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Abstract

The Kaup-Boussinesq system is a coupled system of nonlinear partial differential
equations which has been derived as a model for surface waves in the context of
the Boussinesq scaling, and it has also been derived for an internal wave system.
In this thesis, modeling properties of the Kaup-Boussinesq water-wave model
are under investigation. Differential balance laws for mass, momentum and en-
ergy are considered, and we present an exact differential balance for momentum.
A Kaup-Boussinesq system describing long internal waves is investigated and
compared with the Gardner equation. Finally, a spectral method for the nu-
merical discretization of the Kaup-Boussinesq system for surface waves is put
forward, and shown to converge and be stable.
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Outline and Motivation

In this thesis, the Kaup-Boussinesq system (KB) for surface and interfacial
waves is investigated. This system arises from the Euler equations of motion,
which are nonlinear and difficult to solve. The system is derived by assuming
that we have long waves with small amplitude, and that the fluid is irrotational
so that the local fluid velocity can be written as a potential. This potential is
written as an expansion in a small parameter showing explicitly the long waves
assumption. Then a variety of systems are derived by keeping different terms
in the expansion, and the Kaup-Boussinesq system is one of them. The reason
why we call it the Kaup-Boussinesq system is that Boussinesq scaling is used in
the derivation, and it was studied by Kaup [14]. It was also derived by L. J. F.
Broer in 1974 [4], but in this thesis we call it the Kaup-Boussinesq system.

The system is not heavily investigated, maybe because it is linearly ill-posed
(Bona 2002 [3]), but it also has an integrable Hamiltonian structure [14], and
is therefore important. In [11] there is given a solution of the Kaup-Boussinesq
system for internal waves, which was used as initial guess for an iterative pro-
cedure to solve the Hamiltonian system derived in [8], and this gave very good
results. In Chapter 5, the given solution is used in the investigation of the KB
system for internal waves. The motivation for doing this is that when solitary
waves are assumed, the KB system has the same form as the Gardner equation,
also known as the extended Korteweg-de Vries equation.

Altering the parameters, the solution in [11] also solves KB for surface waves,
and is therefore used as exact solution for comparing with the results of the nu-
merical procedure in Chapter 7. Motivated by the differential balance equations
for general Boussinesq systems found in [1], in Chapter 4 we find the differential
balance laws for mass, momentum and energy corresponding to the KB system.
An exact differential balance equation for momentum is found and presented
here.

The new results presented in this thesis are thus

• An exact differential balance for momentum corresponding to Kaup-Boussinesq,
Chapter 4

• We find that the KB system does not describe the broadening of large-
amplitude internal waves as well as the Gardner equation, Chapter 5

• We present a spectral algorithm for the numerical approximation of solu-
tions of the KB system for surface waves, Chapter 7
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The complete outline of the thesis is as follows:

In Chapter 1 we derive the governing equations of motion used in hydro-
dynamics using conservation properties of mass and momentum.

In Chapter 2 appropriate boundary conditions for a given wave modeling
problem are introduced, and the resulting equations are linearized to obtain the
important dispersion relation for linear waves. Then, the same is done for the
situation of interface waves between two fluids of different density.

In Chapter 3 the nonlinearities in the resulting system of equations from
Chapter 2 are retained and different models used later are presented, herein the
Kaup-Boussinesq system.

In Chapter 4 conservation of mass, momentum and energy for the KB system
are presented in form of differential balance equations. An exact conservation
property of the balance equation for momentum is also presented in the last
section.

In Chapter 5 the Kaup-Boussinesq system for internal waves are discussed.
Here, KB and Gardner are compared, using phase plane diagrams and different
plots of the given solutions of the systems.

In Chapter 6 we present the theory of Spectral Methods as a numerical tool
needed for Chapter 7.

In Chapter 7 the Kaup-Boussinesq system is investigated for the surface wave
problem. We use the numerical procedure presented in Chapter 6 with the
solution given in [11] as initial condition.



Chapter 1

Fluid Mechanics

In this chapter we will introduce the basic properties and principles of fluid
dynamics, and this will eventually lead us to the governing equations of fluid
motion. We will first introduce the two important properties density and vis-
cosity, that have to be taken into account in the following governing equations.
Then we will introduce the governing principles, which are the conservation laws
for mass and momentum. The theory is mainly based upon the book of Kundu
and Cohen [7].

1.1 Fluid Properties

1.1.1 Density

The density ρ of a fluid is defined as mass per unit volume. When we talk
about the density of a fluid, we think about a specific number, but this quantity
depends on the pressure and the temperature involved. We call the relation
between these parameters an equation of state

ρ = ρ(p, T ).

Because of the warmth from the sun, the temperature is highest at the surface,
and because of all the water lying on top, the pressure is largest at the bottom.
The consequences of this is that the water density increases with the depth.

1.1.2 Viscosity

Another property of fluids is the viscosity. Different fluids do not flow equally
fast or smooth. We know that for example ketchup and oil flow “slower” than
water. The property concerning how “well” a fluid flows, we call the viscosity
of a fluid. We can think of this as friction working between the fluid and the
surroundings, but also between the local fluid elements.

1.2 Conservation of Mass

An important principle used to derive an equation of motion is the principle of
mass conservation. That is, mass can not disappear and can not be created. If
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2 Chapter 1. Fluid Mechanics

we look at a material volume1 V (t), the mass inside does not change and the
time derivative of the total mass is zero. Hence, the following can be stated

d

dt

∫
V (t)

dm =
d

dt

∫
V (t)

ρ(x, t)dV = 0. (1.1)

Here dm is a mass element and ρ is the fluid density, so that the total mass
is expressed by the integral. The density ρ(x, t) and the upcoming u(x, t) are
in general dependent of where in the fluid we are located and also dependent
of time, but from now we denote it without the x and t for practical reasons.
Using Reynolds transport theorem2 we get

d

dt

∫
V (t)

ρdV =

∫
V (t)

∂ρ

∂t
dV +

∫
A(t)

ρu · ndA = 0. (1.2)

A(t) is the surface of the material volume V (t), u is the local fluid velocity and
n is the outward normal vector of A(t).

If we look at a geometrical volume Ω, we can take the derivative inside the
integral because we have a fixed boundary

d

dt

∫
Ω

ρ dV =

∫
Ω

∂ρ

∂t
dV. (1.3)

Now, change in mass given by (1.3) must be equal to the inflow through the
boundaries, which is the surface integral of the flux ρu. Then we have∫

Ω(t)

∂ρ

∂t
dV = −

∫
∂Ω(t)

ρu · ndA, (1.4)

and we see that it reduces to the same equation.

Now applying Gauss’ divergence theorem to the resulting equation leads to

0 =

∫
V (t)

∂ρ

∂t
dV +

∫
A(t)

ρu · ndA =

∫
V (t)

(∂ρ
∂t

+∇ · (ρu)
)
dV.

For the resulting integral to be possible for every point in space, we need to
require

∂ρ

∂t
+∇ · (ρu) = 0. (1.5)

This is called the pointwise continuity equation, and it expresses the mass con-
servation in differential form.

1We distinguish between a geometrical and a material volume. A geometrical volume (also
known as a control volume) is a volume that does not change it’s physical shape, while a
material volume is a volume containing a specific collection of fluid particles. This volume
can change it’s shape, but contains always the same particles.

2Reynolds transport theorem describes time differentiation of integrals with time dependent
limits. Here the total time derivative is divided into the partial time derivative plus a term
that takes into account the movement of the surface of the volume that is being integrated
over.



1.3. Conservation of Momentum 3

Equation (1.5) can be simplified. Using the material derivative3

D(·)
Dt

=
∂(·)
∂t

+ u · ∇(·),

and the identity
∇ · (ρu) = ρ∇ · u + u · ∇ρ,

and then dividing by ρ, we get that the continuity equation (1.5) can be written
as

1

ρ

Dρ

Dt
+∇ · u = 0.

For the further work in this thesis, we can assume constant density. Then we
obtain

∇ · u = 0. (1.6)

Since incompressibility means that the density of fluid particles does not change,
this equation is called the continuity equation for incompressible flows.

1.3 Conservation of Momentum

In this section conservation of momentum eventually lead us to the Navier-
Stokes momentum equation. The much used Euler equation that will be used
in the later chapters is the non-viscous form of this equation. Here, the deriva-
tion is based on a material volume, but as in the last section, we obtain the
same result for a geometrical volume.

The whole principle is built on the fact that Newton’s second law can be stated
as

d

dt

∫
V (t)

ρ(x, t)u(x, t)dV =

∫
V (t)

ρ(x, t)gdV +

∫
A(t)

f(n,x, t)dA. (1.7)

It is applied to a material volume V (t) where A(t) is the surface area. Here g is
the gravitational force per unit mass, f is the surface force per unit area and n
is the surface normal with outward direction. Using again Reynolds transport
theorem yields∫

V (t)

∂

∂t
(ρu)dV +

∫
A(t)

(ρu)(u · n)dA =

∫
V (t)

ρgdV +

∫
A(t)

fdA. (1.8)

This statement considers momentum changes, both inside V (t) and from the
motion of A(t), as a result of the surface and volume forces. To obtain the
momentum equation in differential form, we first use Gauss’ theorem to express
the surface integrals in (1.8) as volume integrals. We have∫

A(t)

(ρu)(u · n)dA =

∫
V (t)

∇ · (ρuu)dV =

∫
V (t)

∂

∂xi
(ρuiuj)dV.

3The material derivative describes change due to time and also due to the fluids motion.
It is also known as the total derivative where we have a velocity field dependent on both time
and space.



4 Chapter 1. Fluid Mechanics

Before we transform the second surface integral, we need to know that the
surface forces f have units stress, force per unit area, and have elements fj =
niτij , where τ is the stress tensor. Now the integral becomes∫

A(t)

fdA =

∫
A(t)

niτijdA =

∫
V (t)

∂

∂xi
(τij)dV.

The integrals in (1.8) can now be moved to one side, and we need to require
that the integrand is zero at every point in space. Moving the force-terms to
the other side, we obtain the momentum equation in differential form

∂

∂t
+

∂

∂xi
(ρuiuj) = ρgj +

∂

∂xi
(τij).

Another way to write this is with the use of the material derivative. Writing
out the product rule for the left-hand side of this equation, using the continuity
equation (1.5), we obtain

ρ
Duj
Dt

= ρgj +
∂

∂xi
(τij). (1.9)

We see now that the equation relates the fluid-particle acceleration and the
forces working on the fluid, so it is indeed a way of writing Newton’s second
law.

The stress tensor is derived by combining the different quantities affecting the
deformation in a fluid. This is primarily the thermodynamic pressure p, but
because of the movement the viscosity leads to additional stress. The stress
tensor can thus be expressed as

τij = −pδij + σij , (1.10)

where the first term represents the static contribution and σij represents the
dynamic viscous contribution. Investigation of σij with consideration of ther-
modynamic effects, introducing material-isotropy and using stress-symmetry
eventually leads to

σij = µ
(∂uj
∂xi

+
∂ui
∂xj

)
+
(
µν −

2

3
µ
)∂um
∂xm

δij . (1.11)

For details the reader might be referred to [7]. Combining the expression for
the stress-tensor (1.10) with (1.11), and putting it into the equation (1.9), we
obtain

ρ
Duj
Dt

= − ∂p

∂xj
+ ρgj +

∂

∂xi

[
µ
(∂uj
∂xi

+
∂ui
∂xj

)
+
(
µν −

2

3
µ
)∂um
∂xm

δij

]
, (1.12)

which we call the Navier-Stokes momentum equation. For small temperature
differences, µ and µv can be taken outside the brackets, obtaining

ρ
Duj
Dt

= − ∂p

∂xj
+ ρgj + µ

∂2uj
∂x2

i

+
(
µν +

1

3
µ
) ∂

∂xj

∂um
∂xm

.



1.3. Conservation of Momentum 5

For incompressible fluids, using (1.6), we obtain the incompressible Navier-
Stokes equation

ρ
Du

Dt
= −∇p+ ρg + µ∇2u.

