Identifikasjon av fettsyrer i omega-3 produkter ved hjelp av gasskromatografi med massespektrometrisk deteksjon

Av Ziar Wasta

Masteroppgave i farmasi

Kjemisk Institutt og Senter for farmasi Universitetet i Bergen September 2012

Forord

Denne masteroppgaven ble utført ved kjemisk institutt på universitet i Bergen og Nofima i Bergen, i perioden 2011-12. Arbeidet har vart en lang og lærerik prosess, og det er mange som har bidratt til at jeg nå er ferdig med oppgaven.

Først og fremst vil jeg takke min veileder Svein Mjøs for hans innsats, korrekturlesning, gode veiledning underveis i mitt praktiske arbeid og i skriveprosessen, og ikke minst å være alltid der når jeg trengte hjelp. Jeg setter stor pris på all hjelpen jeg har fått fra deg.

En stor takk til min mann Shwan Hiwa som vekket meg hver morgen tidlig og oppmuntret meg og presse meg til å jobbe hard under hele oppgaven.

Takker en god venn for teknisk hjelp, Rozh Tofiq.

Til slutt vil jeg takke mine foreldre og søsken som alltid er støttende og positive og som alltid har stor tro på meg og stiller opp for meg. Det er jeg utrolig takknemlig for.

Ziar Wasta

Bergen, september 2012

Sammendrag

Formålet med denne oppgaven har vært å finne ut hva som finnes av fettsyrer i utvalgte omega-3-produkter som selges i markedet i forskjellige land og bygge opp databaser av massespektra og kromatografiske retensjonsindekser til disse. Disse databasene kan være til hjelp for analyse og produktkontroll av omega-3-produkter, og kan være til nytte for generell forskning på lipider.

Utgangspunktet for undersøkelsen var 77 prøver av forskjellige omega-3-produkter fra det europeiske markedet der innholdet av de mest vanlige fettsyrene var kjent. Fra dette datasettet ble det plukket ut ca. 10 ekstreme prøver og ca. 10 prøver som var representative for de største produktkategoriene.

De forskjellige produktene ble deretter analysert med gasskromatografi med massespektrometrisk deteksjon (GC-MS) etter at fettsyrene var esterifisert til fettsyremetylestre. Hver prøve ble analysert i to konsentrasjoner, på to forskjellige gasskromatografiske kolonner, en polyetylenglykolfase (BP-20) og en cyanopropylfase (BPX-70). I tillegg ble det brukt to forskjellige massespektrometriske betingelser som dekker forskjellige masseområder i spektrene. Det vil si at hvert produkt ble analysert åtte ganger.

Databehandling som deteksjon og identifikasjon av forbindelser, beregning av retensjonsindekser, og oppbygging av biblioteker med spektra og retensjonsindekser ble utført i programmet Chrombox Q. De forskjellige produktene viste svært store forskjeller i fettsyreprofil.

Det ble funnet 143 forbindelser på PB-20-kolonnen og 133 forbindelser på BPX-70-kolonnen. Totalt ble det funnet 172 forbindelser. 104 av disse ble funnet på begge kolonnene, 39 ble kun funnet på BP-20 og 29 ble kun funnet på BPX-70. Det ble bygget opp biblioteker av massespektre og retensjonsindekser fra begge kolonnene. Biblioteket for BP-20 kolonnen inneholder 1696 spektra og biblioteket for BPX-70 inneholder 1270 spektra. Det ble funnet eller identifisert 13 nye forbindelser på BP-20-kolonnen, og tilsvarende 5 nye forbindelser på BPX-70-kolonnen.

Abstract

The purpose of this study was to identify fatty acids in omega-3 products that are sold in the market in different countries and build databases of mass spectra and chromatographic retention indices. These databases can be useful for analysis and product control of omega-3 products, and may be useful for general research on lipids.

The starting point for the study were 77 samples of different omega-3 products from the European market where the contents of the most common fatty acids were known. From this data set were chosen approx. 10 extreme samples and approx. 10 samples that were representative of the major product categories.

The different products were then analyzed by gas chromatography with mass spectrometric detection (GC-MS) after the fatty acids had been esterified to fatty acid methyl esters. Each sample was analyzed in two concentrations, on two different gas chromatographic columns, a polyethyleneglycolphase (BP-20) and a cyanopropylphase (BPX-70). In addition, two different mass spectrometric conditions covering different mass regions in the spectra were applied. Each product was therefore analyzed eight times.

Detection and identification of compounds, calculation of retention indices, and construction of libraries with spectra and retention indices were performed in the program Chrombox Q. The various products showed very large differences in the fatty acid profile.

143 compounds were found on the PB-20 column and 133 compounds were found on the BPX-70 column. Overall it was found 172 compounds. 104 of these were found in both columns, 39 were found at BP-20 and 29 were found on BPX-70. Libraries were built of mass spectra and retention indices from both columns. The library for the BP-20 column contains 1696 spectra and the library for BPX-70 contains 1270 spectra. It was found, or identified 13 new compounds on the BP-20 column and five compounds on the BPX-70 column.

Innholdsliste

Forord	I
Sammendrag	II
Abstract	III
Liste over symboler og forkortelser	VI
1 Innledning	1
1.1 Lipider og fettsyrer	1
1.2 Biologisk viktige PUFA	6
1.3 Omega-3 produkter	9
2 Teori	11
2.1 Gasskromatografi	12
2.1.1 GC generell	12
2.1.2 GC av fettsyrer	18
2.2 Massespektrometri	20
2.2.1 Generell massespektrometri	20
2.2.2 EI-MS av fettsyremetylestre (FAME)	21
2.3 Behandling av GC-MS data	26
2.3.1 Beregning av score og biblioteks søk	26
2.3.2 Kurveoppløsning	29
3 Metode og material	33
3.1 Utvalg av prøver	33
3.2 Prøveopparbeiding	36
3.3 GC-MS betingelser	37
3.4 Prøver og analysesekvenser	38
3.5 Databehandling	40
3.5.1. Chrombox Q	40
3.5.2 System for navnsetting og identifikasjon	40
3.5.3 Bakgrunnskorreksjon og deteksjon	41
3.5.5 Identifikasjon og oppbygging av biblioteker	42
4 Resultat og diskusjon	45
4.1 Kromatografisk datakvalitet	45

	4.1.1 Kalibrering av ECL	. 45
	4.1.2 Kromatografisk drift	. 48
	4.1.3 Kromatografisk effektivitet (separasjonsnummer)	. 50
	4.2 Massespektrometrisk datakvalitet	. 51
	4.2.1 Bakgrunnskorreksjon	. 51
	4.2.2 Forskjell mellom instrumenter	. 52
	4.3 Eksempler fra databehandlingen	. 53
	4.3.1 Kurveoppløsning av utvalgte overlappende topper	. 54
	4.3.2 Identifikasjon av forbindelser	. 59
	4.4 Beskrivelse av produkter	. 61
	4.5 Identifikasjon av ukjente	. 66
	4.5.1 Ukjente spekter i BP-20	. 66
	4.5.2 Ukjente spekter i BPX-70	. 70
	4.6 Beskrivelse av bibliotekene med ECL-kart	. 72
	4.7 Test av biblioteket på produkter fra rogn/melke	. 80
5	Konklusjoner	. 82
6	Referanser	. 84
A	ppendiks	. 87
	Tabell A.1 Kvalitative blandinger	. 87
	Tabell A.2: Oversikt over sekvenser	. 88
	Tabell A.3: En liste over begge kolonnene (BPX-70 og BP-20)	. 90
	Tabell A.4: En liste over hvilke forbindelser som finnes på det ene kolonne men ikke på den andre	. 94
	Tabell A.5.1, Rapport ufrakjsjonert rogn/melke	. 95
	Tabell A.5.2, Rapport ureafraksjonert rogn/melke, løsning	. 96
	Tabell A.5.3, Rapport ureafraksjonert rogn/melke, rest	. 97
	Appendiks A.6 Rapporter og kromatogrammer fra samtlige prøver analysert på E 20 kolonne	3P- . 98

Liste over symboler og forkortelser

I noen tilfeller benyttes engelske forkortelser fordi disse er allment brukt også på norsk.

CAS	Chemical Abstracts Service
СР	Cyanopropyl
DAG	Diasylglyserol (diglyserid)
DHA	Docosahexaenoic acid / dokosaheksaensyre (22:6 n-3)
ECL	Equivalent chain length
EFA	Essential fatty acid/ esensiell fettsyre
EPA	Eicosapentaenoic acid / eikosapentaensyre (20:5 n-3)
FCL	Fractional chain length
GC	Gasskromatografi/ Gasskromatograf
m/z	Molekylmasse/ladning
MAG	Monoglyserid
MI	Methylene interrupted (dobbeltbindinger separert med en metylengruppe)
MS	Massespektrometri
MUFA	Monounsaturated fatty acid (enumettet fettsyre)
NIST	National Institute of Standard and Technology
NMI	Non-methylene interrupted (dobbeltbindinger separert med mer enn en metylengruppe)
PCA	Principal component analysis / Principalkomponentanalyse
PEG	Polyetylglykol
PUFA	Polyunsaturated fatty acids(flerumettet fettsyre)
S _R	Retensjonsscore
Ss	Spektrumscore
ST	Total score
TAG	Triasylglyserol (Triglyserid)
TIC	Total ion current/ sum av signalet fra alle ioner i GC-MS
t _R	Retensjonstid
w _b	Toppens bredde ved baselinje
Wh	Toppens bredde ved halve høyden

1 Innledning

Hensikten med dette arbeidet har vært å kartlegge hva som finnes av fettsyrer i omega-3 produkter på markedet samt å bygge opp en database over massespektra og kromatografiske egenskaper til fettsyrene. I tillegg til de vanlige omega-3 fettsyrene som EPA og DHA inneholder omega-3 produkter et svært stort spekter av andre fettsyrer og mange av disse kan være krevende å identifisere. En database over innholdet i produktene og de kromatografiske og massespektrometriske egenskapene til fettsyrene kan derfor være til hjelp både for produktkontroll og forskning på lipider.

Utgangspunktet for studien var en analyse av EPA og DHA, samt trans-isomerer av disse, i 77 omega-3 produkter fra det europeiske markedet [1]. Denne undersøkelsen viste at produktene inneholdt et stort antall fettsyrer med usikker identifikasjon. Et utvalg av prøver fra denne studien har derfor blitt analysert i detalj med gasskromatografi med massespektrometrisk deteksjon.

1.1 Lipider og fettsyrer

Lipider, også kalt fett, har ikke en presis definisjon. En av de vanligste definisjoner er at lipider er biologiske molekyler som er lite eller ikke løselig i vann men er løselige i visse organiske løsemidler som eter, kloroform, metanol, heksan, alkohol, benzen osv. En annen definisjon av lipider, som er basert på struktur i stedet for egenskaper, er at lipider er en gruppe av naturlig forekommende molekyler inkludert fettsyrer, deres derivater (forbindelser som inneholder fettsyrer) og nært beslektede forbindelser som steroler og fettløselige vitaminer [2, 3]. Lipider består hovedsakelig av karbon og hydrogen, og de kan inneholde lange kjeder av hydrokarboner som gir hydrofobisk karakter.

Det er to vanlige måter å dele inn lipider i klasser: 1) Etter polaritet i nøytrale (triglyserider, voks-estere, kolesterol, kolesterylestere) og polare (fosfolipider, mono- og diglyserider, frie fettsyrer). 2) Etter struktur: Enkle lipider gir to produktklasser ved hydrolyse (bryting av esterbindingene) mens komplekse lipider gir flere produkter. Triasylglyserol (TAG) er f.eks. et enkelt lipid fordi det kun gir glyserol og frie fettsyrer ved hydrolyse. Fosfolipider gir flere produkter ved fullstendig hydrolyse, f.eks. kolin og fosforsyre i tillegg til glyserol og fettsyrer, så de er komplekse lipider [3].

Lipider har mange funksjoner. Det er det mest energirike næringskilden og i kroppen vår utgjør de det viktigste og største energilageret [4]. De er viktige for å bære fettløselige vitaminer som vitamin A, D, E og K. Noen fettsyrer er byggesteiner for stoffer som deltar i vårt immunforsvar og demper betennelsesreaksjoner. Andre funksjoner av lipider er at de regulerer stoffskiftet, er komponenter i alle cellene og byggematerialer i cellemembraner, de er hormoner, er kroppens varmeisolasjon og gjør huden vannavstøtende [5].

Det meste av fettet i kroppen utgjøres av triasylglyserol (TAG) også kalt triglyserid [4]. Glyserider er bygd opp av en glyserol (Figur 1.1) og en (monoglyserid, MAG), to (diglyserider, DAG) eller tre (triglyserider) fettsyrer. R_1 , R_2 og R_3 er fettsyrer som kan variere i struktur (Figur 1.2). Monoglyserid er bygd opp av en glyserol og en fettsyrekjede som kan være esterifisert til R_1 , R_2 eller R_3 posisjon. Fettsyrene kan være mettet eller umettet og ha lange eller korte karbonkjeder. Diglyserid er bygd opp av en glyserol og to fettsyrer. Diglyserider og triglyserider kan inneholde forskjellige fettsyrer med tanke på størrelse og oppbygning.

Figur 1.1: Struktur av glyserol

Figur 1.2: Generell struktur av triglyserid, R₁, R₂ og R₃ er fettsyrer

En fettsyre har en karboksylgruppe på det ene enden og metylgruppe på den andre enden (Figur 1.3) [4]. Det meste av fettsyrer i naturen har karbonkjede mellom 4-24 karboner og 0-6 dobbeltbindinger. Dobbeltbindingene har normalt cis geometri (i IUPAC-systemet også kalt Z-geometri etter tysk "zusammen"). Avstanden mellom dobbeltbindingene kan variere. Dersom det er mer enn en dobbeltbinding i en fettsyre vil dobbeltbindingene normalt være separert med en metylengruppe, ofte kalt *methylene interrupted* (MI) PUFA [6]. Det finnes flere andre typer fettsyrer med forskjellige strukturer. Noen har en ring i strukturen som furanfettsyrer (Figur 1.3k) og andre har oksygen, trippelbindinger eller forgreninger (Figur 1.3j) [6]. Når det gjelder furanfettsyrer er de forskjellige forbindelsen i denne oppgaven gitt samme numre som brukt i [7].

Navnsetting av fettsyrer

I hovedsak brukes tre systemer for navnsetting av fettsyrer. En kan bruke systematiske IUPAC-navn, hevdnavn som ofte peker på hvor fettsyren forekommer i store mengder eller hvor den ble funnet første gang, eller en kan bruke systemer med kortnavn som angir antall karbon, antall dobbeltbindinger og eventuelt dobbeltbindingenes posisjon og geometri.

Den mettede fettsyren som er vist i figur 1.3a kan f.eks. navngis som oktadekansyre (IUPAC), stearinsyre (hevdnavn) eller 18:0, som er kortformen som indikerer en fettsyre med 18 karbon og ingen dobbeltbindinger. Brukes kortnavn vil umettede fettsyrer normalt angis som (A:B n-C) der A er antall karbon, B er antall dobbeltbindinger og C er posisjonen til første dobbeltbinding regnet fra metylenden av karbonkjeden [8]. Den monoumettede fettsyren vist i figur 1.3b angis derfor som 18:1 n-9. Dersom det er flere dobbeltbindinger antar en alle er separert med en metylengruppe slik at det holder å angi posisjonen til den første, slik som i 18:3 n-3 (Figur 1.3c). Flere eksempler er gitt i figur 1.3c-g. I noen tilfeller benyttes " ω " (omega) i stedet for "n-", som er opphavet til betegnelsene omega-3 og omega-6 fettsyrer.

Alternativt kan en angi posisjonen til alle dobbeltbindingene, men da telles de fra karbonylgruppen (som er karbon nummer 1) og dobbeltbindingenes posisjon angis før antall karbon. 18:3 n-3 blir da 9,12,15-18:3. Dersom ikke alle dobbeltbindinger er separert med en metylengruppe må en benytte dette systemet. Et eksempel på NMI-fettsyrer (non metylen interrupted) som har større avstand mellom dobbeltbindingene er vist i figur 1.3h. Dersom fettsyrene inneholder trans-dobbeltbindinger må en også angi geometrien. Hvordan dette gjøres varierer, men i denne oppgaven gis geometrien på følgende måte: Dersom dobbeltbindingen i posisjon 15 (omega-3 posisjonen) i 18:3 n-3 har trans geometri angis molekylet som c9,c12,t15-18:3 eller 18:3 n-3 cct, der c indikerer cis og t indikerer trans. Figur 1.3i viser et eksempel på en fettsyre med cis og trans dobbeltbindinger, i dette tilfellet en konjugert linolensyre (CLA) der dobbeltbindingene er konjugerte.

I tillegg til disse måtene å angi struktur på benyttes ofte forkortelser som kan være basert på hevdnavn eller systematiske navn. Det er for eksempel vanlig å benytte AA for 20:4 n-6, som kommer fra hevdnavnet arakidonsyre, sammen med forkortelsene EPA og DHA for henholdsvis 20:5 n-3 og 22:6 n-3, som kommer fra IUPAC-navnene eikosapentaensyre og eikosaheksaensyre.

Fettsyrer kan i noen tilfeller også har forgreninger i karbonkjeden. Eksemplet på figur 1.3j er forgrenet forbindelse, men er ikke iso fordi det er flere forgreninger. Vanlige forgrenede fettsyrer er de såkalte iso og ante-iso fettsyrene. Iso har en metylforgrening på posisjon 2 regnet fra metylenden, og en ante-iso har metyl forgrening på posisjon 3.

Figur 1.3: Oversikt over noen fettsyrestrukturer

1.2 Biologisk viktige PUFA

Mettede fettsyrer fremstilles ofte som usunne mens umettede fremstilles som sunne. Grunnen er at flerumettede fettsyrer bidrar til mer fluiditet (f.eks. mindre avleiringer i blodårer). I tillegg brukes de som utgangsstoff for en rekke andre molekyler som kroppen trenger, f.eks. prostaglandiner. Flerumettede fettsyrer kan oksideres lettere og kan bidra til høyere nivåer av oksidasjonsprodukter i kroppen. I tillegg reduseres blodets evne til å koagulere. Det er vanligvis sett på som positivt i forhold til hjerte-kar sykdommer, men det har blitt hevdet at høyt inntak av omega-3 kan øke risiko eller forverre effekten av blødninger. Men sannsynligvis må man opp i ekstreme nivåer før det blir en betydelig helserisiko [9].

Både omega-6 og omega-3 er nødvendige fettsyrer for kroppen, men et ubalansert forhold mellom de to gruppene av fettsyrer kan gi negative effekter. Omega-6 får vi nok av gjennom kosten, men de færreste får tilstrekkelig omega-3. Derfor er det ekstra viktig med tilskudd av omega-3 [10].

Essensielle fettsyrer (livsnødvendige) er umettet fettsyrer som ikke kan dannes i kroppen vår, så må de derfor tilføres via kostholdet. Det gjelder ALA (alfalinolensyre, 18:3 n-3) og LA (linolsyre, 18:2 n-6) som er flerumettede fettsyrer (PUFA). De er utgangspunktet for andre flerumettede fettsyrer og regnes alltid som essensielle, men fordi kroppens evne til å syntetisere de andre fettsyrene (Figur 1.4) er begrenset, regnes ofte mange av disse også som essensielle eller "semi-esensielle". Fra ALA og LA dannes flere viktige PUFA med lengre kjeder og flere dobbelt bindinger ved hjelp av enzymer i kroppens celler (Figur 1.4) [4, 11, 12]. Det mest utbrede omega-3 fettsyrer er α -linolensyre, EPA og DHA. α -linolensyre finnes mye i planter for eksempel i linfrø eller soya. α -linolensyre syntetiseres videre til for eksempel EPA og DHA i kroppen (Figur 1.4). EPA og DHA (Figur 1.3f og 1.3g) finnes mye i marine fisk [13] og i marine planter som alger [3].

Positive effekter på immunsystemet, på psykiske lidelser, mulig hemming av kreftceller og positive effekter på sykdommer som Chrons sykdom, ulcerøs kolitt, ADHD og anoreksi har utløst økende interesse for omega-3 fettsyrer. Forskningsresultatene er ikke entydige, men det er best dokumentert for hjerte- og karsykdommer og reumatoid artritt [2, 13, 14].

Balanse mellom omega-3 og omega-6 er viktig. Forholdet mellom n-6/n-3 bør være innenfor 8:1 og 4:1. Ubalansert forhold mellom de to gruppene i kosten kan føre til negative helseeffekter. Det viser seg at i vestlige samfunn er gjennomsnittlige inntaket av marine omega-3 fettsyrer for lite, spesielt EPA og DHA, mens inntaket av omega-6 fettsyrer er for høyt. Behovet for EPA og DHA er ikke tilstrekkelig møtt gjennom prosessen der ALA omdannes til EPA og DHA i kroppen (Figur 1.4). De bør derfor tas direkte fra kosthold enten ved å spise fet fisk eller ved å ta kosttilskudd. Anbefalinger for inntaket av EPA og DHA varierer, men et vanlig råd er 0,5 g av EPA og DHA for friske personer og omtrent 1 g for personer med hjerte- og karsykdommer per dag [14].

DHA er særlig viktig for funksjon av hjerne og retina og det er derfor ekstra viktig for spedbarn når hjernen utvikler seg raskt. Det anbefales å gi morsmelkerstatning som er tilsatt DHA når morsmelk ikke er tilgjengelig [11, 12, 14]. Høyt inntak av alfa-linolensyre (18:3 n-3) eller mindre inntak av gamma-linolensyre (18:3 n-6) (Figur 1.4) kan hindre eller redusere komplikasjoner ved diabetes som nyre, øye og kardiovaskulære problemer [15].

Andre viktige effekter av de essensielle fettsyrene er at de påvirker permeabiliteten av cellemembraner. De reduserer hudplager som psoriasis og eksem, og virker på nervefunksjon. Mangel på disse fettsyrene kan føre til veksthemming [11]. Essensielle fettsyrer kan hjelpe mot reumatoid artritt, osteoporose og nyrestein [15].

Arakidonsyre (20:4 n-6) og EPA (20:5 n-3) omdannes til eikosanoider som prostaglandiner, tromboksaner, leukotrin, resolvin og lipoksin [12]. De er viktige signalmolekyler som har effekter på blodplate aggresjon, sammentrekkning og utvidelse av blodkar, blodtrykk og fettsammensetning i blodet [4]. Eikosanoider fra de to fettsyrene har forskjellige funksjoner. Eikosanoider fra arakidonsyre har funksjoner som inflammasjonsfremende og fører til sammentrekning av blodårer, mens eikosanoider fra EPA har tilnærmet motsatte funksjoner som dempet inflammasjon og utvidelse av blodårer [14].

<u>n-6 fettsyrer</u>

<u>n-3 fettsyerer</u>

linolsyre α-linolensyre 18:2 n-6 18:3 n-3 ↓ Δ -6-desaturase y-linolensyre oktadekatetraensyre 18:3 n-6 18:4 n-3 Ţ elongase Dihomo- y-linolensyre eikosatetraensyre 20:3 n-6 20:4 n-3 ↓ ↓ Δ -5-desaturase Arakidonsyre eikosapentaensyre(EPA) 20:5 n-3 20:4 n-6 ↓ Ţ elongase adrensyre dokosapentaensyre 22:4 n-6 22:5 n-3 Ţ ↓ elongase tetrakosatetraensyre tetrakosapentaensyre 24:4 n-6 24:5 n-3 ↓ ↓ Δ -6-desaturase tetrakosaheksaensyre tetrakosapentaensyre 24:5 n-6 24:6 n-3 ↓ Ţ β-oksidasjon dokosapentaensyre dokosahexaensyre (DHA) 22:5 n-6 22:6 n-3

Figur 1.4: Metabolisme av n-6 og n-3 [11, 12]

1.3 Omega-3 produkter

Det er ekstremt stor variasjon i sammensetning og mengder av omega-3 produkter på markedet. Det er også store variasjon i innholdet av EPA/DHA i forskjellige produkter. EPA mengden kan variere fra lav EPA under 10% til høy EPA opp til 60% og DHA fra under 10% til 80% [1]. Dette skyldes både forskjellige råstoffkilder som fisk, krill, alger, og vegetabilske oljer, og forskjellige produksjonsmetoder. Det kan være produkter med sin naturlige fettsyresammensetning eller produkter der omega-3 er oppkonsentrert med for eksempel destillasjon eller urea-felling. I tillegg inneholder også mange produkter andre ting enn typiske omega-3 kilder. Produktene kan klassifiseres i forskjellige produktategorier som 18/12-oljer (med ca. 18% EPA og 12% DHA), 33/23-konsentrater (ca. 33% EPA og 23% DHA), tran (torskeleverolje), selolje, og produkter med spesielt høye nivåer av EPA, eller DHA. En stor andel av produktene på markedet er 18/12-oljer (stort sett oljer fra syd-Amerika) og 33/23-konsentrater (som er destillerte 18/12-oljer). Det finnes også mange produkter som ikke passer inn i disse kategoriene fordi de f.eks. kan være blandinger som inneholder vegetabilske oljer [1].

De fleste produktene er i triglyseridform, men i mindre grad finnes de også i etylester- og fosfolipidform. For eksempel er omega-3 fettsyrer fra krillolje bundet til fosfolipider. Det er to store aktører som produserer krillolje, et kanadisk firma (Neptune) og Aker Biomarin fra Norge. Krillolje er en viktig kilde på grunn av begrenset ressurs av omega-3 og fordi det hevdes at omega-3 bundet til fosfolipider gir bedre opptak i kroppen enn omega-3 bundet i triglyserider [16]. Alger og sel brukes også som kilde til omega-3 produkter [17, 18].

Det har blitt påstått at konsentrerte omega-3-produkter, med lave mengder av mettede og monoumettede fettsyrer, er bedre enn naturlige marine oljer siden de gir høy mengde omega-3 med et lite inntak av totale lipider. Derfor er konsentrerte former for omega-3 PUFA ofte foretrukket for farmasøytiske applikasjoner og berikelse av matvarer [2].

Det har vært en sterk vekst av omega-3-markedet i de siste årene. Omega-3 er blant de viktigste og mest solgte kosttilskuddene. I 2006 ble omega-3 produkter solgt for 488 millioner kroner på helsekostmarkedet i Norge [19]. Omega-3 produkter selges både i dagligvarebutikker, helsekost, på nett og på apotek, og de er blandt produktene som det er mest etterspørsel etter på apotek. Kvaliteten på mange av omega-3 produktene på markedet er ukjent per i dag. Det er usikkerhet i sammensetningen av fettet og oksidasjonsnivået. På grunn av muligheten for oksidasjon er det viktig å gi kundene råd om å lagre produktene i kjøleskapet slik at de blir stående mørkt og kaldt. Dessuten bør de ikke ta kapsler som er utgått på dato.

Når det gjelder forskning på omega-3 er det viktig å få frem at når man gir et omega-3 produkt til en gruppe så gir man ikke bare EPA og DHA men et stort spekter av andre fettsyrer også. For produsentene sin del er det viktig at de kan analysere og dokumentere hva som er i produktene. Da vil informasjon om hva typiske produkter inneholder og en database som inneholder massespektra og informasjon om hvordan de enkelte forbindelsene oppfører seg kromatografisk kunne være til stor hjelp [1].

2 Teori

I oppgaven benyttes gasskromatografi med massespektrometrisk deteksjon (GC-MS) til analyse av fettsyrene. Gasskromatografens rolle er primært å separere fettsyrene, mens massespektrometeret gir informasjon som benyttes til å identifisere dem. Det er en direkte "on-line" kobling mellom gasskromatografen, massespektrometeret og datamaskinen (Figur 2.1) [10].

Med MS-detektoren kan man identifisere ukjente og bekrefte kjente forbindelser i en prøve ved å sammenligne massespektra med et referansebibliotek som inneholder spektra fra kjente stoffer [20]. Kombinasjonen av GC og MS er mye brukt ved identifikasjon av fettsyrer. Det gir kvantitativ og kvalitativ informasjon. GC-MS gir høy sensitivitet og god spesifikasjon [3, 21].

Teorien for GC og MS er beskrevet separat i 2.1.1 og 2.1.2 og databehandling av GC-MS data er beskrevet i 2.3.

Figur 2.1: skisser over koblinger mellom GC, MS og PC.

2.1 Gasskromatografi

2.1.1 GC generell

GC er en seperasjonsmetode som baserer seg på at forskjellige molekyler fordeler seg ulikt mellom to faser der den ene fasen er i bevegelse (mobilfasen) i forhold til den andre (stasjonærfasen). Da vil molekylene bevege seg gjennom systemet med en hastighet som er lik mobilfasens hastighet multiplisert med fraksjonen (andelen) av molekylene som er i den mobile fasen (Figur 2.2) [22].

I gasskromatografi er den mobile fasen en gass (bæregassen) og vanligvis brukes hydrogen eller helium som bæregass. Separasjonen skjer i en kolonne. I moderne GC brukes det kapillærkolonner (tynne rør) der stasjonærfasen er bundet til kolonneveggen. Typiske kolonnedimensjoner er 10-100m og diameter er typisk 0.1 til 0.5 mm. Tykkelsen av stasjonærfasen på innsiden av kolonnen er typisk 0.1-1 mikrometer. Hvis man skal separere stoffer med stor forskjell i molekylvekter, brukes temperatur-programmert GC der

separasjonsprosessen starter ved lav temperatur og temperaturen økes gradvis inntil den siste forbindelsen har kommet ut av kolonnen [22].

Fordeler med GC er at den er en rask, billig, enkel og sensitiv analyse. Det trenges ikke store mengder av prøver. Det injiseres typisk 1 µl løsning og mengden av de enkelte forbindelsene på kolonnen er typisk i ng-området.

Ulemper med GC er at prøvene må være flyktige og da vil det skape problemer for prøver som ikke er flyktige ved operasjonstempraturen. Derfor må forbindelser som er termisk ustabile derivatiseres før de analyseres på GC [23].

Kromatografisk separasjon

Figur 2.2 illustrerer to forbindelser som beveger seg igjennom en kapillærkolonne. A beveger seg raskere enn B og vil derfor komme først ut av kolonnen fordi en mindre andel av denne forbindelsen er i stasjonærfasen. Både A og B er spredt over et visst område i kolonnen. Denne spredningen skyldes hovedsakelig to faktorer, diffusjon og treghet i masseoverføringen mellom fasene. Diffusjon fører til at i den tiden forbindelsene oppholder seg i gassfasen vil de enkelte molekylene fra hver forbindelse spres i kolonnens lengderetning. Tregheten i masseoverføringen mellom fasene fører til et etterslep for molekylene som er i stasjonærfasen i forhold til molekylene som er i mobilfasen. Dette kan lettest ses for forbindelse B. Når molekylene kontinuerlig skifter mellom å være i de to fasene vil dette føre til at molekylene

spres utover kolonnen. Jo raskere bæregassen beveger seg jo større blir effekten av dette etterslepet, men samtidig vil en høy bæregasshastighet føre til at diffusjonen reduseres, fordi molekylene da kommer raskere frem til detektoren og har mindre tid til å spres på grunn av diffusjon.

Figur 2.2: To forbindelser som beveger seg igjennom en kromatografisk kapillærkolonne

Den kromatografiske detektoren i enden av kolonnen måler mengden av forbindelsene som kommer ut av kolonnen til forskjellig tid. Resultatet er et kromatogram som i figur 2.3 der detektorsignalet er plottet mot tiden som har gått fra blandingen av stoffer ble injisert på kolonnen (t_0). På grunn av spredningen av forbindelsene som skjer i kolonnen vil hver forbindelse gi opphav til en topp med en profil som vanligvis er tilnærmet lik en normalfordelingskurve. Tidene ved toppenes maksima er retensjonstidene (t_R) for forbindelsene. Retensjonstidene er avhengig av hvor sterke interaksjoner forbindelsene og kan gi informasjon om forbindelsenes struktur. Tiden t_M i figur 2.3 er tiden det tar for mobilfasen å bevege seg igjennom kolonnen. Forbindelser som ikke har noen interaksjoner med stasjonærfasen vil bevege seg med samme hastighet som mobilfasen og derfor komme ut ved t_M .

Figur 2.3: Et kromatogram

For å bestemme mengdene av de enkelte forbindelsene brukes vanligvis arealet av de kromatografiske toppene. For at arealet skal kunne bestemmes nøyaktig må toppene være tilfredsstillende separert. Separasjon mellom to topper beskrives av kromatografisk oppløsning som definert i ligning (1) under:

$$R_{\rm s} = \frac{t_{\rm R(B)} - t_{\rm R(A)}}{\frac{1}{2} \left(W_{\rm b(A)} + W_{\rm b(B)} \right)} \tag{1}$$

Separasjonen er avhengig av avstanden mellom toppenes maksima (retensjonstidene) og toppenes bredde ved baselinjen (w_b). Under forutsetning av at toppen er tilnærmet normalfordelt er en kromatografisk toppbredde ved baselinjen definert til fire ganger standardavviket (4σ) til den tilsvarende normalfordelingskurven [24]. Årsaken til denne definisjonen er at et triangel som tilpasses den kromatografiske toppen vil krysse baselinjen ved 4σ . Bredden ved baselinjen er vanskelig å måle, derfor måles toppbredden ofte ved halve høyden (w_h) der bredden er 2,355 σ og w_b beregnes som w_h •4/2,355.

Figur 2.4a viser to overlappende kromatografiske topper. Bedre oppløsning (høyere R_s) kan oppnås enten ved å øke verdien av telleren i ligning (1) eller redusere verdien av nevneren. I Figur 2.4b er bedre oppløsning oppnådd ved at avstanden mellom retensjonstidene er økt, mens toppbreddene er de samme, altså har verdien i telleren økt. Oppløsningen i dette tilfellet er oppnådd ved hjelp av en mer gunstig kromatografisk *selektivitet* som er en betegnelse på hvordan de forskjellige forbindelsene eluerer i forhold til hverandre. I figur 2.4c er bedre oppløsning oppnådd ved at toppbreddene er redusert, altså lavere verdi i nevneren. Oppløsningen i dette tilfellet er oppnådd ved hjelp av høyere kromatografisk *effektivitet*, som er en betegnelse på hvor mange topper som det teoretisk er plass til innenfor et område av kromatogrammet [24].

