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Overview 

The project has been conducted at the Centre for age-related medicine (Regionalt 

kompetansesenter for eldremedisin og samhandling, SESAM) at the Stavanger 

University hospital (SUS) under the supervision given by Prof. Dag Aarsland 

MD PhD, who is research director of SESAM, professor of clinical dementia 

research at Alzheimer’s Disease Research Centre, NVS, Karolinska Institutet, 

and principal investigator of the DemWest study group.  

Alexander Lebedev MD is a medical doctor (specialized in psychiatry), with 

experience in multimodal neuroimaging (PET, fMRI, anatomical MRI, DTI, 

MRS). He participated in imaging studies of depression and anxiety disorders, 

performing analysis of structural and functional imaging data. He is also familiar 

with modern approaches to multivariate data analysis and machine learning 



 5 
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and expertise; 

Eric Westman PhD is an assistant professor at the Department of Neurobiology, 

Care Sciences and Society (Karolinska Institute, Stockholm, Sweden), 

experienced in neuroscience, neuroimaging, advanced approaches to multivariate 

data analysis and machine learning algorithms. He coordinated the imaging part 

of the project, helped with practical support and critical review of the papers; 

Mona Beyer MD PhD is a neuroradiologist at Oslo University Hospital, MRI 
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with practical support, critical review of the papers and provided imaging 

expertise to the project; 

Prof. Arvid Lundervold MD PhD, who is a professor at the Department of 

Biomedicine (University of Bergen) and the head of the Neuroinformatics and 

Image Analysis Laboratory (a part of the Neuroscience Research group). He 

provided expert imaging and numerical input to the project, helped with critical 

review of the manuscripts. 
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Abstract 
 

Background 

Cognitive impairment is a very common problem, especially in older individuals 

with major impact on quality of life, daily functioning, and healthcare. Its 

importance is expected to increase due to the demographic changes. 

Neuroimaging is a rapidly developing field of neuroscience that provides an 

opportunity to study brain mechanisms of cognitive impairment in vivo, which 

may help in the development of new biomarkers and treatment strategies. The 

application of advanced image processing to neuroimaging offers the potential 

for diagnostically relevant analysis techniques, in particular for magnetic 

resonance imaging (MRI). 

  

Aim 

The primary aims of the project were to investigate brain mechanisms of 

cognitive impairment in neurodegenerative diseases using computational 

neuroimaging approaches and to assess their potential applicability in clinical 

practice for detection, prediction and differential diagnosis of cognitive 

impairment in the elderly. 

  

Objectives 

1) To investigate brain changes underlying cognitive impairment in 

neurodegenerative diseases (Alzheimer’s, Lewy body dementia and 

Parkinson’s disease).  

2) To assess the applicability of pattern recognition techniques for: 

a) Differential diagnosis of cognitive impairment  
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b) Prediction of further cognitive deterioration in patients with mild 

cognitive impairment; 

3) To investigate problems associated with implementation of computer-

aided image-based tools for detection, prediction and differential 

diagnosis of cognitive impairment. 
  

Methods 

Five datasets of clinical and imaging data were used, including two large-scale 

databases of Alzheimer’s disease (ADNI and AddNeuroMed).  

In the papers I-II, Alzheimer’s disease was diagnosed according to the NINCDS-

ADRDA criteria. 

Dementia with Lewy bodies (paper I) was diagnosed according to the revised 

consensus criteria (1) 

Image post-processing steps were performed within the surface- (papers I-III) 

and voxel-based (paper IV) frameworks using the Freesurfer and SPM8, 

respectively. Mass-univariate (papers III, IV) and multivariate (papers I, II and 

IV) approaches were used. In the paper IV, an automated quantitative meta-

analysis was also performed using the Neurosynth software. 

  

Results 

Papers I-II  

Optimizing image preprocessing and data analysis pipeline, we found that it is 

possible to develop a computer-aided tool for detection (Sensitivity/Specificity = 

88.6%/92.0%), prediction (Sensitivity/Specificity = 83.3%/81.3%) and 

differential diagnosis (AD/DLB overall classification accuracy = 83.9%) of 

degenerative diseases with good between-cohort robustness if imaging and 

clinical protocols are carefully aligned. For the morphometric data, the use of 

disease-specific brain parcellation schemes resulted in equivalent performance 
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compared to normalized raw high-dimensional input, but required substantially 

lesser tuning time and computation/memory resources. Better accuracy of the 

models can be achieved by adding more biomarkers (e.g., ApoE genotype), 

demographics, and improved disease verification strategies (e.g., post-mortem 

diagnosis) for the data used as a training material for the classifiers.  

The next two papers were focused on neural correlates of cognitive impairment 

in PD that had to be investigated prior considering them within the framework of 

computer-aided diagnosis. 

Papers III-IV 

We found that Parkinson’s-related cognitive impairment affecting multiple 

domains is associated with temporo-parietal and superior frontal thinning. On a 

large-scale network level, better executive performance in PD is associated with 

increased dorsal fronto-parietal cortical processing and inhibited subcortical and 

primary sensory involvement when the subject is at resting state. This pattern is 

positively influenced by the relative preservation of nigrostriatal dopaminergic 

function. The pattern associated with better memory performance favors 

prefronto-limbic processing, and does not reveal associations with presynaptic 

striatal dopamine function.  