Far from the boundaries of the flow field, we can neglect the viscosity. Then we
can simplify further to obtain

Du

Dt
= −1

ρ
∇p− gk. (1.13)

This equation (1.13) is the inviscid Navier-Stokes equation, also called the Euler
equation. Throughout this section it is assumed that the wave frequency is much
higher than the Coriolis frequency, so the waves are unaffected by the earth’s
motion. If this was not the case, the Navier-Stokes equation would include
another term as well, taking into account the earth’s rotation. The continuity
equation (1.6) and the Euler equation for conservation of momentum (1.13) are
the two equations we use later on.
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Chapter 2

Wave Theory

The purpose of this chapter is to give an introduction to wave theory. We are
working with gravitational waves, which means that we have waves that can
be put into motion and the gravitational force will then try to put the wave
back into its equilibrium position. First, using the equations of motion derived
in Chapter 1, we introduce the wave function and the appropriate boundary
conditions and arrive at a set to solve the velocity potential φ and the wave
function η. Linearizing of this set give us the dispersion relation for linear
waves. At the end we will look at have the problem alters when we consider
internal waves. The theory in this chapter is based on the books of Whitham
[18] and Kundu and Cohen [7].

2.1 Equations of motion and Boundary Condi-
tions

Throughout this chapter it will be assumed that we have an inviscid, incom-
pressible fluid in a constant gravitational field. The fundamental equations for
fluid flow comes from the principles of conservation of mass and conservation of
momentum, which eventually leads to the Euler equations. The equations (1.6)
and (1.13) from Chapter 1

∇ · u = 0, (2.1)

Du

Dt
=

1

ρ
∇p− gk, (2.2)

are used here, with the help of boundary conditions, to find a set of equations
for the wave function and the velocity potential. In many applications, these
equations are more complex than necessary. Consequently there have been made
many approximate models to solve the wave motion. In the next chapter we will
look at some of these models. First however, appropriate boundary conditions
are introduced.

Since we want to model waves, we are interested in the wave function η, as
well as u, ρ and p. If we, for example, were to have linear waves, we would
get sinusoidal solutions from the linearized equations of the wave motion. A

7



8 Chapter 2. Wave Theory

one-dimensional traveling wave would be of the form

η(x, t) = acos(kx− ωt), (2.3)

where a is the amplitude of the wave, k is the wave number and ω is the wave
frequency. Figure 2.1 shows the geometrical setup of such a wave. Generally,
however, the wave function is more complicated due to nonlinearities and dis-
persion.

z

x

z=-h0

h0

η

Figure 2.1: Geometric setup of the problem. Here η is the displacement from
the rest position of the free surface.

In order to describe the wave function, we need to take a look at the boundary
conditions for the problem. A property of the water surface is that water does
not cross it. Therefore, the velocity of the surface normal to itself must be the
same as the velocity of the fluid normal to the surface. This is the kinematic
boundary condition, and we have

(n · u)z=η = n ·Us. (2.4)

Here n is the surface normal, u is the local fluid velocity and Us is the velocity
of the surface. If we describe the surface by f(x, y, z, t) = 0, we get the surface
normal given by

n =
∇f
|∇f |

.

The velocity of the surface itself n · Us = −ft and u = [u, v, w], then (2.4)
becomes

ufx + vfy + wfz + ft = 0.

This is the same as the material derivative of f being zero

Df

Dt
=
∂f

∂t
+∇ · u = 0

which shows that the particles on the surface stays there. We can also write
this in another way. Using that the surface η is given by z = η(x, y, t), then
f(x, y, z, t) = η(x, y, t)− z, and the boundary condition becomes

Dη

Dt
= ηt + uηx + vηy − w = 0 (2.5)
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We also have a dynamic boundary condition. It states that the forces on both
sides of the boundary have to be equal. This means that, the pressure in the air
and in the water must be equal on the surface. To find an expression for this
boundary condition, we need to go back to the Euler equation (2.2).

If we introduce the vorticity ω = curl(u), which says something about how
the fluid particles rotates, we could rewrite equation (2.2) like

∂u

∂t
+∇(

1

2
u2) + ω × u = −1

ρ
∇p− gk. (2.6)

In most cases, we can assume that the flow is irrotational, that is ω = curl(u) =
0. Since typical problems with water waves concerns propagation into water at
rest or into a uniform stream, we can argue that ω = 0. We restrict ourselves
to these types of problems, where we assume irrotational waves. Hence, we can
introduce a velocity potential φ where u = ∇φ, since curl(u) = ∇× (∇φ) = 0.
Using this in equation (2.6), and integrating with respect to x, we get

p− p0

ρ
= C(t)− φt −

1

2
(∇φ)2 − gz,

where p0 is the pressure in undisturbed air and C(t) is a constant of integration
that can be ignored if we introduce a new potential φ‘ = φ−

∫
C(t)dt. Then we

get
p− p0

ρ
= −φt −

1

2
(∇φ)2 − gz.

Putting p = p0 and using u = ∇φ in equation (2.5), the two boundary conditions
at the free surface are

ηt + φxηx + φyηy = φz

φt + 1
2 (φ2

x + φ2
y + φ2

z) + gη = 0

 on z = η(x, y, t), (2.7)

where the last one is the dynamic. We also have a boundary condition at the
bottom. Assuming that the bottom is flat and solid, the vertical velocity must
be zero and we have n · ∇φ = 0, where n = [0, 0, 1]. This means that

φz = 0, at z = −h0. (2.8)

where h0 is the distance from the averaged surface. Since we have u = ∇φ, we
use equation (2.1) to obtain

∇2φ = 0, (2.9)

so the velocity potential must satisfy the Laplace equation. This equation and
the boundary conditions (2.7) and (2.8) gives us a set of equations to find the
velocity potential φ and the wave function η

φxx + φyy + φzz = 0, − h0 < z < η(x, y, t),

φz = 0, z = −h0,

ηt + φxηx + φyηy = φz, z = η(x, y, t)

φt +
1

2
(φ2
x + φ2

y + φ2
z) + gη = 0, z = η(x, y, t).

(2.10)
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2.2 Linearization and the Dispersion Relation

An important property about water waves is that they are dispersive, which
means that they spread out as they travel. Waves of different wave lengths
travels at different speeds. Here, we will show how the important dispersion
relation, which shows how the angular frequency ω and the wave number κ are
related, is obtained for linear surface waves. To make the problem linear, we
first linearize our boundary conditions (2.7). If we have water at rest, then for
small changes in the wave amplitude they become

ηt = φz,
φt + gη = 0.

(2.11)

Differentiation of the second equation with respect to t, substituting the first
one into it, we get

φtt + gφz = 0.

Since we have small perturbations on the waves initially at rest, we assume that
η � 1 and φ� 1, and we can apply these boundary conditions on z = 0 rather
than on z = η. Now we have a set of equations independent of η

φxx + φyy + φzz = 0, on − h0 < z < 0

φtt + gφz = 0, on z = 0 (2.12)

φz = 0, on z = −h0

Solving for φ, the wave function can be found from (2.11)

η(x, y, t) = −1

g
φt(x, y, 0, t) (2.13)

2.2.1 Dispersion Relation

The elementary sinusoidal wave function of water waves, slightly more general
than (2.3), is of the form

η(x, t) = Aeiκ·x−iωt, (2.14)

and because of the equations (2.11), we seek a solution of the velocity potential
in the form

φ(x, t) = F (z)eiκ·x−iωt. (2.15)

Using the Laplace equation, we get

F ′′ − κ2F = 0. (2.16)

Using the last of the equations (2.12), equation (2.15) gives that F ′(−h0) = 0,
which again means that

F ∝ cosh(κ(h0 + z)),

from equation (2.16). Putting the equation for the wave function (2.14) and
velocity potential (2.15) into the relation (2.13), we get

A =
iω

g
F (0).
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Then F can be written like

F (z) = − igA
ω

cosh(κ(h0 + z))

cosh(κh0)
,

and φ becomes

φ = − igA
ω

cosh(κ(h0 + z))

cosh(κh0)
eiκ·x−iωt.

The remaining boundary condition, the second of equations (2.12) φtt+gφz = 0,
and a little manipulation now gives us

ω2 = gκtanh(κh0), (2.17)

which we call the dispersion relation for linear surface waves. The phase speed
of a wave is given by

c =
ω

κ
.

If c is constant we do not have dispersion. If however, c is dependent of κ, which
is generally the case, we will have dispersion.

2.3 Internal waves

So far, the theory described is for a water surface with a layer of air above
it. The case becomes a little different when we assume that there is water
with a different density above this surface. In the ocean, solar heating creates
a sharp-density gradient, so that we get a well defined interface between the
warmer upper layer and the colder lower layer, and we get internal waves at the
interface. This is also the case in an estuary or in a fjord. Here the fresh river
water flows into the salty ocean water. The lighter fresh water lies on top of
the heavier ocean water, because the river water is less saline and consequently
lighter. We can no longer ignore the changes in pressure above the surface. We
now consider two fluids with pressure p1 and p2 and density ρ1 and ρ2. The
geometrical setup is shown in Figure 2.2.

z

x

h1 ρ1

h2 ρ2

Figure 2.2: Geometric setup of the internal waves problem. We set z = 0 at the
interface.

In the same manner as for surface waves, we have a kinematic boundary
condition saying that water can not cross the surface. The condition is the
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same, stating that the velocity of the interface normal to itself must be the
same as the velocity of the fluid normal to the interface

(n · u)z=η = n ·Us,

only now, this must be the same for both fluids. The dynamic boundary con-
dition is also the same, stating that the pressure in both fluids must be equal
on the interface, p1 = p2. We write equation (2.2) as (2.6) for the two differ-
ent fluids. Again irrotationality is assumed and a velocity potential u = ∇φ is
introduced. We integrate with respect to x, and now get the two equations

p1 − p0 = −ρ1(φ1t + 1
2 (5φ1)2 + gz),

p2 − p0 = −ρ2(φ2t + 1
2 (5φ2)2 + gz),

(2.18)

where p0 is the common undisturbed pressure value. Putting p1 = p2, the new
boundary conditions are

ρ1(φ1t + 1
2 (∇φ1)2 + gz) = ρ2(φ2t + 1

2 (∇φ2)2 + gz)

ηt + φ1xηx + φ1yηy = φ1z

ηt + φ2xηx + φ2yηy = φ2z

 on z = η(x, y, t).

(2.19)

In addition, the two velocity potentials must also satisfy the Laplace equation,
as a consequence of the continuity equation (2.1).

The dispersion relation for internal waves is a bit more complicated than the
surface wave case. For the simplest case, when we can assume that the interface
lies between two infinite deep fluids, we get

φ1 → 0 as z →∞, and φ2 → 0 as z → −∞,

and when motion in the y-direction is ignored, we have that

∂2φ1

∂x2
+
∂2φ1

∂z2
= 0 ,

∂2φ1

∂x2
+
∂2φ1

∂z2
= 0.

Then the elementary solution is of the form

η = aei(κx−ωt),

φ1 = b1e
i(κx−ωt)−κz, φ2 = b2e

i(κx−ωt)+κz.

The dispersion relation is now found from the boundary conditions (2.19), and
after some calculations we get

ω =

√
gκ
(ρ2 − ρ1

ρ1 + ρ2

)
.

We observe that when ρ1 ≈ 0 we get ω =
√
gκ, which agrees with the dispersion

relation for linear surface waves (2.17) when we have deep water, such that
tanh(κh0) ≈ 1.



Chapter 3

Nonlinear Model Equations

To solve the nonlinear set of equations for φ and η obtained in the preceding
chapter, we make certain simplifications to obtain model equations. There are
many ways to make such simplifications, and here we will derive some of the
most common nonlinear model equations. Generally, to model surface waves, the
variables at interest are the local wave velocity at the surface u, and the wave
function η. The resulting model equations therefore contains these variables.
In the first section, the shallow water equations are derived, which makes the
foundation for higher order nonlinear models. In the second section, dispersive
effects are incorporated into the shallow water theory. This eventually leads to
systems like Kaup-Boussinesq and the Korteweg-deVries equation. The theory
is based on the book of Whitham [18] and the article of Bona, Chen and Saut
[3].

3.1 Shallow Water Theory

When we consider shallow water it means we assume that κh0 → 0, or h0

λ →
0, since κ = 2π

λ . This means that the undisturbed water depth h0 is small
compared to the wavelength, so we either have shallow water or long waves,
or even both. From the preceding chapter, we have the dispersion relation for
linear waves given by

ω2 = gκ tanh(κh0).