Figur 2.4. To overlappende kromatografiske topper (a) og effekt av øket kromatografisk selektivitet (b) og øket kromatografisk effektivitet (c)

Kromatografisk effektivitet og separasjonsnummeret

I temperatur-programmert GC angis kromatografisk effektivitet normalt med separasjonsnummeret, *SN*, som er det maksimale antall topper med oppløsning omtrent lik 1 som teoretisk kan plasseres mellom to medlemmer av en homolog serie. Dette er illustrert i figur 2.5 som viser et teoretisk kromatogram av tre n-alkaner. Mellom dekan og undekan er det plass til 11 topper, da er SN i dette området ca. 11. Tilsvarende er SN omtrent 12 for området mellom undekan og dodekan siden det her er plass til 12 topper.

Figur 2.5. Illustrasjon av separasjonsnummeret og kromatografisk effektivitet

SN beregnes etter forskjellen i retensjonstid mellom de to homologene og deres bredde ved halve høyden etter ligning (2) der z og z+1 angir antall karbon i forbindelsene [24].

$$SN = \frac{t_{R(z+1)} - t_{R(z)}}{w_{h(z)} + w_{h(z+1)}} - 1$$
⁽²⁾

(Grunnen til at oppløsningen mellom toppene som beregnes med SN er omtrent 1 og ikke eksakt 1 er at det antas at en toppbredde er $2 \cdot w_{h.}$)

Retensjonsindekser og kromatografisk selektivitet

Retensjonsindekser er kromatografisk retensjon uttrykt relativt til en serie referanser. Det mest brukte systemet i gasskromatografi er Kováts indekser [25], der n-alkaner brukes som referanseserie og referanseverdiene settes lik antall karbon i referansene multiplisert med 100. Prinsippet er illustrert i figur 2.6 der retensjon av de grønne forbindelsene beskrives relativt til antall karbon i referanseserien (blå). Fordelen med retensjonsindekser er at de er overførbare mellom forskjellige systemer. Mens retensjonstider er avhengige av kromatografiske betingelser som kolonnedimensjoner, bæregasshastighet og temperaturprogram, vil retensjonsindeksene være omtrent like så lenge typen stasjonærfase er den samme. Siden retensjonsindekser beskriver hvordan forbindelsene eluerer i forhold til hverandre er de et mål på kromatografisk selektivitet [24].

Figur 2.6: Konvertering av retensjonstider til retensjonsindekser for de grønne toppene ved å bruke n-alkaner fra pentadekan (C15) til oktadekan (C18) som referanseserie (blå topper). Numrene på hver topp er de kalkulerte retensjonsindeksene [26].

<u>Asymmetri</u>

Selv om det antas at kromatografiske topper vanligvis har en normalfordelt kan de noen ganger være asymmetriske. Asymmetri angis med asymmetrifaktoren (A_f) som er den høyre toppbredden dividert venstre toppbredden (ligning 3).

$$A_{f} = \frac{W_{h \not o yre, 10\%}}{W_{venstre, 10\%}}$$
(3)

Der *w* er bredden målt ved 10% av topphøyden (Figur 2.7). Hvis A_f er mindre enn 1, vil toppen være forskjøvet mot høyre. Om A_f er større enn 1, vil toppen forskjøvet mot venstre . Hvis A_f er lik 1 vil toppen være symmetrisk. Asymmetri >1 skyldes adsorpsjons fenomener hvor det er begrenset kapasitet til å binde analytten. Asymmetri <1 skyldes vanligvis at kolonnen er overbelastet. I slike tilfeller vil analytten påvirke kolonnens kjemiske egenskaper og molekyler som kommer sent i en topp vil oppleve sterkere retensjon enn molekyler som kommer tidlig.

Figur 2.7: En asymmetrisk topp med asymmetri faktor 0,75

2.1.2 GC av fettsyrer

GC av fettsyrer (som fettsyremetylestre) blir vanligvis gjort på polare stasjonærfaser. Polare faser benyttes for å få best mulig separasjon mellom mettede og umettede fettsyrer, og for å få separasjon mellom forskjellige isomerer av umettede fettsyrer. De vanligste fasetypene som benyttes er polyetylenglykol som har (-OH) som den polare gruppen og cyanopropyl som har (-CN) som den polare gruppen. På polare faser vil forbindelsene vanligvis eluere etter antall karbon etterfulgt av antall dobbeltbindinger. For forbindelser med samme antall karbon og samme antall dobbeltbindinger vil vanligvis forbindelser med dobbeltbindingene plassert nærmest karboksylgruppen eluere først (f.eks. n-6 før n-3), men det finnes noen unntak fra den regelen. Særlig når dobbeltbindingene står svært nært karboksylgruppen [27].

I denne oppgaven benyttes metanolyse for å frigjøre fettsyrene fra de større lipidmoloekylene og for å estifisere frie fettsyrer før de analyseres på GC. Dette gjør forbindelsene mer flyktige og temperaturstabile [3].

Metanolyse er en prosess der frie eller esterifiserte fettsyrer omdannes til sine korresponderende fettsyremetylestere FAME [6, 28]. Prosessen skjer ved bruk av sure eller basiske katalysatorer og stort overskudd metanol [6].

NaOH i metanol er basekatalysator. Metyl gruppen (R_3) fra metanol byttes med glyserol gruppen (R_2) fra ester bindingen (Figur 2.8) [28].

Figur 2.8: Generell reaksjonslikning for basekatalysert esterifisering

Syrekatalysator brukes i tillegg til basekatalysator fordi syrekatalysator metylerer frie fettsyrer noe som basekatalysator ikke kan gjøre. Bortrifluorid-metanol (BF₃) har i dette arbeidet blitt brukt som syrekatalysator og metyleringen skjer under oppvarming. Først vil fettsyren protoneres og så reagere med metanol. Deretter vil det dannes et intermediat og tilslutt omdannes det til metylester ved at det avgir et proton (Figur 2.9) [28]. Prøvene bør oppbevares kaldt og mørk for å unngå oksidasjon [28].

Figur 2.9: Generell reaksjonslikning for syrekatalysert esterifisering av frie fettsyrer.

ECL-verdier (Equivalent Chain Lengths)

Som retensjonsindeks for FAME benyttes vanligvis ECL-verdier (Equivalent chain lengths) [29, 30] i stedet for Kováts indekser. Prinsippet er likt prinsippet for retensjonsindekser basert på n-alkaner beskrevet over, men mettede rettkjedete FAME molekyler brukes som referanseserie og referanseverdien settes lik antall karbon i fettsyrekjeden (karbonet fra metanol som er esterifisert til fettsyren i FAME regnes ikke med). Fettsyren 16:0 vil da få en referanseverdi på 16, 18:0 vil få en referanseverdi på 18, osv. Fettsyrer som eluerer mellom 16:0 og 18:0 vil derfor få ECL verdier mellom 16 og 18.

FCL-verdier (fractional chain lengths) er ECL verdien fratrukket antall karbon i fettsyrekjeden. Siden FAME med samme antall karbon eluerer etter polaritet på polare kolonner vil FCL være et mål på molekylenes polaritet. Umettede FAME vil ha positiv FCL og verdien øker normalt med antall dobbeltbindinger. Forgrenede FAME som eluerer før de uforgrenede isomerene vil vanligvis ha negative FCL verdier [31].

2.2 Massespektrometri

2.2.1 Generell massespektrometri

Massespektrometri (MS) er en metode for å identifisere stoffer i en prøve ved å måle deres masse per ladning (m/z). Et massespektrometer har tre viktige moduler, en ionekilde som omdanner molekyler i en prøve til ioner, en masseanalysator som separerer ionene etter masse over ladning ved å bruke magnetiske felt og/eller elektriske felt, og en detektor som registrerer antall av de ulike ionene [22]. Dersom massespektrometeret er koblet til et kromatografisk system kommer molekylene fra prøven som separeres inn i massespektrometeret etter deres retensjonstid. Den første prosessen som skjer i massespektrometeret er ionisering av molekylene. Molekyler kan ioniseres på flere måter [32], men i dette arbeidet ble det kun brukt elektonionisasjon (EI), som foregår etter følgende prinsipp:

I elektronkilden blir molekylene bombardert av elektroner med høy energi. Dette fører til at molekylene blir ionisert og får en positiv ladning (kation) [6]. Når molekylene har blitt ionisert, kan de danne fragmenter på grunn av høy resterende indre energi. Dannelsen av disse fragmentene vil være avhengig av styrken på bindingene som må brytes, stabiliteten av fragmenteringsproduktet og den indre energien til selve fragmentionene [28]. Videre går de ulike positivt ladde fragmentene til detektoren. Her blir molekylvekt per ladning (m/z) registrert [3, 20]. Deres masse kan da bestemmes så lenge ladningen for de detekterte fragmentene kan antas å være +1. I mange tilfeller vil en del av molekylene som ioniseres nå frem til detektoren uten å fragmentere. Den detekterte massen fra disse ionene kalles *molekylarionet* (M⁺) og kan brukes til å bestemme molekylvekten til analytten [6, 33]. I et rent spekter skal molekylarionet være den tyngste massen og i molekylarionet som kun inneholder

C, O og H skal ha partalls masse. Inneholder forbindelsen et odde antall N vil molekylarionet ha oddetalls masse. Den høyeste toppen i et massespekter kalles vanligvis *basetoppen*. Det er vanlig å gi signalene for andre ioner som prosent av signalet fra basetoppen, slik at y-aksen i et massespekter er 0-100%. Det brukes også på alle MS i denne oppgaven.

En av fordelene med MS er at det kun trengs små prøvemengder for å få informasjon om strukturen til molekyler [22]. MS gir høy sensitivitet og god spesifikasjon [20].

På spektrene kan struktur på enkelte fragmenter finnes på bakgrunn av deres m/z. Funksjonelle grupper og spesielle strukturer har sine karakteriske fragmenteringsmønster som kan gjenkjennes i MS [34].

2.2.2 EI-MS av fettsyremetylestre (FAME)

For å identifisere FAME, vil spektrene av ukjente forbindelser kunne sammenlignes med massespektra fra referansesubstanser for å kunne bekrefte identitet. I mange tilfeller har man ikke tilgang til en referansesubstans fordi forbindelsene ikke er kommersielt tilgjengelige. Dette gjør en sikker identifisering vanskelig. Man kan manuelt tolke massespektrene for å få strukturinformasjon dersom det ikke finnes referansespektra i bibliotekene for enkelte forbindelser. Da er det naturlig å ta utgangspunkt i den høyeste massen (molekylionets masse, M⁺) og det sterkeste signalet (basetoppen).

EI fragmentering av FAME er beskrevet blant annet i [35-41]. En gjennomgang med eksempler fra de viktigste klassene av fettsyrer blir gitt under.

Mettede FAME

Det er lite forskjell mellom uforgrenede mettede og iso/ ante-iso-15:0. For eksempel på figur 2.10 a og b ses lite forskjell på 15:0 og iso-15:0 spektrene. De viktigste ionene, som er i alle uforgrenede mettede FAME er 74, 87 og 143. Molekylarionet (256) er vanligvis tydelig slik at massen lett kan bestemmes. Molekylarionet minus 43, 31 og 29 er også vanligvis fremtredende blant de høye massene (213, 227 og 227 for 15:0).

Figur 2.10: Eksempler på mettede FAME, (a) 15:0 og (b)iso-15:0

Monoumettede FAME

Basetopp i monoumettede er vanligvis m/z 55. Seriene 55, 69, 89, osv, (separert med 14 masseenheter) er viktig indikator for monoumettede fettsyrer. Styrken av disse ionene synker hvis dobbeltbindingen nærmer seg karboksylgruppen, noe som kan ses ved at de andre ionene (f.eks. 74 og 96) er høyere i 16:1 n-9 (Figur 2.11b) enn i 16:1 n-7 (Figur 2.11a).

molekylarionet (268 for 16:1) er vanligvis fremtredende, men M^+ –32 er vanligvis vesentlig sterkere, så det kan brukes alternativt til molekylarionet for å fastslå massen hvis spekteret er dårlig. De andre fremtredende ionene med høye masser (152 og 194) er sterke i de fleste monoumettede FAME uavhengig av kjedelengden.

Figur 2.11: Eksempler på mono-umettede FAME, (a) 16:1 n-7 og (b)16:1 n-9

Diumettede FAME

Basetoppen i diumettede er vanligvis m/z 67, men i noen tilfeller er det m/z 81. Serien m/z 67, 81 og 95 er fremtredende. Molekylarionet (294 for 18:2) og M-31 (263) for 18:2 er vanligvis sterke blant de høye massene.

Det er ikke noe ioner som kan skille mellom 18:2 n-6 (Figur 2.12a) og 18:2 n-4 (Figur 2.12b). Identifikasjon av diener kun basert på massespekteret er derfor vanskelig.

Figur 2.12: Eksempler på di-umettede FAME, (a) 18:2 n-6 og (b)18:2 n-4

Polyumettede FAME

Figur 2.13 viser eksempler av flerumettede fettsyrer (PUFA) som har forskjellig antall dobbeltbindinger og tilhører forskjellige klasser (n-6, n-4, n-3 og n-1).

Basetopp til flerumettede fettsyrer er vanligvis m/z 79. Molekylarionet er vanligvis synlig for FAME med tre dobbeltbindinger (og noen ganger fire). Det er en tendens til at m/z 91 øker med antall dobbeltbindinger [40].

Det finnes ioner som kan brukes til å bestemme posisjonen til dobbeltbindingene i MI PUFA regnet fra karboksyl eller metylenden av karbonkjeden [35]. Omega-ionet kan brukes for å bestemme posisjonen til dobbeltbindingene relativt til metylenden, der tilstedeværelse av m/z 150 indikerer n-6, m/z 122 indikerer n-4 og m/z 108 indikerer n-3. Omega-ionet kan ikke brukes for n-1, for det vil være 80, som er kraftig i alle spektrene [35].

Tilsvarende kan alfa-ionet fortelle posisjon i forhold karboksylgruppen, der m/z 166 indikerer tilstedeværelse av dobbeltbindinger i posisjon 4 regnet fra karboksylgruppen. Massen til alfa-

ionet øker med 14 for hver posisjon. Figur 2.13c viser α -ionet til 18:5 n-1 som er 180.

Figur 2.13: Eksempler på poly-umettede FAME, (a) 18:2 n-6, (b) 18:2 n-4, (c) 18:5 n-1 og (d) 22:6 n-3.

Andre

Selv om mesteparten av fettsyrene har vanlige strukturer så finnes det også en del unntak. Da vil spektrene ofte være veldig forskjellige fra de typiske fettsyremønstrene. Figur 2.14 viser eksempler for furanfettsyre og fytansyre (fettsyre med flere forgreninger).

Furan-fettsyrene har vanligvis et eller to kraftige ioner ved høye masser i tillegg til molekylarionet. De kraftige ionene skyldes fragmentering ved furan-ringen [7, 42].

Figur 2.14: Eksempler på spektra av spesielle fettsyrer, (a) furanfettsyre og (b) fytansyre

"Fingeravtrykks-området"

De fleste massespektra av FAME har mange og sterke signaler for ioner med lav masse (ca. m/z 50-110) og relativt få signaler for ioner med høyere masse. Når en scanner for masser som er fraværende eller gir svake signaler vil totalsignalet bli lavere enn om en scanner kun i de områdene det er kraftige signaler. Dette er fordi massespektrometeret kun kan registrere et ion om gangen. Ved å ta opp spektra kun ved lave masser som gir kraftige signaler vil en kunne oppnå bedre signaler for små topper enn om en velger å scanne hele masseområdet. I masseområdet m/z 50-110 er det begrenset med informasjon, men de fleste FAME vil likevel ha et "fingeravtrykk" i dette området som kan brukes til identifikasjon dersom spekteret allerede finnes i en database.

I tillegg til fingeravtrykket som kan brukes til å identifisere forbindelser som har blitt sett før, inneholder fingeravtrykksområdet en del informasjon som kan brukes til å identifisere ukjente. Man kan vanligvis tilordne fettsyrene til hovedgruppene mettede, monoumettede, diumettede eller flerumettede fordi basetoppen som brukes til å identifisere hovedgruppene ligger i dette området. I tillegg vil en ha m/z 74 (McLafferty-ionet) i dette området. Denne massen kan brukes til å si om spekteret stammer fra en fettsyre eller ikke. Med få unntak (f.eks. furanfettsyrer) vil m/z 74 være til stede i FAME. Den eneste informasjonen som kan brukes til å si noe om posisjonen til dobbeltbindingene i enumettede fettsyrer ligger også i dette området (forholdet mellom m/z 55 og 74).

For flerumettede fettsyrer vi signalstyrken til m/z 91 gi en indikasjon på antall dobbeltbindinger. I tillegg er det slik at flerumettede fettsyrer som har dobbeltbindingene i

like posisjoner relativt til karbonylgruppen vil ha spektra som ligner på hverandre i fingertrykksområdet [40].

2.3 Behandling av GC-MS data

2.3.1 Beregning av score og biblioteks søk

Ved å sammenligne med eksisterende databaser har fettsyremetylestre tradisjonelt vært identifisert fra deres massespektra eller fra deres retensjonsindekser. Men den sikreste identifikasjonen får en når en kombinerer informasjon fra spektrene og retensjonsindeksene. Hvordan dette gjøres i programvaren som ble benyttet (Chrombox Q) er forklart i dette avsnittet.

Biblioteks-søk baserer seg på sammenligning av både retensjonsindeks og likheten mellom massespektrene. I metoden er det satt et intervall for akseptable avvik i ECL-verdier mellom toppen som testes mot biblioteket (testspektrum) og forbindelsene i biblioteket (bibliotekspektrum). I dette arbeidet er intervallet satt til 0.9 ECL enheter i hver retning. Er intervallet 0,9 er maksimalt tillatte avvik 0,45 ECL enheter. Spektra fra topper som ligger utenfor dette intervallet blir ikke testet.

2.3.1.1 Beregning av retensjonsscore

En verdi som forteller hvor godt ECL-verdiene stemmer overens (retensjons-score, S_R) beregnes på følgende måte: Innenfor intervallet er det lagt en normalfordelingskurve der intervallets grenser tilsvarer 8 standardavvik. Denne er normalisert slik at største verdi er 1 og brukes til å beregne S_R som illustrert i figur 2.15. Anta en topp med ECL verdi på 23,455. Denne vil kun bli testet mot spektra fra topper med ECL-verdi fra 23,005 til 23,905 (23,455±0,450). Anta en topp i biblioteket med ECL verdi på 23,568. Avstanden mellom denne og toppen som skal testes er 0,112 ECL-enheter, hvilket er ca 25% av avstanden til intervallets yttergrense. Retensjonsscoren beregnes da fra normalfordelingskurven som illustrert på figur 2.15.

Figur 2.15: Beregning av retensjonsscore (S_R)

2.3.1.2 Beregning av spektrum score (S_S)

Beregning av spektrumscore baserer seg på korrelasjonskoeffisienten, R. To spektra er sammenlignet i figur 2.16. Korrelasjonskoeffisienten mellom disse er 0,9956. R kan ta verdier mellom -1 og 1. For å få verdier for S_S som alltid er positive og varierer mellom 0-100 beregnes S_S på følgende måte:

$$S_{\rm S} = 100 \cdot (({\rm R} / 2) + 0.5)$$
 (4)

Identiske spektra vil få verdi 100 (R=1), Er det ingen korrelasjon mellom spektrene blir S_S 50 (R=0), Er det negativ korrelasjon mellom spektrene blir S_S<50 (R<0). I eksempelet vist i figur 2,16 vil S_S derfor bli 99,77.

Figur 2.16: Illustrasjon av beregnet score for massespekteret
2.3.1.3 Total score (S_T)

En total score (ST) beregnes deretter fra SR og SS

$$S_{T} = S_{S} \cdot S_{R} \tag{5}$$

Denne vil kunne ta verdier mellom 0 og 100 og brukes til å rangere spektrene i biblioteket etter hvor sannsynlig de tilsvarer test-spekteret. I noen tilfeller er det hensiktsmessig å kun sammenligne spektra uten å ta hensyn til retensjonsindekser. S_R settes da til 1 for alle spektra. I andre tilfeller er det av interesse å se på topper som kun ligger innenfor intervallet, men ikke legge vekt på retensjonsindeksen til spektrene utover dette. S_R for topper som ligger innenfor intervallet settes da til 1 mens S_R for alle andre settes til 0.

2.3.1.4 Søkemetoder

I Chrombox Q kan en velge å søke på alle forbindelser eller et og et spekter. Søkes alle forbindelser vil treff med S_T over en gitt grenseverdi bli identifisert, og forbindelsen med høyest S_T velges. Dersom flere topper i samme kromatogram identifiseres som samme forbindelse vil disse flagges. Grenseverdien for S_T brukt i denne oppgaven er 0,9 og er satt på bakgrunn av erfaring med tilsvarende spektra.

2.3.2 Kurveoppløsning

I noen tilfeller vil de kromatografiske toppene overlappe slik at det i utgangspunktet ikke er mulig å hente ut et rent spekter eller presis retensjonsindeks. I GC-MS kan overlappende topper løses opp ved hjelp av multivariat kurveoppløsning. Teorien bak oppløsning av overlappende topper er basert på matrise- og vektorregning og er forholdsvis komplisert. Derfor gis en forenklet fremstilling her. Mer detaljerte (og mer matematisk korrekte) fremstillinger kan finnes i [43, 44].

Totalsignalet for en enkelt kromatografisk topp er lik produktet av spekteret, **s**, og den kromatografiske profilen, **c** (pluss støy som vi for enkelthets skyld ser bort i fra). Dette er illustrert i figur 2.17a. Spekteret er her vist som en kurve (typisk for UV-spektra) i stedet for stolper, som er vanlig for massespektra, men prinsippet er det samme. Er det flere topper i blanding vil totalsignalet være bidrag fra de enkelte komponentene. Dette kan skrives som

$$\mathbf{S} \times \mathbf{C} = \mathbf{X} \tag{6}$$

der S inneholder alle spektrene og C inneholder alle de kromatografiske profilene. Et eksempel med tre overlappende topper er vist i figur 2.17b.

Figur 2.17, Eksempel på totalsignalet fra en enkelt topp og fra flere overlappende topper [45].

Formålet med kurveoppløsning er å finne alle spektrene (\mathbf{s}_1 , \mathbf{s}_2 , ...) og kromatografiske profilene (\mathbf{c}_1 , \mathbf{c}_2 , ...) når kun **X** er kjent. Siden $\mathbf{X} = \mathbf{S} \times \mathbf{C}$ kan vi også skrive (forenklet):

$$\mathbf{S} = \mathbf{X} / \mathbf{C} \tag{7}$$

eller

 $\mathbf{C} = \mathbf{X} / \mathbf{S} \tag{8}$

Det betyr at om vi kjenner alle spektrene i **S** kan vi beregne **C**. Tilsvarende, om vi kjenner alle profilene **C** kan **S** beregnes. Problemet har da en løsning. De rene spektrene kan finnes i områder av kromatogrammene der det ikke er overlapp med andre topper. De rene profilene kan finnes dersom alle spektrene har et eller flere ioner som ikke finnes i de andre spektrene. Før en kan løse opp overlappende topper må en derfor bestemme hvor mange analytter som er i gruppen av topper ("clusteren"), og om en skal beregne **C** fra **S** eller beregne **S** fra **C**. Det gjøres hovedsakelig på bakgrunn av en visuell vurdering. Utgangsestimatene for **C** og **S** finnes med en metode som er beskrevet i [46]. Denne metoden søker etter de mest ekstreme spektrene eller de mest ekstreme ionekromatogrammene.

Raffinering av løsningene:

I mange tilfeller vil estimatene av **C** eller **S** være unøyaktige, f.eks. på grunn av støy, bidrag fra andre komponenter, eller at det ikke finnes 100% selektive områder i **C** eller **S**. Da vil en ikke få optimal oppløsning. Typiske tegn på en ikke-optimal oppløsning er: Negative områder i de kromatografiske profilene, negative signaler i spektrene, eller at de kromatografiske profilene viser lokale maksima (to eller flere topp-punkter). I de tilfellene kan vi bruke informasjon om hvordan vi forventer at signalet fra en enkelt topp ser ut.

1) Det kromatografiske signalet fra en ren forbindelse har et maksimum og det synker gradvis mot baselinjen både på høyre og venstre side (tilnærmet en normalfordelingskurve). Dette kalles "Unimodalitet"

2) Kromatografiske topper har kun positive verdier (positivitet i C)

3) Massespektre har kun positive verdier (positivitet i S)

Raffineringsmetoden som brukes er en iterativ metode (gjentas mange ganger) og fungerer slik:

1) S beregnes fra X og C (ligning 7)

2) Alle negative signaler i S settes til 0 (positivitet i S)

3) C beregnes fra X og korrigert S (ligning 8)

Dette gir et nytt estimat for **C**, som heller ikke nødvendigvis er en god løsning, men det er forhåpentligvis bedre enn utgangspunktet.

4) Negative signaler i C settes til 0 (positivitet)

5) Doble topper i C fjernes ved å "kutte dem av" (unimodalitet)

6) S beregnes fra X og korrigert C (ligning 7)

Prosedyren gjentas fra 2 (normalt 50 ganger) eller til det ikke er forskjell mellom ny **C** og **C** fra forrige runde.

Ved denne prosedyren vil **S** og **C** gradvis forbedres til noe som kan være en riktig løsning. I tillegg gjøres to andre justeringer av **S** og **C** underveis. Alle spektrene justeres slik at basetoppens verdi er 100 (normalisering av **S**), og **C** justeres slik at summen av signalene i **C** og **S** er lik summen av det opprinnelige totalsignalet **X** (lukking).

Typiske eksempler på hvordan en løsning (for \mathbb{C}) kan se ut før og etter raffinering er vist i (Figur 2.18).

Figur 2.18: Typisk resultat av raffinering av en ikke-optimal løsning [45].

Figur 2.18 illustrerer effekten av raffineringsprosedyren på to topper som "stjeler" signal fra hverandre. Løsningen i midten er langt fra noen optimal løsning, men den er en bedre løsning enn utgangspunktet og vil gi bedre estimater av **S** enn det utgangspunktet gav. Etter nok iterasjoner har prosedyren forhåpentligvis funnet den riktige løsningen vist til høyre.

3 Metode og material

3.1 Utvalg av prøver

Prøvene som ble brukt i dette arbeidet er basert på et utvalg av de 77 omega-3 produktene som ble analysert i [1]. Produktnummereringen er den samme som ble benyttet i dette arbeidet. For å velge ut hvilke prøver som skulle analyseres ble det brukt prinsipalkomponentanalyse (PCA) og en matematisk metode for å velge ut ekstreme prøver fra et datasett. PCA er en metode som kan brukes til å illustrere likheter og ulikheter mellom forskjellige objekter. Metoden brukes for å redusere et stort antall variabler (i dette tilfellet fettsyrene analysert i [1] til et mindre antall såkalte latente variabler (prinsipalkomponenter) [47], som kan plottes og tolkes. "Skårene" etter PCA viser likheter og ulikheter mellom de forskjellige objektene (i dette tilfellet de forskjellige omega-3 produktene).

Skåreplottet av de to første prinsipalkomponentene er vist i figur 3.1. Produkter som ligger nær hverandre i plottet er like. En kan se klare grupperinger av de mest vanlige produkttypene som "18/12-oljer", "33/23"-konsentrater, selolje, og tran. Basert på plottet ble det plukket ut prøver som var representative for de store gruppene.

I tillegg til PCA ble det benyttet en metode for å plukke ut unike produkter, dvs. produkter som på en eller annen måte er ekstreme. Til dette ble den samme metoden som brukes til å velge unike spektra i kurveoppløsning [46] anvendt på fettsyreprofilen. Produkter som ble valgt med denne metoden er merket med grønne piler i scoreplottet. Fra det foreslåtte utvalget ble det gjort noen endringer.

For eksempel ble prøve 48 utelatt fordi vi ikke ville ha med to seloljer som er et marginalt produkt som hovedsakelig selges i Norge. Prøve 36 ble byttet med 27 fordi 27 hadde bedre holdbarhet enn 36. Prøve 52 som er en blanding av krill og en vegetabilsk olje ble erstattet med en nyinnkjøpt ren krillolje (nr. 79). Totalt ble det valgt 18 prøver fra det opprinnelige datasettet på 77, disse er vist med blå skrift i figur 3.1. I tillegg til disse ble det tatt med tre nye prøver, en lakseolje (Prøve 78), en blekksprutolje (Prøve 80) og en kontrollprøve som brukes til å kontrollere fettsyreanalysen ved Nofima (KP). De forskjellige produktene er vist i figur 3.2 og data for produktene er listet i tabell 3.1.

Figur 3.1: PCA scoreplott av de to første prinsipalkomponentene for fettsyredata hentet fra [1].

Figur 3.2: Bilde av de fleste produktene som ble analysert.

nr.	Туре	Navn/merke	% EPA ⁽¹⁾	% DHA ⁽¹⁾	Produsent/ leverandør	Kilder	Dato kjøpt	Utløps dato
5	Alge + solsikke	DHA Neuromins	0,01	22,68	Solaray	Anormis Herboristeria (Barcelona, ES)	08.11.10	09.12
6	Høy DHA	Oligen DHA	4,35	79,92	lfigen	Anormis Herboristeria (Barcelona, ES)	08.11.10	09.11 ⁽²⁾
8	Tran	Higabac	7,50	8,61	Soria Natural	Corte Ingles (Barcelona, ES)	08.11.10	01.13
9	Høy EPA	AquiOmega	53,21	23,32	Uriach Aquilea	Corte Ingles (Barcelona, ES)	08.11.10	10.12
10	33/23-kons.	ArkOmega3	35,03	23,94	Arkopharma	Farmacia Barenys (Barcelona, ES)	08.11.10	01.13
13	Tran	Aceite de Higado de Bacalao	8,67	11,76	Santiveri	Corte Ingles (Barcelona, ES)	08.11.10	04.10.12
17	33/23-kons.	Feniko, Seefishöl konzentrat	30,84	23,77	Urgo	Rosen Apotheke (München, DE)	22.11.10	03.12
18	18/12-olje	Eicosan 750	17,44	12,23	Truw	Rumford-Apotheke (München, DE)	22.11.10	06.12
23	18/12-olje	Omega-3 Lachsöl-kaspseln	17,71	11,50	Feingold	Asam Apotheke (München, DE)	24.11.10	04.13
25	18/12-olje	Ameu 500 mg	15,00	11,26	Casella med	Apotheke Odeonzplatz (München, DE)	22.11.10	07.11 ⁽²⁾
27	Selolje	Sel-Olje	6,61	9,42	Biopharma, Nordsveen	Coop Strømgaten (Bergen, NO)	28.02.11	21.09.12
61	Høy EPA	Pulse Cardiomax	57,32	15,05	Seven Seas	Boots (Manchester, GB)	13.04.11	02.13
64	Fisk + Vegetabilsk	Eye Q	17,91	5,68	Equazen	Boots (Manchester, GB)	13.04.11	11.13
65	Høy DHA	Efalex Active 50+	8,65	53,01	Efamol	Boots (Manchester, GB)	13.04.11	11.13
73	33/23-kons.	Omega 3	32,41	23,88	Vitarmoryl	Apotek (Messina, IT)	xx.04.11	07.13
76	Høy EPA	Esapent	45,07	41,92	Pfizer	Apotek (Messina, IT)	xx.04.11	01.14
77	Tran	Møllers tran (Referanse)	9,12	13,03	Møller Collet	Rema 1000 Kjerreidviken (Bergen, NO)	xx.11.11	
78	Laks	Super Omega-3			Shift	Kinsarvik Frukt (Bergen, NO)	13.12.11	23.02.13
79	Krillolje (Superba)	Omega Red			Medica Nord	Kinsarvik Frukt (Bergen, NO)	13.12.11	10.13
80	Blekksprut- olje	Vitomaris			Vitomega	-	xx.12.11	12.12
KP	Fiskeolje	Nofima kontrollprøve			Sildoljefabrikk	Nofima BioLab	-	-

Tabell 3.1: informasjon om utvalgte produkter

(1) Fra [1]

(2) nr 6 og 25 er egentlig utgått på dato, men tatt med likevel for de er spesielt produkt som er vanskelig å få tak i Norge. Siden de har stått i kjølskapet fra datoen de ble kjøpt inn, antar vi at det ikke er problem at de er noen måneder over datoen.

3.2 Prøveopparbeiding

Fra hvert produkt ble det tatt to prøver av to kapsler. De ble veid inn i tarert reagensglass. Kapslene ble punktert med en nål og det ble presset ut en eller to dråper avhengig av dråpenes vekt som varierte fra produkt til produkt fordi innholdet i noen kapsler var mer viskøst enn i andre. Totalvekten av oljen skulle være mellom 20 og 35 mg, men noen av prøvene veide litt mer enn 35 mg nettopp på grunn av konsistensen av dråpene.

Etter veiing av dråpene i reagensglasset, ble de tilsatt 1,5 ml 0,5 N NaOH i metanol ved bruk av pipette og luft ble fjernet fra glasset ved hjelp av nitrogengass før korken ble skrudd på. Glassene ble deretter satt i en kasserolle fylt med kokende vann i 5 minutter (100°C).

Etter nedkjøling ble det tilsatt 2 ml 12% BF₃-metanol løsning (Sigma-Aldrich) og luft ble fjernet fra reagensglasset vha nitrogengass før rørene ble korket igjen. Deretter ble rørene varmet i kokende vann i 10 min.

