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Abstract

In this work, we apply techniques in variational optimization to image seg-
mentation. We study three di�erent segmentation models: one is based on
the active contour method, the second is based on a piecewise constant level
set method, and the last uses a continuous max-�ow min-cut model. We ob-
tain signi�cantly better segmentation results in the �rst and the third model
by including an experimental edge detector. The �rst model is a special
case of the minimal partition problem, the second model uses discontinuities
of piecewise constant level set functions to represent interfaces between the
region of interest and the background, and the third model uses a spatially
continuous max-�ow min-cut framework which is a very e�cient method
to segment images. The �rst two models are non-convex and may contain
many local solutions, but the last model is a convex optimization problem
and therefore �nds the global solution.
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Chapter 1

Introduction

Digital image processing is a branch of applied mathematics used to �nd or-
der and pattern in digital images, typically two or three dimensional, and is
de�ned as a discipline in which both the input and output of the process are
images. This process improves the pictorial information for human interpre-
tation and uses the processed image data e.g. for storage and transmission.
Human vision is restricted to the visual band of the electromagnetic (EM)
spectrum, while imaging machines can use almost the whole EM spectrum
ranging from gamma to radio waves. Therefore, digital image processing
covers a wide and varied �eld of applications which includes ultrasound,
MRI, electron microscopy, and computer-generated images. Image restora-
tion, enhancement, recognition, and segmentation are examples of processes
in digital image processing. For example, medical doctors are using MRI and
CT to diagnose diseases. Furthermore, image processing can obtain three di-
mensional information by only using two dimensional input data, a method
called 2D-3D reconstruction [28].

Image segmentation is one of many image processing tasks. This pro-
cess is used when the interest is to extract objects from digital images. In
medical imaging this process is used to locate tumours and measure tissue
volumes, and in automated license plate reading this process is used for tra�c
monitoring and surveillance systems.

In this thesis we focus on three di�erent models of image segmentation
using a variational approach with an experimental edge detector. The pre-
liminaries for this thesis are written in chapter 2. In this chapter we look at
some basics in digital image processing and some optimization methods used
in forthcoming chapters.

In chapter 3 we study a curve evolution technique, Mumford-Shah seg-
mentation and the zero level set of a continuous function to detect objects
in a given image. This model, proposed by Chan and Vese [2], uses active
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2 Introduction

contours and minimizes an energy functional which is a special case of the
minimal partition problem. After formulating the model by level set func-
tions, the associated Euler-Lagrange equation is solved numerically.

The variational approach in chapter 4 is also based on level set method,
but in this method the discontinuities of the piecewise constant level set
functions are the interfaces. The problem is to minimize an energy functional
under a quadratic constraint. This model, by Lie, Lysaker and Tai [3], uses a
piecewise constant level set method applied to Mumford-Shah segmentation,
where the level set functions only converge to the two values 1 or −1.

The models in chapter 3 and 4 are non-convex and therefore they are
not guaranteed to converge to a global minimum. In chapter 5, however, we
study another variational approach, proposed by Yuan, Bae, Tai and Boykov
[4], using a max-�ow and min-cut model in the spatially continuous setting.
This model is convex and solves the associated non-convex problem globally
by using a fast max-�ow based algorithm.



Chapter 2

Preliminaries

In this chapter we �rst look at some basics in digital image processing and
thereafter look at some optimization methods used in this thesis.

2.1 Basics in Digital Image Processing

This section is about some basic concepts in digital imaging, such as the
de�nition of a digital image and pixels, and an introduction to image seg-
mentation by using edge detectors and the level set method.

2.1.1 Digital imaging

An image is de�ned as a two-dimensional function f : Ω → R, where Ω is a
domain of R2 and f(x, y) is either continuous or discrete. In medical imaging
three-dimensional images are also used, e.g in 3D tomography, but in this
work we focus on 2D images. The input variables x and y are the spatial

(plane) coordinates, and the output of f at (x, y) is called the intensity of
the image at that point. If x, y, and the values at f(x, y) are all �nite and
discrete, the image is called a digital image.

Assume that illumination energy is re�ected from an object of a �scene�.
Then a sensor, for instance a digital camera, is used to transform the re�ected
energy into a digital image. When the output of the sensor is a continuous
image, this image needs to be converted into digital form. This process is
done by digitizing the coordinates and the intensity values, which is also
known as sampling and quantization, respectively. The continuous image
can for instance be sampled into a two-dimensional array, f(x, y), with M
rows and N columns. Then (x, y) are the discrete coordinates, also known
as pixels, with integer values x = 1, . . . ,M and y = 1, . . . , N . The number
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4 Preliminaries

of intensity levels, denoted by L, is typically an integer power of 2. The
discrete intensity values, which are assumed to be equally spaced, are in the
interval [0, L − 1]. Intensities with value zero stands for pure black colour
while higher levels of intensity is brighter with L−1 being pure white colour.
For reasons of simplicity, the interval [0, L − 1] is often normalized to [0, 1]
by dividing all intensity values by L− 1. As a consequence, the L intensity
values are no longer integers.

Greyscale & Binary Images

A continuous or discrete image, de�ned by f : Ω → [0, 1] for the domain
Ω ⊂ R2, which only consists of intensity values, is called a greyscale image.
If the image is de�ned by f : Ω → {0, 1}, which means that the image only
consists of black and white colours, it is called a binary image.

Neighbours of a Pixel

Assume that a pixel p ∈ R2 with coordinates (x, y) is given. Then the set of
pixels, given by the coordinates

(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1),

which are the two vertical neighbours and the two horizontal neighbours of
p, is denoted by N (p). The Euclidean distance between the pixel p and its
neighbours is 1.

2.1.2 Image Segmentation

An image segmentation of an image represented by a spatial region Ω, is
the process where Ω is being partitioned into n subregions, Ω1, . . . ,Ωn, such
that:

•
n⋃
i=1

Ωi = Ω,

• Ωi is a connected set for i = 1, . . . , n,

• the subregions Ωi and Ωj are non-overlapping, i.e. Ωi ∩ Ωj = ∅ for all
i, j = 1, . . . , n and i 6= j,

• within each Ωi, the intensity values are varying smoothly and/or slowly
for i = 1, . . . , n,

• the intensity values are varying rapidly for the adjacent subregions Ωi

and Ωj for all i, j = 1, . . . , n and i 6= j.
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Edge Detectors

We call pixels edge pixels if the intensity of an image function changes sud-
denly. When a method detects edge pixels it is called an edge detector. Edges,
de�ned as sets of edge pixels, can be attained by using �rst- and second-order
derivatives. Some edge detectors, which are using the �rst-order derivatives
to obtain the edges, are for instance the gradient operators, the Roberts oper-
ators, and the Sobel operators. The two-dimensional Gaussian function, with
the standard deviation σ,

Gσ(x, y) =
1√

2π σ
e−

x2+y2

2σ2 , (2.1)

can also be used to detect edges. This is for instance done in the Marr-

Hildreth edge detector and the Canny edge detector which uses the Laplacian
and the �rst derivative of the Gaussian function, respectively. For more
details concerning the mentioned edge detectors, see [1].

The edge detector used in further chapters needs to be close to zero at the
edges and larger elsewhere. Therefore, we use an experimental edge detector
given by

g (|∇f(x, y)|) =
a

1 + b |∇ [Gσ(x, y) ∗ f(x, y)]|2
, (2.2)

where the constants a, b > 0, the gradient operator and the convolution
operator is given by ∇ and ∗, respectively, and Gσ ∗ f is the smoothed
version of the image function f . Fig. 2.1 shows the edge detector (2.2) with
di�erent values of σ, a and b.

(a) The original image

(b) σ = 0.5, a = 0.5,
b = 1.

(c) σ = 0.5, a = 1,
b = 0.2.

(d) σ = 0.5, a = 1,
b = 1.

(e) σ = 0.5, a = 1,
b = 50.
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(f) σ = 2, a = 0.5,
b = 1.

(g) σ = 2, a = 1, b =
0.2.

(h) σ = 2, a = 1, b =
1.

(i) σ = 2, a = 1, b =
50.

(j) σ = 5, a = 0.5,
b = 1.

(k) σ = 5, a = 1, b =
0.2.

(l) σ = 5, a = 1, b =
1.

(m) σ = 5, a = 1,
b = 50.

Figure 2.1: Using the edge detector (2.2) with di�erent values of σ, a and b.

Level Set Method

In [6], Osher and Sethain proposed a simple and adaptable method, known as
the level set method, to compute and analyse the motion of a curve C in the
open and bounded subset Ω ⊂ R2. The curve C bounds the region ω ⊂ Ω,
such that C = ∂ω. Now, a velocity �eld ~v is used to �nd the motion of C,
which may depend on time, position, the external physics and the geometry
of the curve. The idea in [6] is to de�ne a Lipschitz continuous function
φ(t, x, y) to represent implicitly the curve C as the set where φ(t, x, y) = 0,
i.e.

C (t) =
{

(x, y) : φ(t, x, y) = 0
}
,

where φ(t, x, y) > 0 inside ω and φ(t, x, y) < 0 inside Ω \ ω. By using the
level set function φ, topological changes are allowed.

The motion of the level set function φ is given by evolving the zero level
set of φ using the desired velocity ~v on C. Hence, the level set equation is
obtained, see for instance [27]:

φt + ~v · ∇φ = 0.

The velocity �eld is written as the sum of the normal vector ~N and tangent
vector ~T , such that ~v = vN ~N + vT ~T with their respective velocity com-
ponents. We are merely interested in moving in the normal direction. As a
consequence, ~T · ∇φ = 0, and the level set equation is rewritten as

φt + vN ~N · ∇φ = 0.



2.2 Selected Optimization Methods 7

Since the unit normal vector ~N =
∇φ
|∇φ|

, we obtain the equality

~N · ∇φ =
∇φ
|∇φ|

· ∇φ =
|∇φ|2

|∇φ|
= |∇φ|.

Hence,

φt + vN |∇φ| = 0.

For the motion by mean curvature κ, which is an outward normal vector, the
normal velocity vN is characterized by vN = −c κ with a constant c ∈ R and

κ = ∇ ·
(
∇φ
|∇φ|

)
.

2.2 Selected Optimization Methods

In this section we describe some consepts of convexity and look at some
optimization methods, such as gradient descent method and the Lagrangian
method.

2.2.1 Convexity

Convex Set

Let S ⊂ Rn be a set, and x and y be two points in S. A line segment of x
and y is denoted by

Jx, yK =
{
αx + (1− α) y

∣∣ 0 ≤ α ≤ 1
}
.

The set S is a convex set if for any pair of points (x, y) of S the line segment
Jx, yK is contained in S.

Convex Function

The real-valued function f : S → R is said to be a convex function if its
domain S ⊂ Rn is a convex set and if, for any two points x, y ∈ S, the
function satis�es the following property:

f(αx + (1− α) y) ≤ α f(x) + (1− α) f(y),

for any 0 ≤ α ≤ 1.
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Global & Local Minimum

Let f : S → R be a real-valued function de�ned on a set S ⊂ Rn.

Global minimum

A point x∗ ∈ S is called a global minimum of the function f if f(x∗) ≤
f(x) for all points x ∈ S.

Local minimum

A point x∗ ∈ S is called a local minimum of the function f if there
exists a neighbourhood N of x∗ such that f(x∗) ≤ f(x) for all points
x ∈ N .

In addition, any local minimum x∗ of a convex function f is a global
minimum of f .

First-Order Necessary Condition [11]
If x∗ is a local minimizer and f is continuously di�erentiable in an open
neighbourhood of x∗, then ∇f(x∗) = 0.

Convex optimization problem

Let f : S → R be a real-valued convex function over a given convex set
S ⊂ Rn. Finding the global minimum x∗ ∈ S of f(x), for all points x ∈ S, is
called a convex optimization problem, i.e.

f(x∗) = min
x∈S

f(x).