Using the approximation κh0 → 0, tanh(κh0)→ κh0, this makes the dispersion
relation

ω2 ∼ gh0κ
2. (3.1)

The phase velocity c = ω
κ =
√
gh0 is independent of κ. The dispersive effects is

therefore not taken into account here.

To get the equations for shallow water, we write out the Euler equation (2.2) in
component form and approximate. The vertical component is

−1

ρ

∂p

∂z
− g = 0. (3.2)

We integrate it to get
p− p0 = ρg(η − z). (3.3)

13
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The two horizontal components are given by

∂ui
∂t

+ u
∂ui
∂x

+ v
∂ui
∂y

+ w
∂ui
∂z

= −1

ρ

∂p

∂xi

where i = 1, 2 and the velocity u = [u, v, w]. Since (3.3) gives pxi = ρgηxi , we
get

∂ui
∂t

+ u
∂ui
∂x

+ v
∂ui
∂y

+ w
∂ui
∂z

= −g ∂η
∂xi

Since the surface displacement η is independent of z, then the change of the
velocity following a particle is also independent of z, hence

∂ui
∂t

+ u
∂ui
∂x

+ v
∂ui
∂y

+ g
∂η

∂xi
= 0 (3.4)

The equation (2.1) for incompressible flow gives that ux + vy + wz = 0, which,
when integrated over the depth, becomes

0 =

∫ η

−h0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz

=
∂

∂x

∫ η

−h0

udz − [u]z=η
∂η

∂x
− [u]z=−h0

∂h0

∂x

+
∂

∂y

∫ η

−h0

vdz − [v]z=η
∂η

∂y
− [v]z=−h0

∂h0

∂y
+ [w]z=ηz=−h0

where Leibniz integral rule 1 is used twice to obtain the second equality. Using
the boundary conditions (2.10) we get

∂

∂x

∫ η

−h0

udz +
∂

∂y

∫ η

−h0

vdz +
∂η

∂t
= 0.

And since u and v are independent of z, we obtain

∂η

∂t
+ h0

∂u

∂x
+ h0

∂v

∂y
+

∂

∂x
(ηu) +

∂

∂y
(ηv) = 0. (3.5)

The equations (3.4) and (3.5) are called the shallow water equations for η and
u. They provide a nonlinear set for shallow water or long waves. For one-
dimensional waves, the equations can be written

ηt + h0ux + (uη)x = 0,
ut + uux + gηx = 0.

3.2 Inclusion of dispersion

In this section, dispersive effects are considered and we arrive at the Kaup-
Boussinesq system and the Korteweg-deVries-equation. If we write tanhκh0 in

1The Leibniz Integral rule is a differentiation rule, and it states that ∂
∂z

∫ b(z)
a(z)

f(x, z)dx =∫ b(z)
a(z)

∂f
∂z

dx + f(b(z), z) ∂b
∂z

− f(a(z), z) ∂a
∂z

. This is necessary because the integral limits are

functions of the differential variable.
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the dispersion relation as a Taylor series expansion about κ = 0, the systems
corresponds to the inclusion of another term in this expansion

ω2 = c20κ
2 − 1

3
c20h

2
0κ

4,

where the relation c0 =
√
gh0 is used. To do this, we write the velocity potential

as an expansion in the parameter β =
h2
o

l2 , called the dispersion parameter. We
also introduce the parameter α = a

h0
, which occurs in connection with the non-

linear terms and is therefore called the nonlinear parameter. In the following, it
will be assumed that there is an approximate balance between nonlinearity and
dispersiveness. This is done by assuming α ∼ β, α � 1 and β � 1 and keep-
ing terms in α and β up to the same order. This is called the Boussinesq scaling.

First, we remember the system from the preceding chapter (2.10) consisting
of the boundary conditions and Laplace equation for the velocity potential

φxx + φyy + φzz = 0, − h < z < η(x, y, t),

φz = 0, z = −h0,

ηt + φxηx + φyηy = φz, z = η(x, y, t)

φt +
1

2
(φ2
x + φ2

y + φ2
z) + gη = 0, z = η(x, y, t).

(3.6)

Now, we assume that we are working in an open channel where the fluid is
uniform in the cross-channel direction, say for example the y-direction, which
means we neglect motion in this direction. We also normalize the variables such
that they are of order one, and terms can be ordered explicitly in expansions
with respect to the small parameters α and β, showing the assumptions about
small amplitude and long wavelength. We normalize them in the following way

x = lx̃, z = h0(z̃ − 1), t = lt̃
c0
,

η = aη̃, φ = glaφ̃
c0
.

(3.7)

Using the normalized variables we see that the parameters α and β occurs, and
the system (3.6) becomes

βφxx + φzz = 0, 0 < z < 1 + αη,

φz = 0, z = 0,

ηt + αφxηx −
1

β
φz = 0, z = 1 + αη,

η + φt +
1

2
αφ2

x +
1

2

α

β
φ2
z = 0, z = 1 + αη.

(3.8)

Here, the tildes on the normalized variables are removed for practical reasons.
The next step is to represent φ as an expansion,

φ(x, z, t) =

∞∑
n=0

znfn(x, t)
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This way of writing the expansion is supported by the assumption that for small
depth, φx is practically independent of z. From Laplace’s equation, we get

∞∑
n=0

(n+ 1)(n+ 2)znfn+2(x, t) = −
∞∑
n=0

βzn(fn(x, t))xx.

We use the resulting recurrence relation for f

(n+ 1)(n+ 2)fn+2(x, t) = −β(fn(x, t))xx,

and the condition φz = 0 on z = 0 from (3.8), to obtain

φ =

∞∑
n=0

(−1)n
z2n

(2n)!

∂2nf

∂x2n
βn, (3.9)

where f = f0. Substituting this into the surface conditions, the last two of the
equations (3.8), and putting z = 1 + αη, we obtain

ηt + αηx

∞∑
n=0

( (−1)n

(2n)!

∂2n+1f

∂x2n+1
(1 + αη)2n

)
βn

+

∞∑
n=0

( (−1)n

(2n+ 2)!

∂2n+2f

∂x2n+2
(1 + αη)2n+1

)
βn = 0,

(3.10)

and

η +

∞∑
n=0

( (−1)n

(2n)!

∂2n+1f

∂x2n∂t
(1 + αη)2n

)
βn

+
1

2
α
( ∞∑
n=0

(−1)n

(2n)!

∂2n+1f

∂x2n+1
(1 + αη)2nβn

)2

+
1

2
αβ
( ∞∑
n=0

(−1)n

(2n+ 2)!

∂2n+2f

∂x2n+2
(1 + αη)2n+1βn

)2

= 0,

(3.11)

From this we obtain several different systems by keeping terms in α and β of
different orders. In the following we will see how to obtain the Kaup-Boussinesq
system and the Korteweg-deVries equation from these equations. The shallow
water equations can also be obtained from here keeping first order terms of α.

3.2.1 The Kaup-Boussinesq system

To get the second order approximating Boussinesq systems, we keep the first
terms in the series in the equations (3.10) and (3.11) up to second order in α
and β, writing the rest of the series expansions as simply “cubic terms” on the
right-hand side. Expanding the powers of z = (1 + αη), writing the resulting
higher order terms together with the rest terms of cubic terms, we obtain

ηt + αηx(
∂f

∂x
− 1

2

∂3f

∂x3
β) +

∂2f

∂x2
+ αη

∂2f

∂x2

−1

6

∂4f

∂x4
(1 + 3αη)β +

1

5!

∂6f

∂x6
β2 = cubic terms,
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and

η +
∂f

∂t
− 1

2

∂3f

∂x2∂t
(1 + 2αη)β +

1

4!

∂5f

∂x4∂t
β2

+
1

2
α(
∂f

∂x
)2 − 1

2
αβ

∂f

∂x

∂3f

∂x3
+

1

2
αβ(

∂2f

∂x2
)2 = cubic terms.

Next, differentiating the second equation with respect to x, and approximating
the scaled horizontal velocity at the bottom u with ∂f

∂x , yields

ηt + ux + αηxu+ αηux − 1
6βuxxx −

1
2αβηxuxx

− 1
2αβηuxxx + 1

120β
2uxxxxx = cubic terms,

(3.12)

ηx + ut − 1
2βuxxt + αuux − αβηuxxt − αβηxuxt + 1

2αβuxuxx

− 1
2αβuuxxx + 1

24β
2uxxxxt = cubic terms.

(3.13)

Since we are interested in the velocity at the surface, using w as the scaled
horizontal velocity at the surface z = 1, we want to base our model on w and η
rather than u and η. Approximating w with the velocity potential (3.9) up to
second order in β yields

w = φx|z=1 = u− 1

2
βuxx +

1

4!
β2uxxxx +O(β3),

where u = fx is used. Now we have a relation between w and u, and we want to
express u in terms of w, so that we can substitute this into the equations (3.12)
and (3.13). Using the continuous Fourier transform we can do this. In Fourier
space, we get the relation

ŵ = (1 +
1

2
βk2 +

1

4!
β2k4)û+O(β3).

Here, the hats denotes the Fourier transform of the variables, and k are the
different wave numbers in the Fourier approximation. Now we can divide by
the Fourier multiplier, and obtain

û = (1 +
1

2
βk2 +

1

4!
β2k4)−1ŵ +O(β3)

= (1− 1

2
βk2 +

5

24
β2k4)ŵ +O(β3).

Hence, we can write

u = w +
1

2
βwxx +

5

24
β2wxxxx +O(β3). (3.14)

Now, we substitute this expression for u into the system (3.12)-(3.13). If we
gather all the quadratic and higher order terms in α and β on the right-hand
side, we get the system

ηt + wx + α(ηw)x +
1

3
βwxxx = O(αβ, β2),

ηx + wt + αwwx = O(αβ, β2).
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This is called the Kaup system, or Kaup-Boussinesq due to the Boussinesq
scaling used to obtain it. As earlier mentioned, this system considers both
nonlinear and dispersive effects, and we can see why the parameters α and β
are called the nonlinearity and the dispersive parameter respectively. Changing
back to the original variables, we get the Kaup-Boussinesq system in dimensional
variables

ηt + h0wx + (wη)x +
1

3
h3

0wxxx = 0,

wt + gηx + wwx = 0.
(3.15)

Here, the second order terms in α and β are neglected.

3.2.2 The Korteweg-de Vries equation

Since the Korteweg-de Vries equation is used in Chapter 6 for checking the
numerical method for an uncoupled system, we explain here shortly how this is
derived. Starting with the system (3.10)-(3.11), we retain the first order terms
of α and β, but drop the mixed second order terms of O(αβ). Letting, in the
same way as before, u = fx, we get

ηt +
(
(1 + αη)u

)
x
− 1

6βuxxx +O(α2, αβ, β2) = 0,

ut + αuux + ηx − 1
2βuxxt +O(α2, αβ, β2) = 0.

(3.16)

By specializing to a wave moving to the right and neglecting the terms of order
α and β, the system (3.16) has a solution

u = η, ηt + ηx = 0.

Corrected to the first order of α and β, we have a solution of the form

u = η + αA+ βB +O(α2, β2),

ηt + ηx +O(α, β) = 0,
(3.17)

where A and B are unspecified functions of η and its x derivatives. The equa-
tions (3.16) now becomes

ηt + ηx + α(Ax + 2ηηx) + β(Bx − 1
6ηxxx) +O(α2, β2) = 0,

ηt + ηx + α(At + ηηx) + β(Bt − 1
2ηxxt) +O(α2, β2) = 0.

(3.18)

Using the last of the equations (3.17), we can change the t derivatives in the first
order terms to negative x derivatives. For the two equations to be consistent,
the terms linear in α and β must be equal. Hence, A and B must satisfy

A = −1

4
η2, B =

1

3
ηxx.

