementation of
DPG was that the lack of update of the dependencies since they were first declared. For
this reason it was decided to add as little dependencies as possible for this project.

65



Chapter 5. Implementation

The only Java dependency used is a consequence of the strategy selected to communicate
between the server and the client applications. Jackson [4] is a Java JSON processor with the
capability of data binding a POJO through annotations or property accessors that is intuitive
to use and easy to configure and set up thanks to the Spring Framework [1] annotation
@ResponseBody that informs the application that the return value of the function has to
be written directly to the HTTP response body.

To configure and work with Jackson, the Maven dependency has to be added in the pom.
xml file, seen in Listing 5.1, and the URLs that will be used for RESTful services need to
be mapped in the web application web.xml file, seen in Listing 5.2.

Listing 5.1: Code in pom.xml needed to set up Jackson.

1 <dependency>
2 <groupId>org.codehaus.jackson</groupId>
3 <artifactId>jackson-mapper-asl</artifactId>
4 <version>1.7.1</version>
5 </dependency>

Listing 5.2: Code in web.xml needed to set up RESTful services in DPG.

1 <servlet-mapping>
2 <servlet-name>applicationContext</servlet-name>
3 <url-pattern>rest/*</url-pattern>
4 </servlet-mapping>

5.1.2 Underscore Templates

Backbone has one dependency, Underscore.js, in its web site [6] it is defined as a Javascript
utility-belt library that provides functional programming support. Amongst them Javascript
templating capabilities that compile the jacascript template as a function for evaluation and
rendering. The underscore templates render HTML and JSON data sources.

5.2 Methodologies and Tools Used

5.2.1 Prototyping

The first step in the development was the creation of a prototype of the solution based on
the listWeekView mentioned in Section 3.5.2 that includes the presentation aspects of
the new PCE. It was decided to make a Detailed Prototype in the form of an HTML static
webpage with Javascript interactions that would follow the visual aesthetics of the previous
version of PCE. This would allow to compare the new and old PCE functionalities and use
without the style of the presentation having an impact on it. However the opportunity was

66



5.3. Client Application

taken to clean the HTML code and the CSS. For example <table> tags that were used to
create the layout of the web page were changed for <div> tags since tables are meant to
show data and not to present layouts.

5.2.2 Object Oriented CSS

CSS has a very important roll when developing Single Page Web Applications, since it is
through changes in style that it is possible for the user to see that the system is reacting
to the actions made and where the actions can be made. A simple examples of this are for
example a change in color and pointer when hovering over an HTML element that presents
the possibility of interaction. For these reason it is important to keep the CSS code clean,
maintainable and scalable. It was with this in mind that the principles of Object Oriented
CSS (OOCSS) were followed.

As it is the case with Object Oriented Programming, OOCSS is based on the main concept
of High Cohesion and Low Coupling, advocating for the creation of the different styles in a
manner that emphasizes that each style has only one function. According to [30] the two
main principles of OOCSS are Separate the Structure from the Skin, Separate the Content
from the Container.

5.2.3 Testing Tools

QUnit [29] is a Javascript framework developed by the jQuery Fundation with the purpose
of doing unit testing on their products. It was selected for this project due to its easy set up
and the resemblance of its approach to unit testing with JUnit, the Java unit testing tool
used by previous developers in DPG.

To debug the application Firefox [36] with Firebug [35] where used. Firebug provides the
possibility of making changes on the fly to the code of the Javascript application and the
CSS code making it possible to see the results right away.

5.3 Client Application

The client application follows the Content Model presented in Figure 4.3 in the previous
chapter, however the implementation of it simplifies the diagram by unifying the structure
and value classes. For example FieldValue is unified with Field and adds the attributes
plugin, that specifies the plugin used to display the data and name that is used in con-
junction to the names of the parent elements to form the entity-path value that is used
by the server system as the data identifier. The final implmentation contains the following
Backbone models:

• ViewModel: It represents the View element in Presentation Pattern and it is the

67



Chapter 5. Implementation

root node for the application. As in the Presentation Pattern it contains one child
EntityInstanceModel that is the starting point for the data tree.

• EntityInstanceModel : Contains a representation of its structure and the corresponding
values.

• FieldValueModel : Represents the unit of information that will be interpreted by a
plugin

In the case of EntityInstanceModel and FieldValueModel when used to provide only the
structure of their respective data element, the value fields are empty. In addition to the
mentioned models, for each plugin there exists an Underscore template that is used to
interpret and present the data.

