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Cyclic codes are an important subclass of linear codes and
have wide applications in data storage systems, communi-
cation systems and consumer electronics. In this paper, two
families of optimal ternary cyclic codes are presented. The
first family of cyclic codes has parameters [3m − 1, 3m − 1−
2m, 4] and contains a class of conjectured cyclic codes and
several new classes of optimal cyclic codes. The second fam-
ily of cyclic codes has parameters [3m − 1, 3m − 2− 2m, 5]
and contains a number of classes of cyclic codes that are
obtained from perfect nonlinear functions over F3m , where
m > 1 and is a positive integer.

1 IN T R O D U C T I O N

Throughout this paper let p and m be a prime and a positive integer
respectively, and let Fpm denote the finite field with pm elements. An
[n, k, d] linear code C over Fp is a k-dimensional subspace of Fn
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Sequences and Linear Codes from Highly Nonlinear Functions

minimum Hamming distance d, and is called cyclic if any cyclic shift of a
codeword is another codeword of C. By identifying (c0, c1, · · · , cn−1) ∈
C with

c0 + c1x + c2x2 + · · ·+ cn−1xn−1 ∈ Fp[x]/(xn − 1),

any cyclic code of length n over Fp corresponds to an ideal of the
polynomial residue class ring Fp[x]/(xn − 1). Note that every ideal of
Fp[x]/(xn − 1) is principal. Any cyclic code C can be expressed as C =
〈g(x)〉, where g(x) is monic and has the least degree. This polynomial
g(x) is called the generator polynomial and h(x) = (xn − 1)/g(x) is
referred to as the parity-check polynomial of C.

Cyclic codes are an important subclass of linear codes and have been
extensively studied (see for example [1, 6, 7, 9, 10, 12, 14, 16, 17] for
some recent developments). Let α be a generator of F∗3m = F3m\{0}
and let mi(x) denote the minimal polynomial of αi over F3. A class
of cyclic codes C(1,e) over F3 with generator polynomial m1(x)me(x),
where 1 ≤ e ≤ 3m − 1 and e is not in the 3-cyclotomic coset modulo
3m − 1 containing 1, was investigated in [2] and [5]. Carlet, Ding and
Yuan proved that the code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4]
when xe are certain perfect nonlinear (PN) monomials [2]. Employing
some monomials xe over F3m , including almost perfect nonlinear (APN)
monomials, Ding and Helleseth [5] obtained several classes of ternary
cyclic codes with parameters [3m − 1, 3m − 1− 2m, 4] which are optimal
according to the Sphere Packing bound. In addition, nine open problems
about this kind of optimal ternary cyclic codes were proposed in [5].
Notably, as a class of subcodes of C(1,e), the cyclic codes with generator
polynomial (x− 1)m1(x)me(x), which are denoted by C(0,1,e),is closely
related to the linear code CΠ investigated in [2] and [15], and it can be
similarly proven as in [2] that C(0,1,e) has parameters [3m − 1, 3m − 2m−
2, 5] if xe is PN.

In this paper, we will present a number of classes of new optimal
ternary cyclic codes with parameters [3m − 1, 3m − 1− 2m, 4] and [3m −
1, 3m − 2− 2m, 5]. We will first settle an open problem proposed in [5]
and then construct several classes of new optimal ternary cyclic codes
with parameters [3m − 1, 3m − 1− 2m, 4] using some monomials over
F3m . We then derive a number of classes of optimal ternary cyclic codes
with parameters [3m − 1, 3m − 2− 2m, 5] by considering the subcodes of
C(1,e) with generator polynomial (x + 1)m1(x)me(x) over F3. Following
the notations in [5], we denote by C(1,e,s) the cyclic code with generator
polynomial (x + 1)m1(x)me(x), where s = 3m−1

2 . It will be shown in
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this paper that the ternary cyclic code C(1,e,s) has parameters [3m −
1, 3m − 2m− 2, 5] and is optimal for several classes of properly chosen
integers e. The optimality of C(1,e,s) is established by virtue of properties
of PN functions over F3m .

2 AU X I L I A RY R E S U LT S A B O U T C Y C L O TO M I C C O S E T S ,
T H E C O D E S C(1,e) A N D P O LY N O M I A L S

A function f from Fpm to itself is called perfect nonlinear (PN) or planar
if

max
0 6=a∈Fpm

max
b∈Fpm

|{x ∈ Fpm : f (x + a)− f (x) = b}| = 1,

and almost perfect nonlinear (APN) if

max
0 6=a∈Fpm

max
b∈Fpm

|{x ∈ Fpm : f (x + a)− f (x) = b}| = 2.

In this paper we will need the notions of PN and APN functions [11, 18].
For a prime p, the p-cyclotomic coset modulo pm − 1 containing j is

defined as

Cj = {jps mod (pm − 1) : s = 0, 1, · · · , m− 1}.

The following lemma will be frequently used in the sequel.

Lemma 1. ([5]) For any 1 ≤ e ≤ pm − 2 with gcd(e, pm − 1) = 2, the
length of the p-cyclotomic coset Ce is equal to m.

Ding and Helleseth proved the following fundamental theorem about
the ternary codes C(1,e).

Theorem 1. ([5, Thm. 4.1]) Let e 6∈ C1 and |Ce| = m. The ternary cyclic
code C(1,e) has parameters [3m− 1, 3m− 1− 2m, 4] if and only if the following
conditions are satisfied:

C1: e is even;

C2: the equation (x + 1)e + xe + 1 = 0 has the only solution x = 1 in F3m ;
and

C3: the equation (x + 1)e− xe− 1 = 0 has the only solution x = 0 in F3m .

We shall need the following lemma in the sequel, in addition to
Theorem 1.
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Lemma 2. ([13, Thm. 2.14]) Let q be a prime power and let f (x) be an
irreducible polynomial over Fq of degree n. Then f (x) = 0 has a root x in
Fqn . Furthermore, all the roots of f (x) = 0 are simple and are given by the n
distinct elements x, xq, xq2

, · · · , xqn−1
of Fqn .

Let us take f (x) = x3 + x2 + x − 1 ∈ F3[x] as an example to show
how Lemma 2 works. Note that f (0) = f (1) = 2 6= 0 and f (2) =
f (−1) = 1 6= 0. This means that f (x) = x3 + x2 + x − 1 is a cubic
irreducible polynomial over F3[x]. Then by Lemma 2, f (x) = 0 has
no solutions in F3m if and only if m 6≡ 0 (mod 3). This idea will be
frequently employed in the sequel to prove some of the main results of
this paper.

For any given f (x) ∈ F3[x], if one factorizes f (x) over F3, then
the number of solutions of f (x) = 0 in F3m can be determined with
Lemma 2. However, the factorization of a polynomial is normally a
hard problem. In this paper, we mainly consider the cyclic code C(1,e)
for special values of e, where only low-degree polynomials over F3[x]
should be factorized. In fact, to apply Lemma 2, sometimes one only
needs to know the degrees of the irreducible factors of f (x).

The following lemmas are basic results about polynomials over finite
fields and will be employed in the sequel.

Lemma 3. ([13]) Let q be a prime power and g(x) be a polynomial in Fq[x].
Then for any f (x) ∈ Fq[x] there exist polynomials h(x), r(x) ∈ Fq[x] such
that f (x) = g(x)h(x) + r(x), where deg(r(x)) < deg(g(x)). Moreover,
gcd( f (x), g(x)) = gcd(g(x), r(x)).

Lemma 4. ([13, Thm. 3.20]) For every finite field Fq and every positive
integer n, where q is a prime power, the product of all monic irreducible poly-
nomials over Fq[x] whose degrees divide n is equal to xqn − x.

For a given f (x) ∈ Fq[x] with low degree, Lemmas 3 and 4 can
be used to determine the degrees of irreducible factors of f (x). For
example, let f (x) = x8 + x7 − x6 + x4 − x3 + x2 − 1 ∈ F3[x]. Applying
Lemma 3, one gets that gcd( f (x), x33 − x) = 1 and gcd( f (x), x34 − x) =
x2 + x− 1. It then follows from Lemma 4 that f (x) has the irreducible
factor x2 + x − 1 but no irreducible factor with degree equals to 1, 3
and 4. This implies that f (x) has an irreducible factor with degree 6.
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3 SO LV I N G A N O P E N P R O B L E M A B O U T T H E T E R N A RY
C Y C L I C C O D E S C(1,e)

With the preparations in Section 2, in this section we settle the following
open problem proposed in [5]:

Open 1. ([5]) Let e = 2(3m−1 − 1). Does the ternary cyclic code C(1,e) have
parameters [3m − 1, 3m − 1− 2m, 4] if m ≥ 5 and m is prime?