1 ml sooktan ble tilsatt etter at rørene var nedkjølt og løsningene ble blandet godt ved risting i ca. 30 sekunder på en rotasjonsmikser. To lag ble synnlig med isooktan på toppen. Deretter ble det tilsatt 5 ml mettet NaCl løsning og rørene ble ristet igjen i ca. 30 sek på rotasjonsmikseren.

Etter at fasene hadde separert ble den den øverste fasen, som inneholdt fettsyrer løst i isooktan, overført til et mindre glassrør (2 ml). Ekstraksjomnen med 1 ml isooktan ble deretter gjentatt og isooktanfasen overført til det samme 2 ml glassrøret som ved første ekstraksjon. Utenom veiing ble alle prosedyrene gjort i avtrekksskap. I tillegg til prøver ble det daglig opparbeidet og analysert blankprøver.

10 µl av prøven ble overført fra løsningen i 2 ml glassrøret til 1,5 ml autosampler-rør for GC som inneholdt 1 ml isooktan. De to parallellene ble deretter analysert på GC-MS som beskrevet for BPX-70 kolonnen i 3.3. Forskjeller mellom parallellene ble vurdert visuelt ut fra kromatogrammene. For to av prøvene (krillolje og blekksprutolje) var parallellene klart forskjellige. Nærmere undersøkelse av kapslene viste at innholdet ikke var en homogen løsning. Disse to prøvene ble derfor opparbeidet på nytt med metoden beskrevet under og det ble foretatt en ny sjekk av parallellene.

Hele innholdet i kapslene (ca. 500 mg) ble veid inn og deretter løst i 10 ml kloroform. Av denne løsningen ble det overført 500 µl til et nytt reagensglass. Nitrogengass ble brukt til å

dampe av løsemidlet (kloroform) mens glassene stod på 80 grader varme. Deretter ble prøvene opparbeidet til FAME som beskrevet over.

For videre arbeid ble kun den ene parallellen benyttet. 10 og 30 µl av isooktanekstraktet fra 2 ml glassrørene ble overført til autosamplerglass for GC som inneholdt 1 ml isooktan og prøvene ble analysert på GC-MS som beskrevet under.

3.3 GC-MS betingelser

Prøvene ble analysert på GC-MS på Nofima og på Havforskningsinstituttet.

Alle prøver ble analysert på to forskjellige kolonner og med to forskjellige masse-områder for MS detektoren (totalt 8 analyser per prøve inkludert de to konsentrasjonsområdene). De to kolonnene var en 60 m BPX-70 (SGE, Ringwood, Australia) med indre diameter 0,25 mm og filmtykkelse 0,25 µm, og en 50 m BP-20 (SGE) med indre diameter 0,22 mm og tykkelse på stasjonærfasen på 0,25 µm. BPX-70 kolonnen har en stasjonærfase bestående av 70% cyanopropyl-polysilphenylen-siloksan, der cyanopropyl (CP) er den polare funksjonelle gruppen, BP-20 kolonnen har en stasjonærfase bestående av polyetylenglykol (PEG).

De to scan-metodene for MS-detektoren var fullscan fra m/z 50 til m/z 438 eller 440, og et kortscan fra m/z 50 til m/z 110 som dekker "fingeravtrykk"-området til FAME.

BPX-70 kolonnen ble benyttet på et system bestående av en 5890 gasskromatograf koblet til et 5972 massespektrometer (Agilent, Santa Clara, CA, USA). Systemet ble kontrollert av MS Chemstation versjon B.03.02. BP-20 kolonnen ble benyttet på et system bestående av en 6890 gasskromatograf koblet til et 5975 massespektrometer (Agilent). Systemet ble kontrollert av MS Chemstation versjon (D.03.00). Begge systemer var utstyrt med autosampler. De analytiske betingelsene er oppsummert i (tabell 3.2).

	CP-kolonne (BPX-70)	PEG-kolonne (BP-20)
GC-Parametre		
Stasjonærfase	BPX-70 (SGE)	BP-20 (SGE)
Kolonnelengde (<i>L</i>)	60 m	50 m
Kolonnediameter (i.d.)	0.25 mm	0.22 mm
Filmtykkelse (<i>d</i> f)	0.25 μm	0.25 μm
Estimert bæregasshastighet ^(a)	26 cm/s	30 cm/s
Bæregass	He (99.996%)	He (99.9999%)
Temperaturprogram	60°C i 4 min, 30°C/min til 160°C, 2°C/min til 260°C (totalt 57.3 min)	60°C i 4 min, 30°C/min til 160°C, 1.4°C/min til 260°C (totalt 78.8 min)
Injeksjonsvolum og metode	1 μl, pulsed splitless (60 psi, 2 min), splittventil åpnet etter 4 min.	1 μl, splitless, splittventil åpnet etter 4 min.
Injektortemperatur	250°C	250°C
MS interface temperatur	270°C	300°C
MS-parametre		
Scan-område (fullscan)	m/z 50-438	m/z 50-438
Scan-frekvens ^(b) (fullscan)	1.18 s ⁻¹	0.97 s ⁻¹
Scan-område (kortscan)	m/z 50-110	m/z 50-110
Scan-frekvens ^(b) (kortscan)	2.01 s ⁻¹	2.79 s ⁻¹
Tune-program	Standard spectra autotune	Autotune
Solvent delay	8.2 min	8.0 min
lonekilde temp. ^(c)	-	230°C
Massefilter temp. ^(c)	-	150°C

Tabell 3.2: analytiske betingelser, GC-MS

(a) Kolonnelengde dividert med dødtiden (t_m)

(b) Antall massespektre per sekund (målt),

(c) kan ikke settes på HP-5972

3.4 Prøver og analysesekvenser

Alle prøver ble analysert i to forskjellige konsentrasjoner (10 og 30 μ l av FAME ekstraktet i isooktan fortynnet til 1 ml). Fra isooktan-ekstraktet etter metanolysen som antas å inneholde ca 10 mg FAME per ml ble det tatt ut 10 og 30 μ l prøver som ble fortynnet til 1,0 ml. Dette gir prøver med ca. 100 og 300 ng FAME per μ l, som er konsentrasjonen som ble benyttet på BPX-70 kolonnen. For BP-20 kolonnen ble alle prøver og referanseblandinger fortynnet med ytterligere 0,5 ml isooktan, slik at konsentrasjonen av prøvene var ca 67 og 200 ng FAME per μ l.

For hver tiende prøve i sekvensen ble det analysert en blanding av alle mettede rettkjedete FAME unntatt 13:0 og 23:0, samt en GLC-793 referanseblanding (Nu-Chek Prep, Elysian, MN, USA) som inneholder like mengder av 28 FAME, 10 mettede og 18 umettede. Denne ble fortynnet slik at den gav ca. 7,1 ng av hver fettsyre injisert på kolonnen på BPX-70 og ca 4,8 ng på BP-20. Dette er i det øvre området av hva som gir symmetriske topper på kolonner med 0,25 µm stasjonærfase. Konsentrasjonen av den mettede referanseblandingen var ca. 25% av GLC-793. Disse to prøvene ble analysert for hver tiende ordinære prøve i sekvensen.

I tillegg til disse referanseblandingene ble åtte kvalitative referanseblandinger analysert en gang i sekvensen for å være sikker på identifikasjon på mindre fettsyrer.

- En blanding av 15 umettede fettsyrer kjøpt enkeltvis fra Nu-Chek (Blanding #1); en blanding av alle mono-trans isomerer av 18:3 n-6 og 20:3 n-6 produsert som beskrevet i [41] (Blanding #2).
- Alle mono-trans isomerer av 18:2 n-6, 19:2 n-6, 20:2 n-6 og 22:2 n-6 produsert som beskrevet i [41] (Blanding 3).
- Mono-trans og Di-trans isomerer av konjugert linolensyre (CLA) innkjøpt som teknisk blanding fra Nu-Chek og separert på sølviokromatografi som beskrevet i [41] (Blanding #4).
- Mono-trans isomerer av 16:1 n-7, 18:1 n-9, 18:2 n-6, 18:3 n-3, samt di-trans isomer av 18:2 n-6, Innkjøpt fra Nu-Chek eller produsert som beskrevet i [41] (Blanding #5).
- Alle mono-trans isomerer av 18:3 n-3, 20:3 n-3 og 22:3 n-3 (Blanding #6).
- Cis isomerer av konjugert linolensyre (CLA) innkjøpt som teknisk blanding fra Nu-Chek og separert på sølviokromatografi som beskrevet i [41] (Blanding #7).
- Alle mono-trans isomerer av EPA og DHA produsert som beskrevet i [48] (Blanding #8)

Fullstendig sammensetning av referanseblandinger er gitt i tabell A.1 i appendiks. Oversikt over analysesekvensene er gitt i tabell A.2.

3.5 Databehandling

3.5.1. Chrombox Q

All databehandling ble gjort i Chrombox Q (www.chrombox.org). De fleste programmer for identifikasjon av massespektra er laget for å kunne bruke store kommersielle databaser av spektra. Disse databasene inneholder et svært stort antall spektra som er tatt opp under forskjellige betingelser og på forskjellig type instrumenter. Søkemetodene (algoritmene) må derfor være utviklet med tanke på hurtighet og robusthet (mot instrument-variasjon). Priotering av hurtighet og robusthet vil gå utover nøyaktigheten.

Chrombox Q er utviklet med tanke på å kunne søke på spektra i relativt små databaser tatt opp under like betingelser som kromatogrammene en arbeider med. Siden dette ikke krever samme fokus på hurtighet og robusthet kan nøyaktighet gis høyere prioritet.

Chrombox Q skiller seg noe fra andre programmer for behandling av GC-MS data. Søkemetodene som brukes som er utviklet for å kunne detektere små forskjeller i spektra som har høy grad av fragmentering, og informasjonen om hvilke ioner som ble scannet er tatt vare på, slik at det er mulig å for eksempel sammenligne kort-scan spektra med fullscan. Andre forskjeller er bruk av retensjonsindekser som et kriterium for identifikasjon i tillegg til likhet mellom spektra. Bruk av metoder for bakgrunnsfjerning, muligheter for kjemometrisk oppløsning av overlappende topper og muligheter for redigering og etterbehandling av bibliotekene skiller også Q fra andre programmer.

3.5.2 System for navnsetting og identifikasjon

I denne oppgaven ble to bibliotek opprettet, BPX-70 og BP-20, et bibliotek for hver kolonne.

De ble organisert og strukturert ved å gi kode, navn og kortnavn til hver enkelt forbindelse. Kodene er unike og følger systemet LLL-XXX, der LLL er tre bokstaver og XXX er et løpenummer med tre sifre. Bokstavkodene for de enkelte fettsyreklassene er gitt i tabell 3.3. Numrene tildeles nye forbindelser fortløpende og sier derfor ikke noe om struktur. Dersom en forbindelse endrer identitet, f.eks. fra ukjent til en identifisert struktur, endres bokstavkoden, men nummeret beholdes.

For vanlige fettsyrer gis kortnavnet etter A:B n-C systemet f.eks. 22:6 n-3 (DHA). Det spesifiseres alle dobbeltbindingenes posisjon og geometri i det lange navnet. For andre forbindelser brukes det normalt systematiske IUPAC navn f.eks. for furanfettsyrer. Der det

brukes systematiske navn eller hevdnavn er det navnet til syren som gis, selv om forbindelsen som analyseres er FAME.

Kode	Forklaring
ALC	Alkohol
DIU	Diumettet fettsyre (DUFA)
FUR	Furanfettsyre
MOB	Forgrenet monoumettet fettsyre (MUFA)
MOU	Normal monoumettet fettsyre (MUFA)
NFA	Ikke fettsyre (<u>N</u> ot <u>F</u> atty <u>A</u> cid)
OTH	Andre
POU	Flerumettet fettsyre (PUFA), tre eller flere dobbeltbindinger
SAB	Forgrenet mettet fettsyre
SAN	Normal mettet fettsyre
UNK	Ukjent

Tabell 3.3. Oversikt over fettsyrekoder brukt i Chrombox Q.

3.5.3 Bakgrunnskorreksjon og deteksjon

For hvert spekter ble det brukt automatisk prosedyre for baselinjefjerning i Chrombox Q. Parametrene som ble brukt for baselinjekorrigering er listet i tabell 3.4. Etter baselinjekorreksjon ble topper eller grupper av topper detektert ved å markere aktuelle områder i kromatogrammet. Denne prosedyren baserer seg på visuell vurdering av kromatogrammene.

	Baseline finder stiffness	Variance window size
BP-20 (5975 MS), fullscan	8	5
BP-20 (5975 MS), kortscan	10	5
BPX-70 (5972 MS), fullscan	7	10
BPX-70 (5972 MS), kortscan	6	5

Tabell 3.4, oversikt over metodeparametre brukt for baselinjekorreksjon

3.5.4. Kvantifisering

Etter at forbindelsene er detektert må de kvantifiseres. I samme trinnet bestemmes også toppenes retensjonstider. Det første som gjøres i dette trinnet er at man må bestemme om toppen er ren, dvs. om den inneholder en eller flere forbindelser. Dette kan gjøres ved å studere ionekromatogrammene visuelt, men det er også innebygget metoder i programmet som estimerer antall topper. Disse kan brukes som støtte for vurderingen.

Hvis det er flere topper i vinduet som må løses opp, må man vurdere om **C** eller **S** gir det beste utgangs-estimatet dvs om man anvender formel 7 eller 8 for å løse opp gruppen av topper. Deretter løses toppen opp og man vurderer om løsningen må raffineres videre ved å se etter f.eks. negative verdier i spektra eller kromatogrammer. Eksempler på typiske kurveoppløsningsproblemer er gitt i resultatdelen i avsnitt 4.3.1.

3.5.5 Identifikasjon og oppbygging av biblioteker

Det første som ble gjort i dette trinnet var at ECL verdiene ble beregnet. I Chrombox Q foregår det ved at hele aksen for retensjonstider endres til ECL-verdier, slik at x-aksen i kromatogrammet endres fra retensjonstid til ECL. Metoden som benyttes til å beregne forholdene mellom retensjonstid og ECL er basert på lokale tilpasninger av andregradsfunksjoner og er beskrevet i [49]. Til kalibreringen av forholdene mellom ECL og retensjonstid ble den kalibreringsløsningen som lå nærmest prøven benyttet. Før prøvene ble analysert var alle kalibreringsprøvene behandlet slik at disse hadde riktig identifikasjon av de mettede FAME som brukes til å finne forholdet mellom ECL og retensjonstid. Etter at ECLverdiene var beregnet ble spekteret og retensjonsindeksen til hver topp testet mot eksisterende biblioteker av spektra ved bruk av metoden beskrevet i teoridelen (avsnitt 2.3). I tillegg til scoreverdien (S_T, ligning 5) ble det brukt to grafiske plott for å vurdere sannsynligheten til mulige strukturer. Dette var korrelasjon mellom spektrene av de ukjente og aktuelle spektra fra bibliotekene, som beskrevet i teoridelen (avsnitt 2.3.1.2) og stolpediagrammer over scoreverdiene for aktuelle forbindelser. Disse er nærmere beskrevet i resultatdelen (avsnitt 4.3.2). I tillegg ble det benyttet mer subjektive kriterier som vurdering av hvilke topper en skulle forvente i prøven, og om foreslåtte topper lett kan feil identfiseres. Noen forbindelser har svært like spektra eller retensjonsindekser, og da blir slike kriterier viktigere.

I begynnelsen av prosjektet ble det søkt i biblioteker over spektra og ECL-verdier fra eksisterende biblioteker. Disse er hentet fra www.chrombox.org/data. Det ble benyttet to forskjellige biblioteker, et for hver kolonne. Dataene i biblioteket for BPX-70 er tatt opp ved like betingelser som de som ble benyttet i dette arbeidet, mens dataene for BP-20 er tatt opp på en annen kolonnetype, men som også har PEG-fase. Etterhvert som egne biblioteker ble bygget opp ble det lagt mer vekt på treff i de nye bibliotekene enn i de gamle dersom de foreslåtte forbindelsene var forskjellige. Ukjente forbindelser ble tilordnet nye koder og lagt i biblioteket fortløpende slik at dersom den samme ukjente vill få samme kode dersom den dukket opp i forskjellige prøver.

I et bibliotek over forbindelser er det viktig å få nok spektra til at en har et representativt utvalg. Ting som er avgjørende om et spekter legges i biblioteket kan være: 1) kvaliteten av spekteret og størrelsen av toppen. Hvis toppen er liten, er det stor sannsynlig at spekteret er for dårlig. Et dårlig spekter viser negative signaler og signaler med tyngre masser over molekylarionet. 2) vurdering av toppens symmetri. Store topper er vanligvis skjeve og da legges de ikke i biblioteket. Man kan også sjekke om det er bedre spektra i andre prøver. Topper som er for høye i 30 µl prøvene vil være bedre i 10 µl prøvene, og topper som har dårlig spekter i 10 µl vil ha bedre spekter i 30 µl. De fleste forbindelsene finnes i et stort antall av prøvene da kan man plukke de som har godt spekter og nøyaktig retensjonsindeks og legge dem i biblioteket. Mange av forbindelsene finnes i referanseprøvene da er det ikke nødvendig å legge noe spekter i biblioteket hvis man er i tvil. En er generelt mindre kritisk med å vurdere om spektrene skal legges inn om en har få spektre av forbindelsen enn om en har mange. Derfor vil en typisk legge inn flere forbindelser i begynnelsen av prosjektet enn mot slutten. Etter at biblioteken var bygd opp ble alle forbindelsene gjennomgått og dårlige spektra eller avvikene retensjonsindekser ble slettet.

For å vurdere om en topp skulle legges i biblioteket ble det derfor brukt følgende kriterier:

- Kvaliteten på spekteret: Spektra med negative signaler eller betydelig innslag av masser over det antatte molekylarionet ble ikke lagt i bibliotekene. Det samme gjaldt dersom spekteret av andre grunner ikke ble vurdert som rent.
- Symmetri: For høye topper vil være asymmetriske med asymmetrifaktor <1. Dersom asymmetrifaktoren var<0.75 ble toppen ikke lagt i biblioteket (se figur 2.7).
- Konsentrasjon: Siden hver prøve ble analysert i to konsentrasjoner så vet man at det finnes bedre spektra i 30 ul-prøvene enn i 10 ul-prøvene dersom spekteret er for dårlig. Tilsvarende vet man at toppen vil være mer symmetrisk i 10 ul-prøvene enn i 30 ul prøvene dersom asymmetri er et problem. Toppene som vanligvis er de største (EPA,

DHA, 16:0, 18:1) vil typisk være asymmetriske i de fleste kromatogrammene. I disse tilfellene ble toppene fra referanseblandingen brukt.

Generelt ble det brukt et kriterium om at alle forbindelser som utgjorde over 0.1% i minst en av prøvene skulle finnes i de nye bibliotekene.

4 Resultat og diskusjon

Formålet med arbeidet har vært å finne ut hva som er av fettsyrer i utvalgte omega-3produkter og bygge opp en database over massespektra og retensjonsindekser til disse. Hver av de 21 prøvene (20 omega-3 produkter pluss Nofimas kontrollprøve) er anaylsert i to konsentrasjoner og på fire forskjellige betingelser (kortscan, fullscan og på to kolonner), dvs. at hver prøve ble analysert åtte ganger. Ved den ene betingelsen (høyeste konsentrasjon, kortscan på BPX-70) ble det totalt funnet 1629 topper i de 21 prøvene. Dette er den betingelsen som vil gi flest topper på BPX-70 siden signal/støy-forholdet er best, men samtidig ble BPX-70 brukt på instrumentet med dårligst følsomhet. Det er derfor rimelig å anta at det i snitt ble funnet mer enn 1000 topper ved hver av de åtte betingelsene, dvs. totalt mer enn 8000 topper.

Totalt ble det tilordnet identifikasjon til 16 forbindelser, xx av disse ble funnet på begge kolonner, xx var unike på BPX-70 og xx var unike på BP-20. Av plasshensyn er det begrenset hvor mye detaljer som kan gis om hver enkelt kromatografisk topp og har enkelt forbindelse. Resultater og diskusjon vil derfor være fokusert på følgende: 1) Kvaliteten av kromatografiske data, 2) Kvaliteten på MS-dataene og forskjellen mellom de to instrumentene, 3) Eksempler fra databehandlingen, 4) En beskrivelse av utvalgte produkter som dekker de forskjellige produktkategoriene, 5) Identifikasjon av ukjente og mindre vanlige fettsyrer, 6) En oversikt over hva som finnes i de to bibliotekene som ble bygd opp med kart over ECL-verdier.

4.1 Kromatografisk datakvalitet

4.1.1 Kalibrering av ECL

Forholdet mellom retensjonstid og ECL-verdier for de mettede FAMEne som brukes til å kalibrere ECL-skalaen er vist i figur 4.1. Kalibreringene viser noe kurvatur i begynnelsen av kromatogrammene men ca. fra ECL 16 og oppover er kalibreringen for begge kolonnene ganske linjær. Disse kalibreringene ble brukt til å beregne ECL-verdier i prøvene (ECL ble alltid beregnet fra den nærmeste kalibreringsprøven i sekvensen).

I Chrombox Q programmet kan man velge om man vil bruke retensjonstid eller retensjonsindekser (ECL-verdier) som x-akse i kromatogrammene. Eksempler på hvordan den mettede kalibreringsblandingen og tran ser ut på de forskjellige skalaene er vist i figur 4.2. I kromatogrammene med ECL-skala er det lett å identifisere de mettede fettsyrene siden de kommer eksakt ved ECL verdien som tilsvarer antall karbon i molekylet.

Figur 4.1:Plott som viser forholdet mellom retensjonstid og ECL på de to kolonnene (første kalibreringsprøve i kortscan sekvensen)

Figur 4.2: Kromatogrammer som viser kalibreringsprøven og tran (prøve 77) på tids-skala og ECL-skala: a) Kalibreringsprøven på tidsskala, b) kalibreringsprøven på ECL-skala, c) tran på tidsskala, d) tran på ECL-skala, (BPX-70 kortscan, 10 ul fortynning)

4.1.2 Kromatografisk drift

For å sjekke stabiliteten til retensjonstid (t_R) og retensjonsindeks ECL, ble det valgt 5 fettsyrer: to mettede (12:0 og 24:0) og tre PUFA (18:3 n-3, 20:5 n-3 og 22:6 n-3). De er tatt fra begge kolonnene (BPX-70 og BP-20) og fra fullscan og kortscan . Det ble tatt verdier av retensjonstid (t_R) og retensjonsindeks (ECL) for de fettsyrene. Deretter ble prosent avvik beregnet via ligning 9 t_R og ECL og resultatet er vist i (Tabell 4.1) og (Tabell 4.2) for henholdsvis BPX-70 og BP-20.

Den mest åpenbare som kan ses i tabellene er at variasjonen for ECL er vesentlig lavere enn variasjonen for retensjonstid, omtrent en tidel. Dette gjelder begge kolonner. Det skyldes hovedsakelig at det er kjørt flere kalibreringsprøver gjennom sekvensen slik at eventuell drift i retensjonstider vil bli korrigert hver gang det tas i bruk en ny kalibreringsprøve i dataanalysen.

For retensjonstider er variasjonen høyere for BP-20 enn for BPX-70 (omtrent det dobbelte), men det er ingen slik trend for ECL-verdier. På BPX-70 er det også mer ustabilitet i fullscan dataene enn i kortscan dataene. Det kan skyldes at scan-frekvensen har vært for lav til å få optimal bestemmelse av retensjonstiden til de enkelte toppene, men det er også en mulighet for at det har vært mer drift på instrumentet når denne sekvensen ble analysert.

	BPX-70 kortscan		BPX-70 f	BPX-70 fullscan	
FAME	t _R (min)	ECL	t _R (min)	ECL	
12:0	0,1675	0,0311	0,2499	0,0448	
18:3 n-3	0,1594	0,0062	0,2392	0,0152	
20:5 n-3	0,1360	0,0077	0,1953	0,0162	
22:6 n-3	0,1200	0.0081	0,1655	0.0189	
24:0	0,1160	0,0121	0,1713	0,0116	

Tabell 4.1: Prosent variasjon for retensjonstid og ECL for utvalgte FAME på BPX-70 kolonnen.

	BP-20 kortscan		BP-20	BP-20 fullscan	
FAME	t _R (min)	ECL	t _R (min)	ECL	
12:0	0,3168	0,0301	0,3046	0,0419	
18:3 n-3	0,3486	0,0063	0,3264	0,0242	
20:5 n-3	0,2961	0,0160	0,2707	0,0273	
22:6 n-3	0,2468	0,0213	0,2180	0,0260	
24:0	0,2070	0,0030	0,1792	0,0072	

Tabell 4.2: Prosent variasjon for retensjonstid og ECL for utvalgte FAME på BP-20 kolonnen.

Variasjonen i retensjonstid og ECL for 22:6 n-3 gjennom sekvensen er vist i Figur 4.3 og 4.4 for henholdsvis BPX-70 og BP-20. På BP-20 er det en klar trend til at både retensjonstid og ECL synker, men det ser vi ikke på BPX-70. Dette viser mer stabilitet på BPX-70 kolonnen enn på BP-20 kolonnen.

Figur 4.3: Drift for BPX-70 gjennom sekvensen a) for retensjonstid (t_R) for 22:6 n-3 i GLC-793 blandingen b) for retensjonsindeks (ECL) for 22:6 n-3 i GLC-793 blandingen.

Figur 4.4: Drift for BP-20 gjennom sekvensen a) for retensjonstid (t_R) *for 22:6 n-3 i GLC-793 blandingen b) for retensjonsindeks (ECL) for 22:6 n-3 i GLC-793 blandingen.*

4.1.3 Kromatografisk effektivitet (separasjonsnummer)

Kromatografisk effektivitet i temperaturprogrammert GC angis vanligvis med separasjonsnummeret (SN) som er differansen i retensjonstid mellom to medlemmer av en homolog serie dividert på to toppbredder (ved halve høyden) minus 1 (Ligning 2). I Chrombox Q konverteres hele x-aksen i kromatogrammet til ECL-verdier slik at bredden av toppene kan angis på ECL-skala. Dersom toppbredden er angitt på ECL-skala forenkles ligning 2 til:

$$SN = \frac{1}{2 w_{h(ECL)}} - 1$$
⁽⁹⁾

fordi telleren i ligning 2 er 1 per definisjon på ECL-skalaen (avstanden mellom to mettede fettsyrer er en ECL enhet per definisjon). Da kan SN beregnes fra en hvilken som helst fettsyre så lenge bredden ved halve høyden i ECL enheter er kjent.

SN for toppene i GLC-793 referanseblandingen beregnet på denne måten er vist i figur 4.5. Figuren viser at SN på de to kolonneneer ganske like, særlig i området fra ECL 18 og utover der effektiviteten er viktigst fordi mange topper eluerer i dette området. Under ECL 18 var BP-20 vesentlig bedre enn BPX-70, noe som kan skyldes forskjeller i temperaturprogrammet. BP-20 hadde en synkende trend mot slutten av kromatogrammet. BPX-70-kolonnen (60 m) er noe lengre enn BP-20 (50 m), noe som normalt gir litt høyere effektivitet. Men samtidig er tempertaurgradienten på BPX-70 (2 °C/min) brattere enn på BP-20 (1,4°C/min), noe som normalt gir lavere effektivitet. Den gjennomsnittlige toppbredden ved halve høyden på BPX-70 var 0,027 ECL enheter, mens den var 0,026 enheter på BP-20.

Figur 4.5: Estimert SN for BPX-70 og BP-20 i forskjellige områder av kromatogrammet. Beregnet fra toppene i GLC-793 referanseblandingen.

4.2 Massespektrometrisk datakvalitet

4.2.1 Bakgrunnskorreksjon

De to kolonnene har forskjellige baselinjer (Figur 4.6a og 4.6b). PEG har høyere baselinje enn BPX-70 spesiell på slutten av kromatogrammet. Det er fordi denne kolonnen blør mer stasjonærfase når temperaturen er høy på slutten av temperaturprogrammet. Etter fjerningen av baselinjen som beskrevet i avsnitt 3.5.3 er baselinjen flat og ca. på null.

Signalstyrken på 5975 instrumentet (brukt på BP-20) er ca 10 ganger høyere enn signalstyrken på 5972-instrumentet (BPX-70). Høyeste topp på 5975 er ca $18 \cdot 10^5$ mens den er ca $16 \cdot 10^4$ på 5972 (Figur 4.6a og 4.6b).

Hvor mye det har å si for signal/støy-forholdet, som er det som er viktig for å detektere topper er vanskelig å si. Det er to forskjellige instrumenter styrt av to forskjellige programmer, men det er åpenbart at 5975-instrumentet gir bedre signal/støy siden vi detekterer fler topper for samme prøve på det instrumentet enn på 5972.

Figur 4.6: Effekt av bakgrunnsfjerning på de to kolonnene. Ukorrigert TIC (total ion current) er vist med rødt, korrigert med blått (a) BP-20, (b) BPX-70

4.2.2 Forskjell mellom instrumenter

Følsomheten på instrumentet som ble brukt med BP-20 er bedre enn det som ble brukt på BPX-70 fordi på BP-20 kolonnen på fullscan har vi høyere topper på de tunge massene enn på BPX-70 fullscan. På figur 4.7a ser vi toppen på 264 er på nesten 50% mens det er på omtrent 15% på figur 4.7b. Man kan få treff hvis man sammenligner et spekter fra BP-20 med BPX-70, men usikkerheten på om det er samme spekter vil øke.

På fullscan spekter har vi både tunge og lette masser og da blir forskjellen mellom spektrene mer påvirket av forskjell i følsomhet for de tunge massene (Figur 4.7a og b). Det er et mindre problem i kortscan spektra (Figur 4.7c og d). På kortscan ser vi fortsatt bedre spekter fra 5975-instrumentet (brukt med BP-20), men der er forskjellen mindre enn det vi ser på fullscan siden spektrene kun inneholder lette masser.

Figur 4.7: Forskjeller mellom spektrene fra de to MS-instrumentene. a) fullscan på Agilent 5975 BP-20, b) Fullscan på agilent 5972 BPX-70, c) kortscan på Agilent 5975 BP-20, d) kortscan på agilent 5972 BPX-70. Alle spektra er av 18:1 n-9

4.3 Eksempler fra databehandlingen

Av plasshensyn er det umulig å gi en fullstendig gjennomgang av databehandlingen, men noen typiske eksempler på bruk av kurveoppløsning og på identifikasjon av forbindelsene er gitt i avsnittene under.

4.3.1 Kurveoppløsning av utvalgte overlappende topper

På begge kolonner var det ofte nødvendig å benytte kurveoppløsning for å få ut rene spektra og nøyaktige retensjonstider eller for å fjerne forstyrrende signaler (f.eks. når en liten topp eluerer på halen av en stor topp). En enkel gjennomgang av teorien for kurveoppløsning er gitt i seksjon 2.3.2. Tre typiske eksempler der kurveoppløsning ble brukt er gitt under.

Eksempel 1

Figur 4.8 viser overlapp mellom 20:4 n-3 og 22:1 n-11 på BPX-70. Ut fra TIC-signalet (Figur 4.8a) kan det være vanskelig å se at det ikke er en ren topp, men ionekromatogrammet (Figur 4.8b) viser tydelig at det er to topper. S1 og S2 markerer de antatt reneste spektrene bestemt av metoden beskrevet i [46]. Tilsvarende markerer de tykke linjene (m/z 79 og 83) de antatt mest selektive ionene. Hverken de foreslåtte spektrene eller de foreslåtte ionene er i dette tilfellet 100% selektive. I dette tilfellet ble problemet løst opp ved å bruke S1 og S2 i ligning 8. Den negative profilen av den ene toppen i figur 4.8c skyldes at spektrene ikke har vært 100% rene, men etter raffineringen beskrevet i 2.3.2 er negativiteten fjernet (Figur 4.8d). Spektrene (kortscan) for de to toppene etter raffineringen er vist i figur 4.8e og f, og de stemmer godt overens med en n-3 PUFA og en MUFA.

Figur 4.8) Eksempel på kurveoppløsning anvendt på 20:4 n-3 og 22:1 n-11 på BPX-70. (a) TIC-signalet, (b) ionekromatogrammene, (c) oppløste profiler etter anvendelse av ligning 8, (d) profilene etter raffinering, (e) Spekteret venstre topp etter raffinering, (f) spekteret av høyre topp.

Eksempel 2:

Det andre eksempelet (Figur 4.9) er av overlapp mellom 20:4 n-3 og en furanfettsyre på BP-20. Her finnes det ioner som er tilnærmet 100% selektive for de to toppene. I tillegg er toppene godt nok separert til at det kan hentes ut rene spektra (S1 og S2). Problemet kan derfor løses både av ligning 7 og 8. Problemet ble løst ved å anvende ligning 7. Siden ionene (m/z 79 og 151) er selektive er den første oppløsningen (figur 4.9c) tilnærmet perfekt og raffineringen (figur 4.9d) har minimal virkning. De oppløste spektrene er vist i figur 4.9e og f. Overlapp mellom furanfettsyre nr 7 og 20:4 n-6, og mellom furanfettsyre nr 10 og 22:4 n-6 ble løst på tilsvarende måte.

Eksempel 3:

Dette eksempelet viser overlapp mellom 18:3 n-4 og en interferent med ukjent struktur (NFA-288). Ut fra TIC-signalet (Figur 4.10a) er det umulig å se at det ikke er en ren topp og det kromatografiske overlappet er så stort at S1 og S2 ikke er egnet som startestimater (figur 4.10b). Men i dette tilfellet finnes det selektive ioner (m/z 79 og 187) som kan brukes til å løse problemet ved hjelp av ligning 7. Bidraget fra interferenten kan derfor fjernes fra spekteret av 18:3 n-4 (Figur 4.10e).

