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Abstract

Three idealized ocean model versions are developed for the Bergen Dynamic Model (Bedymo).
All three model versions fall into the category of slab ocean models. One version is more or
less a standard slab ocean model, while the two other versions include two slightly different
representations of oceanic heat transport. The model versions are tested through a series
of idealized experiments where the model result is compared to analytical solutions. Some
simple sensitivity tests are performed, to become familiar with how configurable parame-
ters alter the model output. The model versions are also tested in coupled runs with a one
layer atmosphere. The test results are satisfactory, and Bedymo is thus applicable for a
whole new range of experiments.
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Chapter 1

Introduction

One of the worlds greatest challenges relates to the anticipated, and widely debated global
warming. As a result the need for reliable predictions regarding the future climate of the
Earth is at an all time high. Comprehensive climate models are the essential tool, as
the worlds leading model centers compete in producing the most reliable and convincing
future forecasts. With the aid of the ever increasing computer power, the complexity of
the climate models steadily increases (Held 2005).

As the complexity of the climate models increases, so does the already large gap between
simulations and understanding. Held (2005) may be onto the core of the problem when
he asks: ”What does it mean, after all, to understand a system as complex as the climate,
when we can not fully understand idealized nonlinear systems with only a few degrees of
freedom?”

To be able to understand our climate models Held (2005) proposes that we build a
model hierarchy, from the most idealized models, to the most comprehensive. If we can
fully understand the less complex models, we might better understand how key sources
of complexity alter the dynamics, bringing us closer to an understanding of the complex
climate system. If we are to emphasize our understanding of the climate dynamics, and
not just our ability to predict, idealized models clearly have a role to play, apart from just
being a tool for the especially interested.

The primary goal of this thesis is to develop an idealized ocean model suited for coupling
with the Bergen Dynamic Model (Bedymo). Bedymo is an idealized atmospheric model
developed by co-supervisor Clemens Spensberger. Coupling Bedymo to an idealized ocean
will make Bedymo applicable for a whole new range of experiments. The first of these
experiments shall be presented towards the end of this thesis, be it only simple tests to
confirm that the coupling is functional.

Bedymo is originally based on a set of configurable simplifications around Quasi- or
Semi-geostrophic theory, but a recent primitive equation version (BedymoPE) is also de-
veloped and this is the version that the first coupled experiments are carried out with. The
advantage of the primitive equation version in terms of coupling is that the atmospheric
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wind and temperature are available at the lower vertical boundary.

In the development of the ocean model, I use a slab ocean as a starting point. A slab
ocean means a fixed depth motionless ocean mixed layer model where the temperature,
which is constant throughout the depth of the slab, is the only prognostic variable. The
simplest possible slab ocean model thus has only the ability to interact with the atmosphere
through surface heat fluxes and to store heat.

While the coupling of Bedymo to an idealized ocean makes Bedymo applicable for new
situations, a redistribution of heat within the slab ocean itself would further increase our
options. One could e.g. study the role of oceanic heat transport in the development of
atmospheric phenomenon by comparing model runs with and without a representation of
oceanic heat transport.

Despite the simplification that a slab ocean model represents with respect to the real
ocean it is not uncommon to couple an Atmospheric General Circulation Model (AGCM)
to a slab ocean when running climate simulations (Collins et al. 2004). A slab ocean
model can be particularily useful in simulations with very long integration time, and when
conducting multiple simulations with varying coefficients as is common in for example
paleoclimate studies because of many unknown parameters (Donnadieu et al. 2006).

As the temperature of a slab ocean model originally is forced only by local surface
heat fluxes, it will differ significantly from observed sea surface temperature (SST) if a
slab ocean model is used in a climate simulation without some representation of the heat
transport by ocean currents (Codron 2012). A common way to model heat transport in
slab oceans when used in climate simulations is to add a corrective flux (Q-flux) based on
the results from a control simulation where the atmosphere is forced with observed SST.
The Q-flux is determined from monthly means of the surface fluxes, the general idea being
that there is an approximate balance between surface fluxes and oceanic heat transport
in the mixed layer at such a timescale (Collins et al. 2004). With this method, one can
simulate realistic SST with respect to the present climate, but when the assumption of
an oceanic heat transport equal to the present becomes less realistic this approach is no
longer necessarily the best alternative.

The main objective of implementing a representation of oceanic heat transport in our
case is not to model observed SST, and the calculation of a Q-flux is also a more compre-
hensive method than what we are looking for.

A different way of modelling oceanic heat transport in slab oceans, that is simpler, and
thus may be better suited when the slab ocean is to be coupled to an idealized atmopshere,
is to include a representation of wind driven Ekman currents (Maze et al. 2011, Codron
2012). The Ekman currents are diagnosed from the atmospheric surface wind by a bulk
formula. In the model by Maze et al. (2011) the currents follow the classic Ekman drift
formula ( uekman ∼ fvsurface), while Codron (2012) also includes a dissipative parameter ε
that allows the calculation of wind driven currents also at the equator (uekman ∼ fvsurface+
εusurface) .

Heat transport by Ekman currents is an optional feature in the slab ocean model I
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develop, as is also heat transport by user prescribed background currents. Unless the total
ocean currents are somehow restrained from being horizontally divergent, their inclusion
in the model does immediately raise the question of what is below the slab layer.

The answer to what is below the slab layer is what separates two of a total of three
model versions that I present. These versions are named the 0.5-layer model, the 1-layer
model and the 1.25-layer model. The 0.5-layer model is a standard slab ocean model that
does not include any representation of heat transport by ocean currents. The 1-layer model
transports heat by solving the horizontal advection equation in the slab layer, while the
1.25-layer model assumes an infinite reservoir with a user prescribed temperature below
the slab layer, and solves the three dimensional flux divergence equation.

As I show in Section 2.1.3, solving the horizontal advection equation in the slab layer
(1-layer model) is equivalent to solving the three dimensional flux divergence equation with
the assumption of an infinite underlying reservoir where the temperature in the reservoir is
equal to the slab temperature. Therefore it is possible to create situations where divergence
and the associated upwelling increases the mean temperature in the slab layer. If the
domain integrated horizontal divergence is nonzero, there is a source or sink of energy
depending on the sign of the vertical flux, and on the distribution of slab temperature. If
combined with an atmospheric energy sink, such an oceanic energy source may be infinite.
As one would imagine, an infinite energy sink is equally possible.

Upwelling in the ocean is generally associated with a local cooling in the ocean mixed
layer (Codron 2012). In the 1.25-layer model cooling is ensured if the prescribed reservoir
temperature is colder than the ocean mixed layer temperature in all grid points. Thus in
case of divergence and upwelling the 1-layer- and the 1.25-layer model behave differently,
while in the case of convergence and downwelling the two versions are exactly the same as
the temperature of the water to be downwelled in both cases equals the ocean mixed layer
temperature.

While the treatment of heat transport by ocean currents in the 1-layer model is analo-
gous to that in the model by Maze et al. (2011), the 1.25-layer model is one step closer to
the models suggested by Codron (2012). Codron (2012) proposes two models, one of which
is a 2-layer model that assumes a return flow in the second layer of equal mass flux, but
in the opposite direction of the surface flow. Codron (2012) shows that the 2-layer model
is able to reproduce the mean meridional heat transport in the ocean in the tropics.

Because Codron’s 2-layer model assumes that the flow in the lower layer is in the
opposite direction to the surface flow, and the mass flux of equal magnitude, the mass and
energy budgets can easily be closed. In a limited domain, as must be the case in Bedymo
since the x-y coordinate system is not applicable in global simulations, these budgets are
closed with a periodic or a zero flux condition on the boundaries. The advantage of this
particular 2-layer model may also be its main drawback, because the assumption that the
flow in the lower layer is the reversed copy of the surface flow is in many cases far from
applicable.

Any horizontally divergence free flow field could be added to the flow in Codron’s second
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layer, while still conserving mass and energy. If a divergent field were to be added one
would need to solve an elliptical equation (∇2Ψ = ζ(x, y)) to balance the wind stress and
the continuity simultaneously in the entire model domain, at each time step. Because of
the added complexity such an implementation would require solid argumentation.

Bedymo lacks any representation of radiative processes. As a means of to some extent
compensating for this lack of radiative processes in Bedymo, an optional temperature
relaxation is included in all three versions of the slab ocean model. If e.g. the ocean mixed
layer temperature is forced by an annual cycle in atmospheric temperature, the relaxation
can be used to lower the amplitude and shift the phase of the resulting cycle in the ocean
mixed layer temperature.

The relaxation always acts to restore the temperature to its prescribed equilibrium.
Therefore if the distribution of the equilibrium temperature in the model domain is chosen
to resemble the present climatology in some part of the world ocean, the effect of the
relaxation can be comparable to that of a Q-flux.

In Chapter 2 I present, and evaluate the slab ocean model versions that are developed
for Bedymo. I explain the 0.5-layer model, the 1-layer model and the 1.25-layer model in
detail in Section 2.1. A brief introduction to the model versions is followed by an overview
of the relevant numerics, a subject on which I have benefited greatly from the transport
and time integration schemes already implemented in Bedymo. I will not provide a detailed
explanation of these schemes.

After the numerics follows the model physics, which is broken down into sensible heat
flux, heat transport and relaxation components of the total ocean mixed layer temperature
tendency, analogous to how it is done in the model source code. The bulk formula for the
calculation of Ekman currents is also provided, and briefly discussed.

The model description (Section 2.1) is followed by a section in which the model is tested
in various idealized scenarios (Section 2.2). The model output is compared to corresponding
analytical solutions to demonstrate that the model behaves as expected.

Section 2.2.5 is the final section of Chapter 2. Here a set of configurable parameters
are varied to become familiar with their effect on the model output, as well as to suggest
what are reasonable or less reasonable choices of the parameter values.

Chapter 3 contains the results from a coupled test run that was repeated with all three
model versions. After the coupled test follows the summary and conclusion, and in the
end three Appendices containing analytical solutions, additional figures for the transport
tests and the slab ocean module of the Bedymo source code.



Chapter 2

Slab Ocean Model

2.1 Model Description

2.1.1 The three model versions

The 0.5-layer model (Figure 2.1) is a standard slab ocean model with an optional temper-
ature relaxation towards a prescribed mean state of the ocean mixed layer. Equation (2.1)
is the 0.5-layer version of the prognostic equation for ocean mixed layer temperature T .
The tendencies on the right hand sides of Equations (2.1) - (2.3) will be explained in the
physics section (2.1.3).

∂T

∂t
=

(
∂T

∂t

)
surface heat flux

+

(
∂T

∂t

)
relaxation

(2.1)

The 1-layer model (Figure 2.2 a) is an extension of the 0.5-layer model by the intro-
duction of diagnostic and/or prescribed ocean currents. Relaxation is an optional feature
also for the 1-layer model. Equation (2.2) is the 1-layer version of the prognostic equation
for ocean mixed layer temperature.

∂T

∂t
=

(
∂T

∂t

)
surface heat flux

+

(
∂T

∂t

)
heat transport 1layer

+

(
∂T

∂t

)
relaxation

(2.2)

The 1.25-layer model (Figure 2.2 b) is a further extension of the 1-layer model that
explicitly assumes an infinite reservoir of a prescribed temperature distribution beneath
the ocean mixed layer. Relaxation is still an optional feature. Equation (2.3) is the 1.25-
layer version of the prognostic equation for ocean mixed layer temperature.

∂T

∂t
=

(
∂T

∂t

)
surface heat flux

+

(
∂T

∂t

)
heat transport 1.25layer

+

(
∂T

∂t

)
relaxation

(2.3)



14 Slab Ocean Model

Figure 2.1: A conceptual sketch of the 0.5-layer model.
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(a)

(b)

Figure 2.2: Conceptual sketches of the 1-layer model (a) and the 1.25-layer model (b).
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2.1.2 Numerics

Bedymo uses an Arakawa C grid. As it is convenient that the atmosphere and ocean
temperatures are defined in the same points, as well as it is equally convenient to let the
ocean model easily make use of the transport schemes already implemented in Bedymo, it
was a natural choice to use an Arakawa C grid also in the ocean model (Figure 2.3). The
ocean mixed layer temperature is defined in the middle of the grid cells, while the ocean
velocities are defined on grid cell boundaries. The vertical grid (Figure 2.4) is equivalent
to the horizontal grid.