Listing 5.3 shows the render algorithm of the FieldValueModel and exemplifies the flexibility
of the system.

Lines 1 through 5 check if a plugin template exists for the plugin type declared by this
.model. If it does then said plugin is used, if it does not then the app.templates.
defaultBaseFieldTemplate is used. Currently the default tamplate is the StringTemplate
. This segregates the model form the presentation since the value of the FieldValueModel
will be presented using the corresponding template.

Lines 11 through 16 insert the template and the data in the wrapper that contains the label
of the field and line 18 adds the HTML code to the web page.

Listing 5.4 and 5.5 respectively display the templates for the String Plugin and the Field-
ValueView.

Listing 5.3: Render implementation of the FieldValueModel.

1 render: function(){
2 var templateName = this.model.get("plugin") + "Template";
3 if(typeof app.templates[templateName] === ’undefined’){
4 templateName = app.templates.defaultBaseFieldTempalte;
5 }
6

7 var template = _.template(app.templates.StringTemplate, this
.model.attributes );

8

9 this.model.set(’pluginTemplate’, template);
10

11 var outerTemplate;
12 if (this.model.get("firstField")){
13 outerTemplate = _.template(app.templates.FirstField, this

.model.attributes);
14 }else{
15 outerTemplate = _.template(app.templates.OtherField, this

.model.attributes);

68



5.4. Server Application

16 }
17

18 this.$el.html(outerTemplate);
19 }

Listing 5.4: Underscore template for the String Plugin

1 <div class="contentField stringBaseField"><%- value %></div>

Listing 5.5: Underscore template for the FieldValueView

1 <div class="firstField">
2 <div class="field">
3 <div id="extend_collapse" class="expanded"> </div>
4 <div class="nameField"><%- label %>:</div>
5 <%= pluginTemplate %>
6 </div>
7 </div>

5.4 Server Application

The server application required three main changes to be implemented. First, POJOs rep-
resenting the data needed by the client application were created. The most relevant POJO
is ClientViewModel, this class represents the root object used by the client and con-
tains the attributes GET attributes used to identify and locate the view in the system, such
as presentationId, viewId and other attributes of the view needed for the presentation
such as name and description. This class also contains a ClientEntityInstanceModel
with its children ClientEntityInstanceModel and ClientFieldValueModel. In

addition ClientViewModel has a list of the structure of all the entity-instances within
the view

The second change in the server was to modify the FormBuilder class so that it would
return all the entity-instances and fields of a view, plus the structure of the view. This step
however was completely finalized in time and some work remains to be done. One of the
disadvantages to this solution is that all the XML files for the different entity-instances have
to be accessed while in the previous implementation of FormBuilder only one needed to
be opened. This increments the process duration and difficulty in the server, however it is
the same process followed by PV when displaying a view.

The third change was the creation of a RESTful controller, called EditContentRestController
that handles the requests of the PCE SPA an example of one of the methods can be seen

in Listing 5.6. This method is used to request the view.

Listing 5.6: getView method in the EditContentRestController

1

69



Chapter 5. Implementation

2 @RequestMapping(value="/getViewForm", method=RequestMethod.GET)
3 public @ResponseBody Form getView(HttpServletRequest request,

@RequestParam String entityPath){
4 ClientViewModel view = null;
5 EditContentFormParameterGetter paramGetter = new

EditContentFormParameterGetter();
6 FormParameters formParameters = paramGetter.

getFormParameters(request);
7 formParameters.setEntityPath(entityPath);
8 view = fullFormBuilder.createView(formParameters);
9 return view;

10 }

70



6
Experience, Future Work and Conclusion

In this chapter the experience with the different tools and techniques is discusses and the
possibilities for continuing improvement of the DPG system are presented.

6.1 Experience

Javascript, AJAX and Single Page Web Applications have been around for around 15 years
and they have evolved during that time. Now a days we there are several options when it
comes to choosing framewoks and technologies to work with. Backbone even though small
in size and in the amount of modules that it offers, still presents the developer with enough
tools to structure the code and it also allows the developer the flexibility of Javascript.
It does not confine the possibilities of development to a strict structure which made it a
good choice for this project. However this comes with the disadvantage that any small
implementation can be done in one of several manners and sometimes it is time consuming
to figure out which ones are the best.

