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Abstract

Large amount of natural gas are present in submarine sediments and permafrost areas in the
form of gas hydrates. Gas hydrates are a large potential future energy resource, and may
contribute to the methane balance in the atmosphere, causing global climate change. Dissoci-
ation of gas hydrates can cause seafloor instabilities below constructions such as platforms and
pipelines. It is therefore important to be able to quantify the amount of gas hydrate in the
sediment.

Rock physics models serve as a link between in-situ properties in the rock and observable prop-
erties at the surface. Information regarding seismic properties can be extracted from AVA data
via a reflectivity model, and related to hydrate saturation using a rock physics model. Three
phase effective medium theory, and a combination of the self consistent approximation and dif-
ferential effective medium theory are implicated and compared. Large differences in estimated
properties were observed for the different models.

When a forward model has been applied, that relates reservoir parameters to AVA data, esti-
mates on these parameters on the basis of data can be made. When the data contain noise,
errors in the data are mapped to the estimates on model parameters. Uncertainty analysis
was performed in order to investigate the effects of errors in the data. It was seen that when
the "true" model is used for inversion, it is possible to make good estimates on the model
parameters. When a different model was used for inversion than for the forward modeling, the
estimates where good in some cases, and very poor in other.
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Introduction

Gas hydrate is a solid substance in which the molecules of gas and water chemically interact
to form a ice-like crystalline structure. Structurally they are clathrates or compounds which
consist of a rigid network of "cages" of water molecules surrounding a gas molecule. Three
crystalline structures of gas hydrates I, II and H has been recognized in nature with I being
the most common (Kvendvolden, 2000). In order for gas hydrates to form, sufficient amounts
of water and suitably sized gas molecules needs to be present in the appropriate pressure and
temperature regime. Such conditions are found in continental margins where the bottom-water
temperature approaches 0 degrees, at water depths greater than 300-500 m, and in permafrost
areas.

The most common indicator of the presence of submarine gas hydrates is an anomaly known
as a bottom simulating reflector (BSR), which is a strong inverse polarity reflector that is sub-
parallel to the seafloor. The BSR marks the boundary between the higher-velocity hydrate
saturated sediment and the lower-velocity underlying sediment, containing brine or a mixture
of free gas and brine. This reflector coincides with the base of what is known as the gas hydrate
stability zone, which is the region where the temperature and pressure conditions are such that
the stability conditions for gas hydrate formation is met. Outside this zone, gas hydrates will
dissociate into their water and gas components. Bottom simulating reflectors have been mapped
between 100 and 1100 meters beneath the seafloor (Kvenvolden and McMenamin, 1980). They
can in many cases be easily recognized because they cut across structural or stratigraphic re-
flectors.

Recent estimates of the amount of methane contained in gas hydrates range from 3 − 120 ∗
1015 m3 at standard temperature and pressure conditions (STP), where even the most conserva-
tive estimates are large compared to estimates of the conventional gas reserves of 0.15 ∗ 1015 m3

(STP) (Sloan et al., 2009). Because of this and the fact that gas hydrates concentrate methane
by as much as a factor of 164 (at STP), and only 15% of the recovered energy is needed for
dissociation, gas hydrates are a large potential future energy resource (Sloan et al., 2009).
They may also affect the methane balance in the atmosphere, thus influencing global climate
(Kvenvolden, 1993). Since gas hydrates affect sediment stiffness, dissociation of gas hydrates
can cause seafloor instabilities, and jeopardize the foundation of subsea structures such as plat-
forms and pipelines. Expansion of gas hydrates in the drilling column can also cause blowouts.
It is therefore important to be able to quantify the amount of gas hydrates in the sediment.
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CHAPTER 0. Introduction

Hydrate saturation in sediments can be estimated from seismic data by extracting velocity
information from the data and then use a rock physics model that relates hydrate saturation to
the elastic properties of the sediment. Many attempts have been made to quantify gas hydrate
saturation from seismic velocities. Lee et al. (1996) uses a weighted combination of the three
phase time average equation and Wood’s equation, where in addition to the weighing factor
introduced by Nobes et al. (1986) they also introduced an exponential term on the saturation
value of the gas hydrate, thereby making the model more flexible so that it can be applicable
in the diverse set of growth geometry and conditions where gas hydrates occur in sediments.
The disadvantage of this model is that the weighing factors are purely empirical and does not
hold any physical meaning, therefore they require substantial data set to be determined.

Other models based on effective medium theory have been made that calculates the elastic
properties of the sediments from those of the mineral constituents, porefluids and gas hydrates.
These models are based on some assumptions of the grain geometry and connectivity of the
sediment, and the hydrate saturation geometry. The best fitting model can therefore be se-
lected from knowledge of the microstructure of the sediment under consideration. The model of
Helgerud et al. (1999) is based on hertz-Mindelin contact theory, and hydrates can be added as
part of the solid grains or in the pore space, away from grain contacts. Dvorkin and Nur (1995)
proposed a model where hydrates can be added as cement at grain contacts, evenly distributed
around the grain or concentrated at the grain contact. Another model by Jakobsen et al. (2000)
is based on a combination of Self Consistent Approximation (SCA) and Differential Effective
Medium Theory (DEM). In this model the gas hydrates can be added as grain coating or in
the pore space, and unlike the other models, this model also allows for anisotrophy by first
assuming fully aligned elipsoidal clay grains of a certain aspect ratio, and then allowing for
varying orientation according to a orientation distribution function.

The outline of this thesis is as follows:

Chapter 1 gives an introduction to the rock physics models that are used in the froward model.
The model by Helgerud et al. (1999) and a slightly modified version of the model by Jakobsen
et al. (2000) will be introduced. These models will be implemented using MATLAB and results
will be plotted and investigated.

Chapter 2 gives an introduction to Aki-Richard’s and Rüger’s approximations. These are used
to model reflectivity properties of a layered model containing a hydrated layer. Also synthetic
seismograms are computed using simple seismic modeling.

Chapter 3 gives an introduction to Bayesian non-linear inversion. Inversion experiments will
be performed to investigate how noise in data is mapped over to estimates in saturation and
porosity. Effects of model error will also be investigated.

Chapter 4 gives concluding remarks and suggestions for further work.
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Chapter 1

EFFECTIVE MEDIUM THEORIES OF
HYDRATE-BEARING SEDIMENTS

1.1 Introduction

In order to estimate gas hydrate saturation from seismic data it is essential to establish a relation
between the gas hydrate saturation and elastic properties of the rock. This is done by using a
rock physic model. A rock physics model is a mathematical relation that provides the connection
between measurable elastic properties measured at the surface, in a borehole or in a laboratory,
to the intrinsic properties of a rock such as mineralogy, grain and pore geometry, porosity and
connectivity. In this chapter we will investigate two different models, the three phase effective
medium (TPEM) model by Helgerud et al. (1999), and the differential effective medium model
(DEM) by Jakobsen et al. (2000). The sensitivity of the models in relation to hydrate saturation
for different hydrate saturation structures will be tested, porosities and mineralogies. We will
also look at the effects of aspect ratio for the clay platelets and pores in the DEM model and
use two different isotropic versions of this model, one with completely disordered non-spherical
components and one with spherical components, along with an anisotropic version with partially
aligned non-spherical components.

1.2 Three phase effective medium (TPEM) model

This is a first-principle-based effective medium model by Helgerud et al. (1999), based on the
model by Dvorkin et al. (1999). The main assumption of the model is that the elastic moduli
of the dry sediment at critical porosity can be described by that of a dense random pack of
identical spheres with elastic properties calculated from those of the solid constituents using
Hill’s (Hill, 1952) averaging formula. The elastic moduli can be calculated for other porosities
using Hashin-Strikman bounds as described later in this section. As shown in figure 1.1, the
hydrates can be accounted for as part of the pore fluid (case 1A) or as part of the solid grains
(case 1B). This model is relatively simple and provides a easy way of calculating the bulk and
shear moduli of the sediment, however, it does not take into account the anisotropic effects of
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CHAPTER 1. EFFECTIVE MEDIUM THEORIES OF HYDRATE-BEARING SEDIMENTS

preferred clay particle alignment.

The bulk (KHM) and shear (µHM) moduli of the dry sediment at critical porosity φc (φc = 36%
for dense random pack of identical spheres , Nur et al. (1998)), is given by the Hertz-Mindlin
contact theory:

KMH =

[
n2(1− φc)2µ2

18π2(1− v)2
P

]1/3

µHM =
5− 4v

5(2− v)

[
3n2(1− φc)2µ2

2π2(1− v)2
P

]1/3
where µ and v is the shear modulus and Poisson’s ratio, respectively, of the solid phase and P
is the effective pressure and n is the average number of grain contacts per grain in the sphere
pack (∼9 for dense random pack of identical spheres, Murphy (1982)). The effective pressure
can be approximated by the differential pressure, given by P = (ρb − ρw)gD, where ρb and ρf
is the bulk density of the solid components and fluids respectively, g is the acceleration due to
gravity, and D is the depth below the seafloor.