Figure 2.3: Sketch of the Arakawa C grid in the x-y plane. The outer indices represent grid cells and
thus unstaggered quantities, while the inner indices represent the convention that is used for the staggered
quantities in Fortran.
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Figure 2.4: Sketch of the grid in the x-z plane. Outer indices represent unstaggered quanitities and inner
indices represent staggered quantities.

Upwind schemes of order 1 to 6, were the order is a configurable variable, are already
implemented in Bedymo and the ocean model makes use of these in order to calulate the
heat transport part of the temperature tendency (Equations (2.2) and (2.3)). The detailed
derivation of the schemes can be found in Spensberger (2012) or in Tremback et al. (1987).

Five time integration schemes are implemented in Bedymo. The schemes and their
respective ID’s are given in Table 2.1.

Time integration scheme ID

Fourth order Runge Kutta 1
Miller Pearce 2
Quasi Implicit 3
Leap frog with RAW filter 4
Euler 5

Table 2.1: The time integration schemes implemented in Bedymo and their respective ID’s.

The lateral boundary conditions for Bedymo and the slab ocean are also configurable.
Table 2.2 summarizes the options. The periodic condition allows the ocean mixed layer
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temperature to reenter the model domain on the opposite side. This option is most useful
when representing a circumglobal latitude band as model domain (Spensberger 2012).

The impermeable wall condition is represented by a zero gradient condition on ocean
mixed layer temperature, a free slip condition for boundary parallel ocean velocities and a
zero condition for boundary normal velocities.

Boundary condition ID

Periodic -1
Impermeable wall 0

Table 2.2: Lateral boundary conditions and their corresponding ID’s.

Configurable variables are collected in the model namelist. Table 2.3 presents the
namelist variables that are most relevant for the slab ocean model, including a short ex-
planation of each variable, and a set of default values that are referred to as default#1.

Variable Explanation Value

nx # of gridpoints in x 180
ny # of gridpoints in y 180
dx grid distance in x 222 222 m
dy grid distance in y 222 222 m
dt time step 0.5 d
latbrdtyp ew east-west boundaries -1
latbdrtyp sn south-north boundaries 0
adv order max order of upwind scheme 3
int scheme id time integration scheme 4
tsstop end time of model run 1095 d
dtout output timestep 1 d
lcoriolis coriolis force false
lbetaeffect beta effect false
fcor coriolis parameter 1.0× 10−4 s−1

betacor d/dy(fcor) 0
lslab ocean slab ocean true
l050layermodel 0.5-layer model true
l100layermodel 1-layer model false
l125layermodel 1.25-layer model false
lekmantransp Ekman transport false
lrelaxation relaxation true
relaxation coeff relaxation coefficient 0 s−1

drag coeff drag coefficient 1.3× 10−3

sh exchange coeff sensible heat exchange coefficient 1.3× 10−3

mixed layer depth mixed layer depth 50 m

Table 2.3: The default namelist for test runs with the 0.5-layer model (default#1).
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2.1.3 Physics

The physics section explains the calculation of the surface heat flux, heat transport and
relaxation tendencies seen in Equations (2.2) - (2.3), and provides the bulk formula for the
Ekman currents.

Surface heat flux

For slab ocean models in general, the tendency of ocean mixed layer temperature due to
surface heat fluxes is given by the following equation (Collins et al. 2004, Maze et al. 2011).(

∂T

∂t

)
surface heat flux

=
Ftotal
ρoHCpo

Here T is the ocean mixed layer temperature, ρo is the ocean density, H the mixed layer
depth, Cpo the ocean heat capacity and Ftotal is the net heat flux through the atmosphere-
ocean interface. The net flux Ftotal consists of contributions from shortwave radiation Fsw,
longwave radiation Flw, sensible heat transfer Fsh and latent heat transfer Flh.

Ftotal = Fsw + Flw + Fsh + Flh

As Bedymo does not include parametrizations of moisture and radiation, the only contri-
bution to Ftotal in the model that I develop here is the sensible heat flux which can be
estimated by a standard bulk formula as given by e.g. Liu et al. (1979).

Fsh = ρaCpaCsh| ~ua|(Ta − T ) (2.4)

In Equation (2.4), ρa is the density of the atmosphere, Cpa the heat capacity of the at-
mosphere, Csh the exchange coefficient for sensible heat, and | ~ua| and Ta the surface at-
mospheric wind speed and temperature respectively ( ~ua = [ua, va]). The two latter are
typically taken at 10 m height, but in BedymoPE (primitive equation version) they are
defined at the lower atmospheric boundary.

Equation (2.4) looks rather simple, but can be vastly complicated by the fact that the
exchange coefficient in reality is not at all constant, but depends on several factors in a way
that requires iterative methods for solving. The reader is referred to Fairall et al. (2003)
for a detailed description of the COARE algorithm, which is one of the most frequently
used algorithms for this purpose.

The complexity of the COARE algorithm, and the models that typically use it (e.g.
CAM3.0 (Collins et al. 2004)) suggests that it may not be the best fit for Bedymo. Though
there may well be a middle way between the COARE algorithm and a constant coefficient,
I choose to keep the sensible heat exchange coefficient constant. It is assigned a standard
value of 1.3× 10−3 which is the same value that was used by Maze et al. (2011), and lies
somewhere in the middle of the range of values that the COARE algorithm produces for
different conditions (Kara et al. 2005).



20 Slab Ocean Model

Heat transport

Equation (2.5) is the basis for the treatment of heat transport both in the 1-layer model
and the 1.25-layer model. (

∂T

∂t

)
heat transport

= −∇ • (~uT ) (2.5)

Here ~u is the three dimensional velocity vector. Dividing the right hand side of Equation
(2.5) into partial derivatives with respect to x, y and z yields the following.(

∂T

∂t

)
heat transport

= − ∂

∂x
(uT )− ∂

∂y
(vT )− ∂

∂z
(wT ) (2.6)

The first two terms on the right hand side are discretized as follows, using the x-direction
as example.

∂

∂x
(uT )|i ≈

(uT )|i+ 1
2
− (uT )|i− 1

2

∆x

The horizontal wind is directly available on the staggered grid, while the temperature is
interpolated using the implemented upwind schemes (Tremback et al. 1987) of order 1 to
6.

The third term on the right hand side of (2.6) is discretized in an equivalent way.

∂

∂z
(wT )|z=−H

2
≈ (wT )|z=0 − (wT )|z=−H

H

The vertical velocity at the surface w(x, y, 0) is known and equal to zero leading to Equation
(2.7).

∂

∂z
(wT )|z=−H

2
≈ −w|z=−HT |z=−H

H
(2.7)

Because the ocean is assumed to be of constant density, the equation of continuity reduces
to ∇ • ~u = 0 which in turn leads to

0∫
−H

∂w

∂z
dz = −

0∫
−H

(
∂u

∂x
+
∂v

∂y

)
dz (2.8)

and

w(x, y,−H) = H

(
∂u

∂x
+
∂v

∂y

)
. (2.9)

The temperature on grid cell vertical boundaries (z = 0 and z = −H) is determined
by interpolation between the adjacent volumes. This is done using a first order upwind
scheme to ensure that the temperature at the lower grid cell boundary always equals the
temperature in the upwind volume.
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The 1-layer model leaves only one option for the temperature at the lower boundary
and that is for it to be equal to the slab (ocean mixed layer) temperature both for upward
and downward mass fluxes. Combining Equation (2.6) and Equation (2.7) leads to(

∂T

∂t

)
heat transport 1layer

= − ∂

∂x
(uT )− ∂

∂y
(vT ) +

wT

H
(2.10)

where w = w(x, y,−H) from now on. Substituting the right hand side of Equation (2.9) for
w in Equation (2.10) and applying the chain rule of differentiation to the terms involving the
horizontal fluxes shows that Equation (2.10) is just another way of writing the horizontal
advection equation (2.11).(

∂T

∂t

)
heat transport 1layer

= −u∂T
∂x
− v∂T

∂y
(2.11)

The 1.25-layer model assumes a reservoir of infinite depth below the slab layer. The
temperature TR of the water in this reservoir is a prescribed variable. Because the temper-
ature at the lower boundary is determined by the direction of the flux through the lower
boundary we get

∂

∂z
(wT )|z=−H

2
≈ −w|z=−HT |z=−H

H
= −max(w, 0)TR

H
− min(w, 0)T

H
(2.12)

Equation (2.6) then becomes(
∂T

∂t

)
heat transport 1.25layer

= − ∂

∂x
(uT )− ∂

∂y
(vT ) +

max(w, 0)TR
H

+
min(w, 0)T

H
(2.13)

Model currents

The model currents consist of an Ekman current that is diagnosed from the atmospheric
wind, and an optional background current that must be prescribed. The Ekman currents
are

ue =
ρaCD| ~ua|

ρoH(ε2 + f 2)
(εua + fva) (2.14)

ve =
ρaCD| ~ua|

ρoH(ε2 + f 2)
(εva − fua) (2.15)

In (2.14) and (2.15) ua and va are the x and y components of the atmospheric surface wind,
CD the drag coefficient, f is the Coriolis parameter and ε is a parameter representing various
dissipative effects including horizontal momentum fluxes (Codron 2012). Codron (2012)
also refers to ε as the inverse damping timescale of oceanic currents. The presence of ε
allows the computation of wind driven currents also near the equator where f ≈ 0. When
f is much larger than ε the classic Ekman drift formula is recovered. In his studies Codron
(2012) uses ε = 10−5s−1 which gives a transition latitude (ε = f) at 4◦. The transition
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latitude means simply the latitude at which the the resulting Ekman transport drifts 45◦

to the right or left of the surface atmospheric wind, and it depends on the choice of ε.

Far away from the equator ε does not matter, but near the equator there will be a
region where the Coriolis force is weak, the width of this region depending on the value of
ε. Depending on the setup it might even be less wide than the model resolution, causing an
intense and narrow upwelling centered at the equator, in contrast to a wider and weaker
upwelling for a larger value of ε. In the studies by Codron (2012) the structure of the
upwelling had consequences for tropical SST and precipitation.

The background currents are left for the user to prescribe. The source code includes
the fields that I used for the ocean tests in Section 2.2, but nothing more at the mo-
ment. The variables ’ub’ and ’vb’ in the slab ocean module of the Fortran source code
(bedymo/src ocean/slab.f95) are the background currents that together with the Ekman
currents form the total ocean currents.

Relaxation

All three model versions (0.5-layer-, 1-layer- and 1.25-layer model) include an optional
temperature relaxation towards a prescribed equilibrium state of the ocean mixed layer.
The relaxation part of the ocean mixed layer temperature tendency is given in Equation
(2.16) where α is the relaxation coefficient and TE is the equilibrium temperature.(

∂T

∂t

)
relaxation

= −α(T − TE) (2.16)

The relaxation always acts to restore the ocean mixed layer temperature T to it’s prescribed
equilibrium temperature TE. If T 6= TE and nothing else forces the ocean mixed layer
temperature, the equilibrium will be reached after a period of time depending on the
relaxation coefficient.

The choice of relaxation coefficient is not necessarily straight forward. A relaxation
coefficient that is too small will make the relaxation component of the total temperature
tendency negligible compared to the surface flux and transport components, while a relax-
ation coefficient that is too large will do the exact opposite, and make it almost impossible
to change the ocean mixed layer temperature. Based on the tests presented in Section
2.2.5 reasonable values for the relaxation coefficient appear to range from 1.0× 10−8 to
1.0× 10−6, where both ends of the range are best considered extreme cases.

The best suitable value of α depends on the application. For an experiment involving a
certain part of the world ocean an analysis of the time lag between maximum atmospheric
and maximum oceanic temperatures from the region in question could suggest a reasonable
value. This method is most reasonable if the equilibrium temperature is also prescribed
based on analyses of ocean mixed layer temperature from the region in question.

In a different scenario if e.g. relaxation is used to maintain an anomaly in the ocean
mixed layer temperature to force the atmosphere, the best value might be larger than what
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seems physically reasonable based on an analysis of atmosphere and ocean temperatures.
In such a case the solution may just as well be to find a value by trial and error.
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2.2 Model Evaluation

Here I present the results from a series of idealized test runs with the three model versions.
First the 0.5-layer model is forced with an annual cycle in atmospheric temperature in four
slightly different setups. Then the 1-layer model and the 1.25-layer model are both run
with four idealized background flow fields. A warm temperature anomaly that is to be
advected by the different flow fields is prescribed as the initial condition for ocean mixed
layer temperature. The same anomaly is the initial condition for the next set of runs,
where the 1-layer- and 1.25-layer models are forced by a rigid body atmospheric vortex to
test the calculation of the Ekman currents, and to highlight the difference between these
two model versions. The rigid body vortex is reused to perform a rotational test in the
ocean. Then follows a couple of sensitivity tests, and the main discussion, to mark the end
of Section 2.2.