To solve this problem, we need to prove the following lemmas.

Lemma 5. Let m be odd and e = 2(3m−1 − 1). Then |Ce| = m and C1 ∩
Ce = ∅.

Proof. It is easily seen that gcd(e, 3m − 1) = 2. It then follows from
Lemma 1 that |Ce| = m. Since both e and 3m − 1 are even, it is obvious
that C1 ∩ Ce = ∅. This completes the proof.

After proving Lemma 5, we now consider Conditions C2 and C3 in
Theorem 1 for e = 2(3m−1 − 1).

Lemma 6. Let e = 2(3m−1 − 1). Then Condition C2 in Theorem 1 is met if
and only if m 6≡ 0 (mod 3).

Proof. Note that e is even and x = 0 is not a solution of (−x− 1)e + xe +
1 = 0. Then Condition C2 is satisfied if and only if (x + 1)e + xe + 1 = 0
has the only solution x = 1 in F3m . Raising both sides of this equation
to the power of 3 gives (x + 1)3e + x3e + 1 = 0. Note that x 6= 0,
x + 1 6= 0 and 3e = 2(3m − 3) = 2(3m − 1) − 4. Then the equation
(x + 1)e + xe + 1 = 0 is equivalent to (x + 1)−4 + x−4 + 1 = 0, i.e.,

(x + 1)4x4 + (x + 1)4 + x4 = 0. (1)

Denote f (x) = (x + 1)4x4 + (x + 1)4 + x4 = x8 + x7 + x5 + x3 + x + 1.
Applying Lemma 3, one gets that gcd( f (x), x3 − x) = x− 1, gcd( f (x),
x32 − x) = x− 1, and gcd( f (x), x33 − x) = x7 − x6 − x5 + x2 + x− 1. It
then follows from Lemma 4 and deg( f (x)) = 8 that f (x) has the two
cubic irreducible factors x3 + x2 + x + 2 and x3 + 2x2 + 2x + 2 over F3
and the factor (x− 1)2. Thus (1) has the only solution x = 1 in F3m if
and only if m 6≡ 0 (mod 3) by Lemma 2. This completes the proof.

Lemma 7. Let e = 2(3m−1 − 1). Then Condition C3 in Theorem 1 is met if
and only if m is odd and m 6≡ 0 (mod 3).
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Proof. Let x ∈ F3m be a solution of (x + 1)e − xe − 1 = 0. Then we have
(x + 1)3e − x3e − 1 = 0. Notice that 3e = 2(3m − 3) = 2(3m − 1)− 4.
Then (x + 1)3e − x3e − 1 = 0 has the only solution x = 0 if and only if
(x + 1)−4 − x−4 − 1 = 0 has no solution in F∗3m . Multiplying both sides
of this equation with x4(x + 1)4 gives

(x + 1)4x4 + (x + 1)4 − x4 = 0. (2)

Therefore Condition C3 is equivalent to showing that (2) has no so-
lutions in F3m . Denote g(x) = (x + 1)4x4 + (x + 1)4 − x4 = x8 + x7 +
x5 + x4 + x3 + x + 1. By Lemma 3, we have gcd(g(x), x3 − x) = 1,
gcd(g(x), x32 − x) = x2 + 1, and gcd(g(x), x33 − x) = x6 + x5 − x4 −
x2 + x + 1. It then follows from Lemma 4 that g(x) has the irreducible
factor x2 + 1 and the two cubic irreducible factors x3 + 2x + 2 and
x3 + x2 + 2. Then the desired conclusion follows from Lemma 2. This
completes the proof.

The answer to Open Problem 1 is given in the following theorem.

Theorem 2. Let m be odd, m 6≡ 0 (mod 3) and e = 2(3m−1− 1). Then the
ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4].

Proof. The conclusions follow from Lemmas 5-7 and Theorem 1.

Example 1. Let m = 5 and let α be the generator of F∗3m with α5 + 2α+ 1 =
0. Then the code C(1,e) of Theorem 2 has parameters [242, 232, 4] and generator
polynomial x10 + 2x9 + x8 + x5 + x4 + x3 + 2x2 + 2x + 2.

4 NE W O P T I M A L T E R N A RY C Y C L I C C O D E S W I T H
PA R A M E T E R S [3m − 1, 3m − 1− 2m, 4]

Inspired by the idea for solving Open Problem 1, we construct new
optimal ternary cyclic codes with parameters [3m − 1, 3m − 1− 2m, 4]
using other monomials xe over F3m in this section.

4 .1 TH E F I R S T C L A S S O F O P T I M A L T E R N A RY C Y C L I C C O D E S

W I T H PA R A M E T E R S [3m − 1, 3m − 1− 2m, 4]

In this subsection, we consider the exponents e of the form e = 3m−1
2 − r,

where r and m have the same parity. Denote the quadratic character
of F3m by η which is defined by η(0) = 0, η(x) = 1 if x is a nonzero
square in F3m and η(x) = −1 if x is a nonzero nonsquare in F3m . Note
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that e is even. Then Condition C2 in Theorem 1 is satisfied if and only
if (x + 1)e + xe + 1 = 0 has the only solution x = 1 in F3m . With the
quadratic character of F3m , (x + 1)e + xe + 1 = 0 can be written as
η(x + 1)(x + 1)−r + η(x)x−r + 1 = 0. Multiplying with xr(x + 1)r both
sides of this equation yields that

(x + 1)rxr + η(x + 1)xr + η(x)(x + 1)r = 0. (3)

Then C2 is satisfied if and only if (3) has the only solution x = 1 with
η(x(x + 1)) 6= 0 since neither x = 0 nor x = −1 are the solutions of
(x + 1)e + xe + 1 = 0. Similarly, one can conclude that C3 is satisfied if
and only if

(x + 1)rxr + η(x)(x + 1)r − η(x + 1)xr = 0 (4)

has no solution x in F3m with η(x(x + 1)) 6= 0.
The following theorem then follows from Theorem 1 and the forego-

ing discussions.

Theorem 3. Let e = 3m−1
2 − r, e 6∈ C1 and |Ce| = m, where r and m have

the same parity. Then the ternary cyclic code C(1,e) has parameters [3m −
1, 3m − 1− 2m, 4] if (3) has the only solution x = 1 and (4) has no nonzero
solution x in F3m with η(x(x + 1)) 6= 0 .

As in Lemmas 6 and 7, the solutions of (3) and (4) can be similarly
discussed for a given r.

Corollary 1. Let m ≡ 2 (mod 4) and e = 3m−1
2 − 2. Then the ternary

cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4].

Proof. Notice that 3m − 1 ≡ 0 (mod 8) as m is even. It then follows that
e ≡ 2 (mod 4) and gcd(e, 3m − 1) = gcd(e, 4) = 2. By Lemma 1 we
have |Ce| = m. On the other hand, e 6∈ C1 since e is even. For r = 2, we
will discuss (3) by distinguishing among the following cases:

1. (η(x), η(x + 1)) = (1, 1): In this case, (3) is reduced to x4 − x3 −
x + 1 = (x − 1)4 = 0, i.e., it has the only solution x = 1 since
η(1) = 1 and η(1 + 1) = η(−1) = 1 for even m.

2. (η(x), η(x + 1)) = (1,−1): In this case, (3) is simplified to x4 −
x3 + x2− x+ 1 = 0. Applying Lemma 3, one obtains that gcd(x4−
x3 + x2 − x + 1, x32 − x) = 1, which implies that x4 − x3 + x2 −
x + 1 has no irreducible factors of degrees 1 and 2 by Lemma 4.
Therefore x4 − x3 + x2 − x + 1 is irreducible over F3.
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3. (η(x), η(x + 1)) = (−1, 1): Similar as in Case 2), in this case (3) is
reduced to x4 − x3 + x2 + x− 1 = 0, which is irreducible over F3.

4. (η(x), η(x + 1)) = (−1,−1): In this case one can similarly prove
that x4 − x3 − x2 + x− 1 is irreducible over F3.

Therefore, by Lemma 2, (3) has the only solution x = 1 if m ≡ 2
(mod 4). It can be similarly proved that (4) has no solution x in F3m with
η(x(x + 1)) 6= 0. Then the desired conclusions follow from Theorem 3.
This completes the proof.

Example 2. Let m = 6 and let α be the generator of F∗3m with α6 + 2α4 +
α2 + 2α + 2. Then the code C(1,e) of Corollary 1 has parameters [728, 716, 4]
and generator polynomial x12 + 2x10 + x9 + x8 + 2x5 + x4 + x3 + 2x2 + 2.