At porosities below critical, the elastic moduli of the dry frame is calculated from the lower
Hashin-Strikman bounds, where the upper end member is the solid phase of the sediment,
and the lower end member is the sediment at critical porosity. For porosities above critical,
lower Hashin-Strikman bounds is used, where the upper end member is the sediment at critical
porosity, and the lower end member is the open void space, that has zero elastic moduli. This
is gives the following equations for the bulk and shear muduli of the dry frame:

Kdry =

[ φ/φc
KHM+ 4

3
µHM

+ 1−φ/φc
K+ 4

3
µHM

]−1 − 4
3
µHM φ < φc[

(1−φ)/(1−φc)
KHM+ 4

3
µHM

+ (φ−φc)/(1−φc)
4
3
µHM

]−1
− 4

3
µHM φ ≥ φc

(1.1)

µdry =


[

φ/φc
µHM+Z

+ 1−φ/φc
µ+Z

]−1
− Z φ < φc[

(1−φ)/(1−φc)
µHM+Z

+ (φ−φc)/(1−φc)
Z

]−1
− Z φ ≥ φc

(1.2)

Z =
µHM

6

(
9KHM + 8µHM
KHM + 2µHM

)

For sediment saturated with pore fluid of bulk modulus Kf , the shear modulus remains un-
changed µsat = µdry, and the bulk modulus Ksat is calculated from Gassman’s equation:

Ksat = K
φKdry − (1 + φ)KfKdry/K +Kf

(1− φ)Kf + φK −KfKdry/K
(1.3)

Finally, the bulk and shear moduli calculated from the equations above and the bulk density ρ
of the sediment is used to find the seismic velocities:

Vp =
√

(Ksat + (4/3)µsat)/ρ, Vs =
√
µsat/ρ
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Three phase effective medium (TPEM) model

Figure 1.1: Simplified view of the two different hydrate saturation geometries implied by this model. In case
1A the hydrates are distributed in the pore space and in model 1B they form part of the solid frame.

We can account for mixed mineralogy in the solid frame by volume averaging using Hill’s formula
to calculate the effective elastic parameters from those of the individual mineral constituents,
which can be expressed in terms of the effective bulk and shear modulus as:

K =
1

2

 m∑
i=1

fiKi +

(
m∑
i=1

fi/Ki

)−1 , µ =
1

2

 m∑
i=1

fiµi +

(
m∑
i=1

fi/µi

)−1 , (1.4)

where m is the number of mineral constituents, fi, Ki and µi are the volume fraction in the
solid phase, bulk modulus and shear modulus of the i-th mineral constituent, respectively.

In the case where we assume that hydrates are located in the pore space, away from the
solid grains, the elastic constants of the solid frame remain unchanged and the effective bulk
modulus Kf of the fluid is calculated from Reuss average of the water and gas hydrate bulk
moduli (assuming uniform distribution of water and hydrate in the pore space):

Kf = [Sh/Kh + (1− Sh) /Kf ]
−1 , (1.5)

where Kh and Sh are the bulk modulus and volumetric concentration in the pore space of the
gas hydrate, respectively. Kf in equation 1.3 is then replaced with Kf to calculate the effective
bulk modulus of the sediment with hydrates. The presence of uniformly distributed gas in the
pore space can be accounted for by replacing Sh and Kh in equation 1.5 by the gas saturation
(Sg) and bulk modulus (Kg).

If we assume that the hydrates are forming load bearing components of the solid frame, the
original porosity will be reduced to φ∗ = (1− Sh)φ, and the fractions of the mineral constituents
in equation 1.4 will be replaced by the new mineral fractions f ∗i and the fraction of hydrates in
the solid frame fh, given by:

f ∗i = fi (1− φ) / (1− φ∗) , fh = Shφ/(1− φ∗) (1.6)
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CHAPTER 1. EFFECTIVE MEDIUM THEORIES OF HYDRATE-BEARING SEDIMENTS

1.3 Differential effective medium (DEM) model

Jakobsen et al. (2000) proposed a method for modeling clay-rich sediment containing gas hy-
drates, based on a combination of self-consistent approximation (SCA) (Willis, 1977), differen-
tial effective medium theory (DEM) (Nishizawa, 1982), and a method of smoothing (Bonilla and
Keller, 1985). The combination of SCA/DEM reproduces the biconnectivity of the sediment
Sheng (1990), and a similar approach was shown to give convincing results for the prediction of
properties of shale by Hornby et al. (1994). This model starts with an effective material, created
by the SCA, at a porosity where this approximation yields a biconnected material (between
40-60% (Sheng, 1990)). Since DEM preserves the connectivity of the phases (Sheng, 1990),
the combination can produce a composite that is biconnected at any porosity. In this section,
a brief description of this method will be given, however, the method of smoothing used in
Jakobsen et al. (2000) will be replaced by Hill average as used in Hornby et al. (1994). This
model allows for the anisotropic effect of prefered clay particle alignment.

We consider a statistically uniform composite with a matrix consisting of n different phases
with elastic moduli Ci and volume concentrations vi (i = 1, 2, ..., n). The self-consistent ap-
proximation (SCA) gives the following implicit equation for the stiffness C of this composite
(Willis, 1977):

C =

{
n∑
i=1

viCiQi

}{
n∑
j=1

vjQj

}−1
, (1.7)

where

Qi = [I + P(C)(Ci −C)Qi] (1.8)

and P is a fourth-rank tensor calculated from the response of a single inclusion embedded in
an unbound matrix of the effective material, and I is the identity tensor. It is assumed that
the composite material consists of individual crystals, which each can be approximated by an
ellipsoid. P is found by solving the Eshelby problem (Eshelby, 1957; Mura, 1982; Jakobsen
et al., 2000), which involves calculating the strain field in an ellipsoidal region that has been
subject to an additional (stress-free) eigenstrain.

The differential effective medium theory (DEM) (Nishizawa, 1982) states that the change in
stiffness dC due to an increment dvi of the ith component is given by

dC =
dvi

1− vi
(Ci −C)Qi. (1.9)

The concentration of all the other components changes proportional to their relative concen-
trations

dvi = − vjdvi
Σk 6=ivk

, j 6= i. (1.10)

We can impose a increment dv in the first component and −dv in the second component, leaving
the other components as they were, using a modified version of the differential effective medium
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Differential effective medium (DEM) model

theory (DEM) (Jakobsen et al., 2000)

dC = dv (C1 −C)Q1 − dv (C2 −C)Q2, (1.11)

where dv = dv1/ (1− v1) and −dv = dv2/ (1− v2).

The combination of SCA/DEM yields a composite with fully alligned microstructure. In reality
sedimentary materials are much more heterogeneous. This can be accounted for using the Hill
average (following Hornby et al. (1994)). This is given as the mean of the Voigt (1928) average
and Reuss (1929) average. It is assumed that the material is an aggregate of crystals where
each crystal has a fully aligned microstructure from the SCA/DEM combination. The crystals
are assumed to have azimuthal symmetry about their individual axis of transverse isotropy. In
this case only the angle θ between the crystalline symmetry axis and the composite symmetry
axis needs to be considered (Hornby et al., 1994).

The following scheme for calculating the Voigt average is extracted from Jakobsen (1998). The
crystals are oriented according to a orientation distribution function W (Ω), where ω is the
orientation of a crystal referred to a fixed coordinate system. Ω = (ξ, ϕ, ψ), where ξ ,ϕ and
ψ are the three Eulerian angles and ξ = cos(θ). All the crystals must have some orientation,
therefore it follows that: ∫

W (Ω) dΩ = 1. (1.12)

We let Cijkl (0) denote the stiffness of a crystal referred to the axis of transverse isotropy fixed
in each crystal. The stiffness of a crystal with orientation given by Ω, referred to a fixed
background axis is then (Morris, 1969; Sayers, 1994):

Cijkl (Ω) = Tijklmnpq (Ω)Cmnpq (0) , (1.13)

where Tijklmnpq is the transformation tensor corresponding to Ω.

The weighted average of the elastic stiffness tensor is (Morris, 1969)

Cijkl = T ijklmnpqCmnpq (0) , (1.14)

where
T ijklmnpq =

∫
W (Ω)Tijklmnpq (Ω) dΩ, (1.15)

is the averaging operator.