 

Conclusions 

Cognitive impairment in the elderly has different brain profiles depending on the 

predominant neurodegenerative pathology and cognitive functions affected. With 

the use of automated computer-aided tools and advanced image processing 

techniques, Alzheimer’s disease can be robustly identified, predicted two years 

before the actual dementia onset and differentiated from dementia with Lewy 

bodies. After certain modifications and adaptations for clinicians, the models can 

be successfully incorporated into medical decision-support systems and be 

evaluated in subsequent diagnostic clinical trials. 
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The identified brain structural and functional profile associated with Parkinson’s-

related cognitive impairment is also robust and, holding strong diagnostic 

potential, must be detectable using computer-aided systems of similar design, the 

development of which is the matter of our future research. The development and 

future elaboration of clinically realistic computer-aided systems for the diagnosis 

of neurodegenerative diseases is an important topic for future research. 
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1. Introduction 

Preliminary remarks 
Oxford dictionary defines cognition as “the mental action or process of acquiring 

knowledge and understanding through thought, experience, and the senses” (2). 

Pain, tactile, visual and auditory experiences, joy, fear, beliefs, desires, attitudes, 

intentions – all kinds of mental phenomena pass through the “prism” of 

cognition. Individual differences in cognitive functions define us as individuals 

to a very large extent: how smart we are, how good we are at foreseeing our 

future, life planning, decision making, learning, emotion control, even the clarity 

of the text that you are currently reading is largely influenced by the author’s and 

reader’s cognitive functions. 

An enigmatic boost of monkeys’ cognitive abilities, so-called “cognitive 

revolution” that happened about 70,000 years ago, have made us humans and 

determined appearance and future development of science, art and other 

inalienable aspects of our modern life (3).  

Today we live in the “golden age” for cognitive neuroscience. We have already 

started recovering lost cognitive abilities with a help of pharmacology, advanced 

brain surgery, implanting, gene therapy and engineering. Apart from this, recent 

advances in computer science made it possible to run simulations of certain 

aspects of cognition and even to share some of our cognitive abilities with 

computers that are rapidly becoming better and better at tasks previously thought 

as unfeasible for the machines, such as playing chess, natural language 

processing, voice and image recognition. 

The main inspiration for this thesis is the hope that the fusion between 

neuroscience, computer science and humanism will ultimately help us to 

overcome a devastating burden of neurodegenerative diseases and improve 

quality of life in the elderly. 
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Cognitive impairment in the elderly and its impact on society 
Multiple cognitive impairments that sufficiently affect activities of daily living 

manifest as dementia syndrome, which is the end-stage of many 

neurodegenerative diseases. Most frequently impaired domains with major 

impact are memory, executive, visuo-spatial functions, language and praxis.  

The diseases that cause dementia tend to have a progressive course. The most 

frequent causes of neurodegenerative dementia – Alzheimer's and Lewy Body 

diseases are often co-morbid and have an age-related incidence, which, in turn, 

explains the rapid growth of its prevalence, associated with the population ageing 

(4). Thus, only in Norway, about 60000 – 70000 people suffer from dementia 

and this number is expected to double by 2050 (5). 

It is not only patients and their caregivers who are affected by this devastating 

condition, but also the world society and global healthcare. Thus, financial 

burden of dementia is very high, equivalent to the one of heart disease and cancer 

(6), and set to grow exponentially over the next decades. In 2010, its total 

worldwide costs were estimated at 604 billion US dollars, and are expected to 

increase by 85 % by 2030 (7). This problem is even more serious, given that 

doctors specializing in age-related medicine are already in short supply, and the 

demand for them is becoming higher every year (8). 

Several strategies to overcome these issues can be undertaken. Developing novel 

treatments to prevent or modify neurodegenerative diseases is probably the most 

crucial one. Thus, only for Alzheimer’s disease, there are numerous ongoing 

clinical trials, the results of which will hopefully provide an opportunity to slow 

down or stop the disease progression. In this context, early detection and 

prediction of dementia is very important to select those who would have highest 

benefits from these trials. Importantly, one of the recent reports of Alzheimer’s 

Disease International (ADI, the international federation of Alzheimer 

associations around the world) was specifically focused on the benefits of early 

diagnosis and interventions in AD (9). This report also suggests that early 
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diagnosis of AD reduces costs itself by improving institutionalization strategies 

and enhancing quality of life of patients and their caregivers.  

All of the above, therefore, presents a need for the improved detection of 

cognitive impairment in the elderly at early stages, and neuroimaging is one of 

the most promising sources for this. 

 

Brain Imaging 
Brain imaging can be defined as a set of invasive and non-invasive techniques to 

image the structure, function or biochemistry of the brain. Plenty of methods are 

available in this field today such as magnetic resonance imaging, single-photon 

emission computed tomography (SPECT), positron emission tomography (PET) 

with different ligands including pathology-specific ones like, for example, 

Pittsburgh Compound B (PIB) and others (10). 

Magnetic resonance imaging (MRI) is a very informative and non-invasive 

method. After its invention by Felix Bloch and Edward Purcell followed by 

Nobel Prize in 1952 it took two decades before clinical implementation of this 

technique became possible (11). 

