
 

 

 

Modeling and Inversion of CSEM Data using 

Green’s Function Methods 

 

 

Musisi Norbert 

 

 

 

 

 

 

Master Degree in Petroleum Geoscience 

 

Department of Earth Science 

University of Bergen 

June 2014 

 

 

 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

 

Abstract 

 

The aim of the present study is to develop new approximations to the integral equation for 3D 

Controlled Source Electromagnetic (CSEM) synthetic data. Several scattering 

approximations to the integral equation have previously been developed to simulate the 

electromagnetic problems. In this thesis, new approaches to the approximate solution for the 

integral equation in 3D for marine CSEM at low frequency using the T-matrix approximation 

(TMA) and the Extended Born approximation (EBA) have been presented. Unlike the EBA 

that has been previously discussed in CSEM, the TMA has not yet been extended to CSEM 

though with many applications in seismics. The T-matrix approach only requires the 

knowledge of the perturbations and the Green’s function to compute the electric field 

whereas the Extended Born approximation for electromagnetic forward modeling improves 

the ability to accurately simulate the internal fields for a distribution without inverting a large 

3D matrix. The new methods have been implemented in MATLAB for forward modeling on 

synthetic marine CSEM data and the solutions compared with the Born approximation. In 

addition, sensitivity and validity of these methods for a reservoir in production with varying 

contrasts have been studied with several examples to show their accuracy. It appears that the 

new approximations have better accuracy and a wider electrical conductivity application 

range. The T-matrix is expected to approximate roughly the full integral equation solution for 

electromagnetic (EM) field, while the Extended Born is expected to improve the approaches 

of EM field over large conductivity contrasts between the reservoir and background model, 

compared to the Born approximation. The T-matrix and the Extended Born are valid for high 

contrasts. The effects of these approximations to different reservoir parameters have also 

been investigated. To improve the accuracy of these approximations, the number of grid 

blocks need to be increased at the expense of the computational cost. A cubic reservoir model 

works better than the rectangular block model for the T-matrix. Using numerical and 

analytical modeling, the T-matrix and the Extended Born have been expanded to CSEM 

monitoring of geophysical anomalies in the pore-fluid contents of the subsurface reservoirs. 

The ability of time-lapse CSEM data to monitor small changes in the electrical conductivity 

has been discussed. It has been found that these methods can detect the changes in the 

contrast of the reservoir due to fluid injection.  
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1 Introduction 
 

1.1 CSEM Survey 

Electromagnetic fields are useful in geophysics due to their interactive nature with the 

medium through which they propagate (Zhdanov 2009). This interaction can be used to 

determine certain physical properties of rocks, these being electrical conductivityσ , dielectric 

permittivityε , and magnetic permeabilityμ . The electromagnetic methods are based on the 

study of the propagation of electric currents and/or electromagnetic fields in the Earth. 

Electrical resistivity of the subsurface provides important information on the porosity and 

pore geometry of the geologic formations as well as the nature of the fluids that fill the pore 

spaces. Resistivity increases exponentially for hydrocarbon bearing rocks, resulting into a 

strong resistivity contrast between gas-saturated and brine-saturated geological media. 

Until of recent, the seismic method has been the dominant technique used for reservoir 

detection and monitoring.  Due to its shortcomings, different electromagnetic methods have 

been developed to detect and monitor geological hydrocarbons. Electromagnetic (EM) 

methods have provided a more cost effective monitoring technique that, at a minimum, has 

reduced the frequency of seismic surveys. CSEM which exploits the conductivity contrasts in 

the subsurface sediments has become an important complementary tool for offshore 

petroleum exploration prior to drilling (Eidesmo, S. Ellingsrud et al. 2002, Mehta.K, 

Nabighian.M et al. 2005, Bakr and Mannseth 2009). Marine CSEM survey has been used in; 

estimating the formation resistivity without using borehole logs (Constable and Weiss 2006), 

CO2 sequestration monitoring (Kang, Seol et al. 2011), and 3D modeling and time-lapse of 

CO2 (Bhuyian, Landrø et al. 2012). It can effectively detect marine reservoirs with high 

saturation of up to 60- 80% (Wang, Luo et al. 2008, Constable 2010). This technique has 

been used mainly in discriminating between the hydrocarbon and the water-filled rocks in 

addition to estimating the geometry of the hydrocarbon (Bhuyian, Landrø et al. 2012). 

Hydrocarbons have a low conductivity less than 0.01 S/m while the formation water has a 

high conductivity of up to 10 S/m. Hence, the EM signal is strongly influenced by the pore-

fluid contents (Bhuyian, Landrø et al. 2012). 

1.1.1 Forward Modeling 

Modeling data plays an important role in the standardization of the background field and the 

reservoir dimensions that play an important role during time-lapse CSEM monitoring. Time-

lapse CSEM can normally be used as a reservoir monitoring tool to help in the reservoir 

management (Bhuyian, Landrø et al. 2012). Assuming that other changes in the reservoir 

properties remain unaffected by the changes in the pore-fluid content, monitoring the 

production of hydrocarbons will help to observe and track any changes in the subsurface 



 

CSEM Survey and Approximations to Integral Equation 

2 

 

distribution through detection of changes in conductivity. The developed methods were tested 

for monitoring of geolectrical data to model the changes in saturation as reservoir production 

took place. 

1.1.2 Inverse Modeling 

Inversion of marine CSEM data has been previously done using Bayesian algorithm (Ray and 

Key 2012). Torres-Verdin and Habashy (1995) performed a linear inversion of 2D electrical 

conductivity. Basing on these studies, 3D inversion modeling of CSEM data has been done. 

In solving the inverse problems, the mathematical difficulty is that the inverse operator may 

not exist or may not be continuous over a given domain. Electromagnetic inversion methods 

are widely used in the interpretation of geophysical electromagnetic data in mineral, 

hydrocarbon, and underground water exploration. The EM response of the petroleum 

reservoir is weak compared to the background EM field generated by an electric dipole 

transmitter in layered geoelectric structures (Zhdanov 2009) ; thus rendering inversion of 

CSEM data a problem. 

Bhuyian, Landrø et al. (2012) and Shahin, Key et al. (2010) noted that time-lapse CSEM data 

is achieved by carrying out several repeated surveys over a depleting reservoir at different 

times with the major aim of detecting and estimating the changes in the pore filling fluid 

properties. The main aim of CSEM monitoring is to image fluid flow in a reservoir during 

production since the electrical properties do change with fluid saturation. The monitoring 

process unlike exploration, is easily carried out and normally inexpensive since; (1) the same 

equipment used in the exploration are also used during the monitoring; (2) knowledge about 

the reservoir location and conductivity is acquired prior to monitoring; (3) the receivers being 

anchored on the seafloor reduces the experimental errors which would otherwise affect the 

process after subsequent surveys and ensures maximum mapping of the same target. 

According to Lien and Mannseth (2008), monitoring helps in determining the sensitivity of 

the CSEM data with respect to changes in conductivity distributions.  

For enhanced oil production, brine or gas is injected into the depleted reservoir to displace the 

remaining oil towards the production well. Here, the main focus will be the detection of the 

electrical conductivity changes for a horizontal flooding with a two-phase zone separating the 

saline water and the saturated sediments; thus the reservoir being heterogeneous with varying 

brine saturations. As more conductive brine is injected into a depleted reservoir, conductivity 

increases there by decreasing the contrast. As it will be noted in chapter 4, a decrease in 

conductivity contrast of the reservoir decreases the electric field (an output in this case) 

indicating the change in the saturation of the hydrocarbon. Therefore, it will be expected that 

as more brine is injected, the formation resistivity of the reservoir increases. The extent to 

which the brine has migrated into the reservoir will be detected by the change in the 

anomalous electric field. With knowledge of the background field (assumed to be time 

independent) prior to monitoring, any changes into its field will be an indicator for saturation 

of the reservoir.  
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1.2 Approximations to Integral Equation  

An interaction of the incident field with the scatterer gives rise to an interior electromagnetic 

field that leads to the generation of an exterior field, which constitutes the scattered 

electromagnetic field. The determination of the scattered field once the specific parameters of 

the scatterer and the incident field are given, forms the direct scattering problem 

(Charalambopoulos, Dassios et al. 2002). Electromagnetic field equations can be solved by 

several methods of which the integral equation (IE) approach will be discussed at length in 

the preceding chapters. Alongside the Finite Difference (FD); a very time consuming 

numerical method, and the Finite Element (FE); a very difficult method to implement, the 

integral equation  forms the basis for the forward modeling (Martin Čuma, Masashi Endo et 

al. 2008). The integral equation is one of the powerful tools for forward EM numerical 

modeling and has been used in a wide range of applications such as geophysical prospecting; 

medical imaging and antenna design (Abubakar and Habashy 2005). One principle advantage 

of the IE method over the other techniques is that; it only requires the discretization of the 

anomalous domain. In addition, it is fast and accurate in simulation of the electromagnetic 

response in models with compact 2D or 3D bodies in a layered background (Zhdanov 2002). 

Various integral equation approximations have previously been presented to solve the 

Maxwell’s equations with the main difference lying in the formulation and treatment of their 

operator matrices in discretized form. These include, the novel EM scattering approximation 

(Gao, Fang et al. 2003); the quasi-analytical approximation (Zhdanov, Dmitriev et al. 2000); 

the quasi-linear approximation (Zhdanov, Dmitriev et al. 2000) and; the multi-grid quasi-

linear approximation (Martin Čuma, Masashi Endo et al. 2008). Integral equation methods 

can be applied on various scatterer geometries both regular and irregular having grid cells of 

different shapes with the cuboid and spherical shapes. 

Among these approximations to the integral equation using the Green’s function, three 

approximations; the Born, Extended Born and the T-matrix will be studied and their Matlab 

implementation done. Solving three-dimensional problems requires the use of the T-matrix 

approximation and Extended Born that have better accuracy than the Born (Gelius and Tygel 

2013). The modeling scheme developed here can be used to model both isotropic and 

anisotropic 3D EM data. It has been noted that the Born approximation has limited 

application for solving general 3D electromagnetic problems, though yielding an extremely 

fast approximate solution for low frequencies and relatively small volumetric contrast 

(Habashy, Groom et al. 1993).   

The T-matrix for the forward modeling of 4D seismic was introduced by Jakobsen (2012) and 

it is this new approximation to the integral equation for the forward EM modeling that has 

been discussed in this study for 3D CSEM data. The T-matrix approach is based on a 

decomposition of an electromagnetic model into a relatively simple background medium and 

a perturbation. The background field is a very poor estimate for the internal fields of a 

conducting scatterer in an insulating background medium. The divergent behavior of the 

Born approximation has been alleviated by the Extended Born approximation (Habashy, 

Groom et al. 1993, Torres-Verdin and Habashy 1995, Gelius and Tygel 2013) which 
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produces a finite contribution from the charges to the scattered field in the low frequency 

limit, and renders it applicable to extremely resistive host media. With different 

implementation and treatment of results, there is a connection between the Extended Born 

considered here and that previously introduced (Habashy, Groom et al. 1993, Abubakar and 

Habashy 2005) and the discussion of Gelius and Tygel (2013). 

1.3 Outline of the Thesis 

This thesis has been organised into the following chapters;  

Chapter 2 gives a background into the electromagnetic theory that forms the basis for this 

study. An insight into the different electromagnetic methods for propagation of electric 

currents has been discussed. The relationship between the electrical conductivity, charge and 

potential difference in isotropic materials has been briefly highlighted. The electromagnetic 

equations that govern the propagation of waves through the media have been derived as the 

basis for the integral equation and the approximations considered. 

In the chapter 3, the theoretical details for the Born, the Extended Born and the T-matrix 

approximations are outlined. In addition, the formulation and discretization of the T-matrix 

and Extended Born approximations to the integral equation for the electric field are done after 

the formulation of the integral equation representation for the electric field everywhere in 

space is achieved. The assumptions and limitations of these approaches are also highlighted 

in this chapter.   

Chapter 4 discusses the results obtained from the forward modelling for the T-matrix and the 

Extended Born approximations in comparison with the Born. Modeling herein, is done on 

synthetic data from different reservoir geometries to test for the accuracy of these 

approximations. The effect of the reservoir parameters on these approximations is studied in 

this chapter and the associated errors. 

In Chapter 5, Born inversion has been performed on the forward modeling data obtained by 

using the Born, T-matrix, and Extended Born approximations. A comparison is done on the 

inverted data at low, moderate and high contrasts. 

Chapter 6 gives a summary of the findings from forward and inverse modeling, the general 

conclusion from the findings and the way forward for future research. MATLAB codes 

developed and used in this thesis have been added in the appendex; for forward modeling 

(EMforward.m), inversion (EMinversion.m) and the Green’s function (greens.m). The T-

matrix background Green’s function for a heterogeneous media though not used is discussed 

for future studies.  

 

 

 

 

 



 

 

 

 

2 Electromagnetic Theory 

The marine CSEM survey and theoretical background of electromagnetism have been 

discussed. This chapter gives an overview of terminologies that are used in electromagnetism. 

 

2.1 Marine CSEM 
 

This method has been historically used in petroleum exploitation. However, of recent it has 

obtained a lot of application in monitoring of hydrocarbon production and storage of carbon 

dioxide, appraising of the reservoir and in site licensing. The advantage of this method is that; 

(1) the sources of the EM field are located near the seafloor close to the target reservoir, 

which increases the sensitivity and resolution of the method (M.S. Zhdanov 2013); (2) serves 

as an effective geophysical tool to monitor hydrocarbon during production; (3) supplements 

seismic methods in validating the background models at a relatively low cost, and; (4) CSEM 

data has easy integration and interpretation. In marine CSEM survey, the horizontal dipole is 

towed along the in-line emitting a low frequency signal into the surrounding media (Eidesmo, 

S. Ellingsrud et al. 2002). There are two extreme source-receiver geometries, that is; 1) at an 

azimuth of 0
o 

(the in-line geometry) and; 2) in the orthogonal direction (broadside geometry) 

as illustrated in Figure 2.1.  

The geometry in this study will be considered as an azimuth of zero-degree. Presence of a 

hydrocarbon causes a decrease in electrical conductivity which gives it a unique character to 

be easily detected. In the view point with (Eidesmo, S. Ellingsrud et al. 2002, Summerfield, 

Gale et al. 2005, Constable and Srnka 2007, Zhdanov 2009), the survey geometry is 

considered to  consist of electric receivers that are placed stationary by the concrete anchors 

on the seabed (figure 2.2). The survey design determines how well the target can be detected 

and characterized. The energy source consisted of two electrodes in this case; 100m apart 

towed horizontally generating a horizontal electric dipole (HED) antenna at an elevation of 

50m from the seabed. The dipole is assumed to emit a low-frequency signal with peak-to-

peak current of 1000 amperes into the surrounding media. An array of stationary seafloor 

receivers normally record both the amplitude and phase of received signal, directly from the 

source to  receiver, reflected and refracted energy from the subsurface , and the refracted 

energy from the sea-air interface (Eidesmo, S. Ellingsrud et al. 2002, Johansen, Wicklund et 

al. 2007). The recorded amplitude and phase from the received signal depend on the 

resistivity structure beneath the seabed. Electric fields attenuate less in resistive media and an 

increase in the electric field due to the reservoir can be measured at the seafloor at offsets 

roughly 2-5 times the depth of the reservoir below the seabed. Depending on the resistivity 

due to hydrocarbon saturation, the energy from the subsurface will include the energy from 

the reservoir. 
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Figure 2.1:The geometry of CSEM dipole fields. Along the polar axis of the dipole transmitter, the 

field is purely radial. Along the equatorial axis, the field is purely azimuthal. At other azimuths the 

received fields are a trigonometric mix of both modes (Constable and Weiss 2006). 