Following Sayers (1994) we then expandW as a series of generalized Legendre functions Zlmn (ξ):

W (Ω) = W (ξ, ϕ, ψ) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

WlmnZlmn (ξ) e−imϕe−inψ, (1.16)

where

Wlmn =
1

4π2

∫ 2π

0

∫ 2π

0

∫ 1

−1
W (ξ, ϕ, ψ)Zlmn (ξ) eimϕeinψdξdϕdψ (1.17)

7



CHAPTER 1. EFFECTIVE MEDIUM THEORIES OF HYDRATE-BEARING SEDIMENTS

If the orientation distribution is symmetric about the axis θ = 0, then W becomes dependent
on ξ only and the parameters Wlmn are all zero unless m = n = 0. Since W (ξ) = W (−ξ) we
also have that Wl00 is zero unless l is even. The Voigt matrix representations of Cijkl can then
be calculated from Cijkl (0), W200 and W400 only, using the following equations (Sayers, 1994):

C11 = C22 = λ+ 2µ+
4
√

2

105
π2
[
2
√

5a3W200 + 3a1W400

]
, (1.18)

C33 = λ+ 2µ− 16
√

2

105
π2
[√

5a3W200 − 2a1W400

]
, (1.19)

C12 = λ− 4
√

2

315
π2
[
2
√

5 (7a2 − a3)W200 − 3a1W400

]
, (1.20)

C13 = C23 = λ− 4
√

2

315
π2
[√

5 (7a2 − a3)W200 − 12a1W400

]
, (1.21)

C44 = C55 = µ− 2
√

2

315
π2
[√

5 (7a2 + 2a3)W200 + 24a1W400

]
, (1.22)

C66 =
(
C11 − C12

)
/2, (1.23)

where a1, a2 and a3 are defined by

a1 = C11 (0) + C33 (0)− 2C13 (0)− 4C55 (0) , (1.24)

a2 = C11 (0)− 3C12 (0) + 2C13 (0)− 2C55 (0) , (1.25)

a3 = 4C11 (0)− 3C33 (0) + C13 (0)− 2C55 (0) , (1.26)

λ and µ are given by

15λ = C11 (0) + C33 (0) + 5C12 (0) + 8C13 (0)− 4C55 (0) , (1.27)

30µ = 7C11 (0) + 2C33 (0)− 5C12 (0)− 4C13 (0) + 12C55 (0) , (1.28)

and the formulas for W200 and W400 are

W200 =
5

2

∫ 1

−1
W (ξ)P2 (ξ) dξ, (1.29)

W400 =
5

2

∫ 1

−1
W (ξ)P4 (ξ) dξ, (1.30)

where Pn is the Legendre polynomal of order n.

The Reuss average is found exactly the same way, by replacing the stiffness components in
equation 1.18-1.23 by the corresponding compliance components. The Hill average is then
calculated from

C
V RH

=
C

V
+ C

R

2
, (1.31)

where C V is the stiffness found from the Voigt average and C
R

=
(
S
R
)−1

is the stiffness from
the Reuss average.
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Numerical results and discussion

We consider two separate cases with a sediment consisting of clay, water, quartz and gas
hydrates, at volume concentrations vc , vw, vq and vh, respectively. A first one where the
hydrates are located inside the pore space and a second case where the gas hydrates are forming
cement binding around the grains as shown on figure 1.2.

In the case where hydrates are located in the pore space (case 2A), we start by calculating
the elastic properties of a fully aligned clay/water composite at water-filled porosity φ0 =

φ/ (φ+ vc) using the combination of SCA and DEM (equation 1.7 and 1.9). Consecutive
increments dv in the volume concentration of gas hydrates in the sediment and −dv in the
water volume concentration are then imposed using modified DEM (equation 1.11), until the
desired hydrate saturation Sh = vh/φ0 is reached. The hydrate inclusions have the same
shape and orientation as the water and clay inclusions and the resulting media is a fully aligned
clay/water/hydrate composite with connected clay, connected water and unconnected hydrates.

For the second case (case 2B), where hydrates are present as grain coating, the procedure is
exactly the same except that the roles of hydrates and water are interchanged. This yields a
clay/water/hydrate composite with connected clay, connected hydrates and unconnected water.

Orientation averaging is then performed using Hill average (equation 1.31), as described above,
before isolated quartz inclusions are added using DEM (equation 1.9). The aspect ratio for
quartz inclusions should be set to 1. Other minerals, such as feldspar can also be added using
this method, but as long as the properties of these minerals are similar to quartz, adding only
quartz to represent the unconnected components will be a good approximation.

Figure 1.2: Simplified view of the two different hydrate saturation geometries implied by this model. In case
2A the hydrates are distributed in the pore space and in model 2B they are present as grain coating.

1.4 Numerical results and discussion

In order to investigate the effects of gas hydrates on effective elastic parameters, the value of
the static parameters used in the models must be determined. The elastic properties of the
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CHAPTER 1. EFFECTIVE MEDIUM THEORIES OF HYDRATE-BEARING SEDIMENTS

components are found in table 1.1. In addition to these parameters and the volume concen-
tration of the components, the models also incorporate some other parameters, related to the
microstructure and in-situ conditions. The DEM model is dependent on the aspect ratio of
the grains and pores, and the orientation distribution. If the components are isotropic and
spherical or randomly oriented, the resulting media will be isotropic (Hornby et al., 1994).

In figures 1.3 and 1.4 the P- and S-wave velocity of a completely disordered clay-water-hydrate-
quartz composite are shown as a function of hydrate saturation for different aspect ratios, for
hydrates as pore filling and part of the solid frame, respectively. Generally the velocities are
higher for higher aspect ratios, except in the case of connected hydrates that fill 100% of the
pore space where the velocities seems to merge, and the velocities increase with increasing hy-
drate saturation for all cases. For the unconnected hydrates the P-wave velocity the P-wave
velocities are relatively similar for the different aspect ratios, whereas the S-wave velocities
have a much sharper increase for the higher aspect ratios. In the case of connected hydrates,
the dependency is more linear for the higher aspect ratios, while the lower aspect ratio show a
higher sensitivity with increasing saturation.

Next we will look at the parameters in the TPEM model that are not related to the properties
and volume concentration of the components. Figures 1.5 and 1.6 show the velocities plotted
as a function of hydrate saturation for different critical porosities and coordination numbers.
The values that are used are different results from a packing of identical spheres for the average
number of grain contacts and corresponding porosity, taken from Mavko et al. (2009). This
appears to have essentially no effect on the velocities. In figures 1.7 and 1.8 the plots are shown
for different differential pressures. Also here the effects are modest, but there is an increase in
S-wave velocity for the model with hydrates in the pore space over the whole saturation range
with increasing pressure, whereas the P-wave velocity is practically unchanged. The model
with hydrates as part of the frame also show insignificant effects on the P-wave velocity, and
some effect on the S-wave velocity that decreases with increasing saturation before the velocities
merge at 100% saturation.

In figures 1.9-1.20 results for three different models are shown, the DEM model with spherical
components (DEM spherical), the DEM with completely disordered clay platelets and pores
with aspect ratio 1/20 (DEM non-spherical), and the TPEM model. P- and S-wave velocities
are plotted as function of hydrate saturation for different porosities and quartz contents. For
the TPEM model the effective pressure is set to 5MPa, and the values used for the coordination
number and critical porosity are 9 and 36%, respectively. These values will be used consistently
throughout this text.

When the hydrate are distributed in the pore space (figure 1.9-1.14) the models show relatively
similar P-wave velocities, especially at higher porosities. When the quartz content is varied,
the models only show slight changes. The TPEM model gets a higher velocity at 0% saturation
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and a shallower increase so that it has a lower velocity at 100% saturation when the quartz
content is increased. The DEM models shows the opposite trend, they start lower and increase
more rapidly when the quartz content is higher, with this effect being largest in the case of
spherical components.

When it comes to S-wave velocities, the TPEM model shows oposite trend as the other models.
It shows a slight decrease with increasing hydrate saturation. This is due to the unchanged
shear modulus and slightly increased density caused by the hydrates. This trend is physically
questionable since one would expect that the hydrates will contribute to some extent to the
shear stiffness of the rock, even at low concentrations. The two other models show sharper
increase with hydrate saturation at higher porosities. The effect on the S-wave velocity for the
DEM models with varying quartz content is similar to that of the P-wave velocity for these
models.

Next we will look at the models with hydrates added as part of the solid frame (Figures 1.15-
1.20). As expected, a general trend is a sharper increase in velocity when the hydrates are
present as part of the solid frame. The DEM model shows higher velocity at 0% saturation for
connected hydrates, where the velocities should be equal. This is not the case for the TPEM
model. For both the models, it is assumed that the hydrates are present in the pore space at
low concentrations (say less than 50%) and as part of the solid frame at higher concentrations.
Therefore, the DEM model with unconnected hydrates should be used to model the sediment
when no hydrates are present.