2.2.2 Gradient Descent Method

A local minimum point x∗ of a function f : Rn → R can be found by using an
algorithm for unconstrained optimization. This algorithm requires a starting
point x0, which lies at the best close to the minimum point. Starting with
x0, the algorithm creates an iteration sequence {xk}∞k=0, and it terminates
when there is no more di�erence between xk and xk+1, or when xk+1 ≈ x∗.
The next iteration xk+1 is decided by using information about the function
f at xk. Such an iteration is de�ned by

xk+1 = xk + γk pk,

for a chosen step size γk > 0 and a chosen direction pk. The step size γk can
either be a constant for all k or a di�erent scalar at each iteration. If we
choose pk = −∇f(xk), the algorithm is called the gradient descent method,
also known as the steepest descent method. The advantage of this method is
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that it uses additional information about the function f , explicitly ∇f , but
it can be extremely slow on di�cult problems. For more details about the
gradient descent method, see [23].

2.2.3 The Lagrangian Method

Let us now consider a constrained optimization problem of the form

min
x

f(x)

subject to hi(x) = 0, for i = 1, . . . ,m,
(2.3)

where the objective function f : Rn → R and the constraints hi : Rn → R are
continuously di�erentiable functions. By introducing Lagrange multipliers λi,
i = 1, . . . ,m, we can de�ne a Lagrangian function

L(x, λ) = f(x) −
m∑
i=1

λi hi(x).

If x∗ is the local minimum of the problem (2.3) and if the constraint gradients
∇h1(x∗), . . . ,∇hm(x∗) are linearly independent, then there exists a Lagrange
multiplier vector λ∗ = (λ∗1, . . . , λ

∗
m) such that the following conditions are

satis�ed for the point (x∗, λ∗), see for instance [23, 11]:

∇L(x∗, λ∗) = 0,
hi(x

∗) = 0, for all i = 1, . . . ,m.

The Augmented Lagrangian Method

The constrained optimization problem (2.3) can be replaced by optimization
problem only consisting of the objective function f : Rn → R and a penalizing
term. The penalizing term uses each constraint and is positive when violating
the constraints and zero otherwise. Multiplying the penalty term with a large
positive coe�cient, the violations of the constraints become more severe and
force the minimizer of the penalty function closer to the region of feasibility.
The problem is now given as

min
x

{
f(x) +

c

2

m∑
i=1

h2
i (x)

}
, (2.4)

where the penalty parameter c > 0 is penalizing the constraint violations
severely when forcing c→∞.
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Since (2.4) does not quite satisfy the constraints hi(x) = 0 for i =
1, . . . ,m, the augmented Lagrangian function Lc(x, λ) is an improvement
achieved by including an estimate of the Lagrange multiplier vector λ :

Lc(x, λ) = f(x) −
m∑
i=1

λi hi(x) +
c

2

m∑
i=1

h2
i (x).

The augmented Lagrangian function is now used to improve the estimate
of λ such that it will be closer to the optimal Lagrangian multipliers λ∗. Let
us �rst �x λ at the current estimate λk and let c be �xed. By minimizing Lc
with respect to x, the �rst-order necessary condition is used for xk being the
approximate minimizer:

∇Lc(xk, λk) = ∇f(xk) −
m∑
i=1

[
λki − c hi(xk)

]
∇hi(xk) = 0.

Comparing this with the optimality conditions for the Lagrangian method,

λ∗i ≈ λki − c hi(xk)

gives us a formula to update the current estimate λk of the Lagrange multi-
plier vector:

λk+1
i = λki − c hi(xk). (2.5)

This procedure, when �rst minimizing Lc(x, λ) w.r.t. x and then updat-
ing the estimate of λ using (2.5), is called the method of multipliers or the
augmented Lagrangian method.

2.3 Total Variation

Let Ω ⊆ Rn be a bounded open domain. In [20, 21], the total variation of a
function f ∈ L1(Ω) is de�ned as

TV (f,Ω) = sup
ξ

{∫
Ω

f ∇ · ξ dx
∣∣∣ ξ ∈ C1

c (Ω,Rn) , |ξ(x)| ≤ 1 , x ∈ Ω

}
,

where ∇ · ξ =
n∑
i=1

∂ξ

∂xi
is the divergence operator and the space C1

c (Ω,Rn)

containes all continuously di�erentiable functions with compact support. The
function f is said to be of bounded variation if TV (f,Ω) <∞.
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If the function f is continuously di�erentiable on Ω, we can apply the
Divergence theorem, the compact support condition, Cauchy-Schwarz in-
equality, and |ξ(x)| ≤ 1 to see that the integral term in TV (f,Ω) is bounded:∫

Ω

f ∇ · ξ dx = −
∫

Ω

∇f · ξdx+

∫
∂Ω

f ξ · ~n ds

≤
∣∣∣∣∫

Ω

∇f · ξdx
∣∣∣∣

≤
∫

Ω

|∇f | |ξ| dx

≤
∫

Ω

|∇f | dx,

where ~n is the outward normal to the boundary of Ω. Therefore, when

ξ → − ∇f
|∇f |

, we receive

TV (f,Ω) =

∫
Ω

|∇f | dx.

Let u(x) be the characteristic function of ω ⊂ Ω, such that

u(x) =

{
1, if x ∈ ω
0, if x ∈ Ω \ ω.

By the total variation of u(x), the Divergence theorem and Cauchy-Schwarz
inequality, we obtain

TV (u,Ω) = sup
|ξ(x)| ≤ 1

∫
Ω

u ∇ · ξ dx = sup
|ξ(x)| ≤ 1

∫
ω

∇ · ξ dx

= sup
|ξ(x)| ≤ 1

∫
∂ω

ξ · ~n ds ≤ sup
|ξ(x)| ≤ 1

∫
∂ω

|ξ||~n| ds

≤ |∂ω|,

where ∂ω is the boundary of ω with the outward normal ~n, and the length
of the boundary is given by |∂ω|. Choosing ξ = ~n on ∂ω, the total variation
of u over the domain Ω is equal to |∂ω|:

TV (u,Ω) = |∂ω|.





Chapter 3

An Active Contour Method for

Image Segmentation

3.1 The Basic Idea of the Model

Assume u0 is a given image. Objects in the image can be detected by an
evolving curve, subject to contraints from the image. The curve will move
towards the interior normal of the curve and stops at the boundary of the
object. This idea is called an active contour model, also known as a snake
model. Classical active contour models are presented in [12], [13] and [14].
These models are depending on the gradient of the image u0 to stop the
evolving curve. The model suggested by Chan and Vese [2] is independent
of the edges of the input image, and this chapter is based on this Chan-Vese
model.

Let the given image be u0 : Ω → R, where Ω is a bounded subset of R2

with ∂Ω as its boundary, and let the parameterized curve be Λ(s) : [0, 1] →
R2.

The classical active contour model in [12] and [13] suggests minimizing
the following functional:

E snake
1 (Λ) = α

∫ 1

0

|Λ ′(s)|2 ds + β

∫ 1

0

|Λ ′′(s)|2 ds

+ γ

∫ 1

0

g
(∣∣∇u0 (Λ (s))

∣∣) ds, (3.1)

with the parameters α, β, γ > 0 and g is an edge detector function depending
on the gradient of the image u0. The internal energy, given by the �rst two
terms, is a smoothness constraint, as the �rst term represents the length
of the parameterized curve and the second term controls the rigidity of the

13
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moving curve. The external energy, given by the third term, attracts the
contour towards features of the image, e.g. lines and edges. The edge detector
g(|∇u0|) is a positive and decreasing function and depends on the image
gradient of u0. For instance, the edge detector given in (2.2) can be used.
So, the function g(|∇u0|) is zero at the edges and positive in homogeneous
regions.

In order to represent the curve evolution, the level set method and the
motion of mean curvature by Osher and Sethian [6] is used. This method
allows sharp corners and topological changes. Let the curve Λ be given
implicitly by the Lipschitz continuous function φ : Ω→ R:

Λ = {(x, y) : φ(t, x, y) = 0} .
The function φ(t, x, y) represents the evolving curve as the zero level curve
at time t. Moving the curve in the normal direction, where the speed is the
motion by mean curvature κ, we obtain the following di�erential equation:{

φt = |∇φ|κ, t ∈ (0,∞), (x, y) ∈ R2,

φ(0, x, y) = φ0(x, y), (x, y) ∈ R2,

where κ = ∇ ·
(
∇φ
|∇φ|

)
and φ0(x, y) is the initial contour.

If the curve moves in the normal direction with the speed g(|∇u0|) (κ+ ζ)
for ζ ≥ 0, a geometric active contour model [13], which is based on the motion
by κ, can be given by:{

φt = g |∇φ| (κ+ ζ) , t ∈ (0,∞), (x, y) ∈ R2,

φ(0, x, y) = φ0(x, y), (x, y) ∈ R2,

where g is the edge function in (2.2) and ζ is a nonnegative constant. The
constant ζ, thought of as a correction term, is chosen such that κ + ζ re-
mains positive. When κ becomes null or negative, ζ pushes the curve to the
boundary of the object.

In [15], two other active contour models are proposed and these models
also use the image gradient |∇Gσ ∗ u0| to stop the evolving curve. On the
other hand, [14] proposes a geodesic active contour model which uses (2.2)
to obtain a minimizer Λ.

These active contour models are all depending on the image gradient to
stop the evolution of the curve. Therefore, only objects with edges de�ned
by a gradient can be detected. When the Gaussian is used for very noisy
images, the edges will be smoothed, which is a drawback for these models.

The paper [2] by Chan and Vese proposes a di�erent active contour model
not depending on an edge function to stop the curve evolution. Instead, the
proposed model uses Mumford-Shan segmentation to detect contours.
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3.2 The Model's Description

In [2] Chan and Vese proposes a new model to detect objects in a given image
using active contours. This method minimizes an energy functional in order
to segment images.

Let Ω be a bounded subset in R2 where an evolving closed curve C in Ω
can be de�ned. This curve is the boundary of the subset ω ⊂ Ω such that
C = ∂ω. Now we have a region inside C, ω, and a region outside C, Ω \ ω.

We now look at a simple case of an energy based segmentation. Assume
that the input image u0 : Ω→ R is divided into two nonoverlapping regions
where each region has nearly piecewise-constant intensities. These two re-
gions are the wanted object and the background, and the curve Cobj is the
boundary of the object. Inside Cobj the intensity is denoted as u

in
0 and outside

Cobj the intensity is denoted as uout0 . The energy functional to be minimized
in this model contains the ��tting� term:

Ein (C) + Eout (C) =

∫
inside(C)

|u0(x, y)− c1|2dxdy

+

∫
outside(C)

|u0(x, y)− c2|2dxdy,
(3.2)

where C is any given variable curve, and the constant c1 is the average
intensity value of u0 inside C and the constant c2 is the average intensity
value of u0 outside C. In �g. 3.1 some di�erent positions of C are shown.
Fig. 3.1a shows the case when c1 6≈ uin0 and c2 ≈ uout0 which means that
Ein (C) > 0 and Eout (C) ≈ 0. When C lies inside the object, as shown
in �g. 3.1b, then c1 ≈ uin0 and c2 6≈ uout0 , resulting in Ein (C) ≈ 0 and
Eout (C) > 0. In �g. 3.1c, C is both inside and outside the object, such that
c1 6≈ uin0 and c2 6≈ uout0 , and therefore Ein (C) > 0 and Eout (C) > 0. The
last case, �g. 3.1d, shows that C lies at the boundary of the object such that
c1 ≈ uin0 and c2 ≈ uout0 , and consequently Ein (C) ≈ 0 and Eout (C) ≈ 0. This
simple case shows that C must be equal to Cobj to minimize the functional.

(a) The curve C
is outside the ob-
ject.

(b) The curve C
is inside the ob-
ject.

(c) The curve C
is both inside and
outside the ob-
ject.

(d) The curve C
is on the bound-
ary of the object.

Figure 3.1: All possible cases for the position of the curve.
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The energy functional to be minimized has in addition two regularization
terms: the length of the curve C and the area inside C. The reason for using
these terms is to penalize the length of C, such that the segmentation does
not become too noisy, and to control the area of C. The energy functional
to be minimized is now introduced as

E (c1, c2, C) =µ · Length(C) + ν · Area (inside (C))

+ λ1 ·
∫

inside(C)

|u0(x, y)− c1|2dxdy

+ λ2 ·
∫

outside(C)

|u0(x, y)− c2|2dxdy,

(3.3)

where µ, ν ≥ 0 and λ1, λ2 > 0 are �xed parameters which control the
in�uence of each term.