The candidate did not have much previous experience with Javascript and its flexibility is
a disadvantage to try to access the knowledge without guidance. There is no doubt though
that it has open the doors to several opportunities of improving usability.

Coming from a programming background where things are usually defined in terms of 1 and
0 it is difficult and interesting to be confronted with the concept of usability. More and more
the user is demanding things to be “easy” and understandable but what the user regards
as “easy” changes with time and is not so straight forward to define. This proved to be an

71



Chapter 6. Experience, Future Work and Conclusion

interesting challenge and a good experience.

6.2 Future work

6.2.1 Update client on server change

The new system, as does the original PCE, is not updated when changes are done on the
server. Since the new client side part of the system is now an application on its own right it
could be improved by adding the capability of refreshing the information in the client when
the data is updated by another user to the server.

One way of implementing this would be to have a timer in the client that would trigger
a check for new information in the server. The disadvantage would be the increase of the
communication between server and the client.

6.2.2 Implement Cascading Search and Security Solution

The search functionality even though it was designed was not implemented and needs to be
introduced in the system. This would improve the time needed to find the correct entity
to work with. The three layer security solution should also be implemented in each of the
plugins.

6.2.3 Use Modules to load Plugins

Currently the new PCE loads all the plugin templates and javascript component files as did
the old implementation. These files are only needed if one of the entity-instance in the view
has a field that uses said plugin.

There are two ways of implementing this, both require separating the templates into different
files that could be loaded dynamically. The first solution would be to add the plugins code
and templates used in the view within the structure sent to the client on page load. Once
on the server the plugins are added to the app.templates variable.

The second solution would be implemented on the client side, with the SPA requestion the
plguins from the server when they are needed. This approach would have a smaller payload
on the first request but would require subsequent requests to the server each time the user
expands an entity-instance that contains a field using a plguin that the SPA has not yet
loaded.

72



6.3. Conclusion

6.2.4 Implement Plugins and PV in the client

The templates and Javascript code necessary for the plugins should also be implemented
in PV. This could be done while maintaining the freedom provided by the XSLT transfor-
mation. The only difference would be that when transforming the XML data into HTML
in place of the data itself, a reference to the plugin used and the id of the entity-instance
would be added. The client application would load the data in the correct place with the
corresponding template being used.

6.2.5 Integration of PCE and PV

PV is based on XSLT preventing code that is not in the transformation file to be added to
the final HTML. It is for that reason that in the current implementation the XSLT creator
needs to be aware that the system allows for the possibility of adding a link to PCE in order
to connect both, but this is not always the case.

However, if PV was changed to the new implementation this would mean that a list of the
entity-instances in the current view would be at the disposal of the Javascript application
and if the current user has edition credentials it could provide this list for it to choose which
entity-instance it wants to edit or create. The system could then present an overlay window
with the necessary editable fields and the changes could be displayed on PV dynamically
without a page reload.

6.3 Conclusion

The objective of this thesis was to enhance PCE, the path chosen to achieve this was to
improve usability. This would make the system more attractive to the publisher user and in
doing so encourage the creation of content. The improvements have been done taking into
consideration recommendations and interaction design patterns in the literature. However,
by creating the new SPA not only is the usability of PCE improved but it opens the door
to a new approach for the plugin system, allowing a more flexible implementation since
it now depends on Javascript code instead of the strict structures required by Java and
static HTML. The plugin editing and viewing modes can behave independent of the server
application and data structure.

73



Bibliography

[1]

[2] backbonejs.
http://backbonejs.org/. Accessed 2013.11.07.

[3] Introducing JSON.
http://www.json.org. Accessed 2013.11.13.

[4] Jackson json processor wiki.
http://wiki.fasterxml.com/JacksonHome. Accessed 2013.11.13.

[5] Todomvc.
http://todomvc.com/. Accessed 2013.11.07.

[6] underscorejs.
http://underscorejs.org/. Accessed 2013.11.07.

[7] Karianne Berg. Persistensproblematikk i dynamic presentation generator. Master’s
thesis, Department of Informatics, University of Bergen, 2008.

[8] ClickTale. Clicktale scrolling research report v2.0 part 1: Visibility and scroll reach.
http://blog.clicktale.com/2007/10/05/
clicktale-scrolling-research-report-v20-part-1-visibility-and-scroll-reach/,
2007. Accessed 2013.10.02.