 

 

 

Figure 2.2: Marine CSEM acquisition model with a horizontal transmitter towed approximately 30m 

above the seabed emitting a periodic pulse up to 1000 A, receivers anchored at the seafloor and the 

hydrocarbon layer buried several meters in the sediments.(Yahya 2012) 
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Ellis and Sinha (2010) noted that the marine CSEM imaging exploits the variation in 

resistivity between brine saturated and gas/ oil/ hydrate saturated sediments; which gives a 

better understanding of the pore fluid and water saturation. The ability to understand and 

control reservoir behavior over the course of production allows for optimization of reservoir 

performance and production strategies.  From the initial applications of EM methods in de-

risking exploration and appraisal projects with direct hydrocarbon indication, the CSEM 

method can be logically extended through reservoir surveillance on the premise of fluid 

discrimination; in particular, tracking the position of the oil/ water and gas/ water contact. 

According to the principle of reciprocity (Wang, Luo et al. 2008), during the inversion the 

transmission points will be exchanged with observation points. The effect of the reservoir is 

detectable in mCSEM data when using appropriate frequency and horizontal range from 

source to receiver was made to be of 7 times the depth of burial of the reservoir used in 

Gelius and Tygel (2013). 

 

2.2 Electromagnetic Fields 

Electromagnetic fields are useful in geophysics due to their interactive nature with the 

medium through which they propagate (Zhdanov 2009). This interaction can be used to 

determine certain physical properties of rocks, that is; electrical conductivityσ , dielectric 

permittivityε , and magnetic permeabilityμ . For forward modeling problem, the operator 

equation is described by (Zhdanov 2009) as 

    , , ,emE H A σ ε μ  
( 2.1 ) 
 

where 
em

A is an operator of the forward electromagnetic problem (non-linear in general). For 

inverse problem in electromagnetics, the electromagnetic parameters of the media , , σ ε μ are 

determined from ,  E H as 

      
1

, , ,em


σ ε μ A E H  
( 2.2 ) 
 

Equation (2.2) is non-linear inverse problem making the inversion of electromagnetic data a 

challenging problem in geophysics (Zhdanov 2002).  

The electromagnetic methods are based on the study of the propagation of electric currents 

and electromagnetic fields in the Earth. There are two methods that can be used; 

1) The direct current (D.C) methods or resistivity methods:- these considers injecting an 

electric current in the earth by a system of current electrodes and measuring the 

electrical potential with receiver electrodes; where, a low frequency current ( 100 

Hz) is used, to propagate inside the Earth practically like a direct current (Zhdanov 

2002). The D.C surveys are used to determine the resistivity of the rocks. The 

resistivity of the rock provides information about the mineral content and the physical  
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structures of rocks, and also about fluids in the rocks. However, D.C survey are 

limited by their failure to penetrate through resistive formations (Zhdanov 2002). 

 

2) Electromagnetic induction methods:- these are based on transient field which 

overcomes the limitation above since transient fields easily propagates through 

resistors. This method in addition to resistivity provides information about magnetic 

permeabilityμ , and dielectric constant ε . Zhdanov (2002) indicates that this method 

can be used for ground, airborne, sea bottom and borehole observations. In this type, 

the receivers measures the total field formed by the primary signal in the transmitter 

and a scattered signal from the internal structures of the Earth. 

2.2.1 Amplitude and Phase   

 

The amplitude of the secondary field is measured usually by expressing it as a percentage of 

the theoretical primary field at the receiver or as the resultant of the in-line and the cross-line 

fields.  Phase shift and the time delay in the received field by a fraction of the period, can also 

be measured and displayed.  The second method of presentation of the field is to 

electronically separate the received field into two components; (1) In-phase (the “real”) and, 

(2) Out-of-phase (the “quadrature” or “imaginary”) component with the transmitted field. 

 

In frequency domain electromagnetics, depth and size of the conductor primarily affect the 

amplitude of the secondary field.  The quality of the conductor mainly affects the ratio of in-

phase to out-of-phase amplitudes. 

2.2.2 Skin Effect  

 

Skin effect is the tendency of an alternating electric current (A.C) to become distributed 

within a conductor such that the current density is largest near the surface of the conductor, 

and decreases with greater depths in the conductor. An electric current mainly flows at the 

"skin" of the conductor, between the outer surface and a level called the skin depth. The skin 

effect is due to opposing eddy currents induced by the changing magnetic field resulting from 

the alternating current. 

In a good conductor, displacement current is negligible in comparison to conduction current, 

i.e. σ ε . 

tota conduction displacement J J J
l  

  tota i J σ εl E E  
( 2.3 ) 
 

J Jconduction displacement ,
  

Given that σ ε , the propagation constant within a good conductor may be approximated 

by the propagation constant as 
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  090i i j i          α β μ σ ε μσ μσ  

 1
2

i i


    
μσ

α β  

 
2

f


  
μσ

α β μσ  
( 2.4 ) 
 

with the real and imaginary parts of the propagation constant, and  as the attenuation  and 

the phase constants, respectively.  The rate of attenuation in a good conductor can be 

characterized by a distance defined as the skin depth. The attenuation in a good conductor 

increases with frequency that is; at higher frequencies, the skin depth is smaller which causes 

the effective resistance of the conductor to increase. 

2.2.3 Skin Depth (δ )  

The attenuation constant (skin depth) defines the rate of decay of the wave fields as the waves 

propagate. Skin depth is the distance over which a plane wave is attenuated by a factor of 1e  

in a good conductor, or as the depth at which flux density and eddy currents have decayed to 
1e  of their surface value. Thus the decay from the surface to the interior is exponential. 

   0e
 αx

E x E  

 

 

 

   0e
 αδ

E δ E  

 

 

 

   1

0e
E δ E  ( 2.5 ) 

 

Thus, 1αδ   

And  from (Constable 2010), it then follows from equation (2.5) that 

 1 1

f
 δ
α μσ

 
( 2.6 ) 

 

with  f is the frequency (Hz),  σ is the electrical conductivity (S/m), and μ is absolute magnetic 

permeability of the conductor. Due to the skin depth effect, very low frequencies (0.05-1 Hz) 

are applied (S. E. Johansen, H.E.F. Amundsen et al. 2005), if a deep sub-seafloor target must 

be penetrated. The antenna frequency affects the resolution on the E-field contrast when 

evaluating models with and models without hydrocarbon. The relationship between any 

frequency and the maximum depth of detectable reservoirs (Tadiwa, Yahya et al. 2013) can 

be given by,  

  600 851.2lnmaxZ f   ( 2.7 ) 
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where,   maxZ the maximum depth, and f is the antenna frequency. EM signals are rapidly 

attenuated in seawater (approximately 551m at 0.3 Ω-m) and seafloor sediments saturated 

with saline water. These signal pathways will dominate at near source-to-receiver offsets 

(approximately 3km) (S. E. Johansen, H.E.F. Amundsen et al. 2005).  

 

2.3 Electrical Resistivity  
 

Measuring the electrical resistivity of the subsurface is one of the most powerful prospecting 

methods in hydrocarbon exploration (Árnason 2010). Subsurface resistivities are controlled 

by properties of interest like, permeability and porosity, salinity, saturation, and fluid-rock 

interaction; which to a great extent characterize the reservoir (Johansen, Wicklund et al. 

2007). Measurement of electrical resistivity beneath the sea floor plays a crucial role in 

hydrocarbon exploration and reservoir assessment and development (Tadiwa, Yahya et al. 

2013). In interpretation of electric field data measurements at the earth’s surface, knowledge 

of electrical properties of rocks comprising the earth’s interior is required. While water-wet 

sediments, in the over- and under-lying sediments are typically less than a few Ω-m 

(generally have resistivities in the range 1-5 Ω-m), hydrocarbon-bearing sediments have 

much higher resistivities of a few tens of Ω-m or higher (30-500 Ω-m) (S. E. Johansen, 

H.E.F. Amundsen et al. 2005, Tadiwa, Yahya et al. 2013). The electromagnetic methods have 

the widest conductivity range (of magnitude 3210 ) in comparison with other common 

physical properties (Yves Gueguen and palciauskas 1994), and it is this large contrast that 

makes them powerful tools in the detection of areas of anomalous conductivity.  

2.3.1 Ohm’s Law 

At low frequencies  310  Hz  , electrical resistivity,ρ or electrical conductivity,σ  are the 

quantities that characterize the electrical charge transport. When a static electric field, E

(V/m) is applied, an electric current density, J (A/ 2m ) is established due to the displacement 

of the various charged particles. From Yves Gueguen and palciauskas (1994) these are related 

by the expression 

 
1

  J σE E
ρ

, 
( 2.8 ) 
 

 

that defines the electrical conductivity/resistivity of an isotropic material. 

However, it should be noted that the conductivityσ  and resistivityρ are intrinsic material 

properties, independent of the sample geometry. The resistivity ρ (Ω-m) is related to the 

potential difference V (V) and current I (A).This potential difference provide information on 

the form of subsurface heterogeneities and their electrical properties. The greater the 

electrical contrast between the hydrocarbon and the heterogeneity, the easier its detection.  
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2.3.2 Conduction in Solution 

 

Electrical conduction in rocks is mainly through ion movement in pore filling brine. Pore 

spaces in rocks usually contain waters that contain salts which dissociate totally in solution 

and can move independently under the influence of an applied electric field (Yves Gueguen 

and palciauskas 1994). At steady state, the ion velocity, v is given from the Stoke’s law; 

which states that the applied electric force,  qE is balanced by the viscous force, 6 r   

exerted by the field on the hydrated ion. The expression relating the electric and the viscous 

forces is stated from (Yves Gueguen and palciauskas 1994) as; 

 6q rE v  
( 2.9 ) 
 

where  is the viscosity of the water and r is the effective radius of the ion. The ion mobility 

is given as 

 
 

6

q


u

r
 

( 2.10 ) 

 

 

Since  uE depends on particle type and its interaction with the medium, the ionic 

conductivity
wσ is given by the relation 

 2

6
w

nq
nq


 σ u

r
 

( 2.11 ) 

 

 

2.3.3 Archie’s Law 

 

With lack of sufficient information on pore microstructure, one heavily relies on the 

empirical relations between the formation factor and porosity (Yves Gueguen and palciauskas 

1994). The resistivity measurements serve as one of the principal methods for estimating 

fluid saturations in oil-bearing rocks. 

 mF   
( 2.12 ) 
 

Or                                                                                                                          

  
m

oF  


   
( 2.13 ) 
 

Here F is the formation factor,  is the porosity, and m is the cementation exponent being 

constant for a given rock type but for majority sandstones being close to   2m  . The laws 

(2.12)  and (2.13) are the empirical relations which fit the data over a range of porosity: 

 0.05 0.40   by Yves Gueguen and palciauskas (1994). The resistivity index, RI (unit 

less) is a function of saturation and pore microstructure expressed by the relation                                                                                                                                    

  
n t

w

o

RI S





   

( 2.14 ) 
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where n is saturation exponent approximately constant for a given porous medium. For a 

given system of fluids, t and
o are the resistivities of a partially saturated rock and a 

completely saturated rock with a conducting fluid, respectively. 

The electrical resistivity of reservoir rocks is highly sensitive to changes in water saturation. 

From Archie’s law, fluid saturation can accurately be determined through description of the 

electrical resistivity of rocks as a function of water saturation (
wS ), porosity ( ), and pore 

fluid resistivity (  brine ). All petroleum fluids (oil, condensate, and hydrocarbon gas) are 

electrically resistive; rendering the  Archie’s law appropriate for any combination of oil, 

hydrocarbon gas, and condensate (Yves Gueguen and palciauskas 1994). 

2.3.4 Oil and Gas Saturation in Rocks 

 

The resistivity of the reservoir is primarily controlled by the saline brine that fills the rock 

pores (Vilamajó, Queralt et al. 2013). The resistivity of the storage formation however, is 

strongly controlled by a resistive fluid when injected into the reservoir. Due to the very low 

conductivity of oil and natural gas compared to water, increasing the saturation of these fluids 

will significantly decrease the bulk resistivity (Yves Gueguen and palciauskas 1994). These 

variations can help to discriminate between fluids. Porosity is a crucial factor in determining 

resistivity.  Saturation, the proportion of oil, gas, water and other fluids in a rock, is a crucial 

factor in formation evaluation (Jean-Louis Chardac, Mario Petricola et al. 1996). Saturation 

changes are crucial to fluid flow and must be carefully monitored to optimize reservoir 

management, and delay gas or water coning (Jean-Louis Chardac, Mario Petricola et al. 

1996). Fluid saturation can be assessed indirectly by measuring the resistivity or electrical 

resistance of the rock layer (Yves Gueguen and palciauskas 1994). From Archie’s law 

 
1

w

m n

t ws
a

    
( 2.15 ) 
 

where a is the tortuosity factor and w is the conductivity of the formation saline water. Yves 

Gueguen and palciauskas (1994) noted that to determine the saturation oS (oil) and 
wS (water) 

is one of the most economically important rock physics problems. The product of oil 

saturation and porosity, oS  , is proportional to the volume of oil (or gas) that exists in a 

reservoir. The relative permeability of oil, which depends on oS , indicates how rapidly the oil 

can be extracted. 

 

2.4 Maxwell’s Equations  
 

The propagation of electromagnetic waves away from the time-varying sources in form of 

energy is governed by Maxwell’s equations. These summarize the connection between the 

electric and magnetic fields, charges, currents, and the coupling between the electric and 
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magnetic field quantities. The basis of the theory of electromagnetic fields studied by 

geophysicists is provided by the macro-electrodynamics equations, i.e., Maxwell’s equations. 

2.4.1 Electromagnetic Field Equations 

An electromagnetic wave equation is a second order partial differential equation that 

describes the nature of electromagnetic wave propagation in a given medium or vacuum. 

These wave equations are derived from the Maxwell’s equations. Variation in the electric 

field generates the magnetic field, vice versa. These equations hold for any material and at 

any spatial location in an arbitrary ( , ,x y z ) coordinate system. The generalized forms of 

Maxwell’s equations are summarized below. 

