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Abstract 

Arsenic in marine oils is mainly present in the form of lipid-soluble compounds; 

collectively called arsenolipids. Although total arsenic concentrations in marine oils 

typically range from 0.2 to 16 mg kg-1 [1-3], knowledge regarding the chemical 

structures and distribution of arsenolipids in oils is limited. The present work 

describes the development of analytical methods for the determination of arsenolipids, 

and their application to marine oil, including fish oil and oil of liver of Northeast 

Arctic cod (Gadus morhua).  

In the present work gas chromatography coupled to inductively coupled plasma mass 

spectrometry (GC-ICP-MS) was applied for analysing arsenic-containing 

hydrocarbons (AsHCs) in fish oil. The AsHCs were extracted into aqueous methanol, 

and further subjected to solid-phase extraction (SPE) prior to analysis. Reversed-

phase HPLC-ICP-MS was applied as an analytical technique for analysis of both 

AsHCs and arsenic-containing fatty acids (AsFAs) in methanol phase of marine oil. 

The AsHCs and AsFAs were accurately quantified in reversed-phase HPLC-ICP-MS 

analysis using dimethylarsinate as calibration standard. The molecular structures of 

the arsenolipids were identified using mass spectrometry.  

The oils included in the present work contained total arsenic concentrations from 1.6 

to 12.5 mg kg-1 oil. Three AsHCs (AsHC-C15, AsHC-C17 and AsHC-C21) were 

identified as major arsenolipids in all marine oil. Also, two AsFAs (AsFA-C21 and 

AsFA-C22) were identified as minor arsenolipids in some of the oils. In cod liver, 

three AsHCs (AsHC-C15, AsHC-C17 and AsFA-C22) and up to five AsFAs (AsFA-

C15, AsFA-C17a, AsFA-C17b, AsFA-C21 and AsFA-C22) were identified.  

The present work contributes with data on the presence of arsenolipids, in the form of 

AsHCs and AsFAs, in a number of marine oils. The developed methods form the 

basis for future studies on arsenolipids, e.g. the occurrence of arsenolipids in feed and 

farmed fish.  
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Abbrevations 

AB Arsenobetaine 

AC Arsenocholine 

ACN Acetonitrile 

amu Atomic mass unit 

AsFAs Arsenic-containing fatty acids 

AsHCs Arsenic-containing hydrocarbons 

As-sugPLs Arsenosugar phospholipids 

CEN Comitè Europèen de Normalisation (European 

Comiittee for Standardization) 

CHOL Cholesterol 

cps counts per second 

CRM Certified reference material 

DMA Dimethylarsinate 

DMAP Dimethylarsinoyl propionic acid 

dw  dry weight 

EFSA The European Food Safety Authority 

EI Electron impact ionisation 

ESI Electrospray ionisation 
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ESI-MS/MS(QqQ) Electrospray ionisation tandem mass spectrometry 

FFA Free fatty acids 

GC Gas chromatography 

GC-ICP-MS Gas chromatography coupled to inductively coupled 

plasma mass spectrometry 

GC-MS/MS Gas chromatography coupled to tandem mass 

spectrometry 

HPLC High performance liquid chromatography  

HPLC-ICP-MS High performance liquid chromatography coupled to 

inductively coupled plasma mass spectrometry 

HPLC-qTOF-MS High performance liquid chromatography coupled to 

quadrupole time-of flight mass spectrometry  

HR-MS High resolution mass spectrometry 

ICP-MS Inductively coupled plasma mass spectrometry 

IUPAC International Union of Pure and Applied Chemistry 

LLE Liquid liquid extraction 

MeOH  Methanol 

MRM Multiple reaction monitoring 

MS2 mass spectra obtained using tandem mass spectrometry 

m/z mass to charge ratio 

NMR Nuclear magnetic resonance 
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PA Phosphatic acid 

PC Phosphatidyl choline 

PE Phosphatidyl ethanol amine 

PI Phosphatidyl inositol 

PLs Phospholipids 

PS Phosphatidyl serine 

SPE Solid Phase Extraction 

TAGs Triacylglyceroles 

TETRA Tetramethylarsonium ion 

TLC Thin-layer chromatography 

TMAsFOHs Trimethylarsonium fatty alcohols 

TMAO Trimethylarsine oxide 

TOF-MS time of flight mass spectrometry 

ww wet weight 

qTOF-MS quadrupole time-of flight mass spectrometry 
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Introduction 

Arsenic is an element found in relative high concentrations in the marine 

environment, typically in the range of 1 to 100 mg kg-1 ww [4, 5]. Arsenic has a 

complex chemistry, and a diverse group of arsenic compounds or arsenic species exist 

in the marine environment [6]. Over the past 40 years most research has focused on 

the water-soluble arsenic species, which consist of both inorganic and organic 

arsenicals. In contrast, less work has been devoted to the lipid-soluble arsenic species, 

the arsenolipids.  

The arsenolipids are predominant arsenic species in fish oil [3, 7]. Arsenic is naturally 

present in industrial and pelagic fish, such as blue whiting (Micromesistius poutassou) 

and sand eel (Ammodytes marinus), and arsenic is transferred to the marine feed 

ingredients, fish oil and fish meal, that are produced from the fish. Results from the 

National surveillance program on fish feed in Norway shows that commercial fish oils 

contain relative high levels of total arsenic, ranging from 4.6 to 16 mg kg-1 oil [1, 2, 

8]. Fish meal also contain relative high levels of arsenic, up to 18.2 mg kg-1 dry 

weight [1, 2], and consequently both fish meal and fish oil will contribute with arsenic 

to the formulated feed, used in farming of fish [9-11]. Fish meal mainly contains the 

water-soluble species, where arsenobetaine (AB) predominates [12]. Arsenobetaine is 

a well-characterised, non-toxic arsenic species [13]. In contrast, only limited 

knowledge exists on the predominant arsenolipids present in fish oil. Basic 

knowledge, such as chemical structures, concentration levels and potential variations 

in the distribution of the arsenolipids in commercial fish oils is currently not known.  

The toxicity of the water-soluble arsenic species varies greatly [14, 15]. Inorganic 

arsenic is highly toxic and carcinogenic, while AB is regarded non-toxic [13, 15, 16]. 

The toxicity of arsenolipids is currently not known. In this respective, it is important 

to acquire more knowledge regarding the lipid-soluble arsenic species, as noted by the 

European Food Safety Authority (EFSA) in their scientific opinion on arsenic in food 
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[13]. In the opinion it was stated that more data on several arsenic species, including 

the arsenolipids is needed for future risk assessments of arsenic in food [13].  

Marine oils were shown to be concentrated in arsenic already in the 1960s, as oils 

extracted from marine samples, e.g. herring (Clupea harengus), mackerel (Scomber 

scomber) and liver of cod (Gadus morhua) contained arsenic levels up to 19 mg kg-1 

[17, 18]. However, no chemical structures of the arsenolipids were identified in the 

early works on arsenic, and since then, research on arsenolipids has been negligible 

compared to the research on water-soluble arsenic species. This has mainly been 

explained by methodological challenges, as the preferred instrumentation the 

inductively coupled plasma mass spectrometer (ICP-MS) is not compatible with 

organic solvents which are needed for the analysis of lipids [3]. In 2008, after 

modification of the ICP-MS, the chemical structures of two groups of intact 

arsenolipids were identified in marine oils [19, 20]. They were characterised as 

arsenic-containing hydrocarbons (AsHCs) [20] and the arsenic-containing fatty acids 

(AsFAs) [19]. These studied initiated a larger research focus regarding the 

arsenolipids. 

Analytical methods are a prerequisite for obtaining quantitative and qualitative 

information on the occurrence of arsenolipids in marine samples, and the 

development of analytical methods for determination of arsenolipids is therefore an 

essential first step for further studies of the species. With an analytical method 

developed for the determination of arsenolipids, marine samples can be studied, and 

data on the occurrence of the arsenolipids in samples related to both feed and food 

safety can be acquired.   
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Aims of the study 

 

The main aims of this study are:  

 Develop a method for extraction of the arsenolipids. 

 

 Develop quantitative methods for the determination of arsenolipids in marine 

oils. 

 

 Determine the chemical structures of the arsenolipids present in marine oils. 

 

 Characterise the major arsenic specie present in the liver of Atlantic cod 

(Gadus morhua).  
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1. Background 

 

1.1 Arsenic   

Arsenic has atomic number 33 and belongs to group 15 in the Periodic Table. 

Arsenic is classified as a semi-metal or metalloid, and occurs as a single isotope with 

an atomic weight of 74.92 amu. It has three different allotropic forms; yellow, black 

and grey, where the grey form is the only stable allotropic form at room temperature 

[21]. Elemental arsenic was first prepared in 1250 by the German scholar and 

alchemist Albertus Magnus who isolated the element by heating orpiment (As2S3) 

with soap [22]. To the general public, arsenic is known for its toxicity. This is mainly 

linked to arsenic trioxide (As2O3), a tasteless and odourless compound of arsenic that 

was often used as a poison in the past [23]. However, arsenic has also been used in 

medicine for treatment of e.g. syphilis, psoriasis and leukemia, where Fowler`s 

solution (1% potassium arsenite, KAsO2) is most known [24].  

Arsenic is introduced to the environment by both natural and anthropogenic sources 

[25]. It is ranked as the 20th most abundant element in Earth´s crust with an average 

concentration of 3 mg kg-1 [4]. More than 200 minerals of arsenic exist, where arsenic 

is often found in conjunction with sulphur minerals, e.g. arsenopyrite (AsFeS) and 

realgar (As4S4) [25]. Weathering of minerals and volcanic activity are major natural 

sources of arsenic [25, 26]. Major anthropogenic sources of arsenic includes mining, 

burning of fossil fuel and agricultural practices, such as use of arsenic-containing 

pesticides, wood preservatives and growth promoters exist  [27, 28]. Arsenic is also 

used in the manufacture of alloys, in semiconductors and electronics, as well as in the 

production of leather preservatives, pharmaceuticals and dyes [29, 30].  

Arsenic is distributed in both the marine and terrestrial environment, where marine 

samples generally contain higher concentrations of arsenic than terrestrial samples 
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[31]. Marine organisms such as fish, crustaceans and algae typically contain between 

1 and 100 mg As kg-1 wet weight (ww) [4, 5], whereas samples of terrestrial origin 

normally contain less than 0.02 mg As kg-1 ww [32]. Rice is, however, an exception 

as rice may contain up to 1 mg As kg-1 [33, 34]. 

 

1.2 Arsenic in the marine environment 

In open seawater, the arsenic concentrations is usually low and uniform, from 0.5 to 2 

μg As L-1 [4, 35], while the arsenic concentrations in rivers and lakes may vary 

considerably, dependent on source, availability and geochemistry [27, 36]. Marine 

organisms accumulate arsenic through diet and from water, soil and particles [36, 37].  

Marine algae may contain high arsenic concentrations, generally from 0.1 to 179 mg 

kg-1 dry weight (dw) [13, 32], whereas most marine fish typically contain arsenic 

concentrations below than 5 mg kg-1 ww in their tissue samples [38, 39]. Large 

variation in arsenic concentrations may be observed within same species, as well as 

between different species [31], e.g. the arsenic concentrations in Northeast Arctic cod 

(Gadus morhua) [40] and Greenland Halibut (Reinhardtius hippoglossoides) [41] 

with range from 1 to 170 mg kg-1 ww and from 2 to 40 mg kg-1 ww, respectively.  