Notice that e = 3m−1
2 − 1 = 3m−3

2 and e = 3m−1
2 − 3 ≡ 3 · ( 3m−1

2 − 1)
(mod 3m − 1), i.e., the two cases that r = 1 and r = 3 are covered by

Theorem 6.1 in [5] since x
3m−3

2 is an almost perfect nonlinear function
in F3m if m ≥ 5 and m is odd [11]. In the following, we consider the
case that r = 5.

Corollary 2. Let m be odd and e = 3m−1
2 − 5. Then the ternary cyclic code

C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4].

Proof. Since gcd((3m− 1)/2, 5) = 1 for odd m, gcd(3m− 1, e) = gcd(e, 10)
= 2. It then follows from Lemma 1 that |Ce| = m. Since e is even,
e 6∈ C1. For r = 5, we below discuss only the solution x of (3) with
η(x(x + 1)) 6= 0 since that of (4) can be dealt with in the same manner.

1. (η(x), η(x + 1)) = (1, 1): In this case, (3) is reduced to f (x) =
x10 − x9 + x8 + x7 − x6 − x4 + x3 + x2 − x + 1 = 0. Applying
Lemma 3, one obtains that gcd( f (x), x3i − x) = 1 for all i ∈
{1, 2, 3, 4, 5}. It then follows from Lemma 4 that f (x) is irreducible
over F3.

2. (η(x), η(x + 1)) = (1,−1): In this case (3) becomes f (x) =
x10− x9 + x8 + x7− x6 + x5− x4 + x3 + x2− x + 1 = 0. Applying
Lemma 3 one gets that gcd( f (x), x3 − x) = x− 1, gcd( f (x), x32 −
x) = x7− x6 + x5− x4 + x3− x2 + x− 1 and gcd( f (x), x33 − x) =
x − 1. It then follows from Lemma 4 that f (x) has the factor
(x− 1)4 and three quadratic irreducible factors (they are x2 + 1,
x2 + x + 2 and x2 + 2x + 2). When m is odd, η(1) = 1 and
η(1 + 1) = η(−1) = −1, i.e., x = 1 is indeed a solution of (3).
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3. (η(x), η(x + 1)) = (−1, 1): In this case (3) is reduced to f (x) =
x10 − x9 + x8 + x7 − x6 + x5 + x4 − x3 − x2 + x − 1 = 0. Similar
as in Case 1), one can prove that f (x) is irreducible over F3.

4. (η(x), η(x + 1)) = (−1,−1): In this case one can similarly prove
that x10 − x9 + x8 + x7 − x6 − x5 + x4 − x3 − x2 + x − 1 is irre-
ducible over F3.

Since m is odd, m 6≡ 0 (mod 10). It then follows from Lemma 2 that
(3) has the only solution x = 1 in F3m with η(x(x + 1)) 6= 0. Then
the desired conclusions follow from Theorem 3. This completes the
proof.

Example 3. Let m = 5 and let α be the generator of F∗3m with α5 + 2α +
1 = 0. Then the code C(1,e) of Corollary 2 has parameters [242, 232, 4] and
generator polynomial x10 + 2x9 + x8 + 2x7 + x6 + x5 + x4 + 2x3 + 2.

Remark 1. By Lemmas 3 and 4, more new optimal ternary codes can also be
obtained from other values of r, for example, r = 7, 10, 11. It should be noted
that e = 3m−15

2 if r = 7, which is equivalent to e = 3m−1−5
2 . This is a special

case of Open Problem 7.10 in [5].

4.2 TH E S E C O N D C L A S S O F O P T I M A L T E R N A RY C Y C L I C C O D E S

W I T H PA R A M E T E R S [3m − 1, 3m − 1− 2m, 4]

The ternary cyclic code C(1,e) for e = 3m−1
2 + r, where r and m have the

same parity, is considered in this subsection. With similar discussions
for (3) and (4) conducted in the preceding subsection, one can prove
the following theorem with Theorem 1.

Theorem 4. Let e = 3m−1
2 + r, e 6∈ C1 and |Ce| = m, where r and m have

the same parity. Then the ternary cyclic code C(1,e) has parameters [3m −
1, 3m − 1− 2m, 4] if

η(x + 1)(x + 1)r + η(x)xr + 1 = 0 (5)

has the only solution x = 1 in F3m and

η(x + 1)(x + 1)r − η(x)xr − 1 = 0 (6)

has no nonzero solution in F3m .

Using Theorem 4, one can verify that C(1,e) with e = 3m−1
2 + r for

r ∈ {1, 2, · · · , 6} either is not optimal or has been treated in [5]. Thus
we start with r = 7 below.
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Corollary 3. Let m be odd and e = 3m−1
2 + 7. Then the ternary cyclic code

C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4].

Proof. Since m is odd, e is even. Thus e 6∈ C1. It is easily verified
that e ≡ 2 (mod 3) and gcd( 3m−1

2 , 7) = 1. Hence gcd(e, 3m − 1) =
gcd(e, 14) = 2. It then follows from Lemma 1 that |Ce| = m. In what
follows, we prove that (5) has the only solution x = 1 in F3m for r = 7.
This is done by distinguishing among the following cases:

1. (η(x), η(x + 1)) = (1, 1): In this case, (5) is reduced to f (x) =
2x7 + x6 + 2x4 + 2x3 + x+ 2 = 0. It is easily checked that gcd( f (x),
x32 − x) = (x + 1)(x2 + 1). By Lemma 4, f (x) has the factor
(x + 1)(x2 + 1) and an irreducible factor of degree 4 (i.e., x4 +
x3 + x2 + x + 1). Note that x = −1 is not a solution of (5).

2. (η(x), η(x + 1)) = (1,−1): In this case (5) is simplified to f (x) =
2x6 + x4 + x3 + 2x = 0. It is easily verified that f (x) = x(x +
1)(x − 1)4. Note that x = 1 is indeed a solution of (5) since
η(1 + 1) = η(−1) = −1 for odd m.

3. (η(x), η(x + 1)) = (−1, 1): In this case, (5) is reduced to f (x) =
x6 + 2x4 + 2x3 + x + 2 = 0. Similar as in Case 1), one can prove
that f (x) has the irreducible factor x2 + x + 2 and the irreducible
factor x4 + 2x3 + x2 + 1 over F3.

4. (η(x), η(x + 1)) = (−1,−1): In this case one can also similarly
prove that x7 + 2x6 + x4 + x3 + 2x = x(x2 + 2x+ 2)(x4 + x2 + 2x+
1) which is the canonical factorization of x7 + 2x6 + x4 + x3 + 2x
over F3.

Since m is odd, m 6≡ 0 (mod 4). By Lemma 2, (5) has the only solution
x = 1 in F3m if m is odd. The statement that (6) has no nonzero solution
in F3m can be similarly proven for odd m. The desired conclusions then
follow from Theorem 4. This completes the proof.

Example 4. Let m = 5 and let α be the generator of F∗3m with α5 + 2α +
1 = 0. Then the code C(1,e) of Corollary 3 has parameters [242, 232, 4] and
generator polynomial x10 + 2x8 + 2x7 + 2x6 + x4 + 2x2 + x + 2.

As an example for even m, we prove the following corollary.

Corollary 4. Let m ≡ 2 (mod 4) and e = 3m−1
2 + 10. Then the ternary

cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4].
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Proof. Clearly e is even. Hence e 6∈ C1. It follows from m ≡ 2 (mod 4)
that 3m − 1 ≡ 0 (mod 8) and gcd(3m − 1, 5) = 1. Therefore e ≡ 2
(mod 4) and gcd(3m − 1, e) = gcd(e, 20) = gcd(e, 4) = 2. This leads
to |Ce| = m according to Lemma 1. For r = 10, we discuss (5) by
considering the following cases:

1. (η(x), η(x + 1)) = (1, 1): In this case, (5) is reduced to 2x10 + x9 +
x + 2 = 2(x− 1)10 = 0 which has the only solution x = 1.

2. (η(x), η(x + 1)) = (1,−1): In this case (5) is simplified to 2x(x8 +

1) = 0. It is easily verified that gcd(x8 + 1, x3i − x) = 1 for all
i ∈ {1, 2, 3}. It then follows from Lemma 4 that x8 + 1 has no
irreducible factor with degrees 1, 2 and 3. This implies that x8 + 1
either is irreducible or has two irreducible factors of degree 4.
In fact, the canonical factorization of x8 + 1 over F3 is x8 + 1 =
(x4 + x2 + 2)(x4 + 2x2 + 2). Note that x = 0 is not a solution of
(5).