[9] Alan Cooper, Robert Reimann, and David Cronin. About face 3: the essentials of
interaction design. John Wiley & Sons, 2007.

[10] Donald D Cowan and Carlos Jose Pereira de Lucena. Abstract data views: An
interface specification concept to enhance design for reuse. Software Engineering,
IEEE Transactions on, 21(3):229–243, 1995.

[11] Yngve Espelid. Dynamic presentation generator. Master’s thesis, Department of
Informatics, University of Bergen, 2004.

[12] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, 2000.

[13] Martin Fowler. Patterns of enterprise application architecture. Addison-Wesley
Professional, 2003.

[14] Martin Fowler. UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional, 2004.

[15] Piero Fraternali, Gustavo Rossi, and Fernando Sánchez-Figueroa. Rich internet

74



Bibliography

applications. Internet Computing, IEEE, 14(3):9–12, 2010.

[16] A Garrido, G Rossi, and D Distante. Refactoring for usability in web applications.
Software, IEEE, 28(3):60–67, 2011.

[17] Object Management Group. UML.
http://www.uml.org. Accessed 2013.11.08.

[18] Object Management Group. UML 2.0 Infrastructure.
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/. Accessed
2013.11.08.

[19] Andreas Hjortland and Jø rgen Telles. Dynamic Presentation Generator , HP Fortify
and ZAP. INF226 project report, Department of Informatics, University of Bergen,
2012.

[20] Christian Holst. Form-Field Validation: The Errors-Only Approach, 2012. Accessed
2013.08.14.

[21] infoScoop OpenSource. Json in java.
http://www.json.org/java/. Accessed 2013.11.13.

[22] infoScoop OpenSource. Xml2json.java.
https://code.google.com/p/infoscoop/source/browse/branches/3.
0/src/main/java/org/infoscoop/util/Xml2Json.java?r=629. Accessed
2013.11.13.

[23] Bjørn Ove Ingvaldsen. Multimedia i dynamisk presentasjons generator 2.0. Master’s
thesis, Department of Informatics, University of Bergen, 2008.

[24] ISO. Ergonomic requirements for office work with visual display terminals (vdts) –
part 11: Guidance on usability. ISO 9241-11, International Organization for
Standardization, Geneva, Switzerland, 1998.

[25] itslearning AS. itslearning.
https://www.itslearning.com/. Accessed 2013.06.25.

[26] JDOM.
http://www.jdom.org/. Accessed 2013.06.26.

[27] The jQuery Foundation. Browser Support.
http://jquery.com/browser-support/. Accessed 2013.06.25.

[28] The jQuery Foundation. jQuery.
http://jquery.com/. Accessed 2013.06.27.

[29] The jQuery Foundation. QUnit.
http://qunitjs.com/. Accessed 2013.07.27.

[30] Louis Lazaris. An introduction to object oriented css (oocss).
http://coding.smashingmagazine.com/2011/12/12/
an-introduction-to-object-oriented-css-oocss/, 2011. Accessed
2013.10.04.

[31] Ben Lieberman. UML activity diagrams: detailing user interface navigation. The
Rational Edge, 2001.

[32] Marino Linaje, Juan Carlos Preciado, and Fernando Sánchez-Figueroa. Engineering

75



Bibliography

rich internet application user interfaces over legacy web models. Internet Computing,
IEEE, 11(6):53–59, 2007.

[33] Kristian Sknberg Lø vik. Webucator 3.0 - Brukerh̊andtering og aksesskontroll for
DPG 2.0. Master’s thesis, Universitet i Bergen, 2008.

[34] Ali Mesbah and Arie van Deursen. Migrating multi-page web applications to
single-page ajax interfaces. In Software Maintenance and Reengineering, 2007.
CSMR’07. 11th European Conference on, pages 181–190. IEEE, 2007.

[35] Mozilla. Firebug.
https://getfirebug.com/. Accessed 2013.07.10.

[36] Mozilla. Mozilla Firefox Web Browser.
http://www.mozilla.org/en-US/firefox/central/. Accessed 2013.07.15.

[37] Khalid A. Mughal et al. Presentation Patterns: Composing Web-based Presentations.
Technical report, Department of Informatics, University of Bergen, 2003.

[38] University of Bergen. Mi Side.
https://miside.uib.no/. Accessed 2013.06.25.