Generally the TPEM model shows a strongly non-linear increase that gets higher as the hydrate
saturation increases. This trend is stronger for higher porosities and higher quartz content, and
is stronger for S-wave velocities. The DEM models show a more linear trend, though slightly
less linear in the case of non-spherical components. The DEM model with spherical components
has higher velocity than the non-spherical version up to 100% saturation where the velocities
converge. These models show more similar velocities at higher porosities and quartz contents.
The velocities increase the most with hydrate saturation for the TPEM model. Regarding the
P-wave velocity, this model shows less decrease with porosity than the other models, whereas
the S-wave velocity decreases the least for this model. When the quartz content is incremented,
the TPEM model shows higher velocities over the whole saturation range, while the velocities
decrease at low saturations for the DEM models, and increase at higher saturations.

The DEM model can generate a vertically isotropic (VTI) media by assuming fully or par-
tially aligned microstructure. The anisotropy of a VTI media can be expressed in terms of the
anisotropy parameters (Thomsen, 1986):

ε =
C11 − C33

2C33

, (1.32)

γ =
C66 − C44

2C44

, (1.33)
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δ =
(C13 + C44)

2 − (C33 − C44)
2

2C33 (C33 − C44)
, (1.34)

where ε and γ describe the anisotropy of the P- and S-waves, respectively, and δ is related to
the shape of the wavefronts. These parameters, together with the vertical P-wave velocities

VP =
√
C33/ρ (1.35)

and S-wave velocities
VS =

√
C44/ρ, (1.36)

where ρ is the spatial average density of the material, form a convenient measure of the VTI
media.

In figure 1.21 these parameters are plotted as a function of aspect ratio for the clay platelets
and pores, for a fully aligned DEM composite. The anisotropy parameters are relatively low,
except in the case of γ for the unconnected hydrates, where it exceeds 100 for low aspect
ratios, and quickly decreases. In figure 1.22 the anisotropy parameters are plotted as function
of the standard deviation σ. The grains are assumed to be oriented according to a truncated
normal distribution, where the standard deviations shown are the ones of the corresponding
un-truncated normal distribution. The anisotropy parameters quickly approaches zero, and
already at σ = 2 the media is nearly isotropic.

Figure 1.23 shows a truncated normal distribution corresponding to a un-truncated normal
distribution with SD = π/5. This distribution will be used for the partially aligned DEM
model. In figures 1.24-1.29 the Thomsen’s parameters for this model are plotted as function
of hydrate concentration for different porosities and quartz contents. Generally, the anisotropy
is eliptical (ε ≈ δ) and, as expected, the vertical velocities increase more rapidly when the
hydrates are present as grain coating.

At low porosities the anisotropy parameters decrease with hydrate saturation, while there is
an increase in ε and δ at 75% porosity, up to about 50% saturation, before the parameters
decrease again. γ always decreases with saturation, while for connected hydrates it drops close
to zero at 100% saturation. ε and δ are always higher when the hydrates are connected (except
in some cases at very high saturation), whereas γ is always lower. There is an increase in γ

with porosity, while ε and δ decrease at low saturation. All the anisotropy parameters decrease
when the quartz content is incremented, something that can be explained by the quartz being
added as spherical inclusions.

1.5 Concluding remarks

Two different rock physics models had been implemented and investigated in this chapter, the
simple and computationally inexpensive TPEM model and the more complicated and compu-
tationally expensive DEM model. The DEM model has been somewhat simplified by replacing
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"method of smoothing" with the Hill average. Two different isotropic formulations of the DEM
model, one with completely disordered eliptical components and one with spherical compo-
nents, has been compared with each other and the TPEM model. The DEM model has also
been implemented on an anisotropic case, with partially aligned microstructure, and the verti-
cal velocities and anisotropy parameters were calculated.

Generally, the models show similar results at 0% saturation for the plots where the hydrates are
located in the pore space. The TPEM model shows the same velocity at 0% saturation when
the hydrates form part of the solid frame, whereas the DEM model shows different velocities.
This model starts with a clay-water composite when the hydrates are modeled in the pore
space, so this model should give the most accurate value in this case. Although the DEM and
TPEM model assumed same saturation geometry in the case where hydrates are located in the
pore space, they show different trends. The S-wave velocity decreases with hydrate saturation
when using the TPEM model. This is the only case where we see a decrease in velocity with
hydrate saturation. We have seen that the effects of hydrates on seismic properties calculated
using these models can be similar for the different models in some cases and very different in
other. In the next chapter we will implement these models on a layered media to investigate
the effects this will have on the reflection coefficients and seismic data.
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Table 1.1: The component parameters used in the models. The elastic moduli and density of the minerals is
taken from Mavko et al. (2009), those of hydrates (structure I methane hydrates) from Waite et al. (1999) and
those of water are calculated from Batzle and Wang (1992) (with 30 000 ppm salinity, 35 MPa pressure and 20
C temperature)

K(GPa) µ(GPa) ρ(g/cm3)

Clay 21 7 2.6
Quartz 37 44 2.65
Gas hydrate 7.7 3.2 0.9
Brine 2.5 0 1.03
Gas/brine 0.24 0 0.643
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Figure 1.3: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates located in
the pore space, using the DEM model with different aspect ratio for the clay platelets. The quartz content is
25%.
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Figure 1.4: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates as grain
coating, using the DEM model with different aspect ratio for the clay platelets and pores. The quartz content
is 25%.
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Figure 1.5: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates located in
the pore space, using the TPEM model with different coordination numbers n. The quartz content is 25% and
the depth is set to 300m.
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Figure 1.6: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates as part of
the solid frame, using the TPEM model with different coordination numbers n. The quartz content is 25% and
the depth is set to 300m.
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Figure 1.7: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates located in
the pore space, using the TPEM model with different depths effective pressures. The quartz content is 25%,
the coordination number is set to 9 and the critical porosity to 36%.
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Figure 1.8: VP and VS plotted as a function of hydrate saturation at 60% porosity, with hydrates as part
of the solid frame, using the TPEM model with different effective pressures. The quartz content is 25%, the
coordination number is set to 9 and the critical porosity to 36%.
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Figure 1.9: VP and VS plotted as a function of hydrate saturation at 25% porosity, with hydrates located in
the pore space. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.
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Figure 1.10: VP and VS plotted as a function of hydrate saturation at 50% porosity, with hydrates located
in the pore space. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.
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Figure 1.11: VP and VS plotted as a function of hydrate saturation at 75% porosity, with hydrates located
in the pore space. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.
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Figure 1.12: VP and VS plotted as a function of hydrate saturation with 20% quartz fraction, with hydrates
located in the pore space. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.
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Figure 1.13: VP and VS plotted as a function of hydrate saturation with 50% quartz fraction, with hydrates
located in the pore space. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.

V
p
(k
m
/s
)

V
s
(k
m
/s
)

Hydrate saturation

25



CHAPTER 1. EFFECTIVE MEDIUM THEORIES OF HYDRATE-BEARING SEDIMENTS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

DEM (Non spherical)

DEM (Spherical)

TPEM

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 1.14: VP and VS plotted as a function of hydrate saturation with 80% quartz fraction, with hydrates
located in the pore space. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.
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Figure 1.15: VP and VS plotted as a function of hydrate saturation at 25% porosity, with hydrates as part
of the solid frame. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.
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Figure 1.16: VP and VS plotted as a function of hydrate saturation at 50% porosity, with hydrates as part
of the solid frame. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.

V
p
(k
m
/s
)

V
s
(k
m
/s
)

Hydrate saturation

28



Tables and figures

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

DEM (Non spherical)

DEM (Spherical)

TPEM

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 1.17: VP and VS plotted as a function of hydrate saturation at 75% porosity, with hydrates as part
of the solid frame. The blue line is for the DEM model with completely disordered building blocks with aspect
ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components. The
red line is for the three phase effective medium theory. The quartz fraction is 25%.
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Figure 1.18: VP and VS plotted as a function of hydrate saturation with 20% quartz fraction, with hydrates
as part of the solid frame. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.
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Figure 1.19: VP and VS plotted as a function of hydrate saturation with 50% quartz fraction, with hydrates
as part of the solid frame. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.
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Figure 1.20: VP and VS plotted as a function of hydrate saturation with 80% quartz fraction, with hydrates
as part of the solid frame. The blue line is for the DEM model with completely disordered building blocks with
aspect ratio 1/20 for the clay platelets and pores. The green line is the DEM model with spherical components.
The red line is for the three phase effective medium theory. The porosity is 60%.
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Figure 1.21: The anistotropy parameters for a fully aligned composite plotted as a function of the aspect
ratio of the components. The solid lines are for 25% hydrates in the pores pace and the dashed lines are for
75% hydrates as grain coating. The porosity is 65% and the quartz content is 25%.
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Figure 1.22: The anistotropy parameters plotted as a function of the standard deviation of the orientation
distribution function. The solid lines are for 25% hydrates in the pores pace and the dashed lines are for 75%
hydrates as grain coating. The porosity is 65%, the quartz content is 25% and the aspect ratio for the clay
platelets and pores is 1/20.
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Figure 1.23: Orientation distribution for the building blocks used in the partially aligned case.
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Figure 1.24: The anistotropy parameters plotted as a function of hydrate saturation for 25% porosity. The
solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The quartz
content is 25% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution in
figure 1.23.
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Figure 1.25: The anistotropy parameters plotted as a function of hydrate saturation for 50% porosity. The
solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The quartz
content is 25% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution in
figure 1.23.
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Figure 1.26: The anistotropy parameters plotted as a function of hydrate saturation for 75% porosity. The
solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The quartz
content is 25% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution in
figure 1.23.
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Figure 1.27: The anistotropy parameters plotted as a function of hydrate saturation for 20% quartz content.
The solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The
porosity is 60% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution
in figure 1.23.
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Figure 1.28: The anistotropy parameters plotted as a function of hydrate saturation for 50% quartz content.
The solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The
porosity is 60% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution
in figure 1.23.
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Figure 1.29: The anistotropy parameters plotted as a function of hydrate saturation for 80% quartz content.
The solid lines are for hydrates in the pore space and the dashed lines are for hydrates as grain coating. The
porosity is 60% and the aspect ratio is 1/20. The building blocks are orientated according to the distribution
in figure 1.23.
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Chapter 2