 

1.3 Arsenic species 

The last 30 years there has been a shift in the way of determining elements; from 

analysis of total elemental concentration to determine the species of element [42]. In 

the year 2000, the International Union of Pure and Applied Chemistry (IUPAC) 

defined the terms related fractionation and chemical speciation of elements [43]: 
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 Chemical species: Specific form of an element defined as to isotopic composition 

electronic or oxidation state, and/or complex or molecular structure. 

 Speciation analysis: Analytical chemistry: analytical activities or identifying and/or 

measuring the quantities of one or more individual chemical species in a sample. 

 Speciation of an element: speciation: distribution of an element amongst defined 

chemical species in a system. 

 Fractionation: Process of classification of an analyte or a group of analytes from a 

certain sample according to physical (e.g. size, solubility) or chemical (e.g. bonding, 

reactivity) properties. 

 

In biological samples arsenic occurs mainly in the oxidation state +III and +V, and 

over 70 naturally occurring arsenic-containing compounds has so far been identified 

in the marine environment [6, 7]. The arsenic species are based on their chemical 

properties and hence their solubility in water or in oil, categorised as water-soluble 

and lipid-soluble arsenic species, respectively. The lipid-soluble arsenicals are a 

group of species also referred to as arsenolipids. In the present work arsenolipid will 

be used as a term for lipid-soluble arsenic species, i.e. the fraction of arsenic that 

partitions into an organic solvent phase.  

 

1.4 Water-soluble arsenic in marine samples 

More than 50 naturally occurring water-soluble arsenic species have so far been 

identified in the marine environment [6]. The chemical structures and acronyms of 

some of the most important species are represented in Table 1.1. The acronyms for the 

water-soluble arsenic species are obtained from the review of Francesconi & 

Kuehnelt [31]. Of the water-soluble arsenicals, arsenobetaine (AB) is the major 

arsenic species in most marine organisms [44-46]. Arsenobetaine was first identified 

in the rock lobster (Panulirus cygnus) in 1977 [47]. Since then, AB has been found to 



 18 

often account for over 90% of the total arsenic present in marine organisms, such as 

fish, bivalves and crustaceans [48-51]. 

Simple methylated organic arsenicals, such as methylarsonate (MA) and 

dimethylarsinate (DMA) are minor arsenic species in marine organisms, such as fish 

and bivalves [4]. Other organic arsenicals, e.g. arsenocholine (AC), trimethylarsine 

oxide (TMAO) and tetramethylarsonium ion (TETRA) are also minor arsenic species 

in marine organisms [4]. Some exceptions exist, e.g. AC is a major arsenic species in 

the turtle Dermochelys coriacea [52] and in the fish species Kyphosus syndeyanus 

TMAO is a predominant arsenical [53].  

Over 15 chemical forms of arsenosugars have been identified [54]. Arsenosugars are 

the main arsenicals in marine algae, but are also found in herbivorous molluscs and 

gastropods [37, 55]. Most arsenosugars have a dimethylarsinoyl moiety bound to the 

ribofuranoside sugar. The four most common arsenosugars are shown in Table 1.1. 

Also trimethylarsonium forms [49], and thio-arsenosugars, where oxygen is replaced 

by sulphur do exist [56, 57].  

Inorganic arsenic is the major arsenic species in sea and freshwater [4]. In marine 

organisms, such as fish, inorganic arsenic typically represents less than 1% of the total 

arsenic [10, 39].Some exceptions do exist, e.g. brown algae Hizika fusiforme, which 

can contain up to 50% of the total arsenic as inorganic arsenic [58]. Also, in and blue 

mussels (Mytilus edilus), a large proportion, up to 42%, of the total arsenic has been 

found as inorganic arsenic [59].  
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Table 1.1 Acronyms, names and formulas of selected water-soluble arsenic species. 

Acronyms for the water-soluble arsenic species was proposed by Francesconi & 

Kuehnelt [31].  

Acronym Arsenic species  Formula 

As(V) Arsenate O=As(O-)3 
As(III) Arsenite As(O-)3 

MA(V) Methylarsonate As(O-)3 

DMA(V) Dimethylarsinate (CH3)2AsO(O-) 

AB Arsenobetaine (CH3)3As+CH2COO- 

AC Arsenocholine (CH3)3AsO 
TMAO Trimethylarsonium oxide (CH3)3As+CH2CH2OH 
TETRA Tetramethylarsonium ion (CH3)4As+ 

Arsenosugar 1 (glycerol sugar): R= OH 
Arsenosugar 2 (phosphate sugar):  

R = OP(O)(OH)OCH2CH(OH)CH2OH 
 

Arsenosugar 3 (sulphonate sugar): R=SO3
- 

Arsenosugar 4 (sulphate sugar): R =OSO3
- 

 

 

R1

 

1.5 Lipid-soluble arsenic in marine samples 

In the present work marine oils are referred to as oils extracted from marine 

organisms, or of tissues of marine organisms. The presence of arsenic in marine oils 

were first observed in the early 20th century when oil of cod liver was shown to 

contain arsenic concentrations from 1.4 to 5.1 mg kg-1 oil [60, 61]. In the 1960s 

Guldbrand Lunde [18, 62] reported that marine fish and other marine organisms 

typically contain arsenic levels between 1 and 50 mg kg-1 in their lipid fractions. 
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Lipid-soluble arsenic was suggested to account for 10% to 30% of the total arsenic 

present in marine organisms [62]. However, higher relative proportions of lipid-

soluble arsenic have been reported, e.g. for tuna (Thunnus sp.), containing 87% of the 

total arsenic as arsenolipids [63] and blubber of ringed seal (Phoco hispida), with 

90% of the total arsenic in the lipid fraction [64]. Also, herring fillet (Clupea 

harengus) was recently reported to contain 62% of total arsenic as arsenolipids [65]. 

Marine oils typically contain arsenic concentrations between 0.2 and 19.3 mg kg-1 oil, 

as reviewed by Sele and co-workers [7]. Arsenic levels in oils of, e.g. herring range 

from 3.1 to 19.3 mg kg-1 [17, 65-68], capelin (Mallotus villosus) from 6.3 to 13.2 mg 

kg-1 [17, 20, 66, 67, 69], mackerel (Scomber scomber) from 4.1 to 13.0 mg kg-1 oil 

[17, 65-67] and cod liver oil from 0.2 to 10 mg kg-1 [17, 19, 66, 70-74]. In 

commercial fish oil that is generally produced from pelagic fatty fish arsenic 

concentrations from 0.2 to 16 mg kg-1 oil are typically seen [1-3, 75-78].  

Also, oils of marine invertebrates, e.g. molluscs and crustaceans, have been reported 

to contain high levels of arsenic, ranging from 4.6 to 84 mg kg-1 [66, 79]. In marine 

algae, various proportion of lipid-soluble arsenic have been reported [55]. Lipid-

soluble arsenic accounted for 25% of the total arsenic present in the brown algae 

Undaria pinnatifida [55], while in H. fusiformis the lipid-fraction accounted for 1.6% 

of the total arsenic present [80]. 

  

1.6 Arsenolipids in marine oils 

Four groups of arsenolipids are so far identified in marine samples; the arsenosugar 

phospholipids (As-sugPLs) [80-82], the arsenic-containing hydrocarbons (AsHCs) 

[20, 80, 82, 83], the arsenic-containing fatty acids (AsFAs) [19, 65, 84, 85] and the 

trimethylated arsenic fatty alcohols (TMAsFOHs) [83]. The chemical structures of the 

respective groups of arsenolipids can be seen in Table 1.2. 
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Arsenosugar phospholipids  

The As-sugPLs have only been identified in marine brown algae [80-82]. The 

chemical structure of an arsenolipid, the dipalmitoylglycerophospho-2-

hydroxypropyl-5-deoxy-5-(diemethylarsinoyl)-b-ribofuranoside, AsSug-PL958 (Table 

1.2), was first identified by Morita and Shibata [81] in the brown algae Undaria 

pinnafitida. Currently, 15 chemical compounds belonging to AsSug-PLs have been 

identified in marine brown algae [80-82]. The AsSug-PLs have been reported as 

major arsenolipids in the brown algae U. pinnatifida (67% of the total arsenic) and 

Saccharina latissima (>70% of the total arsenic) [80, 82].  

 

Arsenic-containing fatty acids 

The AsFAs were first identified in 2008 by Rumpler and co-workers who studied oil 

of canned cod liver [19]. Four AsFAs were identified as saturated fatty acids with a 

dimethylarsinoyl group (CH3)2As(O)-, replacing the methyl group in myristic (C:14), 

palmitic (C16:0), stearic (C18:0) and arachidic acid (C20:0),  respectively [19]. Also, 

two unsaturated AsFAs were identified, and proposed to be analogues to the 

unsaturated fatty acids oleic acid (18:1, n-9) and 7,10,13,16,19-docosapentaenoic acid 

(DHA, 22:5, n-3) [19], which are fatty acids commonly found in cod liver oil [70]. 

The AsFAs accounted for approximately 20% of the total arsenic present in the cod 

liver oil [19]. Over 20 structures of AsFAs, with carbon chains from C8 to C24, are 

now identified in marine samples, including fish meal of capelin [85], in liver of cod 

[84, 86, 87], fillet of herring [65], as well as in brown algae [82].  
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Table 1.2 Acronyms, names and formulas of the groups of arsenolipids identified, 

where one identified species represent each group. The numbers in lower-subscript 

for the AsHC, AsFA and TMAsFOH refers to the length of the carbon chain. The 

acronyms are used throughout this thesis. 

Acronym Arsenic 

species  

Formula 

AsHC-C17
a  Arsenic-

containing 
hydrocarbon 

 

AsFA-C22
b Arsenic-

containing 
fatty acid  

TMAsFOH-C21
c Trimethylated 

arsenic-
containing 
fatty alcohol 

 

As-sugPL958
d,e Arsenosugar-

phospholipid 

 

 
a) Identified in [20]. 
b) Identified in [85]. 
c) Identified in [83]. 
d) Identified in [81]. 
e) The number in lower-subscript refers to the molecular weight of the compound. 

R1

R2

R1, R2 =
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Arsenic-containing hydrocarbons 

Three structures of AsHCs, comprising of homologous pair of two dimethylarsinoyl-

alkanes with carbon chain lengths of C15 and C17, and one dimethylarsinoyl-alkane 

with carbon chain length of C21, were identified as major arsenolipids in capelin oil 

[20]. The AsHCs accounted for approximately 70% of the total arsenic present. Also, 

tuna (Thunnus sp.) was observed to contain the same three AsHCs, which accounted 

for 40% of the total arsenic present in the fish [63]. Similar to the AsFAs, an 

increased number of chemical structures of the AsHCs have been identified, now 

counting over 10 different species [20, 80, 82, 83]. The AsHCs are usually found in 

same sample types as the AsFAs, such as fish meal [85], cod liver [84, 86, 87], fillet 

or oil of fish [65, 83] and marine algae [80, 82].  

 

Cationic trimethylated arsenic fatty alcohols 

Two chemical structures of cationic TMAsFOHs, comprising of fatty alcohols with a 

positively charged terminal trimethylarsonium group were recently identified in 

capelin oil [83]. The arsenolipids were noted as minor arsenic species compared to the 

AsHCs and AsFAs present in the oil [83].  