Figur 4.9: Eksempel på kurveoppløsning anvendt på 20:4 n-3 og en furanfettsyre (Furan 8) på BP-20. (a) TIC-signalet, (b) ionekromatogrammene, (c) oppløste profiler etter anvendelse av ligning 7, (d) profilene etter raffinering, (e) Spekteret venstre topp etter raffinering, (f) spekteret av høyre topp.

Figur 4.10: Eksempel på kurveoppløsning anvendt på 18:3 n-4 og en ukjent forbindelse (UNK-288) på BP-20. (a) TIC-signalet, (b) ionekromatogrammene, (c) oppløste profiler etter anvendelse av ligning 7, (d) profilene etter raffinering, (e) Spekteret venstre topp etter raffinering, (f) spekteret av høyre topp.

4.3.2 Identifikasjon av forbindelser

Når det søkes treff av et spekter mot biblioteket, vil det primært brukes to plott til å vurdere resultatene. Plottene viser likheten mellom spekteret man ønsker å identifisere og biblioteksspekteret som er valgt i listen. Korrelasjonsplottet er normalt det som viser likheter mellom spektrene best, de vises i figurene 4.11a-13a. Figurene 4.11b-13b viser stolpediagram av total score (S_T) i synkende rekkefølge (formel 5) for forbindelsene i biblioteket som best tilsvarer toppen som skal identifiseres. Forbindelser med samme kode som den som er valgt vises med rødt. Man kan velge å sammenligne total match (spekter og retensjonsindeks) eller bare spekter. I denne oppgaven ble det hovedsakelig brukt total match. Det grønne feltet er grenseverdien for automatisk identifikasjon.

Hvis toppen er for lav, blir spekteret for dårlig, men hvis toppen er for høy, blir retensjonsindeksen unøyaktig. Så det er topper med medium signal som er egnet til å inkludere i bibliotekene som ble bygget opp.

I figur 4.11 er et eksempel (22:5 n-3) på tilfelle der det ikke er tvil fordi retensjonsindeksen er nøyaktig, de ca. 55 første spektrene er over grenseverdien for automatisk identifikasjon (det grønne feltet i figur 4.11b), og blant de ca. 60 første forbindelsene er det ingen andre forslag enn 22:5 n-3, den grønne linje på toppen (Figur 4.11b). Det kan man også se på figur 4.11a der korrelasjonskoeffisienten for de to plottene er lik 1 og det betyr at spekteret matcher tilnærmet 100% med forbindelsene fra biblioteket.

Figur 4.11: Eksempel der det ikke er tvil om identiteten (22:5 n-3)

Figur 4.12 viser et eksempel med DHA (22:6 n-3) fra kromatogram med 30 μ l fortynning på BPX-70 som er mindre tydelig. Spekteret har nesten perfekt korrelasjon med spektra av DHA i biblioteket (figur 4.12a). Likevel viser stolpediagrammene (figur 4.12b) at DHA (røde stolper) ikke er de som har best total score (S_T), og ingen av scorene for DHA er over grensen eller i nærheten i det hele tatt.

Hvis man vurderer kun stolpediagrammet, er det absolutt tvil om det er DHA (22:6 n-3), men i dette tilfelle vet vi at det er DHA fordi det er største toppen og prøven er produkt nummer 6 som er høy DHA og da forventer man at den største toppen skal være DHA. I slike tilfeller kan man ofte være ganske sikker på identifikasjonen ut fra massespekteret. Årsaken til den dårlige totalscoren for DHA er at toppen er skjev fordi den er svært stor. Derfor blir S_T for DHA lav selv om S_S er høy fordi S_R er lav (ligning 5 og figur 2.15). Forbindelsene som i dette tilfellet gav best treff (scorer over 90) var trans-isomerer av DHA som eluerer like etter cis isomeren. I tilfeller som dette kan en også sjekke den samme toppen fra 10µl prøven fra samme prøve for å se om den gir bedre treff dersom en er i tvil om identiteten. De store toppene vil være mer symmetriske i 10µl prøvene. Det er ikke topper som legges i biblioteket siden retensjonsindeksen er unøyaktig.

Figur 4.12: Eksempel der det er tvil om identiteten (22:6 n-3)

Et annet eksempel (20:1 n-9) er vist i figur 4.12. Her er stolpediagrammet (Figur 4.13b) ganske entydig, de ca. 35 beste treffene er på 20:1 n-9, men ingen av S_T verdiene er helt oppunder 100%. Årsaken til dette ser en i korrelasjonen mellom spektrene (Figur 4.13a) som

er dårlig. I dette tilfellet skyldes det at spekteret for toppen som identifiseres er av for lav kvalitet. Det kan også ses ved at det er verdier i test-spekteret som er under 0, noe som skyldes støy i dataene. Dette er heller ikke et spekter som er egnet til å legge i bibliotekene.

Figur 4.13: Et eksempel til på tilfelle med tvil

Det er også finnes tilfeller der hverken spekteret eller retensjonsindeksen passer, men da kan man være ganske sikker på at det ikke er den foreslåtte forbindelsen. Da må det legges vekt på en visuell vurdering av spektrene. F.eks. om det er negative signaler eller om det er signaler over antatt molekylarion eller andre topper som ikke forventes å være til stede, slik at en får vurdert om årsaken til at en ikke får treff i biblioteket skyldes dårlig kvalitet på spekteret eller om det er en ny forbindelse.

4.4 Beskrivelse av produkter

De forskjellige produktene varierte svært mye i sammensetning. Seks produkter som er representative for de forskjellige klassene er beskrevet under og kromatogrammer er vist i figur 4.14-4.19. Y-aksen i kromatogrammene er signalstyrke som kan vise styrke til fettsyrene i forhold hverandre og X-aksen er retensjonstid.

18/12 olje (produkt 18, 23 og 25)

Figur 4.14 er tatt fra produkt 23 (Lachsöl-kaspseln) som inneholder oljer med ca. 18% EPA og 12% DHA og det ser vi på kromatogrammet, men det inneholder ikke bare de to fettsyrene. Det inneholder mye andre mettede fettsyrer som 14:0, særlig 16:0 og 18:0 pluss de små andre mettede fettsyrer som 8:0 og 10:0. Det er også andre fettsyrer monoumettede (16:1

n-7 og 18:1 n-9) og en flerumettede fettsyrer (18:4 n-3). Dette er typiske oljer fra Syd-Amerika (Chile og Peru) og er en av de største produktkategoriene på markedet.

Figur 4.14: Produkt 23, Z0107-36 ("18/12-olje")

<u>33/23-konsentrat (produkt 10, 17 og 73)</u>

Produkt 73 (Omega-3) som vises på figur 4.15, er med 33% EPA og 23% DHA konsentrert. Det gav mest utslag på EPA og DHA og mye mindre andre fettsyrer i forhold til produkt 23. Forholdet mellom EPA og DHA er omtrent like for begge produkttypene (33/23-olje og 18/12-konsentrat). Disse produktene er typisk fremstilt ved destillasjon av 18/12-oljer. Ved å konsentrere EPA og DHA prosent fra 18/12-olje til 33/23-konsentrat fører til mindre andre uønskede fettsyrer som vi ser på kromatogrammene i figur 4.14 og figur 4.15.

Figur 4.15: Produkt 73, Z0107-44 ("33/23-konsentrat")

Høy EPA (produkt 9, 61 og 76)

Høy EPA (produkt 61, Pulse Cardiomax) gir stor utslag på EPA og lit mindre andre fettsyrer (Figur 4.16). Produktene med svær høy andel EPA viser større variasjon i kromatogrammene enn 18/12-oljene og 33/23-konsentratene. Noe som sannsynligvis skyldes større variasjoner i råstoff og produksjonsmetoder. Noen av disse produktene (f.eks. 76, Esapent) er fremstilt ved bruk av urea-felling, noen ganger kombinert med destillasjon.

Figur 4.16: Produkt 61, Z0107-41 (Høy EPA)

Høy DHA (produkt 6 og 65)

Det gjelder samme her at det gir høy utslag på DHA og lit mindre andre fettsyrer (produkt 6, Oligen DHA) (Figur 4.17). Produkter med svært høy andel DHA i forhold til EPA er typisk produsert fra alger.

Figur 4.17: Produkt 6, Z0107-29 (Høy DHA)

Blanding av vegetabilsk olje og DHA (produkt 5, DHA Neuromins)

Flere av omega-3 produktene på markedet er blandinger av marine oljer og vegetabilske oljer. Et slikt produkt er vist i figur 4.18, der det er et høyt utslag for DHA, men av fettsyrer som det er mye av i vegetabilske oljer, som 18:1 n-9 og korte mettede.

Figur 4.18: Produkt 5, Z0107-28 (Blanding av vegetabilsk olje og DHA)

Tran/Sel (produkt 8, 13, 27 og 77)

Tran (torskeleverolje) og selolje har relativt like fettsyreprofiler (Figur 3.1). Fettsyreprofilen til disse er blant de mest komplekse i studien. Et kromatogram av tran (produkt 77) er vist i figur 4.19. På grunn av det store antallet andre fettsyrer blir mengden av EPA og DHA relativt lav sammenlignet med de andre produktene.

Figur 4.19: Tran, Z0107-48 (Tran/Sel)

Korte mettetede fettsyrer som 8:0 og 10:0 finnes veldig lite i fiskeolje og det som eventuelt er til stede vil normalt forsvinne når EPA og DHA oppkonsentreres f.eks. med destillasjon. I Figur 4.18-19 kan man se lite utslag på de to fettsyrene, men de er fraværende i figur 4.19. Alle produktene som var pakket i kapsler som vi undersøkte gav utslag på 8:0 og 10:0 bortsett fra tran som var fra glassflaske. De ble heller ikke funnet i kontrollprøven (KP) fra Nofima. En mulig forklaring kan derfor være at disse to fettsyrene kommer fra kapslene.

4.5 Identifikasjon av ukjente

De fleste forbindelsene som ble funnet var relativt vanlige fettsyrer som allerede fantes i de eksisterende bibliotekene som ble brukt som utgangspunkt, og de vanligste fantes også i standardblandingene som ble analysert sammen med prøvene. Noen av forbindelsene som ble funnet var mer spesielle og krevende å identifisere. En gjennomgang av de viktigste av disse er gitt under. En utfordring er at en del av de mindre vanlige forbindelsene hadde forskjellig kode i bibliotekene som ble brukt som utgangspunkt. En forbindelse kan f.eks. ha være identifisert i BP-20-bibliotekene, mens den har vært rapportert som ukjent, og med en annen kode, i BPX-70-bibliotekene.

4.5.1 Ukjente spekter i BP-20

1) ALC-152: alkohol (Figur 4.20)

Spektra ALC-152, som kun ble funnet i nivåer under 0,1%, ble identifisert ved søk i et generelt bibliotek med massespektre fra National Institute of Standard and Technology, som en mulig 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (fytol, alkoholanalogen til fytansyre). CAS nummeret for denne forbindelsen er 102608-53-7. Sjekk i de gamle bibliotekene viste at denne stort sett er funnet i alger tidligere, noe som stemmer bra med at den i denne studien ble funnet i krillolje, siden krill lever av plankton. To andre forbindelser ALC-291 og ALC-295 har lignende spektra (med høy m/z 278) og forekommer sammen med ALC-152. Det er derfor sannsynlig at disse er isomerer av ALC-152, men spektrene var av for dårlig kvalitet til å si noe mer.

Figur 4.20: ALC-152 (tidligere UNK-152)

- 2) <u>UNK-288</u> som er under nivået 0,1%, er ikke en fettsyre.
- 3) <u>UNK-308</u> (Figur 4.21) ble kun funnet i nivåer under 0,1% og har molekylarion som indikerer 15:1. Men spekteret for øvrig ligner på en mettet fettsyre. Retensjonsindeksen er under 15, noe som tyder på at det ikke er 15:1. En mulig forklaring kan være være en syklisk 15:0.

Figur 4.21: UNK-308

4) <u>UNK-311</u> ble kun funnet i nivåer 0,1% og det mangler godt fullscan spektrum. Spektrene som ligner mest er 20:4 n-6, 22:5 n-6 og 18:4 n-4. Alle disse har første dobbeltbinding i

 $\Delta 4$ eller $\Delta 5$ -posisjon (som betyr mer enn ω -posisjonen for hvordan fingeravtrykksområdet i spekteret ser ut). Spekteret ble funnet i samme prøve som 19:5 n-3, så mulig dette er en annen 19-fettsyre med 4-5 dobbeltbindinger. Mulige strukturer kan være 19:4 n-6 eller 19:4 n-4. Hvis det er en 19:4 passer FCL (1,22) bedre med FCL for 18:4 n-4 (1,29) enn for 20:4 n-6 (1,12).

5) <u>UNK-314</u> (Figur 4.22) som er på 0,2%, er sannsynligvis 19:5 n-3 fordi vi har riktig α og ω-ion, FCL (1,82) er lik 20:5 (1,81) og 21:5 (1,86).

Figur 4.22: POU-314 (Tidligere UNK-314)

6) <u>POU-318</u> (Figur 4.23) ble funnet i nivåer på opp til 0,3%. Dette var tidligere en ukjent forbindelse men kan identifiseres som 24:6 n-3. De fleste spektrene har tydelige α og ω-ioner. FCL (2.14) er lik FCL for 22:6 n-3 (2.13).

Figur 4.23: POU-318

- <u>UNK-517</u> har likt spekter til FUR-190 / Furan9 [02-346] / 13-Methyl-12,15-epoxyeicosa-12,14-dienoic acid i BPX-70 biblioteket og rettes til denne. Den ble funnet i nivåer under 0,1%.
- <u>UNK-562</u> ble funnet i nivåer opp til 0.3%. Det eluerer svært sent og har masse 74. Det kan være en NMI PUFA. Godt fullscan spektrum mangler.
- 9) <u>POU-583</u> (Figur 4.24) ble kun funnet under 0,1%. Det eluerer mellom 20:4 n-6 og 20:3 n-3. Spekteret har svake ω-ioner som kan passe n-4 eller n-6 og har α-ion tilsvarende 20:4 n-6. Det kan være trans-isomer av 20:4 n-6. EPA i samme prøven hadde høy andel trans (E1d-isomeren).

Figur 4.24: POU-583

- <u>UNK-588</u> er under 0,1%. Det kan være en fettsyre, men masse 74 er svært lav. Godt fullscan spektrum mangler.
- 11) <u>POU-593</u> (Figur 4.25) har et spekter som ligner på 16:4 n-1. Den eluerer etter 16:4 n-1 men med relativt god avstand (0,17 ECL enheter). α-ionet for omega-6 er relativt høyt (11%). Det kan være 17:3 n-6 fordi FCL for en eventuell 17:3 n-6 (0,88) er lik FCL for 16:3 n-6 (0,87).

Figur 4.25: POU-593

4.5.2 Ukjente spekter i BPX-70

- <u>UNK-587</u> har et spektrum som tyder på 18:2 NMI. Den ble funnet i nivået under 0,1%. Molekylarionet for en evt. 18:2 er tydelig molekylarion, og forbindelsene som ligner mest er andre NMI diener (+trans 18:3 som har en viss likhet med NMI-diener). Den overlapper med 18:1 n-7, men ble funnet i et produkt som ikke har 18:1 (Produkt 9).
- <u>POU-569</u> tilsvarer POU-068 (18:5 n-1) på BP-20. Den ble funnet i nivået under 0,1% og Identifisert som 18:5 n-1 ved kryss-søk mot BP-20 biblioteket. α-ionet (m/z 180 er svakt men til stede).
- <u>UNK-576</u> tilsvarer POU-318 (24:6 n-3) på BP-20 og ble rettet til denne koden. ωionet (m/z 108) er tydelig. α-ionet (m/z 194) er relativt tydelig i noen av fullscan-

spektrene. Kryss-søk mot BP-20 biblioteket gir treff på PUFA med første dobbeltbinding fra karbonyl-gruppen i Δ 6-posisjon, inklusiv 24:6 n-3.

4) <u>POU-585</u> (figur 4.26) tilsvarer POU-059 (18:4 n-4) på BP-20. ω-ionet for n-4 (m/z 122) er tydelig, ω-ionet (m/z 180) er til stede, men knapt over støyen. Det ble funnet i nivået under 0,1%. Spekteret er relativt likt 20:4 n-6, som er en annen PUFA med samme antall dobbeltbindinger, og dobbeltbindingene i samme posisjon regnet fra karbonylgruppen (første er Δ5). Kryss-søk mot BP-20 biblioteket gav treff på 18:4 n-4. Fullscan-spektrene er noe påvirket av 20:0, som den overlapper med.

Figur 4.26: POU-059 (Tidligere POU-585)

5) <u>POU-586</u> ble kun funnet under 0,1% og tilsvarer POU-314 (19:5 n-3) på BP-20. Spekteret hadde tydelig ω-ion (m/z 108), α-ionet er til stede i fullscan spektrene, men knapt over støyen. Kryss-søk mot BP-20 biblioteket gav treff på 19:5 n-3 og 22:6 n-3. Begge disse har første dobbeltbinding fra karbonylgruppen i Δ-4 posisjon. FCL (1,53) stemmer med 20:5 n-3 og 21:5 n-3.

4.6 Beskrivelse av bibliotekene med ECL-kart

Det ble opprettet to bibliotek BP-20 og BPX-70. Liste over hvilke forbindelser som finnes i de to bibliotekene, deres retensjonstider, deres retensjonsindeks og standardavviket til retensjonsindeksene er gitt i appendix (tabell A.3). Disse listene er sortert etter retensjonstid på de respektive kolonnene. En samlet liste som gir oversikt over hvilke forbindelser som finnes i begge bibliotekene (tabell A.3) og hvilke som kun finnes i det ene biblioteket er gitt i tabell A.3 og A.4. En oversikt over hva som ble funnet i de enkelte prøvene ved kortscan på BP-20-kolonnen er gitt i Appendiks A.6. Dette er den betingelsen antas å kunne detektere flest forbindelser.

Kart over ECL-verdier for de enkelte bibliotekene er gitt i figur 4.27 (BP-20) og 4.28 (BPX-70). Dette er en grafisk fremstilling av verdiene som er gitt i appendiks (tabell A.3). Toppene i ECL-kartene er vist med en bredde ved halve høyden på 0,025 ECL-enheter. Det er ca. den bredden vi hadde på symmetriske topper på begge kolonnene. Så topper som overlapper i retensjonskartene vil sannsynligvis også overlappe i virkeligheten. I ECL kartene er det kun topper i intervallet fra ECL 12 til 27 som er vist. Det som kommer før 12 er bare 8:0 og 10:0 og en ukjent etter 27. Da var det ikke vits å ta større intervall av retensjonsindeks. Toppene blir skilt med farge kode etter fettsyrefamilie, f.eks. har alle mettede rettkjedete fettsyrer (SAN) fått rødfarge.

I tabell A.3 ser vi at vi har fått 133 forbindelser av 1270 spekter på BPX-70 kolonnen og 143 forbindelser av 1696 spekter på BP-20 kolonnen. Følsomheten på instrumentet som ble brukt med BP-20 er bedre enn det som ble brukt på BPX-70. Derfor finnes det flere topper på BP-20. Men det er også slik at en del enumettede fettsyrer ikke separeres godt på BP-20. Derfor finner noen av disse på BPX-70 som ikke finnes på BP-20. Så er det også en mulighet for at noen av de minste toppene kan ligge skjult under større slik at de ikke vil ses på den ene kolonnen.

Tabell A.4 viser hvilke forbindelser som ble funnet på BPX-70 men som ikke ble funnet på BP-20 og omvendt hvilke forbindelser som ble funnet på BP-20 som ikke ble funnet på BPX-70. Det er 27 forbindelser som ble funnet i BPX-70 og 37 forbindelser i BP-20.

Utover det som er kommentert om nye og ukjente forbindelser i seksjon 4.5 er det noen enkeltforbindelser som kan ses i ECL-kartene som er verdt å kommentere:

I begge ECL-kartene (Figur 4.27 og 4.28) finner vi trans isomer av både EPA og DHA. Trans isomerer for EPA kalles for E1a, E1b, E1c og E1d. På BPX-70 kolonnen (Figur 4.28c)

mangler vi E1c. Det er sannsynlig at den ble skjult under E1d. Trans isomerer til DHA kalles for D1a, D1b, D1c, D1d og D1e. På BP-20 kolonnen ser vi ikke D1c og det kan være samme forklaringen som det var på E1c at D1c skjuler under D1d, men vi kan finne alle trans isomerene for DHA på BPX-70 kolonnen. Kodene som E1a-E1d og D1a-D1e er gitt fordi vi ikke vet hvilke av dobbeltbindingene som har trans geometri og vi kan derfor ikke gi en fullstendig struktur.

Chol-Degr (OTH-269) (Figur 4.27c) er en kolestdien som sannsynligvis kommer fra nedbrytning av kolesterolet i metanoanalysen som ble utført før prøvene ble analysert på GC-MS.

På ECL-kartet for BPX-70 er det en ukjent 18:2 (DIU-587) som overlapper nesten 100% med 18:1 n-7. Denne vil normalt ikke kunne ses da den i de fleste prøver er liten i forhold til 18:1 n-7. Den ble funnet i en prøve som ikke hadde 18:1.

Vi har en ukjent 18:2 (DIU-568) som overlapper med 18:2 n-4. Denne har helt forskjellig spekter med basetopp (høyeste topp i spekteret) på m/z 81, men i de fleste tilfeller så det ut til at 18:2 n-4 også var til stede i mer eller mindre grad. Det er derfor usikkert om vi har et rent spekter av den og om det er en 18:2. Molekylarionet indikerte at den var en 18:2-isomer, men det kan komme fra overlappende 18:2 n-4.

Bibliotekene inneholder også forbindelser som var i standardblandingene, men som ikke ble funnet i omega-3 produktene. Disse er:

- De mettede 19:0, 21:0, 23:0, 25:0, 26:0, 27:0 og 28:0
- n-1 monoener: 11:1 n-1, 12:1 n-1 og 13:1 n-1
- Monoumettede trans-fettsyrer: 16:1 n-7 t og 18:1 n-9 t
- Trans isomerer av 18:2: 18:2 ct og 18:2 ct
- Trans-isomerer av 18:3 n-3: 18:3 n-3 cct, 18:3 n-3 ctc og 18:3 n-3 tcc
- 19:2 n-6 og 22:3 n-3.

Figur 4.27a:. ECL-kart over BP-20 bibblioteket i området 12-17.

Figur 4.27b: ECL-kart over BP-20 bibblioteket i området 17-22.

Figur 4.27c; ECL-kart over BP-20 bibblioteket i området 22-27.

Figur 4.28a: ECL-kart over BPX-70 bibblioteket i området 12-17.

Figur 4.28b: ECL-kart over BPX-70 bibblioteket i området 17-22.

Figur 4.28c: ECL-kart over BPX-70 bibblioteket i området 17-22.

4.7 Test av biblioteket på produkter fra rogn/melke

Biblioteket som var bygget opp for BPX-70 kolonnen ble testet på et ekstrakt av rogn og melke fra sild og fraksjoner av dette ekstraktet etter bruk av ureafelling. Detaljer om fremstillingen av de tre produktene finnes i masteroppgaven til Thea Nguyen [50]. Dette er litt spesielt produkter i forhold til de andre produktene som ble studert, fordi det er produsert fra et fosfolipid og ikke fra triglyserid. I tillegg ble det brukt ureafelling etter hydrolyse av ekstraktet. Krillproduktet (Prøve 79) som ble studert er også hovedsakelig fosfolipid, men det er ikke brukt ureafelling på det.

Prøvene ble analysert på BPX-70 med kortscan og fullscan som beskrevet i metodedelen. I motsetning til de andre prøvene inneholder denne prøven en indre standard (23:0 FAME). Kromatogrammer av det ufraksjonerte ekstraktet, fraksjon med oppkonsentrert PUFA og fettsyrene som ble bundet i ureakrystaller er vist henholdsvis i figur 4.29a, b og c. Rapporter av de samme kromatogrammene er vist i appendiks, henholdsvis i tabell A.5.1, A.5.2 og A.5.3.

Forbindelsene i prøvene ble identifisert med den automatiske søkerutinen i Chrombox Q anvendt med det nye bibliotekt for BPX-70. Alle forbindelsene ble indentifisert unntak av en fettsyre, iso-17:0. Denne fettsyren finnes i BP-20 biblioteket, så den finnes i omega-3 produktene som ble analysert. På BPX-70 overlapper den med 16:1 n-7, som forklarer hvorfor den ikke ble detektert i de andre produktene. Men i produktene fra rogn/melke var forholdet mellom iso-17:0 og 16:1 n-7 stort nok til at den ble detektert.

Det ble også funnet noen andre topper som ikke er fettsyrer. Dette var nedbrytningsprodukter av kolesterol og plasmalogener (en type fosfolipider). Det er naturlig at disse ikke forekommer i omega-3 produktene, som er produsert fra triglyserid-oljer og har lavt innhold av kolesterol. Men ekstraktene fra rogn og melke som inneholder høye nivåer både av fosfolipider og kolesterol.

Figur 4.29:Kromatogramer av (a) råekstrakt av rogn/melke fra sild, (b) fraksjon med oppkonsentrert PUFA etter ureafelling (c) fraksjon som ble bundet i ureakrystallene ved ureafellingen.

5 Konklusjoner

I denne oppgaven ble det samlet spektra og retensjonsindekser til fettsyremetylestre som ble organisert i databaser. Det ble brukt to forskjellige GC-kolonner (BP-20 og BPX-70) og det ble opprettet et bibliotek for hver kolonne. Det ble funnet 143 forbindelser på PB-20kolonnen og 133 forbindelser på BPX-70-kolonnen. Totalt ble det funnet 172 forbindelser. 104 av disse ble funnet på begge kolonnene, 39 ble kun funnet på BP-20 og 29 ble kun funnet på BPX-70. Biblioteket for BP-20 kolonnen inneholder totalt 1696 spektra og biblioteket for BPX-70 inneholder 1270 spektra.

Det ble funnet eller identifisert 13 nye forbindelser på BP-20-kolonnen, og tilsvarende 5 nye forbindelser på BPX-70-kolonnen. De ukjente på BP-20-kolonnen med fullstendig identifikasjon var fytol, 19:5 n-3, 24:6 n-3 og Furan 9. PÅ BPX-70 var det relativt sikkre identifikasjoner av 18:5 n-1, 24:6 n-3, 18:4 n-4 og sannsynligvis 19:5 n-3.

Retensjonstider og retensjonsindekser for de samme forbindelsene hadde noe høyere variasjon på BP-20 enn på BPX-70. Variasjonen målt i prosent forskjell mellom høyeste og laveste verdi var ca. ti ganger så høy for retensjonstider som for retensjonsindekser. På BP-20 var det en klar trend til at både retensjonstid og retensjonsindeks for den mest polare fettsyremetylesteren sank gjennom sekvensen. Tilsvarende ble ikke sett på BPX-70. De to kolonnene hadde omtrent lik separasjonseffektivitet i det mest kritiske området av kromatogrammet (fra ca 18:0 og utover) med separasjonsnummer (SN) mellom 15 og 20. Det var en tendens til at SN sank med økende kjedelengde på BP-20 men ikke på BPX-70.

Produkter med sin naturlige fettsyreprofil som tran, selolje og 18/12-oljer inneholdt flere forbindelser enn produkter der EPA og DHA var oppkonsentrert. Jo mer produktet er konsentrert for EPA og DHA jo mindre har vi av andre fettsyrer. Det var derfor lavere antall av andre fettsyrer i gruppene Høy DHA og Høy EPA og de kromatografiske toppene var typisk renere og spektrene var av bedre kvalitet i disse.

Videre arbeid:

En del forbindelser ble funnet på kun den ene kolonnen. Siden vi vet hvilke forbindelser dette er og vet hvilke prøver de finnes i vil det være mulig å lete etter disse forbindelsene på den kolonnen de ikke finnes. Det er ikke sikkert det vil være mulig å hente ut et rent spekter eller en presis retensjonsindeks av alle, men det kan være mulig å si noe om hvilke forbindelser de evt. overlapper med. Når det gjelder forbindelser som mangler på BP-20 kan vi være ganske sikre på at de mangler på grunn av kromatografiske overlapp siden den kolonnen ble brukt på instrumentet med best følsomhet. Manglende forbindelser på BPX-70 kan skyldes både kromatografisk overlapp eller at instrumentet ikke har vært følsomt nok til å detektere de minste. Det er også en del forbindelser med delvis identifikasjon som det går an å jobbe videre med for å identifisere fullt ut. Men det vil være krevende siden disse kun forekommer i svært lave nivåer.

6 Referanser

- 1. C. Sciotto and S.A. Mjøs, *Trans Isomers of EPA and DHA in Omega-3 Products on the European Market*. Lipids, 2012. **47:** p. 659-667.
- Shahidi, F. and U.N. Wanasundara, *Omega-3 fatty acid concentrates: Nutritional aspects and production technologies.* Trends in Food Science & Technology, 1998. 9: p. 230-240.
- 3. Akoh, C.C. and D.B. Min, *Food Lipids, Chemistry, Nutrition, and Biotechnology*. 3.utg. Taylor and Francis group, N.Y. USA, 2008.
- 4. Korsnes, B., *Mat og helse* Cappelen akademisk, Oslo, Norge, 2009.
- 5. Lindberg, F.A., *Mat for bedre helse* Gyldendal, Oslo, Norge, 2008..
- 6. Mjøs, S.A., Interpretation of chromatographic and mass spectrometric data from analyses of fatty acid methyl esters, (Doktoravhandling), Universitetet i Bergen, 2006.
- 7. Wahl, H.G., M. Liebich, and A. Hoffmann, *Identification of fatty acid methyl esters as minor components in fish oil by multidimensional GC-MS: New furan fatty acids.* Gerstel Application Note, 1993.
- 8. Anon., *The nomenclature of lipids*. Journal of Lipid Research, 1978. **19**: p.114-128.
- 9. Bays, H.E., *Safety Considerations with Omega-3 Fatty Acid Therapy.* The American Journal of Cardiology, 2007. **99**: p. S35-S43.
- 10. Skoog, D.A., F.J. Holler, and S.R. Crouch, *Principles of Instrumental Analysis*. 6.utg. Thomson Brooks/Cole, USA, 2007.
- 11. Nes, M., H. Muller, and J. Pedersen, *Ernæringslære*. 5.utg. Landsforeningen for kosthold og helse, Olso, 2001.
- 12. Wall, R., et al., *Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids.* Nutrition Reviews, 2010. **68**: p. 280-289.
- 13. von Schacky, C., *The role of omega-3 fatty acids in cardiovascular disease*. Current Atherosclerosis Reports, 2003. **5**: p. 139-145.
- Haugsgjerd, B.O., Ekstraksjon av feit med høgt innhald av fosfolipid og omega-3 feittsyrer frå frysetørka silderogn (Clupea harengus) ved bruk av løysemiddel som er godkjende til framstilling av næringsmiddel (Masteroppgave), Universitetet i Bergen, 2008
- 15. Horrobin, D.F., *Essentiality of oils and fats for human nutrition and disease.* In: Modern Development in Food Lipids (*Ed. V.Shukla & S. Kochhar*) International Food Science Centre, Lyngby, Denmark, 1997.
- 16. Thi Vu, K.A., *Fettsyresammensetning og Kvalitetsaspekter av kommersielle Krilloljeprodukter*, (Masteroppgave) Universitetet i Tromsø 2012.
- 17. Robles, M.A., et al., *Downstream processing of algal polyunsaturated fatty acids.* Bioseparation, 1998. **16**: p. 517-580.
- 18. Shahidi, F. and U.N. Wanasundara, *Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions.* Food Chemistry, 1998. **65**: p. 41-49.

- 19. Ruyter, B., et al., *Lite oksiderte omega-3 oljer og potensielle helsefordeler* (Rapport), Nofima, Tromsø, 2010.
- 20. Harris, D.C., *Quantitative Chemical Analysis, 7. utg.* USA: W. H. Freeman and company, N.Y., USA, 2007.
- 21. Lind-Larsen, K., *Alkylfenolers innvirkning på glyserofosfolipidmembraner og kolesterol i torskehjerne* (Masteroppgave) Universitetet i Bergen, 2003.
- 22. Morken, P.H., Sammenhenger mellom gasskromatografisk retensjon og fysikalskkjemiske egenskaper for miljøgifter (Masteroppgave) Universitetet i Bergen, 2012.
- 23. Mcnair, H.M. and J.M. Miller., *Basic gas chromatography* John Wiley & Sons, Canada, 1998
- 24. Ettre, L.S., *Nomenclature for chromatography*. Pure and Applied Chemistry., 1993. **65**: p.819-872.
- 25. Kováts, E., Gas-chromatographishe Charakterisierung organischer Verbindungen. Teil
 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone.
 Helvetica Chimica Acta, 1958. 41: 1915-1932.
- 26. Skartland, L.K., M. Chhaganlal, and S.A. Mjøs, *Transfer of retention patterns in gas* chromatography using response surface methodology in XIII Conference on Chemometrics in Analytical Chemistry (CAC), Budapest, Ungarn, 2012.
- 27. Mjøs, S.A. and O. Grahl-Nielsen, *Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters.* Journal of Chromatography A., 2006. **1110**: p.171-180.
- 28. Koht, E. and S. Nome, *Mikrobølgeassistert derivatisering av triglyserider og frie fettsyrer, samt stabilitetsstudier av hydroksyfettsyremetylestere*, (Masteroppgave) Universitet for miljø- og biovitenskap, 2011.
- 29. Woodford, F.P. and C.M. van Gent, *Gas-liquid chromatography of fatty acid methyl esters: the "carbon-number" as a parameter for comparison of columns.* J. Lipid Res., 1960. **1**: p. 188-191.
- 30. Miwa, T.K., et al., *Gass Chromatographic Characterization og Fatty Acids Identification Constants for Mono- an Dicarboxylic Methyl Esters.* Analytical Chemistry, 1960. **32**: p. 1739-1742.
- Stránsky, K., T. Jusík, and A. Vítek, Standard equivalent chain length values of monoenic and polyenic (methylene interrupted) fatty acids. J. High Resol. Chromatogr., 1997. 20: p. 143-158.
- 32. Smith, R.M., Understanding Mass Spectra Wiley, N.J. USA, 2004.
- 33. Pavia, D.L., et al., *Introduction to Spectroscopy*. 4.utg. Brooks/Cole, Belmont, CA, USA, 2009.
- 34. Downard, K., *Mass spectrometry : a foundation course*, Royal Society of Chemistry, Cambridge, UK, 2004.
- 35. Brauner, A., H., Budziewicz, and B. W., *Studies in chemical ionization mass spectrometry. 5. localization of homoconjugated triene and tetraene units in aliphatic-compounds.* Organic mass spectrometry, 1982. **17**: p.161-164.
- Fellenberg, A.J., et al., Simple mass spectrometric differentiation of the n-3, n-6 and n-9 series of methylene interrupted polyenoic acids. Biomed. Environ. Mass Spectrom., 1987. 14: p.127-130.