The aim of Section 2.2 is to demonstrate that the slab ocean behaves as expected. To
achieve this I compare the model results to analytical solutions. The analytical solutions
are presented in Appendix A. For the atmospheric rigid body vortex case, no analytical
solution is provided. The focus is instead on the difference between the 1-layer- and 1.25-
layer models. For the rotational tests in the ocean, the analytical solution is equal to the
initial anomaly.

2.2.1 The 0.5-layer model forced with an annual cycle in at-
mospheric temperature: Numerical versus Analytical so-
lutions

The atmospheric temperature (Ta) cycle is given by (2.17). A constant atmospheric surface
wind of 10 m s−1 is also prescribed as the sensible heat flux would be zero in case of zero
surface wind (2.4).

Ta(t) = T0 + A sin(
2πt

P
− π

2
) (2.17)

The amplitude A is equal to 10 K, the period P equal to one year and T0 is equal to
283.15 K. As indicated by (2.17) no spatial dependency is prescribed for the atmospheric
temperature. The same is true for the initial ocean mixed layer temperature. As there is
also no transport of heat in the 0.5-layer model the consequence is that there is no spatial
dependency in the solution.

The initial ocean mixed layer temperature is equal to T0 in all four runs. For the
numerical solution to be comparable to the analytical the ocean first needs to adapt to the
forcing. This is why I have removed the first year from all time series.

The default namelist for the test runs in Section 2.2.1 is provided in Table 2.3 (Section
2.1.2). The first run is performed with the default setup. Another run is performed with
the same time step, but a nonzero relaxation coefficient, and then these two runs are
repeated, the time step set to ten times the default.
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Figure 2.5 shows the numerical solution for ocean mixed layer temperature normalized
between zero and one (solid curves), and the atmospheric temperature scaled accordingly
(dashed curves). The subfigure titles indicate the values of the time step dt and the
relaxation coefficient α.

Figure 2.6 shows the error in the numerical solution measured in percentage of two times
the amplitude of the oceanic temperature cycle. A larger initial error, and a slight decay
in the error with time can be seen in the two subfigures on the left hand side, where the
relaxation coefficient is equal to zero. This is just a result of the ocean mixed layer being
initialized at a temperature that in most cases, though depending on a set of parameters,
does not satisfy the analytical solution at time t = 0. Thus the reason that the same decay
in the error is not seen when the relaxation coefficent is nonzero, is likely a result of the
initial temperature being a better fit for that particular combination of parameter values,
or that the relaxation helps the ocean adjust quicker to the atmospheric forcing.

The two subfigures on the right hand side of Figure 2.6 are, out of these few examples,
considered the best representation of the error actually related to the numerical integration.
As is expected the larger time step, produces a larger relative error. Although both time
steps used here are way larger than what the atmosphere would be expected to handle,
they might both be used if the ocean and atmosphere were to be run with separate time
steps.
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Figure 2.5: Time series of atmospheric temperature (dashed curves), and the resulting ocean mixed layer
temperature (solid curves).
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2.2.2 Heat transport by prescribed idealized flow fields in the 1-
layer- and 1.25-layer model: Numerical versus Analytical
solutions

Variable Explanation Value

nx # of gridpoints in x 180
ny # of gridpoints in y 180
dx grid distance in x 222 222 m
dy grid distance in y 222 222 m
dt time step 2.5 d
latbrdtyp ew east-west boundaries -1
latbdrtyp sn south-north boundaries 0
adv order max order of upwind scheme 3
int scheme id time integration scheme 4
tsstop end time of model run 3650 d
dtout output time step 20 d
lcoriolis coriolis force true
lbetaeffect beta effect false
fcor coriolis parameter 1.0× 10−4 s−1

betacor d/dy(fcor) 0
lslab ocean slab ocean true
l050layermodel 0.5-layer model false
l100layermodel 1-layer model true
l125layermodel 1.25-layer model false
lekmantransp Ekman transport false
lrelaxation relaxation false
relaxation coeff relaxation coefficient 1.0× 10−7 s−1

drag coeff drag coefficient 1.3× 10−3

sh exchange coeff sensible heat exchange coefficient 1.3× 10−3

mixed layer depth mixed layer depth 50 m

Table 2.4: The default namelist for test runs with the 1-layer model and the 1.25-layer model (default#2).

Table 2.4 provides the default namelist for the transport tests. The only deviations from
the default occurs when the 1.25-layer model is used instead of the 1-layer model, or when
the prescribed flow field is given by (2.20) or (2.21) (latbdrtyp ew = 0).

The idealized flow fields are given in Equations (2.18) - (2.21) where j = 1, . . . , ny,
i = 0, . . . , nx and u0 = 0.1 m s−1. There is no flow in the north-south direction in any of
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these fields, i.e. v(j, i) = 0.

Homogeneous flow: u(j, i) = u0 (2.18)

Shear flow: u(j, i) = u0
j

ny
(2.19)

Convergent flow: u(j, i) = u0

(
1− i

nx

)
(2.20)

Divergent flow: u(j, i) = u0
i

nx
(2.21)

As the velocities are prescribed also on the western and eastern boundaries of the model
domain the only quantity to be set by an additional condition is the temperature. For the
homogeneous and shear flow fields a periodic condition makes sense, but not so much for
the convergent and divergent fields. When the convergent or divergent field is used the
temperature is set by a zero gradient condition. As there are no waves, but only advection
in the slab ocean model the boundaries may thus, in these two cases, be viewed as one
open boundary and one impermeable wall.

The first test is done with the homogeneous field (2.18). Figure 2.7 shows the numerical
solution, normalized with respect to the amplitude of the initial anomaly. As one would
hope the shape of the anomaly looks to be well conserved. Figure 2.8 shows the error in
the numerical solution, measured as the difference between the numerical and analytical
solution, in percentage of the amplitude of the initial anomaly. The maximum error is
very small (< 0.35%) already with an advection scheme of third order. The anomaly itself
is subject to a minor damping, and surrounded by an almost continuous region, covering
more than half the model domain where the relative error is around −1%.

Now what happens if a linear y-dependence is prescribed in the flow field? Figure 2.9
shows the result from the 1-layer model, when the shear flow is used. In this case it would
be more of a surprise if the shape of the anomaly did not change. As seen in Figure 2.9 the
shape is deformed, but the total area covered by the anomaly looks like it may not have
changed. Figure 2.10 shows the error, which is one order of magnitude larger than for the
homogeneous field, and distributed in a slightly different pattern.

The analytical solutions become more complex once an x-dependence is prescribed in
the x-component of the velocity fields (Section A.2.3). Does the error in the numerical
solution increase accordingly? Figures 2.11 and 2.13 show the numerical solutions from
the 1-layer model for the convergent and divergent flow fields. The initial shape is now not
only deformed, but also stretched or squeezed to cover a larger or smaller area. Figure 2.12
shows the error for the convergent field, while Figure 2.14 shows the error for the divergent
field. The maximum error encountered so far is seen in Figure 2.12 for the convergent field.

The transport tests so far, are all performed with the 1-layer model. For the homo-
geneous, shear, and convergent flow fields no differences are expected with the 1.25-layer
model, and no differences do occur (Appendix B, Figure B.1 and Figure B.2). In the case
of divergence a noteable difference is expected if the prescribed reservoir temperature is
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colder than the ocean mixed layer temperature. To evaluate also the upwelling component
of the 1.25-layer model, the result (Figure 2.15) is again compared to the corresponding
analytical solution (Figure 2.16). The error is comparable to the error produced by the
1-layer model for the same flow field.

It should be mentioned that in the figures that follow (2.7 - 2.16) the quantitity on the
x and y axes is number of grid points.
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Figure 2.7: Normalized ocean mixed layer temperature from the 1-layer model when the prescribed flow
field is given by Equation (2.18) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.8: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.9: Normalized ocean mixed layer temperature from the 1-layer model when the prescribed flow
field is given by Equation (2.19) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.10: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.11: Normalized ocean mixed layer temperature from the 1-layer model when the prescribed
flow field is given by Equation (2.20) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.12: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.13: Normalized ocean mixed layer temperature from the 1-layer model when the prescribed
flow field is given by Equation (2.21) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.14: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.15: Normalized ocean mixed layer temperature from the 1.25-layer model when the prescribed
flow field is given by Equation (2.21) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure 2.16: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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2.2.3 Ekman transport in the 1-layer model versus the 1.25-layer
model when forced with a rigid body atmospheric vortex

u(j, i) = − u0

0.5ny
(j − 0.5ny) j = 1, . . . , ny i = 0, . . . , nx (2.22)

v(j, i) =
u0

0.5nx
(i− 0.5nx) j = 0, . . . , ny i = 1, . . . , nx (2.23)

The main objective of this test is to confirm that the calculation of the Ekman currents
turns out as expected. The background currents are set to zero, and the Ekman currents
are enabled by setting the logical ’lekmantransp’ to true. The ocean is forced by a rigid
body cyclonic atmospheric vortex, (2.22) and (2.23), that is easily prescribed, and ensures
divergence in the entire model domain, which helps highlighting the difference between
the 1-layer model and the 1.25-layer model. The constant u0 is equal to 15 m s−1. The
boundaries for ocean mixed layer temperature are set by a zero gradient condition, and
the initial condtion is the same warm anomaly as before.

Figure 2.17 shows the result from the 1-layer model. The anomaly is stretched in
every direction, and as a result the domain integrated mixed layer temperature increases.
What actually happens is that the net horizontal transport of water out of a grid cell is
compensated by an upwelling of equally warm water. Thus there is an energy source that,
if the model run was extended for long enough, would heat the mixed layer until every grid
cell had the same temperature.

Figure 2.18 shows the result from the 1.25-layer model. The prescribed reservoir tem-
perature is constant at 283.15 K. In this case the anomaly is weakened, and the domain
integrated mixed layer temperature decreases. If this run were to be extended long enough
the mixed layer temperature would eventually become equal to the reservoir temperature
in all grid points.

Figure 2.19 shows the difference between the results from the 1-layer model and the
1.25-layer model. The maximum difference between the two model versions is larger than
30% of the amplitude of the initial temperature anomaly.
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Figure 2.17: The result from the 1-layer model when forced with a rigid body cyclonic vortex at (a)
t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d. Normalized with respect to the amplitude of the
initial anomaly.
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Figure 2.18: The result from the 1.25-layer model when forced with a rigid body cyclonic vortex at (a)
t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d. Normalized with respect to the amplitude of the
initial anomaly.
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Figure 2.19: The difference between the 1-layer model and the 1.25-layer model measured in percentage
of the amplitude of the initial anomaly.
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2.2.4 Tests with a rigid body vortex in the ocean

The rigid body cyclonic vortex, (2.22) and (2.23), is reused here, with u0 = 0.4 m s−1. The
vortex is now prescribed as the background flow in the ocean to perform a test resembling
that by Tremback et al. (1987). The test is repeated for the second, third, fifth and sixth
order of the upwind schemes. The model runs end after one full rotation, and the final
result is compared to the initial temperature profile, which remains the same as in the
previous tests (e.g Figure 2.18 (a)).

Figure 2.20 shows the resulting error with the second order upwind scheme, Figure 2.21
the error with the third order scheme, Figure 2.22 the error produced by the fifth order
scheme and Figure 2.23 shows the error that results when the sixth order scheme is used.

The odd and even ordered schemes display significant differences in the pattern of the
errors. While the odd ordered schemes mainly damp the initial anomaly, the errors from
the even ordered schemes have a more dispersive nature. This is believed to be consistent
with the results of Tremback et al. (1987). Eventual differences may come from the length
of the runs, a different method of time integration, different grids and resolution etc.
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Figure 2.20: The error with the second order upwind scheme.
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Figure 2.21: The error with the third order upwind scheme.
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Figure 2.22: The error with the fifth order upwind scheme.
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Figure 2.23: The error with the sixth order upwind scheme.
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2.2.5 Sensitivity tests

The model contains a set of parameters that if changed will have an impact on the model
output. Most of these parameters are configurable, an exception is the ε that is used in
the bulk formula for the Ekman currents.

The perhaps most interesting of these configurable parameters is the relaxation coeffi-
cient. To illustrate some of its effect, and to help develop an idea of which values might
actually be reasonable, model runs with an annual atmospheric temperature forcing are
repeated for a range of coefficients.