 

1.7 Origin of arsenolipids 

Arsenolipids are believed to be produced in marine algae [88, 89], and further 

transferred, via the food chain, to other organisms [62, 89-91] (Figure 1.1) In a study 

on arsenic transfer in a simple food chain, arsenic from seawater was incorporated in 

phytoplankton (Dunaliella marina), which biotransformed arsenic into lipid-soluble 

arsenic, and further transferred the arsenolipids to zooplankton (Artemia salina) and 

shrimp (Lysmata seticaudata) [91]. Over 90% in the D. marina was lipid-soluble 

arsenic. In fish, arsenolipids were suggested to originate from both diet and from 
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biotransformation within the fish, or from a combination of these processes [92]. 

When fed high doses of the water-soluble arsenical AB, lipid-soluble arsenic was 

detected in yellow-eye mullet (Aldrichetta forsteri) [93]. The arsenolipid was 

therefore suggested to be produced in the fish. 
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Figure 1.1 A schematic overview of postulated origins of arsenolipids in marine 

organisms. With copyright permission from [7]. 

 

Arsenic is thought to be incorporated in marine organisms as a result of the similarity 

in chemical properties to phosphorous, also belonging to group 15 in the periodic 

table [6]. The phosphate transport systems in marine algae is insufficient in 
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differentiating between the similar inorganic arsenate [H2AsO4]- and phosphate 

[H2PO4]-, both compounds present in seawater, causing an incorporation of arsenic in 

marine algae [6, 94]. Low levels of phosphate increased the uptake of arsenic by algae 

[95]. Some unicellular algae have been found to utilize nitrogen and sulphur in the 

biosynthesis of membrane lipids when the phosphate levels are low [96], and based 

on this it has been suggested that arsenic may actively be used in membranes of algae 

in a similar way [6]. This hypothesis was questioned by Raab and colleagues as the 

phosphate levels were 60 times of the arsenic levels in the brown algae S. Latissima 

[82]. The presence of saturated fatty acid C16:0 in position 2'' in the AsSug-PL, 

which is typical for bacterial fatty acid synthesis [97], pointed instead towards a 

bacterial origin of the arsenolipids [82].  

The biosynthesis of organic arsenicals from the incorporated inorganic arsenate has 

been suggested to be a detoxification mechanism of inorganic arsenic to less toxic 

organic arsenic species [98, 99]. The presence of arsenic species has also been 

explained by the inability of organisms to differentiate between arsenic-containing 

and the non-arsenic containing components [19]. Based on the similarity in chemical 

structure between the AsFAs and (non-arsenic containing) fatty acids, the AsFAs 

were suggested to originate from de-novo synthesis similar to the de-novo synthesis of 

fatty acids [19]. Dimethylarsinoylpropionic acid (DMAP; (CH3)2As(O)-

CH2CH2COOH) is the likely start product for the AsFAs with odd-numbered carbon 

chains, where DMAP is elongated by two carbon-units by acetyl coenzyme A [19] 

similar to the elongation of fatty acids [100] (Figure 1.1) The identification of AsFA 

with even-numbered carbon chains meant that the odd-numbered and even-numbered 

AsFAs must have different origin [65, 85]. For the AsHCs, fatty acids have been 

proposed as start products [20]. The fatty acids were suggested to be reduced to the 

AsHCs via synthesis of fatty alcohols [20] (Figure 1.1), a mechanism based on the 

bacterial conversion of fatty acids to n-alkanes [101].  
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1.8 Human metabolism and toxicity of arsenolipids 

Humans are mainly exposed to arsenic through the consumption of fish and other 

seafood [13, 102, 103]. For people in certain parts of the world elevated arsenic levels 

in drinking water dominates the arsenic intake [13, 15].   

The toxicity of arsenic is highly dependent on the chemical form and the oxidation 

state of the element [16]. Inorganic arsenic is toxic and carcinogenic, while AB is 

considered to be non-toxic [16, 104, 105]. Adverse toxicological effects, such as 

cancer of lungs, urinary bladder and skin have been reported for people chronically 

exposed to inorganic arsenic through drinking water [13, 15]. In seafood, organic 

arsenicals are major arsenic species present [14].   

The potential toxicity of several of the organic arsenic species, including arsenolipids, 

is still not fully known with regards to human exposure [6, 13, 15]. In one study of 

two volunteers consuming cod liver and cod liver oil with total arsenic concentrations 

of 1.0 to 3.3 mg kg-1, Schmeisser and colleagues found DMA(V) as the major 

metabolite in the urine [73] . Also, minor levels of dimethylated arsenic oxide species 

and thiolated species were detected in urine, which may also be related to the ingested 

arsenolipids [73, 74]. From these observations, it was suggested that the arsenolipids 

are metabolised in the human body [73, 74].   

The metabolism of arsenic following seafood consumption, the implication for human 

health has been discussed [6, 14, 54]. It has been emphasised that humans metabolise 

organic arsenic species, such as arsenolipids, arsenosugars and inorganic arsenic 

mainly to the same major arsenic metabolite; DMA(V) [6, 54]. The toxicity of 

inorganic arsenic is, however, believed to be related to the intermediates, the trivalent 

DMA(III) and MA(III), produced during the metabolism of inorganic arsenic to 

DMA(V) [106]. The trivalent DMA and MA have been shown more toxic than 

inorganic arsenic species [107-111]. Similarly, organic arsenic species, including 

arsenolipids may produce potentially toxic intermediates during their metabolism into 

DMA(V) [6, 54].  
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1.9 Analysis and characterisation of arsenolipids 

From the initial studies in the 1960s to current use of hyphenated techniques, a range 

of analytical techniques and principles have been applied for studying the arsenolipids 

[7, 112]. 

 

The early studies of arsenolipids 

Guldbrand Lunde was the first to study arsenic and the lipid-soluble fraction of the 

element in the 1960s and 1970s [17, 18]. Lunde generated data on the abundance of 

arsenic, bromine and selenium in a range of marine and terrestrial oils using neutron 

activation analysis [17, 66, 113]. The chemical properties of the arsenolipids present 

in fish oils were studied by using conventional techniques for analysis of lipids. Based 

on the detection of arsenic in the same fractions as the phospholipids on a silica 

column, the arsenolipids were suggested to be chemical similar to phospholipids 

[113]. It was also observed that arsenic followed both the fatty acid fraction and the 

water-soluble fractions when the oils where saponified with potassium hydroxide, and 

it was concluded that at least two types of arsenic species were present [114].  

Morita and Shibata [81] identified the first arsenolipid, the AsSug-PL958 (Table 1.2) 

in brown algae U. pinnatifida. The arsenolipid was isolated using chloroform and 

methanol, which was further extracted by preparative chromatography prior to 

saponification and analysis of the extracts by gas chromatography (GC) coupled to 

mass spectrometry (MS). The structures were identified using proton-nuclear 

magnetic resonance (1H NMR), and an inductively coupled plasma atomic emission 

spectrometer (ICP-AES) was used as an element specific detector [81]. From the 

study it was suggested that arsenolipids present in marine algae were structurally 

different from those present in marine fish [81].   

 

 



 28 

Analysis of hydrolysis products 

The inductively coupled plasma mass spectrometry (ICP-MS) is an element specific 

and a highly sensitive detector that is used in speciation analysis [42]. The ICP-MS 

has, however, not until recent years been compatible with the use organic solvent, 

preventing the use of high performance liquid chromatography (HPLC) coupled to 

ICP-MS for analysis of intact arsenolipids [3]. For a period, from 1990 to 2004, the 

arsenolipids were characterised based on the chemical structures of the water-soluble 

arsenicals produced when the lipid-fraction of marine samples were hydrolysed or 

saponified [93, 112, 115, 116].  

Francesconi and co-workers [93] characterised the first arsenolipid in marine fish by 

analysis of alkaline hydrolysis extracts of yellow-eye mullet. Based on the 

identification of the glycerylphosphorylarsenocholine, it was suggested that the 

arsenolipid present in the yellow eye mullet was phosphatidylarsenocholine (Table 

1.3). The arsenolipid was verified by NMR spectra (1H and 13C) of intact compound 

and of synthesised phosphatidylarsenocholine. The glycerylphosphorylarsenocholine 

was also detected in the digestive gland of western rock lobster after alkaline 

hydrolysis of the ether extracts, indicating the presence of phosphatidylarsenocholine 

[117]. The additional detection of dimehylriboside-2 in the extracts suggested that 

lipids with arsenosugar-moieties were present in the lobster [117] (Table 1.3).  

Dimethylriboside-2 has also been identified as hydrolysis products in the blubber of 

ringed seal [64] and seaweed (Laminara digitata) [115]. Dimethylated arsenolipids 

seems to be present in several animals based on the detection of DMA and 

dimethylarsinoyl acetate in blubber of seal [64], in liver of starspotted shark 

(Mustelus manazo) [118, 120], in Japanese flying squid (Todarodes pacificus) [119] 

and in sheep fed seaweed [115] (Table 1.3). Also, arsenolipids with sphingomyelin 

structures have been proposed [120]. This was based on the identification of AC and 

DMA in hydrolysis extracts of starspotted shark, from where it was suggested that 

AC and DMA replaced the choline moiety in sphingomyelin [120]. 
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Table 1.3 Hydrolysis products of marine oils and the proposed arsenolipid correlating 

to the products. For more information please refer to text. 

Hydrolysis products Proposed arsenolipids 

 
 
Glycerylphosphorylarsenocholine 
 

 
 
Phosphatidylarsenocholine1 
 

 

 
 
Dimethylarsinoylriboside-2 
 

 

 
 

Phosphatidyldimethylarsinylriboside 

 
 
Dimethylarsinoyl acetate   

      
 
Dimethylated arsenolipid(s) 

 

 

Analysis and identification of intact arsenolipids 

The first analysis of intact arsenolipids using HPLC-ICP-MS was reported by 

Schmeisser and colleagues in 2005 [3]. The ICP-MS was modified based on an 

approach described for the analysis of phospholipids by HPLC-ICP-MS [121], by 

adding oxygen to the plasma and by replacing instrumental parts, such as the torch 

and nebulizer [3, 121]. The modifications stabilised the argon plasma in the ICP-MS 

to handle organic solvents, and fish oils were analysed using an acetone-based mobile 
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phase on a normal-phase HPLC-ICP-MS [3]. Three to four predominant arsenolipids, 

in addition to several minor arsenic-containing peaks were observed in the fish oils. 

The peaks were not structurally identified in the work by Schmeisser and colleagues 

[3].   

Rumpler and co-workers were the first to identify intact arsenolipids in the oil of cod 

liver [19]. By partitioning the oil between immiscible solvents of n-hexane and 

aqueous methanol, the aqueous methanol fraction was found more concentrated in 

arsenic. The aqueous methanol phase was further extracted using preparative size-

exclusion and anion-exchange chromatography prior to elemental and structural 

identifications by HPLC-MS/MS and by high resolution mass spectrometry (HR-MS), 

respectively [19].  The work resulted in the identification of six chemical structures of 

long chain fatty acids containing a dimethylarsinoyl moiety instead of the methyl-end; 

the AsFAs [19]. The AsFAs contained odd-numbered carbon chain lengths from C15 

to C21 [19]. 

Using a similar analytical approach three AsHCs, with odd-numbered carbon 

backbone of C15, C17 and C21, were identified in capelin oil [20]. The structural 

similarities between the AsHCs and AsFAs to fatty acids (non-arsenic containing) 

were noted, and the positions of the double bonds in the unsaturated AsHCs and 

unsaturated AsFAs were assigned by analogy to common (non-arsenic containing) 

fatty acid, e.g. docosahexanoic acid (DHA, 22:6, n-3) and docosapentanoic acid (22:5, 

n-3). The first AsFA with an even-numbered carbon chain length, of C22, was 

identified in the lipid fraction of a fish meal sample of capelin [85]. The AsFA was 

identified using a hyphenated technique where the outlet of HPLC column was 

coupled simultaneously to an ICP-MS and an OrbiTrap-MS, which allowed for both 

elemental and structural information of the arsenic-species to be obtained [85]. A 

similar analytical approach have been used for analysis of arsenolipids in fish tissues 

[65], cod liver [84], kelp [82] and capelin oil [83], resulting in the identification of 

over 30 arsenolipids.  
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The AsHCs have also been analysed by GC coupled to ICP-MS and to MS [69, 86]. 