[39] Oracle. Java Persisence API.
http://www.oracle.com/technetwork/java/javaee/tech/
persistence-jsp-140049.html. Accessed 2013.06.26.

[40] Tim O’reilly. What is web 2.0: Design patterns and business models for the next
generation of software. Communications and strategies, (1):17, 2007.

[41] Addy Osamani. Journey through the javascript mvc jungle.
http://coding.smashingmagazine.com/2012/07/27/
journey-through-the-javascript-mvc-jungle/, 2012. Accessed 2013.11.07.

[42] OWASP. Category:OWASP AntiSamy Project.
https://www.owasp.org/index.php/Category:
OWASP_AntiSamy_Project. Accessed 2013.11.10.

[43] OWASP. Cross-site Scripting (XSS).
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29.
Accessed 2013.10.17.

[44] OWASP. OWASP Zed attack Proxy Project.
https:
//www.owasp.org/index.php/OWASP/Zed/Attack/Proxy/Project/.
Accessed 2013.06.25.

[45] Hewlett Packard. HP Fortify Static Code Analyzer.
http://www8.hp.com/us/en/software-solutions/software.html?
compURI=1338812. Accessed 2013.06.25.

[46] Linda Dailey Paulson. Building rich web applications with ajax. Computer,
38(10):14–17, 2005.

[47] Ana G Pino and Anne Elise Weiss. Security Analysis of Dynamic Presentation
Generator. INF226 project report, Department of Informatics, University of Bergen,
2012.

76



Bibliography

[48] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human - Computer
Interaction. Wiley, 2011.

[49] Gustavo Rossi, Matias Urbieta, Jeronimo Ginzburg, Damiano Distante, and Alejandra
Garrido. Refactoring to rich internet applications. a model-driven approach. In Web
Engineering, 2008. ICWE’08. Eighth International Conference on, pages 1–12. IEEE,
2008.

[50] Steven Sanderson. Rich javascript applications the seven frameworks (throne of js,
2012).
http://blog.stevensanderson.com/2012/08/01/
rich-javascript-applications-the-seven-frameworks-throne-of-js-2012/,
2012. Accessed 2013.11.08.

[51] Bill Scott and Theresa Neil. Designing Web Interfaces: Principles and Patterns for
Rich Interactions. O’Reilly Media, Incorporated, 2009.

[52] Bjørn Christian Sebak. Dynamic Presentation Generator 2.0 – Utvikling av ny
dynamisk presentasjonsgenerator og presentasjonsmønsterspesifikasjon. Master’s
thesis, Department of Informatics, University of Bergen, 2008.

[53] Peder L̊a ng Skeidsvoll. Støtte for rike klienter i DPG. Master’s thesis, Department of
Informatics, University of Bergen, 2010.

[54] Mikito Takada. Single page apps in depth.
http://singlepageappbook.com/. Accessed 2013.10.30.

[55] Milissa Tarquini. Blasting the myth of the fold.
http://boxesandarrows.com/blasting-the-myth-of-the-fold/, 2007.
Accessed 2013.10.02.

[56] Kelly A Teigland Whiteley. Resource management for plugins in the dynamic
presentation generator, 2011.

[57] Aleksander Vines. Sikker Arkitektur for Innholdsh̊andteringssystemer. Master’s
thesis, Department of Informatics, University of Bergen, 2013.

[58] W3C. Cascading Style Sheets home page.
http://www.w3.org/Style/CSS/. Accessed 2013.10.29.

[59] W3C. Document Object Model (DOM).
http://www.w3.org/DOM/. Accessed 2013.10.29.

[60] W3C. HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocols/. Accessed 2013.10.29.

[61] W3C. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath. Accessed 2013.10.02.

[62] W3C. XMLHttpRequest.
http://www.w3.org/TR/XMLHttpRequest/. Accessed 2013.10.29.

[63] W3C. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt. Accessed 2013.06.26.

[64] W3C. What is the Document Object Model?
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html, 2000.

77



Bibliography

Accessed 2013.10.29.

[65] Luke Wroblewski. Developing the invisible.
http://www.uxmatters.com/mt/archives/2006/05/
developing-the-invisible.php, 2006. Accessed 2013.10.02.

[66] Luke Wroblewski. Inline validation in web forms.
http://alistapart.com/article/inline-validation-in-web-forms,
2009. Accessed 2013.08.14.

78