Equivalent runs are also carried out for a range of mixed layer depths and sensible heat
exchange coefficients. As for the relaxation coefficient, these tests help build a relationship
to these parameters.

In this particular setup the variation of parameters is easily visible in a change of phase
and amplitude of the resulting cycle in ocean temperature. The analytical solutions in
Appendix A are used to construct plots of the amplitude and time lag as functions of the
model parameters.

If nothing else is specified the parameter values are set by default#1 (Table 2.3).
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Figure 2.24: The atmospheric temperature forcing (dashed curves), and the resulting ocean mixed layer
temperature (solid curves) from the 0.5-layer model for four different mixed layer depths (subplots).
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Figure 2.25: The atmospheric temperature forcing (dashed curves), and the resulting ocean mixed layer
temperature (solid curves) from the 0.5-layer model for four values of the sensible heat exchange coefficient
(subplots).
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Figure 2.26: (a) The amplitude of the oceanic temperature cycle (normalized with respect to the ampli-
tude of atmospheric temperature), as a function of the sensible heat exchange coefficient for four different
mixed layer depths. (b) The time lag between atmosphere and ocean temperature maximums (normalized
with respect to the period), as a function of the sensible heat exchange coefficient for four different mixed
layer depths.
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Figure 2.27: The atmospheric temperature forcing (dashed curves), and the resulting ocean mixed layer
temperature (solid curves) from the 0.5-layer model for four different values of the relaxation coefficient
(subplots).
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Figure 2.28: (a) The time lag (normalized with respect to the period) between atmosphere and ocean
temperature maximums, as a function of the relaxation coefficient for four mixed layer depths (legend),
and four exchange coefficients (subplots).
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Figure 2.29: (a) The amplitude (normalized with respect to the amplitude of atmospheric temperature)
of the oceanic temperature cycle, as a function of the relaxation coefficient for four mixed layer depths
(legend), and four exchange coefficients (subplots).

2.3 Discussion

The simple tests in Section 2.2.1 demonstrate that the 0.5-layer model responds as expected
to an annual cycle in atmospheric temperature, both with and without relaxation. The
magnitude of the error depends on the choice of time step, but even with a time step of
five days the accuracy is acceptable. The surface flux alone imposes no particular stability
criterion on the model, while the relaxation might do so, depending on the time integration.
With an Euler integration at least, the relaxation is conditionally unstable. However, the
largest constraint on the time step is related to the transport schemes unless a very large
relaxation coefficient is chosen.

The tests in Section 2.2.2 are all performed with the third order upwind scheme (Trem-
back et al. 1987), the Leap Frog time integration with a Robert-Asselin-Williams (RAW)
time filter (Williams 2011), and a Courant number of approximately 0.1. Thus eventual
differences in accuracy between these tests are related to the nature of the flow fields.

Appendix B contains a set of additional figures. These are all from tests with a homo-
geneous flow (2.18) where either the Courant number or the order of the advection scheme,
are changed with respect to the default (default#2).

All the implemented upwind schemes have the Courant-Friedrich-Levy stability crite-
rion (Tremback et al. 1987). Because of the staggered Arakawa C-grid this criterion is
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further reduced to Cα ≤ 0.5. However, as can be seen in Figure B.10, the solution for a
constant advecting velocity blows up badly for Cα ≈ 0.36 when the model is run using
the Leap Frog time integration, and the third order upwind scheme. For this particular
combination of transport scheme and time integration method, Figures B.7 - B.10 show a
general decrease in the relative error as the Courant number is reduced.

As the order of the upwind scheme increases, so does the overall accuracy (Spensberger
2012), at the cost of increased computational expenses. In the opinion of Tremback et al.
(1987) the best balance between efficiency and accuracy might be the sixth order scheme.
The homogeneous flow field test was repeated also with a sixth order scheme (Figure B.6),
the Courant number being as set by default#2 (Cα ≈ 0.1). The maximum percentage error
in this run, relative to the initial magnitude of the anomaly, was reduced to just above
0.01%, one order of magnitude smaller than for the third order scheme.

The 0.5-layer-, 1-layer- and 1.25-layer models have been tested and are declared func-
tional. The numerical errors in the tests that are presented are in general less than 5% of
the magnitude of the original temperature anomaly, or the amplitude of the annual tem-
perature cycle. Other and better tests than those performed here may well exist, and more
tests might also have been performed. Nonlinear flow fields could have been prescribed,
the method of time integration could have been changed etc. The heat transport is without
question the most complex component of the slab ocean model, and therefore also the most
extensively tested.

The results from the sensitivity tests are as expected. Figures 2.24, 2.25 and 2.26 show
that the sensible heat exchange coefficient, and the mixed layer depth have similar effects
on the oceanic temperature cycle, though in opposite proportions. A change in sensible
heat exchange coefficient or mixed layer depth either increases the amplitude of the oceanic
cycle and decreases the time lag between atmosphere and ocean temperature maximums,
or decreases the amplitude and increases the lag.

Mixed layer depths of 10 m and 200 m stand out as relatively extreme. The first value in
particular gives an amplitude of the oceanic cycle that is at least 80 % of the atmospheric
amplitude for exchange coefficients above 1.0× 10−3 (Figure 2.26). For a mixed layer depth
of 200 m the oceanic amplitude remains below 20 % of the atmospheric for the chosen range
of exchange coefficients. While both these mixed layer depths might be applicable in some
situations one should at least consider carefully before combining very deep mixed layers
with a very weak exchange coefficient, or very shallow mixed layers with a strong exchange
coefficient.

The relaxation decreases both the amplitude and the time lag of the resulting cycle
in ocean mixed layer temperature. Figure 2.28 shows the lag as a function of relaxation
coefficient for four different mixed layer depths and exchange coefficients, while Figure
2.29 shows the amplitude. These plots are constructed with the analytical solutions in
Appendix A, but with a reference to Section 2.2.1 they should be representative enough
for the model output.

Default values are set for the mixed layer depth, the sensible heat exchange coefficient
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and the relaxation coefficient, with the results in Section 2.2.5 providing some guidaince
in the process.

A somewhat hidden, but still important part of the testing process is the debugging
of the source code. Not every day did the runs go as smoothly as one would want, but
the coding errors were for the most part I would hope, discovered and elimininated one by
one.



Chapter 3

Coupled Test

Gill (1980) presents elegant analytical solutions to a set of problems involving heat induced
tropical circulation. It was our intension to perform some experiments along those lines
with Bedymo using a two layered atmosphere. However, it became evident along the road,
that some more work is required before this is possible. For the moment we are thus limited
to a one layer atmosphere.

A test with some similarity to the Gill setup (Gill 1980) is performed with a one layer
atmosphere. The model domain is a circumglobal band centered at the equator, and
stretching from 63◦ south to 63◦ north. The ocean is initialized with a warm anomaly
centered at equator, halfway into the eastern part of the domain. The same anomaly is
prescribed as the equilibrium temperature, thus the relaxation attempts to maintain this
anomaly.

The atmosphere is initialized at a constant temperature, which except from the anomaly
is equal to the ocean temperature. A westward cosine shaped basic state atmospheric wind
centered at the equator and dying out at 45◦ north and south is prescribed, mainly to force
an Ekman transport in the ocean. The experiment is repeated with all three versions of
the slab ccean model.

[1000 km]

[1
00

0 
km

]

time = 0 days

 

 

5 10 15 20 25 30 35

−5

0

5

[K
el

vi
n]

278

280

282

284

286

288

290

292

294

296

298

Figure 3.1: The initial ocean mixed layer temperature, and the prescribed equilibrium of the ocean.
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Variable Explanation Value

nx # of gridpoints in x 400
ny # of gridpoints in y 140
dx grid distance in x 100 000 m
dy grid distance in y 100 000 m
dt time step 300 s
latbrdtyp ew east-west boundaries -1
latbdrtyp sn south-north boundaries 0
adv order max order of upwind scheme 4
int scheme id time integration scheme 1
tsstop end time of model run 730 d
dtout output time step 1 d
lcoriolis coriolis force true
lbetaeffect beta effect true
fcor coriolis parameter 0 s−1

betacor d/dy(fcor) 2.28× 10−11 m−1 s−1

lslab ocean slab ocean true
l050layermodel 0.5-layer model false
l100layermodel 1-layer model true
l125layermodel 1.25-layer model false
lekmantransp Ekman transport true
lrelaxation relaxation true
relaxation coeff relaxation coefficient 1.0× 10−7 s−1

drag coeff drag coefficient 3.0× 10−3

sh exchange coeff sensible heat exchange coefficient 1.3× 10−3

mixed layer depth mixed layer depth 50 m

Table 3.1: The default namelist for the coupled tests (default#3).

Figure 3.1 shows the warm anomaly used for the initial ocean mixed layer temperature,
and the prescribed equilibrium temperature. It has an amplitude of 10 K which causes an
initial sensible heat flux ∼ 10 W m−2.

Table 3.1 presents the default setup for the coupled tests. Note that a strong drag
coefficient is used to enhance the Ekman transport in these tests, while the relaxation
coefficient is kept at a moderat value. The maximum basic state wind speed is 5 m s−1.

Figure 3.2 shows the ocean mixed layer temperature after 99 days from the different
versions of the slab ocean model. The result from the 1-layer model is, at least down to
visual accuracy, equal to the result from the 0.5-layer model. In the 0.5-layer and 1-layer
models the anomaly is slightly weakened, but apart from that, there is no apparent change
in the ocean mixed layer temperature with respect to Figure 3.1.

In the 1.25-layer model a region of upwelling of reservoir water, and intense cooling,
forms along the equator. In the region of the prescribed warm anomaly the strength of
the upwelling is enough to destroy the anomaly completely in its center, but as the basic
state wind speed decreases towards the north and south, the relaxation regains some of
its intended dominance to form two separate, and weaker anomalies. The fact that the
anomaly intended to be a heat source is to a large extent destroyed by upwelling provides
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some food for thought.

The prescribed reservoir temperature in the 1.25-layer model in these tests is a constant,
and equal to 283.15 K. Thus the reservoir is initially colder than the ocean mixed layer
in all grid points, and any eventual upwelling is expected to cool the mixed layer. The
temperature difference between the slab layer and the reservoir in this case is too large to
be considered especially realistic.

The cooling along the northern and southern boundaries, is not something that was
expected, as the basic state wind is set to zero. The reason for this cooling, stands out as
something in need of an explanation.

Figure 3.3 shows the perturbation x-wind after 1, 3, and 5 days, while Figure 3.4 shows
the perturbation y-wind at the same times. In Figure 3.3 it seems a Kelvin wave might be
propagating eastward from the region of the warm anomaly. This particular result seems
consistent with the solution by Gill (1980) for a similar heating.
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Figure 3.2: The resulting ocean mixed layer temperature [Kelvin] after 99 d from the 0.5-layer model
(top), the 1-layer model (middle) and 1.25-layer model (bottom).
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3.1 Discussion

There is a significant difference in the resulting ocean mixed layer temperature from the run
with the 1-layer model, and the run with the 1.25-layer model. The intense divergence and
upwelling that is clearly seen for the 1.25-layer model, is invisible, although still present in
the 1-layer model, only the upwelled water has the same temperature as the water above.
Given that the drag coefficient was assigned a value on the large side, I had expected to
observe some trace of the Ekman transport also in the 1-layer model. Apparently the
combination of the relaxation, and the cooling by the sensible heat flux that occurs when
the anomaly water is transported away from the equator balances the heating tendency of
the Ekman currents.

Figure 3.2 (bottom subfigure) shows the result from the run with the 1.25-layer model.
This run successfully creates a region of cold upwelling along the equator that bears some
resemblance to the real ocean. On the less positive side, no explanation is found at present,
for the cooling along the northern and southern boundaries. One way or the other there
has to be either upwelling of cold water, or some process that cools the atmosphere which
again cools the ocean. There is nothing in the basic state wind suggesting divergence
and upwelling in these regions, and it also seems far fetched that the perturbation winds
would cause this. There might be reason to have a careful look at the setting of boundary
conditions, to check if there is something there that could cause this cooling.