The three AsHCs (AsHC-C15, AsHC-C17 and AsHC-C21) were detected in the extracts 

of capelin oil when screened by GC-MS [69]. The same AsHCs, in addition to the 

several unidentified peaks in the low-boiling point (40-300 oC) area of the 

chromatogram, were detected in extracts of cod liver when analysed by GC-ICP-MS 

[86].    

Arsenosugar phospholipids  and AsHCs were identified in extracts of the brown algae 

U. pinnatifida and H. fusiformis after extraction on a silica column and analysis by 

HPLC-ICP-MS and HR-MS [80]. The AsSug-PLs have also been studied using 

several enzymatic and chemical digestions to provide structural information on the 

lipid moieties of the AsSug-PLs [82]. Based on enzymatic hydrolysis using 

phospholipase (PLA2) palmitic acid (C16:0) was observed as the major fatty acid in 

position 2'' of the AsSug-PLs, and it was further shown that the AsFAs were not 

bound to AsSug-PLs [82].  

Two species of TMAsFOHs were recently identified in capelin oil using a 

derivatization and analysis of extracts by HPLC coupled to both ICP-MS and HR-MS 

[83]. The structures were identified based on identification of derivatisated 

compounds, by acetylation and thiolation, and by comparison to the intact compounds 

[83].  
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2. Method development  

A schematic overview of analytical techniques and principles applied in the present 

work, and the analytical outcome are represented in Figure 2.1. Total arsenic 

concentrations of oils, and of extracts of oils, were determined by microwave 

digestion and analysis using inductively coupled plasma mass spectrometry (ICP-MS) 

(Paper I – II). The method is a Nordic and a European standard method [122-124]. 

For analysis of arsenolipids, including liquid liquid extraction (LLE) (Paper I-III), 

thin layer chromatography (TLC) and solid phase extraction (SPE) (Paper I) for the 

sample extraction. For elemental determination gas chromatography (GC) coupled to 

ICP-MS (Paper I) and high performance liquid chromatography (HPLC) coupled to 

ICP-MS (Paper II-III) were used. Structural analysis was performed by qudrupole 

time-of-flight mass spectrometry (qTOF-MS) (Paper I), GC coupled to tandem mass 

spectrometry (GC-EI-MS/MS) (Paper I) and by HPLC-ESI-qTOF-MS (Paper II-

III). The instrumental settings for the analysis are listed in Paper I-III. 

 

General comments on the method development  

One of the major challenges in the development of speciation methods for the 

characterisation of arsenolipids is the lack of commercially available standards for the 

analytes. Also, the presence of still unidentified arsenolipids challenges the method 

development of extraction procedures, as well as the qualitative assignments. The 

method development was based on:   

 Use of real samples for the development of extraction and chromatographic 

methods. 

 Use of total arsenic concentrations of sample extracts for the determination of 

recoveries of extraction methods.  

 Use of fragmentation patterns previously reported arsenolipids in the structural 

identification by mass spectrometry. 
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Figure 2.1 A schematic overview of the analytical techniques and principles applied, 

and the analytical output from the respective techniques.  

 

2.1 Samples 

The samples analysed in the present work are shown in Table.2.1. The fish oils were 

commercially produced for use in fish feed production. The oil of salmon (Salmo 

salar), cod (Gadus morhua) liver and seal (Pagophilus groenlandicus) were obtained 

as crude oils. The livers of Northeast Arctic cod (Gadus morhua) from the Barents 

Sea and of Atlantic cod from coastal areas of Norway were from a baseline study on 

environmental contaminants in cod from Norwegian waters, led by the National 

Institute of Nutrition and Seafood Research (NIFES), between 2009-2011 [40, 125]. 

All samples and sample extracts were stored at -20 oC until analysed. Light and heat 
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exposure of the oils, livers, and extracts were kept to a minimum during analysis to 

prevent oxidation of lipids, and a potential degradation of analytes.  

 

Table 2.1 The samples analysed in the present work and the corresponding papers.  

 

 

 

 

 

 

 

 

 

 

Sample type Paper 

Sand eel (Ammodytes marinus) oil  Paper I-II 

Decontaminated sand eel oil Paper I 

Herring (Clupea harengus) oil  Paper I-II 

Decontaminated herring oil Paper I 

Anchovy (Engraulis ringens) oil Paper I-II 

Blue whiting (Micromesistius poutassou) oil Paper I-II 

Mixed oil I1  Paper II 

Mixed oil II2  Paper I-II 

Salmon (Salmo salar) oil Paper II 

Seal oil (blubber of Greenland seal, Pagophilus 
groenlandicus) Paper II 

Oil of liver of cod (Gadus morhua)  Paper II 

Commercial fish oil I-III Paper II 

Commercial fish oil IV data not published 

Livers of  Northeast Arctic cod (Gauds morhua)3 Paper III 

Livers of Atlantic cod (Gadus morhua) from coastal 
Norwegian waters4 data not published 

1) A mixture of oils of Norway pout (Trisopterus esmarkii), blue whiting, Atlantic 
herring and sand eel. 
2) A mixture of oils of Atlantic herring, Atlantic cod and saithe (Pollachius virens). 
3) From the Barents Sea (n = 26). 
4) From Hardangerfjorden, Balsfjorden and Borgundfjorden (n = 6). 
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2.2 Sample extraction  

The arsenolipids are minor constituents compared to the major (non-arsenic-

containing) lipids of marine oils, e.g. the triacylglycerols (TAGs) and phospholipids 

(PLs) [97, 126]. An important step in the analysis of arsenolipids is therefore the 

extraction of arsenic species from the lipid matrix, as this improves the separation and 

robustness in the chromatographic analysis and up-concentrates the analytes.  

 

Extraction of arsenolipids from tissues of marine organisms 

Lipids are usually defined by their solubility into organic solvents, e.g. “tissue 

components that are soluble in lipid solvents” [127]. For the extraction of lipids, one 

or several organic solvents are used to separate the lipid-soluble components from the 

water-soluble components [128], and the extraction procedures are often based on 

mixtures of chloroform and methanol [128-130]. An extraction approach based on the 

Bligh & Dyer approach [129] was used for extracting the arsenolipids from the cod 

liver tissues in the present work (Paper III). Compared to use of solvents, e.g. ether 

[93] and methanol [84, 86], a solvent mixture of chloroform and methanol has been 

used for the extraction of arsenolipids from marine tissues, e.g. cod liver [73], muscle 

of tuna [63], starspotted shark [118, 120] and ringed seal [64, 116] (Table 2.2).  
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Table 2.2. Solvent and solvent mixtures used for the extraction of arsenolipids from 

tissues of marine organisms. 

 

 

 

 

 

 

 

 

 

 

 

 

Extraction and separation of arsenolipids by thin layer chromatography  

In TLC lipids are separated according to their different affinities to a stationary phase 

or sorbent, such as silica, in a selected solvent system. Each class of lipids has a 

characteristic mobility, which is the distance travelled by the compound(s) on the 

TLC plate, and is typically directly compared with the mobility of a standard [131].  

In a preliminary study of arsenolipids in marine oils, the commercial fish oil II and IV 

were separated on a TLC plate (silicagel, 60G, 200 x 200 mm, VWR International 

LLC, Radnor, PE, USA) using an approach described by Henderson and colleagues 

Sample Organic Solvent Reference 

Cod liver and herring CHCl3/MeOH (2 + 1, v/v) [113] 

Cod liver  Hexane or hexane/ CHCl3/MeOH  

(5 + 4 + 1, v/v) 

[3] 

 

Cod liver MeOH [84, 86] 

Tuna1  CHCl3/MeOH (2 + 1 v/v) [63] 

Western rock lobster2 MeOH (100%) [117] 

Yellow eye mullet Ether (100%) [93] 

Starspotted shark3 CHCl3/MeOH (2 + 1 v/v) [118, 120] 

Ringed seal4 CHCl3/MeOH (2 + 1 v/v) [64, 116] 

1) Muscle tissue. 
2) Digestive gland. 
3) Muscle, dark muscle, stomach, heart, glass bladder, intestine, skin, spleen, brain, liver, 

kidney and bone.  
4) Liver, kidney, muscle, gonad, stomach content and blubber. 
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[132]. The lipid classes were separated on the TLC by first eluting the analytes by a 

polar solvent mixture (potassium chloride/chloroform/iso-propanol/methylacetate, 

9/10/25/25/25) followed by a non-polar solvent mixture (isohexane/diethylether/acetic 

acid, 95/12/2) [132]. The sample volume was set to 100 μL to ensure detectable levels 

of arsenic in the separated lipids. The plate with separated lipids was submerged in a 

solution of 3% copper acetate and left in an oven (160 oC) for 15 min. The lipid 

classes in the fish oil samples were compared to a standard mixture of PLs 

(phosphatidyl choline (PC), Sigma Aldrich, St. Louis, MO, USA; phosphatidyl serine 

(PS), Aventi Technology As, Oslo, Norway; phosphatidyl inositol (PI), Sigma 

Aldrich; phosphatic acid (PA), Sigma Aldrich; phosphatidyl ethanol amine (PE), 

Sigma Aldrich), free fatty acids (FFA) (linolenic acid, Sigma Aldrich), cholesterol 

(CHOL) (cholesterol, Sigma Aldrich), TAGs (trilinolenin, Sigma Aldrich) and esters 

(linoleyl behenate, Sigma Aldrich).  

The major lipid class in both commercial oils was TAGs (Figure 2.2; data not 

published). Also, FFA, CHOL and esters were detected in the oils, while no PLs were 

detected (Figure 2.2). Due to the increased application volume of sample, a low 

resolution in the separation of the lipid classes was observed (Figure 2.2). 

Total arsenic was determined in the separated lipid classes of the commercial fish oil 

IV (n = 3) (Figure 2.2). The bands of lipid classes were carefully scraped of the plate 

into PTFE vessels for total arsenic determination. Due to the low resolution in the 

lipid class separation, the FFA and CHOL were analysed as one sample in the total 

arsenic analysis. The total arsenic analysis of lipid classes, showed that 85% (w/w) of 

the total arsenic was retained in the area of the PLs on the TLC plate (Figure 2.2, data 

not published). Only minor amounts of arsenic was retained in the areas of the non-

polar lipids, e.g. TAGs and esters, containing 5.6% (w/w) and 2.5% (w/w) of the total 

arsenic, respectively. The result shows that the major part of the arsenolipids has polar 

characteristics, similar to PLs. This is consistent with the work by Lunde [66], who 

found arsenic mainly in the polar methanol-containing fraction when fractioning oils 

of marine fish on a silica column.  
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Sample  As (%)

Application point 2.3 ± 0.5

PL 85 ± 2

FFA & CHOL 5.2  ± 1

TAG 5.6 ± 1

Esters 2.5 ± 0.5

Esters

TAGs

FFA & 
CHOL

PL

Application
point  

Figure 2.2 The separation of commercial fish oil IV (left) and commercial fish oil II 

(right) on a TLC plate (left picture). A standard mixture consisting of PLs (PC, PS, 

PI, PA, PE), FFA (linolenic acid), CHOL (cholesterol), TAG (trilinolenin) and ester 

(linoleyl behenate) was applied in the middle. The amount of arsenic (% (w/w), mean 

± SD, n = 3) in the lipid classes of the commercial fish oil IV (right table). 