- 37. Hejazi, L., et a, *Discrimination Among Geometrical Isomers of ?-Linolenic Acid Methyl Ester Using Low Energy Electron Ionization Mass Spectrometry.* Journal of the American Society of Mass Spectrometry, 2009. **20**: p.1272-1280.
- 38. Holman, R.T. and J.J. Rahm, *Analysis and characterization of polyunsaturated fatty acids.* Progress in the Chemistry of Fats and other Lipids, 1966. **9**: p. 13-90.
- 39. Odham, G. and E. Stenhagen, *Fatty acids, in Biochemical applications of mass spectrometry* (ed: G.R. Wallace) Wiley: N.Y. USA., 1972.
- 40. Mjos, S.A., *The prediction of fatty acid structure from selected ions in electron impact mass spectra of fatty acid methyl esters.* European Journal of Lipid Science and Technology, 2004. **106**: p. 550-560.
- 41. Mjøs, S.A. and J. Pettersen, *Determination of trans double bonds in polyunsaturated fatty acid methyl esters from their electron impact mass spectra*. Eur. J. Lipid Sci. Technol., 2003. **105**: p.156-164.
- 42. Wahl, H.G., et al., *Identification of furan fatty acids in human blood cells and plasma by multi-dimensional gas-chromatography-mass spectrometry.* J. Chromatography A, 1995. **697**: p.435-459.
- 43. Mjøs, S.A., *Quantification of linolenic acid isomers by gas chromatography-mass spectrometry and deconvolution of overlapping chromatographic peaks*. Eur. J. Lipid Sci. Technol., 2004. **106**: p.550-560.
- 44. de Juan, A. and R. Tauler, *Chemometrics applied to unravel multicomponent processes and mixtures. Revisiting latest trends in multivariate resolution.* Anal. Chim. Acta, 2003. **500**: p.195-210.
- 45. Mjos, S.A., The use of spectral information for quantification of overlapping chromatographic peaks. Some examples from GC-MS analyses of fatty acid methyl esters, in 27th International Symposium on Capillary Chromatography: Riva del Garda, Italia, 2004.
- 46. Grande, B.V. and R. Manne, *Use of convexity for finding pure variables in two-way data from mixtures.* Chemometrics and Intelligent Laboratory Systems, 2000. **50**: p.19-33.
- 47. Gabrielsson, J., N.O. Lindberg, and T. Lundstedt, *Multivariate methods in pharmaceutical applications.* Journal of Chemometrics 2002. **16**: p. 141-160.
- 48. Mjos, S.A., Properties of trans isomers of eicosapentaenoic acid and eicosahexaenoic acid methyl esters on cyanopropyl stationary phases. J. Chromatography A 2005. **1100**: p.185-192.
- 49. Mjos, S.A., *Two-dimensional fatty acid retention indices*. J. Chromatography A, 2004. **1061**: p.201-209.
- 50. Nguyen, T., *Produksjon av EPA-og DHA-konsentra fra dilderogn og sildemelke ved hjelp av ureakompleksering* (Masteroppgave) Universitetet i Bergen, 2012.

Appendiks

Blanding	Innhold
Mettet FAME	12:0, 14:0, 15:0, 16:0, 17:0, 18:0, 19:0, 20:0, 21:0, 22:0, 24:0, 25:0, 26:0, 27:0, 28:0
GLC-793	12:0, 14:0, 14:1 n-5, 15:0, 16:0, 16:1 n-7, 17:0, 17:1 n-7, 18:0, 18:1 n-9, 18:2 n-6, 18:3 n-6, 18:3 n-3, 20:0, 20:1 n-9, 20:2 n-6, 20:3 n-6, 20:4 n-6, 20:3 n-3, 20:5 n-3, 22:0, 22:1 n-9, 23:0, 22:4 n-6, 22:5 n-3, 24:0, 22:6 n-3, 24:1 n-9
#1	11:1 n-1, 12:1 n-1, 13:1 n-1, 14:1 n-5 t, 16:1 n-7 t, 17:1 n-7 t, 18:1 n-12, 18:1 n-7, 18:2 n-6 tt, 19:1 n-9, 19:1 n-9 t, 19:2 n-6, 20:1 n-15, 20:3 n-3, 22:3 n-3
#2	18:3 n-6 cct, 18:3 n-6 ctc, 18:3 n-6, tcc, 20:3 n-6 cct, 20:3 n-6 ctc, 20:3 n-6 tcc.
#3	18:2 n-6 ct, 18:2 n-6 tc, 19:2 n-6 ct, 19:2 n-6 tc, 20:2 n-6 ct, 20:2 n-6 tc, 22:2 n-6 ct, 22:2 n-6 tc
#4	Mono- og di-trans isomerer av konjugert linolensyre (teknisk blanding)
#5	16:1 n-7 t, 18:1 n-9 t, 18:2 n-6 tt, 18:2 n-6 ct, 18:2 n-6 tc, 18:3 n-3 cct, 18:3 n-3 ctc, 18:3 n-3 tcc
#6	18:3 n-3 cct, 18:3 n-3 ctc, 18:3 n-3 tcc, 20:3 n-3 cct, 20:3 n-3 ctc, 20:3 n-3 tcc, 22:3 n-3 cct, 22:3 n-3 ctc, 223 n-3 tcc
#7	Cis isomerer av konjugert linolensyre (teknisk blanding)
#8	20:5 n-3 cccct, 20:5 n-3 ccctc, 20:5 n-3 cctcc, 20:5 n-3 ctccc, 20:5 n-3 tcccc, 22:6 n-3 ccccct, 22:6 n-3 ccccct, 22:6 n-3 cccccc, 22:6 n-3 ccccccc, 22:6 n-3 cccccc, 22:6 n-3 ccccccc, 22:6 n-3 cccccc, 22:6 n-3 ccccccc, 22:6 n-3 ccccccccc, 22:6 n-3 ccccccccccccccccccccccccccccccccccc

Tabell A.1 Kvalitative blandinger

* Geometri av dobbeltbindingene er beskrevet med c/t der første bokstav angir dobbeltbindingen nærmest karboksylgruppen. Dersom geometri ikke er angitt er alle dobbeltbindinger cis.

Tabell A.2: Oversikt over sekvenser

		Betingelser / Filnavn						
Posisjon	Prøver	Mengd e	BPX-70 kortscan	BPX-70 fullscan	BP-20 fullscan	BP-20 kortscan		
1	Mettet FAME ^a		ZW1220-01	ZW1223-01	ZW0102- 01a/b ^b	ZW0107-01		
1	Mettet FAME		ZW1220-02	ZW1223-02	ZW0102-02a	ZW0107-02		
2	GLC-793		ZW1220-03	ZW1223-03	ZW0102-03a	ZW0107-03		
3	pr 5	10 uL	ZW1220-04	ZW1223-04	ZW0102-04a	ZW0107-04		
4	pr 6	10 uL	ZW1220-05	ZW1223-05	ZW0102-05a	ZW0107-05		
5	pr 8	10 uL	ZW1220-06	ZW1223-06	ZW0102-06a	ZW0107-06		
6	pr 9	10 uL	ZW1220-07	ZW1223-07	ZW0102-07a	ZW0107-07		
7	pr 10	10 uL	ZW1220-08	ZW1223-08	ZW0102-08a	ZW0107-08		
8	pr 13	10 uL	ZW1220-09	ZW1223-09	ZW0102-09a	ZW0107-09		
9	pr 17	10 uL	ZW1220-10	ZW1223-10	ZW0102-10a	ZW0107-10		
10	pr 18	10 uL	ZW1220-11	ZW1223-11	ZW0102-11a	ZW0107-11		
11	pr 23	10 uL	ZW1220-12	ZW1223-12	ZW0102-12a	ZW0107-12		
12	pr 25	10 uL	ZW1220-13	ZW1223-13	ZW0102-13a	ZW0107-13		
1	Mettet FAME		ZW1220-14	ZW1223-14	ZW0102- 14a/b ^b	ZW0107-14		
2	GLC-793		ZW1220-15	ZW1223-15	ZW0102- 15a/b ^b	ZW0107-15		
13	pr 27	10 uL	ZW1220-16	ZW1223-16	ZW0102-16b	ZW0107-16		
14	pr 61	10 uL	ZW1220-17	ZW1223-17	ZW0102-17b	ZW0107-17		
15	pr 64	10 uL	ZW1220-18	ZW1223-18	ZW0102-18b	ZW0107-18		
16	pr 65	10 uL	ZW1220-19	ZW1223-19	ZW0102-19b	ZW0107-19		
17	pr 73	10 uL	ZW1220-20	ZW1223-20	ZW0102-20b	ZW0107-20		
18	pr 76	10 uL	ZW1220-21	ZW1223-21	ZW0102-21b	ZW0107-21		
19	pr 78	10 uL	ZW1220-22	ZW1223-22	ZW0102-22b	ZW0107-22		
20	pr 79	10 uL	ZW1220-23	ZW1223-23	ZW0102-23b	ZW0107-23		
21	Tran	10 uL	ZW1220-24	ZW1223-24	ZW0102-24b	ZW0107-24		
22	Nofima KP	10 uL	ZW1220-25	ZW1223-25	ZW0102-25b	ZW0107-25		
1	Mettet FAME		ZW1220-26	ZW1223-26	ZW0102-26b	ZW0107-26		
2	GLC-793		ZW1220-27	ZW1223-27	ZW0102-27b	ZW0107-27		
23	pr 5	30 uL	ZW1220-28	ZW1223-28	ZW0102-28b	ZW0107-28		
24	pr 6	30 uL	ZW1220-29	ZW1223-29	ZW0102-29b	ZW0107-29		
25	pr 8	30 uL	ZW1220-30	ZW1223-30	ZW0102-30b	ZW0107-30		
26	pr 9	30 uL	ZW1220-31	ZW1223-31	ZW0102-31b	ZW0107-31		
27	pr 10	30 uL	ZW1220-32	ZW1223-32	ZW0102-32b	ZW0107-32		
28	pr 13	30 uL	ZW1220-33	ZW1223-33	ZW0102-33b	ZW0107-33		
29	pr 17	30 uL	ZW1220-34	ZW1223-34	ZW0102-34b	ZW0107-34		
30	pr 18	30 uL	ZW1220-35	ZW1223-35	ZW0102-35b	ZW0107-35		
31	pr 23	30 uL	ZW1220-36	ZW1223-36	ZW0102-36b	ZW0107-36		
32	pr 25	30 uL	ZW1220-37	ZW1223-37	ZW0102-37b	ZW0107-37		
1	Mettet FAME		ZW1220-38	ZW1223-38	ZW0102-38b	ZW0107-38		
2	GLC-793		ZW1220-39	ZW1223-39	ZW0102-39b	ZW0107-39		
33	pr 27	30 uL	ZW1220-40	ZW1223-40	ZW0102-40b	ZW0107-40		
34	pr 61	30 uL	ZW1220-41	ZW1223-41	ZW0102-41b	ZW0107-41		
35	pr 64	30 uL	ZW1220-42	ZW1223-42	ZW0102-42b	ZW0107-42		
36	pr 65	30 uL	ZW1220-43	ZW1223-43	ZW0102-43b	ZW0107-43		
37	pr 73	30 uL	ZW1220-44	ZW1223-44	ZW0102-44b	ZW0107-44		
38	pr 76	30 uL	ZW1220-45	ZW1223-45	ZW0102-45b	ZW0107-45		

39	pr 78	30 uL	ZW1220-46	ZW1223-46	ZW0102-46b	ZW0107-46
40	pr 79	30 uL	ZW1220-47	ZW1223-47	ZW0102-47b	ZW0107-47
41	Tran	30 uL	ZW1220-48	ZW1223-48	ZW0102-48b	ZW0107-48
42	Nofima KP	30 uL	ZW1220-49	ZW1223-49	ZW0102-49b	ZW0107-49
1	Mettet FAME		ZW1220-50	ZW1223-50	ZW0102-50b	ZW0107-50
2	GLC-793		ZW1220-51	ZW1223-51	ZW0102-51b	ZW0107-51
43	Divmix 1,2,3		ZW1220-52	ZW1223-52	ZW0102-52b	ZW0107-52
44	18:3/20:3 n-6		ZW1220-53	ZW1223-53	ZW0102-53b	ZW0107-53
45	18,19,20,22:2		ZW1220-54	ZW1223-54	ZW0102-54b	ZW0107-54
46	tt/ct CLA		ZW1220-55	ZW1223-55	ZW0102-55b	ZW0107-55
47	C16,C18		ZW1220-56	ZW1223-56	ZW0102-56b	ZW0107-56
48	18,20,22:3 n-3		ZW1220-57	ZW1223-57	ZW0102-57b	ZW0107-57
49	cc CLA		ZW1220-58	ZW1223-58	ZW0102-58b	ZW0107-58
50	Trans EPA+DHA		ZW1220-59	ZW1223-59	ZW0102-59b	ZW0107-59
1	Mettet FAME		ZW1220-60	ZW1223-60	ZW0102-60b	ZW0107-60
2	GLC-793		ZW1220-61	ZW1223-61	ZW0102-61b	ZW0107-61
1	Mettet FAME		ZW1220-62	ZW1223-62	ZW0102-62	-
2	GLC-793		ZW1220-63	ZW1223-63	ZW0102-63	-
	pr 80°	10 uL	ZW1220-64	ZW1223-64	ZW0102-64	ZW0107-64
	pr 80°	30 uL	ZW1220-65	ZW1223-65	ZW0102-65	ZW0107-65

a) Blandingen med mettede FAME er analysert to ganger i begynnelsen av sekvensen. Det er kun den andre av disse prøvene som er benyttet i ECL-kalibreringer.

b) Ved fullscan på BP-20 ble det stopp i sekvensen. Prøvene ZW0102-14 og ZW0102-15 ble derfor kjørt to ganger. ZW0102-14a ble brukt i ECL-kalibrering for prøver merket a og ZW0102-14b ble brukt i ECL-kalibrering for prøver merket b.

c) Prøve 80 er analysert i egen sekvens på BPX-70 kortscan, BPX-70 fullscan og BP-20 fullscan. Filene ZW1220-62, ZW1223-62 og ZW0102-62 er da benyttet til ECL-kalibrering. For BP-20 kortscan ble den inkludert i hovedsekvensen og ZW0107-61 er da benyttet til ECL kalibrering.

Tabell A.3: En liste over begge kolonnene (BPX-70 og BP-20)

			BPX-70			BP-20	
Kode	Kortnavn	Antall	ECL	Standardavvik (ECL)	Antall	ECL	Standardavvik (ECL)
ALC-152	Branched alcohol	1	13,0195		2	13,6523	0,0001
ALC-291	Branched alcohol				1	13,2071	
ALC-295	Branched alcohol				2	15,6064	0,0006
DIU-027	18:2 n-6	28	19,0451	0,0040	34	18,6370	0,0028
DIU-028	20:2 n-6	20	21,0573	0,0035	22	20,6478	0,0026
DIU-029	22:2 n-6	4	23,0723	0,0034			
DIU-082	19:2 n-6	2	20,0512	0,0095	2	19,6385	0,0014
DIU-091	16:2 n-7	5	16,9673	0,0061	13	16,5975	0,0032
DIU-094	20:2 NMI				2	20,3325	0,0012
DIU-095	22:2 NMI				1	22,4185	
DIU-102	18:2 n-7	4	18,8594	0,0016	6	18,5134	0,0028
DIU-158	18:2 n-4	12	19,2631	0,0064	13	18,8420	0,0037
DIU-168	CLA (c9,t11)				1	19,5205	
DIU-169	CLA (t10,c12)				1	19,6382	
DIU-170	CLA (di-trans)				1	20,1059	
DIU-171	18:2 n-6 ct	4	18,8789	0,0093	1	18,6950	
DIU-172	18:2 n-6 tc	4	18,9565	0,0095	1	18,7714	
DIU-201	16:2 n-4	15	17,2531	0,0039	22	16,8305	0,0031
DIU-312	24:2 n-x				2	24,6921	0,0021
DIU-494	16:2 n-6	2	17,0185	0,0069	10	16,6366	0,0032
DIU-495	18:2 n-x				3	18,5666	0,0025
DIU-568	18:2	4	19,2645	0,0045			
DIU-581	20:2 (NMI)				20	20,4683	0,0025
DIU-587	x,x-18:2	2	18,4835	0,0048			
DIU-589	20:2 n-7	6	20,8506	0,0053			
DIU-590	20:2 n-x	5	21,2766	0,0081			
FUR-185	Furan4 [02-346]	3	19,9063	0,0042			
FUR-186	Furan5 [02-346]	12	20,8902	0,0078	24	20,5380	0,0027
FUR-188	Furan7 [02-346]	3	21,4764	0,0109	5	21,1539	0,0044
FUR-189	Furan8 [02-346]	12	21,9343	0,0068	11	21,5842	0,0040
FUR-190	Furan9 [02-346]	4	22,8978	0,0110	9	22,5514	0,0028
FUR-191	Furan10 [02-346]	13	23,4949	0,0084	16	23,1731	0,0031
FUR-192	Furan11 [02-346]	1	23,9654				
MOB-286	16:1 n-10, 7Me	4	16,9029	0,0055	13	16,8889	0,0032
MOB-289	MOB-286 Isom.				13	16,5437	0,0079
MOU-020	14:1 n-5	17	14,5977	0,0029	21	14,3859	0,0021
MOU-021	16:1 n-7	25	16,4722	0,0045	25	16,2605	0,0028
MOU-022	17:1 n-7	12	17,4725	0,0013	14	17,2564	0,0015
MOU-023	18:1 n-9	16	18,3885	0,0038	25	18,1873	0,0029
MOU-024	20:1 n-9	19	20,3869	0,0048	24	20,1832	0,0028
MOU-025	22:1 n-9	18	22,3997	0,0054	19	22,1943	0,0021
MOU-026	24:1 n-9	20	24,4070	0,0071	25	24,2106	0,0024
MOU-079	18:1 n-7	16	18,4762	0,0075	22	18,2611	0,0051
MOU-081	19:1 n-9	2	19,3876	0,0117	2	19,1887	0,0047

MOU-083	20:1 n-15	1	20,2295				
MOU-087	20:1 n-7	13	20,4847	0,0065	14	20,2714	0,0039
MOU-097	20:1 n-11	11	20,3298	0,0060	10	20,1428	0,0038
MOU-098	18:1 n-13	8	18,2316	0,0033			
MOU-167	18:1 n-9 t	2	18,2336	0,0078			
MOU-180	20:1 n-5	7	20,6256	0,0047	4	20,4043	0,0014
MOU-213	21:1 n-x	2	21,3024	0,0004			
MOU-240	23:1 n-9	4	23,3986	0,0103	1	23,1987	
MOU-247	19:1 n-12				8	19,1584	0,0027
MOU-255	16:1 n-5	9	16,6071	0,0041	11	16,3834	0,0033
MOU-258	18:1 n-5	12	18,6120	0,0066	13	18,3925	0,0038
MOU-262	22:1 n-11	11	22,3255	0,0089	29	22,1340	0,0049
MOU-271	22:1 n-7	7	22,4977	0,0042	11	22,2871	0,0031
MOU-274	16:1 n-11	23	16,2244	0,0046	15	16,1262	0,0033
MOU-275	16:1 n-9	10	16,3771	0,0069	12	16,1984	0,0037
MOU-277	18:1 n-11	9	18,3255	0,0041	2	18,1696	0,0094
MOU-278	18:1 n-6	4	18,5369	0,0033	6	18,3253	0,0027
MOU-279	18:1 n-4	6	18,6862	0,0018	5	18,4753	0,0018
MOU-280	16:1 n-3				4	16,5475	0,0023
MOU-297	16:1 n-x				2	16,5180	0,0008
MOU-310	18:1 n-x				10	18,5628	0,0020
MOU-327	17:1 n-6				5	17,3272	0,0056
MOU-340	15:1 n-x				12	15,2570	0,0042
MOU-341	16:1 n-7 t	4	16,2903	0,0079			
MOU-350	14:1 n-7				6	14,2678	0,0024
MOU-356	13:1 n-1	2	13,7080	0,0069	2	13,5050	0,0019
MOU-405	16:1 n-6	7	16,5475	0,0029			
MOU-407	16:1 n-4				2	16,4641	0,0029
MOU-413	18:1 n-3	4	18,7423	0,0029			
MOU-416	20:1 n-6	1	20,5472				
MOU-420	22:1 n-17	1	22,2402				
MOU-423	22:1 n-8	1	22,4350				
MOU-436	17:1 n-8	9	17,4284	0,0037	15	17,2214	0,0029
MOU-442	15:1 n-6				6	15,3189	0,0022
MOU-453	24:1 n-7	1	24,5253				
MOU-477	12:1 n-1	2	12,6920	0,0062	2	12,4898	0,0016
MOU-479	11:1 n-1	2	11,7170	0,0093	2	11,5929	0,0008
MOU-480	17:1 n-4	6	17,6831	0,0027	8	17,4673	0,0024
MOU-570	24:1 n-x	5	24,3240	0,0051			
MOU-571	24:1 n-x	3	24,2673	0,0105			
MOU-580	19:1 n-8	4	19,4281	0,0025	5	19,2176	0,0026
NFA-288	Unknown	7	19,7110	0,0038	9	19,1287	0,0028
OTH-178	Cholestdiene	2	27,3183	0,0103			
OTH-202	BHT				1	13,1063	
OTH-269	Chol. Degr.				1	26,4970	
POU-030	18:3 n-6	19	19,4792	0,0034	22	18,9339	0,0027
POU-032	18:3 n-3	23	19,8404	0,0037	28	19,2723	0,0031
POU-033	20:3 n-6	15	21,4878	0,0031	19	20,9077	0,0025
POU-034	20:3 n-3	17	21,8580	0,0032	20	21,2924	0,0024

POU-035	20:4 n-6	26	21,7818	0,0052	31	21,1242	0,0025
POU-036	20:5 n-3	14	22,6155	0,0029	24	21,7763	0,0035
POU-037	22:4 n-6	16	23,9007	0,0036	16	23,1695	0,0029
POU-038	22:5 n-3	29	24,7404	0,0049	36	23,8316	0,0037
POU-039	22:6 n-3	13	24,9968	0,0029	24	24,1199	0,0054
POU-046	16:3 n-4	15	17,7203	0,0045	18	17,1549	0,0031
POU-049	16:3 n-3				3	17,2609	0,0035
POU-050	18:3 n-4	10	19,7324	0,0046	11	19,1316	0,0031
POU-051	16:4 n-3	4	18,0729	0,0020	14	17,5495	0,0030
POU-052	16:4 n-1	4	18,3921	0,0068	23	17,7077	0,0030
POU-053	18:4 n-3	15	20,2857	0,0054	21	19,5727	0,0034
POU-054	20:4 n-3	8	22,3063	0,0076	20	21,5534	0,0028
POU-055	22:4 n-3				5	23,5746	0,0040
POU-056	18:4 n-1	4	20,4074	0,0067	22	19,6890	0,0033
POU-059	18:4 n-4	4	20,0369	0,0052	6	19,3523	0,0039
POU-062	22:3 n-3	2	23,8820	0,0113	2	23,3252	0,0022
POU-066	22:5 n-6	18	24,1415	0,0045	23	23,4501	0,0039
POU-067	24:5 n-3	19	26,7759	0,0038	14	25,8494	0,0033
POU-068	18:5 n-1	12	20,7292	0,0039	21	19,9146	0,0032
POU-069	21:5 n-3	22	23,7518	0,0063	19	22,8542	0,0030
POU-117	E1a (EPA-2)	2	22,2892	0,0020	3	21,7064	0,0010
POU-118	E1b (EPA-3)	2	22,5273	0,0020	8	21,9598	0,0036
POU-119	E1d (EPA-4)	17	22,7159	0,0058	12	22,1280	0,0026
POU-138	D1a (DHA-3)	3	24,6546	0,0084	2	24,0358	0,0033
POU-139	D1b (DHA-4)	2	24,8949	0,0025	18	24,2966	0,0036
POU-140	D1d (DHA-5)	4	25,1009	0,0060	9	24,4775	0,0032
POU-141	D1e (DHA-6)	16	25,2015	0,0077	7	24,5561	0,0058
POU-142	D1c (DHA-2)	2	25,0695	0,0011			
POU-163	18:5 n-3	2	20,8760	0,0329			
POU-173	18:3 n-3 cct	4	19,5490	0,0045			
POU-174	18:3 n-3 ctc	4	19,7182	0,0045			
POU-175	18:3 n-3 tcc	5	19,7573	0,0043			
POU-245	20:4 NMI	1	22,1116				
POU-314	19:5 n-3	5	21,5247	0,0064	14	20,8261	0,0027
POU-318	24:6 n-3	14	27,2392	0,0054	16	26,1468	0,0044
POU-472	20:5 n-x				1	22,1962	
POU-558	E1c (EPA-4)				12	22,0488	0,0035
POU-583	Unknown				4	21,2035	0,0030
POU-593	Unk PUFA				1	17,8809	
SAB-070	Pristanic acid	17	15,5438	0,0178			
SAB-071	Phytanic acid	16	16,7633	0,0051	13	16,9549	0,0047
SAB-072	i-16:0	11	15,5035	0,0071	11	15,5272	0,0026
SAB-073	ai-17:0	6	16,7095	0,0046			
SAB-074	i-17:0				4	16,5253	0,0029
SAB-076	i-18:0	9	17,4789	0,0034	12	17,4953	0,0019
SAB-077	ai-15:0	5	14,7102	0,0046	18	14,6778	0,0022
SAB-078	i-15:0	11	14,5080	0,0045	16	14,5328	0,0032
SAB-242	i-14:0	6	13,4958	0,0055	6	13,5053	0,0021
SAB-256	17:0 Bra				10	16,6769	0,0030

	Antall forbindelser	133			143		
	Antall spektra	1270			1696		
UNK-588	Unknown				3	25,3443	0,0037
UNK-562	Unknown (PUFA)				4	27,5720	0,0016
UNK-311	Unknown				3	20,2271	0,0038
UNK-308	Unkn. FA				14	14,7383	0,0022
SAN-243	9:0				1	9,0046	
SAN-218	11:0				2	10,9867	0,0007
SAN-019	28:0	9	27,9992	0,0025	2	28,0000	0,0000
SAN-018	27:0	8	26,9990	0,0028	14	26,9974	0,0037
SAN-017	26:0	8	25,9989	0,0031	9	25,9974	0,0046
SAN-016	25:0	6	25,0000	0,0000	9	24,9974	0,0046
SAN-015	24:0	22	24,0068	0,0067	25	24,0016	0,0044
SAN-014	23:0	12	23,0110	0,0015	15	23,0049	0,0007
SAN-013	22:0	22	22,0047	0,0055	25	22,0009	0,0039
SAN-012	21:0	7	21,0000	0,0000	9	20,9980	0,0048
SAN-011	20:0	24	20,0036	0,0041	24	20,0009	0,0037
SAN-010	19:0	8	18,9990	0,0029	9	18,9982	0,0049
SAN-009	18:0	23	18,0024	0,0033	29	18,0013	0,0035
SAN-008	17:0	21	17,0017	0,0031	26	17,0005	0,0035
SAN-007	16:0	24	16,0014	0,0029	27	16,0002	0,0035
SAN-006	15:0	20	15,0005	0,0027	26	15,0011	0,0030
SAN-005	14:0	22	14,0002	0,0026	30	13,9996	0,0038
SAN-004	13:0	1	12,9826		6	13,0000	0,0000
SAN-003	12:0	24	11,9997	0,0025	26	11,9994	0,0035
SAN-002	10:0	10	10.0000	0,0000	10	10.0000	0,0000
SAN-001	8:0	7	8.0000	0.0000	9	8.0000	0.0000
SAB-599	Phytanic acid Isomer	2	16.8050	0.0095	3	16.9782	0.0007
SAB-441	i-13:0				5	12.4934	0.0031
SAB-351	ai-16:0				1	15.6759	-,
SAB-326	Bra-19:0 (2-Me)	_	.,	-,	12	15.7915	0.0058
SAB-324	4,8,12-Me 13:0	2	14,0107	0,0033	18	14,0833	0,0040

Forbindelser	BPX-70	BP-20	Forbindelser	BPX-70	BP-20
22:2 n-6	4		15:1 n-6		6
20:2 NMI		22	24:1 n-7	1	
22:2 NMI		1	24:1 n-x	7	
CLA (9c,11t)		1	Cholestdiene	2	
CLA (10t,12c)		1	BHT		1
CLA (di-trans)		1	Chol.Degr.		1
24:2 n-x		2	16:3 n-3		3
18:2 n-x		3	22:4 n-3		5
18:2	4		D1c (DHA-2)	2	
x,x-18:2	2		18:5 n-3	2	
20:2 n-7	6		18:3 n-3 cct	4	
20:2 n-x	5		18:3 n-3 ctc	4	
Furan 4	3		18:3 n-3 tcc	5	
Furan 11	1		20:4 NMI	1	
MOB-286Isom.		13	20:5 n-x		1
20:1 n-15	1		E1c (EPA-4)		12
18:1 n-13	8		Unknown		4
18:1 n-9t	2		Unk PUFA		1
21:1 n-x	2		Pristanic acid	17	
19:1 n-12		8	ai 17:0	6	
16:1 n-3		4	i 17:0		4
16:1 n-x		2	17:0 Bra		10
18:1 n-x		10	Bra 19:0 (2-Me)		12
17:1 n-6		5	ai 16:0		1
15:1 n-x		12	i 13:0		5
16:1 n-7t	4		13:0	1	
14:1 n-7		6	11:0		2
16:1 n-6	7		9:0		1
16:1 n-4		2	Unkn.FA		14
18:1 n-3	4		Unknown		3
20:1 n-6	1		Unknown (PUFA)		4
22:1 n-17	1		Unknown		3
22:1 n-8	1				

Tabell A.4: En liste over hvilke forbindelser som finnes på det ene kolonne men ikke på den andre.

t _R	ECL	Kode	Kortnavn	Navn	Areal %
14,1738	14,0041	SAN-005	14:0	14:0	3,87
14,8144	14,5081	SAB-078	i-15:0	13-Methyltetradecanoic acid	0,13
15,5081	15,0040	SAN-006	15:0	15:0	0,44
17,1037	16,0179	SAN-007	16:0	16:0	21,06
17,4642	16,2284	MOU-274	16:1 n-11	c5-16:1	0,64
17,7303	16,3790	MOU-275	16:1 n-9	c7-16:1	0,26
17,8995	16,4730	MOU-021	16:1 n-7	c9-16:1	2,24
17,9518	16,5018	SAB-074	i-17:0	15-Methylhexadecanoic acid	0,36
18,0393	16,5497	MOU-405	16:1 n-6	c10-16:1	0,12
18,1429	16,6061	MOU-255	16:1 n-5	c11-16:1	0,43
18,3347	16,7094	SAB-073	ai-17:0	14-Methylhexadecanoic acid	0,15
18,3856	16,7366	MOU-280	16:1 n-3	c13-16:1	0,07
18,6827	16,8944	MOB-286	16:1 n-10, 7Me	7-methyl-c6-Hexadecenoic acid	0,24
18,8893	17,0029	SAN-008	17:0	17:0	0,20
19,7267	17,4285	MOU-436	17:1 n-8	c9-17:1	0,20
19,8270	17,4779	SAB-076	i-18:0	16-Methylheptadecanoic acid	0,15
20,2541	17,6856	MOU-480	17:1 n-4	c13-17:1	0,09
20,9200	18,0030	SAN-009	18:0	18:0	1,48
21,6189	18,3275	MOU-277	18:1 n-11	c7-18:1	0,78
21,7682	18,3955	MOU-023	18:1 n-9	c9-18:1	7,68
21,9539	18,4794	MOU-079	18:1 n-7	c11-18:1	4,20
22,0800	18,5361	MOU-278	18:1 n-6	c12-18:1	0,07
22,2495	18,6119	MOU-258	18:1 n-5	c13-18:1	0,69
23,2334	19,0459	DIU-027	18:2 n-6	c9,c12-18:2	0,84
23,7422	19,2660	DIU-158	18:2 n-4	c11,c14-18:2	0,09
25,1053	19,8413	POU-032	18:3 n-3	c9,c12,c15-18:3	0,56
26,1861	20,2889	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	0,88
26,2774	20,3263	MOU-097	20:1 n-11	c9-20:1	0,19
26,4230	20,3858	MOU-024	20:1 n-9	c11-20:1	1,43
28,0792	21,0562	DIU-028	20:2 n-6	c11,c14-20:2	0,06
29,8965	21,7812	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0,31
31,2149	22,3051	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0,66
31,2647	22,3249	MOU-262	22:1 n-11	c11-22:1	0,63
32,0296	22,6281	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	11,77
33,0011	23,0125	SAN-014	23:0	23:0	3,81
34,8733	23,7533	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0,10
35,8572	24,1433	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0,11
36,5205	24,4056	MOU-026	24:1 n-9	c15-24:1	0,10
37,3694	24,7423	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	0,67
38,0969	25,0339	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	30,68
41,6802	26,5065	-	-	-	0,26
43,1098	27,1053	-	-	-	0,25
43.6276	27.3237	OTH-178	Cholestdiene	Cholestdiene	0.93