Then (3.18) becomes

ηt + ηx +
3

2
αηηx +

1

6
βηxxx +O(α2, β2) = 0.
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This is the normalized Korteweg-deVries equation. If we transform back to the
original variables, and neglect the term of second order α and β, we get the
normal form of the Korteweg-deVries equation

ηt + c0(1 +
3

2

η

h0
)ηx +

1

6
c0h

2
0ηxxx = 0. (3.19)

3.2.3 Model equations for internal wave systems

The system (3.15) applies for surface waves. A system for internal waves can
also be derived, using the corresponding boundary conditions. A derivation
can be found in for example [9], which is based on the boundary conditions for
internal waves (2.19), but which uses a Hamiltonian system for the system of
equations of motion. The Hamiltonian is given as a sum of energy integrals
of the kinetic and potential energy. The derivation is quite complicated, but
results in the following system

ηt + αux + ε2(δuxxx + γ(ηu)x) = 0,

ut + βηx + ε2γuux = 0,
(3.20)

where the parameters α, β, δ and γ are given by

α = h1h2

ρ2h1+ρh2
, β = g(ρ1 − ρ2),

δ = 1
3

(h1h2)2(ρ2h2+ρ1h1)
(ρ2h1+ρ1h2)2 , γ =

ρ1h
2
2−ρ2h

2
1

(ρ2h1+ρ1h2)2 .

Here, the subscript 1 denotes the lower fluid layer, and subscript 2 the upper
one. The parameter ε arises due to a scaling of x and η, and can be put equal
to 1 without influencing the system.

For comparison with Kaup Boussinesq for internal waves in Chapter 4 the Gard-
ner equation is used. This can be found in for example [13], and is of the form

ηt + c0ηx + α1ηηx + α2η
2ηx + β1ηxxx = 0. (3.21)

Here, the parameters are

c20 = gh1h2(ρ1−ρ2)
ρ2h1+ρ1h2

, α1 = 3c0
2h1h2

ρ1h
2
2−ρ2h

2
1

ρ2h1+ρ1h2
,

α2 = 3c0
h2
1h

2
2

[
7
8 (
ρ1h

2
2−ρ2h

2
1

ρ2h1+ρ1h2
)2 − ρ2h

3
1+ρ1h

3
2

ρ2h1+ρ1h2

]
, β = c0h1h2

6
ρ1h1+ρ2h2

ρ2h1+ρ1h2

(3.22)
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Chapter 4

Balance equations for
Kaup-Boussinesq

In this chapter, conservation of mass, momentum and energy are presented for
the Kaup-Boussinesq system and written as differential balance equations in the
order of α and β corresponding to KB. In the last section, an exact differential
balance for momentum for KB is presented. The theory here is mainly based
on the article by Ali and Kalisch [1], where the balance equations are shown for
a general Boussinesq system of equations, in which the KB system is a special
case of. In [2] we find the differential balance for energy of KB specifically. The
expressions for momentum and energy presented here are used later to confirm
that the numerical method in Chapter 7 conserves these quantities over the
considered region.

4.1 Shallow water

It is shown that the shallow water equations

ηt + h0ux + (ηu)x = 0,

ut + gηx + uux = 0,

features conservation of mass and momentum. We look at the volume limited by
x1 and x2, the bottom and the moving surface, as shown in Figure 4.1. Three of
the sides are fixed, while the surface is moving. Thus, this is a combined material
and geometrical volume, though it can for all practical purposes can be regarded
as a geometrical volume. Here, the motion in y-direction is ignored, as in the
derivation of the nonlinear model equations from Chapter 3. Since no mass
leaves the surface, the only change is the flux corresponding to the two fixed
lateral boundaries. The balance equations given by the mass and momentum
density M and I with the fluxes qM and qI are then the following

∂

∂t
M +

∂

∂x
qM = 0,

∂

∂t
I +

∂

∂x
qI = 0.

(4.1)

21
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z

x

h0qM qM

x1 x2

Figure 4.1: Geometric setup of the problem. The volume is limited by the
bottom, the two sides at x1 and x2 and the moving surface. This is a combined
material and geometrical volume.

Here

M = ρ(h0 + η), I = ρ(h0 + η)u,

qM = ρ(h0u+ ηu), qI = ρ(h0 + η)u2 +
ρ

2
g(h0 + η)2.

For smooth solutions, the equations (4.1) are both equal to the shallow water
equations, as shown in [1]. The conservation of energy has the same form

∂

∂t
E +

∂

∂x
qE = 0,

here with

E =
ρ

2
u2(h0 + η) +

ρ

2
g(2h0η + η2),

qE =
ρ

2
u3(h0 + η) + ρgu(h0 + η)2.

We want to have corresponding balance equations for the Kaup-Boussinesq sys-
tem.

4.2 Mass

For the conservation of mass, the change in mass density is given by the flux
through the lateral boundaries

d

dt

∫ x2

x1

∫ η

−h0

ρ dzdx =

[ ∫ η

−h0

ρ φx dz

]x1

x2

.

We observe that this has the same form as (1.4) in Chapter 1, except for the sim-
plification in the y-direction. Now, however, we transform to non-dimensional
variables by (3.7), integrate with respect to z̃, write out the expression for φ̃x
and use the relation (3.14), so that this becomes

d

dt̃

∫ x2/l

x1/l

(1 + αη̃)dx̃ = α

[
w̃ + αw̃η̃ +

β

3
w̃x̃x̃ +O(αβ, α2)

]x1/l

x2/l



4.3. Momentum 23

Further, we divide by the length of the interval, and take the limit x2/l→ x1/l.
Then the differential balance equation for mass is obtained

η̃t̃ + w̃x̃ + α(w̃η̃)x̃ +
β

3
w̃x̃x̃x̃ = O(αβ, β2).

This can be written as

∂

∂t̃
M̃ +

∂

∂x̃
q̃M = O(α2β, αβ2), (4.2)

when the non-dimensional mass and density are given by

M̃ = 1 + αη̃,

q̃M = αw̃ + α2η̃w̃ +
1

3
αβw̃x̃x̃.

In dimensional variables, we have

M = ρ(h0 + η),

qM = ρh0w + ρηw +
1

3
ρh3

0wxx,

where the scalings M = ρh0M̃ and qM = ρh0c0q̃M are used. We change to
dimensional variables

∂

∂t̃
M̃ +

∂

∂x̃
q̃M =

c0h0

l

(
ηt + h0wx + (ηw)x +

1

3
h3

0wxxx

)
= 0.

The expression inside the parentheses is just the first equations of the Kaup-
Boussinesq system (3.15), and thus KB conserves mass exactly.

4.3 Momentum

The momentum density I is given by

I =

∫ x2

x1

∫ η

−h0

ρφx dzdx.

For the case of conservation, the change in momentum is equal to the flux
through the boundaries plus the work done on the boundary

d

dt

∫ x2

x1

∫ η

−h0

ρφx dzdx =

[ ∫ η

−h0

ρφ2
x dz +

∫ η

−h0

P dz

]x1

x2

.

The pressure used here is found in [1] to be

P = ρg(η − z) +
1

2
ρ
(
(z + h0)2 − h2

0

)
wxt, (4.3)

which comes from the Bernoulli equation. The atmospheric pressure is assumed
to be zero. Now transforming to non-dimensional variables and substituting
the expression for φ̃x and the expression found for the pressure P , again using
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the relation (3.14), after a little manipulation the following differential balance
equation is obtained

w̃t̃ + α(w̃η̃)t̃ +
β

3
w̃x̃x̃t̃ + η̃x̃ + 2αw̃w̃x̃ + αη̃η̃x̃ −

1

3
βw̃x̃x̃t̃ = O(α2, αβ, β2). (4.4)

With

Ĩ = αw̃ + α2w̃η̃ +
1

3
αβw̃x̃x̃,

q̃I = αη̃ + α2w̃2 +
1

2
α2η̃2 − 1

3
αβw̃x̃t̃ +

1

2
,

(4.5)

the momentum balance can be written

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I = O(α3, α2β, αβ2). (4.6)

In dimensional form, with scalings I = ρh0c0Ĩ and qI = ρh0c
2
0q̃I , we get

I = ρ(h0 + η)w +
1

3
ρh3

0wxx,

qI = ρh0w
2 +

1

2
ρg(h0 + η)2 − 1

3
ρh3

0wxt

4.4 Energy

The differential balance equation for the energy is obtained in a similar way,
but is a bit more complicated. And there is actually different ways to describe
this, depending on where the potential energy is defined to be zero. One form is
found in [1] and one in [2]. Since the form used in [2] satisfies the Hamiltonian
function corresponding to the KB system (3.15), and hence is exactly conserved,
we use that one. The energy, sum of kinetic and potential energy, contained
inside the given volume is then given by

E =
1

2

∫ x2

x1

∫ η

−h0

ρ|∇φ|2dzdx+

∫ x2

x1

∫ η

0

ρgzdzdx.

Conservation of energy is given by

d

dt

∫ x2

x1

∫ η

−h0

ρ

2
|∇φ|2 dzdx+

d

dt

∫ x2

x1

∫ η

0

ρgz dzdx

=

[ ∫ η

−h0

{ρ
2
|∇φ|2 + ρgz

}
φx dz +

∫ η

−h0

φxP dz

]x1

x2

.

Similarly as above, after a little computation the differential balance for energy
is obtained, and can be written

d
dt̃

∫ x2/l

x1/l

(
α2

2 η̃
2 + α2

2 (1 + αη̃)w̃2 + α2β
3 w̃w̃x̃x̃ + α2β

6 w̃2
x̃

)
dx̃

=

[
α3

2 w̃
3 + α2w̃η̃(1 + αη̃) + α2β

3 η̃w̃x̃x̃ − α2β
3 w̃x̃t̃

]
+O(α4, α3β, α2β2).

(4.7)
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We write this as
∂

∂t̃
Ẽ +

∂

∂x̃
q̃E = O(α4, α3β, α2β2), (4.8)

with

Ẽ =
α2

2
η̃2 +

α2

2
(1 + αη̃)w̃2 +

α2β

3
w̃w̃x̃x̃ +

α2β

6
w̃2
x̃,

q̃E =
α3

2
w̃3 + α2w̃η̃(1 + αη̃) +

α2β

3
η̃w̃x̃x̃ −

α2β

3
w̃x̃t̃,

and with the scalings E = ρh0c
2
0Ẽ and qE = ρh0c

3
0q̃E , the dimensional forms

are

E = ρ

(
g

2
η2 +

1

2
(h0 + η)w2 +

h3
0

3
wwxx +

h3
0

6
w2
x

)
,

qE = ρ

(
h0

2
w3 + gηw(h0 + η) +

gh3
0

3
ηwxx −

h3
0

6
wwxt

)
.

(4.9)

As referred to in [2], the Hamiltonian function corresponding to the KB system
(3.15) is

H = ρ

∫ ∞
−∞

(
g

2
η2 +

1

2
(h0 + η)w2 − h3

0

6
w2
x

)
dx. (4.10)

The last expression for the energy E in (4.9) satisfies the Hamiltonian function,

H =

∫ ∞
−∞

E dx, (4.11)

and is therefore conserved.

4.5 Momentum conservation investigation

To this point, the equations presented for mass and momentum are just the KB-
form of the equations for general Boussinesq systems given in [1]. Investigating
further the momentum balance (4.6), we insert the non-dimensional momentum
density and flux given by (4.5) to see if this expression can be simplified. We
have

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I = αw̃t̃ + α2(w̃η̃)t̃ +

1

3
αβw̃x̃x̃t̃

+ αη̃x̃ + 2α2w̃w̃x̃ + α2η̃η̃x̃ −
1

3
αβw̃x̃x̃t̃.

Now, the w̃x̃x̃t̃-terms disappear right away, and we transform to dimensional
variables by (3.7), and after a little sorting of terms, we get

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I =

l

gh0
(wt + gηx + wwx)

+
l

gh0
(

1

h0
(wη)t + wwx +

g

h0
ηηx).

The expression inside the first parentheses is simply the second of the Kaup-
Boussinesq equations (3.15), and can be set to zero when terms of orderO(αβ, β2)
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are ignored. Further, we observe that the (wη)t-term is now the only t-derivative.
Writing out this term and using both of the equations (3.15) to substitute for
ηt and wt, and sorting the resulting terms leads to the following

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I =

l

gh0
(− 1

h0
(w2η)x −

1

3
h2

0wwxxx)

=
l

gh0

[
− 1

h0
(w2η)x −

1

3
h2

0wwxxx(−1

3
h2

0wxwxx +
1

3
h2

0wxwxx)

]
=

l

gh0

[
− 1

h0
(w2η)x −

1

3
h2

0(wwxx)x +
1

3
h2

0(
1

2
w2
x)x

]
,

where the last two relations are obtained by subtracting and adding one term,
recognizing the two middle terms as the product rule and the last term as the
chain rule. We now see that the terms on the right-hand side can be written as
the x-derivative of a function, say F , so we can write

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I =

∂

∂x
F.