EFFECTS OF GAS HYDRATES ON
SEISMIC AVO DATA

2.1 Introduction

In the previous chapter the relationship between hydrate saturation, elastic properties and
seismic velocities was investigated. The next step is modeling the impact these effects have
on seismic AVO data. Reflectivity properties will be modeled using Aki-Richard’s and Rüger’s
approximations and compute synthetic seismograms for a horisontally layered model with a
hydrated layer. The effect of hydrate saturation on the reflectivity properties will be investigated
together with the effect of the presence of gas bellow the BSR.

2.2 The Aki-Richard approximation

When a plane wave hits an interface between two media with different seismic properties,
boundary conditions that must be met at the interface that can not be satisfied by the incident
wave alone. It is then necessary to include a certain amount of reflected and transmitted waves.
In the case of a normal incident P-wave, only a reflected and refracted P-wave will be present.
When we have a P-wave incident at an angle θi the situation is more complicated. There will
then be a reflected and transmitted P- and S-wave. The amplitude relation between these
waves can be derived from the elastic wave equation and boundary conditions at the interface
to obtain what is known as the Zoeppritz (1919) equations.

The full Zoeppritz equations are complicated to solve and provide little physical insight. The
well known approximation by Aki and Richards (1980) can therefore be useful for analysis of
P-wave reflections. Assuming low incident angle (less than 40 ◦) and weak layer contrast, the
P-wave reflection coefficient RPP at incident angle θi can be written (Mavko et al., 2009) In
the case of an interface between two isotropic layers, the well known approximation by Aki
and Richards (1980) can be used to calculate the P-wave reflection coefficient. Assuming low
incident angle (less than 40 ◦) and weak layer contrast, the P-wave RPP at incident angle θi
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Rüger’s approximation for VTI media

can be written (Mavko et al., 2009)

RPP (θ) ≈1

2

(
∆VP

V P

+
∆ρ

ρ

)
+

[
1

2

∆VP

V P

− 2
V

2

S

V
2

P

(
2

∆VS

V S

+
∆ρ

ρ

)]
sin2 θ

+
1

2

∆VP

V P

(
tan2 θ − sin2 θ

) , (2.1)

where

V P =
1

2
(VP1 + VP2) ∆VP = VP2 − VP1

V S =
1

2
(VS1 + VS2) ∆VS = VS2 − VS1

ρ =
1

2
(ρ1 + ρ2) ∆ρ = ρ2 − ρ1

θ =
1

2
(θi + θ2) ≈ θi.

2.3 Rüger’s approximation for VTI media

The full Zoeppritz equations were generalized to anisotropy by Schoenberg and Protazio (1992),
and can be used to calculate the reflection coefficients for an interface between two anisotropic
layers. But same as in the isotropic case, these are complicated to solve and provide little phys-
ical insight. In the case of a weakly anisotropic VTI media with small layer contrast Rüger’s
(Rüger, 1997) approximation can therefore be usefull for calculating the P-wave reflection co-
efficient (Mavko et al., 2009):

RPP (θ) = RPP−iso (θ) +RPP−aniso (θ)

RPP−iso (θ) ≈ 1

2

(
∆Z

Z

)
+

1

2

[
∆VP

V P

−
(

2V S

V P

)
∆µ

µ

]
sin2 θ

RPP−aniso (θ) ≈ ∆δ

2
sin2 θ +

∆ε

2
sin2 θ tan2 θ

(2.2)

where

Z = (Z1 + Z2) /2 ∆Z = Z2 − Z1

ε = (ε1 + ε2) /2 ∆ε = ε2 − ε1
δ = (δ1 + δ2) /2 ∆δ = δ2 − δ1
θ = (θ1 + θ2) /2 ≈ θi.

θ is the P-wave phase angle of incidence, Z = ρVP is the vertical P-wave impedance and µ = ρVS

is the vertical shear modulus. VP and VS are in this case the vertical P- and S-wave velocities.

2.4 Seismic modeling of a layered media

In order to investigate the effect of hydrates on seismic data, it can be useful to generate
synthetic seismograms for a geological model consisting of a layer containing hydrates. This is
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done by finding a numerical solution for the equation of motion. Ray theory is a well known
method, where high frequency is assumed so that the travel time along a ray path can be
computed from the eikonal equation (Krebes, 2004):

(∇T )2 =

(
∂T

∂x

)2

+

(
∂T

∂y

)2

+

(
∂T

∂z

)2

=
1

V 2
, (2.3)

where v = v (x) is the wave speed at the point x.

In the case of a horizontally layered homogeneous media, the travel time can be computed from
some simple algebraic formulas. First the desired source-receiver offset X is chosen. The ray
parameter p is then calculated from the equation (Krebes, 2004):

X =
m∑
j=1

pVjhj√
1− p2V 2

j

, (2.4)

where m , Vj and hj are the is the number of ray segments, wave speed and thickness, respec-
tively, along the ray path. It should be noted that in the case of anisotropy, Vj is dependent
on the propagation direction of the ray segment. The ray parameter is simply the horizontal
component of the slowness vector p = sin θj/Vj, and Snell’s law states that this is constant
along the ray path. Next step is to calculate the travel time from source to receiver, given by
(Krebes, 2004):

T =
m∑
j=1

hj

Vj
√

1− p2V 2
j

. (2.5)

For an anisotropic layer, since the slowness vector is dependent on propagation direction, an
analytic statement of snell’s law is hard to obtain. The scattering angles can, however, be
obtained graphically from the slowness surface. The slowness of a plane wave propagating
along the direction l̂, can be obtained by solving the Christoffel equation (Auld, 1973):

k2Γu = ρω2u, (2.6)

where
Γ = LCLT (2.7)

is the Christoffel matrix and the matrix L is given by:

L =

lx 0 0 0 lz ly

0 ly 0 lz 0 lx

0 0 lz ly lx 0

 (2.8)

Equation 2.6 is then solved for the slowness, which is the inverse of the phase velocity k/ω =

1/Vphase, by setting the characteristic determinant equal to zero(Auld, 1973):

det (Γ− ρVphaseI) = 0 (2.9)

The phase angle θ for the transmitted wave can then be calculated by finding the point on the
slowness surface where the horizontal component is equal to that of the layer above, as shown
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Figure 2.1: Schematic sketch showing P-wave scattering properties for a plane wave incident at a boundary
between two anisotropic layers. The slowness surfaces shown are for layer 2 (top) and layer 3 case b (bottom).

in figure 2.1. Next step is to calculate the group angle ϕ, which for a weakly anisotropic media
can be expressed in terms of the phase angle and anisotropy parameters by (Thomsen, 1986):

tanϕ = tan θ
[
1 + 2δ + 4 (ε− δ) sin2 θ

]
(2.10)

Once the propagation direction of the ray segments is known, the corresponding group velocites
can be calculated from (Thomsen, 1986):

VPgroup (ϕ) = VPphase
(θ) (2.11)

Next, the vertical component of the inverse of the group velocity is found for each ray segment:

sinϕ

VPphase
(ϕ)

(2.12)

Vj and p in 2.4 is then replaced by the group velocity and vertical component of the inverse
of the group velocity, respectively, for each segment to obtain p corresponding to the chosen
source-receiver offset, before the travel time is calculated from equation 2.5 following the same
procedure.

Now that the travel times to the reflectors are known, a reflectivity series with the corresponding
two way times can be produced. The reflection coefficients are determined from Aki-Richard’s
or Rüger’s approximation. The seismograms can then be computed from a convolution between
the reflectivity series and a source pulse series.