We now want to consider the energy minimization problem

inf
c1, c2, C

E (c1, c2, C) .

Relating the Model with the Mumford-Shah Functional

Before solving the energy problem, we will look at the Mumford-Shah func-
tional from [5] for segmentation:

EMS(u,C) =µ · Length (C) +

∫
Ω\C
|∇u (x, y) |2 dxdy

+ λ ·
∫

Ω

|u0 (x, y) − u (x, y) |2 dxdy,
(3.4)

where u0 : Ω → R is the image to be segmented, µ and λ are �xed positive
parameters, u is the solution image achieved by minimizing the above func-
tional containing �xed number of smooth regions Ωi, and C is the interface
between these regions.

A simpler version of the functional above, called the minimal partition
problem, is to restrain u to be a piecewise constant function such that u is
equal to a constant ci inside the region Ωi. As a result, the second term in
(3.4) disappears. In [5], ci is the average intensity value of u0 over inside the
boundary of Ωi.

The Chan-Vese model (3.3) is exactly a minimal partition problem if ν = 0
and λ1 = λ2 = λ. So, we want the function u to be the best approximation
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of u0 where u only takes two values and C is the contour:

u(x, y) =

{
c1 = average (u0) inside of C,

c2 = average (u0) outside of C.
(3.5)

The next step is to use the level set method to formulate and solve this
speci�c problem.

3.2.1 Level Set Formulation of the Model

The level set method in [6] assumes that the zero level set of a Lipschitz con-
tinuous function φ : Ω→ R is an implicit and parameter-free representation
of the curve C ⊂ Ω. As it is given in [7], where ω ⊂ Ω is open, the implicit
function φ(x, y) satis�es

φ(x, y) = 0, for (x, y) ∈ ∂ω = C,

φ(x, y) > 0, for (x, y) ∈ ω = inside(C),

φ(x, y) < 0, for (x, y) ∈ Ω \ ω = outside(C).

The above assumptions are illustrated in �g. 3.2.

Figure 3.2: An illustration of the level set function φ.

Now, it is more suitable to introduce a characteristic function of the set
ω, which is given by the Heaviside function only depending on φ:

H(φ) =

{
1, if φ ≥ 0,

0, if φ < 0.
(3.6)

By di�erentiating the Heaviside function, we obtain the one-dimensional
Dirac's delta function:

d

dφ
H (φ) = δ (φ) =

{
1, for φ = 0,

0, for φ 6= 0.
(3.7)
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Using both (3.6) and (3.7), we can express the length of the boundary ∂ω
and the area of ω in the energy functional (3.3):

Length (∂ω) =

∫
Ω

|∇H (φ (x, y)) | dxdy

=

∫
Ω

δ (φ (x, y)) |∇φ (x, y) | dxdy,

and

Area (ω) =

∫
Ω

H (φ (x, y)) dxdy.

In this thesis, a weighted length term is used:

Lengthg (∂ω) =

∫
Ω

g(|∇u0(x, y)|) δ (φ (x, y)) |∇φ (x, y) | dxdy,

where g(|∇u0|) is the edge detector (2.2).
The Heaviside function is also used to extract the regions inside and

outside the boundary. Therefore the other terms in (3.3) can be written as:∫
inside(C)

|u0 (x, y)− c1|2 dxdy =

∫
Ω

|u0(x, y)− c1|2H (φ (x, y)) dxdy

and∫
outside(C)

|u0 (x, y)− c2|2 dxdy =

∫
Ω

|u0(x, y)− c2|2 (1−H (φ (x, y))) dxdy.

By using all the terms above together, the energy E(c1, c2, φ) is now
expressed as:

E(c1, c2, φ) =µ

∫
Ω

g(|∇u0(x, y)|) δ(φ(x, y)) |∇φ(x, y)| dxdy

+ ν

∫
Ω

H(φ(x, y)) dxdy

+ λ1

∫
Ω

|u0(x, y)− c1|2H(φ(x, y)) dxdy

+ λ2

∫
Ω

|u0(x, y)− c2|2(1−H(φ(x, y))) dxdy.
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Since this particular model is a Mumford-Shah minimal partition prob-
lem, we can use the level set formulation and (3.5) to obtain the solution of
this model:

u (x, y) = c1H
(
φ (x, y)

)
+ c2

(
1−H

(
φ (x, y)

))
,

for (x, y) ∈ Ω.
The existence of the solution of this speci�c problem has been proven in

[5] with the assumption that u0 is continuous on Ω. Therefore, we expect
that there exist minimizers of the energy functional E(c1, c2, φ).

The Heaviside and the delta functions are not di�erentiable at φ = 0
which is necessary in further computations. Hence, we consider Hε ∈ C2(Ω)
and δε ∈ C1(Ω), ε → 0, roughly as the regularized versions of H and δ. An
example of Hε ∈ C2(Ω) and δε ∈ C1(Ω) can be seen in section 3.3. Theoret-
ically, this is veri�ed by replacing both H and δ by the smooth functions Hε

and δε and passing them to the limit [10]. The related regularized version of
the energy functional is given by

Eε(c1, c2, φ) =µ

∫
Ω

g(|∇u0(x, y)|) δε(φ(x, y)) |∇φ(x, y)| dxdy

+ ν

∫
Ω

Hε(φ(x, y)) dxdy

+ λ1

∫
Ω

|u0(x, y)− c1|2Hε(φ(x, y)) dxdy

+ λ2

∫
Ω

|u0(x, y)− c2|2(1−Hε(φ(x, y))) dxdy.

Minimizing Eε w.r.t. c1 and c2

Assuming that ω and Ω \ ω are nonempty, the constants c1 and c2 can be
expressed by minimizing the energy Eε(c1, c2, φ) with respect to c1 and c2

one by one while keeping φ �xed:

c1 =

∫
Ω
u0(x, y)Hε(φ(x, y)) dxdy∫

Ω
Hε(φ(x, y)) dxdy

and

c2 =

∫
Ω
u0(x, y) (1−Hε(φ(x, y))) dxdy∫

Ω
(1−Hε(φ(x, y))) dxdy

.

The constants c1 and c2 are also the average intensities inside and outside
the curve ∂ω, respectively.
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If ω or Ω \ ω is empty, the �degenerate� cases for c1 or c2, respectively,
the constants c1 and c2 are assigned to be{

c1 = average(u0) inside ω,

c2 = average(u0) inside Ω \ ω.

Minimizing Eε w.r.t. φ

Now, we minimize Eε with respect to φ while keeping c1 and c2 �xed. For
the minimization, we are applying calculus of variations. For more details
concerning calculus of variations, see for instance [9].

Let us consider the Gâteaux di�erential [26, p. 23] of the functional Eε(φ)
with respect to φ in the direction ψ:

DψEε(φ) = lim
τ→0

1

τ

[
Eε(φ+ τψ)− Eε(φ)

]
= µ lim

τ→0

1

τ

∫
Ω

g
[
δε(φ+ τψ)|∇(φ+ τψ)| − δε(φ)|∇φ|

]
dxdy

+ ν lim
τ→0

1

τ

∫
Ω

[
Hε(φ+ τψ) − Hε(φ)

]
dxdy

+ λ1 lim
τ→0

1

τ

∫
Ω

|u0(x, y)− c1|2
[
Hε(φ+ τψ) − Hε(φ)

]
dxdy

− λ2 lim
τ→0

1

τ

∫
Ω

|u0(x, y)− c2|2
[
Hε(φ+ τψ) − Hε(φ)

]
dxdy.

To �nd the limit of the �rst integral, L'Hopital's rule is applied:

lim
τ→0

1

τ

∫
Ω

g
[
δε(φ+ τψ)|∇(φ+ τψ)| − δε(φ)|∇φ|

]
dxdy

= lim
τ→0

∫
Ω

g

[
δ′ε(φ+ τψ)ψ |∇(φ+ τψ)|

+ δε(φ+ τψ)
∇(φ+ τψ) · ∇ψ
|∇(φ+ τψ)|

]
dxdy

=

∫
Ω

g
[
δ′ε(φ)ψ |∇φ| + δε(φ)

∇φ · ∇ψ
|∇φ|

]
dxdy.

Now, we can apply the Divergence theorem to the second part of this
integral:∫

Ω

g δε(φ)
∇φ · ∇ψ
|∇φ|

dxdy = −
∫

Ω

∇ ·
(
gδε(φ)

∇φ
|∇φ|

)
ψ dxdy

+

∫
∂Ω

(
g δε(φ)

∇φ
|∇φ|

· ~n
)
ψ ds,
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where ~n is the outward normal vector to the boundary ∂Ω. Using that
∇φ · ∇φ = |∇φ|2 we can simplify the �rst term:

∇ ·
(
g δε(φ)

∇φ
|∇φ|

)
= ∇g ·

(
δε(φ)

∇φ
|∇φ|

)
+ g δ′ε(φ)∇φ · ∇φ

|∇φ|
+ g δε(φ)∇ ·

(
∇φ
|∇φ|

)
= δε(φ)

∇g · ∇φ
|∇φ|

+ g δ′ε(φ) |∇φ| + g δε(φ)∇ ·
(
∇φ
|∇φ|

)
.

The limit of the �rst integral is now:∫
Ω

g
[
δ′ε(φ)ψ |∇φ| + δε(φ)

∇φ · ∇ψ
|∇φ|

]
dxdy

= −
∫

Ω

δε(φ)

(
∇g · ∇φ
|∇φ|

+ g∇ ·
(
∇φ
|∇φ|

))
ψ dxdy

+

∫
∂Ω

(
g δε(φ)

∇φ
|∇φ|

· ~n
)
ψ ds.

L'Hopital is also applied for the next three integrals where we use that
d

dφ
Hε(φ) = δε(φ):

lim
τ→0

1

τ

∫
Ω

[
Hε(φ+ τψ) − Hε(φ)

]
dxdy = lim

τ→0

∫
Ω

δε(φ+ τψ)ψ dxdy

=

∫
Ω

δε(φ)ψ dxdy,

lim
τ→0

1

τ

∫
Ω

|u0(x, y)− c1|2
[
Hε(φ+ τψ) − Hε(φ)

]
dxdy

= lim
τ→0

∫
Ω

|u0(x, y)− c1|2δε(φ+ τψ)ψ dxdy

=

∫
Ω

|u0(x, y)− c1|2δε(φ)ψ dxdy,

and

lim
τ→0

1

τ

∫
Ω

|u0(x, y)− c2|2
[
Hε(φ+ τψ) − Hε(φ)

]
dxdy

= lim
τ→0

∫
Ω

|u0(x, y)− c2|2δε(φ+ τψ)ψ dxdy

=

∫
Ω

|u0(x, y)− c2|2δε(φ)ψ dxdy.
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Summerazing all above, we obtain:

DψEε(φ) = lim
τ→0

1

τ

[
Eε(φ+ τψ)− Eε(φ)

]
= −

∫
Ω

δε(φ)

(
µ
∇g · ∇φ
|∇φ|

+ µ g∇ ·
(
∇φ
|∇φ|

)
− ν

− λ1 |u0(x, y)− c1|2 + λ2 |u0(x, y)− c2|2
)
ψ dxdy

+

∫
∂Ω

µ

(
g δε(φ)

∇φ
|∇φ|

· ~n
)
ψ ds.

By the �rst order necessary condition for a local minimizer of a functional
[11], we need that:

DψEε(φ) = 0.

By associating the energy functional Eε(c1, c2, φ) with the Euler-Lagrange
equation [9], we can parameterize the descent direction by an arti�cial time
parameter, t > 0, and seek for a steady-state solution of this problem:

∂φ

∂t
= δε(φ)

(
µ
∇g · ∇φ
|∇φ|

+ µ g∇ ·
(
∇φ
|∇φ|

)
− ν

− λ1 |u0(x, y)− c1|2 + λ2 |u0(x, y)− c2|2
)

in (0,∞)× Ω,

φ(0, x, y) = φ0(x, y) in Ω,

g δε(φ)
∇φ
|∇φ|

· ~n = 0 on ∂Ω,

where φ(0, x, y) = φ0(x, y) is the initial curve, ~n is the outward normal
to the boundary ∂Ω, and ∇φ · ~n denotes the normal derivative of φ at the
boundary.