Today MRI is widely used for the diagnosis of dementia (10, 12), and many 

specialized MRI protocols and approaches to the data analysis have been 

developed, providing extremely wide spectrum of structural and functional 

information (13).  

Although MRI is now implemented in the diagnostic criteria for Alzheimer’s 

disease (14), it does not seem to reliably differentiate between all dementia types, 

at least with a visual assessment of anatomical MRI scans (15). Meanwhile, it is 

important to have a reliable differential diagnosis particularly between 

neurodegenerative diseases such Alzheimer’s and dementia with Lewy bodies. 
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Brain imaging of cognitive impairment in Alzheimer’s disease and dementia 
with Lewy bodies 
A diagnostic hallmark of AD, medial temporal lobe (MTL) atrophy, has been 

shown to be closely associated with episodic memory impairment, which, in turn, 

is one of the main clinical features of the disease (16, 17) (18).  

Meanwhile, emerging evidence suggests that AD may be a heterogeneous disease 

with several concomitant pathogeneses (19-21). Thus, neuropathological and 

neuroimaging studies revealed several manifestations of AD (typical, 

hippocampal-sparing, and limbic-predominant forms) that differ in patterns of 

neurofibrillary tangles distribution, brain atrophy, gender proportion, 

apolipoprotein E (ApoE) and microtubule-associated protein tau (MAPT) allele 

frequencies (20, 21), as well as several clinical manifestations that differ in the 

age of onset and cognitive functions affected (19, 22-24) (19, 25). A recent large-

sample study performed visual assessment of atrophy patterns associated with 

cognitive dysfunction in multiple domains in AD. The authors found that MTL 

atrophy was associated with worse memory, language and attention performance, 

whereas “posterior atrophy” (posterior cingulate, parieto-occipital regions, 

precuneus) was associated with worse performance on visuospatial and executive 

functioning (18).  

Typical brain changes associated with progression of Alzheimer’s disease follow 

a consistent pattern affecting entorhinal cortex on early stages, then hippocampal 

Cornu Ammonis (CA) subfields, amygdala, and finally neocortical areas (26). 

This progressive atrophy can be successfully visualized in vivo with the help of 

structural MRI. Visual assessment of medial temporal lobe (MTL) atrophy on 

MRI scans has a substantial clinical value in detection of AD with overall 

accuracy higher than 80% (27-29). Its ability to predict MCI-to-AD progression, 

however, is varying around 60-65% (30, 31). All of the above made MTL 

atrophy become one of the biomarkers in proposed Dubois’ criteria for 

prodromal AD (14). 
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There are also some preliminary evidences suggesting that MRI may help to 

differentiate AD from the second most common neurodegenerative disease in the 

elderly, DLB (29) (32). However, these results are limited due to different 

methodological frameworks and small sample sizes. 

Functional MRI (fMRI) is a noninvasive technique that allows to indirectly 

measure brain activity, assessing changes in so-called BOLD (blood oxygenation 

level-dependent) signal (33). Functional MRI can be implemented within the 

context of cognitive tasks (e.g., comparing “baseline” and “active” conditions) or 

when the subject is at resting state without any particular task (34). Both task-

related and resting fMRI (rs-fMRI) techniques are non-invasive, safe and have 

the potential to detect early brain functional abnormalities associated with 

cognitive impairment in the elderly, and to monitor their progression and 

therapeutic response.  It has recently been shown that rs-fMRI may assist in 

differentiation between AD and DLB (35). The main limitations of BOLD fMRI, 

however, are substantial difficulties of signal quantification (the method usually 

assesses either contrast or temporal correlations of signal changes), low signal-

to-noise ratio and high susceptibility to artifacts, MRI protocol differences and 

field strength. All of the above hampers consideration of BOLD fMRI as an 

imaging biomarker. On the other hand novel functional MRI techniques, such as 

arterial spin labeling, measuring brain perfusion are quantifiable and hold 

stronger potential to be used in clinical practice. 

MRI can provide relevant support in the diagnosis of AD, detecting progressive 

atrophy, which starts from the entorhinal cortex and gradually spreads 

throughout the brain (12), but, as mentioned above, is currently less useful for 

differentiation between AD and other neurodegenerative diseases.  

Although Alzheimer’s and Lewy body pathologies are often present together in 

autopsy materials, there are strong evidences suggesting that corresponding 

clinical manifestations, depending on predominant pathology, demonstrate 

substantially different morphological profiles, primarily, with greater 
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involvement of hippocampal formation and related neocortical areas in AD; this 

may explain more severely impaired memory function in AD as compared to 

DLB (36-38). On the other hand, the neuropathological basis of DLB primarily 

includes subcortical, frontal, temporal, and parietal lobes, which in turn may 

explain the predominance of visuospatial, attentional, and executive function 

impairment in these patients (39-42). Inconsistent findings have been reported 

regarding the involvement of cingulate and frontal cortex in LBD compared to 

AD. Both post mortem (43), as well as studies using imaging techniques such as 

SPECT-perfusion (44), PIB-PET (45), diffusion-tensor imaging (46, 47), have 

reported cingulate involvement in Lewy Body dementia. There are several 

reports on frontal lobe atrophy in DLB (48-50). However, recent studies found 

orbitofrontal (51) and, on the large sample, even the whole (52) cortex to be 

preserved in DLB compared to AD. In addition, although there are observations 

from functional studies showing metabolic (53) and perfusion (54) reductions in 

occipital lobes in DLB compared to AD, no significant volumetric differences in 

this region were found (55, 56).  