1) The generalized Ampere’s law, which states that both conduction currents and 

displacement currents  
t





D
generate the magnetic field. 

 e

t


   


H J J

D
 

( 2.16 ) 

 

                              

2) Faraday’s law of electromagnetic induction, which states that the time-varying 

magnetic field is always accompanied by a spatially varying, non-conservative 

electric field. That is when the magnetic flux changes, an electric field is created. This 

leads to the Maxwell- Faraday equation 

 
t


  


E

B
 

( 2.17 ) 
 

3) Using the Gauss’s law for electrostatics which states that total magnetic flux through 

a closed surface is zero, the 3
rd

 equation is obtained as 

 0 B  
( 2.18 ) 
 

4) Coulomb’s law which states that electric charges generate the electric field, forms the 

fourth Maxwell’s equation as 

 e  D q q  
( 2.19 ) 
 

where E and D are the vectors of electric field; H and B are vectors of magnetic field. J is the 

conduction current density and q is the spatial density of free electronic charges. 
e

J and   e
q  

are densities of extraneous electric currents and charges in the transmitter. The electric 

currents and charges are inter-related by the continuity equation                           

  
 e

e

t

 
   


J J

q q
 

( 2.20 ) 
 

Equation (2.20) expresses the fact that the divergence of electric currents from an 

infinitesimal volume is equal to the rate of decrease of electric charge density with time. 
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Equations (2.16) – (2.19) are supplemented by the constitutive relations reflecting the 

electromagnetic properties for linear and isotropic media. These relations are; εD E  and

μB H , with  and  as the dielectric constant and magnetic permeability of the medium, 

respectively. The free space dielectric constants are given by, 
128.85 10o
  (F/m) and  

74 10o     (H/m). The conduction current density however is expressed in terms of 

electric field by the Ohm’s law; σJ E which is the third constitutive relation. 

2.4.2 Field Equations in the Frequency Domain 

 

Maxwell’s equations being linear in nature, it then follows that a field varying arbitrarily in 

time can be represented as a sum of harmonic fields whose time dependence is expressed by a 

factor i te  , where 1 i ,  is the angular frequency and t  is the time (Zhdanov 2009). For 

a monochromatic field, equations (2.16) – (2.19) take the form; 

 
e  H σE J  

 

 
 

 
i E B  

 
 

 
0 B  

 
 

 
  

e  D q q  
( 2.21 ) 
 

  i  σ ε  is the complex electrical conductivity of the medium. By separating the 

Maxwell’s equations (2.21), using the constitutive relations, 

  21 ei i  
 

     
 

μ E σμ με E μJ
μ

 
( 2.22 ) 

 

And 

 
1 1

i
   

       
   

σ H σμH σ J
σ σ

e
 

( 2.23 ) 

 

Zhdanov (2002) considers a homogeneous domain of extraneous currents or extraneous 

charges, that is; 0e J and   0e q . Then it follows that, 

 2 2 0k  E E , ( 2.24 ) 

 

And             

 2 2 0k  H H  ( 2.25 ) 

 

            

Equations (2.24) and (2.25) are the Helmholtz equations where 2 2( )ik    σμ με . 



 

 

 

 

 

3 Green’s Function Methods 
 

This section deals with integral equation and the Green’s function formulation which are then 

used in the derivations of the approximations. For modelling, the feasibility of the Born ,EBA 

and TMA pproximations is done by descritization for their implementation in MATLAB. The 

inversion scheme to be used in the proceeding chapters is also discussed.  

3.1 Green’s Function  

This is an integral kernel that is used to solve linear inhomogeneous differential equations 

with boundary conditions by expressing the solution in terms of an integral equation. The 

electromagnetic field in the presence of macroscopic dielectrics is governed by an 

inhomogeneous vector Helmholtz equation (Chew 1999). From equation (2.22), it then 

reduces to 

 2( ) ( ) ( )ek  E r E r J r  ( 3.1 ) 

 

with ( )E r 0  as r . 

Using the Green’s function formulation, the solution to the Helmholtz equation (3.1) can be 

given as  

 (r) ( , ') ( ')
v

dv E G r r J r , ( 3.2 ) 

 

where the Green’s tensor is a solution to 

 2( , ') ( , ') ( ')k    G r r G r r r r I . ( 3.3 ) 

 

It is also true that ( , ')G r r 0 , as ' r r . Here, 1 2 3(r , r , r )r  and 
1 2 3' (r' , r' , r' )r are the 

source and observation points, respectively. For an infinitely extended, homogeneous 

dielectric (Bulk medium), the Green’s tensor is a solution to 

 2( , ') ( , ') ( ')b bk    G r r G r r r r I  ( 3.4 ) 

 

Using the identity . I , reducing the Helmholtz vector to scalar equation is 

done by taking the divergence of equation (3.4) (Chew 1999). 

 
2

1
. ( , ') ( ')b

k
    G r r r r  

( 3.5 ) 
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Expanding equation (3.4), and substituting equation (3.5) using the identity above,  

 
 2

2

1
( ') ( , ') ( ')bk

k
 

 
         
 

r r G r r r r I , 
( 3.6 ) 

 

This reduces to  

 
 2

2

1
( , ') ( ') ( ')bk

k
 

 
        

 
G r r I r r r r . 

( 3.7 ) 

 

For a homogeneous background, the Green’s function in vector form is related to that in the 

scalar form by writing (Habashy, Groom et al. 1993, Chew 1999) 

 
2

1
( , ') ( ') g( , ')b

k


 
    
 

G r r I r r r r , 
( 3.8 ) 

 

where the scalar Green’s function, g satisfies the scalar Helmholtz equation, 

  2 g( , ') ( ')k     r r r r , ( 3.9 ) 

 

subject to appropriate boundary conditions; where, 

 '

g( , ')
4 '

ik
e








r r

r r
r r

 
( 3.10 ) 

 

At infinity, consider Im 0k  . Substituting equation (3.10) into equation (3.8) (Chew 1999) 

 '

2

1 1
( , ') ( ')

4 '

ik

b e

k





 

      

r r

G r r I r r
r r

, 
( 3.11 ) 

 

 

 
 2 2

2 2 3

( )
( , ') 1 ( ) 3 3 ( )

3 4

ik
b e

ik k ik k
k k



 


   

 
            

ρ I
G r r I e e  

(3.12 ) 

 

  

where ' ρ r r ,   ρ , / e ρ  and (1/ r) 4 ( )  r . Equation  (3.12) is implemented 

in MATLAB by Stav (2010). Once the Green’s function in the scatterer and the background 

is implemented, then the remaining part can easily be determined in order to calculate the 

integral equation approximations. 

3.1.1 The Singularity of Green’s Function 

It is imperative to discuss the singularity of the Green’s function prior to formulating the 

EBA and the TMA. The Green’s function ( , ')G r r  need to be redefined at points when 

'r r (singular points). Inspecting equation (3.11), Kahnert (2003) shows that, 

 3
( , ') O( ' )b 

 G r r r r , ( 3.13 ) 
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when a second derivative at points 'r r  is computed. Therefore, the volume integral 

(equation 3.2) needs to be performed with care due to the singularity of the free space- dyadic 

Green’s function. 

 

 

 

 

 

 

Figure 3.1: An illustration of the scattering field embedded in the background with Vs
as an arbitrary 

volume inside V and containing observation point 'r . The volume element V is very small compared 

to the wave length. 

The volume integral over V can then be obtained (Kahnert 2003) by considering the long 

wave approximation as, 

 

2

1
' ( , ') ( ') ( ),

oV

d
k

 
  
 

 r G r r J r M L J r  
( 3.14 ) 

 

 

 ' ( , ') ( , ') ,b s

V

d    M r G r r G r r  ( 3.15 ) 
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( 3.16 ) 

 

Where 

 
2 4

1 1
( , ')

'

s

ok 
 


G r r

r r
, 

( 3.17 ) 

 

leads to all the terms being regular. For weaker interactions as in TMA, equation (3.15) tends 

to zero implying that equation (3.14) reduces to, 

 
2

1
' ( , ') ( ') ( ),

oV

d
k

  r G r r J r LJ r  
( 3.18 ) 

 

From equation (3.18) and (3.12), for singularity, the second term in equation (3.12) will go 

faster to zero than the first term. Therefore, the Green’s function along the diagonal will be 

implemented as, 
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  2

( ) I ( ) I 1
( , ')

3 33
bb

ok i

   

 
     


G r r , for 'r r  

 

( 3.19 ) 

 

Equation (3.19) is consistent with approximating the t-matrix for multiple scattering of EM 

waves (Jakobsen 2012); as the frequency independent model parameter, t in each grid cell by 

Stav (2010). 

 

3.2 Integral Equation Formulation 

To derive the integral equation, the Green’s function technique is usually applied. When 

conductivity and electric field are assumed to be fixed in a given cell, the discretization of the 

integral equation yields a linear system of equations. While using the integral equation, the 

conductivity distribution is divided into the background conductivity for calculation of the 

Green’s function, and the anomalous conductivity within the domain of integration, (Black 

and Zhdanov 2010). The solution to the forward problem is then computed through three 

distinct steps (Zhdanov 2002, Martin Čuma, Masashi Endo et al. 2008); (1) calculation of the 

background fields induced on the receivers by the response of the homogeneous background; 

(2) calculation of the anomalous fields induced in the domain of interests, and; (3) calculation 

of fields on the receivers induced by the anomalous fields in the domain. The resulting field 

on the receivers is the sum of the background field from step 1 and anomalous field from step 

3, (Martin Čuma, Masashi Endo et al. 2008). 

Assuming the scatterer inside a background medium which is not necessarily homogeneous, 

the scattering from the object is described by a volume distribution of currents, a ( )J r induced 

inside the scatterer. From Maxwell’s equations and the use of the constitutive relations 

        D Er r r  and          J σ Er r r , it then follows that                           

          a i   H J J Dr r r r  
 
 

           ai     H σ E Jr r r r r  
( 3.20 ) 
 

From the Faraday’s law in frequency domain, 

      oi E Hr r  
( 3.21 ) 
 

By finding the divergence of equation (3.21), 

      oi  E Hr r  ( 3.22 ) 

 

Decoupling of the Maxwell’s equations (3.20) and (3.22) gives a new equation that depends 

only on the electric field, which in anisotropic media is given by, 
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    
 

   2   a

i o i o ii i


   


 
    

 
E E J

r
r r r r  

( 3.23 ) 
 

Then equation (3.23) can be written in a condensed form as,        a

i o ii  L E Jr r  

where  
 2    o i


  



 
  

 
L

r
r  is an operator acting upon the electric field  E r and 

the bracket is the spatial variation in the medium  properties. Therefore the solution for 

equation (3.23) is found by casting it in an integral form where the dyadic Green’s tensor is 

introduced 

        ,  ij ij     L r G r r I r r  ( 3.24 ) 

 

where I is the dyadic identity (unity tensor). The anisotropic conductivity contrast between a 

hydrocarbon filled reservoir and background model, is given by 

          b

jk jk jk  σ σ σr r r  
( 3.25 ) 
 

where  jkσ r and  b

jkσ r are the conductivities of the reservoir and the background model, 

respectively. The anomalous electric field is given by second term in the Lippmann-

Schwinger equation (for   ,   r r V  ), from a singular inhomogeneous vector Fredholm integral 

equation of the second order. The anisotropic electric field in all receiving positions 

(receivers) is calculated from 

          ,b

i i o ij jk k

V

i d     E E G σ Er r r r r r r ,   r V  
( 3.26 ) 

 

where  b

iE r is the background field that can be calculated for a known source    b

iJ r . The 

second term of equations (3.26) for both internal and external points can be recast in the form 

that separates the scattered field into inductive (due to the vector potential) and galvanic (due 

to scalar potential) terms. From equation (3.26), the total field is represented as the sum of the 

background field  b

iE r and the scattered field (the integral term).  The scattered field is 

generated by the scattering currents and/or charges induced inside the scatterer by the 

interaction of the total electric field  iE r (Habashy, Groom et al. 1993). 

 

3.3 The Born Approximation 
 

The Born Approximation is widely used in solving scattering problems in acoustics, 

electrodynamics, electromagnetics and quantum mechanics. The Born approximation is 

adopted to avoid solving the super-large system of linear equations for the full integral 

equation algorithm (Wang, Luo et al. 2008) and also to increase the speed of modeling. Born 

approximation has a wide applicability both for inverse and forward scattering problems in 
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electromagnetics. This approach considers the total electric field in the integral terms being 

approximated by the background field (i.e. the field excited in the absence of the conductivity 

contrast) and also neglects multiple scattering within the scatterer (Abubakar and Habashy 

2005). The Born gives a representation of electric field that is linear in  jkQ r , where

   ωjk o jki  Q r σ r  is the change in the material properties from the background medium. 

The born approximation assumes that the anomalous electric field inside the anomalous 

domain is zero (Wang, Luo et al. 2008) and multiple scattering within the scatterer are 

neglected. Typically, these series are either divergent or very slowly convergent for large 

contrasts. To analyze the convergence, a dimensionless contrast defined as 

  
2

1
maxjk jk

k
  Q r  

( 3.27 ) 

 

By neglecting the displacement currents, equation (3.27) reduces to (Abubakar and Habashy 

2005, Gao, Abubakar et al. 2010); 

                  

max b

jk jk

jk b

jk

 





  

( 3.28 ) 

 

If the anomalous field is negligibly small inside V, in comparison with the background field, 

the conventional Born approximation  b

iE r for the anomalous field can be obtained from the 

first term in the solution of equation (3.26), as 

    b

i iE Er r  
( 3.29 ) 
 

Therefore, 

        
V

, ' 'b

i ij jk k d  E G r r σ r E rr r  ( 3.30 ) 
 

The approximation in equation (3.30) is only valid for small conductivity contrasts between 

background media and the scatterer, for a relatively small inhomogeneity and at low 

frequencies (Zhdanov 2009).      

3.3.1 Discretization of the Born Approximation 

 

In practice, forward modeling and inversion of electromagnetic data involves the use of 

discrete data points and model parameters. The integral equation for the anomalous field in 

component form (Stav 2010) can be written as 

        ,i ij jk k

V

E G E d  r r r' r' r' r'  
( 3.31 ) 

 

For ,   ,  ,    1,  2,  3i j x y z  .  