3.3 A Numerical Approximation of the Model

A regularized version of H(φ) ∈ C∞( Ω ) is suggested in [2]:

Hε(φ) =
1

2

[
1 +

2

π
tan−1

(
φ

ε

)]
.

By di�erentiating Hε(φ) the regularized delta function δε(φ) is obtained:

δε(φ) =
d

dφ
Hε(φ)

=
ε

π ( ε2 + φ2 )
,
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for a constant ε > 0. If ε is chosen to be too small, the δε-function will create
large oscillations. But if ε is chosen to be too large, the accuracy of the
method will be reduced. This is prevented by substituting the δε-function by
1 in the implementation [10]. The energy functional Eε is non-convex because
of the Heaviside function, and therefore allowing many local minima.

The variable φ in the Euler-Lagrange equation is discretized by using
backward, forward and central di�erences. Knowing that the input image
has M ×N pixels, the notation for the discretization is then given as:

• The space step: h.

• The time step: ∆t.

• The grid points: (xi, yj) = (ih, jh), where 1 ≤ i ≤M and 1 ≤ j ≤ N .

The discrete approximation of φ(t, x, y) is now de�ned as φki,j = φ(k∆t, xi, yj),
where k ≥ 0, and φ0 is the approximation of the initial curve. The edge detec-
tor g(|∇u0(x, y)|) is also discretized approximately by gi,j = g(|∇u0(xi, yj)|).
Denoting upper indices x and y as the direction of the derivatives, the �nite
di�erences are used to approximate the partial derivatives of the gradient:

Backward di�erences:

∆x
− φ

k
i,j =

φki,j − φki−1,j

h
, ∆y

− φ
k
i,j =

φki,j − φki,j−1

h
,

∆x
− gi,j =

gi,j − gi−1,j

h
, ∆y

− gi,j =
gi,j − gi,j−1

h
.

Forward di�erences:

∆x
+ φ

k
i,j =

φki+1,j − φki,j
h

, ∆y
+ φ

k
i,j =

φki,j+1 − φki,j
h

.

Central di�erences:

∆x
0 φ

k
i,j =

φki+1,j − φki−1,j

2h
, ∆y

0 φ
k
i,j =

φki,j+1 − φki,j−1

2h
.

With these di�erences and using that
∂φ

∂t
≈

φk+1
i,j − φki,j

∆t
, we can give an
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explicit scheme for the discretized Euler-Lagrange equation:

φk+1
i,j − φki,j

∆t
= δε

(
φki,j
)
µ

[
∆x
− gi,j ∆x

+ φ
k
i,j√(

∆x
+ φ

k
i,j

)2
+
(
∆y

0 φ
k
i,j

)2

+
∆y
− gi,j ∆y

+ φ
k
i,j√(

∆x
0 φ

k
i,j

)2
+
(
∆y

+ φ
k
i,j

)2

+ g∆x
− ·

 ∆x
+ φ

k
i,j√(

∆x
+ φ

k
i,j

)2
+
(
∆y

0 φ
k
i,j

)2


+ g∆y

− ·

 ∆y
+ φ

k
i,j√(

∆x
0 φ

k
i,j

)2
+
(
∆y
− φ

k
i,j

)2

]

− δε
(
φki,j
) [
ν + λ1

(
u0,i,j − c1(φki,j)

)2

− λ2

(
u0,i,j − c2(φki,j)

)2
]
.

(3.8)

Algorithm 1 An Active Contour Method

Initialize: φ0 = φ0 and set k = 0.

repeat

• Compute c1(φk) and c2(φk) by:

c1(φk) ←
∑

i,j u0,i,j Hε(φ
k
i,j)∑

i,j Hε(φki,j)

and

c2(φk) ←
∑

i,j

(
1− u0,i,j Hε(φ

k
i,j)
)∑

i,j

(
1−Hε(φki,j)

) .

• Obtain φk+1 by using the explicit scheme for the Euler-Lagrange
equation (3.8).

• Set k ← k + 1 if the until -condition is not satis�ed.

until
∑

i,j |φ
k+1
i,j − φki,j| < ∆t · ε, where ε > 0.
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3.4 Experimental Results

The programming tool MATLAB R2012a is used to implement the algorithm
above. The edge detector (2.2) is incorporated into the original code written
by Y. Wu. All colour images are converted to greyscale images using the
matlab function rgb2gray. Implementation in MATLAB and rgb2gray is
also used in the forthcoming chapters.

The parameters which are �xed for all experiments, are the time step
∆t = 0.5, ε = 0.182, the space step h = 1, λ1 = λ2 = 1, and a = b = 1 in the
edge detector (2.2).

The initial curve for all images is given as a rectangle placed at the center
of the image, where the value inside the curve is 1 and the value outside the
curve is 0.

By [2] we know that the active contour method is good, but we want to
see how the edge detector in�uences this method. For a higher value of µ,
the result of the segmentation without using edge detector gives either no
segmentation or bad segmentation. Thus, using the edge detector, a better
segmentation result is produced by choosing a suitable σ.
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(a) The original image. (b) Image with the initial
curve.

(c) Segmented result without
edge detector.

(d) Segmented result with the
original image.

(e) Segmented result with edge
detector using σ = 10.

(f) Segmented result with the
original image.

Figure 3.3: Segmentation of a brain scan image using µ = 1.05 · 2552.
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(a) The original image. (b) Image with the initial curve.

(c) Segmented result without edge detec-
tor.

(d) Segmented result with the original im-
age.

(e) Segmented result with edge detector
using σ = 10.

(f) Segmented result with the original im-
age.

Figure 3.4: Segmentation of a �ower image using µ = 4 · 2552.
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(a) The original image. (b) Image with the initial curve.

(c) Segmented result without edge detec-
tor.

(d) Segmented result with the original im-
age.

(e) Segmented result with edge detector
using σ = 15.

(f) Segmented result with the original im-
age.

Figure 3.5: Segmentation of an image with a set of keys using µ = 3.3 · 2552.
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(a) The original image. (b) Image with the initial curve.

(c) Segmented result without edge detec-
tor.

(d) Segmented result with the original im-
age.

(e) Segmented result with edge detector
using σ = 10.

(f) Segmented result with the original im-
age.

Figure 3.6: Segmentation of a Jasmin �ower image using µ = 4 · 2552.
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(a) The original image. (b) Image with the initial curve.

(c) Segmented result without edge detec-
tor.

(d) Segmented result with the original im-
age.

(e) Segmented result with edge detector
using σ = 10.

(f) Segmented result with the original im-
age.

Figure 3.7: Segmentation of a rabbit image using µ = 3 · 2552.



Chapter 4

A Piecewise Constant Level Set

Method Applied to

Mumford-Shah Image

Segmentation

4.1 The Basic Idea of the Model

Assume u0 : Ω → R is the given input image. The idea of this model is
to decompose the domain Ω into a set of disjoint subdomains Ωi such that
Ω = ∪iΩi ∪ Γ, where Γ is an interface separating the di�erent subdomains.
Using this, we want to �nd an approximation u of u0 where u is constant
inside Ωi.

The method in chapter 3, which is based on the Chan-Vese approach,
uses level set method and Mumford-Shah segmentation to solve a minimiza-
tion problem. The interface, which seperates the region of interest and the
background, is constructed by level set functions and is expressed implicitly
by the zero level set of a Lipschitz continuous function.

Instead of using the zero level set formulation, Lie, Lysaker and Tai [3]
propose to represent the interface implicitly by the discontinuities of piecewise
constant level set functions. If e.g. an image is divided into two regions, the
segmentation is achieved by the level set function φ which takes the value 1
in one region and −1 in the other region. Hence, φ satis�es the quadratic
constraint φ2 = 1.

This chapter studies the model proposed in [3], which uses a piecewise
constant level set model to segment an image by minimizing a constrained
problem.

31
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A Piecewise Constant Level Set Method Applied to

Mumford-Shah Image Segmentation

4.2 Level Set Formulation of the Model

Let u0 : Ω→ R be the given image, where Ω is a bounded subset in R2.
Furthermore we assume that there exists an interface Γ enclosing the sub-

region ω ⊂ Ω. In chapter 3, the standard level set function φ was introduced:
φ(x, y) = 0 for (x, y) ∈ Γ,

φ(x, y) > 0 for (x, y) ∈ inside (Γ) ,

φ(x, y) < 0 for (x, y) ∈ outside (Γ) .

In [3], this de�nition of a level set function φ is replaced by

φ(x, y) =

{
1, if (x, y) ∈ int (ω) ,

−1, if (x, y) ∈ ext (ω) ,

and the interface Γ is implicitly given by the discontinuity of the function φ.
In image segmentation, this idea is used by assuming that the image u0

consists of two disjoint regions Ω1 and Ω2. Now, we construct a piecewise
constant approximation u of u0 by

u(x, y) =

{
c1, if (x, y) ∈ Ω1,

c2, if (x, y) ∈ Ω2,
(4.1)

where the two constants c1 and c2 are the distinct values in Ω1 and Ω2,
respectively. Letting φ = 1 in Ω1 and φ = −1 in Ω2, u can be written as:

u =
1

2

[
c1 (φ+ 1) − c2 (φ− 1)

]
.

Using the two level set function φ1 and φ2, the piecewise constant function
u can be constructed by four constants c1, c2, c3 and c4, representing the
distinct values in Ω1, Ω2, Ω3, and Ω4, respectively:

u(x, y) =


c1, if φ1(x, y) = 1, φ2(x, y) = 1,
c2, if φ1(x, y) = 1, φ2(x, y) = −1,
c3, if φ1(x, y) = −1, φ2(x, y) = 1,
c4, if φ1(x, y) = −1, φ2(x, y) = −1,

(4.2)

and can also be written as:

u =
1

4

[
c1 (φ1 + 1)(φ2 + 1) − c2 (φ1 + 1)(φ2 − 1)

− c3 (φ1 − 1)(φ2 + 1) + c4 (φ1 − 1)(φ2 − 1)
]
.

(4.3)
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We see that the two level set functions {φj}2
j=1 are satisfying the constraints

φ2
j = 1, for j = 1, 2. The idea of (4.1) and (4.2) is shown in �g. 4.1.

(a) Illustrating (4.1) where u(x, y) is con-
structed by one level set function.

(b) Illustrating (4.2) where u(x, y) is con-
structed by two level set functions.

Figure 4.1

We simplify equation (4.3) by introducing the basis functions ψi :

u =
1

4

[
c1 (φ1 + 1)(φ2 + 1)︸ ︷︷ ︸

=: 4·ψ1

− c2 (φ1 + 1)(φ2 − 1)︸ ︷︷ ︸
=:−4·ψ2

− c3 (φ1 − 1)(φ2 + 1)︸ ︷︷ ︸
=:−4·ψ3

+ c4 (φ1 − 1)(φ2 − 1)︸ ︷︷ ︸
=: 4·ψ4

]
.

=
4∑
i=1

ci ψi(φ),

where ψi(φ) = ψi(φ1, φ2).
We generalize this idea for a general piecewise constant function u with

n level set functions. For the generalization, we need to seperate the image
into 2n regions. Each level set function {φj}nj=1 must satisfy the constraint

φ2
j = 1. If this is the case, the 2n constants, {ci}2n

i=1, need to be chosen.
The function u can now be written as the weighted sum:

u =
2n∑
i=1

ci ψi, (4.4)

where

ψi := ψi(φ) = ψi(φ1, . . . , φn)

=
(−1)s(i)

2n

n∏
j=1

(φj + 1− 2 bi−1
j ),

s(i) =
n∑
j=1

bi−1
j ,



34

A Piecewise Constant Level Set Method Applied to

Mumford-Shah Image Segmentation

and (bi−1
1 , bi−1

2 , . . . , bi−1
n ) is the binary representation of i− 1.