These findings are highly important for uncovering brain mechanisms and for 

understanding the pathomorphological and pathophysiological differences in 

these conditions.  

However, whether MRI can assist in the reliable differentiation between AD and 

LBD is not yet clarified, mainly because most studies do not report sensitivity 

and specificity, providing only group differences.  

 

Brain imaging of cognitive impairment in Parkinson’s disease    
Cognitive impairment is a very important and common non-motor feature of 

Parkinson’s disease (PD) with a major impact on patients’ quality of life and 

healthcare costs (57-59). Approximately one-fifth of newly diagnosed PD 

patients fulfill clinical criteria for mild cognitive impairment (PD-MCI) (60). 
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About one-sixth develop dementia after 5 years (61), and more than 80% of PD 

patients will eventually develop it as the disease progresses (62). 

Although the exact role and mechanisms of the dopaminergic system in 

cognition are still a matter of debate, there is no doubt that its preservation is 

crucial for cognitive functioning of PD patients. There is strong evidence 

suggesting that the impairment of at least 3 major dopaminergic pathways 

(nigrostriatal, mesocortical, mesolimbic) originating in the brainstem play a very 

important role in cognitive dysfunction associated with PD (63).  

Previous neuroimaging studies assessing brain networks in vivo have shown 

impairment of the dopaminergic pathways and related neural circuits in PD. 

Numerous studies on cognitive dysfunction associated with PD have revealed 

structural and functional abnormalities within the cortico-strio-thalamo-cortical  

circuits, known to be largely modulated by the dopaminergic system (64, 65). 

Decreased 6-[18F]-fluorodopa (18F-DOPA) uptake in the anterior cingulate cortex, 

ventral striatum and right caudate nucleus has been found in PD patients with 

dementia (PDD) compared to PD (66). Studies employing Single Photon 

Emission Computed Tomography (SPECT) with the dopamine transporter-

binding ligands (DaTSCAN) also suggest more severe striatal presynaptic 

dopaminergic deficiency in PDD compared to PD patients, especially in the 

caudate nuclei (67). In addition, there is also evidence suggesting an association 

between striatal 18F-DOPA uptake and executive performance in PD patients (68-

70).  

Several 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) studies 

analyzing brain networks in PD have identified partially overlapping patterns of 

brain metabolic changes associated with cognitive impairment in multiple 

domains, suggesting that the PD-related profile of cognitive impairment is 

associated with reduced glucose metabolism mainly in prefrontal, parietal, 

hippocampal and striatal regions (71-74).  

H2
15O-PET studies have shown an impaired basal ganglia and dorsolateral 

prefrontal response during executive task performance in PD (75-77). 
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Functional MRI studies have also revealed abnormalities within the frontal-

subcortical circuits in patients with PD. For instance, an abnormal fronto-striatal 

response during executive task performance has been found in cognitively 

impaired PD patients compared to non-impaired ones (78) (79). Another fMRI 

study assessing working memory and motor functions in ON and OFF 

dopaminergic medication states in PD patients (80) found increased prefrontal 

and parietal activations during the working memory task performance in the OFF 

state, which were positively correlated with errors during the task. Studies 

focusing on set-shifting paradigms have found a PD-associated pattern of 

prefrontal and parietal response characterized by either reduced or increased 

activation depending on whether the caudate nucleus was involved in the task 

(81, 82).  

Impaired deactivation of the default mode network during executive task 

performance has been reported in several fMRI studies of PD (83, 84). Resting 

state fMRI studies have reported abnormal cortico-striatal connectivity in PD 

(85-87), while L-DOPA administration has been shown to enhance functional 

connectivity in the frontal areas of the sensorimotor network (88). 

 

Computational Neuroimaging and Computer-Aided Diagnosis 
The era of computing is associated with significant changes in human life, 

uncovering a lot of valuable opportunities in many fields and particularly in 

medicine. Computational neuroimaging is a relatively new field of neuroscience 

and represents one of the most promising areas to provide diagnostically relevant 

analytic framework. Different techniques, methods and image post-processing 

approaches exist in this field (10, 89). Combined with pattern recognition 

techniques, computational approaches to structural MRI have already been 

shown to be effective for detection of AD, frontotemporal dementia (FTD) and 

mild cognitive impairment (MCI) (90-93) and hopefully will provide robust 

differential diagnosis in AD and DLB patients.  
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In this context, computer-aided diagnosis (CAD), defined as a family of 

computational approaches developed to assist doctors in the detection of 

abnormalities, quantification of disease progress and differential diagnosis (94), 

is a very promising subfield with high potential to be implemented in clinical 

practice. Potentially, it is a very cost-effective approach, since after the 

implementation it requires minimum technical staff to be maintained. Among 

other advantages of CAD is its unbiasedness toward human mistakes, global 

access, and possibility to establish a constantly updating large flow of the 

standardized data, which, in turn, may provide a very good research and clinical 

material for further improvements and serve as an additional incentive to 

implement these techniques in practice. Finally, this technology can be easily 

incorporated into clinical decision-support systems. However, it has its 

drawbacks too. One of the most critical issues pertains to the fact that use of 

these techniques implies a standardized process of data acquisition, which in turn 

requires employment of imaging protocol harmonization and preferably unified 

diagnostic workflows. The use of this technology by a clinician, at least at its 

first stages of implementation, may be associated with some technical difficulties 