Hence, the momentum balance equation can be written as a partial differential
equation when terms of order O(αβ, β2) are ignored. In particular, for solutions
(η, w) of (3.15) which are smooth and decay to 0 as x→ ±∞, we have

d

dt

∫ ∞
−∞

I(η, w) =

∫ ∞
−∞

∂

∂t
I(η, w)

=

∫ ∞
−∞

∂

∂x
F (η, w)−

∫ ∞
−∞

∂

∂x
qI(η, w) = 0

(4.12)

Thus, conservation of momentum is exactly satisfied for the Kaup-Boussinesq
system.



Chapter 5

Investigations of
Kaup-Boussinesq for
internal waves

5.1 Motivation

In the derivation of the Kaup-Boussinesq system we assume small amplitude
waves, or small amplitude compared to the wavelength. Still, we want to see if
it works for larger amplitude waves, or at least how large of an amplitude we
can have while still having a reasonably good approximation. The motivation
for investigating this is that when assuming solitary waves, the KB system and
the extended Korteweg-deVries equation, also known as the Gardner equation,
basically have the same form. For large amplitude internal solitary waves, a
phenomena of quite broad waves is observed as the amplitude increases. This
phenomena is referred to in for example [16], [13], [6] and [11]. In [11] it is
also shown that the Gardner equation gives a good approximation for large
amplitude waves, and this equation is also investigated in [13]. With that in
mind, we use Gardner for comparison with the Kaup-Boussinesq system.

5.2 Equations and geometrical setup

The Kaup-Boussinesq system (KB) for internal waves (3.20) is investigated, and
we look at solitary wave solutions of the system

ηt + αux + ε2(δuxxx + γ(ηu)x) = 0,

ut + βηx + ε2γuux = 0,
(5.1)

where the parameters α, β, δ and γ are given by

α = h1h2

ρ2h1+ρh2
, β = g(ρ1 − ρ2),

δ = 1
3

(h1h2)2(ρ2h2+ρ1h1)
(ρ2h1+ρ1h2)2 , γ =

ρ1h
2
2−ρ2h

2
1

(ρ2h1+ρ1h2)2 .

27
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The Gardner equation (3.21) has the form

ηt + c0ηx + α1ηηx + α2η
2ηx + β1ηxxx = 0. (5.2)

Here, the parameters are

c20 = gh1h2(ρ1−ρ2)
ρ2h1+ρ1h2

, α1 = 3c0
2h1h2

ρ1h
2
2−ρ2h

2
1

ρ2h1+ρ1h2
,

α2 = 3c0
h2
1h

2
2

[
7
8 (
ρ1h

2
2−ρ2h

2
1

ρ2h1+ρ1h2
)2 − ρ2h

3
1+ρ1h

3
2

ρ2h1+ρ1h2

]
, β = c0h1h2

6
ρ1h1+ρ2h2

ρ2h1+ρ1h2

(5.3)

The geometrical setup for the problem is shown in figure 5.1.

z

x

h1 ρ1

h2 ρ2

Figure 5.1: Geometric setup of the problem. It shows a typical solitary wave.
The dashed line shows the equilibrium position. The motion in y-direction is
ignored, so the motion is one-dimensional.

5.3 Discussion

We assume now that we have solitary waves, which means that the wave does
not change its shape, and we can write the equations with respect to a new
variable ξ = x − ct. Starting by putting η(x, t) = φ(x − ct) in the Gardner
equation (5.2), and differentiate with respect to ξ, the following equation is
obtained

−cφ′ + c0φ
′ +

α1

2
φφ′ +

α2

3
φ2φ′ + β1φ

′′′ = 0, (5.4)

where the derivatives are with respect to ξ. We now put u(x, t) = φ(x− ct) and
η(x, t) = χ(x − ct), and substitute this into the KB system (5.1). In addition
we put ε = 1 to get a simpler calculation, which we can easily do without loss
of generality, as stated in Chapter 3. Then the following system is obtained{

−cχ′ = −αφ′ − δφ′′′ − γ(χφ)′

−cφ′ = −βχ′ − 1
2γ(φ2)′.

(5.5)

From the second of these equations, we find an expression for χ and χ′ given by
φ and φ′, put it into the first equation, and obtain

−(c2 − αβ)φ′ + 3cγφφ′ − 3

2
γ2φ2φ′ + δβφ′′′ = 0. (5.6)
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Taking a closer look at the two equations (5.4) and (5.6), we see that we have
exactly the same terms. The only difference is the different parameters involved.
To get the parameter values we set h1 = 3h2 or h1 = 4.13h2 in the upcoming
calculations. The first case is from Guyenne [11] and the second from Grue [10],
and we set ρ2 = 0.997ρ1. We also take into account that for KB c2 > αβ, and

for Gardner c is in the interval 0 < c < c0 − α2
1

6α2
. The reason for this will be

explained in a moment. With these values α, β and δ are positive while γ, α1

and α2 are negative. Comparing the two equations

−(c− c0)φ′ +
α1

2
φφ′ +

α2

3
φ2φ′ + β1φ

′′′ = 0,

−(c2 − αβ)φ′ + 3cγφφ′ − 3

2
γ2φ2φ′ + δβφ′′′ = 0,

(5.7)

we see that all the terms have the same signs. The only difference worth men-
tioning is that for the KB-system the wave speed c is involved in two terms,
while for Gardner c is found only in the φ′-term.

A discussion of the derivative, as was done for the non-dimensional Gardner
equation in [13], can be useful to find out where solitary waves can exist. We
first integrate the dimensional Gardner equation (5.4) once, multiply it by φ′

and then integrate once more. That yields

(φ′)2 =
c− c0
β1

φ2 − 1

3

α1

β1
φ3 − α2

6β1
φ4, (5.8)

Having a solitary wave solution, this has a maximum or a minimum. It also
decays to zero as x → ±∞. Hence, we can choose x big enough so that the
quadratic term is much bigger than the cubic and quartic terms. Since α1 and
α2 are negative while β1 is positive, this means that c > c0 must be satisfied for
the quadratic term to be positive. If c < c0, we could always have a point x big
enough so that the quadratic term makes the expression on the right-hand side
negative, which is not possible. This means that there can only be solitary wave
solutions if c > c0. We also know that this has to be negative solitary waves,
since assuming a minimum φ(xmin) = φmin, where the derivative is zero, we get

1

β1
φ2
min

(
c− c0 −

1

3
α1φmin −

1

6
α2φ

2
min

)
= 0.

Since φmin = 0 only gives the trivial solution φ = 0, we must have

c− c0 =
1

3
α1φmin +

1

6
α2φ

2
min. (5.9)

Here, since α1 and α2 are negative, φmin must be negative. Assuming positive
waves and a maximum here gives a contradiction. Solving this second order
equation for the minimum gives

φmin = −α1

α2
± 1

α2

√
α2

1 + 6α2(c− c0),

which again demands that

c 6 c0 −
α2

1

6α2
, (5.10)
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not to take the square root of a negative number and get complex solutions.
For solitary wave solutions to exist, this must be satisfied.

The corresponding equation for the derivative of KB (5.6) is

(φ′)2 =
c2 − αβ
βδ

φ2 − c γ
βδ
φ3 +

1

4

γ2

βδ
φ4. (5.11)

A similar argument can be made here; a solitary wave solution having a maxi-
mum or a minimum and decaying to zero as x→ ±∞, choosing x big enough so
that the quadratic is much bigger than the cubic and quartic terms. Observing
that c2 > αβ for the quadratic term to be positive, so c must be in the interval
−
√
αβ < c <

√
αβ. With similar argumentation as above, we find that for c

in the negative interval we have positive solitary wave solutions and we have
negative solutions in the positive interval. The waves will travel in opposite
directions. Taking c positive gives negative solitary waves. This is because,
assuming a minimum φ(xmin) = φmin and putting the derivative equal to zero,
we get a similar equation to (5.9)

c2 − αβ = cγφmin −
1

4
γ2φ2

min.

Knowing that γ is negative, φmin must be negative for the right-hand side to be
positive. Hence, we have negative solitary waves. Similarly, solving this second
order equation simply gives

φmin =
2

γ

(
c±

√
αβ
)
,

which gives no further restrictions on c. For negative c, the same discussion
would have been opposite but symmetric.

5.3.1 Phase plane diagrams

Integrating the equations (5.7) once, and introducing ψ = φ′, the following
system is obtained

φ′ = ψ,

ψ′ =
c− c0
β1

φ− α1

2β1
φ2 − α2

3β1
φ3 (5.12)

for the Gardner equation, and

φ′ = ψ,

ψ′ =
3

βδ
(c2 − αβ)φ− 3

2

cγ

βδ
φ2 − 3

2

γ2

βδ
φ3

(5.13)

for KB. Before making phase plane diagrams, we find the critical points of the
systems. For Gardner, we get

φ′ = 0 ⇒ ψ = 0,

ψ′ = 0 ⇒ φ
(c− c0

β1
− α1

2β1
φ− α2

3β1
φ2
)

= 0.
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The last relation gives three solutions for φ

φ = 0 and φ = −3

4

α1

α2

(
1±

√
1 +

16

3

α2

α2
1

(c− c0)
)

This means that we have the three critical points where ψ is zero for all three
values of φ given above. Letting c go to the critical value c → c0 inside the
square root gives a duplication of φ = 0 and the negative φ = − 3

2
α1

α2
. The other

critical value c→ c0 − α2
1

6α2
gives the two solutions

φ = −α1

α2
and φ = −1

2

α1

α2
,

which are both negative.

Correspondingly, for KB we get

φ′ = 0 ⇒ ψ = 0,

ψ′ = 0 ⇒ φ = 0, φ = −1

2

c

γ

(
1±

√
9− 8

αβ

c2

)
.

Knowing that c >
√
αβ and letting c go to the critical value c →

√
αβ inside

the square root, we get

φ = 0 and φ = − c
γ
.

For c >
√
αβ though, we get one positive and one negative solution for ψ′ = 0.

As c increases these two points will also get further and further away from the
origin in both directions. This means that we get one critical point on the pos-
itive side of the φ-axis and one on the negative side, in addition to the one at
the origin. For Gardner, both nonzero critical points will be on the negative
side of the φ-axis, which will be clear when we draw the phase planes.

We now use the systems (5.12) and (5.13) to make phase plane diagrams for
Gardner and KB with the help of a phase plane Matlab code made by John
C. Polking at Rice University [17]. The parameter values are obtained using
h2 = h1/3 = 0.15 and ρ2 = 0.997ρ1 = 997, which are consistent with the values
used for the plots in the next section. Phase planes for KB and Gardner are
made for a particle choice of c, and this is shown in Figure 5.2. We can see that
we have one saddle point at the origin and one center on the negative φ-axis for
both systems. The third critical point is also a saddle point for Gardner. For
KB the third one is a center far from the origin on the positive φ-axis. A homo-
clinic orbit, marked in red, corresponding to solitary wave solutions is shown
for both KB and Gardner in the phase planes. The KB diagram is zoomed in
near the origin in Figure 5.3.
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Figure 5.2: Phase plane diagram for Gardner (the upper one) and Kaup-
Boussinesq.
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Figure 5.3: Phase plane diagram for KB, the lower part zoomed in.

We make a new phase plane diagram for Gardner, where c is close to the
critical value given by (5.10), to see what happens then. From Figure 5.4 we
see that the homo-clinic orbit goes from the origin almost down to the lower
saddle point, and then back to the origin. When one puts c equal to the critical
value, we see from Figure 5.5 that a solution goes exactly from the higher to the
lower saddle point, and a solution going back. It seems like the closer c is to the
critical value, the closer φ gets to the lower critical point before it returns to
zero. Since c has no upper limit for KB, there is no corresponding phenomena
to be observed.