If u can be written as above, we obtain

supp(ψi) = Ωi,

∪i supp(ψi) = Ω,

supp(ψi) ∩ supp(ψ l) = ∅, when i 6= l,

for i = 1, . . . , 2n, where

ψi (φ (x, y)) =

{
1, if (x, y) ∈ int (Ωi)

0, if (x, y) ∈ ext (Ωi)

Since the level set functions φ satisfy φ2
j = 1 for j = 1, . . . , n, we can use

the basis functions ψi to �nd the length of the boundary of Ωi and the area
inside Ωi :

Length(∂Ωi) =

∫
Ω

|∇ψi (φ (x, y)) | dxdy,

Area(Ωi) =

∫
Ω

ψi (φ (x, y)) dxdy.

In this chapter, as in the last chapter, we use instead a weighted length
term:

Lengthg(∂Ωi) =

∫
Ω

g(|∇u0(x, y)|) |∇ψi (φ (x, y)) | dxdy,

where g(|∇u0|) is the edge detector (2.2). To use the length term in numerical
computations, the gradient is approximated by the �nite di�erences (ψi)x and
(ψi)y:

Lengthg(∂Ωi) =

∫
Ω

g(|∇u0|)
√

(ψi)
2
x + (ψi)

2
y + ε dxdy, (4.5)

for a small ε > 0.
The length term used here is more correct than using the regularizer term

in chapter 3, which is given as
∫

Ω
g(|∇u0|) δε(φj) |∇φj| dxdy. The advantage

of (4.5) is that it counts every edge twice and therefore treats all edges
equally, while the length term of chapter 3 counts some egdes once and some
edges twice. The result of this is that some edges are relatively weighted
more important than others. Fig. 4.2 shows an illustration of the di�erent
terms.
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(a) (b) (c)

Figure 4.2: (a) A simple image example with four phases. (b) Measuring the length
of the boundary with the regularizer used in chapter 3, which counts the thick dashed
edges once and the thick continuous edges twice. (c) The length term of this chapter
measures all the edges, which is shown by the thick lines, twice.

Relating the Model with the Mumford Shah Functional

Let u be a piecewise constant approximation of the image u0 : Ω→ R and let
Γ be given as the interface between the regions Ωi, for i = 1, . . . , 2n. Then
the Mumford-Shah functional [5] can be written as:

EMS(u,Γ) = β · Length (Γ) +

∫
Ω\Γ
|∇u (x, y) |2 dxdy

+ ζ ·
∫

Ω

|u (x, y) − u0 (x, y) |2 dxdy,

where the �rst term is the regularization term measuring the total length
of the interface, the second term controls the smoothness of u inside Ω \ Γ,
and the third term measures how well u approximates u0. The �xed positive
parameters β and ζ control the in�uence of the �rst and the third term,
respectively.

In our case the second term disappears because the piecewise constant
image u is constant inside each Ωi.

The total length of the interface between the regions can now be obtained
by summing all parts of the interface:

Lengthg(Γ) =
2n∑
i=1

∫
Ω

g(|∇u0(x, y)|) |∇ψi (φ (x, y)) | dxdy,

where Γ is the curve separating the di�erent regions Ωi.
The reduced form of the Mumford-Shah functional is now given by:

E(φ, c) =
1

2

∫
Ω

|u− u0|2 dxdy + β
2n∑
i=1

∫
Ω

g |∇ψi| dxdy,
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where u is given as in (4.4) and β ≥ 0.
As φ2

j = 1, we obtain the following optimization problem, where φ =
(φ1, . . . , φn) and c = (c1, . . . , c2n):

min
φ, c

E(φ, c)

subject to φ2
j − 1 = 0, for all j = 1, . . . , n.

(4.6)

Now, the problem is to �nd the local minimizers φ and c of E(φ, c) while
satifying the constraint in (4.6). This problem can be solved by a Projec-
tion Lagrangian approach [11, 17]. Therefore we introduce the Lagrangian
functional:

L(φ, c, λ) =E(φ, c) +
n∑
j=1

∫
Ω

λj(φ
2
j − 1) dxdy

=
1

2

∫
Ω

|u− u0|2 dxdy + β
2n∑
i=1

∫
Ω

g |∇ψi| dxdy

+
n∑
j=1

∫
Ω

λj(φ
2
j − 1) dxdy

=
1

2

∫
Ω

∣∣ 2n∑
i=1

ci ψi − u0

∣∣2 dxdy + β
2n∑
i=1

∫
Ω

g |∇ψi| dxdy

+
n∑
j=1

∫
Ω

λj(φ
2
j − 1) dxdy

where λ1, . . . , λn are the Lagrangian multipliers denoted by the set λ =
{λj}nj=1. The minimizer of the optimization problem (4.6) can be found by
searching for the saddle point of L(φ, c, λ). At this point we need to have:

∂L
∂φj

= 0, j = 1, . . . , n ,

∂L
∂ci

= 0, i = 1, . . . , 2n ,

∂L
∂λj

= 0, j = 1, . . . , n .

The saddle point is obtained by minimizing L w.r.t. φ and c and maximiz-
ing L w.r.t. λ. We see later that maximizing L w.r.t λ implies that the
constraints are satis�ed, and then the last term of L(φ, c, λ) vanishes such
that L = E.
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Minimizing L w.r.t. φ :

Consider the minimization of L with respect to φj for j = 1, . . . , n. We
denote the Lagrangian functional L(φ, c, λ) as L(φj) and the piecewise
constant level set functions ψi(φ) as ψi(φj), for i = 1, . . . , 2n.

Let us evaluate the Gâteaux di�erential [26, p. 23] of the functional L
with respect to φj in the direction ηj :

DηjL(φj) = lim
τ→0

1

τ

[
L(φj + τ ηj) − L(φj)

]
=

1

2
lim
τ→0

1

τ

∫
Ω

[∣∣ 2n∑
i=1

ci ψi(φj + τ ηj)− u0

∣∣2 − ∣∣ 2n∑
i=1

ci ψi(φj)− u0

∣∣2] dxdy
+ β lim

τ→0

1

τ

2n∑
i=1

∫
Ω

g
[
|∇ψi(φj + τ ηj)| − |∇ψi(φj)|

]
dxdy

+ lim
τ→0

1

τ

∫
Ω

[
λj
(
(φj + τ ηj)

2 − φ2
j

)]
dxdy.

We calculate the limit of the �rst part ofDηjL(φj), by using that |~a|2−|~b|2

= (~a−~b) · (~a+~b) and L'Hopital's rule, such that:

1

2
lim
τ→0

1

τ

∫
Ω

[∣∣ 2n∑
i=1

ci ψi(φj + τ ηj)− u0

∣∣2 − ∣∣ 2n∑
i=1

ci ψi(φj)− u0

∣∣2] dxdy
=

1

2
lim
τ→0

∫
Ω

1

τ

[ 2n∑
i=1

(
ci ψi(φj + τ ηj) − ci ψi(φj)

)]
·
[ 2n∑
i=1

(
ci ψi(φj + τ ηj) + ci ψi(φj)

)
− 2u0

]
dxdy

=
1

2
lim
τ→0

∫
Ω

2
( 2n∑
i=1

ci
∂ψi(φj + τ ηj)

∂φj
ηj

)[ 2n∑
i=1

ci ψi(φj + τ ηj) − u0

]
dxdy

=

∫
Ω

( 2n∑
i=1

ci
∂ψi
∂φj

ηj

)[ 2n∑
i=1

ci ψi − u0

]
dxdy

=

∫
Ω

(u − u0)
2n∑
i=1

ci
∂ψi
∂φj

ηj dxdy.

The limit of the second part of DηjL(φj) is calculated by using analogously
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(~a−~b) · (~a+~b) = |~a|2 − |~b|2, the Taylor expansion lim
h→0

1

h

[
f(~a+ h ·~b)− f(~a)

]
= f ′(~a) ·~b, and the Divergence theorem:

lim
τ→0

1

τ

2n∑
i=1

∫
Ω

g
[
|∇ψi(φj + τ ηj)| − |∇ψi(φj)|

]
dxdy

=
2n∑
i=1

lim
τ→0

∫
Ω

g

(
∇ψi(φj + τ ηj) +∇ψi(φj)

)
|∇ψi(φj + τ ηj)|+ |∇ψi(φj)|

·
(
∇ψi(φj + τ ηj)−∇ψi(φj)

)
τ

dxdy

=
2n∑
i=1

lim
τ→0

∫
Ω

g

(
∇ψi(φj + τ ηj) +∇ψi(φj)

)
|∇ψi(φj + τ ηj)|+ |∇ψi(φj)|

· ∇
(ψi(φj + τ ηj)− ψi(φj)

τ

)
dxdy

=
2n∑
i=1

∫
Ω

g
∇ψi(φj)
|∇ψi(φj)|

· ∇
(
∂ψi
∂φj

ηj

)
dxdy

= −
2n∑
i=1

∫
Ω

∇ ·
(
g
∇ψi
|∇ψi|

) ∂ψi
∂φj

ηj dxdy +
2n∑
i=1

∫
∂Ω

∂ψi
∂φj

ηj

(
g
∇ψi
|∇ψi|

· ~n
)
ds

= −
2n∑
i=1

∫
Ω

∇g · ∇ψi
|∇ψi|

∂ψi
∂φj

ηj dxdy −
2n∑
i=1

∫
Ω

g∇ ·
( ∇ψi
|∇ψi|

) ∂ψi
∂φj

ηj dxdy

+
2n∑
i=1

∫
∂Ω

∂ψi
∂φj

ηj

(
g
∇ψi
|∇ψi|

· ~n
)
ds,

where ~n is the outward normal vector to the boundary ∂Ω.

Now we consider the limit of the last part of DηjL(φj) :

lim
τ→0

1

τ

∫
Ω

[
λj
(
(φj + τ ηj)

2 − φ2
j

)]
dxdy

= lim
τ→0

∫
Ω

λj
(φj + τ ηj − φj)(φj + τ ηj + φj)

τ
dxdy

= lim
τ→0

∫
Ω

λj
τ ηj (2φj + τ ηj)

τ
dxdy

= lim
τ→0

∫
Ω

λj ηj (2φj + τ ηj) dxdy

=

∫
Ω

2λj φj ηj dxdy.

Summarizing all three limits, we obtain:
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DηjL(φj) =

∫
Ω

(u − u0)
2n∑
i=1

ci
∂ψi
∂φj

ηj dxdy

− β

2n∑
i=1

∫
Ω

∇g · ∇ψi(φj)
|∇ψi(φj)|

∂ψi
∂φj

ηj dxdy

− β
2n∑
i=1

∫
Ω

g∇ ·
( ∇ψi(φj)
|∇ψi(φj)|

) ∂ψi
∂φj

ηj dxdy

+ β

2n∑
i=1

∫
∂Ω

∂ψi
∂φj

ηj

(
g
∇ψi(φj)
|∇ψi(φj)|

· ~n
)
ds

+

∫
Ω

2λj φj ηj dxdy.

By the de�nition of the Gâteaux di�erential, it follows that

∂L
∂φj

=
∂E

∂φj
+ 2λj φj

= (u − u0)
2n∑
i=1

ci
∂ψi
∂φj

− β
2n∑
i=1

(
∇g · ∇ψi(φj)
|∇ψi(φj)|

+ g∇ ·
( ∇ψi(φj)
|∇ψi(φj)|

)) ∂ψi
∂φj

+ 2λj φj.

Minimizing L w.r.t. c :

We know that only the �rst term of L depends on u and since u =
2n∑
i=1

ci ψi,

we obtain, by applying the chain rule, as done in [10], that:

∂L
∂ci

=
∂

∂ci

[
1

2

∫
Ω

∣∣ 2n∑
l=1

cl ψl − u0

∣∣2 dxdy + β

2n∑
l=1

∫
Ω

g |∇ψl| dxdy

+
n∑
j=1

∫
Ω

λj(φ
2
j − 1) dxdy

]

=

∫
Ω

( 2n∑
l=1

cl ψl − u0

)
ψi dxdy

=

∫
Ω

(u− u0)ψi dxdy.
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Maximizing L w.r.t. λ :

We regain the constraint when di�erentiating L w.r.t. λj, for j = 1, . . . , n:

∂L
∂λj

= φ2
j − 1.