 

The preliminary study clearly emphasizes the importance of highly selective analytical 

techniques that can distinguish between arsenic-containing lipids and (non-arsenic-

containing) lipids. Further work on arsenolipids was therefore not performed by use 

of TLC, but instead it was focused on the use of more sensitive and selective 

techniques. 

 

Extraction of arsenolipids by Liquid Liquid Extraction 

Lipids are generally regarded as hydrophobic compounds that are soluble in organic 

solvents. However, the solubility of lipids depends on the relative strength of the 

interactions between solvent and the hydrophobic or hydrophilic part of the 

compound, where lipids with a low polarity, e.g. TAGs, are very soluble in non-polar 

solvents, such as hexane, and tend to be insoluble in polar solvents [128]. Also, the 
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selectivity of solvents may affect the partitioning of compounds into solvents, where 

e.g. methanol, being a proton-donor, is a selective solvent for fatty acids, which are 

proton-acceptors [133, 134].    

In liquid liquid extraction (LLE) compounds are extracted by their solubility in two 

immiscible solvents or phases, typically an aqueous and an organic phase [135, 136]. 

In the present work marine oils were separated using two immiscible solvents of n-

hexane and aqueous methanol (Paper I), and n-heptane and aqueous methanol 

(Paper II-III). Hexane and heptane easily dissolves the oils, whereas the addition of 

aqueous methanol forms a two-phased system of a polar methanol phase and a non-

polar hexane phase (Figure 2.3). All oils analysed showed similar partitioning of 

arsenic where the aqueous methanol phase was more concentrated in arsenic than the 

hexane or heptane phase (Paper I-III). The non-polar hexane and heptane phase, 

contained lower arsenic concentrations due to the high lipid content in this fraction 

(98 ± 2% of the total amount of oil) (data not shown). The methanol phase (MeOH 1 

phase) was further subjected to analysis by GC-ICP-MS (Paper I) and HPLC-ICP-

MS (Paper II-III).  

To further increase the extraction efficiency of arsenic into polar solvents to be 

analysed by reversed-phase HPLC-ICP-MS, the n-heptane phase was subsequently 

extracted with methanol (MeOH 2 phase), and then with acetonitrile (ACN phase) 

(Paper II). The MeOH 1 phase contained the highest concentrations of arsenic, with 

20% to 40% of the total arsenic in the oils (Paper II). The sequential extractions 

increased the extraction efficiency of arsenic into polar solvents by 8-14% and 4-8% 

of the total arsenic in the oils for the MeOH 2 and ACN phase, respectively (Paper 

II). The hexane phase is more challenging to analyse due to the high lipid (non-

arsenic containing) content, lower arsenic concentrations, and also due to the 

incompatibility of hexane as a solvent in reversed-phase HPLC analysis. The hexane 

phase was not further analysed in the present work. 
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Figure 2.3 A schematic diagram of the categorisation of arsenic into water-soluble 

and lipid-soluble fractions, and the categorisation of lipid-soluble arsenic as non-polar 

and polar arsenic species.  

 

High concentrations of arsenic have also been seen in the methanol fraction of other 

marine oils, e.g. fish oils [3, 20, 63] and cod liver oil [19, 73] (Table 2.3).  In oils of 

tuna, 50% of the arsenolipids partitioned into the polar methanol phase, but as only 

5% of the (non-arsenic containing) lipids in the oils were found in this fraction, it was 

more concentrated in arsenic than the hexane phase of the oil [63]. Using a sequential 

extraction procedure of the hexane phase with aqueous methanol, an extraction 

recovery of 94% of the total arsenic in capelin oil was recently achieved [83]. A 

larger sample amount and larger solvent volumes were used in the work by Amayo 

and colleagues compared to the present work. 
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Table 2.3 The partitioning of arsenic (%) in non-polar and polar solvents for marine 

oils. 

Sample Partitioning of arsenolipids Reference 

Cod liver 40% in hexane phase [73] 

Cod liver oil 40% in methanol phase [19] 

Capelin oil 70% in the methanol phase [20] 

Oil of tuna muscle 50% in the methanol phase [63] 

Marine oils 17 – 45% in the methanol Paper I-II 

Oils of cod liver 31 – 60% in the methanol phase  Paper II – III 

 

Solid Phase Extraction  

Chromatographic columns have been used for the extraction of arsenolipids in oils of 

marine samples [19, 84, 85, 113]. Most of the studies on arsenolipids have, so far, 

focused on identification of novel species, and hence typically used large volumes of 

samples and solvents [19, 65, 84, 87]. Few studies have used commercially available 

SPE columns for the separation of arsenolipids which enables low sample and solvent 

volumes to be applied for extraction [136, 137], which is beneficial when studying a 

large number of samples.  

In the present work a weak-anion exchange SPE column (1 g, 12 mL, Phenomenex, 

Torrance, CA, USA) was used for the extraction of AsHCs in an aqueous methanol 

phase of commercial fish oils (Paper I). The approach was based on the extraction 

procedure described by Taleshi and colleageues [20]. The aqueous methanol phase 

was applied to the SPE and the AsHCs were extracted by eluting with a solvent 

mixture consisting of methanol/chloroform/water (60/30/8). The AsHCs were found 

to account for 55% to 92% when comparing the total arsenic of the SPE extract with 

the total arsenic in the aqueous methanol phase (Paper I). This is consistent with the 
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work of Taleshi and colleagues [20] who found 65% of the arsenic in the methanol 

fraction of capelin oil to be the AsHCs, when using a preparative sized column [20].  

 

2.3 Organic solvents and ICP-MS 

The ICP-MS in its standard set-up is not compatible with the organic solvents that are 

necessary to use when analysing lipid-soluble compounds [3, 138]. Organic solvents 

cause instability of the plasma by cooling, furthermore the high load of carbon causes 

deposition of carbon on the cones of the ICP-MS, which decreases the signal 

sensitivity [121]. For analysis with organic solvents, the ICP-MS was modified using 

a low flow nebulizer, a torch with a narrow inner diameter, platinum sample and 

skimmer cones, and tubings resistant to organic solvents (Paper II-III). Oxygen was 

added as an optional gas (typically 20% oxygen in argon) through a T-piece, located 

on the torch. The ICP-MS was optimized for arsenic with triphenylarsine oxide 

(Ph3AsO) as standard, dissolved in the organic solvent(s) used in the mobile phase, 

and introduced by self-aspiration (Paper II-III). The typical instrumental settings for 

the ICP-MS can be seen in Table 2.4. 
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Table 2.4 Typical instrument settings for the ICP-MS when optimizing for arsenic 

(m/z 75), using 100 μg L-1 Ph3AsO in the respective solvents as tuning solution. 

Settings  Normal phase   
mobile phase1 Methanol 

Torch (inner diameter, mm) 1 1.5 

Carrier gas flow (L min-1) 0.23 0.3 

Makeup gas flow (L min-1) 0.24 0.24 

Optional gas flow (% of carrier gas) 23 11 

Spray chamber temperature (oC) -5 -5 
1) acetone/hexane/acetic acid/triethylamine (90/7/1.4/0.2). 

 

 

2.4 Analysis by normal phase HPLC-ICP-MS 

In normal phase chromatography the analytes are separated based on that their affinity 

to a stationary phase is of a polar character, e.g. silica or diols, while the mobile phase 

is non-polar [139]. Normal-phase HPLC with silica based columns has been used for 

separating lipid classes in marine oils [140, 141]. In a preliminary study of the 

arsenolipids, commercial fish oils (n = 3) were analysed by normal-phase HPLC-ICP-

MS (Figure 2.4). The fish oils (1.0 g, n = 2) were diluted in the mobile phase (1 mL; 

acetone/hexane/acetic acid/triethylamine (90/7/1.4/0.2)), and the samples (5 μL) were 

separated using an isocratic elution with flow of 80 μL min-1 on a Hilic column 

(Kinetex, 2.1 x 100 mm, 2.7 μm, Phenomenex). 

All fish oils contained at least four to six arsenolipids (Figure 2.4). This is consistent 

with the results of Schmeisser and colleagues who analysed fish oils with normal-

phase HPLC-ICP-MS, and found 4-6 arsenolipids in the oils [3]. The levels of the 

arsenic-containing peaks varied between the fish oils analysed (Figure 2.4) which may 

suggest biological variations among the species of fish that the oils were extracted 

from. The peaks were not structurally identified by mass spectrometry. 
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Figure 2.4 The chromatograms of long sand eel oil (a), blue whiting (a) and Atlantic 

herring (a) analysed by normal-phase HPLC-ICP-MS. 

 

The advantage of using a normal-phase separation is the possibility to analyse whole 

fish oil directly without further sample preparation than dilution, and hence, no 

arsenolipids are lost during the extraction procedure. However, as a consequence the 

sample extracts are abundant in other (non-arsenic containing) lipids, e.g. TAGs, 

which challenges the potential identification of the arsenolipids. Furthermore, the 

retention mechanisms in normal-phase HPLC chromatography are based on the 

affinity of polar functional groups to the polar stationary phase [139, 142], and the 

peaks in the normal-phase chromatograms may therefore correspond to more than one 

arsenolipid if the analytes are structurally different only in their carbon chain lengths. 

From these results it was concluded that reversed-phase HPLC-ICP-MS or GC-ICP-

MS would give better chromatographic resolution in the separation of the 

arsenolipids.  
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2.5 Analysis by GC-ICP-MS 

Gas Chromatography is normally applied for the analysis of free fatty acids, as the 

methyl esters are efficiently separated and can be easily identified according to their 

relative retention times on a GC column [143]. In GC the analytes are separated based 

on volatility, solubility or affinity to the stationary phase and on the temperature-

program used [142]. In the present work several commercial oils were analysed for 

their content of arsenic-containing hydrocarbons (AsHCs) using GC-ICP-MS (Paper 

I). The oils were extracted into aqueous methanol, and the AsHCs were further 

extracted by weak-anion exchange SPE columns (Paper I). The analytes were 

separated on a GC (5%-Phenyl)-methylpolysiloxane column (HP-5, 30 m×0.32 mm, 

0.25 μm, Agilent Technologies) with helium as the carrier gas. 

Three major arsenic peaks were detected in all fish oils analysed by GC-ICP-MS 

using the instrumental settings listed in Paper I. The molecular structures of the 

compounds were determined by tandem mass spectrometry as AsHC-C15, AsHC-C17 

and AsHC-C21 (Table 2.5, Paper I). The structural identification is described in 

section 4.9. Also, a minor arsenic-containing peak, eluting close to the AsHC-C17 was 

detected by the GC-ICP-MS analysis, however, the peak could not be identified by 

mass spectrometry due to the low signal intensity. The results were consistent with 

previous work where AsHC-C15, AsHC-C17 and AsHC-C21 have been shown to be the 

major arsenolipids in extracts of capelin oil [69] and of cod liver [144] when analysed 

by GC-ICP-MS.  

Gas chromatography is suitable for analysis of volatile compounds. Most naturally 

occurring arsenicals are non-volatile, and therefore there is few application of GC in 

arsenic speciation [44, 145]. The AsHCs can be analysed by GC due to the arsine 

group attached to the alkyl chain of the compounds [69, 86]. Gas chromatography is, 

however, not suitable for analysis of other groups of arsenolipids. Analysis of the 

arsenic-containing fatty acids (AsFAs) would require a derivatization step prior to GC 

analysis [69], an approach similar to that used for analysing (non-arsenic containing) 

fatty acids by GC [146-149].  