Figure 5.4: Phase plane diagram for Gardner with c near the critical value.
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Figure 5.5: Phase plane diagram for Gardner with c equal to the critical value.

5.4 Solutions of Kaup-Boussinesq and Gardner

To investigate how good of an approximation the Kaup-Boussinesq system gives
us, the solution of the system found by Guyenne [11] is used. If we use the form
(5.5) of KB, it is easy to check that the solution by Guyenne

η(x, t) = c
βu(x, t)− γ

2βu(x, t)2

u(x, t) = 2
√
αβ
γ

( c
2

αβ−1)

cosh(
√
α
δ ( c

2

αβ−1)(x−ct))+ c√
αβ

(5.14)

is actually a solution of this system of equations. The mathematical software
Maple is used to check that (5.14) does indeed satisfy the system (5.1). Guyenne
used this solution as an initial guess for the iterative procedure in solving the
Hamiltonian system derived by Craig, Guyenne and Kalisch [8], and got results
that matched experimental results and the nonlinear model of Grue et al. [10]
pretty well.

For comparison of the solution (5.14) we mainly use the solution of the Gardner
equation, but also results from the nonlinear model of Grue et al. [10] for the
wave width and wave speed plots. The solution of the Gardner equation (5.2)
used here is found in [11], and is of the form

η(x, t) = −α1

α2

ν

2

[
tanh(

x− ct
∆

+ δ)− tanh(
x− ct

∆
− δ)

]
(5.15)

where

α1 =
3c0(h2 − h1)

2h1h2
, α2 =

3c0
h2

1h
2
2

[
7

8
(h1 − h2)2 − h3

1 + h3
2

h1 + h2

]
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∆2 = −24α2β

α2
1ν

2
, c20 =

gh1h2(ρ1 − ρ2)

ρ1(h1 + h2)
,

β1 =
c0h1h2

6
, δ =

1

4
ln(

1 + ν

1− ν
), c = c0 −

α2
1ν

2

6α2
, (5.16)

where ν is a nonlinearity parameter, and lies in the interval 0 < ν < 1. We
see here that for the parameters α1, α2, β1 and c0, the approximation ρ1 ≈ ρ2

is used when compared with (5.3). This is done except for the numerator in
c0, because it here would make c0 = 0. Grue’s results were obtained from the
graphs in [10] and [11], and there it is shown that for big amplitudes we get
broader solitary wave solutions. This phenomena is also referred to in [13]. The
closer the amplitude is to the height of the top layer, that is the closer the
relationship η/h2 gets to 1, the broader the solitary wave solutions are. We
therefore expect the solutions to get broader as the amplitude increases.

5.5 Results

To show how the Kaup-Boussinesq model works, we plot the wave profile for
different amplitudes and compare it with the solution of the Gardner equation
(5.15). We also plot the wave width at various amplitudes, and finally a plot
showing how the wave speed varies with increasing amplitude. These plots
should give us a good insight to how well the Kaup-Boussinesq system models
internal waves.

5.5.1 Wave profiles

Figure 5.6 shows the solutions (5.14) and (5.15) at different amplitudes. To get
these amplitudes the wave speed c is varied, and for KB we can see from the
solution that c is restricted by c >

√
αβ. To get the plots for the Gardner equa-

tion, we observe from (5.16) that c is dependent on the nonlinearity parameter
ν, so this is varied between 0 < ν < 1. These plots show us that for small
amplitudes the solution of KB fits quite well with the Gardner solution, but for
bigger amplitudes we clearly see that the resulting wave profiles are not broad
enough. We see that the Gardner equation, which gives a good approximation,
gives broader wave profiles for bigger amplitudes. A plot of Gardner near the

critical value c = c0 − α2
1

6α2
corresponding to ν → 1 is also done. This wave

profile is shown in Figure 5.7.
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Figure 5.6: Comparison of wave profiles of the Kaup-Boussinesq model and the
Gardner equation.

Figure 5.7: A plot of the waveprofile for Gardner with c near the critical value.
Here ν = 0.9999999999999999.

5.5.2 Width comparison

Figure 5.8, on the other hand, shows a comparison of solitary wave widths
for the Kaup-Boussinesq model, the Gardner equation and the fully nonlinear
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model of Grue et al. In figure 5.8 a) we have h1 = 3h2, and it is clear from
Gardner and Grue et al. that for small amplitudes we have broad solitary wave
solutions. For bigger amplitudes we get narrower waves, and the closer η/h2

gets to 1, the broader the waves become again. From the figure we see that the
Kaup-Boussinesq solution gets narrower the bigger the amplitude gets, but the
tendency of broader waves for increasing amplitude does not show. In figure 5.8
b) we have h1 = 4.13h2. Here, the broadening is not so clear, but it can still
be observed. It seems like the broadening of the waves for bigger amplitudes
depends on the relationship h1/h2, but from both figures we see that the Kaup-
Boussinesq equation does not give a satisfactory approximation.

a)

b)

Figure 5.8: Comparison of solitary wave widths for the Kaup-Boussinesq model,
the Gardner equation and the fully nonlinear model of Grue et al. In figure a)
we have h1 = 3h2 and in figure b) h1 = 4.13h2.
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5.5.3 Speed comparison

Figure 5.9 shows that for increasing amplitude the wave speed seems to stabilize
for the model of Grue et al. and for the Gardner equation, while we for KB get
increasing wave speed as the amplitude increases. This again show deviating
results from Grue et al. and Gardner. We can easily see this from the solution
(5.14). The amplitude continues to increase with increasing c, since there is no
upper limit for c.

Figure 5.9: A plot of the wave speed c relative to amplitude for the Kaup-
Boussinesq model, the Gardner equation and the fully nonlinear model of Grue
et al. We have h1 = 4.13h2.

5.6 Conclusion

All the figures point towards the same conclusion, that the Kaup Boussinesq
model is not really a good choice to describe internal solitary waves, as long as we
are modeling large-amplitude waves. This, even though Gardner and KB have
the same form. It seems like the upper limit for c in the Gardner equation, in
addition to the locations of the critical points in the phase plane, are the reasons
why Gardner models large amplitude internal solitary waves better than Kaup-
Boussinesq does. For Gardner, the two non-zero critical points became closer to
each other for increasing c. This “forced” the solution φ to spend more time in
the lower part of the phase plane, creating the broad waves, until it reached the
maximum c. For Kaup-Boussinesq, the two non-zero critical points just became
more apart for increasing c, which only resulted in narrower waves.



Chapter 6

Numerical Method

The objective of this chapter is to introduce the principle of spectral meth-
ods as a numerical tool to solve equations, both ordinary differential equations
(ODEs) and partial differential equations (PDEs). In particular we will look
at the Fourier collocation method with a pseudospectral transform method to
compute nonlinear terms in an efficient way. This provides the foundation for
the numerical work presented in the next chapter. The theory here is based on
the book of Spectral Methods in Fluid Dynamics [5].

6.1 Spectral Methods

Spectral methods are used to solve certain differential equations. The way this
is done is to write the solution as an expansion, for example a Fourier series,
and find the coefficients of the series. If we have a differential equation, where
u is the dependent variable, the approximate solution is represented as

u(x, t) =

∞∑
k=−∞

ûk(t)φk(x). (6.1)

Here φk are called trial functions and ûk the expansion coefficients. The trial
functions here are infinitely differentiable global functions. When using the
Fourier approach the trial functions are trigonometric polynomials φk(x) = eikx,
but Chebyshev and Legendre polynomials are also frequently used.

In general, the approximation (6.1), is calculated up to N terms

uN (x, t) =

N/2−1∑
k=−N/2

ûk(t)φk(x). (6.2)

The reason for the N/2-degree approximation is because of the way spectral
methods are implemented, so this is the approximation we use later on. This
does, in general, not alone satisfy the differential equation. In addition, test
functions are used to ensure that the problem is satisfied by minimizing the
error produced by the approximate series (6.2). If we have the problem

∂u

∂t
= M(u),
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where M(u) contains spatial derivatives, then the test functions ψk(x) satisfy∫ 2π

0

[
∂uN

∂t
−M(uN )

]
ψk(x) dx = 0, (6.3)

for k = −N/2, ..., N/2− 1. There is three common spectral methods that differ
from each other by the choice of these test functions. The Galerkin, tau and col-
location methods. Essentially the Galerkin and tau approach are implemented
in terms of the expansion coefficients, while the collocation method uses the
value of the unknown function in certain physical points. The Galerkin and
tau methods are difficult and impractical to apply to nonlinear problems, while
the spectral collocation approach is more attractive. Therefore, the collocation
approach is used in this thesis. For the collocation method, the test functions
are

ψj(x) = δ(x− xj), j = 1, ..., N − 1,

and xj are the grid points for the method. Then (6.3) reduces to

∂uN

∂t
−M(uN )

∣∣∣∣
x=xj

= 0, j = 1, ..., N − 1.

That means, the approximation (6.2) must satisfy the differential equation at
each grid point.

If we require the sequence {φk} to be orthogonal, we get a linear transfor-
mation between u and the expansion coefficients {ûk(t)}, a transform between
the physical space and transform space. This transform is invertible if the sys-
tem is complete in a Hilbert space. This means that we can go from physical
space to transform space, and functions can be described in both spaces. Since
the expansion coefficients in (6.2) in general depends on all the values of the
function, we use a discrete transform and approximate the expansion coefficients
using only a finite number of points. This can be done if the spectral accuracy is
retained when replacing the finite transform with the discrete one. The Fourier
system is an orthogonal system which guarantee spectral accuracy, so we can
use Fourier transformation. Hence, we introduce first the Fourier transform.
Further, we discuss the errors using the Fourier approach, and how to differen-
tiate using the approximation, since we are solving differential equations. Then
we move on to how nonlinear terms are treated with a pseudospectral approach.

6.1.1 Fourier Theory

The general approximation in the Fourier sense of a function u is defined as

Su =

∞∑
k=−∞

ûke
ikx.

This we call the Fourier series of the function. Here, eikx is orthogonal on the
interval (0, 2π), and the Fourier coefficients satisfy

ûk =
1

2π

∫ 2π

0

u(x)e−ikxdx k = 0,±1,±2, .... (6.4)
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This is known as the continuous Fourier transformation. The function u is now
approximated by the trigonometric polynomials

PNu(x) =

N/2−1∑
k=−N/2

ûke
ikx.

Often the Fourier coefficients (6.4) are not known in this closed form, and we got
a problem with recovering the information about the function calculated in the
transform space, so the coefficients must be approximated in some way. Thus,
we introduce the discrete Fourier transform (DFT) and the discrete Fourier
coefficients. Considering now the grid points

xj =
2πj

N
j = 0, ..., N − 1 (6.5)

in physical space. The discrete Fourier coefficients of the function u are defined
as

ũk =
1

N

N−1∑
j=0

u(xj)e
−ikxj − N

2
6 k 6

N

2
− 1. (6.6)

The function is defined on the interval (0, 2π), and with the help of the orthog-
onality relation

1

N

N−1∑
j=0

eipxj =

{
1 if p = Nm, m = 0,±1,±2, ...
0 otherwise

(6.7)

we have an inversion formula for recovering the physical points

u(xj) =

N/2−1∑
k=−N/2

ũke
ikxj j = 0, ..., N − 1. (6.8)

This is referred to as the inverse discrete Fourier transformation. The discrete
Fourier approximation of u is then

u(x) ≈ INu(x) =

N/2−1∑
k=−N/2

ũke
ikx, (6.9)

Here, I stands for trigonometric interpolant, since we only use a finite number
of points to approximate the function. The computations of the DFT (6.6) and
the inverse DFT (6.8) can be accomplished by the Fast Fourier Transformation
algorithm (FFT), which requires O(N log2N) operations.

6.1.2 Aliasing error for DFT

When we use the Fourier approach there is a truncation error associated with
the approximation, since we only have an N -terms expansion. This is given by
for example the L2-norm

||u− PNu||L2



42 Chapter 6. Numerical Method

for the continuous Fourier transformation, and

||u− INu||L2

for the discrete one. The discrete Fourier coefficients (6.6) can be seen as an
approximation of the exact continuous Fourier coefficients (6.4) using the trape-
zoidal rule to evaluate the integral, and thus we get an extra error when using the
DFT instead of the continuous transformation. We have the following relation
between the coefficients

ũk = ûk +

∞∑
m=−∞
m6=0

ûk+Nm, k = −N/2, ..., N/2− 1.