For an isotropic material ( ') ( ')jk jk  σ r σ r , equation (3.31) can be re-written as (Stav 

2010) 
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        ,i ij j

V

E G E d   σr r r' r' r' r'  ( 3.32 ) 
 

        , ,i ij j

V

E G E d d   σr r r' r' r'' r'' r' r''   

And 

    ( ) ( ) ,j j jE d E d d E d d    r' r' r'' r' r'' r' r'' r' r'' r' r''  
 ( 3.33 ) 
 

It follows from equation (3.32) that the discretization integral can be solved by summing over 

all grid cells (Stav 2010). 

 p pq qr r

i ij jE G E V   ( 3.34 ) 

 

withV as the volume of each grid cell and indices   1,  ,  p M  ; ,    1,  ,  q r N  where 

M is the number of receivers and N the number of model parameters or grid cells. The 

electric field from equation (3.34) can be expressed by summing over the repeated indices 

(Stav 2010). By letting indices ,  i p I , and ,  j q J , that is; 

  I 1 Mi p    ( 3.35 ) 

 

 

  J 1 Nj q    ( 3.36 ) 

 

In discretized form, the Greens function is represented by two indices and therefore takes the 

form pq

ij IJG G , which in implementation also considers the volume V of the grid cells 

forming the scatterer.  In the discretized notation, equation(3.34) reduces to (Stav 2010) 

 r r

I IJ JE G E     ( 3.37 ) 

 

3.4 The Extended Born Approximation 

 

Habashy, Groom et al. (1993) developed the Extended-Born technique to improve the Born- 

approximation and its limitations. This technique replaces the total field in the integral 

equation (2.51) not by the background field, like in the Born approximation, but now 

considering its projection onto the scattering tensor ( ') r . The method sufficiently assumes a 

smooth spatial variation of the internal electric field and the total field inside the object (Song 

and Liu 2004). It improves the ability to accurately simulate the internal electric field  iE r'  

for a given conductivity distribution without having to invert the large, often full, stiffness 

matrix resulting from solving the 3D integral equation schemes (Abubakar and Habashy 

2005). The total electric field in the interior of the scatterer is considered to be the result of 

the application of the depolarization tensor on to the incident electric field. Therefore, it is 

important to determine the depolarization tensor in order to allow the replacement of the 

integral equations for the interior fields by integral representations of these fields 

(Charalambopoulos, Dassios et al. 2002). According to Charalambopoulos, Dassios et al. 
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(2002), the depolarizing dyadic strongly depends on the geometrical;-the shape of the 

scatterer, and the physical;-low frequency regime characteristics of the scatterer. After the 

construction of the depolarization dyadic, the next step is to extend the calculations to obtain 

the corresponding results (Charalambopoulos, Dassios et al. 2002).  

3.4.1 Formulation of the Extended Born Approximation 

The Extended Born approximation is based on; (1) considering a homogeneous and isotropic 

medium permitting the propagation of electromagnetic waves; (2) recognizing that for 

interior points,  r V , a dominant contribution to the integral in equation (3.26) results from 

scattering points which are in the neighborhood of the observation point  r r since the 

Green’s tensor  , 'b
G r r  exhibits a singularity or peak at that point (Habashy, Groom et al. 

1993, Torres-Verdin and Habashy 1995, Zhdanov 2002, Abubakar and Habashy 2005) 

Considering the basic integral equation of 3D electromagnetic forward modeling equation 

(3.26) and neglecting the oi  on the second term, the integral equation for the data is re-

written as 

          ,
ij

b b

i i jk k

V

d    E E G σ Er r r r r r r  ( 3.38 ) 
 

This equation however, is integrable since    i iE Er' r vanishes as r r  and  , 'b

ijG r r  is 

singular in this scenario given by equation (3.19). Considering the scattering domain, 

equation (3.38) is modified to take the form  

          ,
ij

b b

i i jk k

V

d  E E G σ Er' r' r' r'' r'' r ' r''  ( 3.39 ) 
 

         

For the different points in the scattering domain;    i kE Er' r'' . By using this condition in 

equation (3.39) gives 

     ( ', '') ( '') ( ') ''
ij

b b

i i jk k d  E E G r r σ r E r rr' r'  
( 3.40 ) 
 

The electric field in the scattering domain from equation (3.40) can then be obtained as 

     ( ') ( ')b

i i ik k E E r E rr' r'  
( 3.41 ) 
 

   r' is a tensor that can be explicitly written as 

 ( ') ( ', '') ( '') ''b

ik ij jk d  r G r r σ r r  
( 3.42 ) 
 

And according to (Torres-Verdin and Habashy 1995, Zhdanov 2002, Song and Liu 2004) 

equation (3.42) is independent of the illuminating sources and is a nonlinear function of the 

anomalous conductivity distribution. By re-arranging (3.41), 

      ( ') b

ik k i I r E Er' r'  
( 3.43 ) 
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The well-known EBA (Gao, Fang et al. 2003, Abubakar and Habashy 2005) assumes 

sufficiently smooth spatial variations of the internal electric field (r)E with the total field 

inside the object expressed mathematically via a nonlinear transformation approximated as  

      b

k ki iE Γ r Er' ' r' ,    r V  
( 3.44 ) 

 

with  kiΓ r'  known as the depolarizing tensor that is defined as 

    
1

( ')ki ik


 Γ r I r'  
( 3.45 ) 
 

It should be noted that the unknown transformation  kiΓ r' is a complicated function of the 

field quantities and object properties. However, such a nonlinear transformation may be 

simplified as a linear one, that is;    b

i iE Er r considering that the Green’s function

 ,b

ij
G r r is singular when 'r r and falls off rapidly for larger    'r r . In the well-known  

EBA, such  scattering tensor is approximated by a source-independent tensor (Song and Liu 

2004). Substituting equation (3.44) into equation (3.43) yields the Extended-Born 

Approximation for the electric fields computed outside the domain V. 

 

            , 'b b b

i i ij jk ki i

V

d    E E G r r σ r Γ r Er r ' r r  
( 3.46 ) 

 

3.4.2 Discretization of the Extended-Born Approximation 

 

Considering the Integral Equation form (3.46) for the electric field, the challenge is on 

solving for the depolarizing tensor  kiΓ r' . From equation (3.46), the anomalous electric field 

is given by  

          , 'b b

i ij jk ki i

V

d    E G r r σ r Γ r Er ' r r  ( 3.47 ) 
 

 

From the discretization of equation (3.42) with dV as the anomalous volume, it follows that 

 Gp pq q

ik ij jkdV  σ  
( 3.48 ) 
 

where ,      ,  ,    1  , 2, 3i j x y z   are tensors. The indices   1  ,  ,M,p   and   ,    1  ,  , Nq r  , are vectors; 

where, M is the number of receivers and N the number of model parameters or grid cells. The 

electric field for the scatterer in the right hand side of equation (3.47) can be expressed as 

 0E Ep p

kik i   
( 3.49 ) 
 

where 

 

 

1

Γ λp p

ki ik



   I  
( 3.50 ) 
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And I is the diagonal matrix. Two indices i  and p are reduced to one, that is; , i p J  as    
 

  1 MJ i p    
( 3.51 ) 
 

Then in this notation, the discretized background electric field for the integral equation can be 

written as, 

 0E EKK i i   
( 3.52 ) 
 

The electric field between the background and the scattering domain for the Integral Equation 

in (3.47) where 
JK is the anomalous conductivity contrast for an anisotropic media can 

then be given as, 

 GI IJ JK KE E   
( 3.53 ) 
 

 

3.5 T-matrix Approximation 

The integral equation can be approximated by using the T-matrix approach. The computation 

of the T-matrix is completely independent of the source-receiver configuration, but only 

requires the knowledge about the scattering potential (or perturbations) and the Green’s 

function for the reference medium (Jakobsen 2012). The Green’s function for any reference 

medium can be computed numerically once (Jakobsen 2012). According to Jakobsen (2012), 

the T-matrix approach as a method for the volume integral approximation is more useful for 

4D than 3D seismic surveys, and can be useful for special 3D seismic forward modeling of 

fluid saturated cavities and related heterogeneities characterized by large or huge contrasts.  

3.5.1 Derivation of T-matrix 

 

The derivation of T-matrix is fully anisotropic in nature. Consider multiple receivers located 

at positions   rx where 1,  , r R  . The domain V with the scattering potential  being non-

zero is divided into a set of N grid blocks with centroids    and volume
iv with 1,  , i N  . 

The size of an individual grid block is chosen small enough compared to the dominant 

wavelength given by,  
1

2503 f  , where f is the dominant frequency and is the 

electrical conductivity. The symmetrized Lippmann-Schwinger equation after discretization 

can be written as (Jakobsen 2012), 

 
1 1

E E G E
N N

b b

m m j mi ij j

i j

r 
 

    
( 3.54 ) 

 

where  
pq

ij i i pqj       
( 3.55 ) 
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with 
1:     

,
0 :

pqij

for i j

elsewhere
 







 
( 3.56 ) 

 

 

And index m may refer to a receiver position as well as the position of a particular scattering 

object.  For the discretization of Green’s function, we use  

  G G ,b b

ij i j r r ,    i j  
( 3.57 ) 

 

And  

  G G ,b b

i ii i j

Vs

v d   r r r  ( 3.58 ) 
 

 

To calculate the Green’s function values Gb

ij  in equation (3.57), one can either use an 

analytical formula for homogeneous media, ray theory in the case of heterogeneous media 

(Jakobsen 2012), or purely numerical method. It now follows from Equation (3.46) that 

 b b

R RV RV  E E G Eσ  
( 3.59 ) 
 

And  

 b b E E G Eσ  
( 3.60 ) 
 

where the components of the R N - dimensional matrix 
b

RVG  is always given by Equation 

(3.56) since this matrix of Green’s function values is associated with a single receiver 

position    and one scattering grid block position. In the calculation of the components of the 

N N - dimensional matrix   b
G , both the Equations (3.59) and (3.60) are needed (Jakobsen 

2012), since the matrix of Green’s function values is associated with the positions px  and qx  

( , 1,  ., p q N  ) of similar or different grid blocks within the discretized scattering domain 

only.  From the quantum mechanical potential scattering approach (Jakobsen 2012) the T-

matrix is defined by 

 b E TEσ  

( 3.61 ) 

 

Using this definition in the Lippmann Schwinger Equation (3.59),  

 b b b E E G TE  

( 3.62 ) 

 

Multiplying Equation (3.62) withσ   from the left,  

 b   E E G TE
b b

σ σ   σ  

( 3.63 ) 
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Using the definition (in equation 3.61) of the T-matrix in conjunction with the above 

Equation (3.63), 

 E  b b T E G TE
b b

σ σ  
( 3.64 ) 
 

Since E
b

 is arbitrary, it follows that 

 b  T G Tσ σ  

( 3.65 ) 

 

Thus from Equation (3.65), which is the Lippmann-Schwinger equation for the T-matrix, it 

follows that 

  
1

  b


  T I Gσ σ , 
( 3.66 ) 

 

which represents a full numerical solution of the LS- equation including all the effects of 

multiple scattering. The full numerical solution may be convenient for forward modeling, at 

least if the models are not too large, like in many cases of 4D seismic. However, for inverse 

modeling, it is imperative to use an approximation; which can be the Born (Neumann) series 

for the T-matrix (Sheng 1995). This approximation can be written as 

  
0

...  
k

b b b b

k





 
         

 
   T G G G Gσ σ σ σ σ σ σ σ  

 

( 3.67 ) 

 

 

which is obtained from equation (3.66), for 0b I Gσ ; that is, the contrast volume is 

sufficiently small, and I is an identity matrix (Jakobsen 2012). 

3.5.2 Implementation of T-matrix 

For a domain V discretized into  grid cells each of volume V with constant conductivity 

contrast with in each cell, the integral equation for the anomalous field in discretized form 

can be written as, 

 Ep pq qr r

i ij jk kTE G V    
( 3.68 ) 
 

For T-matrix approach,  

  
1

qr st tq sr

jk ml lj mk



  T I σ G σ  
( 3.69 ) 
 

The indices in equation (3.68) to be valid for implementation in MATLAB, it should be that 

the indices m l  and s t . The indices 1,  , Mp    and , , , 1,  , Nq r s t   , where M and N are 

the number of receivers in the survey and the number of grid cells respectively. By reducing 

the indices from 2 to 1, that is; ,i p   and ,j q    
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  1 M   i p     and  1 N   j q     
( 3.70 ) 
 

Letting indices, ,sc  ; l,t  , and   ,k r   that is 

 

 1 N  sc     

 

 1 N  l t     

 

 1 N   k r     

( 3.71 ) 
 

Thus equation (3.69) in reduced indices is written as  

  
1

  J   



  T I Gσ σ  
( 3.72 ) 

 

Thus using equations (3.70 – 3.72), equation (3.68) with pq

ij V  G G in discretized form 

can be written as, 

     E G T E  
( 3.73 ) 
 

In the MATLAB code for T-matrix, G was computed as vvG and rvG the Green’s tensor in 

the background and in the scattering domain, respectively. The new coupling T for the 

diagonal anomalous conductivity and the background Green’s tensor can be modified to cater 

for both homogeneous and heterogeneous models obtained by reducing 4 indices to 2; and 

E is the electric field obtained with no hydrocarbon present. For the T-matrix and the 

Extended Born approximations, the singularity of the Green’s function is considered by using 

equation (3.19). 
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4 Modeling 3D and 4D CSEM Data 
 

4.1 Outline 
 

Numerical modeling has today been applied as an engine for EM inversion, verification of 

hypothetical conductivity models constructed, and as a tool for various feasibility studies 

(Avdeev 2005). Forward modeling involves the use of known geological structures to produce 

geophysical field data. This technique determines what a given sensor would measure in a 

given formation and environment by applying a set of theoretical equations for the sensor 

response. This begins with a numerical solution to the equation of motion. Therefore, 

numerical modeling represents an approach in which a true earth structure is replaced by one 

for which a numerical approximation to Maxwell’s equations can be made and evaluated. 

There are several techniques for electromagnetic forward modeling and in this chapter a 3D 

CSEM model is considered in relation to the integral equation approximations of the Born, 

Extended Born and the T-matrix approaches. The dependence of these approximations on the 

reservoir model and their effects on changing the reservoir parameters such as contrast 

volumes, conductivity contrasts, number and size of grid cells will be discussed. Depending 

on the simplifying assumptions made for the Born, Extended-Born, and the T-matrix, it is 

expected that the reservoir parameters will affect these approximations differently. 

Since the frequency of the fields emitted by the source strongly affects the signals (Lien and 

Mannseth 2008), very low source frequencies of 0.25 Hz in particular will be used. The 

MATLAB code (EMforward.m) based on the Born, T-matrix and the Extended Born 

approximations to integral equation for the 3D electromagnetic field case has been developed. 

The code was tested on the 3D geo-electrical models in the next sections. 

4.1.1 Effect of Grid Size  

In modeling, while using the approximations to the integral equation, the scatterer needs to be 

discretized into a large number of grid cells depending on the reservoir dimensions, 

frequency and the depth of the scatterer from the seabed (Gao, Fang et al. 2003). Therefore, 

increasing the number of grid cells in the discretization scheme will significantly increase the 

computation time and memory required to store the larger matrices.  

To determine the optimal grid size, a simple model consisting of a cube of dimensions 150 m 

was considered. The total number of grid cells depends on the grid size for a reservoir with 

fixed dimensions. Here, modeling was done fast with the grid blocks assumed to be cubes of 

varying sizes of 150 m, 75 m, 50 m, and 25 m.  The T-matrix approach was used since it is 

able to approximate roughly the solution of the full integral equation. The scatterer as a 
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control was also considered as a big grid block for comparing the effects of the grid size since 

it gave the maximum amplitude (figure 4.1). The computation time was seen to depend on the 

size of the grid block. Finer grid blocks imply a larger number of grid cells and hence more 

computation time. Decreasing the size of grid blocks increases the number of the grid cells 

(Table 1) which in turn decreases the magnitude of the anomalous electric field recorded by 

the receivers (figure 4.1 and 4.2).  