3. (η(x), η(x + 1)) = (−1, 1): In this case (5) is reduced to x9 + x +

2 = 0. It is straightforward to verify that gcd(x9 + x− 1, x3i − x) =
x+ 1 for all i ∈ {1, 2, 3}. It then follows from Lemma 4 that x9+x−1

x+1
either is irreducible or has two irreducible factors of degree 4.
In fact, the canonical factorization of x9+x−1

x+1 over F3 is given

by x9+x−1
x+1 = (x4 + x3 + x2 + 1)(x4 + x3 + 2x2 + 2x + 2). Clearly,

x = −1 is not a solution of (5).

4. (η(x), η(x + 1)) = (−1,−1): In this case one can similarly prove
that x10 + 2x9 + 2x has either two irreducible factors of degree
4 or one irreducible factor of degree 8. In fact, the canonical
factorization of x10 + 2x9 + 2x over F3 is given by x10 + 2x9 + 2x =
x(x + 1)(x4 + x2 + x + 1)(x4 + x3 + x2 + 2x + 2).

It then follows from Lemma 2 that (5) has the unique solution x = 1 in
F3m if m ≡ 2 (mod 4). One can similarly prove that (6) has no solution
in F∗3m if m ≡ 2 (mod 4). Then the desired conclusions follow from
Theorem 4. This completes the proof.

With the same technique above, one can derive conditions on m such
that the ternary cyclic code C(1,e) has parameters [3m− 1, 3m− 1− 2m, 4]
for r ∈ {11, 13, 14, · · · , 20}.
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Example 5. Let m = 6 and let α be the generator of F∗3m with α6 + 2α4 +
α2 + 2α + 2. Then the code C(1,e) of Corollary 4 has parameters [728, 716, 4]
and generator polynomial x12 + x11 + 2x10 + 2x9 + 2x8 + x7 + x6 + x5 +
2x2 + x + 2.

4.3 TH E T H I R D C L A S S O F O P T I M A L T E R N A RY C Y C L I C C O D E S

W I T H PA R A M E T E R S [3m − 1, 3m − 1− 2m, 4]

A class of ternary cyclic codes C(1,e), where e = 3m − 1− 2r ≡ −2r
(mod 3m − 1), is investigated in this subsection. Note that e is in the
same 3-cyclotomic class with r(3m−1 − 1) since 3r(3m−1 − 1) = r(3m −
3) ≡ −2r (mod 3m − 1).

Clearly, e is even. Hence x = 0 and x = −1 are not solutions of
(−x − 1)e + xe + 1 = 0. Thus Condition C2 is satisfied if and only if
(x + 1)−2r + x−2r + 1 = 0, i.e.,

(x + 1)2rx2r + (x + 1)2r + x2r = 0 (7)

has the only solution x = 1 in F3m . Similarly, C3 is satisfied if and only
if

(x + 1)2rx2r + (x + 1)2r − x2r = 0 (8)

has no solution x in F3m .
The following theorem then follows from Theorem 1 and the preced-

ing discussions.

Theorem 5. Let e = r(3m−1 − 1), e 6∈ C1 and |Ce| = m. Then the ternary
cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if (7) has the only
solution x = 1 and (8) has no solution in F3m .

The two cases that r = 1 and r = 3 are covered by Theorem 6.1 in
[5] since x3m−1−1 is an almost perfect nonlinear function on F3m if m is
odd. For r = 2, this is Open Problem 1, which was settled before. When
r = 4 it is equivalent to e = 3m−2 − 1 which was discussed in Theorem
7.6 in [5]. Thus, as another example, we consider the case r = 5.

Corollary 5. Let m be odd, m 6≡ 0 (mod 3) and e = 5(3m−1 − 1) ≡
2(3m−1 − 2) (mod 3m − 1). Then the ternary cyclic code C(1,e) has parame-
ters [3m − 1, 3m − 1− 2m, 4].

Proof. Since e is even, e 6∈ C1. It is easily seen that gcd(e, 3m − 1) = 2.
Then it follows from Lemma 1 that |Ce| = m. When r = 5, (7) is
reduced to f (x) = (x + 1)10x10 + (x + 1)10 + x10 = x20 + x19 + x11 +
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x9 + x + 1. By Lemma 3, one can derive that gcd( f (x), x3 − x) = x− 1,
gcd( f (x), x33 − x) = x7− x6− x5 + x2 + x− 1 and gcd( f (x), x35 − x) =
x − 1. This together with Lemma 4 implies that f (x) has two cubic
irreducible factors and has no irreducible factor of degree 5. Hence, one
can claim that f (x) has no other irreducible factor with odd degree due
to the facts (x − 1)2| f (x) and deg( f (x)) = 20. In fact, the canonical
factorization of f (x) over F3 is given by f (x) = (x − 1)2(x3 + x2 +
x + 2)(x3 + 2x2 + 2x + 2)(x6 + x5 + 2x3 + x2 + 2x + 1)(x6 + 2x5 + x4 +
2x3 + x + 1). Then by Lemma 2, f (x) = 0 has the only solution x = 1
in F3m if m is odd and m 6≡ 0 (mod 3).

Similarly, one can prove that (8) has no solution x in F3m . When r = 5,
(8) is simplified to g(x) = x20 + x19 + x11 + x10 + x9 + x + 1 = 0. It is
straightforward to check that

gcd(g(x), x3 − x) = gcd(g(x), x32 − x) = 1,

gcd(g(x), x33 − x) = x6 + x5 − x4 − x2 + x + 1,

gcd(g(x), x34 − x) = x8 − x7 + x6 + x5 + x4 + x3 + x2 − x + 1.

It then follows from Lemma 4 that g(x) has two cubic irreducible
factors and two irreducible factors of degree 4. This implies that g(x)
has no other irreducible factors with odd degree. In fact, the canonical
factorization of g(x) over F3 is given by g(x) = (x3 + 2x + 2)(x3 + x2 +
2)(x4 + x3 + x2 + 2x + 2)(x4 + x3 + 2x2 + 2x + 2)(x6 + x5 + x4 + x3 +
x2 + x + 1). Thus, (8) has no solution x in F3m if m 6≡ 0 (mod 3) and
m 6≡ 0 (mod 4). Then the desired conclusions follow from Theorem 5.
This completes the proof.

Example 6. Let m = 5 and let α be the generator of F∗3m with α5 + 2α +
1 = 0. Then the code C(1,e) of Corollary 5 has parameters [242, 232, 4] and
generator polynomial x10 + x9 + x7 + x6 + 2x5 + x4 + 2x3 + 2x2 + 2.

4.4 TW O M O R E C L A S S E S O F O P T I M A L T E R N A RY C Y C L I C C O D E S

W I T H PA R A M E T E R S [3m − 1, 3m − 1− 2m, 4]

In this subsection we treat small integers e such that the ternary cyclic
code C(1,e) is optimal. Specifically, we consider the ternary cyclic codes
C(1,e), where e = 2r and 1 ≤ r ≤ 10. Most of them were studied in [2]
and [5]:
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1. When e ∈ {2, 6, 18}, the code is covered by Theorem 5.2 in [5]
since they lie in the same 3-cyclotomic coset and x2 is a planar
function over F3m .

2. When e ∈ {4, 12}, the code is covered by Theorem 5.2 in [5] since
4 and 12 are in the same 3-cyclotomic coset and x3h+1 is a planar
function over F3m if m/ gcd(m, h) is odd.

3. When e = 8, the code is covered by Theorem 7.6 in [5] since e can
be written as e = 32 − 1.

4. When e = 10, the code is covered by Theorem 5.2 in [5] since
x3h+1 is a planar function over F3m if m/ gcd(m, h) is odd.

5. When e = 14, the code is covered by Theorem 5.2 in [5] since

x
3h+1

2 is a planar function over F3m if gcd(m, h) = 1 and h is odd.

Thus, the remaining cases are e = 16 and e = 20. In what follows, we
investigate the two codes C(1,16) and C(1,20)

Corollary 6. Let m be odd and m 6≡ 0 (mod 3). Then the ternary cyclic
code C(1,16) has parameters [3m − 1, 3m − 1− 2m, 4].

Proof. Clearly e = 16 6∈ C1. Note that 3m − 1 ≡ 2 (mod 4) as m is
odd. We have obviously that gcd(16, 3m − 1) = 2. It then follows from
Lemma 1 that |Ce| = m. The condition C2 is met for e = 16 if and only
if (x + 1)16 + x16 + 1 = 0 has the only solution x = 1 in F3m . Note that

(x + 1)16 + x16 + 1
(x− 1)4 = −(x12 − x9 − x8 − x7 − x5 − x4 − x3 + 1).