Another issue with 1.25-layer run, is the fact that the relaxation that was meant as
the heat source, is dominated by the intense upwelling. A weaker drag coefficient, and
a stronger relaxation coefficient, might be enough to solve this problem though. The
coupled test with the 1.25-layer model may have benfitted particularily from a larger
relaxation coefficient in the region of the warm anomaly, although not necessarily elsewhere,
suggesting that the possibility to prescribe a spatially variyng relaxation coefficient may
be useful. The relaxation coefficient in the source code is a 2-dimensional array, where
every location by default is assigned the constant value from the configuration. Thus to
prescribe a spatially varying coefficient, only minor modification is needed in the source
code.

It seems that for experiments of this particular kind the 0.5-layer model or the 1.25-
layer are the better options, as the 1-layer model apparantly adds no change in the ocean
mixed layer temperature relative to the 0.5-layer model, even though the drag coefficient
is three times its default value. Without the relaxation though, and the situation might
be different.



Chapter 4

Summary and Conclusion

Three model versions are developed and tested. These are the 0.5-layer model, a standard
slab ocean model with an optional temperature relaxation. The 1-layer model, an extension
of the 0.5-layer model that introduces wind driven or prescribed ocean currents and solves
the horizontal advection equation for the slab temperature. And last, but not least, the
1.25-layer model, a further extension of the 1-layer model that assumes an infinite reservoir
of prescribed temperature below the slab layer, and solves the three dimensional flux
divergence equation for the slab temperature.

The model versions are tested, by comparing the results from idealized simulations with
corresponding analytical solutions. The tests result in errors that are considered reasonably
small.

A simple sensitivity test where the 0.5-layer model is forced with an annual cycle
in atmospheric temperature is repeated for various values of the mixed layer depth, the
sensible heat exchange coefficient and the relaxation coefficient, to become familiar with
these parameter’s effect on model output, and to assign them a set of default values.
The chosen defaults are considered moderate values in most cases, though a relaxation
coefficient of 1.0× 10−7 s−1 may be in the lower part of the range for certain experiments.

The coupling is tested, and does work, for the three models versions and a one layer
atmosphere. The ocean responds more or less as expected to the overlying atmosphere, the
most interesting part being the Ekman transport, and the significant difference between
the 1-layer model, and the 1.25-layer model. The coupled tests suggest that some care
must be taken when heat transport and relaxation are used together, to ensure that one
component does not supress the expected or intended effect of the other. The prescribed
reservoir temperature that was used in the coupled tests is too cold, at least compared to
the above mixed layer temperature to be considered realistic. At the same time a high
value was used for the drag coefficient, further enhancing the cooling due to upwelling.
I want to emphasize that the main objective of these tests is to demonstrate that the
ocean works, also when coupled to an atmospheric model. For the coupling of the Slab
Ocean Model versions to a multiple layer atmosphere to function at a satsifactory level, it
is evident that some more work and testing is required.
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Bedymo is provided with an idealized ocean model as was the aim of this thesis to
begin with. This opens the possibility for e.g. studies of heat induced tropical circulation,
following the work of Gill (1980). How would the upwelling of cold water in the 1.25-layer
model alter the results with respect to the 0.5-layer model? Or one can study e.g. the effect
of different temperature gradients in the ocean on the storm tracks, and the role or the
importance of oceanic heating in the developement and intensification of synoptic systems.
The possbilities are many, and the best we can hope, is for some of these experiments to
help us take a few of infinitely many small steps toward a better understanding of our
complex climate models, and thus the climate system.

Held (2005) writes that no small commitee can decide what are the appropriate models
and model hierarchies. Rather each and every model must prove itself over time. I believe
that Bedymo is up for the challenge.



Appendix A

Analytical solutions

A.1 The 0.5-layer model forced with an annual cycle

in atmospheric temperature

Ta(t) = T0 + A sin

(
2πt

P
+ φ0

)
(A.1)

The 0.5-layer model is forced with an atmospheric temperature on the form of (A.1), where
A is the amplitude, P the period, φ0 the phase and T0 some constant temperature. When
the relaxation coefficient is set to zero, the prognostic equation for ocean mixed layer
temperature T can be written

∂T

∂t
+ CT = C

(
T0 + A sin

(
2πt

P
+ φ0

))
where

C =
ρaCpaCsh| ~ua|
ρoHCpo

As seen C contains several parameters and variables, all of which are kept constant in the
relevant model runs. An explanation of these variables is given in Section 2.1.3.

The constants T0 and φ0 are ignored for now as they can simply be added to the solution
that is found when they are both zero.

∂T

∂t
+ CT = C

(
A sin

(
2πt

P
+ φ

))
Assume a solution on the form of an annual cycle with a change in phase and amplitude
relative to the atmospheric temperature.

T (t) = A∗ sin

(
2πt

P
+ φ

)
(A.2)
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Taking the partial derivative with respect to t of the above solution yields

∂T

∂t
=

2π

P
A∗ cos

(
2πt

P
+ φ

)
The prognostic equation for ocean mixed layer temperature can thus be written

2π

P
A∗ cos

(
2πt

P
+ φ

)
+ CA∗ sin

(
2πt

P
+ φ

)
= CA sin

(
2πt

P

)
(A.3)

Apply this equation at t = 0 to obtain an expression for φ.

2π

P
A∗ cos(φ) + CA∗ sin(φ) = 0

2π

P
cos(φ) = −C sinφ

tan(φ) = − 2π

CP

φ = tan−1

(
− 2π

CP

)
Then apply (A.3) at a time t∗ where ∂T

∂t
= 0 to find an expression for A∗.

∂T

∂t
= 0⇒ cos

(
2πt∗

P
+ φ

)
= 0⇒ 2πt∗

P
+ φ =

π

2

t∗ = (
π

2
− φ)

P

2π

A∗ = A| sin
(π

2
− φ
)
| = A| cosφ|

Add T0 and φ0 to Equation (A.2) and the solution becomes

T (t) = T0 + A∗ sin(
2πt

P
+ φ0 + φ)

Because of the manner in which this solution is obtained I will give a proof that it
fullfils Equation (A.1) for all T0 and φ0. The proof is carried out by substituting for T and
Ta in (A.1) and then using the following trigonometric identities.

sin(a± b) = sin a cos b± cos a sin b (A.4a)

cos(a± b) = cos a cos b∓ sin a sin b (A.4b)

cos a = ± 1√
1 + tan2 a

(A.4c)

sin a = ± tan a√
1 + tan2 a

(A.4d)

tan(tan−1 a) = a (A.4e)
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2πA∗
P

cos

(
2πt

P
+ φ0 + φ

)
+ C

(
Ta + A∗ sin

(
2πt

P
+ φ0 + φ

))
− C

(
Ta + A sin

(
2πt

P
+ φ

))
= 0

(A.4a) and (A.4b)︸ ︷︷ ︸
⇓

2πA∗
P

(
cos

(
2πt

P
+ φ0

)
cosφ− sin

(
2πt

P
+ φ0

)
sinφ

)
+ CA∗

(
sin

(
2πt

P
+ φ0

)
cosφ+ cos

(
2πt

P
+ φ0

)
sinφ

)
− CA sin

(
2πt

P
+ φ0

)
= 0

A∗ cosφ

(
2π

P
cos

(
2πt

P
+ φ0

)
+ C sin

(
2πt

P
+ φ0

))
+ A∗ sinφ

(
C cos

(
2πt

P
+ φ0

)
− 2π

P
sin

(
2πt

P
+ φ0

))
− CA sin

(
2πt

P
+ φ0

)
= 0

(A.1)︸ ︷︷ ︸
⇓

cos2 φ

(
2π

P
cos

(
2πt

P
+ φ0

)
+ C sin

(
2πt

P
+ φ0

))
+ cosφ sinφ

(
C cos

(
2πt

P
+ φ0

)
− 2π

P
sin

(
2πt

P
+ φ0

))
− C sin

(
2πt

P
+ φ0

)
= 0

(A.4c), (A.4d), (A.4e) and (A.1)︸ ︷︷ ︸
⇓

1

1 + ( 2π
CP

)2

(
2π

P
cos

(
2πt

P
+ φ0

)
+ C sin

(
2πt

P
+ φ0

))
−

2π
CP

1 + ( 2π
CP

)2

(
C cos

(
2πt

P
+ φ0

)
− 2π

P
sin

(
2πt

P
+ φ0

))
− C sin

(
2πt

P
+ φ0

)
= 0
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1

1 + ( 2π
CP

)2

(
C(1 + (

2π

CP
)2) sin

(
2πt

P
+ φ0

)
+ (

2π

P
− 2π

P
) cos

(
2πt

P
+ φ0

))
− C sin

(
2πt

P
+ φ0

)
= 0

C sin

(
2πt

P
+ φ0

)
− C sin

(
2πt

P
+ φ0

)
= 0

With a nonzero relaxation coefficient the prognostic temperature equation becomes

∂T

∂t
+ (C + α)T = CTa + αTE

where TE must be equal to T0 to be consistent with the model runs in question. The
solution is similar, but with slighty different expressions for φ and A∗.

φ = tan−1(− 2π

(C + α)P
)

A∗ =
CA

C + α
| cos(φ)|

T (t) = T0 + A∗ sin(
2πt

P
+ φ0 + φ)

A.2 Heat transport by prescribed idealized flow fields

in the 1-layer- and 1.25-layer model

Analytical solutions to the transport tests that were performed with the 1-layer- and 1.25-
layer model (Section 2.2.2) are presented here. They are all solutions to an equation on
the form of (A.5), with an initial condition on the form of (A.6). For simplicity all the test
runs were performed with v(x, y, t) = 0, therefore v(x, y, t) = 0 throughout this section.

∂T

∂t
+

∂

∂x
(uT ) +

∂

∂z
(wT ) = 0 (A.5)

T (x, y, 0) = f(x, y) (A.6)

For the 1-layer model (and the 1.25-layer model when the flow field is not divergent) (A.5)
reduces to a two dimensional advection equation (Equation A.7).

∂T

∂t
+ u(x, y, t)

∂T

∂x
= 0 (A.7)
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As long as the velocity u does not depend on x and/or t analytical solutions are easily
found, but when u does depend on these variables the challenge is increased. In this thesis I
have relied on the method of characteristics as desribed in e.g. Farlow (1993). The method
of characteristics will be explained in Section A.2.3.

A.2.1 Homogeneous flow

When the flow velocity is independent of both time and space the governing equation is an
advection equation with constant advecting velocity (Equation A.8). The initial condition
is a two dimensional Gaussian distribution (Equation A.9).

∂T

∂t
+ u0

∂T

∂x
= 0 (A.8)

T (x, y, 0) = f(x, y) = T0 + A exp [−(
(x− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.9)

The general solution to such a problem for any initial distribution f(x, y) is

T (x, y, t) = f(x− u0t, y) (A.10)

This is easily verified by taking the partial derivatives with respect to t and x of Equation
(A.10) and then substituting for ∂T/∂t and ∂T/∂x in (A.8). Combining (A.9) and (A.10)
gives us the solution to this particular problem.

T (x, y, t) = T0 + A exp [−(
(x− u0t− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.11)

A.2.2 Shear flow

Here the flow velocity is a function of y, the direction normal to the flow direction. The
initial condition remains the same (Equation A.9).

∂T

∂t
+ u(y)

∂T

∂x
= 0 (A.12)

T (x, y, 0) = f(x, y) = T0 + A exp [−(
(x− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.13)

The general solution (Equation A.14) is equivalent to that for a homogeneous flow field
and can be verified in the same manner. The particular solution (Equation A.15) is again
obtained by combining the general solution with the initial condition.

T (x, y, t) = f(x− u(y)t, y) (A.14)

T (x, y, t) = T0 + A exp [−(
(x− u(y)t− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.15)
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A.2.3 The method of characteristics

When the flow field is divergent or time dependent obtaining analytical solutions is not as
straight forward. Consider the problem posed by the following first order partial differential
equation (PDE) and initial condition

a(x, t)
∂T

∂x
+ b(x, t)

∂T

∂t
+ c(x, t)T = 0 (A.16)

T (x, 0) = f(x) (A.17)

where −∞ < x <∞ and 0 ≤ t <∞.

If a = 1, b is a constant and c = 0 (A.16) reduces to a simple advection equation with
the solution T (x, t) = f(x− bt). In this case the initial profile propagates along the x-axis
while conserving its shape.

Solutions to (A.16) are in general based on the fact that the initial disturbance at a
point x propagates along a line in the tx-plane, called a characteristic or a characteristic
curve (Farlow 1993). The method of characteristics introduces two new coordinates s and
τ that have the following properties.

• s changes along the characteristic curves.

• τ changes along the initial curve (t = 0).