 46 

 

Table 2.5 Acronyms, chemical formula and chemical structures of the arsenic-

containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) 

identified in this work (Paper I – III). 

Acronyms 
Chemical 
formula Chemical Structures  

AsHC-C15 C17H39AsO Paper I-III 

AsHC-C17 C19H41AsO Paper I-III 

AsHC-C21 C23H37AsO 
 

Paper I-III 

AsFA-C21 C23H37AsO3 Paper II-III 

AsFA-C22 C24H37AsO3 Paper II-III 

AsFA-C15 C17H35AsO3 Paper III 

AsFA-C17a C19H37AsO3 Paper III 

AsFA-C17b C19H35AsO3 Paper III 

 

2.6 Analysis by reversed-phase HPLC-ICP-MS 

In reversed-phase HPLC compounds are separated with a non-polar stationary phase, 

e.g. C18 (octadecylsilane) or C8 (octylsilane), and with a polar mobile phase, e.g. 

water and methanol, often in a gradient [150]. Reversed-phase HPLC-ICP-MS can be 

used for separating different groups of arsenolipids, where the AsFAs, the AsHCs and 

more non-polar arsenolipids are separated using a gradient elution comprising of 20% 

methanol to 100% methanol (Figure 2.5) (Paper II). This is consistent with analysis 
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of arsenolipids by gradient elution in reversed-phase HPLC-ICP-MS analysis, where 

arsenic-containing species with a range in polarities are separated [151, 152]. 
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Figure 2.5 Overlay of MeOH 1 phase (red) and MeOH 2 phase (black) of commercial 

oil II analysed by reversed-phase HPLC-ICP-MS (Instrumental settings are found in 

Paper II). Please note that the dilution factors for the MeOH 1 phase (x3) and MeOH 

2 phase (x2) differ. A standard mixture of Ph3AsO (r.t. 12 min) and synthesised 

AsHC-C19 (r.t. 18 min) is overlaid (green). The elution order of the arsenic species is 

noted above the chromatogram.  

 

The major arsenic species in the methanol phases of all marine oils were the AsHC-

C15, AsHC-C17 and AsHC-C21 (Table 2.5, Paper II). In addition two AsFAs; AsFA-

C21 and AsFA-C22 were detected by the reversed-phase HPLC-ICP-MS analysis 

(Table 2.5, Paper II). The species were identified by high resolution mass 

spectrometry, which is discussed in the following section. In addition, up to 20 

arsenic-containing peaks were observed in the aqueous methanol phases (the MeOH1 

phase) and in the methanol phase (the MeOH 2 phase) of marine oils analysed by 
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gradient elution reverse-phase HPLC-ICP-MS in Paper II. These peaks could not be 

structurally determined by HPLC-qTOF-MS analysis. 

 

Quantitative analysis by reversed-phase HPLC-ICP-MS 

The introduction of organic solvents into the ICP-MS affects the ionization of certain 

elements, such as arsenic and selenium, and causes increased signal [153, 154]. The 

effect is explained by a charge transfer from positively charged carbon ions to arsenic, 

occurring in the plasma of the ICP-MS [153-155]. The effect may be an advantage 

when analysing water-soluble arsenic species, where a constant addition of 3% 

organic solvent (methanol) into the mobile phase increases the sensitivity for arsenic 

[153]. However, when using a gradient elution with organic solvents, the variation in 

carbon content leads to changes in the response of the detector and challenges the 

quantification of elemental species [85, 151-153]. Approaches such as isotope 

dilution [156, 157], mathematical compensation [158] and post-column addition of an 

internal standard [159] have been described for compensating for the signal effect of 

selenium and phosphorous.  

The variation in signal response for arsenic through the organic gradient was 

determined by introducing a solution of arsenic (75As) and internal standards, 

comprising of germanium (74Ge) and indium (115In), into the ICP-MS (Paper II). A 

blank sample was analysed simultaneously with the gradient program (Paper II). The 

procedure was based on the work by Amayo and colleagues [85]. The methanol 

containing gradient increased the signal sensitivity of arsenic with a factor of 

approximately 2.5 (from 30% to 100% methanol) (Paper II). A time-dependent 

arsenic-response factor was determined for every arsenolipid by comparing the 

arsenic response at the retention times of the arsenolipids with the arsenic response at 

the retention times of the calibration standard (Paper II).  

To determine the most suited calibration standard for quantitative analysis of the 

arsenolipids, three different calibration standards; DMA, Ph3AsO and a synthesised 
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arsenic-containing hydrocarbon (AsHC-C19) were tested (Paper II). The AsHCs, 

AsFAs and unknown peaks were quantified using the time-dependent response factors 

and the calibration curves for each calibration standard. (Paper II). Dimethylarsinate 

gave the best recovery in the quantitative results for arsenolipids, from 91% to 104% 

(n = 12) compared to total arsenic measurements in the same extracts. The recoveries 

in Ph3AsO and the synthesised AsHC-C19 were 64-89% (n = 12) and 110-122% (n = 

5), respectively (Paper II). Similarly, Amayo and colleagues found that DMA 

provided accurate quantitative results for the arsenolipids, with a recovery of 94.3% 

compared to the total arsenic in a extract of a fish meal sample [85].  

 

2.7 Structural identification by mass spectrometry  

Since the plasma in the ICP-MS combusts the sample at a temperature of 6,000-

10,000 K, and consequently atomises all molecules, the structural assignments of 

arsenic containing peaks can only be done by matching in retention times and is 

dependent on available standards of the compounds [160]. For structural information 

and identification of novel arsenic species softer ionisation techniques, e.g. 

electrospray ionisation (ESI)-MS or electron impact ionisation (EI)-MS is necessary 

[161]. In the present work the arsenolipids were structurally identified by GC-EI-

MS/MS (QqQ) (Paper I) and high resolution ESI-MS/MS (qTOF) (Paper I – III).  

The high selectivity of the ICP-MS was seen from the analysis of AsHCs by GC-

MS/MS in MS1 mode compared to the analysis by GC-ICP-MS (Paper I). While the 

AsHCs were selectively detected by GC-ICP-MS, with detector set for mass m/z 75, 

the AsHCs could not be separated from other components in the extracts by GC-MS1 

analysis (Paper I). First when using multiple reaction monitoring (MRM) in the GC-

MS/MS, with specific precursor and product ions for the AsHCs (Table 2.6), could 

the AsHCs be detected and identified in the GC-MS/MS (MS2) spectra (Paper I). For 

all AsHCs the product ions m/z 105 and 106 were selected, while for the AsHC-C21 
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also m/z 159 was selected (Table 2.6, Paper I). The precursor and product ions were 

chosen based on the work by Raber and colleagues [69] who determined the AsHCs 

by GC-MS. 

 

Table 2.6 The precursor ions (m/z) (the molecular ion with loss of oxygen [M-16]+) 

and the product ions (m/z) used in Multiple Reaction Monitor (MRM) in the GC-EI-

MS/MS analysis (Paper I). 

AsHC 
Precursor ion [M-16]+ 

(m/z) 

Product ions 

(m/z) 

AsHC-C15 316 105, 106 

AsHC-C17 344 105, 106 

AsHC-C21 388 105, 106, 159 

 

When analysing the arsenolipids by HPLC-qTOF-MS the ions m/z 104.97 and m/z 

122.97 were detected as major fragment ions for all saturated AsHCs and AsFAs 

(Figure 2.6, Paper II-III). These ions have similarly been observed as major 

fragment ions of AsHCs and AsFAs in HR-MS analysis and have been suggested to 

correspond to the arsenoyl-moiety of the arsenolipids, (CH3)2As+ (m/z 104.97) and 

(CH3)2AsOH2
+ (m/z 122.97) [65, 85]. For unsaturated AsHCs and unsaturated AsFAs, 

however, the m/z 104.97 and m/z 122.97 could not be detected as fragment ions 

(Paper II-III). Instead, the m/z 119, 131, 145 and 159 were observed fragment ions 

for all unsaturated arsenolipids in the qTOF-MS analysis (Paper II-III). These 

fragment ions have also been seen for unsaturated AsHCs and unsaturated AsFAs in 

the work of others [82, 84]. The fragmentation patterns of the AsFAs were recently 

shown to be similar to the fragment ions of (non-arsenic-containing) fatty acids, 

demonstrating that the fragment ions m/z 119, 131, 145 and 159 are not exclusive to 

the arsenolipids [84].  
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With the exception of three AsFAs (AsFA-C15, AsFA-C17a and AsFA-C17b) in one of 

the cod liver samples (Paper III) with relative error in mass (Δm) of ± 12.7 ppm, all 

other AsHCs and AsFAs identified in the present work had relative error for 

calculated and measured accurate mass (Δm) within ± 5 ppm (Paper I-III). The 

retention times for the arsenolipids correlated well with the retention times in the 

HPLC-ICP-MS and GC-ICP-MS analysis, respectively (data not published), 

supporting the identification of the arsenolipids. A possible explanation for the 

absence of m/z 104.97 and 122.97 as fragment ions for unsaturated AsHCs and 

AsFAs may be the influence of the double bonds on the fragmentation mechanisms, 

as differences in fragmentation patterns for saturated and polyunsaturated arsenolipids 

are observed in this study (Figure 2.6) and by others [82, 84].  
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Figur 2.6 The MS/MS spectra of AsHC-C17 (a) and AsFA-C22 (b) when analysed by 

HPLC-qTOF-MS.   
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3. General discussion: Arsenolipids in marine oils 

 

3.1 Total arsenic in marine oils 

The oils in the present work, which included oils of different fish species and 

mixtures of oils (termed mixed oils and commercial oils), contained arsenic 

concentrations from 1.6 to 12.5 mg kg-1 oil (Figure 3.1, Paper I - II). The oils of 

pelagic fish were all within the typical range of 4.6–16 mg As kg-1 oil, observed for 

commercial fish oils [1-3].  
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Figure 3.1 Total arsenic concentrations (mg kg-1 oil) in marine oils. The commercial 

oils are represented by the average arsenic concentration of four oils (± range in 

concentrations) (Paper I-II). 
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The diet has been suggested as a factor influencing the levels of arsenic in oils of fish 

[17, 92]. Also, the total arsenic levels in whole fish have been suggested to be a 

reflection of the dietary intake of arsenic [38, 40]. The lower arsenic levels in the oil 

of farmed Atlantic salmon, 1.6 mg kg-1 oil (Paper II), compared to the arsenic levels 

in oils of pelagic fish (Figure 3.1), may hence be ascribed to differences among fish 

species and/or by differences in the diet.  

Seal oil (of blubber) contained an arsenic concentration of 4.5 mg kg-1 (Figure 3.1, 

Paper II). Blubber of harbour seals (Phoca vitulina) and ringed seals (Phoca hispida 

and Pusa Hispida) have been reported to contain between 1.9 and 2.0 mg kg-1 [162] 

and 0.6 to 1.76 mg kg-1 [64, 116], respectively. This is somewhat lower than the 

arsenic level observed in the oil analysed in the present work (Paper II). Blubber is 

more concentrated than other tissues, e.g. kidneys, muscle, hair, lung and liver of 

harbour seals [162], and the arsenolipids are the major arsenic species present in 

blubber, accounting for 90% of total arsenic present [64]. Based on hydrolysis of the 

blubber and determination of DMA as the major arsenic-containing hydrolysis 

product, the blubber was suggested to mainly contain dimethylated arsenolipids [64].  