(e.g., establishing data transfer, sending queries) and certain amount of technical 

training is therefore required. Lastly, its incentives and organizational 

governance are still a matter of research. It is worth noting though, that these 

issues pertain to modern healthcare in general. Thus, recent United States 

experience in rapid adoption of IT innovations, such as electronic health records 

(EHRs), in response to governmental incentive programs highlighted its 

problems such as a mismatch between EHR software and clinical workflow 

standards, which together with inadequate training and poor preparation of 

medical staff may lead to dissatisfaction and decreased productivity (95-97). So, 

the use of clinical and technical standards together with adequate personnel 

training is indeed a backbone of a successful adoption of any IT innovation, 

including CAD. Among the fields providing material for CAD in 

neurodegenerative diseases, brain imaging stands out as one of the most 

promising. 
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To summarize, neurodegenerative diseases have a devastating impact on society 

and healthcare, with increasing costs and demand for doctors who specialize in 

age-related medicine. Neuroimaging is an important technique that assists 

doctors in the diagnosis of cognitive impairment in the elderly.  Some of the 

techniques are already being implemented in the diagnostic process. The most 

advanced ones (e.g., PiB PET for AD, DaTSCAN for DLB and PD) are 

expensive, difficult to implement and are not widely available for clinicians. It is 

still not clear whether MRI can help to differentiate between AD and DLB, and 

whether it is possible to develop a cohort-robust automated tool for solving 

diagnostic problems with advanced image processing and data analytical 

techniques. 

Apart from this, brain mechanisms of cognitive deterioration associated with 

neurodegenerative diseases in the elderly are still a matter of debate. 

Meanwhile, computational neuroimaging represents a very promising set of 

techniques to study mechanisms of cognitive impairment and to provide 

clinically relevant and automated diagnostic tools. 
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2. Objectives 

1) To investigate brain changes underlying cognitive impairment in 

neurodegenerative diseases (Alzheimer’s, Lewy body dementia and 

Parkinson’s disease).  

2) To assess the applicability of pattern recognition techniques for: 

a) Differential diagnosis of cognitive impairment  

b) Prediction of further cognitive deterioration in patients with mild 

cognitive impairment; 

3) To investigate problems associated with implementation of computer-

aided image-based tools for detection, prediction and differential 

diagnosis of cognitive impairment. 
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3. Hypotheses 

1. With the help of computational neuroimaging, accurate and cohort-robust 

tools can be developed to assist in the differential diagnosis and early 

detection of cognitive impairment in the elderly; 

2. Cognitive impairment in Parkinson’s disease is associated with structural 

and functional abnormalities within temporo-parietal and prefrontal 

circuits; 

3. Brain dynamics underlying cognitive functioning in PD is influenced by 

nigrostriatal dopamine deficiency. 
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4. Methods 

4.1 Cohorts 

In the present project 5 cohorts were used. Their description is summarized in the 

Table M-1 and in the subsequent paragraphs. 

Table M-1. Characteristics of the cohorts 

!! DemWest! Slo! ADNI! AddNeuroMed! PPMI!

Papers! I! II! III,!IV!
Total!N! 63! 34! !808! 321! 179!!

Diagnoses! AD,!DLB! AD,!DLB,!
PDD! AD,!MCI,!HC! PD6MCI,!PD6

NC,!HC!

Imaging!
Modalities!

MRI,!
DaTSCAN!

MRI,!
DaTSCAN!

MRI!(with!harmonized!
protocol)!!

MRI,!fMRI,!
DaTSCAN!

Cognitive!
tests!

MMSE,!CDR,!CVLT6II,!
VF,!BNT,!BLOT,!BFRT,!

ROCFT,!ST!

MMSE,!CDR,!ADAS,!
ANART,!RAVLT,!SF,!WAIS6

R,!BNT,!TMT,!SDMT!

MoCA,!HVLT6
R,!SF,!BLOT,!
LNST,!SDMT!

Country! Norway! Slovenia! North!
America!

Europe!
(Finland,!Poland,Italy,!
Greece,!UK,!France)!

USA,!Europe!
and!Australia!

AD - Alzheimer’s Disease, DLB - Dementia with Lewy bodies, PDD - 
Parkinson’s Disease Dementia, MCI - Mild Cognitive Impairment, PD - 
Parkinson’s Disease, NC - Normal Cognition, HC - Healthy Controls; 
 
ADAS - Alzheimer's Disease Assessment Scale (cognitive subscale), ANART - 
American National Adult Reading Test, BFRT - Benton Facial Recognition Test, 
BLOT - Benton Line Orientation Test, BNT - Boston Naming Test, CDR - 
Clinical Dementia Rating scale, CVLT-II - California Verbal Learning Test (II), 
DS - Digit Span test, HVLT-R - Hopkins Verbal Learning Test (Revised), MMSE 
- Mini Mental State Examination, MoCA - Montreal Cognitive Assessment, 
RAVLT - Rey Auditory Verbal Learning Test, ROCFT- Rey-Osterrieth Complex 
Figure Test, SDMT - Symbol Digit Modalities Test, SF - Semantic Fluency, ST - 
Stroop Test, TMT - Trail Making Test, VF - Verbal Fluency, WAIS-R - Wechsler 
Adult Intelligence Scale (Revised). 
 