In this way one can think of s as the new x and τ as the new t. The characteristic curves
are chosen so that

dx

ds
= a(x, t) (A.18)

dt

ds
= b(x, t) (A.19)

Equations (A.18) and (A.19) are called the characteristic equations. As a result Equation
(A.16) can be rewritten as

dT

ds
+ c(x(s, τ), t(s, τ))T = 0 (A.20)

making the PDE an ordinary differential equation (ODE) along the curves [x(s), t(s)] : 0 <
s <∞. We now need to solve these three ODE’s with the following initial conditions

• t(s = 0) = 0

• x(s = 0) = τ

• T (s = 0) = f(τ)

The solutions to the characteristic equations are solved for s and τ in terms of x and t,
and then the last step is to substitute the resulting expressions into the solution of (A.20).
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A.2.4 Convergent flow

In this case the flow velocity is a linear function of x, the velocity decreasing as x increases
(0 ≤ x ≤ L). From here on the method of characteristics (Section A.2.3) is applied.

For the homogeneous and shear flow we found general solutions for u = u0 and u = u(y).
As the nature of the characteristic equations depends very much on the flow field itself,
this is not attempted for the remaining cases.

The initial condition is as before, but now the governing equation is

∂T

∂t
+ u0(1− x

L
)
∂T

∂x
= 0 (A.21)

Equation (A.21) gives the characteristic equations

dt

ds
= 1 (A.22)

dx

ds
= u0(1− x

L
) (A.23)

The solutions to these equations when the appropriate initial conditions (t(0) = 0 and
x(0) = τ) are applied are as follows.

t(s) = s+ c1 = s (A.24)

x(s) = L+ c2 exp (−u0s

L
) = L+ (τ − L) exp (−u0s

L
) (A.25)

There is one ODE left to solve.
dT

ds
= 0 (A.26)

Apply the appropriate initial condition (T (s = 0) = f(τ)) and obtain an expression for T
as a function of s and τ .

T (s, τ) = f(τ) (A.27)

Solve (A.24) and (A.25) for s and τ in terms of x and t to obtain the coordinate transfor-
mations. Equation (A.27) may then be rewritten as follows.

T (x, y, t) = f((x− L) exp (
u0t

L
) + L, y) (A.28)

At last combining (A.9) and (A.28) yields the complete solution to this specific problem.

T (x, y, t) = T0 + A exp−[(
((x− L) exp (u0t

L
) + L− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.29)
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A.2.5 Divergent flow, 1-layer model

The velocity is still a linear function of x, but now increasing as x increases (0 ≤ x ≤ L).
The initial condition is not changed.

∂T

∂t
+ u0

x

L

∂T

∂x
= 0 (A.30)

T (x, y, 0) = f(x, y) = T0 + A exp [−(
(x− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.31)

¿From Equation (A.30) we find the characteristic equations (A.32 and A.33).

dt

ds
= 1 (A.32)

dx

ds
= u0

x

L
(A.33)

The solutions to the characteric equations are

t(s) = s+ c1 = s (A.34)

x(s) = C2 exp (
u0s

L
) = τ exp (

u0s

L
) (A.35)

There is one more ODE to solve, that is

dT

ds
= 0 (A.36)

Applying the initial condition, T (s = 0) = f(τ), yields the following expression for T as a
function of s and τ .

T (s, τ) = f(τ) (A.37)

It is time to solve the characteristic equations for s and τ in terms of x and t. Then we
can write

T (x, y, t) = f(x exp (−u0t

L
)) (A.38)

Again we need to combine (A.38) with the initial temperature profile (A.9) to obtain the
specific solution to this particular problem.

T (x, y, t) = T0 + A exp [−(
(x exp (−u0t

L
)− x0)2

2sx2
+

(y − y0)2

2sy2
)] (A.39)
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A.2.6 Divergent flow, 1.25-layer model

In this case the flow is the same field as in Section A.2.5, the initial condition is still given
by (A.9). The governing equation is

∂T

∂t
+ u0

x

L

∂T

∂x
+
u0

L
T =

u0

L
TR (A.40)

Although the governing equation has changed the characteristic equations are the exact
same as in Section A.2.5, and hence also their solutions.

t(s) = s (A.41)

x(s) = τ exp
u0s

L
(A.42)

The difference lies in the ODE (Equation A.43) resulting from the coordinate transforma-
tion.

dT

ds
+
u0

L
T1 =

u0

L
TR (A.43)

This equation can be solved using the method of integrating factors (Boyce & DiPrima
2005) where the integrating factor in this case is µ(s) = exp u0s

L
.∫

d

ds
(exp

u0s

L
T )ds =

u0s

L
TR

∫
exp

u0s

L
ds

exp
u0s

L
T = TR exp

u0s

L
+ C1

T (s) = TR + C1 exp (−u0s

L
)

The integration constant C1 is determined by applying the initial condition (T (0) = f(τ)).

T (s, τ) = TR + (f(τ)− TR) exp (−u0s

L
) (A.44)

Combining (A.44) and (A.9) gives the solution

T (x, y, t) = TR +

(
T0 + A exp [−(

(x exp (−u0t
L

)− x0)2

2sx2
+

(y − y0)2

2sy2
)]− TR

)
exp (−u0s

L
)



Appendix B

Additional figures for Section 2.2.2

All figures presented here, with the exception of Figures B.1 and B.2, are from repetitions
of the transport test with a homogeneous flow field. The order of the advection scheme,
or the Courant number is varied with respect to the default setup (default#2).
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Figure B.1: Normalized ocean mixed layer temperature from the 1.25-layer model when the prescribed
flow field is given by Equation (2.20) at (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure B.2: The error in the numerical solution with respect to the analytical, measured in % of the
magnitude of the initial anomaly, after (a) t=20 d, (b) t=1200 d, (c) t=2440 d and (d) t=3640 d.
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Figure B.3: The transport test with a homogeneous flow repeated for the first order upwind scheme.
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Figure B.4: The transport test with a homogeneous flow repeated for the second order upwind scheme.
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Figure B.5: The transport test with a homogeneous flow repeated for the fifth order upwind scheme.
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Figure B.6: The transport test with a homogeneous flow repeated for the sixth order upwind scheme.
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Figure B.7: The transport test with a homogeneous flow repeated with a Courant number of 0.0049.
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Figure B.8: The transport test with a homogeneous flow repeated with a Courant number of 0.22.
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Figure B.9: The transport test with a homogeneous flow repeated with a Courant number of 0.34.
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Figure B.10: The transport test with a homogeneous flow repeated with a Courant number of 0.36.
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The slab ocean module of the
Bedymo source code

1 module ocean_slab

2 use kind

3 use consts, only: pi, cp_atm => cp, cp_ocn

4 use slab_config, only:

5 use grid

6 use ncout, only: register_var_yxt

7 use derivatives

8 use bdr

9 use timeint

10 use coupler, only: reg_coup_var_yx, reg_coup_var_yxt, req_coup_var_2d, &

11 & check_coup_var_available

12 !

13 implicit none

14 !

15 ! Variables

16 real(kind=nr), allocatable :: rho_ocn(:,:), rho_atm(:,:), Hm(:,:), Hr(:,:), &

17 & Cbl(:,:), Crl(:,:), Cdr(:,:), Csh(:,:), &

18 & tempdiff(:,:), Te(:,:), Ta(:,:), F(:,:), &

19 & ue(:,:), ve(:,:), ub(:,:), vb(:,:), &

20 & u_ocn(:,:), v_ocn(:,:), w_ocn(:,:), windspeed(:,:)

21 !

22 real(kind=nr), allocatable :: Tm(:,:,:,:), Tm_tend(:,:,:), Tm_tend_adv(:,:), Tm_tend_rlx(:,:), &

23 & Tm_tend_hfl(:,:), Tm_flxx_adv(:,:), Tm_flxy_adv(:,:), &

24 & Tr(:,:,:), Tr_tend_adv(:,:), Tr_flxx_adv(:,:), Tr_flxy_adv(:,:)

25 !

26 real(kind=nr), allocatable :: utest(:,:,:), vtest(:,:,:)

27 real(kind=nr) :: eps

28 integer(kind=ni) :: tln, tli, tlo, tls

29 !

30 logical :: l050layermodel, l100layermodel, l125layermodel, lekm, lrlx

31 integer(kind=ni) :: cvarid_atm_xwind, cvarid_atm_ywind, cvarid_atm_temp

32 !--------------------------------------------------------------------------------------------------

33 !
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34 contains

35 !

36 ! Initialization

37 subroutine init_ocean_slab()

38 use slab_config, only: l050layermodel_c => l050layermodel, l100layermodel_c => l100layermodel, &

39 & l125layermodel_c => l125layermodel, lekmantransp, lrelaxation, &

40 & relaxation_coeff, drag_coeff, sh_exchange_coeff, mixed_layer_depth

41 !

42 allocate(rho_ocn(axy:zy,axy:zx), rho_atm(axy:zy,axy:zx), Hm(axy:zy,axy:zx), Hr(ny,nx), &

43 & Cbl(axy:zy,axy:zx), Crl(ny,nx), Cdr(axy:zy,axy:zx), Csh(ny,nx), &

44 & tempdiff(ny,nx), Te(ny,nx), Ta(axy:zy,axy:zx), F(ny,nx), &

45 & ue(ny,0 _ ni:nx), ve(0 _ ni:ny,nx), ub(ny,0 _ ni:nx), vb(0 _ ni:ny,nx), &

46 & u_ocn(ny,0 _ ni:nx), v_ocn(0 _ ni:ny,nx), w_ocn(ny,nx), windspeed(axy:zy,axy:zx))

47 !

48 allocate(Tm(1 _ ni,axy:zy,axy:zx,0 _ ni:nt-1 _ ni), Tm_tend(1 _ ni,ny,nx), &

49 & Tm_tend_adv(ny,nx), Tm_tend_rlx(ny,nx), &

50 & Tm_tend_hfl(ny,nx), Tm_flxx_adv(ny,0 _ ni:nx), Tm_flxy_adv(0 _ ni:ny,nx), &

51 & Tr(axy:zy,axy:zx,0 _ ni:nt-1 _ ni), Tr_tend_adv(ny,nx), &

52 & Tr_flxx_adv(ny,0 _ ni:nx), Tr_flxy_adv(0 _ ni:ny,nx))

53 !

54 tlo = 0 _ ni !Index of "old" time step

55 tli = 0 _ ni !Index of "intermediate" time step (used for advection & forcing)

56 tln = 0 _ ni !Index of "new" time step

57 tls = -1 _ ni !Index of a "saved" tendency, used in multi-step integrators

58 !

59 rho_ocn(:,:) = 1.026e3 _ nr !Ocean density

60 rho_atm(:,:) = 1.0383510273868126 _ nr !Atm density TODO: Get from atmosphere

61 Hm(:,:) = mixed_layer_depth !Mixed layer depth

62 !Hr(:,:) = 150.0_nr !Depth of return flow in 2-layer model

63 Crl(:,:) = relaxation_coeff !Relaxation coefficient

64 Cdr(:,:) = drag_coeff !Exchange coefficient for momentum

65 Csh(:,:) = sh_exchange_coeff !Exchange coefficient for sensible heat

66 !Tr(:,:,:) = 273.15_nr !Temperature of return flow in 2-layer model

67 !

68 Te(:,:) = 0.0 _ nr !Equilibrium temperature

69 Tm(:,:,:,:) = 0.0 _ nr !Mixed layer temperature

70 Ta(:,:) = 0.0 _ nr !Atm temperature

71 eps = 1.0e-5 _ nr !Parameter representing various dissipative effects

72 Cbl(:,:) = 0.0 _ nr !Bulk "coefficient" used in the calculation of Ekman currents

73 tempdiff(:,:) = 0.0 _ nr !Atm-ocean temperature difference

74 windspeed(:,:) = 0.0 _ nr !Atm wind speed at lower boundary

75 F(:,:) = 0.0 _ nr !Sensible heat flux at atm-ocean interface

76 Tm_tend_adv(:,:) = 0.0 _ nr !Advective tendency of mixed layer temp

77 Tm_tend_rlx(:,:) = 0.0 _ nr !Relaxation tendency ------------------

78 Tm_tend_hfl(:,:) = 0.0 _ nr !Heat flux tendency -------------------

79 ue(:,:) = 0.0 _ nr !Ekman current EW component

80 ve(:,:) = 0.0 _ nr !Ekman current NS component

81 ub(:,:) = 0.0 _ nr !Background current EW component

82 vb(:,:) = 0.0 _ nr !Background current NS component

83 u_ocn(:,:) = 0.0 _ nr !Total ocean current EW component

84 v_ocn(:,:) = 0.0 _ nr !Total ocean current NS component
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85 !