 

3.2 Arsenic-containing hydrocarbons and fatty acids in 

marine oils 

The three AsHCs; AsHC-C15, AsHC-C17 and AsHC-C21 were identified as the major 

arsenolipids present in the methanol phase of the fish oils (Paper I-II). Table 2.5 in 

the method development section shows the chemical structures of the arsenolipids 

identified in the present work. The AsHC-C15, AsHC-C17 and AsHC-C21 have 

previously also been identified as major arsenic species present in capelin oil [20] and 

in fillet of tuna [63], accounting for 70% and 40% of the total arsenic present, 

respectively. Two AsFAs; AsFA-C21 and AsFA-C22 were also identified in the fish 
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oils (Paper II). The AsFAs accounted for 5 to 16 % of the total arsenic present in the 

methanol extracts of the fish oils (Paper II).  The same AsHCs and AsFAs have also 

been reported as major arsenolipids in extracts of fish meal of capelin [85], capelin oil 

[83], herring muscle [65] and cod liver [84].  

In addition to the two AsFAs and three AsHCs identified in the fish oils, over 20 

unidentified arsenic-containing compounds were detected by the reversed-phase 

HPLC-ICP-MS analysis (Paper II). This was also seen by Rumpler and colleagues 

when analysing extracts of cod liver oil [19]. In addition to six AsFAs with carbon 

chain lengths of C11, C13, C15, C17 and C21, up to 15 unidentified arsenic-containing 

peaks were present [19]. Several AsFAs and AsHCs, with carbon chains ranging from 

C11 to C27, were recently identified as minor arsenolipids in oils of cod liver, capelin 

and herring [65, 83, 84, 87].  

A similar distribution was observed for the AsHCs and AsFAs in the methanol 

extracts of the different fish oils, where the AsHC-C21 was the predominant 

arsenolipid in most of the oils examined, accounting for 27 to 43% of the total arsenic 

in the extracts (Paper II). Seal oil (blubber) also contained AsHC-C15, AsHC-C17 and 

AsHC-C21 and AsFA-C21 and AsFA-C22 (Paper II). Salmon oil, in contrast, 

contained only the AsHCs. This may be explained by the lower total arsenic 

concentration in the salmon oil (Paper II). The same AsHCs were recently also 

identified in muscle of salmon (Onchorhynchus keta). Additionally, over 10 minor 

AsFAs were identified in the salmon muscle [65]. The differences in AsFAs may be 

explained by analytical or/and biological differences. 

 

Decontamination of fish oils  

Marine pelagic fish accumulate lipid-soluble contaminants, such as persistent organic 

pollutants (POPs), in their lipid-rich tissues, and fish oil is therefore a major source of 

POPs, e.g. polychlorinated biphenyls (PCBs) and dioxins, in formulated feed [11, 

163, 164]. Several decontamination techniques, such as active carbon and steam 
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deodorization, have been developed to remove POPs from oils used in feed 

production and for human consumption [165-168]. Two decontaminated fish oils of 

herring and sand eel were included in this work (Paper I). Decontamination by active 

carbon and steam deodorization [169] reduced the levels of total arsenic by 25% in 

the herring oil and by 10% in the sand eel oil (Paper I).  

Analysis of the methanol phase of the original oils and the decontaminated oils by 

GC-ICP-MS (Paper I) and reversed-phase HPLC-ICP-MS (data not published) 

showed that the level of AsHCs was reduced by the decontamination process. The 

reduction was observed to be greater for the decontaminated herring oil than for the 

decontaminated sand eel oil (Paper I, Figure 3.2). From the reversed-phase HPLC-

ICP-MS analysis there was additionally a reduction in the AsFAs in the 

decontaminated herring oil (Figure 3.2, data not published).  

The differences in reduction of arsenic in the decontaminated sand eel oil and herring 

oil are likely related to the decontamination procedures as the two oils were 

decontaminated at different times (Paper I). Decontamination processes commonly 

used for removal of POPs, such as active carbon and steam deodorization, are known 

to remove other lipid-soluble compounds, e.g. oxidative products, sterols, tocopherols 

and free fatty acids (FFA) [170-172]. A larger removal of FFA was observed in the 

herring oil compared to the sand eel oil (data not shown), and this may explain the 

larger removal of arsenolipids in the herring oil, as discussed in Paper I. The 

structural similarity of AsFAs and AsHCs to FFA [19, 20], further suggest that 

AsHCs and AsFAs could be affected similar to FFA during a decontamination 

process.  
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Figure 3.2 Chromatogram of the aqueous methanol phase of (a) sand eel oil (black) 

and decontaminated sand eel oil (blue), and (b) herring oil (black) and 

decontaminated herring oil (blue) analysed by HPLC-ICP-MS (data not published). 

The instrumental settings are listed in Paper II.  

 

3.3 Arsenic in cod liver 

The Northeast Arctic cod is a stock of Atlantic cod that is found in the Barents Sea. It 

is possibly the largest cod stock in the world [173].  In a baseline study of the level of 

contaminants in Northeast Arctic cod (n = 804), exceptionally high concentrations of 

arsenic was observed in muscle and liver, ranging from 1 to 170 mg kg-1 ww and from 

1 to 240 mg kg-1 ww, respectively [40]. Liver samples of Northeast Arctic cod (n = 

26), with total arsenic concentrations between 2.1 and 240 mg kg-1 ww, were selected 
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for further analysis of total arsenic in the lipid- and water-fractions, and for arsenic 

speciation analysis of the respective fractions of livers (Paper III).  

The lipid-fraction of livers contained arsenic concentrations ranging from 1.8 to 16.4 

mg kg-1 oil (Paper III). A linear correlation (r2 = 0.80, p < 0.001) was observed 

between the total arsenic concentrations of whole livers and the arsenic 

concentrations of the oils of the livers (Paper III). The arsenic concentration in the 

lipid-fraction accounted for 3% to 50% of the total arsenic present in the liver from 

cod (Paper III). A trend was observed for the relative proportions of lipid-soluble 

arsenic and the total arsenic in whole liver, where lower relative proportions of lipid-

soluble arsenic (less than 10%) were found for the liver samples with arsenic levels 

above 33 mg kg-1 ww compared to the liver samples with arsenic levels below 33 mg 

kg-1 ww (up to 50%) (Figure 3.3, Paper III).  

Atlantic cod from fjords of Norway (Hardangerfjorden, Borgundfjorden and 

Balsfjorden, n = 6) followed the same trend in terms of the relative proportions of 

lipid-soluble arsenic (data not published, Figure 3.2). The livers contained total 

arsenic concentrations from 2 to 26 mg kg-1 ww [125], and between 2.8 and 42% of 

the total arsenic was found as lipid-soluble arsenic (data not published, Figure 3.3). 

Large variations in the relative proportion of lipid-soluble arsenic to total arsenic 

(between 10% and 50%) were observed for all cod livers with total arsenic 

concentrations below 20 mg kg-1 ww (Figure 3.3).  
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Figure 3.3 The relative proportion of arsenic (%, w/w) in the lipid fraction (μg As in 

oil/μg As in whole liver*100) in cod livers of Northeast Arctic cod (Gadus morhua) 

(black) and of Atlantic cod (Gadus morhua) from coastal areas of Norway (red) 

(Paper III).  

 

Arsenic concentrations from 0.2 to 10 mg kg-1 oil have been reported oils of cod liver 

[7, 84, 87] (Table 3.1). Variation in the relative proportions of lipid-soluble arsenic 

have been seen for canned cod liver, where two livers with total arsenic 

concentrations of 2.6 and 3.3 mg kg-1 dw, contained 25% and 77% of the total arsenic 

as lipid-soluble, respectively [73]. In a liver sample of Atlantic cod, 27% of the total 

arsenic,  at 1.5 mg kg-1 ww, was found as arsenolipids [84], and hence also follow the 

same trend in terms of relative proportions of lipid-soluble arsenic as observed in 

present study (Paper III).  
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Table 3.1 Total arsenic concentrations (mg As kg-1 ww) in cod liver, and in the lipid-

fraction or oil (mg As kg-1 oil) of the livers; the relative proportion of arsenolipids 

(%) of total arsenic present in liver.  

Type of sample 
Total As in liver 

(mg kg-1 ww) 

As conc   

(mg kg-1 oil) 

As in oil 

(%) 
n Reference 

Cod liver1  0.2-10 25-752 76 [7]3. 

Cod liver oil4  5.8  1 [87] 

Cod liver  1.53  27 15 [84] 

Cod liver oil4 - 5.5 - 1 Paper II 

Northeast Arctic cod 
liver 2.1-240 0.5-16.3 3 – 50 28 Paper III 

1) Canned and fresh cod liver.  
2) n = 2. 
3) And references therein. 
4) Crude oil produced in factory. 
5) Pooled sample of 10 liver samples.  

 

 

The origin of arsenolipids in marine organisms is currently not known [6, 7]. These 

chemical species have been suggested to be produced in primary producers and 

transferred to higher animals in the food chain [88, 91]. However, arsenolipids have 

also been suggested to be produced in marine fish [92]. Rumpler and colleagues 

suggested that the AsFAs, found present in cod liver, were de-novo products, 

produced by an elongation similar to (non-arsenic containing fatty acids) [19]. It was 

not specified by Rumpler and colleagues [19] if the process took place in the cod 

livers or in the primary producer.  

Arsenolipids in the livers of cod may either originate from the diet or be de-novo 

products, as discussed in Paper III. An important part of the diet of cod is shrimp, 

herring and capelin [174, 175]. Shrimp may contain particular high levels of arsenic, 

up to 100 mg kg-1 ww [176, 177], and is a dietary source that can contribute with high 

total arsenic levels in cod [40]. Arsenobetaine is the major arsenic species in shrimp 



 60 

[4, 50]. Fatty fish, such as herring and capelin contains arsenolipids [20, 65], and may 

be dietary sources for arsenolipids in cod. Considering a possible de-novo synthesis, 

based on the de-novo synthesis of fatty acids, for the arsenolipid, it should be noted 

that carnivorous fish such as cod, mainly acquire lipids through the diet, and to a 

limited extent by de-novo synthesis [178]. A de-novo synthesis of arsenolipids in cod 

liver seems therefore unlikely, and the arsenolipids present in the liver of cod is 

suggested to originate from the diet of the fish (Paper III). 

 

3.4 Arsenolipids in the aquaculture production chain 

In formulated fish feeds, fish oil and fish meal are ingredients contributing with lipids 

and proteins, respectively [179, 180]. The feed ingredients may, however, also contain 

contaminants, and the presence of certain contaminants, such as POPs, in feed are 

reflected in fillet of the farmed fish [181-183]. Arsenic is naturally occurring in 

marine fish, which are a source of arsenic in marine feed ingredients, and further 

result in the transfer of arsenic into the aquaculture production chain [9, 10] and to the 

farmed fish [11, 184] (Figure 3.4). Data from the National surveillance programme 

for Norwegian fish feeds shows high levels of total arsenic in both fish oil and fish 

meal, ranging from 4.6-15.8 mg kg-1 and 1.8-18.2 mg kg-1 dw, respectively [1, 2].  

The European Union (EU) has established maximum limits for certain contaminants 

in feed and food to ensure consumer safety as well as to protect animal health and 

welfare [185]. In contrast to other trace elements, such as mercury, cadmium and lead, 

there is currently no agreement on maximum levels for arsenic in foodstuffs (EC, 

2006 and amendments) [186]. In the feed legislation the maximum limits for arsenic 

is 25 mg As kg-1 for feed ingredients of marine origin, and 10 mg As kg-1 for 

complete feed for fish and fur animals (EC, 2002 and amendments) [187, 188]. None 

of the fish oils analysed in the present work (Paper I and Paper II) exceeded the 

current maximum level of 25 mg kg-1.  
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Figure 3.4 A schematic diagram of the presence, and potential transfer of arsenic 

species in the whole chain of aquaculture production of farmed fish.  