 
 
1) DemWest (Paper 1)  
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This cohort is based on a population drawn from the Dementia Study in Western 

Norway - DemWest. In this study, all patients referred to the geriatric psychiatry 

and geriatric medicine clinics in Western Norway during 2005-2007 were 

considered for inclusion. Neurology clinics were asked to refer potential 

candidates to the study. Patients with a new diagnosis of mild dementia, without 

confusion or previous history psychotic disorders were invited. Patients were 

diagnosed as probable AD according to NINCDS-ADRDA (National Institute of 

Neurological and Communicative Diseases and Stroke-Alzheimer’s Disease and 

Related Disorders Association), Parkinson’s disease dementia (98), or DLB (1). 

The exclusion criteria were normal cognition or mild cognitive impairment,  

moderate or severe dementia defined as MMSE < 20, recent major physical 

disease, previous affective or psychotic disorder. After 2007, only DLB and PDD 

patients were included, with MMSE between 16-20. 

Routine physical examination and blood tests were performed for all patients, a 

subgroup underwent lumbar puncture for CSF analyses, and ECG was performed 

if clinically indicated. 

A comprehensive battery of standardized clinical assessment instruments was 

administered at baseline and annually, assessing cognitive, psychiatric, and 

motor functions, including a battery of neuropsychological tests. Details of the 

selection and diagnostic procedures have been reported previously (99). 

The Montgomery-Asberg Depression Rating Scale (MADRS) was administered 

by trained study physicians (geriatric psychiatrists or geriatricians) to evaluate 

depression.  

For most patients with suspected DLB single photon emission computed 

tomography (SPECT) procedures with 123I-FP-CIT compound (DaTSCAN) were 

performed. SPECT images were acquired at three institutions on Siemens 

Symbia and E-Cam dual-head Gamma cameras with similar protocols. 

Transversal images through the basal ganglia were visually analyzed by one 

nuclear medicine specialist blinded to all patient information.  
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MRI Images were collected from three centres with harmonized protocols using 

T1-weighted 3D series. The subjects were scanned on 1.5 Tesla MRI scanners at 

3 different sites: Stavanger, Haugesund (Philips Intera) and Bergen (GE Signa 

Excite).  

Reliability assessment 

In order to check intra- and inter-scanner reliability in the DemWest cohort, we 

performed a validation study using human phantom scanning. For this purpose, 

MRI was performed in three healthy subjects with repeat scanning including 

FLAIR and 3D T1 two times at each center on the same day. The MRI 

procedures included two scanning sessions with a pause in between when the 

subject left the MRI room. Human phantom scanning was completed within 3 

months for all participating centers. 

The analysis included estimation of intra- and inter- scanner reliability 

coefficients (Cronbach’s alpha) for intracranial volume (ICV) and mean cortical 

thickness (MCT) measurements. 

Reliability assessment was performed using the ‘‘ltm’’ (Latent Trait Models) 

package (100) in R programming language (101), which is well established and 

freely available for download (http://www.R-project.org/).  

Estimation of the reliability coefficient (Cronbach’s alpha) showed appropriate 

results: the intra-/inter-scanner reliability coefficients for ICV and MT were 

0.996/0.995 (excellent) and 0.945/0.752 (excellent/acceptable) respectively. This 

allowed us to use the images from all three participating centers. 

The study was approved by Regional Committee for Medical Research Ethics in 

Western Norway, and received financial support from the Western Norway 

regional health authority and the Norwegian Research Council. All patients 

signed informed consent to participate in the study. 
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2) Slovenian AD and DLB cohort (paper I) 

The cohort consisted of dementia patients attending the memory outpatient clinic 

at the Department of neurology (University Medical Centre in Ljubljana). The 

diagnosis of dementia was made according to DSM-IV criteria and the diagnosis 

for AD was based on The National Institute of Neurological and Communicative 

Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association 

(102). DLB was diagnosed according to the revised consensus criteria (1) in the 

DemWest cohort and the 1996-criteria for the Slovenian (Slo) cohort (37). For 

the Slo cohort we merged DLB and PDD patients (103), since these syndromes 

share clinical and pathological features (104). 

Standardized clinical screening assessment instruments were administered in 

both cohorts to assess cognitive, psychiatric, and motor functions. Clinical 

assessment was performed using Mini Mental State Examination (MMSE), 

Unified Parkinson Disease Rating Scale, Clinical Dementia Rating scale, 

Neuropsychiatric Inventory and Beck Depression Inventory, detailed 

neuropsychological test battery (Delis-Kaplan Executive Function System, 

California Verbal Learning Test II, verbal fluency test, Boston Naming Test, The 

Rey-Osterrieth Complex Figure Test, Benton Line Orientation Test, Benton face 

recognition test, Stroop test), tests of autonomic functions and assessment of 

daily activities.  In addition to routine blood tests, laboratory assessment of 

thyroid function, vitamin B12 and folate (the patients with vitamin deficiency 

were excluded) was administered. In both cohorts, visual assessment of MRI 

scans (both T1 and T2-FLAIR) were performed to exclude structural pathologies 

other than AD or DLB that could account for the symptoms. Routine physical 

examination was also performed. 