86 l050layermodel = l050layermodel_c !Switch for 0.5-layer model

87 l100layermodel = l100layermodel_c !Switch for 1-layer model

88 l125layermodel = l125layermodel_c !Switch for 1.25-layer model

89 lekm = lekmantransp !Switch for Ekman currents

90 lrlx = lrelaxation !Switch for relaxation

91 !

92 ! Prescribed wind field for test runs

93 !allocate(utest(1_ni,0_ni:ny+1_ni,0_ni:nx), vtest(1_ni,0_ni:ny,0_ni:nx+1_ni))

94 !

95 !call set_flowfield(utest(1_ni,1_ni:ny,0_ni:nx), vtest(1_ni,0_ni:ny,1_ni:nx), 0.0_nr, 0.0_nr, &

96 !& nx/2.0_nr, ny/2.0_nr, 0.0_nr, 0.0_nr, 1_ni)

97 !

98 ! Initial Tm profile

99 call set_temp(10.0 _ nr, 3.0 _ nr*nx/4.0 _ nr, ny/2.0 _ nr, 5.0 _ nr, 5.0 _ nr, &

100 & Tm(1 _ ni,1 _ ni:ny,1 _ ni:nx,0 _ ni), 1 _ ni)

101 ! Equilibrium temperature

102 call set_temp(10.0 _ nr, 3.0 _ nr*nx/4.0 _ nr, ny/2.0 _ nr, 5.0 _ nr, 5.0 _ nr, Te, 1 _ ni)

103 !

104 ! Boundary condition for Tm

105 call set_latbdr_Tm(Tm(:,:,:,0 _ ni))

106 !

107 call register_var_yxt(Tm, tln, ’sea_temperature’, ’oceanic_mixed_layer_temperature’, ’K’)

108 !

109 call reg_coup_var_yx(F, ’ocean’, ’surface heating’)

110 !

111 end subroutine

112 !

113 ! Initialization of coupling

114 subroutine init_slab_coupling()

115 !

116 call check_coup_var_available(’atmos’, ’surface x-wind’, cvarid_atm_xwind)

117 write(*,*) cvarid_atm_xwind

118 call check_coup_var_available(’atmos’, ’surface y-wind’, cvarid_atm_ywind)

119 write(*,*) cvarid_atm_ywind

120 call check_coup_var_available(’atmos’, ’surface temperature’, cvarid_atm_temp)

121 write(*,*) cvarid_atm_temp

122 !

123 !TODO: This will not work in the restart case

124 call cal_ocean_diag(0 _ ni)

125 !

126 end subroutine

127 !

128 ! Clean up

129 subroutine term_ocean_slab()

130 !

131 deallocate(rho_ocn, rho_atm, Hm, Hr, Cbl, Crl, Cdr, Csh, &

132 & Te, Ta, tempdiff, F, ue, ve, ub, vb, &

133 & u_ocn, v_ocn, w_ocn, windspeed)

134 !

135 deallocate(Tm, Tm_tend_adv, Tm_tend_rlx, Tm_tend_hfl, &
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136 & Tm_flxx_adv, Tm_flxy_adv, Tr, Tr_tend_adv, Tr_flxx_adv, &

137 & Tr_flxy_adv)

138 !

139 !deallocate(utest, vtest)

140 !

141 end subroutine

142 !

143 !

144 ! The main function that actually does stuff

145 subroutine run_ocean_slab(t, ts)

146 !

147 integer(kind=ni), intent(in) :: t, ts

148 !

149 real(kind=nr) :: tstep, savefac

150 integer(kind=ni) :: substep

151 logical :: ts_finished

152 ! -----------------------------------------------------------------

153 !

154 ts_finished = .false.

155 substep = 0 _ ni

156 do while ( .not. ts_finished )

157 ! Update time levels

158 substep = substep + 1 _ ni

159 call int_time%p(ts_finished, tstep, savefac, tlo, tli, tln, tls)

160 !

161 ! Prepare a save time level

162 if ( substep == 1 _ ni .and. tls >= 0 _ ni ) then

163 Tm(:,:,:,tls) = 0.0 _ nr

164 end if

165 !

166 ! Calculating tendencies

167 call cal_Tm_tendency()

168 !

169 ! Saving and applying tendencies

170 if ( tls >= 0 _ ni ) then

171 call apply_tend(Tm(:,1 _ ni:ny,1 _ ni:nx,:), Tm_tend, -savefac, tls, tls)

172 end if

173 if ( .not. ts_finished .or. tls < 0 _ ni ) then

174 call apply_tend(Tm(:,1 _ ni:ny,1 _ ni:nx,:), Tm_tend, tstep, tlo, tln)

175 else

176 call apply_tend(Tm, Tm(:,:,:,tls), tstep, tlo, tln)

177 end if

178 !

179 ! Set boundary conditions for prognostic variables

180 call set_latbdr_Tm(Tm(:,:,:,tln))

181 !

182 ! Update diagnostics

183 call cal_ocean_diag(t)

184 end do

185 !

186 end subroutine
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187 !

188 ! Calculate time tendency of ocean mixed layer temperature

189 subroutine cal_Tm_tendency()

190 !

191 ! 0.5-layer model

192 if (l050layermodel) then

193 call cal_tend_hfl()

194 call cal_tend_rlx()

195 !

196 ! 1-layer model

197 elseif (l100layermodel) then

198 call cal_tend_hfl()

199 call cal_tend_adv1()

200 call cal_tend_rlx()

201 !

202 ! 1.25-layer model

203 elseif (l125layermodel) then

204 call cal_tend_hfl()

205 call cal_tend_adv2()

206 call cal_tend_rlx()

207 !

208 end if

209 !

210 Tm_tend(1 _ ni,:,:) = Tm_tend_hfl(:,:) + Tm_tend_adv(:,:) &

211 & + Tm_tend_rlx(:,:)

212 !

213 end subroutine

214 !

215 ! Temp tendency due to heat flux

216 subroutine cal_tend_hfl()

217 !

218 Tm_tend_hfl(:,:) = F(:,:)/(rho_ocn(1 _ ni:ny,1 _ ni:nx)*cp_ocn*Hm(1 _ ni:ny,1 _ ni:nx))

219 !

220 end subroutine

221 !

222 ! Temp tendency due to relaxation

223 subroutine cal_tend_rlx()

224 !

225 if (lrlx) then

226 Tm_tend_rlx(:,:) = Crl(:,:)*(Tm(1 _ ni,1 _ ni:ny,1 _ ni:nx,tli) - Te(:,:))

227 else

228 Tm_tend_rlx(:,:) = 0.0 _ nr

229 end if

230 !

231 end subroutine

232 !

233 ! Heat transport for 1-layer model: dT/dt ~ -u*grad(T)

234 subroutine cal_tend_adv1()

235 !

236 real(kind=nr) :: div_ocn(ny,nx)

237 integer(kind=ni) :: i,j
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238 !---------------------------------------------------

239 !

240 ! Horizontal fluxes

241 call cal_advx_2d(Tm(1 _ ni,:,:,tli), u_ocn, Tm_flxx_adv)

242 call cal_advy_2d(Tm(1 _ ni,:,:,tli), v_ocn, Tm_flxy_adv)

243 !

244 !TODO: x,y (and z) for the ocean?

245 div_ocn(:,:) = 0.0 _ nr

246 call ddx_stag_2d(u_ocn, div_ocn, x_x(1 _ ni,:,:), y_x(1 _ ni,:,:))

247 call ddy_stag_2d(v_ocn, div_ocn, x_y(1 _ ni,:,:), y_y(1 _ ni,:,:))

248 !

249 call cal_adv_2d(Tm(1 _ ni,1 _ ni:ny,1 _ ni:nx,tli), Tm_flxx_adv, &

250 & Tm_flxy_adv, div_ocn, Tm_tend(1 _ ni,:,:), &

251 & x_x(1 _ ni,:,:), y_x(1 _ ni,:,:), x_y(1 _ ni,:,:), y_y(1 _ ni,:,:))

252 !

253 end subroutine

254 !

255 ! Heat transport for 1.25-layer model: dT/dt ~ -div(u*T) + (max(w,0)*T_re + min(w,0)*T)/Hm

256 subroutine cal_tend_adv2()

257 !

258 integer(kind=ni) :: i,j

259 real(kind=nr) :: T_re ! Reservoir temperature

260 !----------------------------------------------

261 !

262 T_re = 283.15 _ nr !TODO:Make an array, so that not only a constant is possible. Probably redefine Tr(:,:) for this purpose.

263 ! !TODO:Consider making reservoir temperature configurable.

264 ! Horizontal fluxes

265 call cal_advx_2d(Tm(1 _ ni,:,:,tli), u_ocn, Tm_flxx_adv)

266 call cal_advy_2d(Tm(1 _ ni,:,:,tli), v_ocn, Tm_flxy_adv)

267 !

268 ! Horizontal flux divergence

269 Tm_tend_adv = 0.0 _ nr

270 call ddx_stag_2d(Tm_flxx_adv, Tm_tend_adv, x_x(1 _ ni,:,:), y_x(1 _ ni,:,:))

271 call ddy_stag_2d(Tm_flxy_adv, Tm_tend_adv, x_y(1 _ ni,:,:), y_y(1 _ ni,:,:))

272 !

273 ! Upwelling/downwelling

274 do i=1 _ ni,nx

275 do j=1 _ ni,ny

276 Tm_tend_adv(j,i) = Tm_tend_adv(j,i) &

277 ! Adding vertical flux if w nonzero

278 & - max(w_ocn(j,i), 0.0 _ nr)*T_re/Hm(j,i) &

279 & - min(w_ocn(j,i), 0.0 _ nr)*Tm(1 _ ni,j,i,tli)/Hm(j,i)

280 end do

281 end do

282 !

283 end subroutine

284 !

285 ! Updates all ocean diagnostics

286 subroutine cal_ocean_diag(t)

287 use consts, only: T0

288 !
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289 integer(kind=ni), intent(in) :: t

290 !

291 real(kind=nr) :: u_atm(axy:zy,axy:zx-1 _ ni), v_atm(axy:zy-1 _ ni,axy:zx)

292 real(kind=nr) :: atm_temp_ptb(axy:zy,axy:zx)

293 !-------------------------------------------------------------------

294 !

295 if (cvarid_atm_xwind >= 0 _ ni) then

296 call req_coup_var_2d(cvarid_atm_xwind, u_atm)

297 end if

298 if (cvarid_atm_ywind >= 0 _ ni) then

299 call req_coup_var_2d(cvarid_atm_ywind, v_atm)

300 end if

301 !

302 call cal_windspeed(u_atm, v_atm)

303 call cal_ekm_current(u_atm, v_atm)

304 call set_background_current(t)

305 !

306 u_ocn(:,:) = ue(:,:) + ub(:,:)

307 v_ocn(:,:) = ve(:,:) + vb(:,:)

308 !

309 call cal_w_ocn()

310 !

311 if (cvarid_atm_temp >= 0 _ ni) then

312 call req_coup_var_2d(cvarid_atm_temp, atm_temp_ptb)

313 !

314 Ta(:,:) = T0 + atm_temp_ptb(:,:)

315 tempdiff(:,:) = Ta(1 _ ni:ny,1 _ ni:nx) - Tm(1 _ ni,1 _ ni:ny,1 _ ni:nx,tln)

316 !

317 else

318 tempdiff(:,:) = 0.0 _ nr

319 !

320 end if

321 !

322 F(:,:) = -rho_atm(1 _ ni:ny,1 _ ni:nx)*cp_atm*Csh(:,:)*windspeed(1 _ ni:ny,1 _ ni:nx)*tempdiff(:,:)

323 !

324 end subroutine

325 !

326 ! Calculates the wind speed

327 subroutine cal_windspeed(u, v)

328 !

329 real(kind=nr), intent(in) :: u(axy:,axy:), v(axy:,axy:)

330 !

331 integer(kind=ni) :: i,j

332 !------------------------------------------------------

333 !

334 do i=axy+1 _ ni,zx-1 _ ni

335 do j=axy+1 _ ni,zy-1 _ ni

336 windspeed(j,i) = (u(j,i) + u(j,i-1 _ ni))**2 _ ni &

337 & + (v(j,i) + v(j-1 _ ni,i))**2 _ ni

338 end do

339 end do
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340 !