 

Fish meal mainly contains water-soluble AB [12], while less has been known about 

the arsenolipids present in fish oil (Figure 3.4). Oils of various fish species, including 

commercial oils, mixed oils, and oils of fish species such as blue whiting, sand eel, 

herring and anchovy characterised in the present work contained relative uniform 

levels of arsenic, ranging from 4.9 to 12.5 mg kg-1 oil (Paper II). This is comparable 

to the average arsenic concentration of 9.4 mg kg-1 oil, in fish oils used in feed 

products [1, 2]. The major arsenolipids identified in the oils all contained the three 

AsHCs; AsHC-C15, AsHC-C17 and AsHC-C21 (Paper I-II). In addition, two AsFAs; 

AsFA-C21 and AsFA-C22 were identified as minor arsenolipids (Paper II). The 

AsHCs and AsFAs accounted for 17% to 45% of the total arsenic present in the oils 

(Paper I-II).  

Although, fish meal mainly contains AB [12], arsenolipids have also been detected in 

fish meal [85, 189]. Fish meal of mackerel, capelin, herring, anchovy and Norway 

pout contained 5-10% lipids, the arsenic concentrations in the lipid-fraction ranged 

from 4.6 to 23.2 mg As kg-1 oil [189]. Amayo and colleagues [85] found that the 

arsenolipids accounted for 12% of the total arsenic present in a fish meal of capelin. 

The AsHCs; AsHC-C15, AsHC-C17 and AsHC-C21, and the AsFAs; AsFA-C21 and 
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AsFA-C22 (Paper II) were identified as major arsenicals in the fish meal [85]. Fish 

meal is hence also a source of arsenolipids in the aquaculture production chain.  

Arsenic concentrations from 0.7 to 7.1 mg kg-1 are seen for fish feed used by the 

aquaculture industry in the surveillance programme for Norwegian feed (2009-2012) 

[1, 190]. Of the total arsenic present in feed, more than 95% are organic arsenic 

species, while low levels (< 2%) inorganic arsenic are found [10, 78, 190]. The 

presence of arsenolipids in fish feed is currently not documented. Based on the 

presence of the three AsHCs (AsHC-C15, AsHC-C17 and AsHC-C21) and the two 

AsFAs (AsFA-C21 and AsFA-C22) in commercial fish oils (Paper I-II) [20, 83], as 

well as in fish meal [85], it can be assumed that these specific arsenolipids may also 

be present in fish feed, and possibly in farmed fish. It should be noted that there is 

still a relative large proportion of the arsenolipids in the fish oils that is still 

unidentified. These unidentified, and possibly more non-polar, arsenolipids (Paper 

II), may also be present in the feed and in the fish.   

In fillet of farmed Atlantic salmon the total arsenic concentrations range from 0.02 to 

3.1 mg kg-1 (w.w.) [177]. Also, in other farmed marine fish, e.g. Atlantic cod and 

Atlantic halibut (Hippoglossus hippoglossus), relative low levels of arsenic are 

reported in the muscle, with concentrations ranging from 0.54 to 2.0 mg kg-1 ww and 

from 0.6 to 3.3 mg kg-1 ww, respectively [177]. In the present work one oil of farmed 

salmon was analysed for the content of arsenolipids. The oil, with a total arsenic 

concentration of 1.6 mg kg-1, contained AsHC-C15, AsHC-C17 and AsHC-C21 (Paper 

II). This is consistent with a recent study of one Chum salmon muscle where the 

AsHC-C15, AsHC-C17 and AsHC-C21 were identified, in addition to several AsFAs 

[65]. However, few data on the presence of arsenolipids in farmed fish, wild fish and 

other seafood, currently exist. More data on the arsenolipids is needed to gain better 

understanding of the distribution of the arsenolipids in seafood, and their significance 

with regards to seafood safety. Larger data sets on the arsenolipids were called up on 

by EFSA, and noted as important for a future risk assessment of arsenolipids in food 

[13].   
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4. Conclusion 

The present work describes the development of analytical methods for the 

determination of arsenolipids, and the application of methods for characterising the 

arsenolipids in marine oils (Paper I-II) and in oils extracted from cod liver (Paper 

III).  

The arsenolipids were extracted using LLE, where the oils were partitioned into n-

hexane/n-heptane and aqueous methanol, which was further analysed (Paper I-III). 

The method gave an extraction recovery of maximum 60% of the total arsenic present 

in the oils (Paper I-III). A further clean-up of the methanol phase was conducted by 

a SPE column, prior to analysis by GC-ICP-MS. The SPE removed some of the lipid 

matrix in the extracts (Paper I). To increase the extraction efficiency of arsenic into 

polar solvents the heptane phase of the oils was sequentially extracted by methanol, 

and then acetonitrile (Paper II). This increased the recovery of arsenic into polar 

solvents by 9-18%. This shows that the extraction method still needs to be improved 

for a complete recovery of the arsenolipids from marine oils.  

By using GC-ICP-MS the extracts could be analysed for the AsHCs (Paper I). In the 

methanol extracts of commercial fish oils, three AsHCs; AsHC-C15, AsHC-C17 and 

AsHC-C21 were found as major arsenolipids present, accounting for 55 to 95% of the 

total arsenic present (Paper I). A minor arsenic-containing peak was also observed, 

but not identified, in all oils analysed. 

A quantitative method based on reversed-phase HPLC-ICP-MS was developed for 

determination of both AsHCs and AsFAs in marine oils (Paper II). The challenges 

associated with the quantification of novel arsenic species in a gradient HPLC-ICP-

MS analysis was addressed using three arsenic-containing compounds as external 

calibration standards. Dimethylarsinate was best suited as a calibration standard 

compared to Ph3AsO and the synthesized AsHC-C19 (Paper II). The AsHCs; The 

AsHC-C15, AsHC-C17 and AsHC-C21 were the major arsenic species in the methanol 

phase of all marine oils analysed, accounting for 69-92% of the total arsenic in the 
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methanol phase. The AsFAs; AsFA-C21 and AsFA22 were identified as minor arsenic 

species in the methanol extracts of the oils, with the exception of the salmon oil 

(Paper II). Furthermore, several unidentified arsenic-containing peaks were detected 

in the marine oils (Paper I-II).   

The chemical structures of the AsHCs were identified in commercial fish oils using 

GC-MS/MS, that provided retention times correlating to the GC-ICP-MS analysis, as 

well as fragmentation patterns of compounds (Paper I). The accurate masses of the 

AsHCs were verified using qTOF-MS analysis (Paper I). The chemical structures of 

the AsHCs and AsFAs were identified in marine oils and in oil of cod liver using 

HPLC-qTOF-MS, which provided retention correlating to the HPLC-ICP-MS 

analysis, as well as the accurate masses of compounds and the fragmentation patterns 

of the compounds, which support the identification (Paper II-III). 

The arsenolipids extracted from the liver of Northeast Arctic cod were partitioned into 

a lipid- and a water-fraction, and total arsenic was measured in both fractions. A 

positive correlation was observed between total arsenic concentrations of liver (from 

2.1 to 240 mg kg-1 ww) and of the lipid-fractions (from 1.8 to 16.4 mg kg-1 oil). The 

proportion of lipid-soluble arsenic decreased with increasing arsenic levels of whole 

liver, indicating a threshold for the accumulation of lipid-soluble arsenic (Paper III). 

The lipid-fraction of the cod livers were analysed by the reversed-phase HPLC-ICP-

MS and HPLC-qTOF-MS approach (Paper III). Up to three AsHCs; AsHC-C15, 

AsHC-C17 and AsHC-C21 and five AsFAs; AsFA-C15, AsFA-C17a, AsFA-C17b, AsFA-

C21 and AsFA-C22, were identified in the methanol phases of the oils of the cod liver.  

Of the water-soluble arsenic species, AB was the dominant species, whereas DMA 

and AC were minor constituents in cod liver (Paper III).  
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5. Future perspectives 

 

Analytical consideration- Extraction recovery 

The oil matrix is a major challenge in the analysis of arsenolipids. In the present work 

a maximum extraction recovery of 60% of the total arsenic present in the oils was 

achieved (Paper I-III), which emphasizes the need for more efficient sample 

extraction methods. A LLE of fish oil, using other solvents than acetonitrile and 

methanol, may result in a more selective extraction of arsenolipids. Also, a longer 

solvent interaction time may increase the extraction recovery of arsenolipids in polar 

solvents. A SPE procedure that extracts the arsenolipids from whole oil will be an 

approach that typically requires less sample and solvent volumes than LLE, and may 

also provide a increased extraction recovery and more efficient separation of analytes 

from interferences. SPE columns with functional groups, e.g. alumina-based may 

prove to be more selective for the arsenolipids than pure silica columns, as they 

possess different chemical properties. The synthesised AsHC-C19 standard may be 

used for optimising a SPE method for the arsenolipids as the standard is structurally 

similar to naturally occurring AsHCs. The synthesised AsHC-C19 may also be a 

potential internal standard in an extraction procedure of arsenolipids, improving the 

repeatability in a LLE and a SPE procedure.  

Analytical consideration- GC-ICP-MS 

The quantitative results for the AsHCs when analysed by GC-ICP-MS may be 

improved using another calibration standard instead of Ph3As (Paper I). The 

synthesized AsHC-C19 is a potential calibration standard for the quantitative analysis 

of AsHCs in GC-ICP-MS. Another improvement in the GC-ICP-MS method may be 

achieved by changing the transfer line, linking the GC and the ICP-MS, with a 

transfer line that tolerates more than 300 ºC. By doing so, the GC-ICP-MS can be 
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used for analysis of AsHCs that are potentially less volatile and sharpen the peak  of 

the late-eluting AsHC-C21.     

Analytical consideration- HPLC-ICP-MS 

The chromatographic resolution in reversed-phase HPLC-ICP-MS analysis (Paper II-

III) of AsFAs and AsHCs may be improved using a different mobile phase 

constituting of e.g. acetonitrile instead of methanol. In the present work, the ICP-MS 

was, however, the limiting factor in the use of other organic solvents beside methanol.  

Analytical consideration- identification of arsenolipids 

Several more non-polar arsenolipids were detected, but not identified, in the present 

work (Paper II-III). An improved sample extraction procedure for arsenolipids will 

remove interfering matrix components and concentrate the arsenolipids, which is 

facilitates a structural identification of novel compounds. 

Analytical consideration- Standards and quality assurance 

In the present work an AsHC standard was synthesised (Paper II). Synthesis of 

several products was limited by safety issues. Commercially available standards of 

arsenolipids are needed for method development and optimisation of methods, but 

also for quality assurance. There is also a need for certified reference materials for  

arsenolipids, as this is essential for the quality assurance of analysis and methods. 

Arsenolipids in the whole chain  

In the present study arsenolipids have been characterised in commercial fish oils. 

However, little is currently known about the presence of arsenolipids in complete 

feed. Future work should therefore focus on the presence and distribution of 

arsenolipids in fish feed. Furthermore, studies of the carry-over of arsenolipids from 

feed to the farmed fish will provide information on the accumulation, distribution, 

metabolism and elimination of arsenolipids in fish. Such studies are important in 

regards to both feed and seafood safety.  
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