2.5 Numerical results and discussion

In order to investigate reflectivity properties of hydrated sediments, a layered model with a
hydrated layer will be defined. In table 2.1 the properties of the layers are shown. The model
has four different alternatives for hydrate saturation (5%, 25%, 75% and 95%), and the layer
below the hydrates can be either completely brine saturated or contain 50% gas. It is assumed
that the hydrates are present as pore filling at 5% and 25% saturation, and as part of the solid
frame at 75% and 95%. In table 2.2 the calculated velocities for the isotropic models are shown,
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and table 2.3 show the vertical velocities and anisotropy parameters for the anisotropic DEM
model.

Figures 2.2-2.5 show the reflection coefficients for the top of the hydrated layer plotted as a
function of angle using Aki-Richard’s (isotropic) and Rüger’s (anisotropic) approximation. The
two isotropic DEM models (figure 2.2 and 2.3) show very similar reflectivity properties, with
shallow dip when the hydrates are located in the pore space. When the hydrates are connected,
we see a more sharply dipping curve as the saturation increases and a upward bend from around
25 degrees at 95% saturation. The TPEM model (figure 2.4) has a weakly dipping reflection
coefficient at 5% saturation and weakly rising at 25% and at 50% when the hydrates are present
as pore filling. The reflection coefficient is similar to the isotropic DEM models at 5% saturation
and lower at 25% and 50%. Also when the hydrates form part of the solid frame, this model
shows lower reflection coefficient at 50% saturation, that dips shallowly. At 75% saturation this
model has a reflection coefficient that increases with angle, and is lower than for the isotropic
DEM models at low offset, while it at 95% shows similar reflectivity properties as these models.

In figure 2.5 the reflection coefficients for the DEM model with partially aligned microstructure
are shown. At 5% and 25% saturation, the reflection coefficients are flat and similar in value
to the isotropic DEM models. At 50% saturation, when the hydrates are located in the pore
space, the reflectivion coefficients are also similar to the isotropic DEM models, but slightly
rising. When the hydrates are connected, the reflection coefficients dip shallowly up to 20− 25

degrees, before they start to increase. This increase is barely visible at 50% saturation, a bit
stronger at 75% and very sharp at 95%.

Figures 2.6-2.13 show synthetic seismograms computed using the methods described in section
2.4. Geometrical spreading and multiples are not accounted for. The seismograms are noise free,
and can be seen as corresponding to perfectly processed data. The seismograms for the different
models look similar, but with lower velocities at small offsets and a slightly shallower dip from
reflector 4 for the anisotropic DEM model when the layer below the hydrates contain 50% gas.
This can be explained by the much lower vertical velocity and strong P-wave anisotropy of the
gas layer. Generally, the reflectors at the top of the hydrate layer are weak when the hydrate
saturation is low, and quite strong at higher saturation. At the bottom of the hydrate layer,
when there is no gas bellow the hydrate layer, the reflection is barely visible and normal polarity
at 5% saturation. At 25% it changes polarity, but is still barely visible. When the hydrate
saturation is increased to 75% and 95% the reflection is strong and inversely polarized, showing
the typical characteristics of a bottom simulating reflector. When gas is present bellow the
hydrate layer, this reflector is strong and inversely polarized at all saturations.
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2.6 Concluding remarks

In this chapter the rock physics models were applied to a layered model with a hydrated layer,
and reflectivity properties were investigated and compared. We have seen that the reflectivity
properties were quite similar at low saturations for the different models. The DEM model
with spherical components and non-spherical completely disordered components showed similar
reflection coefficients for all saturations. The TPEM model show similar properties as these
model, except in the case of 75% saturation, where it has opposite AVA trend. The DEM model
with partially aligned structure showed similar vertical reflection coefficients as the DEM with
completely disordered structure at low offsets. The AVA trends were similar at low saturations,
but showed large variations at higher saturations. In the next chapter these synthetic data
will be used to analyze uncertainty in the estimate of the hydrate saturation and porosity, on
the basis of data containing noise and the effect of the differences in the models have on the
estimates will be analyzed.
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Table 2.1: Properties of the layers. This model is similar to the one investigated by Jakobsen et al. (2001),
but with constant quartz fraction fq.

Layer Alterative Thickness (km) φ fq Description
1 - 3.27 1 0 Sea water
2 - 0.24 0.65 0.25 Sediments with brine
3 - 0.23 0.60 0.25 Sediments with hydrate/brine

a 5% hydrate in pore space
b 25% hydrate in pore space
c 75% hydrate in pore space
d 95% hydrate in pore space

4 - 0.18 0.55 0.25 Sediments with gas/brine
a 50% gas in pore space
b Sediments with brine

5 - - 0.5 0.25 Sediments with brine
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Table 2.2: Calculated VP and VS for the layers with properties from table 2.1.

Layer Alternative DEM (non-spherical) DEM (spherical) TPEM
VP VS VP VS VP VS ρ

1 - 1.483 0 1.483 0 1.483 0 1.030
2 - 1.639 0.412 1.679 0.491 1.663 0.468 1.584
3 a 1.709 0.477 1.767 0.582 1.719 0.504 1.659

b 1.866 0.571 1.954 0.726 1.834 0.506 1.644
c 2.727 1.279 3.003 1.532 2.539 0.949 1.606
d 3.219 1.646 3.306 1.726 3.235 1.563 1.584

4 a 1.001 0.522 0.882 0.442 1.022 0.596 1.529
b 1.720 0.501 1.785 0.611 1.731 0.538 1.742

5 - 1.770 0.545 1.850 0.672 1.774 0.574 1.821

Table 2.3: Calculated vertical VP and VS , ε, γ and δ for the layers with properties from table 2.1, using the
partially aligned microstructure for the DEM model. The aspect ratio is 1/20.

Layer Alternative VP VS ε γ δ ρ

1 - 1.483 0 0 0 0 1.030
2 - 1.586 0.384 0.051 0.216 0.048 1.584
3 a 1.644 0.446 0.062 0.209 0.059 1.659

b 1.786 0.534 0.070 0.204 0.065 1.644
c 2.578 1.234 0.094 0.109 0.086 1.606
d 3.138 1.625 0.041 0.037 0.037 1.584

4 a 0.829 0.485 0.348 0.219 0.401 1.529
b 1.648 0.468 0.068 0.205 0.064 1.742

5 - 1.689 0.510 0.075 0.201 0.071 1.821
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Figure 2.2: P-wave reflection coefficients RPP for the top of the hydrate layer plotted as a function of incident
angle for different hydrate saturation. The solid lines are for hydrates in the pore space and the dashed lines
are for hydrates as part of the solid frame. The properties of the layers are given in table 2.1, and the model
used is the DEM model with aspect ratio 1/20 for the grains and pores.
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Figure 2.3: P-wave reflection coefficients RPP for the top of the hydrate layer plotted as a function of incident
angle for different hydrate saturation. The solid lines are for hydrates in the pore space and the dashed lines
are for hydrates as part of the solid frame. The properties of the layers are given in table 2.1and the model
used is the DEM model with spherical components.
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Figure 2.4: P-wave reflection coefficients RPP for the top of the hydrate layer plotted as a function of incident
angle for different hydrate saturation. The solid lines are for hydrates in the pore space and the dashed lines
are for hydrates as part of the solid frame. The properties of the layers are given in table 2.1, and the model
used is the TPEM model.
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Figure 2.5: P-wave reflection coefficients RPP for the top of the hydrate layer plotted as a function of incident
angle for different hydrate saturation. The solid lines are for hydrates in the pore space and the dashed lines
are for hydrates as part of the solid frame. The properties of the layers are given in table 2.1. The aspect ratio
is 1/20 and the grains are orientated according to the distribution in figure 1.23.
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Figure 2.6: Synthetic seismograms for the DEM model with completely dissordered crystals. The layer below
the hydrate layer is filled with 50% gas in the pore space.
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Figure 2.7: Synthetic seismograms for the DEM model with completely dissordered crystals. The layer below
the hydrate layer is completely brine saturated.
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Figure 2.8: Synthetic seismograms for the DEM model with spherical components. The layer below the
hydrate layer is filled with 50% gas in the pore space.
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Figure 2.9: Synthetic seismograms for the DEM model with spherical components. The layer below the
hydrate layer is completely brine saturated.
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Figure 2.10: Synthetic seismograms for the TPEM model. The layer below the hydrate layer is filled with
50% gas in the pore space.
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Figure 2.11: Synthetic seismograms for the TPEM model. The layer below the hydrate layer is completely
brine saturated.
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Figure 2.12: Synthetic seismograms for the DEM model with partially aligned microstructure. The layer
below the hydrate layer is filled with 50% gas in the pore space.
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Figure 2.13: Synthetic seismograms for the DEM model with partially aligned microstructure. The layer
below the hydrate layer is completely brine saturated.
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Chapter 3

INVERSION OF SEISMIC AVA DATA
FOR HYDRATE CONCENTRATION

3.1 Introduction

In chapter 1 and 2 the effect of gas hydrates on seismic properties was modeled. Rock physics
models were used that related the porosity and hydrate saturation to elastic properties and
seismic velocities. Next Aki-Richard’s (isotopic case) and Rüger’s (anisotropic case) approxi-
mations were used to calculate the AVO data, RPP (θ). In this chapter we will try to make
quantitative estimates on the hydrate saturation on the basis of AVO data, and investigate the
uncertainties that arise from noise in the data. The effects of using a different model for the
inversion, than was used in the forward modeling will be explored.