Size of the grid cell 

(
3m ) 

Time taken (s) to compute Relative errors (%) 

Green’s  T-matrix  Magnitude  Phase 

150 150 150   0.004 0.228 35.53 6.52 

75 75 75   0.011 0.122 11.92 2.88 

50 50 50   0.049 0.186 5.88 1.47 

25 25 25   1.777 3.847 - - 

 

Table 1: The table showing the effect of grid size on computation time and errors for the different 

sizes relative to the 25 m cube for a cubic scatterer of 150 m using the T-matrix approximation.  

The course grid model records a higher value in magnitude as compared to the finer and a 

relatively larger model gives large amplitude compared to the smaller one. This effect can be 

illustrated from table 1 alongside the errors computed for the different grid sizes relative to 

the T-matrix solution for a 25 m cubic grid block. In figure 4.1, the relative errors in 

magnitude and phase for a 150 m cubic scatterer were plotted. It is clearly shown that there is 

convergence for the T-matrix approximation as the grid size decreases. The relative error in 

phase calculated by the T-matrix method had a change of 6.5% from the finest to the coarsest 

grid cells. The error between the two successive amplitudes decreases as the grid size 

decrease.  This laterally means that the magnitude tends to be the same as the grid size 

decreases.  

To confirm the optimal size of the grid block to be considered in modeling, a separate test 

was conducted on a 100 m cubic scatterer to obtain different grid sizes. It can be shown from 

figure 4.2 that for a 25 m grid block there was convergence in amplitude and phase. The 

relative errors were analyzed for the magnitude and phase using the T-matrix approximations 

to the integral equation. The relative errors however, decrease with the decrease in the size of 

the grid cells.  

Therefore, with the 25 m grid cell giving small errors compared to the neighboring grid sizes 

will be considered in the next sections to discuss the different approximations to the integral 

equation and how they are affected by the different reservoir parameters. However, the 25 m 

grid has some drawbacks like requiring much more computation time if bigger scattering 

volumes were to be considered. 
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              (a)  xE for 150 m cube                                (b)   x  for 150 m cube 

Figure 4.1: Effects of grid size on convergence when xE  (a) and x  (b) for a cubic scatterer of size 

150 m and contrast -0.25 S/m were considered.  The scatterer was discretized into cubic grids of size 

150 m (red), 75 m (blue), 50 m (green) and 25 m (black).   

 

 

 

          (a)  xE for 100 m cube                                         (b)   x  for 100 m cube  

Figure 4.2: Effects of grid size on convergence when xE  (a) and x  (b) for a cubic scatterer of size 

100 m and contrast -0.25 S/m were considered.  The scatterer was discretized into cubic grids of size 

100 m (red), 50 m (blue), 25m (green) and 12.5 m (black).  
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4.2 Homogeneous Model 

In this section, a detailed comparison of the different approximations was considered for a 

homogeneous conductivity model. As already discussed, the number of grid cells heavily 

affects the amplitude and phase of the anomalous electric field. Here, a cube of grid size of 

25 m was used to investigate the limit of accuracy of the different approximations for high 

and low contrasts. The conductivity of the reservoir was varied as discussed by Gelius and 

Tygel (2013) to have values of 0.001 0.499  [S/m].  

4.2.1 Geometry of the Model 

The geo-electric model discussed here was obtained (and modified) from Gelius and Tygel 

(2013) to consist of a line of 25 receivers that were arranged along the middle row (y = 0) of 

the reservoir. It stretched from -3000m to 3000m along the x- direction with in a 

homogeneous background with no sea layer and the source placed at (0, 0, 0). An electric 

dipole transmitter was considered towed along the in-line (x-direction) with an interval of 

250 m between the receivers. As noted in Zhdanov (2009) for simulation, the broadcasting 

frequency was considered as 0.25 Hz and the current at the transmitter end to be 1000 A. The 

input and reservoir parameters were summarized the table 2. 

 

Source and receiver Reservoir model 

Receivers (number) 25 Thickness (m) 50 

Receiver separation 

(m) 

250 Depth (m) 850 

Dipole length (m) 100 Conductivity, b  (S/m) 0.5 

Source strength (A) 100000 Conductivity,  (S/m) 0.001 0.499   

Frequency (Hz) 0.25 Grid cells (number) 30 10 2   

Depth (m) 0 Grid volume (
3m ) 25 25 25   

 

Table 2: Source, receiver and reservoir model parameters used in forward CSEM modelling. The 

symbols used; m-meter, A-ampere, Hz-hertz, S/m- Siemens per meter.  

The receivers record signals from the transmitting horizontal electric dipole of 100 m in 

length with a source strength of 100×1000 A, and from the electromagnetic response of the 

geo-electric structures (Zhdanov 2009). Figure 4.3 shows the location of the reservoir model 

in the vertical plan. A resistive hydrocarbon reservoir with half dimensions as that in Gelius 

and Tygel (2013), that is;
3750 250 50m  was embedded in a conductive layer placed to have 

its center at (0, 0, 850 m) below the receivers as shown in figure 4.4.  

The resistivity of the conductive layer will however vary as saline water is injected during 

hydrocarbon production. In figure 4.4, illustrates the scatterer and acquisition geometry. The 

domain was chosen as 375 375m x m   , 125 125m x m   in the x- and y- directions and

0 850m z m   in the z direction with uniform grid size as 25x y z m      .  
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Figure 4.3:  Vertical section through a 2D homogeneous geo-electrical model for the CSEM showing 

the location of the source (red), receivers (+) and reservoir (black) with conductivity 0.5 S/m located 

at a depth of 850m below seafloor with conductivity of range 0.01-0.49 S/m.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: 3-D Schematic view of scatterer and acquisition geometry. The receivers (black circles) 

are placed along the x-direction with the reservoir located at a depth of 850 m below the seabed. 
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The electric fields from the scatterer were computed based on equation (3.37), equation 

(3.53) and equation (3.73) for the Born, Extended Born and the T-matrix approximations, 

respectively. The results obtained from the Born and EBA were compared to those from the 

T-matrix approach which roughly approximate the solution of the full integral equation.   

The horizontal E-field measured along the survey line is usually dominated by the radial field 

component which is responsible for increase in the amplitudes and phases of the E-fields as 

the lateral extent of resistor increases (Bhuyian, Landrø et al. 2012). For data display, only 

the amplitude and phase of the inline anomalous electric field ( xE ) will plotted and compared 

for the different approximations when contrast was varied. 

The effect of the conductivity contrast on the accuracy of different approximations was also 

analysed. The conductivity of the scatterer was chosen as 0.499 S/m which is so close to that 

of the background medium. This from equation (3.25) implies that the contrast will be small (

0.001   S/m). Figure 4.5 (a) and (b) shows the magnitude and phase for the Born, 

Extended Born and T-matrix converge which is consistent from the theory.  As the 

conductivity in the scatterer increases ( 0.25   S/m), the contrast also increases (

0.25   ) which makes the magnitude and phase for Born to deviate much from that of 

extended Born and the T-matrix. Figure 4.5 (c) and (d) shows that for near offsets, the 

magnitude for Born is less than that corresponding to Extended Born and T-matrix. However, 

for larger offsets, the three approximations tend to agree in magnitude though with different 

phases.  

Figure 4.5 (e) and (f) were obtained when magnitude and phase, respectively were plotted for 

the conductivity of 0.001 S/m in the scatterer to give to a high contrast 0.499   S/m. 

The Extended Born is a better estimate with the T-matrix slightly below the EBA while the 

magnitude for Born decreased sharply as compared to that of EBA and TMA. The figure also 

indicates that the Extended Born and T-matrix approximation gave same values in the phase 

and with a phase shift from +80 to -80 degrees in the region where the reservoir is situated. 

The Born still has a higher positive phase and largest in the vicinity of the reservoir. 

4.2.2 Relative Errors 

Errors in CSEM data are majorly of two forms; (1) measurement errors which are random 

instrumental noise; and (2) modeling errors due to the misrepresentation of the correct 

physical problem (Bhuyian, Landrø et al. 2012). The errors in magnitude and phase for both 

the Born and Extended Born were computed relative to the T-matrix from 
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                  (a)  xE  with  = -0.001                                 (b)   x  with  = -0.001 

 

                 (c)  xE  with  = -0.25                                     (d)   x  with  = -0.25 

 

                 (e)  xE  with  = -0.499                                       (f)   x  with  = -0.499 

Figure 4.5: Magnitude (left) and phase (right) of the anomalous electric field for a homogeneous 

reservoir model with varying contrasts; (a) - (b), low; (c) - (d), moderate and; (e) - (f), high. The 

background conductivity is 0.5 S/m and the frequency of 0.25 Hz is used. 
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                          (a) Magnitude for app Born (b)   Phase for app Born 

Figure 4.6: Errors in (a) magnitude and (b) phase for Born approximation relative to T-matrix 

approach when different contrasts were considered for a homogeneous model. 

 

                          (a) Magnitude for app EBA (b)   Phase for app EBA 

Figure 4.7: Errors in (a) magnitude and (b) phase for Extended Born approximation relative to the T-

matrix approach for the different contrasts for a homogeneous model.   

where app and app are the relative errors in magnitude and phase for the approximation 

considered; TMAE  and TMA  are the magnitude and phase for the T-matrix ; while appE  and app

the magnitude and phase in the approximation considered. Here, only the anomalous filed 

was considered for the computation of these relative errors. As shown in figure 4.6 and 4.7, 

the relative errors in magnitude are higher for Born, which is between 45- 25 % than for the 

Extended Born with 12- 2 % from higher to moderate contrasts. In figure 4.7 (a) and (b), 

there is a minimal error of 0.5- 0 % in the magnitude and phase when the Extended Born is 

used to approximate the integral equation relative to the T-matrix for moderate to low 

contrasts. The Born approximation has higher errors in phase for large contrast (150 %) but 

decreases rapidly for moderate to small contrasts (from 10- 0 %). The error in phase between 

the Extended Born and Born is almost 75 times larger for higher contrasts.



 

 

 

 

 

5  Inversion of 3D and 4D CSEM Data 

In this chapter, time-lapse monitoring and Born inversion on the 3D forward data generated 

by the approximations of the Born, T-matrix and Extended Born have been performed. The 

results for these approximations will greatly depend on the approach used and the noise level 

in the data parameters. The major focus will be on the accuracy of the inverted  data from the 

T-matrix and Extended Born relative to the Born approximation. 

 

5.1 Monitoring of 3D CSEM Data 

Time-lapse water flood monitoring in hydrocarbon reservoirs is normally used to distinguish 

different shapes of the advancing waterfront (Zach, Frenkel et al. 2009). To apply 4D CSEM 

monitoring, there is a need for permanently installed system to reduce the errors incurred in 

repeating the experiment. During monitoring, measurements of in-line electric field,
xE at a 

single frequency are conducted at different times with the source and the receiver locations 

being fixed. Repeating the experiment is not only done for monitoring purposes but also 

greatly reduces the measurement and modeling errors incurred during forward modeling. This 

enhances the signal-to-noise ratio after the spatial derivatives of the signal are accurately 

calculated (Andréis and MacGregor 2011). Initially before injection, the total electric field is 

given from equation (3.26) as 

      i ib i

x x xE r E r E r    ( 5.1 ) 

 

After injection and the measurements repeated, the electric field becomes 

      r ir r

x x xE r E r E r    ( 5.2 ) 

 

Since the background field is independent of time, this means that, 

    ib ir

x xE r E r  ( 5.3 ) 

 

where  ib

xE r  and  ir

xE r are the initial and repeated background fields respectively. Due to 

changing conductivity distribution within the reservoir, the anomalous electric field will 

change with time (Lien and Mannseth 2008). Then, the magnitude of time-lapse anomalous 

in-line electric field difference is given by subtracting equation (5.1) from equation (5.2) as 

      r i r i

x x xE r E r E r     
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            r i rb r ib i

x x x x xE r E r E r E r E r               

 

  

     r i r i

x x xE r E r E r       

( 5.4 ) 

 

where i and r , respectively represent the initial and repeat measurements. The  i

xE r  and 

 r

xE r  are the initial and repeat anomalous electric field measurements respectively, which 

satisfy the condition; 
r i r i

x x xE E or E    . Similarly,  the associated time-lapse phase 

difference, is given by subtraction of the initial phase from the repeated as 

 r i     ( 5.5 ) 

 

 

5.1.1 Time-lapse CSEM 

In this section, the lateral extent (saturation) of the injected fluid was modeled to increase 

whereas the conductivity of the injected fluid and hydrocarbon remained fixed. The section, a 

homogeneous model though not feasible for CSEM production and monitoring was 

previously used to develop the methodology, test the accuracy and limits of the MATLAB 

codes. The 4D CSEM forward modelling using MATLAB code (EMforward.m) for the Born, 

EBA and TMA to the integral equation will be discussed for two reservoir models.  

 

Two models with different reservoir dimensions (“small” and “large”) were considered. The 

number of grids, grid size and the reservoir size were increased. The model was assumed to 

have 403 receivers arranged in 13 rows each with 31 receivers, the grid size of 350 50 50m   

for a reservoir with 31500 1500 50m  in order to increase the sensitivity of the monitoring as 

indicated in figure 5.1.  Figure 5.2, illustrates the injection and production wells used in 

modelling; where a lateral flooding of water from the left to right was simulated. 

Three sets of background conductivity for each grid cell related to one pre and two post 

injection surveys have been used to model the CSEM response as in figure 5.3. Using 

conductivities of the injected fluid as 0.38 S/m and that of hydrocarbon as 0.28 S/m, the data 

was acquired at each stage during production, to consist of amplitude and phase of the 

electric field. For more analysis, the amplitude ratios, 4D anomaly and the phase differences 

between pre and post injection will be calculated.  

5.1.2 Model 1 

For model 1, the reservoir dimensions in figure 5.1 were halved in x and y- directions
3750 750 25m  . The optimal grid size of 

325 25 25m  maintained discretizing the 

reservoir into grids gave 30 30 1   cells. The conductivities for the injected fluid and the 

hydrocarbon were 0.38 S/m and 0.28 S/m. Figure 5.3 illustrates the waterfront in the 

reservoir; (a) before injection, (b) after 5 years, and (c) after 10 years of production. 
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Figure 5.1: The reservoir model with a 2D receiver grid as viewed from the side. The source is 

located in the middle of the mesh emitting a signal at a single frequency of 0.25Hz. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: A schematic illustration of the water flooding and position of the injection and production 

wells in the reservoir. 