A Numerical Method of the Model

The Projection Lagrangian approach has the condition that the derivatives
∂L
∂φj

,
∂L
∂ci

and
∂L
∂λj

, where i = 1, . . . , n and j = 1, . . . , 2n, must be equal

to zero at a saddle point of L. This can be approximated by an iterative
algorithm. After choosing the initial guesses φ0, c0 and λ0, the overall idea
is to repeat a procedure such that better estimates of φk, ck and λk are
achieved. We use φk, ck and λk to �nd the next iteration φk+1, ck+1 and
λk+1. After a �nite number of steps, the estimates are not varying anymore,
which implies that we are at a saddle point. Finding numerically when the
derivatives are equal to zero, is done by using three di�erent schemes.

The scheme for φk:

We introduce an arti�cial time variable and search for a steady-state solution
of the PDE:

φt = − ∂L
∂φ

.

It follows that if we minimize L w.r.t. φ, then the steady-state φt = 0 is
obtained. Now, we can discretize φt by using the forward Euler method,

φt =
φnext − φcurr

∆t
,

where ∆t > 0 is a small time step. If we combine both the equations above,
we obtain a gradient descent method:

φnextj = φcurrj −∆t
∂L
∂φj

(
φcurr, ck,λk

)
.

If we iterate this method in�nitely many times, φnextj converges to the exact
minimizer of L w.r.t. φ. Since we need an approximation of this minimizer,
we only let the method iterate a �xed number of times. In the numerical
implementation the �xed number is 10. After this procedure, we set φk+1 =
φnext.
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The scheme for ck:

We minimize L w.r.t. c under the assumption that u =
2n∑
i=1

ci ψi and

∂L
∂ci

=

∫
Ω

(u− u0)ψi dxdy = 〈u − u0, ψi 〉L2(Ω) ,

where 〈·, ·〉L2(Ω) is the L
2 inner product on the region Ω. As a consequence,

we can use that
∂L
∂ci

= 0, (4.7)

for i = 1, . . . , 2n. Using u together with (4.7) and knowing that L is a
quadratic functional in c, we obtain a 2n × 2n linear system:

Ac = b,

where
Ai,l = 〈ψi, ψl 〉L2(Ω) and bl = 〈u0, ψl 〉L2(Ω).

The �rst step in the discretization of this process is to construct u such that

u
(
ck,φk+1

)
=

2n∑
i=1

cki ψ
k+1
i .

After this step, we solve the linear system

2n∑
i=1

〈ψk+1
i , ψk+1

l 〉L2(Ω) c
k+1
i = 〈u0, ψ

k+1
l 〉L2(Ω) ,

for l = 1, . . . , 2n. A matrix inversion of the linear system should not be done
before |φk+1

j | ≈ 1∀j, otherwise the inversion becomes ill-conditioned.

The scheme for λk:

To make a scheme for λ we combine
∂L
∂λj

= 0 and
∂L
∂λj

= φ2
j − 1 and get

φ2
j = 1. Furthermore, by combining

∂L
∂φj

= 0 and
∂L
∂φj

=
∂E

∂φj
+ 2λj φj we

obtain λj φj = − 1

2

∂E

∂φj
. Now, by using both results, we get

λj = − 1

2
φj

∂E

∂φj
.
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From this, it is possible to propose an updating scheme for λ:

λk+1
j = − 1

2
φk+1
j

∂E

∂φj

(
φk+1, ck+1, λk

)
.

Algorithm 2 A Projection Lagrangian Method

Initialize: φ0, c0, λ0 and set k = 0.

repeat

• Use gradient descent method to approximate φnext. Then, set

φk+1 ← φnext.

• Construct u by ck and φk+1:

u ←
2n∑
i=1

cki ψ
k+1
i .

• if |φk+1
j | ≈ 1, ∀j

then

Solve the linear system

2n∑
i=1

〈ψk+1
i , ψk+1

l 〉L2(Ω) c
k+1
i = 〈u0, ψ

k+1
l 〉L2(Ω) ,

for l = 1, . . . , 2n.

else

ck+1 ← ck.

• Update the Lagrangian multipliers:

λk+1
j ← − 1

2
φk+1
j

∂E

∂φj

(
φk+1, ck+1, λk

)
,

where j = 1, . . . , n.

• Set k ← k + 1 if the until -condition is not satis�ed.

until ‖φk+1 − φk ‖ < error.
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4.3 Experimental Results

The implementation code for this method is written by J.Lie, but the edge
detector (2.2) is incorporated into this code in MATLAB.

By applying the piecewise constant level set method we use the function
φ to obtain the segmented image. We start with φ0 ≡ 0 and the initial

vector of c = [0.1, 1]. In the implementation, the term
∇ψi
|∇ψi|

is replaced by

∇ψi√
|∇ψi|2 + ε

, where we choose ε ≈ 10−3.

The numerical scheme solves the associated PDE explicitly. Hence, the
CFL stability condition might be violated unless the value of β is small. A
larger value of β requires a smaller time step value and a small value of
β require a larger time step value. Using a small time step increases the
computational time signi�cantly. Therefore, we use β = 10−6 such that the
time step is given by ∆t = 0.01.

All the experiments presented below uses the edge detector (2.2) with
σ = 1, a = 1, b = 50, and the error in the until-condition is given by
error = 0.01.

(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the original im-
age.

Figure 4.3: Segmentation of an image with Jasmin �owers.
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(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the
original image.

Figure 4.4: Segmentation of a brain scan image.

(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the origi-
nal image.

Figure 4.5: Segmentation of an image of a set of keys.
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(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the origi-
nal image.

Figure 4.6: Segmentation of a �sh shoal image.

(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the origi-
nal image.

Figure 4.7: Segmentation of a �ower image.
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(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the
original image.

Figure 4.8: Segmentation of a rabbit image.

(a) The original image. (b) The associated φ function.

(c) Segmented result. (d) Segmented result with the
original image.

Figure 4.9: Segmentation of an image of leaves.



Chapter 5

A Spatially Continuous Max-Flow

and Min-Cut Framework

for Image Segmentation

5.1 The Basic Idea of the Model

We partition an image u0 : Ω → R, with Ω ⊂ R2, into two regions; a
foreground region ω and a background region Ω \ ω. The basic idea of the
model is to do this by using a variational approach by minimizing the problem

min
ω

∫
Ω\ω

Cs(x, y) dxdy +

∫
ω

Ct(x, y) dxdy + g |∂ω|. (5.1)

The �rst two terms, with Cs(x, y), Ct(x, y) ∈ R, are the cost of assigning the
point (x, y) to the background and foreground, respectively, and the third
term is the length of the boundary of ω. The parameter g is either a non-
negative constant or an edge detector for the image u0. In the previous two
chapters, we used the level set method and piecewise constant function to
solve the above minimization problem numerically. But the methods in these
chapters do not guarantee any convergence to a global minimum.

The problem (5.1) can instead be written with a characteristic function
u(x, y) ∈ {0, 1} for the region ω. Then the length term becomes the total
variation of u:

min
u(x,y)∈{0,1}

∫
Ω

(1− u(x, y))Cs(x, y) dxdy +

∫
Ω

u(x, y)Ct(x, y) dxdy

+ g

∫
Ω

|∇u(x, y)| dxdy.
(5.2)

47
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By relaxing the binary constraint set of u(x, y) to the convex set u(x, y) ∈
[0, 1], it is shown in [18] that a convex minimization problem can be solved
globally and leads to a sequence of global binary optimizers when threshold-
ing the solution u∗(x, y) ∈ [0, 1] at any value in (0, 1].

Max-�ow and min-cut are known as the fundamental pair of the dual
optimization problem de�ned over a graph. It can be used for dividing a
data set into two regions when the data is represented by a set of nodes and
edges.

This chapter, which is based on [4] by Yuan, Bae, Tai and Boykov, solves
the minimization problem by using a maximal �ow and minimal cut model
over the continuous domain Ω, where every spatial point in the domain is
linked to a source and a sink term. Therefore, (5.2) combined with a convex
set u(x, y) ∈ [0, 1] is also called a continuous min-cut model.

5.2 Discrete Max-Flow and Min-Cut

In the following section we study how the discrete max-�ow and min-cut are
formulated.

A graph G, given as a pair (V , E), consists of a set of vertices V and a
set of directed edges E ⊂ V × V . The two distinct vertices, the source {s}
and the sink {t}, are included in the vertex set V , and a cost C(e) ≥ 0 is
delegated to every edge e ∈ E .

If we consider the vertex set V with nodes of a two-dimensional nested
grid, then the edge set E consists of two types of edges:

• The spatial edges:
en = (r, q), which is the edge between the neighbouring nodes r, q ∈
V \ {s, t} on the grid.

• The terminal edges:
es = (s, r) and et = (r, t), which are the edges linking the source s and
the sink t to the grid node r ∈ V \ {s, t}.

Maximal Flow

Let us consider each edge e ∈ E as a pipe, and restrict the maximal �ow p(e)
by the cost C(e), i.e. we obtain the constraint

0 ≤ p(e) ≤ C(e). (5.3)
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In other words, C(e) is the maximal capacity allowed on the pipe p(e). At
each vertex, a �ow conservation is necessary:∑

r∈V
(r, q)∈E

p(r, q)−
∑
r∈V

(q, r)∈E

p(q, r) = 0, ∀ q ∈ V \ {s, t}. (5.4)

We want to �nd the largest amount of �ow allowed from the source s to the
sink t. This problem, called the maximum �ow problem, can equivalently be
stated by �nding the total amount of �ow on the source edges, i.e.

max
p

∑
r∈V

(s, r)∈E

p(s, r), (5.5)

subject to (5.3) and (5.4).
Let us now study the constraints in the max-�ow problem:

Capacity of spatial �ows p:

The directed spatial edges (r, q) ∈ E and (q, r) ∈ E , for r, q ∈ V \{s, t},
have the spatial �ows p(r, q) and p(q, r), respectively, where the �ows
are constrained by

0 ≤ p(r, q) ≤ C(r, q), 0 ≤ p(q, r) ≤ C(q, r).

For a more simpli�ed notation, a single �ow p̃(r, q) can be de�ned for
each edge pair (r, q) and (q, r), and this �ow can also be negative:

p̃(r, q) = p(r, q)− p(q, r),

with the constraint

−C(q, r) ≤ p̃(r, q) ≤ C(r, q).

Capacity of source �ows ps:

The edge es(r) : s → r, where the terminal node s is linked to a node
r ∈ V \ {s, t}, has the source �ow ps(r), which is directed from s to r.
As we know that the �ow has the capacity Cs(r), the constraint of the
�ow is given by:

0 ≤ ps(r) ≤ Cs(r).

Capacity of sink �ows pt:

The edge et(r) : r → t, where a node r ∈ V \ {s, t} is linked to the
terminal node t, has the source �ow pt(r), which is directed from r to
t. As we know that the �ow has the capacity Ct(r), the constraint of
the �ow is given by:

0 ≤ pt(r) ≤ Ct(r).
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Conservation of �ows:

Let N (r) be the set of neighbouring nodes of r ∈ V \ {s, t}. The �ows,
which are going into the node r, should be balanced by the �ows going
out from r. These �ows include the spatial �ows p(r, q), with q ∈ N (r),
the source �ow ps(r) and the sink �ow pt(r), and have the constraint ∑

q∈N (r)

p̃(q, r)

 − ps(r) + pt(r) = 0.

Minimum Cut

Let the vertex set Vs consists of the source {s} and let the vertex set Vt
consists of the source {t}, such that

V = Vs ∪ Vt.

When the graph G is separated into two disjoint groups Vs and Vt, i.e. Vs ∩
Vt = ∅, then the separation is called a cut. There exists a path between s
and the vertex r ∈ Vs, and there exists a path between the vertex q ∈ Vt and
t. The illustration in �g. 5.1 shows an example of a cut on a two-dimensional
nested grid.

(a) A two-dimensional graph with a vertex
set V and an edge set E.

(b) The graph is cut into two disjoint
groups Vs and Vt.

Figure 5.1: A discrete max-�ow and min-cut. In (a) some edges are marked with
a dashed line. These edges will be cut/removed and the grid will be divided into two
regions. The result is shown in (b).