Tabell A.5.1, Rapport ufrakjsjonert rogn/melke

t _R	ECL	Kode	Kortnavn	Navn	Areal %
14,1792	14,0087	SAN-005	14:0	14:0	0,58
14,8210	14,5130	SAB-078	i-15:0	13-Methyltetradecanoic acid	0,09
17,0837	16,0059	SAN-007	16:0	16:0	0,55
17,4220	16,2042	MAE	-	Metyl-alkenyleter	0,03
17,4933	16,2451	MOU-274	16:1 n-11	c5-16:1	0,16
17,7332	16,3806	MOU-275	16:1 n-9	c7-16:1	0,16
17,9029	16,4749	MOU-021	16:1 n-7	c9-16:1	1,80
17,9542	16,5031	SAB-074	i-17:0	15-Methylhexadecanoic acid	0,11
18,0434	16,5520	MOU-405	16:1 n-6	c10-16:1	0,13
18,1485	16,6091	MOU-255	16:1 n-5	c11-16:1	0,31
18,3391	16,7118	SAB-073	ai-17:0	14-Methylhexadecanoic acid	0,14
18,6934	16,9000	MOB-286	16:1 n-10, 7Me	7-methyl-c6-Hexadecenoic acid	0,29
19,3882	17,2594	DIU-201	16:2 n-4	c9,c12-16:2	0,05
19,7326	17,4313	MOU-436	17:1 n-8	c9-17:1	0,12
19,8328	17,4807	SAB-076	i-18:0	16-Methylheptadecanoic acid	0,13
20,2603	17,6886	MOU-480	17:1 n-4	c13-17:1	0,04
21,6214	18,3287	MOU-277	18:1 n-11	c7-18:1	0,18
21,7583	18,3910	MOU-023	18:1 n-9	c9-18:1	3,11
21,9502	18,4777	MOU-079	18:1 n-7	c11-18:1	2,09
22,2561	18,6148	MOU-258	18:1 n-5	c13-18:1	0,23
23,2382	19,0480	DIU-027	18:2 n-6	c9,c12-18:2	0,92
23,7442	19,2668	DIU-158	18:2 n-4	c11,c14-18:2	0,09
25,1099	19,8432	POU-032	18:3 n-3	c9,c12,c15-18:3	0,64
26,1900	20,2905	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	1,32
26,4255	20,3868	MOU-024	20:1 n-9	c11-20:1	0,17
26,4881	20,4123	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0,06
29,9045	21,7844	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0,44
31,2195	22,3070	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0,86
32,0346	22,6300	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	17,89
33,0456	23,0301	SAN-014	23:0	23:0	15,99
34,8808	23,7563	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0,15
35,8644	24,1462	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0,16
37,3762	24,7450	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	0,93
38,1008	25,0355	POU-142	D1c (DHA-2)	(1-trans) 4,7,10,13,16,19-22:6	48,38
41,6908	26,5109	-	-	-	0,24
43,1184	27,1089	-	-	-	0,29
43,6312	27,3253	OTH-178	Cholestdiene	Cholestdiene	1,04
49,7106	29,9507	-	-	-	0,05

Tabell A.5.2, Rapport ureafraksjonert rogn/melke, løsning

t _R	ECL	Kode	Kortnavn	Navn	Areal %
14,2028	14,0284	SAN-005	14:0	14:0	6,73
14,8463	14,5317	SAB-078	i-15:0	13-Methyltetradecanoic acid	0,10
15,5401	15,0262	SAN-006	15:0	15:0	0,83
16,3001	15,5273	SAB-072	i-16:0	14-Methylpentadecanoic acid	0,06
17,1356	16,0368	SAN-007	16:0	16:0	47,20
17,4936	16,2452	MOU-274	16:1 n-11	c5-16:1	0,75
17,7694	16,4009	MOU-275	16:1 n-9	c7-16:1	0,14
17,9349	16,4925	MOU-021	16:1 n-7	c9-16:1	1,26
17,9887	16,5220	SAB-074	i-17:0	15-Methylhexadecanoic acid	0,34
18,1820	16,6273	MOU-255	16:1 n-5	c11-16:1	0,22
18,3737	16,7303	SAB-073	ai-17:0	14-Methylhexadecanoic acid	0,15
18,9268	17,0225	SAN-008	17:0	17:0	0,42
19,7677	17,4487	MOU-436	17:1 n-8	c9-17:1	0,08
19,8626	17,4954	SAB-076	i-18:0	16-Methylheptadecanoic acid	0,05
20,2943	17,7049	MOU-480	17:1 n-4	c13-17:1	0,04
20,9587	18,0213	SAN-009	18:0	18:0	3,54
21,6574	18,3450	MOU-277	18:1 n-11	c7-18:1	0,66
21,7943	18,4073	MOU-023	18:1 n-9	c9-18:1	6,47
21,9856	18,4937	MOU-079	18:1 n-7	c11-18:1	3,13
22,2908	18,6303	MOU-258	18:1 n-5	c13-18:1	0,50
23,2792	19,0658	DIU-027	18:2 n-6	c9,c12-18:2	0,16
25,1568	19,8628	POU-032	18:3 n-3	c9,c12,c15-18:3	0,09
26,2384	20,3103	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	0,03
26,3230	20,3449	MOU-097	20:1 n-11	c9-20:1	0,11
26,4648	20,4028	MOU-024	20:1 n-9	c11-20:1	1,17
31,3002	22,3390	MOU-262	22:1 n-11	c11-22:1	0,62
32,0485	22,6355	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	0,74
33,0797	23,0436	SAN-014	23:0	23:0	23,09
36,5448	24,4152	MOU-026	24:1 n-9	c15-24:1	0,09
38,0565	25,0176	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	1,22

Tabell A.5.3, Rapport ureafraksjonert rogn/melke, rest

Appendiks A.6 Rapporter og kromatogrammer fra samtlige prøver analysert på BP-20 kolonne

Rapporter og kromatogrammer fra samtlige prøver analysert med kortscan på BP-20 kolonne, høyeste konsentrasjon (30 µl)

Noter til tabeller:

- I: Ikke identifisert
- D: kurveoppløst
- L: Lagt til i biblioteket
- PF: Kurvetilpasset

Merk at noen koder og navn kan ha blitt endret etter at kromatogrammene ble behandlet. Noen av toppene som er merket med at de er lagt i biblioteket kan siden ha blitt fjernet når bibliotekene ble sjekket for avvikende spektra og retensjonsindekser.

Merk at arealer ikke er justert for forskjeller i detektorrespons.

Produkt 5, Z0107-28

Filnavn: Z0107-28. 66 topper funnet i 61 grupper. Antall over 0.1%: 43, Antall med tildelt ID: 45

38.4243	19.5696	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	0.0357	PF D
39.5601	19.8011	-	-	-	0.0130	PF I
40.5313	19.9986	SAN-011	20:0	20:0	0.1867	PF
41.2026	20.1349	DIU-170	CLA (di-trans)	tx,tx-18:2	0.0379	PF L
41.4290	20.1807	MOU-024	20:1 n-9	c11-20:1	0.1853	PF
41.8315	20.2621	UNK-561	unknown	unknown	0.0272	PF L
42.1188	20.3201	UNK-438	Unknown NFA	Unknown NFA	0.0282	PF L
49.3283	21.7697	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	0.0086	PF
50.4718	22.0003	SAN-013	22:0	22:0	0.5628	PF
51.8791	22.2850	-	-	-	0.0121	PF I
55.4027	23.0007	SAN-014	23:0	23:0	0.0124	PF D
55.4227	23.0048	-	-	-	-0.0001	PF D I
59.4266	23.8273	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	0.2334	PF
60.3441	24.0178	SAN-015	24:0	24:0	0.1994	PF
60.9538	24.1447	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	19.2272	PF
61.6753	24.2951	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.1920	PF L
62.5437	24.4766	POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.1019	PF L
62.8990	24.5511	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.1187	PF L
Produkt 6, Z0107-29

Filnavn: Z0107-29. 66 topper funnet i 65 grupper. Antall over 0.1%: 24. Antall med tildelt ID: 49

	62.9486	24.5615	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	1.2785	PF L
	65.5999	25.1220	UNK-564	Unknown(PUFA)	Unknown	0.1889	PF L
	67.1951	25.4632	UNK-565	Unknown(PUFA)	Unknown	0.1279	PF L
	68.0824	25.6544	-	-	-	0.0330	PF I
	68.9589	25.8440	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.1444	PF L
	69.5716	25.9772	-	-	-	0.0434	PF I
	70.0119	26.0731	-	-	-	0.0527	PF I
	70.3456	26.1459	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.3378	PF L
	71.9267	26.4929	UNK-566	Unknown	Unknown	0.1084	PF L
	73.4392	26.8275	UNK-563	Unknown (PUFA)	Unknown	0.1932	PF L
	74.3579	27.0320	-	-	-	0.0572	PF I
	74.7230	27.1135	-	-	-	0.0237	PF I
	75.3073	27.2444	-	-	-	0.0616	PF I
	75.7161	27.3361	-	-	-	0.0842	PF I
	76.1708	27.4384	-	-	-	0.1051	PF I
	76.4288	27.4966	-	-	-	0.0610	PF I
	76.7622	27.5718	UNK-562	Unknown (PUFA)	Unknown	0.3451	PF L
	77.1552	27.6607	-	-	-	0.0492	PF I
_	77.5187	27.7431	-	-	-	0.0322	PF I

Produkt 8, Z0107-30

Filnavn: Z0107-30. 99 topper funnet i 94 grupper. Antall over 0.1%. 46. Antall med tildelt ID: 91

29.6433	17.7126	POU-052	16:4 n-1	c6,c9,c12,c15-16:4	0.4695	PF L
30.9994	18.0138	SAN-009	18:0	18:0	2.6791	PF
31.9432	18.2204	MOU-023	18:1 n-9	c9-18:1	22.4957	PF
32.1901	18.2738	MOU-079	18:1 n-7	c11-18:1	2.9951	PF L
32.7733	18.3992	MOU-258	18:1 n-5	c13-18:1	0.1756	PF L
33.3294	18.5178	DIU-102	18:2 n-7	c8,c11-18:2	0.0429	PF L
33.5753	18.5700	DIU-495	18:2 n-x	x,x-18:2	0.0328	PF
33.9643	18.6523	DIU-027	18:2 n-6	c9,c12-18:2	7.6703	PF
34.5685	18.7795	-	-	- '	0.0119	PF I
34.8996	18.8491	DIU-158	18:2 n-4	c11,c14-18:2	0.2596	PF L
35.3310	18.9396	POU-030	18:3 n-6	c6,c9,c12-18:3	0.0893	PF L
35.6569	19.0078	SAN-010	19:0	19:0	0.0399	PF
36.2788	19.1376	POU-050	18:3 n-4	c8,c11,14-18:3	0.2746	PF L
36.6949	19.2239	MOU-580	19:1 n-8	c11-19:1	0.0453	PF
36.9672	19.2801	POU-032	18:3 n-3	c9.c12.c15-18:3	2.9893	PFL
37.3469	19.3583	POU-059	18:4 n-4	c5.c8.c11.c14-18:4	0.0166	PF
38.4206	19.5783	POU-053	18:4 n-3	c6.c9.c12.c15-18:4	1.3174	PFL
38,9935	19.6952	POU-056	18:4 n-1	c8.c11.c14.c17-18:4	0.3347	PFL
40.0928	19.9189	POU-068	18:5 n-1	c5.c8.c11.c14-18:5	0.0304	PFL
40 5324	20 0083	SAN-011	20.0	20.0	0 1974	PF
41 2289	20 1497	MOU-259	20.1 n-11	c9-20:1	0 5927	PFI
41 4565	20 1958	MOU-024	20.1 n-9	c11-20 ⁻ 1	4 7502	PF
41 8563	20 2766	MOU-260	20:1 n-7	c13-20:1	0 2213	PFI
42 5295	20 4123	MOU-180	20:1 n-5	c15-20:1	0.0251	PF
42 8370	20 4742	DIU-581	20:2 (NMI)	x x-20.2	0.0706	PFI
43 7249	20.6528	DIU-028	20:2 n-6	c11 c14-20.2	0.5753	PFI
44 6091	20.8305	LINK-314	Linknown		0.0244	PF
45 0153	20.0000	POI 1-033	20:3 n-6	c8 c11 c14-20:3	0.0244	PFI
45 4890	21 0075	SAN-012	21.0	21:0	0.0146	PF
46 0931	21.0070	POU-035	20:4 n-6	c5 c8 c11 c14-20:4	0.5258	PFI
46 9296	21 2971	POU-034	20:3 n-3	c11 c14 c17-20:3	0.2837	PFI
48 2386	21.2071	POU-054	20:4 n-3	c8 c11 c14 c17-20:4	1 1480	PFI
40.2000	21.0000	POU-117	E1a (EPA-2)	$(1_{\text{trans}}) 5 8 11 14 17_{-20} 5$	0.0638	DE
49.0200	21.7177	POU-036	20.5 n-3	$c_{5} c_{8} c_{11} c_{14} c_{17} c_{20} c_{5}$	7 1207	DE
49.3092	22.0000	SAN 012	20.011-0	22.0	0.0757	
51 1474	22.0090	MOLL 262	22.0 22:1 n 11	22:0	4 5 9 0 9	
51.1474	22.1405	MOU 025	22.111-11 22:1 n 0	c13 22:1	4.0090	
51 9717	22.2013	MOU 271	22.1 II-9 22:1 n 7	c15-22.1	0.0332	
52 7651	22.2931		22.1 II-7	c13 c16 22:2	0.0700	
54 6505	22.0771	DIU-029	22.2 11-0 21:5 n 3	c13,010-22.2 c6 c0 c12 c15 c18 21:5	0.0510	
54.0595	22.0590	F00-009	21.511-5	12 14 Dimethyl 12 15 apoyusisson 12 14 dianais	0.3029	FFL
56.1910	23.1715	FUR-191	Furan10 [02-346]	acid	0.1051	PF
57.5703	23.4543	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.1550	PF L
58.1756	23.5788	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.0661	PF L
59.4303	23.8380	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	2.7150	PF L
60.2633	24.0108	SAN-015	24:0	24:0	0.0446	PF D
60.4033	24.0400	POU-138	D1a (DHA-3)	(1-trans) 4,7,10,13,16,19-22:6	0.0199	PF D
60.8372	24.1302	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	7.1355	PF
61.2500	24.2162	MOU-026	24:1 n-9	c15-24:1	0.5464	PF L
63.5796	24.7037	DIU-312	24:2 n-x	x,x-24:2	0.0427	PF
68.9678	25.8562	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.2410	PF L
70.3346	26.1539	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1104	PF L
		-				

Produkt 9, Z0107-31

Filnavn: Z0107-31. 58 topper funnet i 55 grupper. Antall over 0.1%: 31. Antall med tildelt ID: 51

50.2773	21.9610	POU-118	E1b (EPA-3)	(1-trans) 5,8,11,14,17-20:5	0.1544	PF L
50.7176	22.0500	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.1163	PF L
51.0986	22.1271	POU-119	E1d (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0984	PF L
53.4032	22.5940	-	-	-	0.0548	PF I
53.9902	22.7132	UNK-582	Unknown	Unknown	0.0811	PF L
54.6667	22.8508	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	1.3333	PF L
56.2073	23.1650	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.0736	PF L
57.5754	23.4455	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.5653	PF L
59.4283	23.8277	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	1.6579	PF L
60.9082	24.1352	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	19.7692	PF

Produkt 10, Z0107-32

Filnavn: Z0107-32. 118 topper funnet i 111 grupper. Antall over 0.1%: 53. Antall med tildelt ID: 87

36.9508	19.2673	POU-032	18:3 n-3	c9,c12,c15-18:3	0.4377	PF L
37.3376	19.3470	POU-059	18:4 n-4	c5,c8,c11,c14-18:4	0.0374	PF
38.4212	19.5690	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	1.6660	PF L
38.9891	19.6848	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0.1999	PF L
39.7612	19.8420	-	-	-	0.0080	PF I
40.0898	19.9088	POU-068	18:5 n-1	c5,c8,c11,c14-18:5	0.0271	PF
40.5310	19.9985	SAN-011	20:0	20:0	0.2878	PF
41.2208	20.1386	MOU-259	20:1 n-11	c9-20:1	0.1595	PF L
41,4335	20,1816	MOU-024	20:1 n-9	c11-20:1	1.6958	PF L
41 8561	20 2671	MOU-260	20.1 n-7	c13-20 ⁻¹	0.5660	PFI
42.5296	20.4029	MOU-180	20:1 n-5	c15-20:1	0.0238	PF
42 8373	20 4649	DIU-581	20.2 (NMI)	x x-20.2	0 2462	PFI
43 1820	20 5343	FUR-186	Euran5 [02-346]	11-Methyl-10 13-epoxyoctadeca-10 12-dienoic acid	0.0186	PF
43 7248	20.6435	DILI-028	20.2 n-6	c11 c14-20.2	0.2325	PFI
44 6061	20.8206	LINK-314	Linknown		0.0354	PF
44.8031	20.0200		20:1 n-2	c18-20:1	0.0004	DE
45.0001	20.0003	POIL 022	20.1 II-2 20:2 n 6	ch c11 c14 20:3	0.0703	
45.0197	20.9038	FUU-033	20.3 11-0	21.0	0.2463	
45.5009	21.0019	SAN-012	21.0	21.0	0.0304	
40.8220	21.0654		-	-	0.0034	
46.1009	21.1214	P00-035	20:4 11-6	05,08,011,014-20.4	1.8420	
46.4969	21.2010	-	-	-	0.0312	PEI
46.9331	21.2886	POU-034	20:3 n-3	c11,c14,c17-20:3	0.1462	PF
47.4891	21.4002	POU-245	20:4 NMI	c5,c11,c14,c17-20:4	0.0108	PF
47.7157	21.4457	-	-	-	0.0096	PFI
48.2543	21.5538	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	1.5277	PF L
49.5032	21.8049	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	33.9784	PF
50.2563	21.9568	POU-118	E1b (EPA-3)	(1-trans) 5,8,11,14,17-20:5	0.1488	PF L
50.4701	22.0000	SAN-013	22:0	22:0	0.1918	PF
50.6942	22.0453	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.1560	PF L
51.1173	22.1309	MOU-262	22:1 n-11	c11-22:1	1.6775	PF L
51.4044	22.1889	MOU-025	22:1 n-9	c13-22:1	0.3901	PF
51.8701	22.2832	MOU-271	22:1 n-7	c15-22:1	0.2988	PF L
52.2403	22.3582	-	-	-	0.0200	PF I
52.5378	22.4185	DIU-095	22:2 NMI	x,x-22:2	0.0625	PF L
53.1791	22.5485	UNK-517	Unknown	Unknown	0.0101	PF D
53.3926	22.5918	-	-		0.0095	PF D I
53.7612	22.6667	DIU-029	22:2 n-6	c13.c16-22:2	0.0246	PF D
53,9927	22,7137	-	-	-	0.0417	PF D I
54.3201	22.7802	-	-	-	0.0079	PFI
54 6703	22 8515	POU-069	21.5 n-3	c6 c9 c12 c15 c18-21:5	1 9420	PF
54 9943	22.0010	-	-	-	0.0234	PFI
55 3960	22.0170	SAN-014	23.0	23.0	0.0204	PF
56 1801	22.0004		20.0 22:4 n-6	c7 c10 c13 c16-22·4	0.0000	DE
57 5771	23.1013	POU 066	22.4 II-0 22:5 n 6	$c_{1}, c_{1}, c_{1}, c_{1}, c_{1}, c_{1}, c_{2}, $	0.2703	
57.5771	23.4450		22.0 II-0 22:4 p 2	04,07,010,013,010-22.5	0.0300	
50.1709	23.3090	F00-033	22.4 11-5	010,013,010,019-22.4	0.1073	
59.0420	23.7477	-	-	-	0.0322	
59.4590	23.8340	POU-038	22:5 N-3	C7,C10,C13,C16,C19-22:5	6.7034	
60.3244	24.0137	SAN-015	24:0	24:0	0.1176	PFD
60.4401	24.0377	-	-	-	0.0785	PFDI
60.9267	24.1390	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	20.8082	PF
61.2572	24.2079	MOU-026	24:1 n-9	c15-24:1	0.9800	PF L
61.6738	24.2948	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.3680	PF
62.5264	24.4730	POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.2491	PF
62.9287	24.5573	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.4055	PF
64.2458	24.8346	-	-	-	0.0666	PF I
64.4822	24.8846	-	-	-	0.0644	PF I
65.0416	25.0032	-	-	-	0.0698	PF I
65.2439	25.0462	-	-	-	0.0666	PF I
65.5846	25.1187	UNK-564	Unknown(PUFA)	Unknown	0.0368	PF
66.4126	25.2955	-	-		0.0538	PF I
66.6297	25.3419	UNK-588	Unknown	Unknown	0.1263	PF L
68.9660	25.8456	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.1935	PF L
70.3311	26.1428	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1283	PF L
70.7033	26.2242	-	-	-	0.0576	PF I
73.4322	26.8259	UNK-563	Unknown (PUFA)	Unknown	0.0693	PF
75.6675	27.3252	-	-	-	0.0110	PF D I
76.1581	27.4356	-	-	-	0.0563	PFDI
76 7558	27 5704	UNK-562	Unknown (PLIFA)	Unknown	0 1067	PFI
77 1462	27 6587	-	-		0.0333	PFI
78,1322	27.8825	-	-	-	0.0349	PFI
	2				0.0010	

Produkt 13, Z0107-33

Filnavn: Z0107-33. 126 topper funnet i 120 grupper. Antall over 0.1%: 50. Antall med tildelt ID: 95

25.8850	16.8336	DIU-201	16:2 n-4	c9,c12-16:2	0.4352	PF L
26.1286	16.8928	MOB-286	16:1 n-10, 7Me	7-methyl-c6-Hexadecenoic acid	0.2628	PF L
26.4041	16.9595	SAB-071	Phytanic acid	3,7,11,15-Tetramethylhexadecanoic acid	0.3515	PF D
26.5877	17.0038	SAN-008	17:0	17:0	0.1884	PF D
27.2280	17.1567	POU-046	16:3 n-4	c6,c9,c12-16:3	0.1942	PF L
27.5153	17.2243	MOU-436	17:1 n-8	c9-17:1	0.3877	PF L
27.6613	17.2584	POU-049	16:3 n-3	c7,c10,c13-16:3	0.0203	PF
27.9505	17.3255	MOU-327	17:1 n-6	c11-17:1	0.0275	PF L
28.2079	17.3849	-	-	-	0.0113	PF I
28.5847	17.4711	MOU-480	17:1 n-4	c13-17:1	0.0554	PF
28.7092	17.4994	SAB-076	i-18:0	16-Methylheptadecanoic acid	0.0703	PF
28.9399	17.5517	POU-051	16:4 n-3	c4.c7.c10.c13-16:4	0.0440	PF
29.6404	17.7091	POU-052	16:4 n-1	c6.c9.c12.c15-16:4	0.3129	PF L
30.5311	17.9073	-	-	-	0.0040	PF I
30,7118	17,9473	-	-		0.0055	PF I
31.0166	18.0147	SAN-009	18:0	18:0	2.5363	PF
31 9648	18 2220	MOU-023	18·1 n-9	c9-18·1	16 2490	PF
32 2251	18 2783	MOU-079	18 [.] 1 n-7	c11-18 ⁻¹	4 3273	PF
33 1629	18 4791	MOU-279	18:1 n-4	c14-18:1	0.0129	PF
33 3449	18 5178	-	-	-	0.0123	PFI
33 5664	18 56/8	MOU-310	18·1 n-v	v-18·1	0.0467	DEI
33 0325	18 6422		18:2 n-6	c9 c12-18:2	1 3685	DEI
24 9024	10.0422	DIU-027	10.2 II-0	011 014 19:2	0.1922	
34.0934	10.0443	DIU-100	10.2 11-4 19:2 n 6	$c_{11}, c_{14} = 10.2$	0.1032	
35.3293	10.9350	F00-030	10.311-0	10.0	0.1134	
35.0572	19.0043	SAN-010	19.0	19.0	0.0304	
36.2637	19.1309	UNK-288			0.0888	PFDL
30.4080	19.1008		19:11-12 10:1 p 9	01-19.1	0.0502	
36.6925	19.2198	MOU-580	19:1 n-8	C11-19:1	0.0660	PF
36.9565	19.2744	POU-032	18:3 n-3	c9,c12,c15-18:3	0.8927	PEL
37.3281	19.3510	-	-	-	0.0265	PEI
37.9712	19.4831	-	-	-	0.0212	PF I
38.4301	19.5770	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	2.0694	PF
38.9865	19.6906	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0.1300	PF L
40.0912	19.9155	POU-068	18:5 n-1	c5,c8,c11,c14-18:5	0.1539	PF L
40.5492	20.0087	SAN-011	20:0	20:0	0.0625	PF
41.2795	20.1568	MOU-259	20:1 n-11	c9-20:1	2.0140	PF
41.5476	20.2110	MOU-024	20:1 n-9	c11-20:1	9.1216	PF
41.8765	20.2773	MOU-260	20:1 n-7	c13-20:1	0.4654	PF L
42.1745	20.3374	DIU-094	20:2 NMI	x,x-20:2	0.0388	PF
42.5234	20.4076	MOU-180	20:1 n-5	c15-20:1	0.0715	PF
43.1809	20.5397	FUR-186	Furan5 [02-346]	11-Methyl-10,13-epoxyoctadeca-10,12-dienoic acid	0.0278	PF L
43.7267	20.6493	DIU-028	20:2 n-6	c11,c14-20:2	0.2691	PF L
44.6130	20.8272	UNK-314	Unknown	Unknown PUFA	0.0172	PF
44.7910	20.8630	-	-		0.0105	PF I
45.0153	20.9081	POU-033	20:3 n-6	c8,c11,c14-20:3	0.0574	PF
45.4963	21.0048	SAN-012	21:0	21:0	0.0022	PF
45.8003	21.0659	-	-	-	0.0027	PF I
46.0932	21.1248	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0.4824	PF L
46.9299	21.2929	POU-034	20:3 n-3	c11.c14.c17-20:3	0.1631	PF
48,2381	21,5556	POU-054	20:4 n-3	c8.c11.c14.c17-20:4	0.7314	PF L
49 0318	21 7152	POU-117	E1a (FPA-2)	(1-trans) 5 8 11 14 17-20:5	0.0467	PF
49 4066	21 7906	POU-036	20.5 n-3	c5 c8 c11 c14 c17-20:5	8 3550	PF
50 3399	21 9789	POU-118	E1h (EPA-3)	(1-trans) 5 8 11 14 17-20:5	0.0449	PF D
50 5021	22 0117	SAN-013	22.0	22.0	0.0139	PFD
50 6790	22 0475	POIL-558	E_{1c} (EPA-4)	(1-trans) = 5.8 + 11.14 + 17-20.5	0.0161	PF
51 2308	22 1501	MOL1-262	22.1 n-11	c11-22·1	8.3804	PF
51 4468	22 2028	MOU-025	22.1 n-9	c13-22·1	0 7077	PF
51 8800	22.2020	MOU-271	22.1 n 3	c15-22:1	0.0761	PF
52 25/18	22 3665	-		-	0.0236	PFI
52 5308	22.0000		- 22·2 NMI	- v v-22.2	0.0230	DE
52.3330	22.4242				0.0275	
53.1743	22.0000		22.2 n.6	c13 c16-22·2	0.0104	
53.7021	22.0723	DI0-029	22.211-0	013,010-22.2	0.0098	
53.9957	22.7197		-	-	0.0093	
54.0588	22.8940	PO0-069	21:511-3	C0,C9,C12,C13,C16-21.3	0.4019	PFL
56 2067	23 170F	FUR 101	Euron10 [02 246]	io, i4-Dimetryi-iz, io-epoxyeicosa-12,14-dienoic	0 1/26	DEI
57 5000	20.1700	DOLLOSS	22.5 n 6		0.1400	
50 1765	20.4491 22 5717		22.0 11-0 22.4 n. 2	c10 c13 c16 c10-22.3	0.10//	
50.1/00	20.0/4/		22.4 11-0 22.5 n 2	o10,013,010,013-22.4	1 2407	
09.4210	23.0331	FUU-038	22.3 11-3	07,010,013,010,019-22.3	1.310/	
00.2080	24.0075		-	-	0.0577	
60.8942	24.1377	POU-039	22:0 N-3	04,07,010,013,016,019-22:6	9.8084	
61.2518	24.2122	NOU-026	24:1 N-9		0.4881	
01.0001	24.2985	POU-139	D1D (DHA-4)	(1-trans) 4,7,10,13,10,19-22:6	0.1130	
68.9615	25.8501	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.2720	PFL
70.3292	26.1479	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.0983	PFL
70.7072	26.2306	-	-	-	0.0302	PEI
71.9083	26.4943	-	-	-	0.0160	PFI
76.7545	27.5746	UNK-562	Unknown (PUFA)	Unknown	0.0407	PF
(7.1477	27.6634	-	-	-	0.0186	PET

Produkt 17, Z0107-34

Filnavn: Z0107-34. 124 topper funnet i 114 grupper. Antall over 0.1%: 49. Antall med tildelt ID: 96

33.3132	18.5111	DIU-102	18:2 n-7	c8,c11-18:2	0.0976	PF D
33.3785	18.5249				0.0085	PF D I
33.5583	18.5631	MOU-310	18:1 n-x	x-18:1	0.0284	PF
33.9228	18.6401	DIU-027	18:2 n-6	c9,c12-18:2	1.1639	PF
34.1128	18.6802				0.0171	PF I
34.3662	18.7335	-	-	-	0.0071	PF I
34.6034	18.7834	UNK-342	Unkn.	Unknown	0.0182	PF
34.8942	18.8444	DIU-158	18:2 n-4	c11,c14-18:2	0.4281	PF
35.3276	18.9353	POU-030	18:3 n-6	c6,c9,c12-18:3	0.1565	PF
35.6505	19.0029	SAN-010	19:0	19:0	0.1801	PF
36.2748	19.1332	POU-050	18:3 n-4	c8,c11,14-18:3	0.1019	PF D L
36.4034	19.1599	MOU-247	19:1 n-12	c7-19:1	0.0308	PF D L
36.6943	19.2202	MOU-580	19:1 n-8	c11-19:1	0.1198	PF
36.9533	19.2737	POU-032	18:3 n-3	c9,c12,c15-18:3	0.9001	PF
37.3404	19.3536	POU-059	18:4 n-4	c5,c8,c11,c14-18:4	0.0416	PF
37.5620	19.3991	-	-	-	0.0079	PFI
37.9763	19.4842	-	-	-	0.0163	PF I
38.4239	19.5758	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	2.2356	PF
38.9881	19.6910	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0.1885	PF
40.0847	19.9142	POU-068	18:5 n-1	c5,c8,c11,c14-18:5	0.0325	PF L
40.5382	20.0064	SAN-011	20:0	20:0	0.7061	PF
41.2158	20.1439	MOU-259	20:1 n-11	c9-20:1	0.2771	PF L
41.4482	20.1909	MOU-024	20:1 n-9	c11-20:1	2.9076	PF
41.8568	20.2734	MOU-260	20:1 n-7	c13-20:1	0.4626	PF
42.1732	20.3371	MOU-416	20:1 n-6	c14-20:1	0.0138	PF
42.5326	20,4095	MOU-180	20:1 n-5	c15-20:1	0.0302	PF
42.8369	20,4706	DIU-581	20:2 (NMI)	x.x-20:2	0.2083	PF L
43.1782	20.5392	FUR-186	Furan5 [02-346]	11-Methyl-10.13-epoxyoctadeca-10.12-dienoic acid	0.0248	PF L
43,7234	20.6487	DIU-028	20:2 n-6	c11.c14-20:2	0.3449	PF
44,1345	20.7312	-	-	-	0.0045	PFI
44,6042	20.8255	UNK-314	Unknown	Unknown PUFA	0.0813	PF L
44 8038	20 8655	MOU-419	20.1 n-2	c18-20:1	0.0381	PF
45.0164	20.9083	POU-033	20:3 n-6	c8.c11.c14-20:3	0.2525	PF
45 5093	21 0074	SAN-012	21.0	21.0	0.0793	PF
46 1061	21 1274	POU-035	20:4 n-6	c5 c8 c11 c14-20:4	2 2060	PF
46 4827	21.1274	POU-583	Unknown	Unknown PLIFA	0.0350	PFD
46 5950	21.2001	-	-		0.0000	PEDI
40.0000	21.2230		- 20:3 n-3	- c11 c14 c17-20:3	0.2696	DE
40.3525	21.2304	POU-245	20:4 NMI	$c_{5} c_{11} c_{14} c_{17} c_{20} A$	0.2030	DE
47.4973	21.4009	F00-245	20.4 (1)///	0,011,014,017-20.4	0.0000	
47.7009	21.4493		- 20:4 n 3	-	1 5252	
40.2310	21.0000	POU-034	20.4 II-3 20:5 n-3	c5 c8 c11 c14 c17 - 20.4	20 8773	DE
49.0144	21.0123	POU-030	20.3 II-3 E16 (EDA 2)	$(1 \text{ trans}) = 5.8 \ 11 \ 14 \ 17 \ 20.5$	29.0773	
50.2704	21.9049	FUU-110	22:0	(1-iidiis) 5,0,11,14,17-20.5	0.0009	
50.4730	22.0000	DOLL 559		(1 trans) 5.8 11 14 17 20.5	0.2062	
51 1/02	22.0473	F00-338	22:1 n 11	(1-(1a)) 3,0,11,14,17-20.3	2 8500	
51.1402	22.1400	MOU 025	22.111-11 22:1 n 0	012 22:1	2.0000	
51.4129	22.1960	1000-025	22:1 11-9	013-22.1	0.5832	
51.7499	22.2042	-	-	-	0.0441	
51.8682	22.2882	MOU-271	22:1 n-7	015-22:1	0.1733	PFDL
52.2476	22.3650	DIU-211	22:2 NMI	X,X-22:2	0.0166	PF
52.5470	22.4257	-	-	-	0.0257	PEI
52.7455	22.4659	-	-	-	0.0353	PEI
53.2560	22.5695	-	-	-	0.0272	
53.7525	22.6703	DIU-029	22:2 N-6		0.0223	
53.9854	22./1/6	UNK-582	UNKNOWN	UNKNOWN	0.0294	
54.3085	22.7833	-	-	-	0.0002	
54.6622	22.8553	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	1.2704	PF
55.3930	23.0043	SAN-014	23:0	23:U	0.0220	PF
56.1886	23.1668	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.2419	PF
57.5724	23.4504	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.6120	PF
58.1766	23.5747	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.1495	PF
59.0318	23.7512	-	-	-	0.0121	PFI
59.4421	23.8361	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	3.9895	PF
60.3300	24.0204	SAN-015	24:0	24:0	0.0531	PF D
60.4343	24.0421	-	-	-	0.0433	PFDI
60.5009	24.0559				0.0401	PFDI
60.9332	24.1459	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	19.5893	PF
61.2528	24.2124	MOU-026	24:1 n-9	c15-24:1	0.5875	PF D
61.5072	24.2654	-	-	-	0.0131	PF I
61.6739	24.3002	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.2270	PF
62.5328		POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.1126	PF
62 8345	24.4796	100140	()			
02.0343	24.4796 24.5428	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.1318	PF
63.5727	24.4796 24.5428 24.6978	POU-141 -	D1e (DHA-6) -	(1-trans) 4,7,10,13,16,19-22:6 -	0.1318 0.0653	PF PF I
63.5727 64.2472	24.4796 24.5428 24.6978 24.8400	POU-141 - -	D1e (DHA-6) - -	(1-trans) 4,7,10,13,16,19-22:6 - -	0.1318 0.0653 0.0432	PF PF I PF I
62.6345 63.5727 64.2472 68.9568	24.4796 24.5428 24.6978 24.8400 25.8491	POU-141 - - POU-067	D1e (DHA-6) - - 24:5 n-3	(1-trans) 4,7,10,13,16,19-22:6 - - c9,c12,c15,c18,c21-24:5	0.1318 0.0653 0.0432 0.1331	PF PF I PF I PF