3.2 Bayesian non-linear inversion

The goal of inverse theory is to obtain information regarding the parameters that describes a
physical system from some measurable quantities. In other words, one wishes to make some sort
of quantitative inference about the model m on the basis of some measured data d. The data
always consists of a finite number of measures that can be represented in a vector d. The model
on the other hand, depending on the problem, can either be a finite set of parameters or some
continuous function. In practice it is however necessary to make a discretized approximation,
described as a vector m. It is commonly assumed that the fundamental physics is understood
so that d and m can be related by a operator g (known as the forward operator) working on
the data (Aster et al., 2013):

g (m) = d. (3.1)

An important issue is that measurements will always contain noise and if the same observation
was performed several times, each measurement would be different. We can regard the data as
consisting of two parts, a noiseless observation from a "perfect" experiment dtrue and a noise
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component η (Aster et al., 2013):

d = g (mtrue) + η

= dtrue + η
, (3.2)

where mtrue is the true model satisfying equation 3.1 perfectly for the true, noise free data,
assuming the forward modeling is exact. The noise can be regarded as a random variable, that
can be described by an arbitrarily complicated probability density function. In many cases,
however, the noise will follow a Gaussian normal distribution. This distribution is so common
because it is the limiting probability density function for a sum of random variables. The
probability density function for the data can then be written as a Gaussian normal distribution
with mean value g (m) (Menke, 2012):

f (d|m) ∝ exp

(
−1

2
[g (m)− d]T C−1D [g (m)− d]

)
, (3.3)

where CD is the covariance matrix for the data. The diagonal elements of CD are the variance
σ2
d for the elements of the data vector, and the off diagonal elements describes the correlation

between pairs of data.

The classical approach to the inverse problem assumes the existence of a specific but unknown
model parameters that needs to be uncovered. In the Bayesian approach on the other hand, the
model is regarded as a random variable and the solution is given as a probability distribution
for the model parameters, for a given set of data, known as the posterior distribution q (m|d).
Any information we may have on the model before the experiment is expressed as a prior
distribution p (m). This information is incorporated into the solution using Bayes theorem to
form an expression for the posterior distribution (Aster et al., 2013)

q (m|d) =
f (d|m) p (m)

c
, (3.4)

where c is a normalization constant given by an integral over all models

c =

∫
all models

f (d|m) p (m) . (3.5)

The prior distribution can take many forms, but it can in some cases be useful to describe it
as a Gaussian normal distribution with mean value defined as some prior expected value for
m. We also introduce a covariance matrix CM where the diagonals describe the certainty of
the prior knowledge regarding an elements in the model vector, and the off diagonal describes
the correlation between pairs of model parameters in the prior distribution. We then have the
following expression for the prior distribution (Aster et al., 2013):

p (m) ∝ exp

(
−1

2
[m−mprior]

T C−1M [m−mprior]

)
(3.6)

When we combine this distribution with the one from equation 3.3 into equation 3.4, we obtain

q (m|d) = N · e−J(m), (3.7)
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where N = 1/c is a normalization constant and J (m) is the objective function given by (Aster
et al., 2013):

J (m) =
1

2

(
[g (m)− d]T C−1D [g (m)− d] + [m−mprior]

T C−1M [m−mprior]
)
. (3.8)

In the case of a uninformative prior, the objective function reduces to:

J (m) =
1

2

(
[g (m)− d]T C−1D [g (m)− d]

)
. (3.9)

The model that best matches the data and prior knowledge on the model parameters can be
found by maximizing the objective function (equation 3.8). It can, however, be useful to perform
an analysis to quantify the uncertainties in the estimate of the model parameters to determine
the quality of the estimate. For non-linear problems, this can not be done analytically and the
exploration of the posterior distribution can only be done by sampling. As long as the number
of model parameters is relatively small, we can define a grid, dense enough to incorporate all
the features of the posterior distribution, and compute the value of the distribution everywhere
on that grid. In order to analyze the uncertainty regarding a specific model parameter mi, the
marginal distribution is calculated. This can be done by numerical integration with respect to
the other model parameters:

q (mi) =

∫
q (m|d) dm1...dmi−1dmi+1...dmn. (3.10)

The numerical integration should be done on a grid dense enough so that all the important
features of the distribution are incorporated. If the number of model parameters is large, this
will be very time consuming. In this case, sampling from the distribution using Mote Carlo
Markov chain (MCMc) can be more effective. MCMc methods involves random sampling from
the distribution, where each step is only dependent on the previous step. The Metropolis-
Hasting algorithm is a McMc method with a specified limiting distribution. This method can
be used for sampling the posterior distribution (Tarantola, 2005):

q (d|m) = N · p (m) f (d|m) (3.11)

We design a random walk that if all the transitions where accepted, would sample the prior
distribution p (m). Suppose that at a given step the random walker is at a point mi, and the
transition to a point mj is governed by the following rules (Tarantola, 2005):

• If f (mj|d) ≥ f (mi|d), then accept the proposed transaction to mj

• If f (mj|d) < f (mi|d), then decide randomly to move to mj, or stay at mi, with the
following probability of accepting the transition to mj,

Pi→j =
f (mj|d)

f (mi|d)
(3.12)

The random walk will then sample the posterior distribution.
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3.3 Inversion procedure

The Bayesian non-linear inversion procedure will be adopted and applied to the case of inversion
of seismic AVA data for hydrate saturation and porosity. The data vector of equation 3.1 will
in this case be the reflection coefficient for n angles θi, and the forward operator will be a
combination of the rock physic model and the reflectivity approximation. It is assumed that the
overburden and other parameters in the rock physics models are fully known, such that Rcalc

PP (θ)

becomes a function of hydrate saturation Sh and porosity φ only. The data are assumed to
be uncorrelated and gaussian distributed with standard deviation σi, and uninformative prior.
The objective function then becomes:

J (Sh, φ) =
n∑
i=1

[
Rcalc
PP (Sh, φ, θi)−Robs

PP (θi)

σi

]2
. (3.13)

The next step is then to calculate the marginal distributions. This can be done numerically by
solving the integral in equation 3.1 over a set of grid points, using the trapezoidal rule. First
the normalization constant is calculated:

1

N
≈ ∆Sh∆φ

4

K∑
k=1

L∑
l=1

[
e−J(Shl+1

,φk+1) + e−J(Shl+1
,φk)
]

(3.14)

The marginal distribution for hydrate saturation is then given by

q (Sh) ≈ N
∆φ

2

K∑
k=1

[
e−J(Sh,φk+1) + e−J(Sh,φk)

]
, (3.15)

and for porosity

q (φ) ≈ N
∆Sh

2

L∑
l=1

[
e−J(Shl+1

,φ) + e−J(Shl
,φ)
]
. (3.16)

In the case of MCMc sampling, marginal distributions can be calculated by making histograms
of the occurrence of model parameters within a given range. Since we have an uninformative
prior, the samples are drawn such that if all the samples were accepted, the random walk would
sample a uniform distribution over the model space.

3.4 Numerical results and discussion

We will now look at some results for inversion of synthetic AVA data from the top of the hydrate
layer in the model from the previous chapter. The full posterior distributions are shown first
with 5% standard deviation for the noise in the data. Thereafter the marginal distributions are
calculated for 5% (blue line) and 10% (red line) standard deviation. The porosity is assumed
to lay between 20− 80% and the hydrate saturation between 0− 100%. The distributions are
computed over a 500 × 500 grid when the TPEM model is used for inversion and 384 × 384

when the more computationally expensive DEM model is used.

Figure 3.1 shows the posterior distribution when the TPEM model is used for forward modeling
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and inversion. The distributions are shaped as short narrow ridges, except at 75% saturation
where the ridge is longer. In figure 3.2 the marginal distributions are shown. Also here the
distributions are wider when the true saturation is 75%, as expected from the full posterior
distribution. When the standard deviation is set to 10% the marginals at 75% true saturation
are wide, with a long tail. At other saturations, the marginals stay relatively narrow.