DaTSCAN images were acquired for all patients on Siemens Symbia T2 dual-

head Gamma camera and were evaluated by two independent raters (the first one 

is a specialist in nuclear medicine and the second one is a neurologist with 

additional knowledge in functional brain imaging). They were blinded for the 
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clinical information. Normal/abnormal tracer uptake patterns were analyzed. The 

results were similar in the DLB and PDD patients. 

The study was approved by the local Regional Committee for Medical Research 

Ethics. All patients provided written consent to participate in the study after the 

study procedures had been explained in detail to the patient and a caregiver. 

3) ADNI (paper II) 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) launched in 2004 and was 

aimed at discovering more sensitive and accurate biomarkers for Alzheimer’s 

disease and its progression at earlier stages.  

To date, ADNI is the largest project of its kind, covering thousands of patients at 

different stages of AD and healthy controls. More than 50 centers participate in 

this initiative, to date. 

In total, 808 subjects aged between 55-90 years were enrolled in the ADNI-1 

cohort used in our project.  

Normal subjects had to have MMSE scores above 24, a CDR of 0, had not to 

have clinical depression, MCI or severe cognitive impairment.  

MCI subjects had to have MMSE scores between 24-30, memory complaints and 

objective memory loss (measured by education adjusted scores on Wechsler 

Memory Scale Logical Memory II), a CDR score of 0.5, absence of significant 

levels of impairment in other cognitive domains, preserved activities of daily 

living, and an absence of dementia. 

Patients with mild AD had MMSE scores between 20-26, CDR of 0.5 or 1.0, and 

met NINCDS/ADRDA criteria for probable AD. 

Neuropsychological battery included Alzheimer's Disease Assessment Scale 

(cognitive subscale) (ADAS-Cog), American National Adult Reading Test 

(ANART), BNT - Boston Naming Test, Digit Span test (DS), Rey Auditory 



 36 

Verbal Learning Test (RAVLT), Semantic Fluency (SF), Trail Making Test 

(TMT), Wechsler Adult Intelligence Scale (Revised) (WAIS-R). For more 

details, please visit http://www.adni-

info.org/Scientists/ADNIStudyProcedures.aspx. 

All subjects had clinical assessments, physical examination and 1.5 T structural 

MRI (acquired with harmonized protocols) at specified intervals for 1-5 years.  

The ADNI project is conducted according to Good Clinical Practice guidelines, 

the Declaration of Helsinki, US 21CFR Part 50 – Protection of Human Subjects, 

and Part 56 – Institutional Review Boards. Written informed consent for the 

study was obtained from all subjects and/or authorized representatives and study 

partners. 

4) AddNeuroMed (paper II) 

The study included six centers at University of Kuopio, Finland; University of 

Perugia, Italy; Aristotle University of Thessaloniki, Greece; King's College 

London, United Kingdom; University of Lodz, Poland; and University of 

Toulouse, France. The Karolinska Institutet (Stockholm, Sweden) was 

established as the center for image repository, quality control, and overall 

coordination site.  

Two hundred and twenty one subjects with AD (n=107), 114 MCI (n=114) and 

100 HCs were included. Informed consent was obtained for all subjects, 

protocols and procedures were approved by the local data acquisition site and the 

data coordination center.  

Imaging and clinical protocols were harmonized with the ADNI study (see 

above). For more details see http://www.innomed-addneuromed.com and (105). 

Exclusion criteria included other neurological or psychiatric disease, significant 

unstable systemic illness or organ failure, and alcohol or substance misuse. 
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The project was approved by local Ethical Committees at all participating 

centers. Written consent to participate was obtained from all patients and/or 

caregivers. 

5) PPMI (papers III-IV) 

Parkinson’s Progression Markers Initiative (PPMI) is a large-scale international 

project aimed at discovering novel biomarkers for Parkinson’s disease and its 

progression. The study launched at 21 clinical sites in the United States, Europe, 

and Australia. For details, please see (106). 

To date, more than 450 patients at different stages of PD and more than 250 

healthy controls are included from more than 30 centers throughout the world. 

Inclusion criteria required that subjects must have at least two of the following 

symptoms: resting tremor, bradykinesia, rigidity or either asymmetric resting 

tremor or asymmetric bradykinesia. In addition, the subjects had to have Hoehn 

and Yahr stage I or II at baseline, and a pathological 123I-FP-CIT SPECT scan. 

Exclusion criteria were atypical PD syndromes due to drugs or metabolic 

disorders, encephalitis, or other degenerative diseases. In addition, it was 

required that the subject was not taking levodopa, DA agonists, MAO-B 

inhibitors, amantadine or other Parkinson’s disease medication; or had taken 

levodopa or dopamine agonists prior to baseline for more than a total of 60 days.  

This cohort was used in 2 studies assessing brain structural and functional 

correlates of cognitive impairment in PD. Therefore, a more detailed description 

of cognitive battery is provided below. 

Neuropsychological assessment 

In addition to a cognitive screening test, the Montreal Cognitive Assessment 

(MoCA), all subjects underwent a neuropsychological test battery developed to 

assess major cognitive domains affected by PD.  
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Visuospatial function was evaluated using the 15-item version of the Benton’s 

Judgment of Line Orientation Test, which examines the ability of a subject to 

estimate angular relationships between line segments by visually matching 

angled line pairs to 11 numbered radii forming a semi-circle (107).  