Produkt 18, Z0107-35

Filnavn: Z0107-35. 111 topper funnet i 111 grupper. Antall over 0.1%: 56. Antall med tildelt ID: 95

30.5396	17.9092	-	-	-	0.0163	PF I
30.7042	17.9456	-	-	-	0.0092	PF I
31.0008	18.0112	SAN-009	18:0	18:0	3.4730	PF
31.8933	18.2066	MOU-023	18:1 n-9	c9-18:1	9.5303	PF
32.1846	18.2696	MOU-079	18:1 n-7	c11-18:1	3.1188	PF
32.4479	18.3263	MOU-278	18:1 n-6	c12-18:1	0.0172	PF
32,7688	18.3951	MOU-258	18:1 n-5	c13-18:1	0.0897	PF
33.3168	18.5118	DIU-102	18:2 n-7	c8.c11-18:2	0.1695	PF
33.5636	18.5642	DIU-495	18:2 n-x	x.x-18:2	0.0135	PF
33,9229	18.6401	DIU-027	18:2 n-6	c9.c12-18:2	1.3070	PF
34.5909	18,7808	POU-307	18:3 n-7	5.8.11-18:3	0.0137	PF
34,8922	18,8440	DIU-158	18:2 n-4	c11.c14-18:2	0.3848	PF
35.3242	18,9346	POU-030	18:3 n-6	c6.c9.c12-18:3	0.2270	PF
35.6486	19.0025	SAN-010	19:0	19:0	0.0889	PF
36.2633	19,1308	POU-050	18:3 n-4	c8.c11.14-18:3	0.1582	PF
36.6924	19.2198	MOU-580	19:1 n-8	c11-19:1	0.0540	PF
36 9503	19 2731	POU-032	18 [.] 3 n-3	c9 c12 c15-18:3	0.8383	PF
37.3369	19.3529	POU-059	18:4 n-4	c5.c8.c11.c14-18:4	0.0615	PF
38 4255	19 5761	POU-053	18 [.] 4 n-3	c6 c9 c12 c15-18:4	2 8356	PF
38,9870	19.6907	POU-056	18:4 n-1	c8.c11.c14.c17-18:4	0.2392	PF
40 0843	19 9141	POU-068	18 [.] 5 n-1	c5 c8 c11 c14-18:5	0.0684	PF
40 5252	20 0038	SAN-011	20.0	20.0	0.3016	PF
41 2089	20 1425	MOU-259	20:1 n-11	c9-20.1	0 1219	PF
41,4247	20.1861	MOU-024	20:1 n-9	c11-20:1	1.4638	PF
41 8475	20 2715	MOU-260	20 [.] 1 n-7	c13-20:1	0 2176	PF
42 1449	20 3314	UNK-438	Unknown NFA	Unknown NFA	0.0072	PF
42 5255	20 4080	MOU-180	20 [.] 1 n-5	c15-20:1	0.0131	PF
42 8276	20 4688	DIU-581	20.2 (NMI)	x x-20.2	0 2012	PF
43 1683	20 5372	FUR-186	Euran5 [02-346]	11-Methyl-10 13-epoxyoctadeca-10 12-dienoic acid	0.0108	PF
43,7176	20.6475	DIU-028	20:2 n-6	c11.c14-20:2	0.1753	PF
44,1404	20.7323	-	-	-	0.0112	PFI
44,5966	20.8239	UNK-314	Unknown	Unknown PUFA	0.0643	PF
44.7930	20.8634	-	-	-	0.0184	PFI
45.0081	20.9066	POU-033	20:3 n-6	c8.c11.c14-20:3	0.1581	PF
45.4929	21.0041	SAN-012	21:0	21:0	0.0344	PF
46.0908	21.1243	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	1.0690	PF
46.4953	21.2056	POU-583	Unknown	Unknown PUFA	0.0332	PF
46.9297	21.2929	POU-034	20:3 n-3	c11,c14,c17-20:3	0.1530	PF
48.2360	21.5552	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0.9211	PF
49.0365	21.7161	-	-	-	0.0766	PF I
49.4377	21.7969	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	16.8773	PF
50.4568	22.0025	SAN-013	22:0	22:0	0.1298	PF
50.6785	22.0474	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0331	PF
51.1079	22.1342	MOU-262	22:1 n-11	c11-22:1	0.8945	PF
51.3972	22.1928	MOU-025	22:1 n-9	c13-22:1	0.2854	PF
51.8615	22.2868	MOU-271	22:1 n-7	c15-22:1	0.1225	PF
52.7360	22.4640	DIU-095	22:2 NMI	x,x-22:2	0.0481	PF
53.7490	22.6696	DIU-029	22:2 n-6	c13,c16-22:2	0.0219	PF
53.9720	22.7149	UNK-582	Unknown	Unknown	0.0200	PF
54.6496	22.8528	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0.6796	PF
55.3821	23.0021	SAN-014	23:0	23:0	0.0295	PF
56.1762	23.1642	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.1179	PF
57.5614	23.4482	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.3036	PF L
58.1664	23.5726	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.1078	PF
59.4215	23.8318	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	2.2876	PF
60.2646	24.0068	SAN-015	24:0	24:0	0.0947	PF
60.8634	24.1313	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	10.4822	PF
61.2413	24.2100	MOU-026	24:1 n-9	c15-24:1	0.6071	PF
61.6786	24.3012	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.1557	PF
68.9523	25.8482	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.1360	PF
70.3235	26.1467	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1330	PF
70.6906	26.2269	-	-	-	0.0546	PF I
71.9008	26.4926	-	-	-	0.0271	PF I

Produkt 23, Z0107-36

Filnavn: Z0107-36. 112 topper funnet i 108 grupper. Antall over 0.1%: 56. Antall med tildelt ID: 95

28.9395	17.5516	POU-051	16:4 n-3	c4.c7.c10.c13-16:4	0.1109	PF
29.6467	17,7106	POU-052	16:4 n-1	c6.c9.c12.c15-16:4	2.0487	PF
30,5462	17,9106	-	-	-	0.0167	PFI
30,7074	17.9463	-	-	-	0.0040	PFI
31.0120	18.0137	SAN-009	18:0	18:0	3.5332	PF
31,9107	18.2103	MOU-023	18:1 n-9	c9-18:1	9.5916	PF
32 1936	18 2715	MOU-079	18 [.] 1 n-7	c11-18 [.] 1	3 0022	PF
32 4547	18 3277	MOU-278	18:1 n-6	c12-18:1	0.0131	PF
32 7699	18 3953	MOU-258	18:1 n-5	c13-18·1	0.0769	PF
33 3165	18 5118	DIU-102	18·2 n-7	c8 c11-18:2	0 1900	PF
33 5628	18 5640	MOU-310	18:1 n-x	x-18.1	0.0280	PF
33 9301	18 6417	DIU-027	18 [.] 2 n-6	c9 c12-18:2	1 7843	PF
34 5880	18 7802	POU-307	18:3 n-7	5.8.11-18:3	0.0210	PF
34 8927	18 8441	DIU-158	18:2 n-4	c11 c14-18 [.] 2	0.3599	PF
35 3241	18 9345	POU-030	18:3 n-6	c6 c9 c12-18:3	0.2352	PF
35 6473	19 0022	SAN-010	19.0	19.0	0.1052	PF
36 2671	10.0022	POLI-050	18:3 n-4	c8 c11 14-18·3	0.1466	PF
36 6866	19 2186	MOU-580	10:0 n 4 10:1 n-8	c11-19:1	0.0526	PF
36 9526	19 2736	POI I-032	18:3 n-3	c9 c12 c15-18·3	0.0020	PF
37 3361	19.3527	POU-059	18:4 n-4	c5 c8 c11 c14-18·4	0.0732	PF
37 5644	19 3997	POU-175	18:3 n-3 tcc	t9 c12 c15-18·3	0.0732	PF
38 /363	10.5783	POLL053	18:4 n-3	c6 c9 c12 c15-18·4	3 5222	DE
38 98/6	10,6002	POLI-056	18:4 n-1	c8 c11 c14 c17-18:4	0.2281	DE
40.0824	10 0137	POLI-068	18.5 n-1	$c5 c8 c11 c14 - 18 \cdot 5$	0.2201	DE
40.0024	20 0044	SAN-011	20.0	20.0	0.5590	DE
41.2102	20.0044	MOU 250	20.0 20:1 n 11	20.0	0.000	DE
41.2102	20.1427	MOU-239	20.1 II-11 20:1 n-9	c11-20:1	1 4660	DE
41.4292	20.1070	MOU 260	20.1 n-3	c11-20.1	0.1492	
41.0403	20.2713	MOU 180	20.1 n=7	c15-20.1	0.1402	
42.0240	20.4076		20.1 II-5 20.2 (NIMI)	C10-20.1	0.0077	
42.0207	20.4090	ELID 196	20.2 (INIVII) Europ5 [02 346]	11 Mothyl 10 13 oneyvectodeca 10 12 dianaic acid	0.2202	
43.1720	20.3301		20:2 n 6		0.0111	
43.7170	20.0473	D10-020	20.2 11-0	011,014-20.2	0.1090	
44.1420	20.7320	-	Linknown	Linknown PLIEA	0.0102	DE
45.0063	20.0242		20:2 n 6		0.0775	DE
45.0003	20.3002	SAN-012	20.5 11-0	21.0	0.1310	DE
46.0002	21.0044	POIL035	21.0 20:4 n-6	21.0	0.0400	DE
40.0302	21.1242	100-000	20.4 11-0	-	0.3724	DEI
46 9301	21.2040	- POLI-034	- 20:3 n-3	- c11 c14 c17-20:3	0.0022	PF
48 2393	21.2520	POU-054	20:4 n-3	c8 c11 c14 c17-20:4	1 0301	PF
40.2000	21.0000	-	20.4110	-	0.0006	DEI
49.0592	21.7207	- POLI-036	- 20:5 n-3	- c5 c8 c11 c14 c17-20:5	16 4081	PF
50 2303	21.0011	POLI-118	E1b (EDA_3)	(1-trans) 5.8 11 14 17-20.5	0.0348	DE
50.2505	22.0020	SAN-013	22.0	22.0	0.0040	DE
50.4000	22.0023	POIL-558	E_{1c} (EPA-4)	(1-trans) 5.8 11 14 17-20:5	0.0338	PF
51 1147	22.0470	MOLI-262	22.1 n-11	c11-22:1	1 0993	PF
51 3997	22.1000	MOU-025	22.1 n 1 22.1 n 9	c13-22:1	0 2652	PF
51 7340	22.1000	-	-	-	0.2002	PEDI
51 8560	22 2857	MOU-271	22·1 n-7	c15-22·1	0.0797	PED
52 7343	22 4637	DIU-095	22:2 NMI	x x-22.2	0.0568	PF
54 6504	22.8529	POU-069	21:5 n-3	c6 c9 c12 c15 c18-21.5	0.6509	PF
55 3846	23 0026	SAN-014	23:0	23.0	0.0307	PF
56 1812	23 1653	POU-037	22:4 n-6	c7 c10 c13 c16-22.4	0.0986	PF
57.5619	23.4483	POU-066	22:5 n-6	c4.c7.c10.c13.c16-22:5	0.2348	PF
58,1620	23,5717	POU-055	22:4 n-3	c10.c13.c16.c19-22:4	0.0879	PF
59,4208	23,8317	POU-038	22:5 n-3	c7.c10.c13.c16.c19-22:5	1.6837	PF
60,2838	24,0108	SAN-015	24:0	24:0	0.0857	PF D
60.4142	24,0379	POU-138	D1a (DHA-3)	(1-trans) 4.7.10.13.16.19-22:6	0.0229	PFD
60.8696	24,1326	POU-039	22:6 n-3	c4.c7.c10.c13.c16.c19-22:6	9,1041	PF
61.2431	24.2104	MOU-026	24:1 n-9	c15-24:1	0.5102	PF
61.6714	24,2996	POU-139	D1b (DHA-4)	(1-trans) 4.7.10.13.16.19-22:6	0.1377	PF
68,9519	25,8481	POU-067	24:5 n-3	c9.c12.c15.c18.c21-24:5	0.1582	PF
70.3234	26.1466	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1735	PF
70.7024	26.2295	-	-	- //	0.0532	PF I

Produkt 25, Z0107-37

Filnavn: Z0107-37. 120 topper funnet i 118 grupper. Antall over 0.1%: 50. Antall med tildelt ID: 97

27.66	62 17.2595	POU-049	16:3 n-3	c7,c10,c13-16:3	0.0469	PF
27.94	54 17.3244	-	-	-	0.0206	PF I
28.192	23 17.3813	UNK-165	Unknown	Unknown	0.0071	PF
28.58	70 17.4716	MOU-480	17:1 n-4	c13-17:1	0.0167	PF
28.69	75 17.4968	SAB-076	i-18:0	16-Methylheptadecanoic acid	0.0791	PF
28.934	48 17.5505	POU-051	16:4 n-3	c4,c7,c10,c13-16:4	0.0878	PF
29.63	91 17.7089	POU-052	16:4 n-1	c6,c9,c12,c15-16:4	1.9457	PF
30.539	95 17.9091	-	-	-	0.0134	PEI
30.992	25 18.0094	SAN-009	18:0	18:0	3.2340	PF
31.904	49 18.2091	MOU-023	18:1 n-9	c9-18:1	13.4680	PF
32.180	01 18.2686	MOU-079	18:1 n-7	C11-18:1	3.1198	
32.44	30 18.3252	MOU-278	18:1 n-6	C12-18:1	0.0194	PF
32.76	17 18.3936	MOU-258	18:1 n-5	C13-18:1	0.1057	
33.310	00 10.0100	DIU-102	10:211-7	00,011-10:2	0.0998	
33.00	39 18.3042	DIU-495	10:2 II-X	x,x-18.2	0.0400	
24 57	00 10.0410	DIU-027	10.2 II-0 19:2 n 7	69,612-10.2 E 9 11 19:2	0.0055	
34.570	04 10.//01 27 19.9/22	PUU-307	18:3 II-7 18:2 n 4	5, 6, 11 - 16.3	0.0055	
34.00	57 10.0422 69 19.0220	DIU-156	10.2 11-4 19:2 n 6	011,014-10.2 of of of 12,19:2	0.3736	
35.51	29 10.9330	SAN 010	10.311-0	10.0	0.2307	
26.26	37 10 1209	BOIL 050	19.0 19:2 n 4	19.0 c9 c11 14 19:3	0.0010	
36.69	50 10 21 95	MOLL 580	10:3 II-4	c11 10:1	0.1920	
36.04	79 10.2726	POL 032	19.1 II-0 19:2 n 2	c0 c12 c15 19:3	1 4226	
37 33	19.2720	POU-052	18:4 n=4	c5 c8 c11 c14-18·4	0.0393	PF
38 414	49 19.5514	POU-053	18:4 n-3	c6 c9 c12 c15-18:4	2 4391	PF
38 98	10.0700	POU-056	18:4 n-1	c8 c11 c14 c17-18:4	0.2312	PF
40.07	14 19 9115	POU-068	18:5 n-1	c5 c8 c11 c14-18:5	0.0193	PF
40 51	53 20.0018	SAN-011	20:0	20:0	0 1960	PF
41 204	45 20.1416	MOU-259	20:0 20:1 n-11	c9-20.1	0 1417	PF
41 41	75 20 1847	MOU-024	20:1 n-9	c11-20:1	1 5446	PF
41.84	02 20.2700	MOU-260	20:1 n-7	c13-20:1	0.2507	PF
42.513	30 20.4055	MOU-180	20:1 n-5	c15-20:1	0.0159	PF
42.82	10 20.4674	DIU-581	20:2 (NMI)	x,x-20:2	0.0991	PF L
43.168	89 20.5373	FUR-186	Furan5 [02-346]	11-Methyl-10,13-epoxyoctadeca-10,12-dienoic acid	0.0076	PF
43.709	99 20.6460	DIU-028	20:2 n-6	c11,c14-20:2	0.2815	PF
44.586	69 20.8220	UNK-314	Unknown	Unknown PUFA	0.0424	PF
44.778	85 20.8605	MOU-419	20:1 n-2	c18-20:1	0.0296	PF
45.00	15 20.9053	POU-033	20:3 n-6	c8,c11,c14-20:3	0.1496	PF
45.479	91 21.0013	SAN-012	21:0	21:0	0.0258	PF
45.77	50 21.0608	-	-	-	0.0108	PF I
46.079	91 21.1220	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0.9176	PF
46.478	81 21.2022	-	-	-	0.0361	PF I
46.91	56 21.2900	POU-034	20:3 n-3	c11,c14,c17-20:3	0.1545	PF
48.223	31 21.5526	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0.8356	PF
49.01	72 21.7122	-	-	-	0.0739	PF I
49.402	25 21.7898	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	14.0122	PF
50.232	25 21.9572	POU-118	E1b (EPA-3)	(1-trans) 5,8,11,14,17-20:5	0.0260	PF
50.449	93 22.0010	SAN-013	22:0	22:0	0.1024	PF
50.684	42 22.0485	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0354	PF
51.098	85 22.1324	MOU-262	22:1 n-11	c11-22:1	0.9925	PF
51.39	14 22.1916	MOU-025	22:1 n-9	c13-22:1	0.2327	PF
51.84	71 22.2839	MOU-271	22:1 n-7	C15-22:1	0.1159	PF
53.740	87 22.6695	DIU-029	22:2 n-6	C13,C10-22:2	0.0281	
54.04	07 22.8510	POU-069	21:511-3	06,09,012,015,016-21.5	0.0203	
56 17	00 Z3.0014	5AN-014	23:0 22:4 n F	23.0	0.0351	
50.17	14 23.1033	POU-037	22:4 II-0		0.1032	
57.55	06 23.4459	POU-066	22:5 II-0 22:4 n 2	04,07,010,013,010-22.5	0.2557	
50.10	91 23.3711 77 23.9200	POU-055	22.4 11-3 22:5 n 2	c_{10} , c_{13} , c_{16} , c_{19} , c_{22} , 4	2.0759	
60.25	57 24 0040	SAN-015	22.511-5	24.0	2.0738	
60.419	86 24.0049	5AN-015	24.0	24.0	0.0327	
60.410	34 24 1251	POLI-030	22.6 n-3	c4 c7 c10 c13 c16 c19-22 ^{.6}	9 0555	PF
61 220	91 24 2075	MOLI-026	24·1 n-9	c15-24·1	0 4578	PF
61 654	40 24 2960	POU-139	D1b (DHA-4)	(1-trans) 4.7.10.13.16.19-22 ^{.6}	0,1278	PF
63 54	71 24 6924	-	-	-	0.0376	PFI
64.23	23 24.8368	-	-	-	0.0235	PFI
68.940	04 25.8456	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.0935	PF
70.31	55 26.1449	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.0666	PF
70.68	27 26.2252	-	-	-	0.0459	PF I
71.29	19 26.3588	OTH-267	Chol. Degr.	Cholesterol Degr. prod.	0.0466	PF
71.898	83 26.4921	OTH-269	Chol. Degr.	Cholesterol Degr. Prod.	0.0845	PF
76.71	57 27.5658	UNK-562	Unknown (PUFA)	Unknown	0.0668	PF

Produkt 27, Z0107-40

Filnavn: Z0107-40. 113 topper funnet i 110 grupper. Antall over 0.1%: 42. Antall med tildelt ID: 94

27.4967	17.2199	MOU-436	17:1 n-8	c9-17:1	0.2926	PF
27.6460	17.2548	POU-049	16:3 n-3	c7,c10,c13-16:3	0.0188	PF
27.9172	17.3179	MOU-327	17:1 n-6	c11-17:1	0.0138	PF
28.1827	17.3791	-	-	-	0.0029	PF I
28.5639	17.4663	MOU-480	17:1 n-4	c13-17:1	0.0383	PF
28.6953	17.4963	SAB-076	i-18:0	16-Methylheptadecanoic acid	0.0554	PF
28.9229	17.5479	POU-051	16:4 n-3	c4,c7,c10,c13-16:4	0.0733	PF
29.6196	17.7045	POU-052	16:4 n-1	c6,c9,c12,c15-16:4	0.3114	PF
30.9745	18.0054	SAN-009	18:0	18:0	1.0655	PF
31.9238	18.2132	MOU-023	18:1 n-9	c9-18:1	21.4958	PF
32.1819	18.2690	MOU-079	18:1 n-7	c11-18:1	4.5479	PF
32.4391	18.3244	MOU-278	18:1 n-6	c12-18:1	0.0196	PF
32.7532	18.3917	MOU-258	18:1 n-5	c13-18:1	0.5526	PF
33.1383	18.4739	MOU-279	18:1 n-4	c14-18:1	0.0151	PF
33.3079	18.5100	DIU-102	18:2 n-7	c8,c11-18:2	0.0149	PF
33.5445	18.5601	MOU-310	18:1 n-x	x-18:1	0.0817	PF L
33.9081	18.6370	DIU-027	18:2 n-6	c9,c12-18:2	1.6342	PF
34.8770	18.8408	DIU-158	18:2 n-4	c11,c14-18:2	0.1267	PF
35.3077	18.9311	POU-030	18:3 n-6	c6,c9,c12-18:3	0.0810	PF
35.6373	19.0001	SAN-010	19:0	19:0	0.0126	PF
36.2582	19.1297	POU-050	18:3 n-4	c8,c11,14-18:3	0.1162	PFD
36.3891	19.1569	MOU-247	19:1 n-12	c7-19:1	0.0317	PFDL
36.6731	19.2158	MOU-580	19:1 n-8		0.0318	PF
36.9317	19.2693	POU-032	18:3 n-3	C9,C12,C15-18:3	0.5863	PF
37.9532	19.4794		-	-	0.0100	
38.3901	19.5701	POU-053	18:4 II-3 19:4 n 1		1.1140	
38.9074	19.0007	POU-056	10:4 (1-1 10:5 p 1	CO,CII,CI4,CI7-IO.4	0.1478	
40.0031	19.9102	FUU-000	20:0	20.0	0.0249	
40.5200	20.0027	MOIL259	20.0 20:1 n-11	20.0 cQ-20:1	2 2888	PF
41.2300	20.1401	MOU-239	20.111-11 20:1 n-9	c11-20:1	2.2000	PE
41.4023	20.1370	MOU-224	20.1 n-7	c13-20.1	0.7427	DE
42 1457	20.3316	DIU-094	20:2 NMI	x x-20:2	0.0040	PFI
42 5036	20 4036	MOU-180	20.1 n-5	c15-20:1	0.0593	PF
43 7005	20 6441	DIU-028	20.2 n-6	c11 c14-20·2	0 1552	PF
43.9272	20.6896	UNK-319	Unknown	Unknown	0.0279	PF
44.5767	20.8199	UNK-314	Unknown	Unknown PUFA	0.0395	PF
44.9906	20.9031	POU-033	20:3 n-6	c8.c11.c14-20:3	0.0487	PF
46.0681	21.1198	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0.4274	PF
46.9055	21.2880	POU-034	20:3 n-3	c11,c14,c17-20:3	0.0593	PF
48.2116	21.5503	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0.4019	PF
48.9968	21.7081	POU-117	E1a (EPA-2)	(1-trans) 5,8,11,14,17-20:5	0.0733	PF
49.3447	21.7782	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	6.3691	PF
50.2302	21.9567	POU-118	E1b (EPA-3)	(1-trans) 5,8,11,14,17-20:5	0.0324	PF
50.6673	22.0451	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0237	PF
51.1022	22.1331	MOU-262	22:1 n-11	c11-22:1	1.8426	PF
51.3897	22.1913	MOU-025	22:1 n-9	c13-22:1	0.4529	PF
51.8483	22.2841	MOU-271	22:1 n-7	c15-22:1	0.0397	PF
52.2178	22.3590	DIU-211	22:2 NMI	x,x-22:2	0.0053	PF
54.6337	22.8495	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0.3395	PF
56.1718	23.1633	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.0629	PF
57.5495	23.4457	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.0726	PF
58.1507	23.5694	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.0637	PF
59.0205	23.7489	-	-	-	0.0202	PFI
59.4172	23.8310	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	3.9519	PF
60.2405	24.0018	-	-	-	0.0329	PEI
60.4077	24.0365	POU-138	D1a (DHA-3)	(1-trans) 4,7,10,13,16,19-22:6	0.0404	PF
60.8244	24.1232	POU-039	22:6 n-3	C4,C7,C10,C13,C16,C19-22:6	7.8087	PF
61.2077	24.2030		I rans DHA		0.2116	PF
61.6341	24.2919	POU-139		(1-trans) 4,7,10,13,16,19-22:6 (1.trans) 4,7,40,42,46,40,22:6	0.1096	
62.4990	24.4725	POU-140		(1-trans) 4,7,10,13,16,19-22:6 (1.trans) 4,7,40,42,46,40,22:6	0.0839	
62.9017	24.5569	POU-141	DTe (DHA-6)	(1-trans) 4,7,10,13,16,19-22.6	0.1249	
68 0256	25.3450		- 24:5 n 3	-	0.0238	
70 2060	20.0440		24.011-0 Linkn DUEA	uz,u 12,013,010,021-24.3	0.0900	
10.3009	20.1430	-00-318		UTINIUWIT FUFA (24.0 11-3?)	0.0003	r'F L

Produkt 61, Z0107-41

Filnavn: Z0107-41. 108 topper funnet i 106 grupper. Antall over 0.1%: 49. Antall med tildelt ID: 78

27 2200	10 2405		10.1 - 1	aE a0 a11 a14 10 4	0 1040	
37.3208	19.3495	POU-059	18:4 n-4	C5,C8,C11,C14-18:4	0.1246	PF
38.1297	19.5156	-	-	-	0.0271	PFI
38 4164	19 5742	POI I-053	18·4 n-3	c6 c9 c12 c15-18·4	5 6035	PF
00.4104	10.0772	T 00 000	10.4110		0.0000	55
38.9725	19.6878	POU-056	18:4 n-1	C8,C11,C14,C17-18:4	0.4103	PF
39.3344	19.7615	-	-	-	0.0483	PF I
39.7280	19.8416	-	-	-	0.0301	PF I
40.0712	10 0115		19:5 n 1	c5 c8 c11 c14 19:5	0 1002	DE
40.0712	13.3113		10.511-1	00,00,011,014-10.0	0.1032	55
40.5123	20.0012	SAN-011	20:0	20:0	0.1231	PF
41.1937	20.1394	MOU-259	20:1 n-11	c9-20:1	0.0957	PF
41 4062	20 1824	MOU-024	20.1 n-9	c11-20·1	0 8974	PF
41 6234	20.2263	LINK 211	Linknown		0.0755	DE
41.02.34	20.2203				0.0755	FI
41.8355	20.2691	MOU-260	20:1 n-7	c13-20:1	0.2476	PF
42.8180	20.4669	DIU-581	20:2 (NMI)	x,x-20:2	0.1326	PF
43 1645	20 5364	FUR-186	Furan5 [02-346]	11-Methyl-10 13-epoxyoctadeca-10 12-dienoic acid	0.0334	PF
42 7047	20 6440		20:2 n 6	o11 o14 20:2	0 1 1 1 1	
43.7047	20.0449	DI0-028	20.2 11-0	011,014-20.2	0.1111	FF .
44.1266	20.7296	-	-	-	0.0041	PF I
44.5872	20.8221	UNK-314	Unknown	Unknown PUFA	0.1476	PF
44 7752	20 8598	-	-	-	0 0291	PFI
44.0091	20.0046		20.2 n 6	09 011 014 20:2	0.2462	
44.9901	20.9040	F00-033	20.3 11-0	00,011,014-20.5	0.2402	FF
45.3343	20.9722	-	-	-	0.0216	PET
46.0879	21.1238	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	3.3245	PF
46 4678	21 2001	POU-583	Unknown	Unknown PLIFA	0.0659	PF
40.7000	21.2001	DOL 504			0.0000	
40.7962	21.2001	PO0-564	Unknown	UNKNOWN PUFA	0.0435	PFD
46.9287	21.2927	-	-	-	0.0678	PF D I
47.4525	21.3978	POU-245	20:4 NMI	c5,c11,c14,c17-20:4	0.0244	PF
47 6882	21 4451	-	-	-	0.0310	PF I
47.0002	21.4401				0.0010	
47.0075	21.4652	-	-	-	0.0159	PFI
48.2356	21.5551	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	1.4901	PF
49.5206	21.8136	POU-036	20:5 n-3	c5.c8.c11.c14.c17-20:5	54.5701	PF
50 2410	21 9589	POI I-118	$E1b$ (EPA_{-3})	(1-trans) 5 8 11 14 17-20:5	0 2010	PFI
50.2410	21.0000			(1 trans) = 0.01114.1720.5	0.2010	
50.6754	22.0468	POU-558	EIC (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.2999	PFL
51.0640	22.1254	POU-119	E1d (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.9481	PF L
51.3957	22.1925	POU-472	20:5 n-x	x,x,x,x,x-20:5	0.0820	PF
51 7711	22 2685	-	-	-	0 1068	PF I
50.0074	22.2000				0.1000	
53.3674	22.5921	-	-		0.0545	PFI
53.9727	22.7151	UNK-582	Unknown	Unknown	0.0991	PF
54.3213	22.7859	-	-	-	0.0507	PF I
54 6410	22 8512		21.5 n-3	c6 c9 c12 c15 c18-21.5	1 5386	DE
54.0000	22.0012	100-003	21.511-5	00,03,012,010,010-21.5	0.0547	
54.9922	22.9225	-	-	-	0.0517	PFI
56.1644	23.1618	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.1217	PF
56.3734	23.2046	-	-	-	0.0505	PF I
57 5497	23 4458	POI 1-066	22.5 n-6	c4 c7 c10 c13 c16-22·5	0 5458	PF
50.0000	20.4400	100,000	22.5110	04,07,010,010,010 22:0	0.0400	
20.9990	23.7440	-	-	-	0.0543	PFI
59.3989	23.8272	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	2.1120	PF
60.3995	24.0348	-	-	-	0.0821	PF I
60 8326	24 1249	POI 1-039	22.6 n-3	c4 c7 c10 c13 c16 c19-22 6	13 2493	PF
64.04.00	24.1243	100 000	22.0110	04,01,010,010,010,010 22.0	0.4022	
61.2189	24.2053	-	-	-	0.1932	PFI
61.6317	24.2914	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.1942	PF
62.0590	24.3806	-	-	-	0.1207	PF I
62 5059	24 4740	POI I-140	D1d (DHA-5)	(1-trans) 4 7 10 13 16 19-22 6	0 1669	PF
02.0000	24.4740			(1 trans) + 7, 10, 10, 10, 10, 22.0	0.1000	
62.8868	24.5537	POU-141	Die (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.2063	PF
63.4112	24.6638	-	-	-	0.0896	PF I
63.6795	24.7202	-	-	-	0.0590	PF I
64 4504	24 8829		-	<u>-</u>	0.0805	PFI
CF 0400	27.0023				0.0000	
00.0100	25.0029	-	-	-	0.0774	PFI
65.2253	25.0473	-	-	-	0.0958	PF I
65.5581	25.1182	UNK-564	Unknown(PUFA)	Unknown	0.0546	PF
66 3554	25 2885	UNK-592	Unknown	Unknown	0 1126	PFI
66 6071	25.2000		Unknown	Linknown	0.1457	
1100.00	25.3424	000-700			0.1457	
70.3137	26.1445	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.0646	PF

Produkt 64, Z0107-42

Filnavn: Z0107-42. 124 topper funnet i 118 grupper. Antall over 0.1%: 42. Antall med tildelt ID: 88