Figure 3.3 shows the posterior distribution when the DEM model with completely disordered
non-spherical components is used for forward modeling and inversion. At 5% and 25% satura-
tion the distributions are shaped as long narrow ridges. At 75% saturation the ridge is wider,
with a long declining tail. At 95% saturation the distribution is shaped as a short narrow ridge.
In figure 3.4 the marginal distributions are shown. The spiked hydrate saturation marginals at
5% and 25% saturation are probably due to discretisation error. The top of the narrow ridge
of the full posterior distribution falls between grid points, causing sudden drops. The hydrate
saturation marginals are wide up to 95% saturation, where the distribution is very narrow.
The porosity marginals are relatively narrow except at 75% saturation. Gennreally it should
be possible to make a good estimate on the model parameters, except in the case of 75% true
saturation, when the standard deviation for the data is 10%. In this case errors up to 80% for
the hydrate saturation and 20% for the porosity are quite plausible.

Figure 3.5 shows the posterior distribution when the DEM model with spherical components
is used for forward modeling and inversion. At 5% and 25% saturation the distributions are
shaped as long narrow ridges, with high probability along large part of the ridges, which means
that there are many specific combinations of model parameters that gives a good match to the
data. At 75% it takes the form of an ellipsoid with a tail, and 95% it takes the form of a small
ellipsoid, both with a defined peak, implying that there is one set of model parameters that
match the data and an increasing mismatch moving away from these.

In figure 3.6 the marginal distributions are shown. Also here we see some spiked distributions
that probably are caused by discretisation error. The hydrate saturation marginals show wide
distributions for 5% and 25% saturation, even in the case of 5% standard deviation for the data.
Errors as large as 25% in the case of 25% saturation are have high likelihood. The result at 5%

saturation are hard to interpret due to the discretisation errors, but also here it appears that
large errors are plausible. The porosity distributions at these saturations have a peak to the left
of the true saturation. This can also be due to discretisation error, but can also mean that the
number of likely combinations are larger at this porosity. At 75% saturation, the uncertainty
is small when the standard deviation for the data is 5%, while at 10% large errors in estimates
of saturation and porosity are likely. At 95% saturation the uncertainties are small.

In figure 3.7 and 3.8 the distributions for inversion using the TPEM model of data generated
with the DEM model with completely disordered non-spherical components are shown. The
peaks of the distributions are quite close to the true model parameters, except in the case of
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75% saturation, where the maximum is at 0% saturation and around 35% porosity.

In figures 3.9 and 3.10 the distributions for inversion using the isotropic DEM with completely
disordered non-spherical components for inversion and the anisotropic DEM model with par-
tially aligned structure used to generate the data. The velocity of the overburden is set to
the vertical velocity from the anisotropic DEM model. Also here some of the distributions
are spiked, and can be hard to interpret. It appears that the peak is close to the true model
parameters when the saturation is 5%. When the saturation is 25%, we see an error of around
10% in the hydrate saturation and 5− 10% in the porosity. At 75% saturation, there is a very
sharp spike in the saturation and porosity marginals at around 90% and 70% ,respectively,
when the standard deviation for the data is set to 10%. When the standard deviation is set
to 5% the saturation distribution is everywhere zero, and the posrosity distribution has a top
at the true porosity. Probably, the spike is also present at 5% standard deviation, but here it
is sharper so it falls between grid points. At 95% saturation the distributions are everywhere
zero.

In figures 3.11 and 3.12 the distributions for inversion and forward modeling with the TPEM
model, but with the wrong saturation geometry for the inversion, are shown. At 5% saturation
the peak is very close to the true porosity, and close at around 10% to the true saturation. At
25% saturation, the peak is close to the true porosity, between 60− 65%. In this case the peak
is a bit higher on the hydrate saturation at around 35%. When the saturation is higher the
errors become larger. When the saturation is 75% the peak is around 35 − 40% and 40% for
the hydrate saturation and porosity, respectively. At 95% saturation, the peak is around 5%

and 25− 30% for the porosity and saturation.

In figure 3.13 results from MCMc and numerical integration are compared. As we can see
we can obtain the same distribution using MCMc. This is a more general method that can
be applied when the number of model parameters are large, for example in the case where
velocities are inverted for hydrate concentration for a random Gaussian reservoir model. In
our case, however, numerical integration was more practical, because the distributions could
be computed for different expected values (true model parameters) and standard deviations
simultaneously.

3.5 Concluding remarks

In this chapter we have analyzed the uncertainties that arise when making estimates on sat-
uration and porosity on the basis of AVA data containing Gaussian noise. The uncertainties
for the TPEM model where small on the entire saturation range, whereas larger uncertainties
where seen for the DEM model at low saturations. When the TPEM model was used to invert
data generated with the DEM model, the estimates where in some cases close to the true values
and in some cases far off. When data generated using anisotropic theory was inverted using
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a similar isotropic model, some strange results arised. Also when using the wrong saturation
geometry, the estimates where in some cases quite accurate and in some cases far off.

Generally, these results show that modeling errors can have a big impact on the hydrate sat-
uration estimates. Caution should be used when selecting the rock physics model, even if it
appear to give good results at one particular saturation. Isotropy is commonly assumed, even
when we know that it is often not the case. We have seen that this can give large errors in the
estimates.
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Figure 3.1: Posterior distribution for the TPEM model used for both forward and inverse modeling.
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Figure 3.2: Marginal distributions for inversion with the TPEM model, with the same model used to generate
the data as was used for the inversion. The blue line is for 5% standard deviation for the data error and the
red line is for 10%.
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Figure 3.3: Posterior distribution for the DEM model with completely disordered non-spherical components
used for both forward and inverse modeling.
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Figure 3.4: Marginal distributions for inversion with the DEM (non-spherical) model with completely disor-
dered building blocks, with the same model used to generate the data as was used for the inversion. The blue
line is for 5% standard deviation for the data error and the red line is for 10%.
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Figure 3.5: Posterior distribution for the DEM model with spherical components used for both forward and
inverse modeling.
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Figure 3.6: Marginal distributions for inversion with the DEM (spherical), with the same model used to
generate the data as was used for the inversion. The blue line is for 5% standard deviation for the data error
and the red line is for 10%.
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Figure 3.7: Posterior distribution for the TPEM model, with the DEM model with completely disordered
non-spherical components used to generate the data.
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Figure 3.8: Marginal distributions for inversion with the TPEM model, with the DEM model used to generate
the data. The blue line is for 5% standard deviation for the data error and the red line is for 10%.
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Figure 3.9: Posterior distribution for the DEM model with completely disordered microstructure, with the
DEM model with partially aligned microstructure used to generate the data.
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Figure 3.10: Marginal distributions for inversion with the DEM (non-spherical) model with completely disor-
dered microstructure, with the same model but with partially aligned structure used to generate the data. The
blue line is for 5% standard deviation for the data error and the red line is for 10%.
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Figure 3.11: Posterior distribution for the TPEM model with the same model used to generate the data but
with different hydrate saturation structure.
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Figure 3.12: Marginal distributions for inversion with the TPEM model, with the same model used to generate
the data but with different hydrate saturation structure. The blue line is for 5% standard deviation for the data
error and the red line is for 10%.
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Figure 3.13: Comparison of marginal distributions calculated with numerical integration and Monte Carlo
Markov Chain. The posterior distribution is from inversion with the TPEM model, with the same model used
to generate the data.
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Chapter 4

CONCLUDING REMARKS AND
SUGGESTIONS FOR FUTURE WORK

4.1 Concluding remarks

In this thesis the effect of gas hydrates on elastic and reflectivity properties of sediments has
been investigated. This has been done by using two different rock physics models, the three
phase effective medium (TPEM) and differential effective medium (DEM) model and their
results have been observed and compared. Velocities were modeled and reflection coefficients
were calculated for an interface between a hydrated layer and brine saturated overburden, and
synthetic seismograms were computed for a layered model. We have seen that these models
can have large variations in trends and estimated properties, although the seismograms looked
very similar for the different models. It was also seen in the inversion results that using the
wrong model can give accurate results in some cases while it in other cases cause large errors in
estimates. Caution is therefore advised when selecting the rock physics model, even if it gives
a good match at one saturation it can give large errors for another.

The DEM model is computationally intensive and is hard to implement on large dimensional
inverse problems, while TPEM model is relatively simple and provided a easy way of calculating
elastic moduli of the sediment. However, it was seen that using the TPEM model to invert
results from this model did not give satisfying results. This challenge can to some extent be
bypassed by using Monte Carlo methods, but even in this case it will demand large amounts of
computing time.

4.2 Suggestions for future work

Inversion of seismic AVA data for hydrate concentration has been investigated in this thesis.
However, this was only done for data sets corresponding to a single set of hydrate saturation
and porosity. These methods can be extended to inversion for a full reservoir model. In this
case, Monte Carlo methods discussed in the previous chapter can be useful. The DEM model
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can be problematic to use in this case due to large computation time. It can therefore also be
useful to derive a less computationally expensive alternative.
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