The magnitude and phase for the middle receiver row were plotted in addition to the 4D 

anomaly, phase difference and amplitude ratio to be compared with the results from the larger 

model (model 2). The data set in magnitude and phase acquired before and during production 

were plotted in figure 5.4 to show the effects of water flooding on the reservoir. The 

magnitude of the electric field decreased as more saline water was injected. Born 

approximation is observed to be less accurate although the deviation decrease as the water 

front floods to the right of the reservoir.  
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Reservoir 

Model 

Error in Born (%) Error in EBA (%) 

Model 1 Model 2 Model 1 Model 2 

B  
B  B  

B  
EBA  EBA  

EBA  EBA  

After 5 years 45.43 1142.85 17.36 99.86 2.57 0.49 0.20 0.06 

After 10 years 47.89 132.06 12.57 70.69 1.26 1.69 0.11 0.08 

Between 5 and 

10 years 
51.67 58.59 9.31 2.69 0.36 0.04 0.05 0.05 

 

Table 3:  Errors in magnitude and phase for Born and Extended Born relative to the TMA solution for 

anomalous electric field in the reservoir while in production for models 1 and 2. 

 

 

               (a) Pre- production                                            (b)   After 5 years 

 

                                                           (c)  After 10 years 

Figure 5.3: Visualization models for time-lapse CSEM  (a) before and (b) after 5 years, and (c) after 

10 years of production. The water floods laterally in the positive x-direction of the reservoir. 

Theconductivities of water (light green) and hydrocarbon (green) were 0.38 S/m and 0.28 S/m. 
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    (a) 
xE  at 

0t (Before)                       (b)  x at 
0t (Before) 

 

      (c) 
xE  at 1t (After 5 years)                  (d)  x at 1t (After 5 years) 

 

      (e)  
xE  at 

2t (After 10 years)                  (f)  x at 
2t (After 10 years) 

Figure 5.4: Magnitude (left) and phase (right) for the anomalous electric field in reservoir model 1 

before and during production; (a)-(b) before production, (c) - (d) after 5 years and (e) - (f) after 10 

years of production when using the frequency of 0.25 Hz. 
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            (a)   0E (between 
0t and 1t ) (b) 

0 (between 
0t and 1t ) 

 

            (c)   
1E  (between 

0t and
2t ) (d) 

1 (between 
0t and

2t ) 

 

            (e)   2E (between 1t and
2t ) (f) 

2 (between 1t and
2t ) 

Figure 5.5: Time- lapse Magnitude (left panel) and phase (right panel) for anomalous field; (a) - (b) 

before production; (c) - (d) after 5 years and; (e) - (f) after 10 years of production for model 1. 
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               (a)   RA   (between 
0t and 1t )                            (b)   RA (between 

0t and
2t )    

          

 

                                                        (c)   RA   (between 
2t and 1t )                          

Figure 5.6: Amplitude ratio obtained between the repeat and the base electric field during and before 

production, respectively for the Born, TMA, and EBA for model 1.    

The relative errors in magnitude and phase are generally small when Extended Born is used 

to approximate the T-matrix approximation compared to the Born as illustrated in table 3. 

The errors in magnitude increased by 2.46 % and decreased by 1.31 % from 5 years to 10 

years of production for Born and extended Born, respectively.  

 

However, it is also shown that the phase decreased as production occurs by 9.79 % and 

increased by 1.2 % for Born and Extended Born, respectively. In figure 5.5 (a) and (c), the 

anomaly in amplitude increase as production progresses as expected and the phase difference 

tends to zero along the entire horizontal axis except in the reservoir location for the 

approximations considered before production started. However, there was a phase shift after 

the saline water was injected (figure 5.6). 
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5.1.3 Model 2 

 

To handle larger models at a low frequencies such as 0.25 Hz, the cell size needs to be 

increased (Streich 2009). From figure 5.1, for a larger model the optimal grid size in model 1 

was doubled to 350 50 50m  and the number of cells to be 30 30 1   grids. The modeling 

was done using some parameters from table 2, with a mesh of 403 receivers and 

conductivities of 0.38 S/m and 0.28 S/m for injected fluid and hydrocarbon, respectively. A 

bigger model was considered to determine its effects on the magnitude and phase of the 

anomalous electric field. The data set in magnitude and phase acquired before and during 

production for the middle row were plotted in figure 5.7 to illustrate the effects of flooding on 

the reservoir; (a) and (b), before; (c) and (d), after 5 years; and, (e) and (f) after 10 years of 

production. The magnitude of the electric field decreases as more saline water is injected 

(figure 5.7). This is attributed to an increase in conductivity of the reservoir as more 

conductive water is added there by decreasing the contrast. There is a phase shift in the 

vicinity of the reservoir but the different approximations converge far from the reservoir. 

Born approximation is observed to be less accurate although the deviation decrease as the 

water front floods to the right of the reservoir. The phase difference for Born, TMA and EBA 

agree at far as production continues (figure 5.8).  

The relative errors in magnitude and phase are generally small (0.20 %) when the Extended 

Born is used to approximate the T-matrix approximation compared to the Born (17.36 %) as 

shown in table 3. The errors in magnitude decreased by 4.79 % and 0.09 % from 5 years to 10 

years of production for Born and extended Born, respectively. However, it is also shown that 

the phase decreased as production occurred by 29.17 % and increased by 0.02 % for Born and 

Extended Born, respectively. Figure 5.8 shows the anomaly in the amplitude and phase for 

the electric fields before and during production of the hydrocarbon. The magnitude and phase 

before injection were subtracted from that of the monitor survey. Generally, the anomaly in 

amplitude decreased with increase in the time of production as expected and the phase 

difference tends to zero along the entire horizontal axis except in the reservoir location for the 

approximations considered before production started. However, there was a phase shift after 

the saline water was injected as shown in figure 5.8 (d), though the Born still exhibited higher 

phase differences.  

 

The similarity observed in the TMA and EBA data behaviour can be explained by the fact 

that the approximations are based on the T-matrix and the depolarization tensor calculation, 

which are independent of the background field. Therefore, these approximations cannot take 

into account properly the background field which cause discrepancies in these 

approximations (Zhdanov, Dmitriev et al. 2000). The EBA and TMA gave a large phase 

difference in the location of the reservoir before injection which attenuated faster as time of 

fliud injetion increased as shown in figure 5.8. The strength and resolution of the time-lapse 

largely depend on the variation of the base and repeat responses for varying fluid saturation 

(Bhuyian, Landrø et al. 2012). Therefore, the difference between the base and the repeat data 

results in enhanced time-lapse anomalies.  
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    (a) 
xE  at 

0t (Before)                       (b)  x at 
0t (Before) 

 

      (c) 
xE  at 1t (After 5 years)                  (d)  x at 1t (After 5 years) 

 

      (e)  
xE  at 

2t (After 10 years)                  (f)  x at 
2t (After 10 years) 

Figure 5.7: Magnitude (left) and phase (right) for the anomalous electric field; (a)- (b) before, (c) - 

(d) after 5 years and (e) - (f) after 10 years of production for model 2 using the frequency of 0.25 Hz 

The injected water and hydrocarbon have conductivities of 0.38 S/m and 0.28 S/m. 

 

-3000 -2000 -1000 0 1000 2000 3000
0

1

2

3

4

5

6

7
x 10

-8

Offset [m]

M
a
g
n
it
u
d
e
 [

V
/m

]

 

 

Born

TMA

EBA

-3000 -2000 -1000 0 1000 2000 3000
-100

-80

-60

-40

-20

0

20

40

60

80

100

Offset [m]

P
h
a
s
e
 [

D
e
g
re

e
s
]

 

 

Born

TMA

EBA

-3000 -2000 -1000 0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-8

Offset [m]

M
a
g
n
it
u
d
e
 [

V
/m

]

 

 

Born

TMA

EBA

-3000 -2000 -1000 0 1000 2000 3000
-100

-80

-60

-40

-20

0

20

40

60

80

100

Offset [m]

P
h
a
s
e
 [

D
e
g
re

e
s
]

 

 

Born

TMA

EBA

-3000 -2000 -1000 0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-8

Offset [m]

M
a
g
n
it
u
d
e
 [

V
/m

]

 

 

Born

TMA

EBA

-3000 -2000 -1000 0 1000 2000 3000
-100

-80

-60

-40

-20

0

20

40

60

80

100

Offset [m]

P
h
a
s
e
 [

D
e
g
re

e
s
]

 

 

Born

TMA

EBA



 

Monitoring of 3D CSEM Data 

46 

 

 

 

              (a)   0E (between 
0t and 1t ) (b) 

0 (between 
0t and 1t ) 

 

             (c)   
1E  (between 

0t and
2t ) (d) 

1 (between 
0t and

2t ) 

 

            (e)   2E (between 1t and
2t ) (f) 

2 (between 1t and
2t ) 

Figure 5.8: Time- lapse Magnitude (left panel) and phase (right panel) for anomalous field; (a) - (b) 

before; (c) - (d) after 5 years, and; (e) - (f) after 10 years of production for model 2 with 

conductivities of 0.38 S/m (water) and 0.28 S/m (hydrocarbon). 
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                     (a)   RA   (between 
0t and 1t )                            (b)   RA (between 

0t and
2t )           

   

 

                                                        (c)   RA   (between 
2t and 1t ) 

Figure 5.9:  The plots for amplitude ratio between the repeat and the base anomalous electric field for 

model 2 containing  water and hydrocarbon with conductivities 0.38 S/m and 0.28 S/m, respectively 

before and during production for the Born, TMA, and EBA.    

From figure 5.9, the Born approximation tends to have  higher amplitude ratio than the EBA 

and TMA. The ratio like the magnitude, decreased as the water front moved to the right of the 

reservoir. The amplitude ratio irrespective of the approximation, is used to locate the 

presence of the reservoir where the ratio is high.    

The two models have been compared and found out that the errors in the Born and the 

Extended Born approximations relative to the TMA decreased when a relatively larger model 

with bigger grids was considered compared to the smaller model. The magnitude also 

reduced when a smaller model was considered. Therefore, while modeling the effort should 

not only be on the number of grid cells but also on the size of the reservoir in addition to the 

grid volume already discussed in sections above. 
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5.2 Inverse Theory  

In geophysical practice, inversion is a set of methods used to extract useful inferences about 

the model parameters from geophysical measurements, that is; electromagnetic field 

behaviors. According to Martin Čuma, Masashi Endo et al. (2008), the theory basically 

involves the minimization of the misfit between observed field data and data calculated by 

forward model based on structural properties from the inversion. It aims at; (1) organizing the 

techniques to bring out their underlying similarities and pin down their differences; and  (2) 

dealing with the fundamental question of the limits of information from given data (Menke 

1989).  

Inverse problem 

 

 

5.2.1 Least Squares Solution 

This method estimates the solution of an inverse problem by finding the model parameters 

that minimize a particular measure of the length of the estimated data,
estd  (Menke 1989). The 

least squares method uses the 2L -norm to quantify the length and can be easily extended to 

the general linear inverse problem. The total prediction error or the misfit is defined (Menke 

2012) as 

    
TT

err A A   E e e d m d m  
( 5.6 ) 

 

In index notation, the total prediction error is given as, 

 A A
N M M

err i ij j i ik k

i j k

d m d m
  

    
  

  E  
( 5.7 ) 

 

By expanding equation (5.7) and reversing the order of summation, 

 AAA 2
M M N M N N

err j k ij ik j ij i i i

j k i j i i

m m m d d d      E  
( 5.8 ) 

 

To minimize equation (5.8) the total error with respect to qm , one of the model parameters, 

 0err

q

E

m





is computed (Menke 2012), as 

  2 A A 2 A
M N N

err
k iq ik iq i

k i iq

E
m d

m


 


   , 

( 5.9 ) 

 

Data Model Estimates of model parameters 
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with im  and jm  as the independent variables, and their derivative is zero unless for i j . 

By writing equation (5.9) in matrix notation it then follows that, 

 0T T A A Am d  ( 5.10 ) 

 

where T
A A is a square 3 3N N  matrix that multiplies a vector m  of length 3N ; T

A d is a 

vector of length 3N. Thus, equation (5.10) is a square matrix equation for the unknown model 

parameters.  If the inverse of T
A A  exists, then 

 1(  )T T

est

 A A Am d  ( 5.11 ) 

 

with 
estm the least squares solution for an inverse problem that has no exact solution. This 

method fails for problems with nonunique solutions. The least squares solution can take on 

any of the following criterion;  

a) Underdetermined problems when there are more unknowns than data,  

b) Evendetermined with just enough information to determine the model parameters, 

c)  Overdetermined problems when too much information is contained in the equation

   Am d . The least squares method is employed in this case to select the best 

approximate solution.  

5.2.2 Tikhonov Regularization  

This is one of the most successful and most popular regularization methods to solve discrete 

ill-posed problems with error-contaminated data such as the Fredholm Integral Equation. The 

Tikhonov regularized minimum norm solution of equation    Ad m , is the vector 
nm   

that minimizes the expression (Hansen 2010), 

 2 22

2 2
 Am d m  ( 5.12 ) 

 

with   0  the regularization parameter that controls the weight between the two ingredients 

of the criterion function. According to (Hansen 2010); 

a)  The first term- 
2

2
Am d  measures the goodness-of-fit; that is, how well the solution 

m predicts the given (noisy) data d . When the term is too large, m is a poor solution.  

b) The second term- 
2

2
m  measures the regularity of the solution. If the norm of m can 

be controlled, then the large noise components can be suppressed.  

c) The balance between the two terms is controlled by the factor
2  . The larger the   , 

the more weight is given to the minimum of the solution norm,
2

2
m  and thus the 

regularity of the solution. For small   , more weight is given to fitting the noisy data, 

resulting in solutions that are less regular. 

For arbitrary vectors, the Tikhonov problem in equation (5.12) can be reformulated (Hansen 

2010) as 
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2

min
0m 

   
   

   

A d
m

I
 

( 5.13 ) 

 

which clearly indicates a linear least squares problem. The normal equations ( 5.13) (Hansen 

2010), takes the form 

 

0

T T

m
  

       
       

       

A A A d

I I I
 

( 5.14 ) 

 

The equation above can then simplify to 

 2( )T T A A AI m d  ( 5.15 ) 

 

And the estimated model parameter can be obtained (Hansen 2010, Menke 2012) as  

 2 1( )T T

   A A Am I d  ( 5.16 ) 

 

5.2.3 Regularization Parameter 

 

Since the solution of an ill-posed inverse problem may result in unstable, unrealistic models, 

the regularization theory provides guidance for overcoming this difficulty (Zhdanov 2009). 

Any regularization algorithm is based on the approximation of the non-continuous inverse 

operator 1  
A by the family of continuous inverse operators  1




A d  that depend on the 

regularization parameter   . The regularization parameter controls the relationship between 

the regularization and perturbation errors. The choice of the regularization parameter   0  , 

is not an easy task (Hansen 2010); and the method for choosing the regularization parameter 

should seek to minimize the errors in the regularized solution. It should however be noted 

that, both the perturbation errors and the regularization errors are always present in the 

regularization solution and their size depends on the regularization parameter (Hansen 2010). 