The edges which have a tail in Vs and a head in Vt are the edges which
are cut. Therefore, we de�ne the cost of this cut by the sum of the weighted
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edges:

C (Vs,Vt) =
∑

(r, q)∈E
r∈Vs , q ∈Vt

C(r, q). (5.6)

Finding the cut (Vs,Vt), which gives the minimum cost C(Vs,Vt), is called
the minimum cut problem.

Edges with �ow p(e), for e ∈ E , which attain the corresponding capacity
C(e) in the max-�ow problem, i.e p(e) = C(e), are the same edges as the
edges with tail in Vs and head in Vt in the min-cut problem. It is proven
in [19] that the max-�ow problem (5.5) is equivalent to the min-cut problem
(5.6).

5.3 Continuous Max-Flow and Min-Cut

In this subsection we construct a continuous max-�ow and min-cut model by
a direct generalization of the discrete max-�ow and min-cut. These models
are also called the primal and dual models, respectively.

5.3.1 Primal Model

Let Ω be a closed spatial two dimensional domain and let the source s and
the sink t be the given terminals. For this spatial continuous setting, we
consider for each point (x, y) ∈ Ω :

• p(x, y) ∈ C∞ (Ω): The spatial �ow at (x, y).

• ps(x, y) ∈ R: The directed source �ow from s to (x, y).

• pt(x, y) ∈ R: The directed sink �ow from (x, y) to t.

The continuous max-�ow model is achieved by considering the discrete max-
�ow with its constraints when the amount of grid nodes in V goes to in�nity.
Letting the �ows p(x, y), ps(x, y) and pt(x, y) be constrained by the capacities
C(x, y), Cs(x, y) and Ct(x, y), respectively, we obtain the following:

|p(x, y)| ≤ C(x, y), ∀(x, y) ∈ Ω, (5.7)

ps(x, y) ≤ Cs(x, y), ∀(x, y) ∈ Ω, (5.8)

pt(x, y) ≤ Ct(x, y), ∀(x, y) ∈ Ω, (5.9)

∇ · p(x, y)− ps(x, y) + pt(x, y) = 0, a.e. for (x, y) ∈ Ω, (5.10)

p(x, y) · ~n = 0, ∀(x, y) ∈ ∂Ω, (5.11)
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where the notation a.e. is the short form of �almost everywhere� and ~n is the
outward normal to the boundary ∂Ω. Looking at (5.10),∇ · p gives the total
amount of spatial �ows locally at the point (x, y), which is equivalent to the
sum operator in the discrete �ow conservation.

Comparing (5.8) and (5.9) to the discrete source and sink constraints, we
see that the continuous �ows ps and pt, and their corresponding capacities
Cs and Ct, are no longer required to be non-negative. That is because the
value of the directed �ows imply the distribution from s to (x, y), or from
(x, y) to t.

The continuous maximal �ow model can now be expressed as

sup
ps, pt, p

{
P (ps, pt, p) =

∫
Ω

ps(x, y) dxdy

}
(5.12)

subject to the constraints (5.7), (5.8), (5.9), (5.10), and (5.11). This model
is called the primal model and the variables ps, pt, p are called the primal
variables.

5.3.2 Primal-Dual model

In [4], it is shown how the continuous max-�ow model (5.12) can be ex-
pressed as its corresponding primal-dual model by introducing the Lagrange
multiplier function u, also known as the dual variable:

inf
u

sup
ps, pt, p

{
E (p, ps, pt;u) =

∫
Ω

ps dxdy +

∫
Ω

u(x, y) (∇ · p− ps + pt ) dxdy

}
subject to

|p(x, y)| ≤ C(x, y), ps(x, y) ≤ Cs(x, y), pt(x, y) ≤ Ct(x, y).

This primal-dual model can be rearranged, and is then given by

inf
u

sup
ps, pt, p

{
E (p, ps, pt;u) =

∫
Ω

[
(1− u) ps + u pt + u∇ · p

]
dxdy

}
subject to

|p(x, y)| ≤ C(x, y), ps(x, y) ≤ Cs(x, y), pt(x, y) ≤ Ct(x, y).

(5.13)

The energy function E(p, ps, pt;u) is linear in the primal functions p, ps,
pt and in the dual function u; that is the constraints of the �ows are convex.
Therefore, from the minimax theorem [26], the energy function is convex
u.s.c. for �xed primal functions and concave l.s.c. for �xed dual function.
This implies that there exists at least one saddle point.
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5.3.3 Dual Model

Let us �rst consider the maximization problem

f(q) = sup
p≤C

q · p, (5.14)

for the scalars p, q and C. In order to maximize the value p · q, we focus on
the question how p is chosen for a given q:

• If q < 0, p needs to be negative in�nity. This leads to f(q) = +∞.

• If q = 0, p ≤ C is chosen and then f(q) = 0 becomes the maximum.

• If q > 0, we need to choose p = C which results in f(q) = C · q.

Using the conclusions above, f(q) can be formulated as

f(q) =

{
q · C , if q ≥ 0,
∞, if q < 0.

(5.15)

This can be applied to the primal-dual model (5.13) over the source �ow ps
and the sink �ow pt.

We de�ne

fs(x, y) := sup
ps(x,y)≤Cs(x,y)

(1− u(x, y)) · ps(x, y),

and
ft(x, y) := sup

pt(x,y)≤Ct(x,y)

u(x, y) · pt(x, y).

From the conclusions above, we obtain the inequalities 1 − u(x, y) ≥ 0 and
u(x, y) ≥ 0, which leads to the constraint 0 ≤ u(x, y) ≤ 1. If this constraint
is not satis�ed, the existence of at least one saddle point is contradicted
because the primal-dual model becomes in�nite. Now we obtain from (5.15)
that

fs(x, y) = (1− u(x, y)) · Cs(x, y)

and
ft(x, y) = u(x, y) · Ct(x, y).

The spatial �ow p(x, y) in (5.13) can be maximized by using the Diver-
gence theorem and (5.11). For more details, see [20].

sup
|p(x,y)| ≤C(x,y)

∫
Ω

u∇ · p dxdy = sup
|p(x,y)| ≤C(x,y)

∫
Ω

p |∇u| dxdy

=

∫
Ω

C |∇u| dxdy
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After maximizing the primal-dual model, it can be written as

min
u(x,y)∈ [ 0,1 ]

{
D(u) =

∫
Ω

[
(1− u)Cs + uCt + C |∇u|

]
dxdy

}
. (5.16)

This problem is the continuous min-cut model, also known as the dual model.
Summarizing all above, we see that the primal model (5.12), the primal-

dual model (5.13), and the dual model (5.16) are equivalent to each other
[4].

Global Binary Optimizers of the Min-Cut Problem

We begin this subsection by rewriting the dual model. For that purpose we
assume that the function C(x, y) ≥ 0 for all (x, y) ∈ Ω and that C is bounded
and Borel measurable. The dual model can then be written as

min
u(x,y)∈ [ 0,1 ]

{
D(u) =

∫
Ω

[
(1− u)Cs + uCt + g |∇u|

]
dxdy

}
(5.17)

when C(x, y) = g is constant ∀(x, y) ∈ Ω. Nozawa showed in [22] that there is
no duality gap between the primal and dual models with this type of spatial
capacity functions. Since we want to segment an image, g can also be an
edge detector which is zero at the edges and has large values elsewhere. This
chapter uses the same edge detector (2.2) as in previous chapters. This edge
detector satis�es the properties mentioned above.

Let us assume that the primal-dual pair p∗s, p
∗
t , p

∗ and u∗ are the optimal
values of the primal-dual model (5.13). Then we obtain that

P (p∗s, p
∗
t , p
∗) =

∫
Ω

p∗s(x, y) dxdy, (5.18)

and

∇ · p∗(x, y)− p∗s(x, y) + p∗t (x, y) = 0, a.e. for (x, y) ∈ Ω.

Now, let

ωl := { (x, y) |u∗(x, y) ≥ l, l ∈ (0, 1] }

be any level set of u∗(x, y), and let its characteristic function be given by

ul(x, y) =

{
1, u∗(x, y) ≥ l,
0, u∗(x, y) < l.
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Then, for l ∈ (0, u∗(x, y)],

p∗t (x, y) = Ct(x, y), ∀ (x, y) ∈ ωl,

which results in

p∗s(x, y) = Ct(x, y) + ∇ · p∗(x, y), a.e. for (x, y) ∈ ωl.

In the same way, for l ∈ (u∗(x, y), 1],

p∗s(x, y) = Cs(x, y), ∀ (x, y) ∈ Ω \ ωl.

By using the last two equations and thereafter applying the Divergence the-
orem, the total energy in (5.18) for the level set ωl becomes

P (p∗s, p
∗
t , p
∗) =

∫
Ω\ωl

Cs(x, y) dxdy +

∫
ωl

[
Ct(x, y) +∇ · p∗(x, y)

]
dxdy

=

∫
Ω\ωl

Cs(x, y) dxdy +

∫
ωl
Ct(x, y) dxdy +

∫
ωl
∇ · p∗(x, y) dxdy

=

∫
Ω\ωl

Cs(x, y) dxdy +

∫
ωl
Ct(x, y) dxdy +

∫
∂ωl

p∗(x, y) · ~n dl,

where ~n is the the outward normal to the boundary ∂ωl . Since we have that
p∗(x, y) · ~n = g, for all (x, y) ∈ ∂ωl \ (∂ωl ∩ ∂Ω), we obtain that

P (p∗s, p
∗
t , p
∗) =

∫
Ω\ωl

Cs(x, y) dxdy +

∫
ωl
Ct(x, y) dxdy + g |∂ωl \ (∂ωl ∩ ∂Ω)|.

We conclude that the binary function ul, which is in the relaxed convex
set [0, 1], solves the non-convex segmentation problem (5.1) globally. Hence,
solving the continuous maximal �ow problem (5.12) is an implicit result of
segmenting the region Ω by solving the continuous minimal cut problem with
the optimal multiplier u∗(x, y).

5.4 Continuous Max-Flow Based Algorithm

In this section, as done in [4], we solve the primal-dual problem (5.13) by
introducing the augmented Lagrangian method, see [23], for this problem:

L c ( ps, pt, p, u) :=

∫
Ω

ps dxdy +

∫
Ω

u
(
∇ · p− ps + pt

)
dxdy

− c

2
‖∇ · p− ps + pt‖2,
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where ‖f(x, y)‖2 =
∫

Ω
f(x, y)2 dxdy and c > 0 is a scalar. Now, we optimize

the variables one by one in Lc( ps, pt, p, u) by keeping the other variables
�xed at every iteration, but u is updated by the current value of u and the
optimized variables ps, pt, p. We assume that spatial discretization can be
applied to the divergence, gradient and integration operators (∇·, ∇,

∫
) and

the �ow variables p, ps, pt. So, when the grid size goes to zero, the discrete
gradient and divergence terms converge to the respective continuous terms.
Then the duality gap goes to zero.

The next step is to show how every variable, at the kth iteration, is
optimized.

Optimizing w.r.t. p:

We can optimize p by keeping ps, pt and u �xed at the kth iteration:

pk+1 := arg max
‖p‖∞ ≤ g

L c ( pks , p
k
t , p, u

k)

=

∫
Ω

[
uk
(
∇ · p− pks + pkt

)
− c

2

(
∇ · p− pks + pkt

)2
]
dxdy

=

∫
Ω

(
− c

2

[ (
∇ · p− pks + pkt

)2 − 2uk

c

(
∇ · p− pks + pkt

) ])
dxdy

=− c

2

∫
Ω

[(
∇ · p− pks + pkt

)2 − 2uk

c

(
∇ · p− pks + pkt

)
+
(uk
c

)2

−
(uk
c

)2 ]
dxdy

=− c

2

∫
Ω

([
∇ · p− pks + pkt −

uk

c

]2

−
(uk
c

)2
)
dxdy

=arg max
‖p‖∞ ≤ g

− c

2

∫
Ω

[
∇ · p− pks + pkt −

uk

c

]2

dxdy

=arg max
‖p‖∞ ≤ g

− c

2

∫
Ω

[
∇ · p − F k

]2

dxdy

=arg max
‖p‖∞ ≤ g

− c

2
‖∇ · p − F k ‖2,

where F k = pks − pkt +
uk

c
.