We get an error because the (k +Nm)th frequency “aliases“ the kth frequency
on our grid. This is because of the fact that eikxj = ei(k+Nm)xj , so that they
are not possible to distinguish from each other at the points xj . Another way
to write this is

INu = PNu+RNu,

where

RNu =

N/2−1∑
k=−N/2

( ∞∑
m=−∞
m 6=0

ûk+Nm

)
eikx.

This RNu is called the ”aliasing“ error. It has been proven though, that this
error is asymptotically of the same order as the truncation error. This means
that using DFT does not lead to any new difficulties concerning errors, at least
not for linear terms. Aliasing errors due to nonlinear terms are discussed in the
next section.

6.1.3 Differentiation

Working with spectral methods, differentiation depends on whether we are in
physical or transform space. Differentiation in the transform space is done easily
by multiplying each coefficient with ik. Hence, using DFT we simply multiply
the coefficients in (6.6) by ik, and then transform back to (6.8). Thus, the
derivative is based on the values of u at the grid points (6.5). The resulting
derivative DNu, is called the Fourier collocation derivative and is given by

DNu =

N/2−1∑
k=−N/2

ake
ikx,

where

ak =
ik

N

N−1∑
j=0

uje
−ik 2πj

N .

Since this derivative is only based on the values at the grid points, it is the grid
values of the derivative of the DFT, so we have

DNu = (INu)′,
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and in general we have

DNu 6= INu
′,

which is the interpolation of the derivative, so interpolation and differentia-
tion do not commute. For the continuous transform however, truncation and
differentiation commute, (PNu)′ = PN (u′). That being said, collocation differ-
entiation is spectrally accurate because the error and the truncation error of
the derivative PNu

′ are of the same order, so one can safely use the collocation
derivative in spectral methods.

6.1.4 Pseudospectral transform method

With the nonlinear terms a direct multiplication in the Fourier space is ex-
pensive, but with the use of transform methods they can be evaluated in less
operations. The pseudospectral approach involves a multiplication in the phys-
ical space rather than the Fourier space, and then a transformation back to the
Fourier space. When this is done, we get an aliasing error. The occurring error
is explained here. If we look at a general quadratic term

w(x) = u(x)v(x), (6.10)

with an infinite series expansion, the convolution sum will be

ŵk =
∑

m+n=k

ûmv̂n. (6.11)

When u, v and w are approximated with the N degree continuous Fourier series,
we have

ŵk =
∑

m+n=k
|m|,|n|6N/2

ûmv̂n, (6.12)

where |k| 6 N/2. Here

u(x) =

N/2−1∑
m=−N/2

ûme
imx

v(x) =

N/2−1∑
n=−N/2

ûne
inx

ŵk =
1

2π

∫ 2π

0

w(x)e−ikxdx.

The summation (6.12) takes O(N2) operations, which is much too expensive.
The use of transform methods reduces this to O(N log2N) operations.

The product we want to achieve (6.12), and the pseudospectral approach for
evaluating this is based on using the inverse discrete Fourier transformation
(DFT) to transform ûm and v̂n back to the original spatial picture, carry out
the multiplication similar to (6.10), and then transform back. We approximate
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u, v and w with the DFT. We have

u(xj) =
∑N/2−1
k=−N/2 ũke

ikxj

v(xj) =
∑N/2−1
k=−N/2 ṽke

ikxj

j = 0, 1, ..., N − 1

and define
w(xj) = u(xj)v(xj) j = 0, 1, ..., N − 1.

We have

w̃k =
1

N

N−1∑
j=0

w(xj)e
−ikxj , k = −N

2
, ...,

N

2
− 1

where the grid points are xj = 2πj/N . This leads to

w̃k =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n

w̃k = ŵk +
∑

m+n=k±N

ûmv̂n,

when we use the orthogonality relation (6.7). Comparing this to the convolution
sum (6.12), we see that we have included an extra term using the DFT in the
transformations back and forth, the aliasing error. This is why the method is
called pseudospectral, because the product of two functions is not computed in
the right way. The convenience of this however, is that taking the product in
this way still takes O(N log2N) operations, and we can also use filter methods
to remove the aliasing error.

6.2 Numerical procedure

The method used in the next chapter works as follows. We start off with a PDE,
and use the Fourier collocation method to transform the PDE to an ODE in the
Fourier-space, and use the Fourier collocation differentiation operator D from
Section 6.1.3 for the spatial derivatives. We use the pseudospectral transform
method for the nonlinear terms. They are computed in the physical space, so
we transform back to the original spatial representation, carry out the multipli-
cation, then transform back. For the transformations we use the Fast Fourier
Transformation (fft in Matlab).

One usually use a condition where û−N/2 is set to zero. This is because we
want uN (t) to be real-valued, and if û−N/2 has an imaginary part this will not
be the case. This comes from the fact that k ranges from −N/2 to N/2− 1 and
not up to N/2, so −N/2 appears unsymmetrically.

The resulting equation is then usually discretized in time by an explicit method
for the non-linear term and an implicit method for the linear ones, and here we
use the implicit second order Crank-Nicolson method on the linear terms and
the explicit second order Adams-Bashforth multistep method on the nonlinear
terms. It is worth mentioning that the Crank-Nicolson method is maybe not
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normally used on the type of problem considered here, because we in the next
chapter see that the eigenvalues of our problem are imaginary, while the Crank-
Nicolson method is A-stable for negative complex eigenvalues. We are therefore
working at the boundary of the area of stability. However, since the resulting
matrix of the problem is diagonal, the implicit Crank-Nicolson becomes explicit.
These two methods are also used for a similar problem by Kalisch and Bona in
[12], with good results. For the differential equation

y′ = f(t, y),

the Adams-Bashforth formula is given by

yn+1 = yn +
3

2
∆tfn −

1

2
∆tfn−1,

and Crank-Nicolson by

yn+1 = yn +
∆t

2
(fn + fn+1).

Since Adams-Bashforth is a multi-step method, the Euler method

yn+1 = yn + ∆tfn

is used for the first time step on the nonlinear terms. At the end of the iterations,
we use the inverse fast Fourier transform (ifft) to get back to the original spatial
picture.
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Chapter 7

Kaup-Boussinesq for
surface waves: Numerical
Results

In this chapter, we use the spectral collocation method for numerical approxi-
mation of solutions of the KB system. The KB-system is a complex system, in
the sense that we have a coupled set of equations which are both nonlinear. In
order to break down the problem, or to take it step by step so to say, we start off
with the slightly easier KdV-equation. We start by looking at the linear part,
then include the nonlinear part. Then we move on to the KB system, taking first
the linear part of it into investigation before we at last work with the full KB-
system. Doing things this way, we get to see that our method actually works on
simpler problems than the KB system. Using the Fourier approach, we assume
periodicity from 0 to 2π. We therefore use the scaling x → ax, where a = L

2π .

Then we have periodicity on the interval [0, L]. This means that ∂
∂x →

1
a
∂
∂x , so

whenever we write ∂
∂x in the following, we mean 1

a
∂
∂x . Since this appears with

every x-derivative, it is implemented in the code simply by letting k → k
a .

7.1 The linear part of KdV

We start off by looking at the linear part of the KdV-equation, an easy, linear,
uncoupled PDE. That is, an equation containing just a time derivative and a
dispersive term

ηt + ηxxx = 0. (7.1)

This equation is fairly easy to work with, and we also know the analytical
solution

η(x, t) = cos(κx+ κ3t). (7.2)

Using the second order Crank-Nicolson for the time iterations, we get

ηn+1 − ηn
∆t

= −∂
3
xηn+1 + ∂3

xηn
2

.

47
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Transforming to the Fourier space using the discrete Fourier transform (DFT)
(6.6) from the previous chapter, we get

η̂n+1 − η̂n = −∆t

2

(
(ik)3η̂n+1 + (ik)3η̂n

)
.

Here the hats indicates that we are in the Fourier space. Sorting terms of n and
n+ 1 gives

η̂n+1 =
1 + ∆t

2 ik
3

1− ∆t
2 ik

3
η̂n.

The computations are done with N = 1024 modes, and a domain of length
L = 100. To check that the method works properly, a convergence analysis is
done with comparison of the analytical and exact solution. Several different
time steps are tested, the error and the ratio between the errors from time step
to time step are calculated. With the initial condition

η = cos(
2π

L
x),

time iteration up to T = 10, and comparison with the exact solution

η = cos(
2π

L
x+ T ),

the results are shown in Table 7.1. We know that the local truncation error e
for an iterative method of order p is

e 6 |f ′′(ξ)|(∆t)p.

If we have an error e1 for a time step ∆t, and an error e2 for a time step ∆t/2,
we get a ratio

e1

e2
=

(∆t)p

(∆t/2)p
= 2p.

For a second order method this ratio should be 4. Using time steps such that
the next one is half of the previous one, calculating this ratio is therefore an easy
way to check that the method works. We see from Table 7.1 that the method
works for the equation (7.1). A plot of the wave profile for dt = 0.1 can be seen
in Figure 7.1

dt L∞-error ratio
0.1000 0.0083
0.0500 0.0021 3.9955
0.0250 5.2078e-04 3.9989
0.0125 1.3021e-04 3.9997
0.0063 3.2552e-05 3.9999
0.0031 8.1380e-06 4.0000
0.0016 2.0345e-06 4.0000

7.8125e-04 5.0863e-07 4.0000
3.9063e-04 1.2716e-07 4.0000
1.9531e-04 3.1789e-08 4.0000

Table 7.1: Errors and ratio for different time steps of the linear part of the KdV
equation. The next time step is half of the last one, for each test.
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Figure 7.1: Wave profile of the linear part of the KdV equation for dt = 0.1.

7.2 The KdV equation

In the next step, we look at the KdV equation of the form

ηt + ηxxx + ηηx = 0. (7.3)

Here, the only difference is the inclusion of the nonlinear term ηηx. This equa-
tion can also be written in the form

ηt + ηxxx +
1

2
(η2)x = 0.

In [15] it is stated that the solitary wave solution of this is of the form

12κ2sech2(κx).

Indeed
12κ2sech2(κ(x− 4κ2t)),

satisfies (7.3), and this is used as an exact solution for time t in our code.
In the same way as was done in the first section, we use the second order
Crank-Nicolson on the linear part, and now we use the explicit Adams-Bashforth
method on the nonlinear part. This leads to

ηn+1 − ηn
∆t

= −∂
3
xηn+1 + ∂3

xηn
2

− (
3

2

1

2
∂x(η2)n −

1

2

1

2
∂x(η2)n−1).

In the same way we transform to the Fourier space, and sort the terms, which
gives us

η̂n+1 =
1 + ∆t

2 ik
3

1− ∆t
2 ik

3
η̂n +

− 3∆t
4 ik

1− ∆t
2 ik

3
η̂2
n +

∆t
4 ik

1− ∆t
2 ik

3
η̂2
n−1.

Here, the nonlinear terms are calculated in the pseudospectral way. We use the
same discretization and procedure, and the results for the errors obtained are
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shown in Table 7.2. A plot of the wave profile for dt = 0.1 is shown in Figure
7.2.

Figure 7.2: Wave profile of the KdV equation for dt = 0.1.

dt L∞-error ratio
0.1000 4.9804e-04
0.0500 1.2442e-04 4.0031
0.0250 3.1088e-05 4.0020
0.0125 7.7697e-06 4.0012
0.0063 1.9421e-06 4.0007
0.0031 4.8549e-07 4.0003
0.0016 1.2137e-07 4.0002

7.8125e-04 3.0341e-08 4.0001
3.9063e-04 7.5852e-09 4.0000
1.9531e-04 1.8963e-09 4.0000

Table 7.2: Errors and ratio for different time steps of the KdV equation. The
next time step are half of the last one, for each test.
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7.3 The linear part of Kaup

We now turn to the Kaup-Boussinesq system (3.15)

ηt = −wx − 1
3wxxx − (ηw)x,

wt = −ηx − 1
2 (w2)x.