341 windspeed(:,:) = max(sqrt(windspeed(:,:)/4.0 _ nr), 1.0 _ nr)

342 !

343 end subroutine

344 !

345 ! Ekman currents

346 subroutine cal_ekm_current(u, v)

347 !

348 real(kind=nr), intent(in) :: u(axy:,axy:), v(axy:,axy:)

349 real(kind=nr) :: f_m(axy:zy,axy:zx)

350 !

351 integer(kind=ni) :: i,j

352 !------------------------------------------------------

353 !

354 if (lekm) then

355 call cal_coriolis_parameter_mgrid(f_m)

356 !

357 Cbl(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni) = ( rho_atm(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni) &

358 & * Cdr(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni) &

359 & * windspeed(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni)) &

360 & / ( rho_ocn(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni) &

361 & * Hm(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni) &

362 & * ( f_m(axy+1 _ ni:zy-1 _ ni,axy+1 _ ni:zx-1 _ ni)**2 _ ni &

363 & + eps**2 _ ni ))

364 !------------------------------------------------------------------------------------------------

365 do i=0 _ ni,nx

366 do j=1 _ ni,ny

367 ! Linearly interpolating to u points.

368 ue(j,i) = (Cbl(j,i) + Cbl(j,i+1 _ ni)) &

369 & * (f_m(j,i) + f_m(j,i+1 _ ni)) &

370 & * (v(j-1 _ ni,i) + v(j,i) &

371 & + v(j-1 _ ni,i+1 _ ni) + v(j,i+1 _ ni) )/16.0 _ nr &

372 !

373 & + (Cbl(j,i) + Cbl(j,i+1 _ ni)) &

374 & * u(j,i)*eps/2.0 _ nr

375 end do

376 end do

377 !

378 do i=1 _ ni,nx

379 do j=0 _ ni,ny

380 ! Linearly interpolating to v points.

381 ve(j,i) = - (Cbl(j,i) + Cbl(j+1 _ ni,i)) &

382 & * (f_m(j,i) + f_m(j+1 _ ni,i)) &

383 & * (u(j,i-1 _ ni) + u(j,i) &

384 & + u(j+1 _ ni,i-1 _ ni) + u(j+1 _ ni,i) )/16.0 _ nr &

385 !

386 & + (Cbl(j,i) + Cbl(j+1 _ ni,i)) &

387 & * v(j,i)*eps/2.0 _ nr

388 end do

389 end do

390 !
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391 else

392 !

393 ue(:,:) = 0.0 _ nr

394 ve(:,:) = 0.0 _ nr

395 !

396 end if

397 !

398 end subroutine

399 !

400 ! Any wanted background current should be specified here.

401 subroutine set_background_current(t)

402 !

403 integer(kind=ni), intent(in) :: t

404 !--------------------------------

405 !

406 call set_flowfield(ub, vb, 0.0 _ nr, 0.0 _ nr, nx/2.0 _ nr, ny/2.0 _ nr, 0.0 _ nr, 0.0 _ nr, 1 _ ni)

407 !

408 end subroutine

409 !

410 ! Ocean vertical velocity at grid cell bottoms

411 subroutine cal_w_ocn()

412 !

413 integer(kind=ni) :: i,j

414 !-----------------------

415 !

416 w_ocn = 0.0 _ nr

417 call ddx_stag_2d(u_ocn, w_ocn, x_x(1 _ ni,:,:), y_x(1 _ ni,:,:))

418 call ddy_stag_2d(v_ocn, w_ocn, x_y(1 _ ni,:,:), y_y(1 _ ni,:,:))

419 !

420 w_ocn(:,:) = w_ocn(:,:)*Hm(1 _ ni:ny,1 _ ni:nx)

421 !

422 end subroutine

423 !

424 ! Coriolis parameter on main grid

425 subroutine cal_coriolis_parameter_mgrid(f)

426 use pe_diag, only: fcor, betacor

427 !

428 real(kind=nr), intent(inout) :: f(axy:,axy:)

429 !---------------------------------------------

430 !

431 f(axy:zy,axy:zx) = fcor + betacor*y_m(1 _ ni,axy:zy,axy:zx)

432 !

433 end subroutine

434 !

435 ! Boundaries for ocean mixed layer temp

436 subroutine set_latbdr_Tm(a)

437 use base_config, only : latbdrtyp_ew, latbdrtyp_sn

438 !

439 real(kind=nr), intent(inout) :: a(:,axy:,axy:)

440 !

441 integer(kind=ni) :: i,j, obdr_ew, obdr_sn !-1=periodic, 0=zeroflux
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442 !-------------------------------------------------

443 !

444 obdr_ew = latbdrtyp_ew

445 obdr_sn = latbdrtyp_sn

446 !

447 ! East-West boundaries

448 select case(obdr_ew)

449 case(-1 _ ni)

450 call set_latbdr_periodic_ew(a)

451 case( 0 _ ni)

452 call set_latbdr_zerograd_ew(a)

453 case( 1 _ ni)

454 call set_latbdr_zerograd_ew(a)

455 end select

456 !

457 ! North-South boundaries

458 select case(obdr_sn)

459 case(-1 _ ni)

460 call set_latbdr_periodic_sn(a)

461 case( 0 _ ni)

462 call set_latbdr_zerograd_sn(a)

463 case( 1 _ ni)

464 call set_latbdr_zerograd_sn(a)

465 end select

466 !

467 end subroutine

468 !

469 ! Boundaries for u_ocn. As implied by the atm winds except for wall condition.

470 subroutine set_latbdr_u_ocn(u)

471 use base_config, only : latbdrtyp_ew, latbdrtyp_sn

472 !

473 real(kind=nr), intent(inout) :: u(:,0 _ ni:)

474 !

475 integer(kind=ni) :: i,j, obdr_ew, obdr_sn !-1=periodic, 0=zeroflux

476 !-----------------------------------------------------------------

477 !

478 obdr_ew = latbdrtyp_ew

479 obdr_sn = latbdrtyp_sn

480 !

481 ! East-West boundaries

482 select case(obdr_ew)

483 case(-1 _ ni)

484 !do nothing

485 case( 0 _ ni)

486 call set_latbdr_zero_u_ocn(u)

487 case( 1 _ ni)

488 !do nothing

489 end select

490 !

491 ! North-South boundaries

492 select case(obdr_sn)



82 The slab ocean module of the Bedymo source code

493 case(-1 _ ni)

494 !do nothing

495 case( 0 _ ni)

496 !do nothing

497 case( 1 _ ni)

498 !do nothing

499 end select

500 !

501 end subroutine

502 !

503 ! Boundaries for v_ocn.

504 subroutine set_latbdr_v_ocn(v)

505 use base_config, only : latbdrtyp_ew, latbdrtyp_sn

506 !

507 real(kind=nr), intent(inout) :: v(0 _ ni:,:)

508 !

509 integer(kind=ni) :: i,j, obdr_ew, obdr_sn !-1=periodic, 0=zeroflux

510 !-----------------------------------------------------------------

511 !

512 obdr_ew = latbdrtyp_ew

513 obdr_sn = latbdrtyp_sn

514 !

515 ! East-West boundaries

516 select case(obdr_ew)

517 case(-1 _ ni)

518 !do nothing

519 case( 0 _ ni)

520 !do nothing

521 case( 1 _ ni)

522 !do nothing

523 end select

524 !

525 ! North-South boundaries

526 select case(obdr_sn)

527 case(-1 _ ni)

528 !do nothing

529 case( 0 _ ni)

530 call set_latbdr_zero_v_ocn(v)

531 case( 1 _ ni)

532 !do nothing

533 end select

534 !

535 end subroutine

536 !

537 ! Set lateral boundaries to zero

538 subroutine set_latbdr_zero_u_ocn(u)

539 real(kind=nr), intent(inout) :: u(:,0 _ ni:)

540 !

541 integer(kind=ni) :: i,j

542 ! ---------------------------------------

543 !
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544 do j = 1 _ ni,ny

545 u(j,0 _ ni) = 0. _ nr

546 u(j,nx) = 0. _ nr

547 end do

548 !

549 end subroutine

550 !

551 !

552 subroutine set_latbdr_zero_v_ocn(v)

553 real(kind=nr), intent(inout) :: v(0 _ ni:,:)

554 !

555 integer(kind=ni) :: i,j

556 ! --------------------------------------

557 !

558 do i = 1 _ ni,nx

559 v(0 _ ni,i) = 0. _ nr

560 v(ny,i) = 0. _ nr

561 end do

562 !

563 end subroutine

564 !

565 !

566 ! Set some Gaussian temperature profile where the background temp equals T0 from const module

567 subroutine set_temp(amp, cx, cy, sx, sy, T, sel)

568 use consts, only: T0

569 !

570 integer(kind=ni), intent(in) :: sel

571 real(kind=nr), intent(in) :: amp, cx, cy, sx, sy

572 real(kind=nr), intent(inout) :: T(:,:)

573 !

574 integer(kind=ni) :: i,j

575 real(kind=nr) :: arg

576 !-----------------------------------------------------

577 !

578 select case(sel)

579 case(1 _ ni)

580 ! 2d Gaussian anomaly

581 do i=1 _ ni,nx

582 do j=1 _ ni,ny

583 arg = ((i - cx)**2 _ ni)/(2.0 _ nr*sx**2 _ ni) &

584 & + ((j - cy)**2 _ ni)/(2.0 _ nr*sy**2 _ ni)

585 !

586 T(j,i) = T0 + amp*exp(-arg)

587 end do

588 end do

589 !

590 end select

591 !

592 end subroutine

593 !

594 ! Set some idealised flow field
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595 subroutine set_flowfield(u, v, uspeed, vspeed, cx, cy, sx, sy, sel)

596 !

597 real(kind=nr), intent(in) :: uspeed, vspeed, cx, cy, sx, sy

598 integer(kind=ni), intent(in) :: sel

599 real(kind=nr), intent(inout) :: u(:,0 _ ni:), v(0 _ ni:,:)

600 !

601 integer(kind=ni) :: i,j

602 real(kind=nr) :: arg

603 !----------------------------------------------------------

604 !

605 select case(sel)

606 case(1 _ ni)

607 ! Uniform fields

608 u(:,:) = uspeed

609 v(:,:) = vspeed

610 !

611 case(2 _ ni)

612 ! u linearily increasing towards the North

613 do j=1 _ ni,ny

614 u(j,:) = (uspeed/ny)*j

615 end do

616 !

617 v(:,:) = vspeed

618 !

619 case(3 _ ni)

620 ! u linearily increasing towards the West

621 do i=0 _ ni,nx

622 u(:,i) = uspeed*(1.0 _ nr - (1.0 _ nr/nx)*i)

623 end do

624 !

625 v(:,:) = vspeed

626 !

627 case(0 _ ni)

628 ! u linearily increasing towards the East

629 do i=0 _ ni,nx

630 u(:,i) = (uspeed/nx)*i

631 end do

632 !

633 v(:,:) = vspeed

634 !

635 case(4 _ ni)

636 ! Gaussian y-dependence in v

637 do j=0 _ ni,ny

638 arg = ((j - cy)**2 _ ni)/(2.0 _ nr*sy**2 _ ni)

639 v(j,:) = vspeed*exp(-arg)

640 end do

641 !

642 u(:,:) = uspeed

643 !

644 case(5 _ ni)

645 ! Gaussian x-dependence in v
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646 do i=1 _ ni,nx

647 arg = ((i - cx)**2 _ ni)/(2.0 _ nr*sx**2 _ ni)

648 v(:,i) = vspeed*exp(-arg)

649 end do

650 !

651 u(:,:) = uspeed

652 !

653 case(6 _ ni)

654 ! Anticyclonic solid body rotation

655 do j=1 _ ni,ny

656 u(j,:) = (uspeed/(0.5 _ nr*ny))*(j - cy)

657 end do

658 !

659 do i=1 _ ni,nx

660 v(:,i) = -(vspeed/(0.5 _ nr*nx))*(i - cx)

661 end do

662 !

663 case(7 _ ni)

664 ! Cyclonic solid body rotation

665 do j=1 _ ni,ny

666 u(j,:) = -(uspeed/(0.5 _ nr*ny))*(j - cy)

667 end do

668 !

669 do i=1 _ ni,nx

670 v(:,i) = (vspeed/(0.5 _ nr*nx))*(i - cx)

671 end do

672 !

673 end select

674 !

675 end subroutine

676 !

677 !

678 end module ocean_slab
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