28.9143	17.5459	POU-051	16:4 n-3	c4,c7,c10,c13-16:4	0.0495	PF D
29.6323	17.7073	POU-052	16:4 n-1	c6,c9,c12,c15-16:4	3.2046	PF
30.3950	17.8771	-	-	-	0.0189	PF D I
30.5378	17.9088	-	-	-	0.0251	PF D I
30.9780	18.0062	SAN-009	18:0	18:0	2.8072	PF
31.8632	18.2000	MOU-023	18:1 n-9	c9-18:1	8.6912	PF
32.1584	18.2639	MOU-079	18:1 n-7	c11-18:1	2.6333	PF
32.7550	18.3921	MOU-258	18:1 n-5	c13-18:1	0.0587	PF
33.3053	18.5094	DIU-102	18:2 n-7	c8,c11-18:2	0.1419	PF L
33.5703	18.5656	MOU-310	18:1 n-x	x-18:1	0.0126	PF
33.9975	18.6559	DIU-027	18:2 n-6	c9,c12-18:2	15.4273	PF
34.5564	18.7735	-	-	-	0.0148	PF I
34.8810	18.8416	DIU-158	18:2 n-4	c11,c14-18:2	0.5102	PF
35.3239	18.9345	POU-030	18:3 n-6	c6,c9,c12-18:3	2.3083	PF
35.6228	18.9971	SAN-010	19:0	19:0	0.0449	PF
35.7926	19.0326	-	-	-	0.0129	PF I
36.2585	19.1298	POU-050	18:3 n-4	c8,c11,14-18:3	0.1667	PF
36.6775	19.2167	MOU-580	19:1 n-8	c11-19:1	0.0373	PF
36.9307	19.2691	POU-032	18:3 n-3	c9,c12,c15-18:3	0.3964	PF
37.3213	19.3496	POU-059	18:4 n-4	c5,c8,c11,c14-18:4	0.0482	PF
37.5266	19.3919	-	-	•	0.0071	PFI
38.4015	19.5712	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	1.9099	PF
38.9699	19.6872	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0.2927	PF
39.3436	19.7634	-	-	-	0.0175	PEI
39.7250	19.8410	-	-	-	0.0133	PEI
40.0668	19.9106	POU-068	18:5 n-1	c5,c8,c11,c14-18:5	0.0524	PFL
40.5056	19.9998	SAN-011	20:0	20:0	0.1721	PF
41.1983	20.1403	MOU-259	20:1 n-11	C9-20:1	0.0434	PF
41.4010	20.1813	MOU-024	20:1 n-9	c11-20:1	0.5632	PF
42.5193	20.4068	-	-	-	0.0014	PFI
42.8192	20.4671	DIU-581	20:2 (NIVII)	x,x-20:2	0.1190	
43.1677	20.5371	-	-	-	0.0016	
43.7007	20.6441	DI0-028	20:2 11-0	011,014-20.2	0.0693	
44.0880	20.7220		-		0.0017	
44.5827	20.8211	UNK-314	Unknown		0.0305	
44.7777	20.8603	-	-	-	0.0296	
44.9912	20.9032	P00-033	20.3 11-0	08,011,014-20:3	0.0907	
45.0783	20.9207	- SAN 012	- 21.0	- 21:0	0.0124	
45.4646	21.0025	DOLL 025	21.0 20:4 p 6	21.0	0.0120	
40.0705	21.1203	POU-033	20.4 II-0		0.0990	PE
40.4343	21.1974				0.0109	PEI
40.9201	21.2921		- 20:4 n-3	- c8 c11 c14 c17-20:4	0.1210	PF
40.2100	21.0010	POU-034	20.4 n-3	c5, c8, c11, c14, c17-20.5	16.8/16	DE
50 2221	21.7522	POU-118	E1h (EPΔ-3)	(1-trans) 5 8 11 14 17-20.5	0.0759	PF
50 4444	22.0000	SAN-013	22.0	22.0	0.0700	PF
50.6659	22.0000	POU-558	E_{1c} (EPA-4)	(1-trans) 5 8 11 14 17-20:5	0.0664	PF
51 0714	22.0440	POU-119	E1d (EPA-4)	(1-trans) 5.8 11 14 17-20:5	0.0004	PF
51 3803	22 1894	MOU-025	22.1 n-9	c13-22·1	0.1000	PF
51 8454	22 2835	MOU-271	22:1 n-7	c15-22:1	0.0740	PF
54 3448	22 7907	-	-	-	0.0185	PFI
54.6351	22.8498	POU-069	21:5 n-3	c6.c9.c12.c15.c18-21:5	0.6895	PF
54 9409	22 9121	-	-	-	0.0219	PFI
55.3666	22.9989	SAN-014	23:0	23:0	0.0263	PF
56.1177	23.1523	-	-	-	0.0295	PF D I
56.1600	23.1609	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.0459	PF D
56.7492	23.2815	-	-	-	0.0234	PF I
57.5458	23.4450	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.2190	PF L
58.1517	23.5696	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.0490	PF
59.3999	23.8274	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	1.7711	PF
60.2359	24.0008	SAN-015	24:0	24:0	0.0388	PF D
60.3799	24.0307	POU-138	D1a (DHA-3)	(1-trans) 4,7,10,13,16,19-22:6	0.0277	PF D
60.7996	24.1181	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	4.8346	PF
61.0808	24.1766	-	-	-	0.0340	PF D I
61.2238	24.2064	MOU-026	24:1 n-9	c15-24:1	0.2555	PF D
61.6288	24.2908	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.1007	PF
62.5094	24.4747	POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.0489	PF
62.8699	24.5502	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.0673	PF
64.1965	24.8292	-	-	-	0.0146	PF I
64.4589	24.8847	-	-	-	0.0224	PFI
65.0090	25.0013	-	-	-	0.0346	PFI
65.2068	25.0434	-	-	-	0.0330	PFI
66.3697	25.2916	-	-	-	0.0274	PEI
66.6059	25.3422	UNK-588	Unknown		0.0488	PF DF
68.9422	25.8460	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.0456	
70.3034	26.1423	-	-	-	0.0381	PEI

Produkt 65, Z0107-43

Filnavn: Z0107-43. 64 topper funnet i 64 grupper. Antall over 0.1%: 44. Antall med tildelt ID: 58

	55.3666	22.9989	SAN-014	23:0	23:0	0.1086	PF
	56.1646	23.1619	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.3255	PF
	56.3125	23.1921	MOU-355	23:1 n-9	c14-23:1	0.1235	PF
	57.5462	23.4451	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	1.8768	PF
	58.1508	23.5694	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.2787	PF
	59.3958	23.8265	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	5.9025	PF
	60.8518	24.1289	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	47.9008	PF
	61.2302	24.2077	MOU-026	24:1 n-9	c15-24:1	3.4149	PF
	61.6440	24.2939	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.6918	PF L
	62.4997	24.4727	POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.4087	PF L
	62.8846	24.5533	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.5434	PF
	63.5531	24.6936	DIU-312	24:2 n-x	x,x-24:2	0.2538	PF L
	67.8242	25.6041	-	-	-	0.1260	PF I
	68.9332	25.8440	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.2328	PF
	70.3002	26.1416	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.2898	PF L
_	70.6778	26.2241	UNK-598	Unknown	Unknown	0.2936	PF L

Produkt 73, Z0107-44

Filnavn: Z0107-44. 89 topper funnet i 87 grupper. Antall over 0.1%: 48. Antall med tildelt ID: 80

41.4057	20.1855	MOU-024	20:1 n-9	c11-20:1	2.0478	PF
41.8254	20.2703	MOU-260	20:1 n-7	c13-20:1	0.3649	PF
42.5013	20.4066	MOU-180	20:1 n-5	c15-20:1	0.0130	PF
42.8068	20.4681	DIU-581	20:2 (NMI)	x,x-20:2	0.3025	PF L
43.1584	20.5389	-	-	-	0.0023	PF I
43.6955	20.6469	DIU-028	20:2 n-6	c11,c14-20:2	0.2460	PF
44.5745	20.8236	UNK-314	Unknown	Unknown PUFA	0.0472	PF L
44.7758	20.8640	-	-	-	0.0416	PF I
44.9898	20.9071	POU-033	20:3 n-6	c8,c11,c14-20:3	0.2216	PF
45.4772	21.0052	SAN-012	21:0	21:0	0.0579	PF
46.0685	21.1241	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	1.8679	PF
46.4639	21.2036	-	-	-	0.0365	PF I
46.9035	21.2919	POU-034	20:3 n-3	c11,c14,c17-20:3	0.2183	PF
48.2171	21.5556	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	1.4485	PF
49.4433	21.8022	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	31.4317	PF
50.4364	22.0026	SAN-013	22:0	22:0	0.2394	PF
50.6618	22.0482	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0565	PF L
51.0895	22.1347	MOU-262	22:1 n-11	c11-22:1	1.4908	PF
51.3784	22.1932	MOU-025	22:1 n-9	c13-22:1	0.3948	PF
51.8424	22.2871	MOU-271	22:1 n-7	c15-22:1	0.2036	PF
52.7152	22.4640	DIU-095	22:2 NMI	x,x-22:2	0.0493	PF
53.7336	22.6707	DIU-029	22:2 n-6	c13,c16-22:2	0.0299	PF
53.9532	22.7153	UNK-582	Unknown	Unknown	0.0403	PF L
54.6311	22.8532	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	1.5821	PF
54.8902	22.9060	-	-	-	0.0211	PF I
55.3629	23.0024	SAN-014	23:0	23:0	0.0563	PF
56.1589	23.1649	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.2122	PF
57.5423	23.4485	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.7967	PF
58.1462	23.5728	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.1413	PF
59.4041	23.8325	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	4.4250	PF
60.2822	24.0148	SAN-015	24:0	24:0	0.0919	PF D
60.3894	24.0371	-	-	-	0.0502	PF D I
60.8676	24.1366	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	20.5332	PF
61.2230	24.2106	MOU-026	24:1 n-9	c15-24:1	0.7696	PF
61.6507	24.2997	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.2506	PF L
62.5044	24.4781	POU-140	D1d (DHA-5)	(1-trans) 4,7,10,13,16,19-22:6	0.1029	PF
62.7900	24.5379	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.1078	PF
63.5410	24.6956	-	-	-	0.0452	PF I
64.2095	24.8365	-	-	-	0.0479	PF I
68.9277	25.8475	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.1553	PF
70.2958	26.1454	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1798	PF

Produkt 76, Z0107-45

Filnavn: Z0107-45. 56 topper funnet i 55 grupper. Antall over 0.1%: 21. Antall med tildelt ID: 49

57.5392	23.4479	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.9664	PF
58.0584	23.5547	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.0299	PF
59.4040	23.8325	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	3.2373	PF
60.4207	24.0436	POU-138	D1a (DHA-3)	(1-trans) 4,7,10,13,16,19-22:6	0.0396	PF
60.9557	24.1549	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	38.3209	PF
61.6417	24.2979	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.3170	PF L
61.9457	24.3613	-	-	-	0.2807	PF I
62.7730	24.5344	POU-141	D1e (DHA-6)	(1-trans) 4,7,10,13,16,19-22:6	0.1963	PF
65.5546	25.1220	UNK-564	Unknown(PUFA)	Unknown	0.0478	PF
70.2900	26.1441	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.0534	PF L

Produkt 78, Z0107-46

Filnavn: Z0107-46. 97 topper funnet i 94 grupper. Antall over 0.1%: 41. Antall med tildelt ID: 91

33.3084	18.5133	DIU-102	18:2 n-7	c8,c11-18:2	0.0063	PF
33.5580	18.5663	MOU-310	18:1 n-x	x-18:1	0.0194	PF L
33.9801	18.6556	DIU-027	18:2 n-6	c9,c12-18:2	11.9831	PF
34.1599	18.6935	-	-	-	0.0150	PF I
34.5357	18.7727	-	-	-	0.0072	PF I
34.8715	18.8432	DIU-158	18:2 n-4	c11,c14-18:2	0.1274	PF
35.3025	18.9336	POU-030	18:3 n-6	c6.c9.c12-18:3	0.0834	PF
35.6301	19.0022	SAN-010	19:0	19:0	0.0219	PF
36.2523	19.1321	POU-050	18:3 n-4	c8,c11,14-18:3	0.1470	PF D
36.3929	19.1613	MOU-247	19:1 n-12	c7-19:1	0.0138	PF D
36.6818	19.2211	MOU-580	19:1 n-8	c11-19:1	0.0395	PF
36.9516	19.2769	POU-032	18:3 n-3	c9.c12.c15-18:3	4.7941	PF
37.2955	19.3478	POU-059	18:4 n-4	c5.c8.c11.c14-18:4	0.0157	PF
38.3854	19.5711	POU-053	18:4 n-3	c6.c9.c12.c15-18:4	0.8246	PF
38,9568	19.6877	POU-056	18:4 n-1	c8.c11.c14.c17-18:4	0.1657	PF
40 0569	19 9116	POU-068	18 [.] 5 n-1	c5 c8 c11 c14-18:5	0.0161	PF
40 5018	20 0021	SAN-011	20.0	20.0	0.2598	PF
41 2171	20 1473	MOU-259	20:1 n-11	c9-20-1	0.5176	PF
41 4407	20 1926	MOU-024	20.1 n-9	c11-20:1	5 2341	PF
41 8255	20 2703	MOU-260	20:1 n-7	c13-20:1	0 1580	PF
42 1022	20 3262	UNK-438	Unknown NFA	Unknown NFA	0.0205	PF
42 4920	20 4048	MOU-180	20.1 n-5	c15-20:1	0.0101	PF
42 8023	20.4672	DILI-581	20:2 (NMI)	x x-20.2	0.0425	PFI
43 6970	20.4072	DIU-028	20:2 (NMI) 20:2 n-6	c11 c14-20:2	1 1388	PF
44 5696	20.8226	LINK-314	Linknown		0.0136	PF
44 9761	20.0220	POI 1-033	20:3 n-6	c8 c11 c14-20:3	0.0100	PF
45 4587	21 0014	SAN-012	20.0 11 0	21.0	0.1347	PF
46 0484	21.0014	POU-035	20:4 n-6	c5 c8 c11 c14-20:4	0.2151	PF
46 8926	21.1201	POU-034	20:3 n-3	c11 c14 c17-20:3	0.5294	PF
48 2019	21.2007	POU-054	20:0 n 3	c8 c11 c14 c17-20:4	1 2129	PF
48 9721	21.0020	-	-	-	0.0490	PFI
40.3001	21.7074	POLLO36	20.5 n-3	c5 c8 c11 c14 c17-20·5	3 0103	DE
50 4454	22 0044	SAN-013	20.0 11-0	22.0	0 1418	PF
51 1232	22.0044	MOU-262	22:0 22:1 n-11	c11-22·1	4 2502	DE
51 3871	22.1410	MOU-025	22.1 n 1 22.1 n 0	c13-22:1	9.2002	DE
51 8350	22.1956	MOU-023	22.1 n-7	c15-22.1	0.0005	PF
53 7220	22.2000		22.1117 22:2 n-6	c13 c16-22:2	0.0000	DE
54 6150	22.0000	DI0-025	22.2 II-0 21.5 n 3	cf c0 c12 c15 c18 21:5	0.0027	
56 1/78	22.0499	POU-009	21.311-3 22:4 n-6	c7 c10 c13 c16-22:4	0.2155	
57 5272	23.1027	POU 066	22.4 II-0 22:5 n 6	c1,c10,c13,c10-22.4	0.0034	
59 1274	23.4434	POU-000	22.3 II-0 22:4 n 2	c10 c12 c16 c10 22:0	0.0070	
50 3831	23.3709	POU-033	22.4 II-3 22:5 n-3	c7 c10 c13 c16 c19-22:4	1 6822	
60 2170	20.0202	SAN-015	24.0	21.0	0.0516	DE
60 7917	24.0014		24.0 22:6 n 2		4.2762	
61 2102	24.1107	F 00-039	22.011-3 24.1 n 0	04,07,010,013,010,019-22.0	4.2702	
61 6457	24.2019			(1 trans) 4.7 10.13 16.10 22.6	0.4914	
62 5226	24.2907	F UU-139	24·2 n v	$(1^{-11}a_{11}5)$ 4, 1, 10, 13, 10, 13-22.0	0.0705	
69 01 90	24.0930	POLL 067	24.2 11-X 24.5 p 2	A,A-24.2	0.0403	
70 2004	20.0400		24.011-0	Unknown DIIEA (24.5 5 22)	0.1809	
10.2904	20.1442	FUU-310			0.07.32	F F

Produkt 79, Z0107-47

Filnavn: Z0107-47. 108 topper funnet i 105 grupper. Antall over 0.1%: 41. Antall med tildelt ID: 88

26.3866	16.9580	SAB-071	Phytanic acid	3,7,11,15-Tetramethylhexadecanoic acid	1.9724	PF
27.2041	17.1539	POU-046	16:3 n-4	c6,c9,c12-16:3	0.1570	PF
27.4865	17.2203	MOU-436	17:1 n-8	c9-17:1	0.1419	PF
27.6494	17.2584	POU-049	16:3 n-3	c7,c10,c13-16:3	0.0305	PF L
27.9572	17.3299	MOU-327	17:1 n-6	c11-17:1	0.0451	PF
28.1761	17.3804	-	-	-	0.0214	PF I
28.5513	17,4663	MOU-480	17:1 n-4	c13-17:1	0.1518	PF L
28.6813	17,4958	SAB-076	i-18:0	16-Methylheptadecanoic acid	0.1040	PFL
28 9087	17 5474	POU-051	16:4 n-3	c4 c7 c10 c13-16·4	0.0999	PFI
29 2945	17 6344	-	-	-	0.0050	PFI
29 6115	17 7055	POU-052	16·4 n-1	c6 c9 c12 c15-16 [.] 4	0.8031	PF
30 9506	18 0030	SAN-009	18:0	18:0	1 0892	PF
31 8504	18 2002	MOLI-023	18:1 n-9	c9-18·1	11 4597	PF
32 1641	18 2682	MOU-020	18:1 n-7	c11-18·1	6 7082	PF
32.1041	18 3230	MOU-278	18:1 n-6	c12-18·1	0.0607	DEI
22 7275	19 2015	MOU 258	10:1 n-0	c12 19:1	0.0007	
32.1313	10.3913	MOU 270	10.111-J	c14 19:1	0.2992	
22 5250	19 5614	MOU 219	10.111-4 19:1 n v	v 19·1	0.1195	
22,0020	10.0014		10.1 II-A 19:2 n 6	x-10.1	1 6522	
33.8930	10.03/2	DIU-027	18:211-0 19:2 p.4	09,012-16:2	1.0032	
34.0024	10.0413	DIU-156	10.2 II-4	c11,014-10.2	0.0449	
35.2934	18.9317	POU-030	18:3 n-6	C6,C9,C12-18:3	0.1626	PF
36.2364	19.1288	-	-	-	0.0195	PEI
36.6635	19.2174	MOU-580	19:1 n-8	C11-19:1	0.0197	PF
36.9219	19.2708	POU-032	18:3 n-3	c9,c12,c15-18:3	1.2619	PF
37.2668	19.3419	-	-	-	0.0249	PEI
38.1490	19.5228	DIU-465	CLA (t8,c10)	t8,c10-18:2	0.0167	PF
38.3935	19.5728	POU-053	18:4 n-3	c6,c9,c12,c15-18:4	3.8398	PF
38.9377	19.6838	POU-056	18:4 n-1	c8,c11,c14,c17-18:4	0.1213	PF
40.0553	19.9113	POU-068	18:5 n-1	c5,c8,c11,c14-18:5	0.0440	PF L
40.4943	20.0006	SAN-011	20:0	20:0	0.0268	PF
41.3870	20.1817	MOU-024	20:1 n-9	c11-20:1	0.7632	PF
41.8148	20.2682	MOU-260	20:1 n-7	c13-20:1	0.2976	PF
42.0226	20.3101	-	-	-	0.0290	PF I
43.6863	20.6450	DIU-028	20:2 n-6	c11,c14-20:2	0.0438	PF
44.1168	20.7316	-	-	-	0.0226	PF I
44.5738	20.8234	UNK-314	Unknown	Unknown PUFA	0.0357	PF L
44.9754	20.9042	POU-033	20:3 n-6	c8,c11,c14-20:3	0.0372	PF L
45.4466	20.9990	SAN-012	21:0	21:0	0.0122	PF
46.0522	21.1209	POU-035	20:4 n-6	c5,c8,c11,c14-20:4	0.2482	PF
46.8284	21.2768	POU-034	20:3 n-3	c11,c14,c17-20:3	0.1906	PF
48.1975	21.5517	POU-054	20:4 n-3	c8,c11,c14,c17-20:4	0.3487	PF
48.9764	21.7082	POU-117	E1a (EPA-2)	(1-trans) 5,8,11,14,17-20:5	0.0707	PF
49.3604	21.7855	POU-036	20:5 n-3	c5,c8,c11,c14,c17-20:5	14.8804	PF
50.1969	21.9542	POU-118	E1b (EPA-3)	(1-trans) 5,8,11,14,17-20:5	0.0315	PF
50.4259	22.0005	SAN-013	22:0	22:0	0.0346	PF
50.6553	22.0469	POU-558	E1c (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0229	PF
51.0567	22.1281	POU-119	E1d (EPA-4)	(1-trans) 5.8.11.14.17-20:5	0.0913	PF L
51.3661	22,1907	MOU-025	22:1 n-9	c13-22:1	0.6471	PF
51.8336	22,2853	MOU-271	22:1 n-7	c15-22:1	0.1499	PF L
54.6157	22.8501	POU-069	21:5 n-3	c6.c9.c12.c15.c18-21:5	0.4277	PF
56 3331	23 2006	MOU-355	23.1 n-9	c14-23·1	0 0714	PF
57.5471	23.4495	POU-066	22:5 n-6	c4.c7.c10.c13.c16-22:5	0.0367	PF
59 3690	23 8253	POU-038	22.5 n-3	c7 c10 c13 c16 c19-22:5	0.3078	PF
60 7837	24 1191	POU-039	22.6 n-3	c4 c7 c10 c13 c16 c19-22.6	7 1631	PF
61 2136	24 2086	MOU-026	24·1 n-9	c15-24·1	0 1601	PF
61 6006	24 2893	POU-139	D1h (DHA-4)	(1-trans) 4 7 10 13 16 19-22 6	0 0744	PEI
62 7985	24 5207	POU-141	$D_{10} (DHA_{-6})$	$(1.4 \text{ trans}) = 4.7 \pm 0.13 \pm 0.10 \pm 0.22 \text{ f}$	0.0635	PF
70 2806	26 1//0	POIL-318		(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.0000	PEI
71 8832	26 /037	OTH-260	Chol Dear	Cholesterol Dear Prod	0.0004	
77 0088	20.4307	-	-	-	0.0477	DEI
11.0900	21.0000	-	-		0.0717	111

Produkt 80, Z0107-65

Filnavn: Z0107-65. 64 topper funnet i 58 grupper. Antall over 0.1%: 43. Antall med tildelt ID: 58

	51.3454	22.1939	MOU-025	22:1 n-9	c13-22:1	1.2814	PF
	51.7947	22.2848	MOU-271	22:1 n-7	c15-22:1	0.2876	PF
	53.6768	22.6664	DIU-029	22:2 n-6	c13,c16-22:2	0.0871	PF
	54.5709	22.8481	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0.7930	PF
	56.1163	23.1633	POU-037	22:4 n-6	c7,c10,c13,c16-22:4	0.1320	PF D
	56.2884	23.1985	MOU-355	23:1 n-9	c14-23:1	0.1293	PF D
	57.4869	23.4441	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.7688	PF
	58.0871	23.5675	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.1426	PF
	59.3384	23.8259	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	1.8503	PF
	60.3184	24.0292	SAN-015	24:0	24:0	0.1049	PF
	60.8539	24.1406	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	35.1638	PF
	61.1811	24.2087	MOU-026	24:1 n-9	c15-24:1	1.4036	PF
	61.5907	24.2941	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.3921	PF L
	63.4968	24.6933	-	-	-	0.1462	PF I
	68.8753	25.8424	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.1298	PF
_	70.2416	26.1397	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.1903	PF
Tran, Z0107-48

Filnavn: Z0107-48. 105 topper funnet i 100 grupper. Antall over 0.1%: 47. Antall med tildelt ID: 94

28.5513	17.4663	MOU-480	17:1 n-4	c13-17:1	0.0689	PF
28.6771	17.4949	SAB-076	i-18:0	16-Methylheptadecanoic acid	0.0353	PF
28,9089	17.5475	POU-051	16:4 n-3	c4.c7.c10.c13-16:4	0.0458	PF
29.2930	17.6341	-	-		0.0203	PF I
29.6047	17,7039	POU-052	16:4 n-1	c6.c9.c12.c15-16:4	0.1866	PF
30.9656	18.0063	SAN-009	18:0	18:0	1,9092	PF
31 9009	18 2112	MOU-023	18·1 n-9	c9-18 [.] 1	16 3392	PF
32 1751	18 2706	MOU-079	18·1 n-7	c11-18 [.] 1	5 0155	PF
32 4272	18 3249	MOU-278	18:1 n-6	c12-18 ⁻¹	0.0323	PFI
32 7407	18 3922	MOU-258	18:1 n-5	c13-18 ⁻¹	0.3882	PF
33 1324	18 4759	MOU-279	18:1 n-4	c14-18 ^{.1}	0.0123	PFI
33 5302	18 5604	MOU-310	18:1 n-x	x-18 ^{.1}	0.0482	PFI
33 8972	18 6381	DIU-027	18:2 n-6	c9 c12-18 [.] 2	2 0292	PF
34 8608	18 8409	DIU-158	18:2 n-4	c11 c14-18 [.] 2	0 1574	PF
35 2914	18 9313	POU-030	18:3 n-6	c6 c9 c12-18:3	0 1433	PF
35 6194	19 0000	SAN-010	10:0110	10.0	0.0132	PF
36 2270	19 1268	LINK-288	Linknown	Linknown	0.0851	
36 3639	19 1553	MOI 1-247	10.1 n-12	c7-10·1	0.0001	PEDI
36 6549	19 2156	MOU-580	19:1 n-8	c11-19:1	0.0350	PF
36 0182	19.2700	POIL-032	18:3 n-3	c9 c12 c15-18:3	0.0000	DE
37 2820	19.2700	100-032	-	-	0.0337	DEI
37 0355	10 /701	_			0.0707	DEI
39 2014	19.4791	- POLL053	- 19:4 n 2	- c6 c0 c12 c15 18:4	2 6294	
38 0/16	19.5724	POU-055	18:4 n-1	c8 c11 c14 c17-18:4	0 10/2	DE
40.0464	19.0040	POU-050	10.4 II-1	c6,c11,c14,c17-10.4	0.1042	
40.0404	19.9095	FUU-000	20.0	20.0	0.0175	
40.3094	20.0037	SAN-UTT	20.0	20.0	10.0207	
41.4675	20.2020		20:1 n-9 20:1 n 7	c11-20.1	10.7850	
41.0345	20.2721	NICO-200	20.1 II-7	013-20.1	0.3003	
42.1310	20.3321	DIU-094	20:2 INIVII	X,X-20.2	0.0229	
42.4974	20.4058		20:1 11-3 Europe [02, 246]	CID-20.1 11 Methyl 10.12 energy ceterless 10.12 dianeis said	0.0554	
43.1399	20.5352	FUK-186	Furano [02-346]		0.0453	
43.0000	20.6455	DIU-028	20:2 11-0		0.3208	
44.5702	20.8227	UNK-314			0.0314	
44.9754	20.9042	POU-033	20:3 11-0	C6,C11,C14-20.3	0.0724	
46.0520	21.1208	POU-035	20:4 n-6		0.3408	PF
46.8891	21.2890	POU-034	20:3 n-3	C11,C14,C17-20:3	0.1122	PF
48.1974	21.5517	POU-054	20:4 n-3	C8,C11,C14,C17-20:4	0.6839	PF
48.9881	21.7106	POU-117	E1a (EPA-2)	(1-trans) 5,8,11,14,17-20:5	0.0367	PF
49.3524	21.7839	POU-036	20:5 n-3	C5,C8,C11,C14,C17-20:5	9.3023	
50.6403	22.0439	POU-558	E1C (EPA-4)	(1-trans) 5,8,11,14,17-20:5	0.0177	PF
51.1296	22.1428	MOU-262	22:1 n-11	C11-22:1	5.2773	PF
51.3889	22.1953	MOU-025	22:1 n-9	c13-22:1	0.6773	
51.8327	22.2852	MOU-271	22:1 n-7	c15-22:1	0.0671	PF
52.4914	22.4186	DIU-095	22:2 NMI	x,x-22:2	0.0216	PF
53.1258	22.5473	UNK-517	Unknown	Unknown	0.0285	PF
53.7216	22.6682	DIU-029	22:2 n-6	c13,c16-22:2	0.0222	PF
53.9498	22.7146	UNK-582	Unknown	Unknown	0.0205	PF
54.6150	22.8499	POU-069	21:5 n-3	c6,c9,c12,c15,c18-21:5	0.3969	PF
56.1649	23.1662	FUR-191	Furan10 [02-346]	13,14-Dimethyl-12,15-epoxyeicosa-12,14-dienoic acid	0.0832	PF
57.5287	23.4457	POU-066	22:5 n-6	c4,c7,c10,c13,c16-22:5	0.1180	PF
58.1360	23.5707	POU-055	22:4 n-3	c10,c13,c16,c19-22:4	0.0972	PF
59.3792	23.8274	POU-038	22:5 n-3	c7,c10,c13,c16,c19-22:5	1.1608	PF
60.8381	24.1304	POU-039	22:6 n-3	c4,c7,c10,c13,c16,c19-22:6	11.4641	PF
61.2151	24.2089	MOU-026	24:1 n-9	c15-24:1	0.4447	PF
61.6236	24.2941	POU-139	D1b (DHA-4)	(1-trans) 4,7,10,13,16,19-22:6	0.1375	PF
68.9217	25.8462	POU-067	24:5 n-3	c9,c12,c15,c18,c21-24:5	0.2140	PF L
70.2866	26.1434	POU-318	Unkn. PUFA	Unknown PUFA (24:6 n-3?)	0.0703	PF

Nofima kontrollprøve (KP), Z0107-49

Filnavn: Z0107-49. 82 topper funnet i 71 grupper. Antall over 0.1%: 43. Antall med tildelt ID: 75

35.1552 18.9027 - - 0.0098 35.2915 18.9313 POU-030 18:3 n-6 c6,c9,c12-18:3 0.0512	PF D I PF D PF
35.2915 18.9313 POU-030 18:3 n-6 c6,c9,c12-18:3 0.0512	PF D PF
	PF
35.6225 19.0006 SAN-010 19:0 19:0 0.0244	
36.2281 19.1270 UNK-288 Unknown Unknown 0.0334	PF D
36.3887 19.1604 MOU-247 19:1 n-12 c7-19:1 0.0164	PF D
36.9157 19.2695 POU-032 18:3 n-3 c9,c12,c15-18:3 0.7200	PF L
38.3838 19.5708 POU-053 18:4 n-3 c6,c9,c12,c15-18:4 1.7411	PF L
38.9430 19.6849 POU-056 18:4 n-1 c8,c11,c14,c17-18:4 0.0875	PF L
40.0536 19.9109 POU-068 18:5 n-1 c5,c8,c11,c14-18:5 0.0793	PF L
40.5064 20.0030 SAN-011 20:0 20:0 0.1472	PF
41.2163 20.1471 MOU-259 20:1 n-11 c9-20:1 1.2723	PF L
41.4784 20.2002 MOU-415 20:1 n-8 c12-20:1 12.8557	PF
41.8311 20.2715 MOU-260 20:1 n-7 c13-20:1 0.2225	PF L
42.4968 20.4057 MOU-180 20:1 n-5 c15-20:1 0.0469	PF L
43.6877 20.6453 DIU-028 20:2 n-6 c11,c14-20:2 0.1627	PF
44.9763 20.9044 POU-033 20:3 n-6 c8,c11,c14-20:3 0.0391	PF
46.0522 21.1209 POU-035 20:4 n-6 c5,c8,c11,c14-20:4 0.1716	PF D
46.1904 21.1486 0.0523	PF D I
46.8847 21.2881 POU-034 20:3 n-3 c11,c14,c17-20:3 0.0854	PF
48.1894 21.5501 POU-054 20:4 n-3 c8,c11,c14,c17-20:4 0.3471	PF L
49.3047 21.7743 POU-036 20:5 n-3 c5,c8,c11,c14,c17-20:5 4.2401	PF L
51.2223 22.1616 MOU-262 22:1 n-11 c11-22:1 19.9290	PF
51.4223 22.2021 MOU-025 22:1 n-9 c13-22:1 1.1988	PF
51.8491 22.2885 MOU-271 22:1 n-7 c15-22:1 0.1280	PF L
54.6177 22.8505 POU-069 21:5 n-3 c6,c9,c12,c15,c18-21:5 0.1560	PF L
55.4251 23.0150 SAN-014 23:0 23:0 7.5813	PF
57.5303 23.4460 POU-066 22:5 n-6 c4,c7,c10,c13,c16-22:5 0.0837	PF L
58.1321 23.5698 POU-055 22:4 n-3 c10,c13,c16,c19-22:4 0.0651	PF
59.3733 23.8262 POU-038 22:5 n-3 c7,c10,c13,c16,c19-22:5 0.5080	PF L
60.7697 24.1162 POU-039 22:6 n-3 c4,c7,c10,c13,c16,c19-22:6 4.1386	PF
61.2151 24.2089 MOU-026 24:1 n-9 c15-24:1 0.8855	PF
61.6430 24.2981 0.0764	PFI
<u>68.9232</u> 25.8465 POU-067 24:5 n-3 c9,c12,c15,c18,c21-24:5 0.2547	PFL