It suffices to prove that

f (x) := x12 − x9 − x8 − x7 − x5 − x4 − x3 + 1 = 0 (9)

has no solution in F3m . It is straightforward to obtain that gcd( f (x), x3−
x) = 1, gcd( f (x), x32 − x) = x6 + x4 + x2 + 1 and gcd( f (x), x33 − x) =
x6 − x4 − x3 − x2 + 1. It then follows from Lemma 4 that f (x) has
three quadratic irreducible factors and two cubic irreducible factors.
In fact, the canonical factorization of f (x) over F3 is given by f (x) =
(x2 + 1)(x2 + x + 2)(x2 + 2x + 2)(x3 + x2 + x + 2)(x3 + 2x2 + 2x + 2).
Hence (9) has no solution in F3m if and only if m is odd and m 6≡ 0
(mod 3).
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Condition C3 can be similarly treated. Condition C3 is satisfied for
e = 16 if and only if (x + 1)16 − x16 − 1 = 0 has the only solution x = 0
in F3m . Note that

(x+ 1)16− x16− 1 = x(x14− x12− x11 + x9 + x8 + x6 + x5− x3− x2 + 1).

We need to prove that

g(x) := x14 − x12 − x11 + x9 + x8 + x6 + x5 − x3 − x2 + 1 = 0 (10)

has no solution in F3m . One can verify that gcd(g(x), x3 − x) = 1,
gcd(g(x), x32 − x) = 1 and gcd(g(x), x33 − x) = x6 + x5− x4− x2 + x +
1. It then follows from Lemma 4 that g(x) has two cubic irreducible
factors and g(x)/ gcd(g(x), x33 − x) either is irreducible or has two
irreducible factors of degree 4. In fact, the canonical factorization of
g(x) over F3 is given by g(x) = (x3 + 2x + 2)(x3 + x2 + 2)(x8 + 2x7 +
x6 + 2x4 + x2 + 2x + 1). Thus (10) has no solution in F3m if m is odd and
m 6≡ 0 (mod 3). Then the desired conclusions follow from Theorem 1.
This completes the proof.

Example 7. Let m = 5 and let α be the generator of F∗3m with α5 + 2α +
1 = 0. Then the code C(1,e) of Corollary 6 has parameters [242, 232, 4] and
generator polynomial x10 + 2x9 + x8 + x7 + x5 + x4 + 2x + 2.

Corollary 7. Let m be odd. Then the ternary cyclic code C(1,20) has parame-
ters [3m − 1, 3m − 1− 2m, 4].

Proof. Since e = 20 is even, e 6∈ C1. We have that gcd(3m − 1, 20) =
gcd(3m − 1, 4) = 2 as m is odd. It then follows from Lemma 1 that
|Ce| = |C20| = m. Conditions C2 and C3 are met if and only if both
f (x) = [(x + 1)20 + x20 + 1]/(x− 1)2 = 2(x18 + x16 − x15 + x13 − x12 +
x10 + x8 − x6 + x5 − x3 + x2 + 1) and g(x) = [(x + 1)20 − x20 − 1]/x =
2(x18− x17 + x10− x9 + x8− x + 1) have no solution in F3m . By Lemma
2, it is sufficient to prove that both f (x) and g(x) have no irreducible
factors with odd degree.

Applying Lemma 3, one obtains that

gcd( f (x), x32 − x) = 1, gcd( f (x), x34 − x) = 1, gcd( f (x), x36 − x) = 2 f (x),

i.e., f (x) has three irreducible factors of degree 6. Then f (x) = 0 has
no solution in F3m if and only if m 6≡ 0 (mod 6) due to Lemma 2. For
g(x), one has that gcd(g(x), x32 − x) = x2 + 1 and gcd(g(x), x34 − x) =
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x6 + x5 − x4 − x3 − x2 + x + 1. It then follows from Lemma 2 that g(x)
has the irreducible factor x2 + 1 and an irreducible factor of degree
4. Moreover, Lemma 4 implies that g(x)/ gcd(g(x), x34 − x) whose
degree equals to 12 has no irreducible factors with odd degree since
gcd(g(x), x33 − x) = 1 and gcd(g(x), x35 − x) = 1. Thus, by Lemma
2, g(x) = 0 has no solution in F3m if m is odd. Then the desired
conclusions follow from Theorem 1. This completes the proof.

Remark 2. The value e = 20 is a special case of Open Problem 7.5 in [5].

Example 8. Let m = 5 and let α be the generator of F∗3m with α5 + 2α +
1 = 0. Then the code C(1,e) of Corollary 7 has parameters [242, 232, 4] and
generator polynomial x10 + 2x8 + x7 + x4 + x3 + 2x + 2.

It should be noticed that some larger values of r for e = 3m−1
2 ± r,

e = r(3m−1− 1) and e = 2r such that C(1,e) has parameters [3m− 1, 3m−
1− 2m, 4] can also be obtained with the same techniques by virtue of
the division algorithm given in Lemma 3. Moreover, in each of the
eight remaining open problems in [5], the cases of h = 0, 1, 2, 3 and
h = m− 1, m− 2, m− 3 can also be settled. For the general case, new
techniques are required.

5 NE W O P T I M A L T E R N A RY C Y C L I C C O D E S W I T H
PA R A M E T E R S [3m − 1, 3m − 2m− 2, 5]

Throughout this section, let m > 1 be an integer, s = 3m−1
2 , α be a gen-

erator of F∗3m and C(1,e,s) be the cyclic code with generator polynomial
(x + 1)m1(x)me(x), where mi(x) denotes the minimal polynomial of αi

over F3.
The code C(1,e,s) is a [3m − 1, 3m − 2m− 2] cyclic code if the size of

Ce is equal to m, i.e., |Ce| = m. A tight upper bound on the minimum
distance of C(1,e,s) can be derived from the following bound on linear
codes.

Lemma 8. ([8, Lemma 6]) Let Aq(n, d) be the maximum number of
codewords of a q-ary code with length n and Hamming distance at
least d. If q ≥ 3, t = n− d + 1 and r = bmin{ n−t

2 , t−1
q−2}c, then

Aq(n, d) ≤ qt+2r

∑r
i=0 (

t+2r
i )(q− 1)i

.
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Theorem 6. For any given e with |Ce| = m, the minimum distance of C(1,e,s)
satisfies d ≤ 5.

Proof. Clearly, C(1,e,s) has length 3m − 1 and dimension 3m − 2m− 2 if
|Ce| = m. It follows from the Sphere Packing bound that the minimum
distance d of C(1,e,s) satisfies d ≤ 6. It then suffices to show there is no
ternary code with parameters [3m − 1, 3m − 2m− 2, 6].

Assume that there exists a ternary code with parameters [3m− 1, 3m−
2m− 2, 6]. Then applying Lemma 8 to this code, we have q = 3, n =
3m − 1, t = n− d + 1 = 3m − 6, r = 2, t + 2r = 3m − 2, ∑r

i=0 (
t+2r

i )(q−
1)i = 1 + 2(3m − 2)2, and

33m−2m−2 ≤ A3(3m − 1, 6) ≤ 33m−2

1 + 2(3m − 2)2

which implies 1 + 2(3m − 2)2 ≤ 32m, i.e., (3m − 4)2 ≤ 7, a contradiction
is obtained if m > 1. This completes the proof.

Theorem 6 indicates that C(1,e,s) is optimal if it has parameters [3m −
1, 3m − 2m − 2, 5]. Thus, for any given e, in order to obtain optimal
ternary cyclic code C(1,e,s) with parameters [3m − 1, 3m − 2m− 2, 5], we
need to show that C(1,e,s) has no codeword of Hamming weights ω ∈
{1, 2, 3, 4}. By the definition of C(1,e,s), it has a codeword of Hamming
weight ω if and only if there exist ω nonzero elements c1, c2, · · · , cω in
F3 and ω nonzero distinct elements x1, x2, · · · , xω in F3m such that

c1x1 + c2x2 + · · ·+ cωxω = 0

c1xe
1 + c2xe

2 + · · ·+ cωxe
ω = 0

c1xs
1 + c2xs

2 + · · ·+ cωxs
ω = 0.

(11)

Clearly, (11) cannot hold for ω = 1. If ω = 2, then one has c1 = c2
since x1 6= x2. This implies 0 = c1xe

1 + c2xe
2 = c1(xe

1 + (−x1)
e) and

0 = c1xs
1 + c2xs

2 = c1(xs
1 + (−x1)

s), i.e., ω 6= 2 if and only if either e is
even or s is even. Note that s = 3m−1

2 is even only if m is even.
To consider the codewords in C(1,e,s) with Hamming weights ω = 3

and ω = 4, it is more convenient to write (11) as
1 + c2x2

c1x1
+ · · ·+ cω xω

c1x1
= 0

1 + c2xe
2

c1xe
1
+ · · ·+ cω xe

ω
c1xe

1
= 0

1 + c2xs
2

c1xs
1
+ · · ·+ cω xs

ω
c1xs

1
= 0.