To solve this system we first diagonalize it, and then transform it to Fourier
space like we did for the KdV equation. To see that the method works also for
this coupled system, we start with the linear part

ηt = −wx − 1
3wxxx,

wt = −ηx.
(7.4)

This system has an exact solution of the form

sin(κx− ωt).

Substituting this solution for w, we find ω and η

w(x, t) = sin(κx−
√

1− κ2

3 t),

η(x, t) =
√

1− κ2

3 sin(κx−
√

1− κ2

3 t).

This exact solution is used to compare with the numerical solution, as initial
condition we put t = 0 here. The system (7.4) can be written[

ηt
wt

]
=

(
0 − ∂

∂x −
1
3
∂3

∂x3

− ∂
∂x 0

)[
η
w

]
.

When transformed into the Fourier space, using DFT, we can write[
η̂t
ŵt

]
= ik

(
0 k2

3 − 1
−1 0

)[
η̂
ŵ

]
. (7.5)

To diagonalize, we find the eigenvalues of the matrix and the corresponding
eigenvectors to be

λ1,2 = ±
√

1− k2

3
, a1 =

[√
1− k2

3

1

]
, a2 =

[
−
√

1− k2

3

1

]
.

Now, using the relation [
η̂
ŵ

]
= T

[
x̂
ŷ

]
,

where T is the matrix with the eigenvectors as columns

T =

[√
1− k2

3 −
√

1− k2

3

1 1

]
,
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we obtain the new diagonalized system in new variables x and y[
x̂t
ŷt

]
= ik

√1− k2

3 0

0 −
√

1− k2

3

[x̂
ŷ

]
. (7.6)

Here, we have used that
D = T−1AT,

where D is the diagonal matrix in (7.6) with the eigenvalues as diagonal, and
A is the original matrix in (7.5). T−1 is found to be

T−1 =

− 1

2
√

1−k2/3
1
2

1

2
√

1−k2/3
1
2

 .

Using the Crank-Nicolson method on the system (7.6), gives us

x̂n+1 =
1+ 1

2 ∆tik

√
1− k23

1− 1
2 ∆tik

√
1− k23

x̂n, ŷn+1 =
1− 1

2 ∆tik

√
1− k23

1+ 1
2 ∆tik

√
1− k23

ŷn,

to use in the numerical procedure. The initial conditions for η and w has to be
transformed to the new variables using T−1. When the iterations are done, a
transformation back to the original variables w and η is done using T.

Now, it is not enough to rescale the problem to take into account numerical
instability. We also have to use a filter, and since the eigenvalues of the problem
are complex unless

|k| <
√

3, since λ = ±
√

1− k2

3
,

we choose a filter so that this is satisfied. The variables have to be filtered after
each iteration, and also the initial conditions before the iterations start. With
the same discretization as before, we obtain the errors shown in Table 7.3, and
the wave profile shown in Figure 7.3

Figure 7.3: Wave profile of the linear part of the KB system for dt = 0.1.
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Results for η Results for w
dt L∞-error ratio L∞-error ratio

0.1000 1.3933e-04 1.4852e-04
0.0500 3.4844e-05 3.9986 3.7144e-05 3.9986
0.0250 8.7117e-06 3.9996 9.2867e-06 3.9996
0.0125 2.1780e-06 3.9999 2.3217e-06 3.9999
0.0063 5.4450e-07 4.0000 5.8044e-07 4.0000
0.0031 1.3612e-07 4.0000 1.4511e-07 4.0000
0.0016 3.4031e-08 4.0000 3.6277e-08 4.0000

7.8125e-04 8.5078e-09 4.0000 9.0693e-09 4.0000
3.9063e-04 2.1270e-09 4.0000 2.2673e-09 4.0000
1.9531e-04 5.3174e-10 4.0000 5.6684e-10 4.0000

Table 7.3: Errors and ratios for different time steps of the linear part of the
Kaup-Boussinesq system.

7.4 The full Kaup-Boussinesq system

Next, we investigate the full Kaup-Boussinesq system

ηt = −wx − 1
3wxxx − (ηw)x,

wt = −ηx − 1
2 (w2)x.

(7.7)

In [11] we find an exact solution of the corresponding KB-system for internal
waves, which is already investigated in Chapter 5. We want to compare (7.7)
with the KB-system for internal waves

ηt + αux + δuxxx + γ(ηu)x = 0,

ut + βηx + ε2γuux = 0,
(7.8)

since we have an exact solution for this. We see that if we put

α = β = γ = 1 and δ =
1

3
,

we have the same system. Now, this gives us the exact solution

w(x, t) = 2(c2−1)

cosh(
√

3(c2−1)(x−ct))+c
,

η(x, t) = cw(x, t)− 1
2w

2(x, t)

(7.9)

which we will use for comparison to our numerical approach.

7.4.1 Numerical procedure

Transforming our system to the Fourier space, the following system is obtained[
η̂t
ŵt

]
= ik

(
0 1

3k
2 − 1

−1 0

)[
η̂
ŵ

]
+

[
−ik(η̂w)

−ik 1
2 (ŵ2)

]
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In the same way as we did for the linear part, we diagonalize such that the
linear part is not coupled. The eigenvalues of the matrix and the corresponding
eigenvectors are the same. We get

[
x̂t
ŷt

]
= ik

(√
1− k2/3 0

0 −
√

1− k2/3

)[
x̂
ŷ

]
+ T−1

[
−ik(η̂w)

−ik 1
2 (ŵ2)

]
. (7.10)

Using again Crank-Nicolson on the linear terms and Adams-Bashforth on the
nonlinear, we get the following algorithm

x̂n+1 =
1+ 1

2 ∆tik
√
i−k2/3

1− 1
2 ∆tik

√
i−k2/3

x̂n +
3
4 ∆t ik√

1−k2/3

1− 1
2 ∆tik

√
i−k2/3

ˆ(ηw)n +
− 3

8 ∆tik

1− 1
2 ∆tik

√
i−k2/3

ˆ(w2)n+

− 1
4 ∆t ik√

1−k2/3

1− 1
2 ∆tik

√
i−k2/3

ˆ(ηw)n−1 +
1
8 ∆tik

1− 1
2 ∆tik

√
i−k2/3

ˆ(w2)n−1,

ŷn+1 =
1− 1

2 ∆tik
√
i−k2/3

1+ 1
2 ∆tik

√
i−k2/3

ŷn +
− 3

4 ∆t ik√
1−k2/3

1+ 1
2 ∆tik

√
i−k2/3

ˆ(ηw)n +
− 3

8 ∆tik

1+ 1
2 ∆tik

√
i−k2/3

ˆ(w2)n+

1
4 ∆t ik√

1−k2/3

1+ 1
2 ∆tik

√
i−k2/3

ˆ(ηw)n−1 +
1
8 ∆tik

1+ 1
2 ∆tik

√
i−k2/3

ˆ(w2)n−1.

(7.11)
The numerical procedure is as follows:

- Transformation of the initial conditions from η and w to x and y
- Filter the initial conditions
- Taking the product ηw and w2 in physical space, using DFT and transforming
it to Fourier space with the inverse DFT
- Filter the products
- For each iteration filter the new x and y, take the new products ηw and w2 in
physical space (having the last ones saved for the (n−1)-terms) and filter them
- After the iterations, transform back to the original η and w in physical space.

7.4.2 Results

The numerical results shows that the method works quite well for small ampli-
tude waves, confirming the basis for deriving the model in the first place. It
also goes hand in hand with the results of the internal solitary wave discussion
from Chapter 4. If the wave speed is chosen to be as small as c = 1.005 we get
a good approximation with a small error, and we also get the right ratio 4. The
results of this is shown in Table 7.4. The wave profile is shown in Figure 7.4.
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c = 1.005 Results for η Results for w
dt L∞-error ratio L∞-error ratio

0.1000 2.5936e-08 2.0982e-08
0.0500 6.4486e-09 4.0219 5.2118e-09 4.0258
0.0250 1.6077e-09 4.0111 1.2988e-09 4.0129
0.0125 4.0135e-10 4.0056 3.2417e-10 4.0064
0.0063 1.0027e-10 4.0029 8.0977e-11 4.0033
0.0031 2.5057e-11 4.0016 2.0235e-11 4.0019
0.0016 6.2619e-12 4.0014 5.0562e-12 4.0019

7.8125e-04 1.5638e-12 4.0042 1.2621e-12 4.0061
3.9063e-04 3.8951e-13 4.0149 3.1381e-13 4.0219
1.9531e-04 9.7469e-14 3.9963 8.0764e-14 3.8856

Table 7.4: Errors and ratio for different time steps of the Kaup-Boussinesq
system. Results for η and w.

Figure 7.4: Wave profile for c = 1.005.

For smaller wave speeds the waves get broader, so we have to increase the
length of the interval L to get the error right because of the boundaries. When
we increase the wave speed, we can see that some of the energy spreads to the
tail and in front of the wave. Nevertheless, the solution seems to be stable up
to a certain wave speed. After a certain point the model becomes unstable, and
the solution blows up after some iterations. We can see the energy spreading
after just c = 1.2 and certainly at c = 1.8. The wave profiles for these wave
speeds are shown in Figure 7.5.
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Figure 7.5: Waveprofiles for c = 1.2 and c = 1.8.

Another thing worth mentioning is that when the products are filtered, we
should have some aliasing. One would normally have to use a way to remove
this aliasing effect. Here, on the other hand, this was done, and it seemed to
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have no effect at all. This could be the fact that a lot of the modes was already
filtered out using the requirement |k| <

√
3, and the modes that remained was

not enough to produce enough aliasing to take account for.

7.4.3 Conservation of Momentum and Energy

For the interval [0, L], we should have conservation of both momentum and en-
ergy, since periodicity is assumed. We use the differential conservation equations
of the Kaup-Boussinesq system derived in Chapter 4 to see if this is satisfied
with our method. Since these equations are given by w and η, we can use the
calculated quantities here. For the momentum differential balance equation, we
found

∂

∂t̃
Ĩ =

∂

∂x
F − ∂

∂x̃
q̃I ,

when terms of order O(αβ, β2 are ignored. Here, the quantities l, c0, ρ, g and
h0 are put equal to 1, so it does not change when we express it in dimensional
variables. We get

d

dt

∫ L

0

I dx =

∫ L

0

∂

∂t
I dx =

∫ L

0

(
∂

∂x
F − ∂

∂x
qI) dx = F (w, η)− qI(w, η)

∣∣∣∣L
0

= 0,

where the derivative is taken inside the integral in the first equality since the
interval of integration is fixed, and the last equality is true because of periodicity
so that w and η have the same value at 0 and L. Hence,∫ L

0

I dx =

∫ L

0

(w + ηw +
1

3
wxx) dx = constant.

For wxx, we use the computed w and use the Fourier collocation derivative
twice. Since we in Chapter 4 use an expression for the energy that satisfies the
Hamiltonian corresponding to the KB system, we know that this is conserved
for an interval where we have periodicity or the whole real line. This means
that ∫ L

0

E dx =

∫ L

0

(
1

2
η2 +

1

2
(1 + η)w2 − 1

6
w2
x) dx = constant.

These two integrals are evaluated at each time step, and the following plots are
time plotted against the integral value. We test conservation with c = 1.005.
In Figure 7.6 the solution (7.9) is used, and since this is just a translation it
is obvious that we have conservation, which we observe from the figure. Thus,
we try another initial condition where the numerical solution is clearly different
than a normal translation, to see if the method still features conservation. In
Figure 7.7 the Gaussian solution

w(x, 0) =
1

10
√

2π
e−

1
2 (
x−L/2−0.1

10 )2 (7.12)

is used as initial condition for w For η we simply use

η(x, t) = Aw(x, t), (7.13)

where A = 1.5 is used for the plot. As can be seen from the figure, the numerical
solution is clearly not a translation, but conservation is still satisfied. For both
plots, the final time is T = 25 with time step dt = 0.00625.
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Figure 7.6: Initial condition and numerical solutions for both w and η. The last
plot shows the integral of the momentum and energy plotted at each time step.
Here, the solution (7.9) is used as initial condition.
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Figure 7.7: Initial condition and numerical solutions for both w and η. The last
plot shows the integral of the momentum and energy plotted at each time step.
Here, the Gaussian solution (7.12) and (7.13) is used as initial condition.
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