Let

M(p) :=

∫
Ω

c

2

[
∇ · p− F k

]2

dxdy,
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then we use the Gâteaux di�erential [26, p. 23] of the functional M(p) with
respect to the function p in the direction µ, and apply the Divergence theo-
rem, to obtain that

DµM(p) = lim
τ→ 0

1

τ

[
M(p+ τµ)−M(p)

]
= c

∫
Ω

[
∇ · p− F k

]
∇ · µ dxdy

= − c
∫

Ω

∇
[
∇ · p− F k

]
µ dxdy + c

∫
∂Ω

µ
[
∇ · p− F k

]
· ~n ds,

where ~n is the outward normal to the boundary ∂Ω.
We require that [∇ · p− F k] · ~n = 0 on ∂Ω, and get

DµM(p) = − c
∫

Ω

∇
(
∇ · p− F k

)
µ dxdy

⇒ ∂ M

∂ p
= − c∇

(
∇ · p− F k

)
.

Now, one gradient descent step with the step size γ is applied, and
thereafter we use the Euclidean projection Πg onto the convex set Cg ={
q
∣∣ ‖q‖∞ ≤ g

}
. Therefore,

pk+1 = Πg

[
pk + γ c∇

(
∇ · pk − F k

) ]
,

where γ > 0 is a small step size.

Optimizing w.r.t. ps:

Again, the optimization of ps is done by keeping p, pt and u �xed at the kth
iteration, such that

pk+1
s := arg max

ps ≤ Cs
L c ( ps, p

k
t , p

k+1, uk)

=

∫
Ω

ps dxdy +

∫
Ω

[
uk
(
∇ · pk+1 − ps + pkt

)
− c

2

(
∇ · pk+1 − ps + pkt

)2
]
dxdy

=

∫
Ω

ps dxdy −
c

2

∫
Ω

[(
∇ · pk+1 − ps + pkt

)2 − 2uk

c

(
∇ · pk+1 − ps + pkt

)]
dxdy

=

∫
Ω

ps dxdy −
c

2

∫
Ω

[(
∇ · pk+1 − ps + pkt

)2 − 2uk

c

(
∇ · pk+1 − ps + pkt

)
+
(uk
c

)2

−
(uk
c

)2]
dxdy
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=

∫
Ω

ps dxdy −
c

2

∫
Ω

[ (
∇ · pk+1 − ps + pkt −

uk

c

)2 −
(uk
c

)2 ]
dxdy

= arg max
ps ≤ Cs

(∫
Ω

ps dxdy −
c

2

∫
Ω

[
∇ · pk+1 − ps + pkt −

uk

c

]2

dxdy

)
= arg max

ps ≤ Cs

(∫
Ω

ps dxdy −
c

2

∫
Ω

[
ps − Gk

]2

dxdy

)
= arg max

ps ≤ Cs

(∫
Ω

ps dxdy −
c

2
‖ ps − Gk ‖2

)
,

where Gk = ∇ · pk+1 + pkt −
uk

c
.

Let

Ms(ps) :=

∫
Ω

[
ps −

c

2

(
ps − Gk

)2
]
dxdy,

then the optimized ps(x, y) can be computed pointwise at each (x, y) ∈ Ω by
the Gâteaux di�erential of the functionalMs(ps) with respect to the function
ps in the direction µ, such that

DµMs(ps) = lim
τ→ 0

1

τ

[
Ms(ps + τµ)−Ms(ps)

]
=

∫
Ω

[
1− c

(
ps −Gk

)]
µ dxdy,

⇒ ∂ Ms

∂ ps
= 1− c

(
ps −Gk

)
= 0, ⇒ ps = Gk +

1

c
.

Since we also have the constraint ps ≤ Cs, we obtain that

pk+1
s (x, y) = min

(
Gk(x, y) +

1

c
, Cs(x, y)

)
.

Optimizing w.r.t. pt:

As before, we optimize pt by keeping p, ps and u �xed at the kth iteration:
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pk+1
t := arg max

pt ≤ Ct
L c
(
pk+1
s , pt, p

k+1, uk
)

=

∫
Ω

[
uk
(
∇ · pk+1 − pk+1

s + pt
)
− c

2

(
∇ · pk+1 − pk+1

s + pt
)2
]
dxdy

=− c

2

∫
Ω

[(
∇ · pk+1 − pk+1

s + pt
)2 − 2uk

c

(
∇ · pk+1 − pk+1

s + pt
)]
dxdy

= − c

2

∫
Ω

[ (
∇ · pk+1 − pk+1

s + pt
)2 − 2uk

c

(
∇ · pk+1 − pk+1

s + pt
)

+
(uk
c

)2

−
(uk
c

)2
]
dxdy

= − c

2

∫
Ω

[(
∇ · pk+1 − pk+1

s + pt −
uk

c

)2

−
(uk
c

)2
]
dxdy

= arg max
pt ≤ Ct

− c

2

∫
Ω

(
∇ · pk+1 − pk+1

s + pt −
uk

c

)2

dxdy

= arg max
pt ≤ Ct

− c

2

∫
Ω

(
pt −Hk

)2
dxdy

= arg max
pt ≤ Ct

− c

2
‖ pt −Hk ‖2,

where Hk = −∇ · pk+1 + pk+1
s +

uk

c
.

Let

Mt(pt) := − c
2

∫
Ω

(
pt −Hk

)
dxdy,

then, similarly as for the former variable, the optimized pt(x, y) can be com-
puted pointwise at each (x, y) ∈ Ω by the Gâteaux di�erential of the func-
tional Mt(pt) with respect to the function pt in the direction µ, such that

DµMt(ps) = lim
τ→ 0

1

τ

[
Mt(pt + τµ)−Mt(pt)

]
=

∫
Ω

[
− c

(
pt −Hk

)]
µ dxdy,

⇒ ∂ Mt

∂ pt
= −c

(
ps −Hk

)
= 0, ⇒ pt = Hk.

Since we also have the constraint pt ≤ Ct, we obtain that

pk+1
t (x, y) = min

(
Hk(x, y) , Ct(x, y)

)
.
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Updating u:

We can update u by using the method of multipliers:

uk+1 = uk − c
(
∇ · pk+1 − pk+1

s + pk+1
t

)
.

Algorithm 3 Max-�ow Min-cut algorithm

Initialize: p0 = 0, p0
s = min(Cs − Ct), p0

t = min(Cs − Ct),

u0 =

{
1, if (Cs − Ct) ≥ 0,

0, if (Cs − Ct) < 0,

and set k = 0:

repeat

• Optimize p by keeping ps, pt and u �xed:

pk+1 ← Πg

[
pk + γ c∇

(
∇ · pk − F k

) ]
,

where F k = pks − pkt +
uk

c
.

• Optimize ps by keeping p, pt and u �xed:

pk+1
s ← min

(
Gk(x) +

1

c
, Cs(x)

)
,

where Gk = ∇ · pk+1 + pkt −
uk

c
.

• Optimize pt by keeping p, ps and u �xed:

pk+1
t ← min

(
Hk(x) , Ct(x)

)
,

where Hk = −∇ · pk+1 + pk+1
s +

uk

c
.

• Update u:

uk+1 ← uk − c
(
∇ · pk+1 − pk+1

s + pk+1
t

)
.

• k ← k + 1 if the until -condition is not satis�ed.

until
‖uk+1 − uk‖
‖uk+1‖

< err.
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5.5 Experimental Results

The code for the Fast CMF Algorithm is written by J. Yuan. After incor-
porating the edge detector (2.2) into this code, we obtain the experimental
results. In the numerical experiments we �rst have to choose two grey values
us and ut similar to the foreground and the background colour, respectively,
such that we can build up the data terms:

Cs = |u0(x, y)− us|2, Ct = |u0(x, y)− ut|2.

The �xed parameters in the experiments are c = 1, err = 10−6, and
γ = 0.16. When the parameter g is an edge detector, σ, a and b in (2.2) have
to be chosen for each image. If g is not an edge detector, this parameter is
interpreted as a penalty parameter to the total variation term.

The segmentation result for all images below is optimal when g is the
edge detector (2.2). Furthermore, it gives more detailed segmentation. For
example, in �g. 5.7e we see that only the jasmin �owers are segmented, while
in �g. 5.7c some of the background is included in the segmented result. This
also happens in �g. 5.12 when the squirrel image is being segmented.

Some of the results below can be compared with the results from previous
chapters. We see that using the model in this chapter gives much better
segmentation of the images.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.5.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 5, a = 0.5, b = 0.5.

(e) Segmented result with the original im-
age.

Figure 5.2: Segmentation of an owl image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge
detector with g = 1.

(c) Segmented result with the origi-
nal image.

(d) Segmented result with edge de-
tector (2.2) using σ = 0.8, a = 1,
b = 80.

(e) Segmented result with the origi-
nal image.

Figure 5.3: Segmentation of a brain scan image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge
detector with g = 0.5.

(c) Segmented result with the origi-
nal image.

(d) Segmented result with edge de-
tector (2.2) using σ = 5, a = 0.5,
b = 1.

(e) Segmented result with the origi-
nal image.

Figure 5.4: Segmentation of a night-light image over Europe without and with edge
detector.



5.5 Experimental Results 65

(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.5.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 0.5, a = 0.5, b = 90.

(e) Segmented result with the original im-
age.

Figure 5.5: Segmentation of a �sh shoal image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.5.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 2, a = 0.5, b = 10.

(e) Segmented result with the original im-
age.

Figure 5.6: Segmentation of a �ower image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 1.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 0.8, a = 1, b = 30.

(e) Segmented result with the original im-
age.

Figure 5.7: Segmentation of an image of Jasmin �owers without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 1.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 1, a = 1, b = 40.

(e) Segmented result with the original im-
age.

Figure 5.8: Segmentation of an image of a set of keys without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.5.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 0.5, a = 0.5, b = 70.

(e) Segmented result with the original im-
age.

Figure 5.9: Segmentation of an image of leaves without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 1.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 2, a = 1, b = 20.

(e) Segmented result with the original im-
age.

Figure 5.10: Segmentation of a rabbit image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.7.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 0.8, a = 0.7, b = 65.

(e) Segmented result with the original im-
age.

Figure 5.11: Segmentation of a sheep image without and with edge detector.
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(a) The original image.

(b) Segmented result without edge detec-
tor with g = 0.5.

(c) Segmented result with the original im-
age.

(d) Segmented result with edge detector
(2.2) using σ = 5, a = 0.5, b = 0.5.

(e) Segmented result with the original im-
age.

Figure 5.12: Segmentation of a squirrel image without and with edge detector.



Chapter 6

Summary and Conclusion

In this master thesis, we focused on three di�erent variational energy mini-
mization problems which arise in image segmentation.

The �rst minimization problem is an active contour model based on the
level set method and Mumford-Shah segmentation. Minimizing the energy
functional leads to an Euler-Lagrange equation, which is afterwards numeri-
cally solved. The experimental results show that by including an experimen-
tal edge detector, we obtain a better segmentation.

The second problem uses a piecewise constant level set method also ap-
plied to Mumford-Shah segmentation. The approximation is such that the
level set function is discontinuous when it converges. Since the energy func-
tional is smooth, a simple gradient method is used to solve the minimization
problem. The experimental results indicate that this method gives a good
segmentation. In this case, the CFL stability condition of the numerical
scheme has to be taken into account. By comparing this model with the
previous model, we see that the second model gives a more accurate segmen-
tation result. It is important to remark that both models are non-convex,
which may give many local minima.

In the third minimization method, we use the continuous max-�ow min-
cut model to segment images. Employing variational techniques, we show
the duality between the max-�ow min-cut model in the spatially continuous
setting. Since this method is convex, the continuous max-�ow based algo-
rithm provides a fast and stable numerical scheme. For more details, see
[4]. In the experimental results, we see that using an edge detector with
the continuous max-�ow min-cut model gives a much better and accurate
segmentation compared to the �rst two models.
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