(12)
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In the subsequent subsections, by discussing the solutions of (12) for
ω = 3 and ω = 4 for a given e, new optimal ternary cyclic codes C(1,e,s)
with parameters [3m − 1, 3m − 2m− 2, 5] will be obtained.

5 .1 NE W O P T I M A L D O U B L E -E R R O R -C O R R E C T I N G T E R N A RY

C Y C L I C C O D E S F O R E V E N m

In this subsection, new optimal ternary cyclic codes C(1,e,s) with param-
eters [3m − 1, 3m − 2m− 2, 5] will be obtained from the exponent e of
the form

e =
3m − 1

2
+ r, 1 ≤ r ≤ 3m − 2, (13)

where xr is PN over F3m .
By definition, a function from F3m to itself is PN if and only if x− y = a

f (x)− f (y) = b
(14)

has a unique solution (x, y) ∈ F3m ×F3m for each (a, b) ∈ F∗3m ×F3m .
The following is a list of known PN monomials over F3m :

• f (x) = x2;

• f (x) = x3h+1, where m/ gcd(m, h) is odd [4];

• f (x) = x
3h+1

2 , where gcd(m, h) = 1 and h is odd [3].

It is known that r must be even if xr is PN over F3m . This fact will
be frequently used in subsequent proofs. If m is odd and xr is PN over
F3m , then the integer e of (13) must be odd as 3m−1

2 is odd. In this case
the minimum distance d of C(1,e,s) is 2. Hence throughout this section
we assume that m is even and xr is PN over F3m . Let e = 3m−1

2 + r.
Under these assumptions we will prove that C(1,e,s) is optimal and has
parameters [3m − 1, 3m − 2m− 2, 5]. To this end, we need to prove that
C(1,e,s) has no codeword of Hamming weights 3 and 4.

For simplicity, from now on, let η denote the quadratic character on
F3m which is defined by η(x) = 1 if x is a nonzero square in F3m and
η(x) = −1 if x is a nonzero nonsquare in F3m .

84



Optimal Ternary Cyclic Codes with Minimum Distance Four and Five

Lemma 9. Let m be even, s = 3m−1
2 and e = 3m−1

2 + r, where 1 ≤ r ≤
3m − 2. Then C(1,e,s) has no codeword of Hamming weight 3 if f (x) = xr is
PN over F3m .

Proof. C(1,e,s) has no codeword of Hamming weight ω = 3 if and only if
(12) has no solution over F3m for ω = 3. Let x = x2/x1 and y = x3/x1,
then x, y 6= 0, 1, x 6= y and (12) becomes

1 + c2
c1

x + c3
c1

y = 0

1 + c2
c1

η(x)xr + c3
c1

η(y)yr = 0

1 + c2
c1

η(x) + c3
c1

η(y) = 0

(15)

since xe = η(x)xr and ye = η(y)yr. Due to symmetry, we only need to
consider (15) for the following two cases:

1. c1 = c2 = c3 = 1: In this case, by the third equation in (15), one
has 1 + η(x) + η(y) = 0. This leads to η(x) = η(y) = 1. Then (15)
is reduced to 1 + x + y = 0 and 1 + xr + yr = 0.

2. c1 = c2 = 1, c3 = −1: Similarly, by (15), one has 1 + η(x) −
η(y) = 0, i.e., η(x) = 1 and η(y) = −1. Thus (15) is reduced to
1 + x− y = 0 and 1 + xr + yr = 0.

Assume that (x, y) is a solution of (15) with x, y 6= 0, 1 and x 6= y. Then
1) and 2) imply that

x− 1 = 1− (±y), xr − 1r = 1r − (±y)r

where we used the fact that r is even (because xr is PN over F3m ).
Furthermore, since f (x) = xr is PN over F3m , by (14), the equations
above hold if and only if (x, 1) = (1,±y), a contradiction with x 6= 1.
Thus, (12) has no solution for ω = 3. This completes the proof.

With the same techniques, we can also prove C(1,e,s) has no codeword
of Hamming weight 4 if e = 3m−1

2 + r and f (x) = xr is PN over F3m .

Lemma 10. Let m be even, s = 3m−1
2 and e = 3m−1

2 + r, where 1 ≤ r ≤
3m − 2. Then C(1,e,s) has no codeword of Hamming weight 4 if f (x) = xr is
PN over F3m .
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Proof. C(1,e,s) has no codeword of Hamming weight ω = 4 if and only if
(12) has no solution over F3m for ω = 4. Let x = x2/x1, y = x3/x1 and
z = x4/x1, then x, y, z 6= 0, 1 are pairwise distinct and (12) becomes

1 + c2
c1

x + c3
c1

y + c4
c1

z = 0

1 + c2
c1

η(x)xr + c3
c1

η(y)yr + c4
c1

η(z)zr = 0

1 + c2
c1

η(x) + c3
c1

η(y) + c4
c1

η(z) = 0

(16)

since xe = η(x)xr, ye = η(y)yr and ze = η(z)zr if e = 3m−1
2 + r. Due to

symmetry, we only need to consider (16) for the following three cases:

1. c1 = c2 = c3 = c4 = 1: By the third equation in (16), i.e., 1+ η(x)+
η(y)+ η(z) = 0, without loss of generality, one can assume η(x) =
1 and η(y) = η(z) = −1. Then (16) is reduced to 1+ x + y+ z = 0
and 1 + xr − yr − zr = 0.

2. c1 = c2 = c3 = 1, c4 = −1: In this case, one has 1 + η(x) +
η(y)− η(z) = 0 according to (16). Then there are two cases to be
considered: (I) If η(z) = −1, then η(x) + η(y) = 1 which implies
η(x) = η(y) = −1; (II) If η(z) = 1, then η(x) + η(y) = 0 and
one can assume η(x) = 1 and η(y) = −1 due to the symmetry
of x and y. Then, (16) can be reduced to 1 + x + y− z = 0 and
1− xr − yr + zr = 0 or 1 + x + y− z = 0 and 1 + xr − yr − zr = 0.

3. c1 = c2 = 1, c3 = c4 = −1: Similar as case 2), by (16) one has
1+ η(x)− η(y)− η(z) = 0. (I) If η(x) = 1, then η(x) + η(y) = −1.
This leads to η(y) = η(z) = 1; (II) If η(x) = −1, then η(y) +
η(z) = 0 and one can assume η(y) = 1 and η(z) = −1 due
to the symmetry of y and z. Therefore, (16) can be reduced to
1 + x − y− z = 0 and 1 + xr − yr − zr = 0 or 1 + x − y− z = 0
and 1− xr − yr + zr = 0.

Thus there are totally five cases to be considered. However, it should
be noticed that there are exactly two “−1" and two “1" in the multi-set
{1, c2

c1
η(x), c3

c1
η(y), c4

c1
η(z)} for each of the five cases. This makes the

proof for each case quite similar by using properties of PN functions.
Hence we only prove that (16) has no solution over F3m for the first case.
Assume that (x, y, z) is a solution over F3m of (16) with the conditions
c1 = c2 = c3 = c4 = 1, η(x) = 1 and η(y) = η(z) = −1. Then (16) can
be rewritten as

x− (−y) = (−z)− 1, xr − (−y)r = (−z)r − 1r
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since r is even. However the above equalities hold if and only if
(x,−y) = (−z, 1) according to (14) since xr is PN over F3m . This contra-
dicts with η(y) = −1 for the first case since η(−1) = 1 for even m. This
completes the proof.

For even m, new classes of optimal ternary cyclic codes with pa-
rameters [3m − 1, 3m − 2m− 2, 5] can be obtained from the known PN
monomials over F3m and are described in the following theorem.

Theorem 7. Let m be even and s = 3m−1
2 . Then the ternary cyclic code

C(1,e,s) is optimal and has parameters [3m − 1, 3m − 2m− 2, 5] if

• e = 3m−1
2 + 2; or

• e = 3m−1
2 + 3h + 1, where m/ gcd(m, h) is odd; or

• e = 3m−1
2 + 3h+1

2 , where gcd(m, h) = 1 and h is odd.

Proof. For each class of e, one can derive that gcd(e, 3m − 1) = 2. By
Lemma 1, we have that |Ce| = m. It can be easily verified that C1 ∩Ce =
∅. Then the desired conclusions follow from Lemmas 9–10, Theorem
6 and the fact that the three monomials x2, x3h+1 and x(3

h+1)/2 are PN
over F3m under the conditions described in this theorem. This completes
the proof.

Example 9. Two examples of the codes of Theorem 7 are the following:

1. Let m = 4, s = 3m−1
2 = 40 and α be a generator of F∗3m with α4 +

2α3 + 2 = 0. If e = 3m−1
2 + 2 = 42, then the generator polynomial

of C(1,42,40) is x9 + x8 + 2x6 + 2x5 + x4 + 2x2 + 2x + 2 and C(1,42,40)
has parameters [80, 71, 5].