 

5.2.4 L-Curve Method 

 

One way of obtaining the regularization parameter is the use of the L-curve method. The L-

curve is a parametric plot of (
2

2
Am d , 2  m‖ ‖ ), where

2

2
Am d , measures the size of the 

regularized solution, and 2  m‖ ‖ the corresponding residual (P. C. Hansen and O'Leary 1993, 

Hansen 2010). As noted in (P. C. Hansen and O'Leary 1993), the L-curve has a distinct L-

shaped corner located exactly where the solution    changes in nature from being dominated 

by regularization errors (flat part) to being dominated by the errors in the right side (vertical 

part).  

The L-curve method considers the computation of the corner being a well-defined numerical 

problem, and this method is not “fooled” by correlated errors (P. C. Hansen and O'Leary 
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1993). The corner of the curve can be visualized in two ways; 1) as a point closest to the 

origin; 2) as a point on the curve where the curvature is a maximum. 

When a graph is plotted in linear scale, it becomes difficult to inspect its features because of 

the large range of values for the two norms. However, to distinguish the signal from the 

noise, the log-log scale is used (Hansen 2010). This scale also emphasizes “flat” parts of the 

L-curve where the variation in either
2

2
Am d  or 2  m‖ ‖  is small compared to the variation 

in the other variable, thus emphasizing the corner of the curve. 

5.2.5 Implementation of Inversion 

 From the general discrete linear equation given (Menke 2012) as, 

 d Am , 
( 5.17 ) 
 

where  

  1 2, ,...,
T

N     d E E E E  
( 5.18 ) 
 

  1 2, ,...,
T

M     m σ σ σ σ   

For electromagnetic modeling, equation (5.17) is treated as, 

   E A σ  ( 5.19 ) 

 

where Eand σ are respectively, the data and model parameters for the anomalous electric 

field and anomalous conductivity. And A is an operator obtained after multiplying the 

background field with the Green’s tensor for the scattering volume. 

During inversion, the main aim is to obtain the estimates of the model parameters given the 

observed data. Therefore, equation (5.19) then becomes, 

 H  σ A E  
( 5.20 ) 
 

where 
H

A the generalized inverse operator is given as, 

 

1

2 1

;

( ) ;

H

T T








 


 I

A

A

A A A

 

 

( 5.21 ) 
 

In electromagnetic inversion the solutions are always non unique; therefore, the generalized 

operator matrix is considered  to take the form, (Menke 2012) 

 2 1( )H T T  A IA A A  
( 5.22 ) 
 

if inverse exists 

elsewhere 
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where  is the regularization parameter.  For implementation of the inverse of the 

electromagnetic fields, equation (5.20) takes the form 
2 1( )T T

    IAm A A d from equation 

(5.16), where m are the estimated model parameters which need to be calculated. 

 

5.3 Inversion of CSEM Data 

The actual detection of a potential petroleum reservoir is achieved through inversion of the 

EM data acquired in the receivers (Bakr and Mannseth 2009). Anomalous electric field for 

the Born, TMA and EBA were considered for different contrasts when a reservoir was under 

production. Inversion of CSEM data set acquired at each stage of production was 

independently inverted. The Born inversion was done to test the forward modeling data from 

Born, T-matrix and Extended Born approaches, (Born-Born, TMA-Born and EBA- Born). 

5.3.1 Model 3  

From the discretization of the integral equation under the different approximations, equation 

(3.37), (3.53), and (3.73) were obtained in chapter 3 for Born, TMA and EBA, respectively. 

The model parameter  m , data parameter E d and b

rvA G E  are related by the 

expression   Ad m . The parameters from sections above were considered but now using a 

grid structure with 403 receivers in total that are arranged in 13 rows each with 31 receivers. 

The reservoir still had 30 30 1   cubic grids. As noted in Bhuyian, Landrø et al. (2012), the 

grid geometry data facilitates mapping of modeled time-lapse anomalies. Thus the solution 

has more model parameters than the data parameters leading to nonuniqueness of the inverse 

problem. The regularization parameter is therefore important since the solution is non-unique 

and the Tikhonov regularization parameter was used. The study was limited to a linear 

inversion (Born) at the expense of the non-linear one. The EMforward.m and EMinversion.m 

were used for the forward and inverse modeling schemes.  

The monitoring was divided into three different contrasts (low, moderate and high) to 

compare the results from the reservoir before and during production. Low, moderate and high 

contrasts were considered as 0.05 S/m, 0.25 S/m and 0.49 S/m, respectively for the 

hydrocarbon while keeping that of the injected fluid constant (0.5 S/m) as the background.  

The figures 5.10, 5.12, and 5.14, represent the contrast for the true model (left panel), and the 

Born inversion on the Born (second panel), the EBA (third panel), and the TMA (right panel) 

data before and during production. Figures 5.11, 5.13, and 5.15 represent the Born inversion 

on synthetic data generated using the Born (left panel), the Extended Born (middle panel) and 

the T-matrix (right panel) approximations. For low contrast before production, all the 

approximations agree since the hydrocarbon was the only pore-filling fluid in the reservoir 

(figure 5.10). There were no noticeable differences between the true and inverted models for 

a particular stage of production. This therefore implies that all the approximations agree for 

relatively small contrasts. Figure 5.11 shows results of contrast for the true and estimated 

model parameters which were also seen to give similar results for a particular production 

period. As the contrast increased (figure 5.12), distorted inverted images were observed for 
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both TMA and EBA. True and estimated model parameters gave similar values as shown in 

figures 5.13. The TMA gave better estimate results than the EBA consistent with the 

observation when the magnitude was plotted. For higher contrasts (figure 5.14), the T-matrix 

and the Extended Born failed before and after 5 years of production but gave results after 10 

years of production. This feature exhibited with the T-matrix and the Extended Born is quite 

unique in monitoring of fluid injection, hydrocarbon storage (CO2) and Enhance Oil 

Recovery.  

Therefore, the TMA and the EBA could be better estimates of the water front as the 

production of hydrocarbon progresses. This is the same technique used in monitoring of the 

CO2 storage and leakages within the reservoir.  For all the Born inverted data to generate the 

estimated model, a more realistic model is produced than the simplified true model that was 

assumed since they indicate a transition zone (where both fluids exist). This is normally what 

happens during water flooding. It should be noted from figure 5.10 that the Born shows a 

significant transition zone than the TMA and the EBA approximations. Lien and Mannseth 

(2008) noted that the quality of the signal is influenced by the errors in the measured fields. 

There was a lot of noise that was simulated into the code that made the prediction of the good 

model a difficult. The need to add synthetic noise in the data is need to mimic the actual data. 

The EBA gave better results as the estimated model parameters matched closely the predicted 

as the depletion of the hydrocarbon proceeded.  
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                                 (a)
truem at 

0t                                             (b)
estm (Born) at 

0t  (c) 
estm ( EBA) at

0t  (d) 
estm (TMA) at 

0t  

 

                                   (e)
truem at 1t  (f)

estm (Born) at 1t  (g) 
estm ( EBA) at 1t  (h) 

estm ( TMA) at 1t  

 

(i)
truem at

2t                                    (j)
estm (Born) at

2t                                             (k) 
estm (EBA) at

2t                            (l) 
estm (TMA) at 

2t  

Figure 5.10 : Plots for true (left panel) and inverted synthetic data using Born inversion on Born (second second), EBA (third panel) and TMA(right panel) for a reservoir 

before (a - d), after 5 years (e -h ) and after10 years (i- l) of production  for low contrast (-0.05 S/m). 
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Figure 5.11:Born inversion on synthetic data generated using Born, EBA and TMA .The plots indicates the true (blue line) and estimated (red line) model parameters before 

(a - c), after 5 years( d - f) and after 10 years (g - i) of production  for low contrast (-0.05 S/m). 
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Figure 5.12: Plots for true (left panel) and inverted synthetic data using Born inversion on Born (second second), EBA (third panel) and TMA(right panel) for a reservoir 

before (a - d), after 5 years (e -h ) and after10 years (i- l) of production  for moderate contrast (-0.25 S/m). 
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Figure 5.13:Born inversion on synthetic data generated using Born, EBA and TMA .The plots indicates the true (blue line) and estimated (red line) model parameters before 

(a - c), after 5 years( d - f) and after 10 years (g - i) of production  for moderate contrast (-0.25 S/m). 
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Figure 5.14: Plots for true (left panel) and inverted synthetic data using Born inversion on Born (second second), EBA (third panel) and TMA(right panel) for a reservoir 

before (a - d), after 5 years (e -h ) and after10 years (i- l) of production  for high contrast (-0.49S/m). 
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Figure 5.15: Born inversion on synthetic data generated using Born, EBA and TMA .The plots indicates the true (blue line) and estimated (red line) model parameters 

before(a - c), after 5 years( d - f)and after 10 years (g - i) of production  for high contrast (-0.49 S/m).  
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6 Discussion and Conclusion 

 

6.1 Discussion 

In modeling, the reservoir parameters affect the solution of the approximation considered to 

the integral equation. The synthetic data was modeled numerically using MATLAB codes for 

approximations to the integral equation developed for Extended Born, T-matrix and the Born 

modified from Stav (2010). The hydrocarbon reservoir always have very low conductivity 

values compared to its background, thus having negative contrast conductivity (Zhdanov 

2009).  It has been discussed in chapter 4 how the different parameters affect; (1) the 

magnitude and phase of the anomalous electric field; (2) the validity of the Born, Extended-

Born and T-matrix approximations, and; (3) the nature of the solutions obtained. It is true that 

the magnitude of the anomalous electric field increases with increase in the contrast. The T-

matrix and Extended Born give better results than the Born as contrast increases. The TMA 

and EBA have the T-matrix and the depolarization tensors that are non-linear in contrast; 

accounting for the increase in magnitude than the Born that is linear. It has also been shown 

that the T-matrix and Extended Born approaches to the integral equation approximation for a 

large number of grid cells are computationally time consuming since there is need to invert 

larger operator matrices.   

For a reservoir with fixed dimensions as discussed in chapter 4, the change in the grid size 

implies a change in the number of grid blocks. The grid size is inversely proportional to the 

number of grid blocks, that is 

 1v
N

   ( 6.1 ) 

 

where
1 2 3v dL dL dL    is the volume of the grid block, and 

1 2 3N N N N   is the number 

of the grid cells in the x-, y- and z-directions, respectively. Equation (5.1) after removing the 

proportionality sign reduces to  

 V
v

N
   

( 6.2 ) 

 

where V is the dimensions of the reservoir model considered. Therefore, a decrease in the 

grid size implies an increase in the number of grid cells. The number of the grid cells affect 

the computation time and in this thesis, the size of the grid cells was could not be reduced 

below 
325 25 25m  due to the limited storage capacity and time for the computer used for 

the models. When the number of grid cells for a reservoir with fixed dimensions increase, the 

resolution will be very good at the expense of their variance. A balance between resolution 
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and variance is needed depending on the aim of the modeling. Therefore during the 

hydrocarbon exploration and data inversion, to obtain good results the number of grid cells 

must be increased depending on the specification of the computer since it is memory 

consuming and requires more computation time for a larger number of grid blocks. The 

reservoir dimension affects the number of grid cells for fixed grid size. For the code 

developed since it involves computing Green’s function for all approximations and the large 

inverse matrix for the T-matrix which are memory consuming, it was limited to N<1000 on a 

laptop with RAM 8.00GB, i5-4200u and processor 2.30 GHz. 

It has been found that all the three approximations give the same results (in amplitude and 

phase) for small contrast. From equation (3.45), the first term is considered in comparison 

with the higher order terms for small contrasts in updating the scattering field for the 

Extended Born approximation. Therefore, the scattering tensor will be approximated as,  

 
 

1 2

0

... k

k

I I I I   






        , 
( 4.3 ) 

 

 where I , as the contrast tends to zero ( 0  ).  

As noted from equation (3.66), the T-matrix will be approximated as T   for small 

contrasts. This therefore implies the scattering fields will be approximated by the background 

field since equation (3.53) and (3.73) will reduce to equation (3.37) which is the Born 

approximation. For moderate and high contrasts, T- and  - operators are non-linear in the 

contrast and will now have some small additive terms which modify the field in the scatterer 

from that of Born. The Extended Born dominates for higher contrasts at the expense of the T-

matrix due to the T-operator terms in the TMA being reduced by the multiplying contrast 

factor (  ) when 1   depending the conductivity of the surrounding layers. 

Heterogeneity has been noted to heavily affect both the magnitude and phase a feature that 

can be used to discriminate the fluids in the reservoir. 

 

6.2 Conclusion 

The computational time for TMA approximations is comparable with that required for the 

Born approximation, although the new approximate solutions are much more accurate. The 

developed approximations of the electromagnetic field can always be used as effective tools 

for fast 3D forward modelling. It has been shown that the Extended Born is a better 

approximation compared to the Born in estimating the electric field within the reservoir for 

appropriate parameters. This is true because the Extended Born approach considers the total 

electric field, in the interior of the scatterer to be the result of the application of a tensor on 

the incident electric field, as opposed to the background field only (Abubakar and Habashy 

2005). However, when the T-matrix was considered in addition to the Extended Born in 

estimating the solution of the integral equation, it was found out that the T-matrix is better 

solution and it can be considered to calibrate the other approximations. 
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The numerical modeling results herein presented do prove that the modeling based on the 

Green’s function methods to the integral equation is correct. However, it has been found that 

much of the computational time for running the code is spent on the computing of the 

anomalous electric field since it involves a linear system with a dense coefficient matrix 

which verifies (Bakr and Mannseth 2009) findings. Therefore, while modeling the grid 

volume must be chosen with great care since it plays an important role in determining the 

number of the grid cells, size of the co-efficient matrix, resolution and sensitivity of the 

reservoir the volume of the grid cells.  

Independent of the approximation to the integral equation considered, it is generally true that 

they will agree for small contrasts and grid sizes even though their amplitudes will be small 

too. It has been found that the error for approximating the integral equation is higher when 

the Born approach is used instead of the Extended Born relative to the T-matrix approach 

which roughly approximates the integral equation. Therefore, using the Extended Born 

instead of the Born reduces the error much more. The numerical results suggest that the T-

matrix and the Extended Born approaches are relatively accurate for moderate to high 

contrasts.  

The results demonstrate that the T-matrix and Extended Born methods as approximations to 

the integral equation based on the Green’s function can improve on the sensitivity of the 

reservoir a fact that can effectively be used in the marine CSEM to discriminate among the 

different pore-filling fluids in the subsurface due to the higher contrasts that exist within 

them. Also during production and storage monitoring, the lateral changes must be in position 

to be noted over time due to variation in the contrasts in the reservoir. 

The inversion algorithm using a time-lapse CSEM monitoring example has been tested. 

Sensitivity analysis examples have been done using Born inversion on forward modeling data 

from Born, TMA and EBA; and results show that 3D Born approximation is an effective 

approach used to recover the synthetic data. Time-lapse CSEM approach is especially useful 

to identify the water flooded zone in the monitoring process.  

 

6.3 Future work 

The integral equation approximations studied have been applied to a homogeneous and a 

simplified heterogeneous model which does not truly represent the subsurface geometry. 