2. Let m = 6, s = 3m−1
2 = 364 and α be a generator of F∗3m with α6 +

2α4 + α2 + 2α+ 2 = 0. If e = 3m−1
2 + 32 + 1 = 374, then the generator

polynomial of C(1,374,364) is x13 + 2x12 + x10 + x9 + 2x7 + 2x6 + x5 +

2x3 + 2 and C(1,374,364) has parameters [728, 715, 5].

According to Theorem 7, both C(1,42,40) and C(1,374,364) are optimal.

Another class of optimal ternary cyclic code C(1,e,s) with parame-
ters [3m − 1, 3m − 2m− 2, 5] for even m are described in the following
theorem.
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Theorem 8. Let m be even and let s = 3m−1
2 . Then the ternary cyclic code

C(1,2,s) is optimal and has parameters [3m − 1, 3m − 2m− 2, 5].

Proof. It follows from Lemma 1 that |C2| = m. Clearly, we have that
C1 ∩ C2 = ∅. Hence the dimension of C(1,2,s) is equal to 3m − 2m− 2.
By the BCH bound, the minimum distance of C(1,2) is at least 4. Then
to prove this theorem, we need only to prove that (12) has no solution
over F3m for e = 2 and ω = 4 due to the fact that C(1,2,s) ⊂ C(1,2) and
Theorem 6. Because of symmetry, we discuss (12) by distinguishing
among the following cases:

1. c1 = c2 = c3 = c4 = 1: Without loss of generality, we can assume
η(x) = 1 and η(y) = η(z) = −1 by the third equation in (12).
On the other hand, the first two equations in (12) imply that
1+ x2 + y2 +(−1− x− y)2 = 0, i.e., x2 +(y+ 1)x+ y2 + y+ 1 = 0.
For any fixed y, the discriminant of this quadratic equation with
unknown x is given by ∆ = (y + 1)2 − 4(y2 + y + 1) = y which
is a nonsquare since η(y) = −1. Hence, (12) has no solution over
F3m for this case.

2. c1 = c2 = c3 = 1, c4 = −1: In this case, by the first two equations
in (12) one has 1 + x2 + y2 − (1 + x + y)2 = 0, i.e., x + y + xy = 0.
This implies y = − x

x+1 and 1
x+1 = − y

x . Then η(z) = η(1 + x +

y) = η( (x−1)2

x+1 ) = η( 1
x+1 ) = η(− y

x ) = η(−xy) = η(xy) since
η(−1) = 1 if m is even. This leads to 0 = 1+ η(x)+ η(y)− η(z) =
1 + η(x) + η(y) − η(xy) = (η(x) − 1)(1 − η(y)) − 1 ∈ {1,−1}
since η(x), η(y) ∈ {1,−1}, a contradiction. Thus, (12) has no
solution over F3m .

3. c1 = c2 = 1, c3 = c4 = −1: The first two equations in (12) imply
that 1 + x2 − y2 − (1 + x− y)2 = 0 for this case, i.e, y2 − y− xy +
x = (y− x)(y− 1) = 0 which is impossible since x 6= y and y 6= 1.

Thus, (12) has no solution over F3m for e = 2 and ω = 4. This completes
the proof.

It should be noted that the codes of Theorem 8 are not BCH codes.

Example 10. The following are two examples of the codes of Theorem 8.

1. Let m = 4, s = 3m−1
2 = 40 and α be a generator of F∗3m with α4 +

2α3 + 2 = 0. Then the generator polynomial of C(1,2,40) is x9 + 2x8 +

x6 + 2x5 + 2x3 + 2x2 + 2x + 2 and C(1,2,40) has parameters [80, 71, 5].
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2. Let m = 6, s = 3m−1
2 = 364 and α be a generator of F∗3m with α6 +

2α4 + α2 + 2α + 2 = 0. Then the generator polynomial of C(1,2,364) is
x13 + 2x12 + 2x9 + 2x8 + x5 + x4 + 2x3 + x + 2 and C(1,2,364) has
parameters [728, 715, 5].

According to Theorem 8, both C(1,2,40) and C(1,2,364) are optimal.

5.2 NE W O P T I M A L D O U B L E -E R R O R -C O R R E C T I N G T E R N A RY

C Y C L I C C O D E S F O R O D D m

In this subsection, new optimal ternary cyclic codes C(1,e,s) with param-
eters [3m − 1, 3m − 2m− 2, 5] for odd m are investigated, where e is even
and satisfies

e · r ≡ 2 · 3τ (mod 3m − 1) (17)

for some 1 ≤ r ≤ 3m − 2 and 0 ≤ τ ≤ m− 1.
To prove that C(1,e,s) has minimum distance d = 5, we need to show

that C(1,e,s) has no codeword of Hamming weights 3 and 4.

Lemma 11. Let m be odd and let s = 3m−1
2 . Let e and r be even positive in-

tegers satisfying (17) and gcd(r, 3m − 1) = 2. Then C(1,e,s) has no codeword
of Hamming weight 3 if f (x) = xr/2 is PN over F3m .

Proof. We now prove that (12) has no solution for ω = 3. Notice that
cixe

i
c1xe

1
= ci

c1
( cixi

c1x1
)e since e is even and ci/c1 ∈ {1,−1} for i = 2, 3. On

the other hand, by η(−1) = −1, one has ci
c1

η( xi
x1
) = η( cixi

c1x1
). Thus, let

x = c2x2/c1x1 and y = c3x3/c1x1, then (12) can be written as
1 + x + y = 0

1 + c2
c1

xe + c3
c1

ye = 0

1 + η(x) + η(y) = 0.

(18)

Assume that (x, y) is a solution of (18), then by 1 + η(x) + η(y) = 0,
one has η(x) = η(y) = 1. It then follows from gcd(r, 3m − 1) = 2 that
there exist u, v ∈ F3m such that x = ur and y = vr. Then, according to
(17), one gets xe = uer = u2·3τ

and ye = ver = v2·3τ
. Therefore, (18) is

equivalent to  1 + ur + vr = 0

1 + c2
c1

u2 + c3
c1

v2 = 0.
(19)
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Notice that r/2 is even since f (x) = xr/2 is PN over F3m . This leads
to ur = ( c2

c1
u2)r/2 and vr = ( c3

c1
v2)r/2. Let µ = c2

c1
u2 and ν = c3

c1
v2. Then

(19) can be written as

f (µ)− f (1) = f (1)− f (ν), µ− 1 = 1− ν

which hold if and only if (µ, 1) = (1, ν) according to (14) since f (x) =
xr/2 is PN over F3m . However, µ = ν = 1 implies x = y = 1. This leads
to c1x1 = c2x2 = c3x3 which is impossible since c1, c2, c3 ∈ {1,−1}
and x1, x2, x3 are pairwise distinct. Therefore, (18) has no solution
(x, y) ∈ F∗3m ×F∗3m . This completes the proof.

We also need the following lemma in the sequel.

Lemma 12. Let m be odd and let s = 3m−1
2 . Let e and r be even positive in-

tegers satisfying (17) and gcd(r, 3m − 1) = 2. Then C(1,e,s) has no codeword
of Hamming weight 4 if f (x) = xr/2 is PN over F3m .

Proof. We now show that (12) has no solution for ω = 4. Similar as in
(18), let x = c2x2/c1x1, y = c3x3/c1x1 and z = c4x4/c1x1, then (12) can
be written as 

1 + x + y + z = 0

1 + c2
c1

xe + c3
c1

ye + c4
c1

ze = 0

1 + η(x) + η(y) + η(z) = 0.

(20)

Assume that (x, y, z) is a solution of (20). Since 1+ η(x)+ η(y)+ η(z) =
0, we need consider the following three cases: 1) η(x) = 1, η(y) =
η(z) = −1; 2) η(x) = η(y) = −1, η(z) = 1; and 3) η(x) = η(z) =
−1, η(y) = 1. In the following, we give only the proof for case 1) since
the other two cases can be completely proven in the same manner due
to symmetry.