There is therefore the need to update the Green’s function to consider the layered earth model 

with varying conductivities. For a heterogeneous model the T-matrix approximation needs to 

be updated by modifying its background Green’s function. This modification has been 

included in the appendix A. The source location and number affects the EM signal that maps 

the subsurface. It is important that several sources are considered in modeling and inversion 

of CSEM data. 

While carrying out data inversion, linear inverse solutions (Born inversion) have been 

considered. But it could be quite interesting if the T-matrix and Extended Born inversions 

could be implemented which are ideally non-linear in nature. The iterative extended Born is 
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suggested to linearize the Extended Born approximation that is non-linear after a few 

iterations depending on the initial guess of contrast and background field. This has been 

included in the appendix. 

In inverse modeling, the number of grids in the reservoir play an important role  in the 

recovery of the true model. A different approximation scheme needs to be developed to 

address the limitations of considering regular grids replaced by irregular ones since the 

reservoirs do not assume regular shapes. This would greatly reduce on the computation errors 

of using an approximation of the reservoir on the assumption of being regular. 
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Appendix 
 

As suggested for future work, the bckground field can be updated to prvide better results for 

using T-matrix approximation in forward and inversion. 

Background Green’s Function for T-matrix 

In a heterogeneous model, the background Green’s tensor needs to be modified. The 

background Green’s function for T-matrix in a heterogeneous media can be derived from 

equation (3.65) as 

 b b b o b  T σ σ G T  
(1) 

where b
T and bσ are the T-matrix  and anomalous conductivity in the homogeneous 

background media. By re-arranging equation (6.1), 

  
1

b b o b


  T I σ G σ  
(2) 

 

The background green’s tensor is written as 

 b o o b o G G G T G  
(3) 

 
o

G is the Green’s tensor in the homogeneous background media. By substituting equation 

(6.2) into equation (6.3)  

  
1

b o o b o o


  G G G I σ G G  
(4) 

 

where b
G is the new background Green’s tensor for the heterogeneous media. This new 

tensor is now used to compute the T-matrix in equation (3.66). 

 

The Iterative Extended Born Approximation 

The total electric field inside the reservoir for the Extended Born approximation has been 

found in discretized form to be written as 

 1 0b b b

i i ij jk kl l  E E G σ Γ E  (5) 

 

For iterative Extended Born approximation, the total field has to be updated. Similar to the 

iterative Born approximation but keeping the concept of Extended Born approximation in 

every iteration, we get for the general iterative form (Tehrani and Slob 2010) as, 



 

Matlab Scripts 

 

 

 

 1n b b n n b

i i ij jk kl l

  E E G σ Γ E  (6) 

 1,2,3,...n  , is the number of iterations performed. 

The Born approximation being a primary field is considered as the first (initialization) term 

for the series. Though equation is not a proper series and does not converge, it however 

improves the total field in a few iterations. 

 1
1n b n

kl lj jkI


    Γ G σ  (7) 

 
 

This depends on the contrast and the depolarization tensor. So, with an initial value for 

contrast, the series will depend on the tensor that has to be updated for each iterate. In 

Matlab, only the depolarization tensor needs to be updated for each iterate. These iterations 

make the EBA to behave as a linear equation which can then be used for inversion of data.  

Matlab Scripts 

These codes combine the Born, Extended Born and T-matrix approximations to the integral 

equation for a geo-electrical model with both homogeneous and heterogeneous conductivity 

contrasts for forward and inverse modeling. For homogeneous model, sigma is a constant. In 

these codes, only the anomalous E-field is considered in the computation of the amplitude 

and phase which are obtained by finding the L-2 norm of the real and the imaginary parts of 

the anomalous E-field and by calculating the arc tangent of the quotient of the imaginary and 

the real parts of the E-field. The codes are implemented to cater for 2D, 3D and 4D modeling 

for both isotropic and anisotropic media. 

Gvv and are the Green's tensors for the background and the scattering domain. The Gvv is 

computed for the interaction in absence of the Scatterer; while G_rv is computed in the 

presence of the scatterer. L1, L2, and L3 are the dimensions of the reservoir having N1, N2, and 

N3 grid cells with dL1, dL2, and dL3 as the sizes of the grid cells; and S1, S2, and S3 are the 

initial positions of the scattering domain in the X, Y and Z directions, respectively.  

 1) For Born approximation,  

  b

a rvE G E dsigma  ; where Ea and E
b
 are the scattering and background electric fields,     

dsigma is the conductivity contrast of the scatterer.   

                                   

 2) For Extended-Born approximation 

  a rv hE G dsigma E   ; where 

  b

hE Gamma E  ;  

       .vvGamma inv I G dsigma    

when Eh is the modified background E-field to cater for multiple scatterings.  

 3) For T-matrix approximation 
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   ;b

a rvE G T E    with 

      vvT inv I dsigma G dsigma    

From the computations for the different approximations, the Magnitude and phase against 

offset were plotted for these approximations for comparison under different reservoir 

parameters. 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EMForward.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; close all; 
global dV sigma_0 

  
% Isotropic background medium with conductivity equal to one 
sigma_0 = 0.5;  
% Receiver positions   
max_offset = 6000;  
r1= -max_offset/2;   
r2 = 0;   
rows = 13; 
Mx = 31; 
dx = max_offset/Mx; 
My = rows;  
receivers = Mx;  

  
M = Mx*My; 
R = zeros(3,M); 
t = 0; 
for rr = 1:My 
  for mm = 1:Mx 
     t = t+1; 
     R(1,t) = r1 + max_offset*(mm-1)/(Mx-1); 
     if rows > 1 
        R(2,t) = r1 + max_offset*(rr-1)/(My-1); 
     else 
       R(2,t) = 0; 
     end 
     R(3,t) = 0; 
   end 
end 

  
x = linspace(r1,r1+max_offset,receivers); % offset 

  
% Reservoir Dimensions 
L1 = 1500;  
L2 = 1500;  
L3 = 50; 
N1 = 30; 
N2 = 30;  
N3 = 1; 
N = N1*N2*N3; 
dL1 = L1/N1; 
dL2 = L2/N2;  
dL3 = L3/N3;  

  
dV = dL1*dL2*dL3; 
s3 = 850;  
S = zeros(3,N); 
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sigma11_viz = zeros(N1,N2); 
t = 0;  

  
% Scattering Positions 
for cc = 1:N3 
   for bb = 1:N2 
      for aa = 1:N1 
         t = t + 1; 
         if N1 > 1 
            S(1,t) = -L1/2 - dL1/2 + aa*dL1; 
         else 
            S(1,t) = 0;  
         end 
         if N2 > 1 
           S(2,t) = -L2/2 - dL2/2 + bb*dL2;  
         else 
            S(2,t) = 0; 
         end 
         S(3,t) = s3 + (cc-1)*dL3; 

         
         b1 = 0.20*N2 +0.3*N2*sin(pi*bb/N2); 
         %b1 = 0; % for o% saturation 
         if aa < b1 
            sigma(1,1,t) = 0.5; 
         else 
            sigma(1,1,t) = 0.01;      
         end 
         sigma(2,2,t) = sigma(1,1,t);  
         sigma(3,3,t) = sigma(1,1,t); 
         sigma11_viz(aa,bb) = sigma(1,1,t); 

         
      end 
   end 
end 

  

  
%% Green's Tensor 
G4 = zeros(3, 3, M, N); % scattering tensor 
for p = 1:M 
   for q = 1:N 
      Y = R(1:3,p) - S(1:3, q);  
      tmp = greens(Y); 
      for a = 1:3 
         for b = 1:3 
            G4(a,b,p,q) = tmp(a,b); 
         end 
      end 
   end 
end 

  
G_rv = zeros(M, 3*N);  
for a = 1:3 
   for b = 1:3 
      for p = 1:M 
         for q = 1:N 
            I = (a-1)*M + p; 
            J = (b-1)*N + q; 
            G_rv(I,J) = G4(a,b,p,q); 
         end 
      end 
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   end 
end 

  
%% 
% Background Electric Field  
source_strength = 100*1000;  
source_vector = [source_strength 0 0]'; 
Eb_born = zeros(1,3*N); 

  
for k = 1:3 
   for t =1:N 
      K = (k-1)*N+ t; 
      G_VS = greens(S(1:3,t));  
      tmp= G_VS*source_vector; 
      Eb_born(K) = tmp(k); 
   end 
end 
Eb_born = transpose(Eb_born); 

  
Eb_diag = zeros(3*N,3*N); 
for K = 1:3*N 
   Eb_diag(K,K) = Eb_born(K);  
end 

  
 % anisotropic background field  
 Eb = zeros(N,3);  
 for k = 1:3 
     for p =1:N 
         G_VS = greens(S(1:3,p));  
         tmp = G_VS*source_vector; 
         Eb(p,k) = tmp(k); 
     end 
 end 

  

  
V = zeros(3*N,3*N); % anomalous conductivity 
dsigma = zeros(3,3);  
for a = 1:3 
   for b = 1:3 
      for p = 1:N 
         for q = 1:N 
            I = (a-1)*N + p; 
            J = (b-1)*N + q; 
            if p == q 
               delta_pq = 1; 
            else 
               delta_pq = 0; 
            end  

           
            dsigma(a,b) = sigma(a,b,p) - sigma_b(a,b); 
            V(I,J) = dsigma(a,b)*delta_pq*dV;  

             
         end 
      end 
   end 
end 
Vt = diag(V);  

  
G4 = zeros(3, 3, N, N); % background greens tensor 
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for p = 1:N 
   for q = 1:N 
      Rx_Sx = S(1:3,p) - S(1:3,q); % receiver -scatterer distance 
      tmp = greens(Rx_Sx); 
      for a = 1:3 
         for b = 1:3 
            G4(a,b,p,q) = tmp(a,b); % green's tensor with 4 indices 
         end 
      end 
   end 
end 

  
G_vv = zeros(3*N, 3*N); 
for a = 1:3 
   for b = 1:3 
      for p = 1:N 
         for q = 1:N 
            I = (a-1)*N + p; 
            J = (b-1)*N + q; 
            G_vv(I,J) = G4(a,b,p,q); 
         end 
      end 
   end 
end 

  
%% EBA computation 

  
 G41 = zeros(3,3,N,N); % 4 tensor Green's  
 delta_s = zeros(3,3,N); 

   
  for p = 1:N 
   for q = 1:N 
       ss = S(1:3,p) - S(1:3,q); % scatterer receiver distance 
       tmp = greens(ss); 
     for a = 1:3 
       for b = 1:3 
           I = (a-1)*N + p; 
           J = (b-1)*N + q; 

    
            if a == b 
                delta_ij = 1;  
            else 
                delta_ij = 0; 
            end 
     dsigma(a,b) = sigma(a,b,p) - sigma_b(a,b); 
    delta_s(a,b,p) = dsigma(a,b)*delta_ij*dV;% conductivity for each grid 

block 

   
    G41(a,b,p,q) = tmp(a,b); % Green's funtion for each grid block    

           
       end 
     end 
   end 
  end 

  
 AA = eye(3); 
 BB = eye(3); 
 Gamma = zeros(3,3,N); 
 ramda = zeros(3,3,N); 
 E = zeros(N,3); 
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 Eh = zeros(1,3*N); 

  
for p = 1:N 
    Ebb(1) = Eb(p,1); 
    Ebb(2) = Eb(p,2);  
    Ebb(3) = Eb(p,3);  
    Gamma = zeros(3,3); 
    for q = 1:N 
          AA = G41(:,:,p,q); 
          BB = delta_s(:,:,q); 

         
      % A vector of tensors 
          Gamma = AA*BB + Gamma;  

       
      % inverse Scattering or Depolarizing tensor 
          ramda = inv(eye(3)- Gamma);        
    end 
     tmp = ramda*transpose(Ebb); 

   
    E(p,1) = tmp(1);  
    E(p,2) = tmp(2);  
    E(p,3) = tmp(3); 

      
end 

  
for a = 1:3 
    for p = 1:N 
        I = (a-1)*N + p; 

         
     % modified field for the Scattering domain 
        Eh(I)= E(p,a);  
    end 
end 
Eh = transpose(Eh); 

  
Eh_diag = zeros(3*N,3*N); 
for K = 1:3*N 
   Eh_diag(K,K) = Eh(K);  
end 

  
%% Computation of Approximations 

  
II = eye(3*N);  
T = V*inv(II - G_vv*V);  
%T = V;  
db2 = G_rv*V*Eb_born; 
dT2 = G_rv*T*Eb_born;  
dbe2 = G_rv*V*Eh; 

  
% Noise level 
for nr = 1:length(db) 
    db(nr) = db(nr)*(1 + 0.000*rand); 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EMinversion.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%EMforward 

  
A0 = G_rv*Eb_diag;  

  
eps = 1e-5; 
it = 0;  
inversion_error = 1;  
data_error = 1;  

  
while data_error > 1E-5 && it < 100 
   it = it + 1 
   eps = eps*0.1 

    
   % This is the inversion! 
   V_inv = inv(real(A0'*A0) + eps*eps*II)*real(A0'*db); 

    
   data_error = norm(db - A0*V_inv)/norm(db);  
   inversion_error = norm(V_inv - Vt)/norm(Vt); 

    
   data_err(it) = data_error;  
   inv_err(it) = inversion_error;  

    
   norm_m(it) = norm(V_inv);  
   norm_E(it) = norm(db - A0*V_inv); 
   m_inv(it, :,:) = V_inv;  
end 

  
[aa bb] = min(inv_err);  

  
Vtp = Vt/dV;  
V_invp = m_inv(bb, :,:)/dV;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

greens.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function G = greens(x); 
global dV sigma_0 

  
 I0 = 1; 
 dl = 1; % Modified by Morten  
 f = 0.25; 
 omega = 2*pi*f; 
 mu0 = 4*pi*1E-7; 

  
 k = sqrt(1i*omega*mu0*sigma_0); 
 r = norm(x); 

  
 if r > 0.1 
 g = 1i*omega*mu0*I0*dl*exp(1i*k*r)/(4*pi*r); % Green's Scalar function 

  
 E = 1/(k^2)*1/(r*r)*g; 
 Et = E*(k*k*r*r + 1i*k*r - 1); 
 Ert = E*(-3*1i*k + 3/r - r*k*k)*(1/r); 

  
 Exx = Ert*x(1)*x(1) + Et; 
 Exy = Ert*x(1)*x(2); 
 Exz = Ert*x(1)*x(3); 
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 Eyx = Exy; 
 Eyy = Ert*x(2)*x(2) + Et; 
 Eyz = Ert*x(2)*x(3); 

  
 Ezx = Exz; 
 Ezy = Eyz; 
 Ezz = Ert*x(3)*x(3) + Et; 

  
G = [ Exx Exy Exz; Eyx Eyy Eyz; Ezx Ezy Ezz ]; 
 else 
     G = zeros(3,3);  
     G(1,1) = (-1/(3*sigma_0*dV)); 
     G(2,2) = G(1,1);  
     G(3,3) = G(1,1);  
 end 

  
end  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