Note that η(−1) = −1 and gcd(r, 3m − 1) = 2. Every square (resp.
nonsquare) in F3m can be expressed as ur (resp. −ur) for some u ∈ F3m .
Thus, for x, y, z with η(x) = 1 and η(y) = η(z) = −1, there exist
u, v, w ∈ F3m such that x = ur, y = −vr and z = −wr. Then, according
to (17) and the fact that e is even, one gets xe = uer = u2·3τ

, ye = ver =
v2·3τ

and ze = wer = w2·3τ
. Therefore, (20) is equivalent to 1 + ur − vr − wr = 0

1 + c2
c1

u2 + c3
c1

v2 + c4
c1

w2 = 0.
(21)
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Let µ = c2
c1

u2, ν = c3
c1

v2 and λ = c4
c1

w2. Since f (x) = xr/2 is PN over F3m ,
r/2 must be even. This implies that f (±µ) = µr/2 = ( c2

c1
u2)r/2 = ur,

f (±ν) = νr/2 = vr and f (±λ) = λr/2 = wr. Thus, (21) can be rewritten
as  f (µ)− f (−ν) = f (−λ)− f (1)

µ− (−ν) = (−λ)− 1.
(22)

Since f (x) = xr/2 is PN over F3m , then by (14) one has that (22) holds
if and only if (µ,−ν) = (−λ, 1), i.e., µ + λ = 0 and ν = −1. This leads
to x + z = 0 and y = −1, i.e., c2x2 + c4x4 = 0 and c3x3 = −c1x1 which
imply that c2 = c4 and c1 = c3 since x2 6= x4 and x1 6= x3. Thus, one
then has that x2 = −x4, x1 = −x3, and the second equation in (12)
can be reduced to 2c1xe

1 + 2c2xe
2 = 0 which implies that (2c1xe

1)
r =

(−2c2xe
2)

r, i.e., x2
1 = x2

2 due to (17) and the fact that r is even. This is
impossible since x1 6= x2 and x1 = −x2 implies x2 = x3, a contradiction.
Therefore, (20) has no solution over F3m . This completes the proof.

We are now ready to document the main result of this section with
the following theorem.

Theorem 9. Let m be odd, e be even and s = 3m−1
2 . Let r, τ be nonnegative

integers such that gcd(r, 3m− 1) = 2 and e · r ≡ 2 · 3τ (mod 3m− 1). Then
the ternary cyclic code C(1,e,s) is optimal and has parameters [3m − 1, 3m −
2m− 2, 5] if f (x) = xr/2 is PN over F3m .

Proof. Since e is even and e · r ≡ 2 · 3τ (mod 3m− 1), we have gcd(e, 3m−
1) = 2. It then follows from Lemma 1 that |Ce| = m. In addition, it is
easily verified that C1 ∩ Ce = ∅. Hence the dimension of the code is
equal to 3m − 2m− 2. The desired conclusion on the minimum distance
of this code follows from Lemmas 11, 12 and Theorem 6. This completes
the proof.

With Theorem 9, new classes of optimal ternary cyclic codes C(1,e,s)
with parameters [3m − 1, 3m − 2− 2m, 5] for odd m can be obtained.

Corollary 8. Let m be odd and s = 3m−1
2 . Then the ternary cyclic code C(1,e,s)

is optimal and has parameters [3m − 1, 3m − 2m− 2, 5] if

1. e = 3m+1
4 + 3m−1

2 ; or

2. e = 3m+1−1
8 for m ≡ 3 (mod 4); and e = 3m+1−1

8 + 3m−1
2 for m ≡ 1

(mod 4); or
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3. e = 3(m+1)/2 − 1; or

4. e = 3(m+1)/2−1
2 for m ≡ 3 (mod 4); and e = 3(m+1)/2−1

2 + 3m−1
2 for

m ≡ 1 (mod 4); or

5. e = (3(m+1)/4 − 1)(3(m+1)/2 + 1) for m ≡ 3 (mod 4).

Proof. To prove this corollary with Theorem 9, for each e it is sufficient
to find a suitable r such that e and r satisfy the conditions given in
Theorem 9. Thus for the given e in each case, we can define the r
respectively by

1. r = 4;

2. r = 8;

3. r = 3h + 1, where h = (m + 1)/2 if m ≡ 1 (mod 4), and h =
(m− 1)/2 if m ≡ 3 (mod 4);

4. r = 2(3h + 1), where h = (m + 1)/2;

5. r = 3h + 1, where h = (m + 1)/4 if m ≡ 3 (mod 8), and h =
(3m− 1)/4 if m ≡ 7 (mod 8).

Then, for each pair (e, r), one can verify that the conditions in Theorem
9 are met according to the known three classes of PN monomials. This
completes the proof.

Note that all the exponents e given in Corollary 8 are APN exponents
[18].

Example 11. Let m = 3, s = 3m−1
2 = 13 and α be a generator of F∗3m with

α3 + 2α + 1 = 0.

1. If e = 3(m+1)/2 − 1 = 8, then the generator polynomial of C(1,8,13) is
x7 + 2x4 + x3 + 2x + 2 and C(1,8,13) has parameters [26, 19, 5].

2. If e = 3m+1−1
8 = 10, then the generator polynomial of C(1,10,13) is

x7 + 2x6 + x4 + 2x2 + 2 and C(1,10,13) has parameters [26, 19, 5].

Both C(1,8,13) and C(1,10,13) are optimal according to Corollary 8.

Example 12. Let m = 5, s = 3m−1
2 = 121 and α be a generator of F∗3m with

α5 + 2α + 1 = 0.
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1. If e = 3m+1
4 + 3m−1

2 = 182, then the generator polynomial of C(1,182,121)

is x11 + x9 + x5 + x4 + 2x3 + 2x2 + 2 and C(1,182,121) has parameters
[242, 231, 5].

2. If e = 3(m+1)/2−1
2 + 3m−1

2 = 134, then the generator polynomial of
C(1,134,121) is x11 + x8 + x6 + 2x5 + 2x4 + x2 + x + 2 and C(1,134,121)
has parameters [242, 231, 5].

Both C(1,182,121) and C(1,134,121) are optimal according to Corollary 8.

According to Theorem 9, optimal ternary cyclic code C(1,e,s) with
parameters [3m − 1, 3m − 2− 2m, 5] can also be obtained from e which
is not in the list of known APN exponents [18]. The following Corollary
is such an example.

Corollary 9. Let m ≡ 3 (mod 4), s = 3m−1
2 and e = 3m+2·3t−1

20 with t ≡ 3
(mod 4). Then the ternary cyclic code C(1,e,s) is optimal and has parameters
[3m − 1, 3m − 2m− 2, 5].

Proof. By a direct calculation, one has that 3m−1
2 ≡ 13 (mod 20) and

3t ≡ 7 (mod 20) if m ≡ 3 (mod 4) and t ≡ 3 (mod 4). Hence e is an
even integer. If r = 20, then gcd(r, 3m − 1) = 2, e · r ≡ 2 · 3t (mod 3m −
1) and xr/2 is PN over F3m as m is odd. Then the desired result follows
from Theorem 9. This completes the proof.

Example 13. Let m = 7, s = 3m−1
2 = 1093 and α be a generator of F∗3m with

α7 + 2α + 1 = 0. If t = 3 and e = 3m+2·3t−1
20 = 112 which is not an APN

exponent, then the generator polynomial of C(1,112,1093) is x15 + 2x14 + 2x13 +

2x11 + x10 + x9 + 2x8 + x7 + x5 + 2x4 + 2x3 + x2 + 2 and C(1,112,1093) has
parameters [2186, 2171, 5] which is optimal according to Corollary 9.

It should be noticed that Corollary 9 in fact indicates a general method
for deriving new exponent e such that C(1,e,s) is optimal and has pa-
rameters [3m − 1, 3m − 2m− 2, 5]. In general, with the known PN mono-
mials, one can select an integer r such that xr/2 is PN over F3m and
gcd(r, 3m− 1) = 2. Then, for such a fixed r, by solving congruence equa-
tion (17) which has exactly two solutions since gcd(r, 3m − 1) = 2, one
can get a desired e. Hence, through direct calculations, more new opti-
mal ternary cyclic codes C(1,e,s) with parameters [3m − 1, 3m − 2m− 2, 5]
can be obtained from this approach.

93



Sequences and Linear Codes from Highly Nonlinear Functions

6 CO N C L U S I O N S

Optimal ternary cyclic codes C(1,e) with parameters [3m − 1, 3m − 1−
2m, 4] and C(1,e,s) with parameters [3m − 1, 3m − 2− 2m, 5] were inves-
tigated respectively in this paper. By analyzing irreducible factors of
certain polynomials with low degrees over finite fields, an open prob-
lem about C(1,e) for e = 2(3m−1 − 1) proposed by Ding and Helleseth
in [5] was solved and new optimal ternary codes C(1,e) with parameters
[3m − 1, 3m − 1− 2m, 4] were also obtained with the same techniques.
Moreover, inspired by the work of [2] and [5], a number of classes of opti-
mal ternary cyclic codes C(1,e,s) with parameters [3m − 1, 3m − 2m− 2, 5]
were also presented. The construction and properties of these optimal
codes C(1,e,s) are based on known PN and APN monomials.
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