Verbal memory was assessed using the Hopkins Verbal Learning Test-Revised 

(HVLT-R) (108), which consists of presenting a list of 12 words over three 

learning trials. With each repetition, subjects are expected to learn additional 

words on the list and increase their performance with each trial. Total immediate 

recall or encoding (sum of trial 1-3) and delayed recall (after 20-25 minutes) 

scores were included in this study.  

Executive functions were evaluated using three semantic fluency tests (names of 

animals, fruits and vegetables, in one minute each), the MoCA subtests of 

phonemic fluency (words that start from the letter “F”, in one minute) and 

alternating trail making (drawing a line, going from a number to a letter, in 

ascending order; score 0-1). 

Attention was assessed by the Letter-Number Sequencing Test (LNST), in which 

a combination of numbers and letters is read to the subject who is then asked to 

recall the numbers, first in ascending order and then the letters in alphabetical 

order. The Symbol Digit Modalities Test (SDMT) was also used to assess 

attention, in which specific numbers had to be paired with geometric figures 

based on a reference key within 90 seconds.  

Diagnosis of MCI 

For the study III, we performed the classification of MCI by an approximation to 

the guidelines of the Movement Disorders Society (MDS) Task Force for the 

level II diagnosis of PD-MCI (109). Since the PPMI study was launched before 

these guidelines had been published, some adjustments had to be made. 

Therefore, the MoCA items were included for the assessment of the five 

cognitive domains: attention and working memory, executive, language, memory 
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and visuospatial. PD patients were classified as PD-MCI if they showed 

impairment in two or more tests or items within the same cognitive domain or in 

two or more domains. Impairment was defined as a score below 2.0 standard 

deviations (SD) for the individual continuous tests or a score below the 

maximum for the ordinal and categorical items. Based on previous 

recommendations made by the MDS Task Force criteria for PDD (110), patients 

were considered to be impaired if they scored below the maximum score on the 

items of MoCA. 

Cognitive Domains  

Three cognitive domains were calculated based on the standardized tests for 

memory, visuospatial and attention/executive functioning. Raw values were 

converted to z-scores using the mean and standard deviation of the healthy 

control group. Domain composite scores were calculated by averaging z-scores 

of the standardized tests in each cognitive domain.  

In the memory domain, three learning trials and the delayed recall of HVLT-R 

were included. The visuospatial domain included the Benton judgment of line 

orientation. The attention/executive domain included the LNST, SDMT, 

semantic fluency and the phonemic fluency test. No corrections were performed 

to adjust the tests scores for age or gender given that the subsequent analyses 

included these variables as nuisances.  

Since the calculated composite scores for cognitive domains were scaled and 

reflected positive cognitive performance (the higher the score, the better 

functioning in a corresponding domain), we defined the “motor” domain by 

inverting and scaling UPDRS-III raw scores in order to achieve the same variable 

scale and direction (higher scores correspond to better motor function) when 

assessing and plotting the results. 
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MRI 

A standardized MRI protocol included acquisition of whole-brain structural and 

functional scans on 3 Tesla Siemens Trio Tim MR system.  

3D T1 structural images were acquired in a sagittal orientation using a MPRAGE 

GRAPPA protocol with Repetition Time (TR) = 2300 ms, Echo Time (TE) = 

2.98 ms, Field of View (FoV) = 256 mm, Flip Angle (FA) = 9° and 1 mm3 

isotropic voxel. 

For each subject, 212 BOLD echo-planar rs-fMRI images (40 slices each, 

ascending direction) were acquired during a 8 min, 29 sec scanning session 

(acquisition parameters: TR = 2400 ms, TE = 25 ms, FoV = 222 mm, FA = 80° 

and 3.3 mm3 isotropic voxels). Subjects were instructed to rest quietly, keeping 

their eyes open and not to fall asleep.  

More details can be found in the MRI technical operations manual at 

http://www.ppmi-info.org/. 

DaTSCAN 

123I-FP-CIT SPECT was performed at the screening visit. Images were acquired 4 

± 0.5 hours after injection of [123I]FP-CIT (111) with a target dose of 185 MBq. 

The radiopharmaceutical was provided as a unit dose and filled to a standard 

volume, which was re-assayed. 

Specific acquisition parameters such as collimation were selected for each center 

at a preceding technical visit.  

Raw projection data were acquired into a 128 x 128 matrix with steps of 3 or 4 

degrees for the total projections. Image preprocessing (reconstruction, 

attenuation correction, spatial normalization) was performed using the Hermes 

software (Medical Solutions, Stockholm, Sweden) at a central SPECT Core lab 

in New Haven (Connecticut, United States). Specific binding ratios were 
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calculated for the left and right caudate nuclei according to specific binding ratio 

= (L/R Caudate)/(Occipital area)-1 and then averaged for further analysis. 

The study presented no risks or harm to participants, confidentiality and 

anonymity were maintained within the legal context of the country, written 

consent was obtained from all subject after the detailed explanation of study 

procedures, approved by Institutional Review Board (Independent Ethics 

Committee). 

 

4.2 Image Preprocessing 

Surface-based framework (Papers I-III) 

Reconstruction of the brain cortex was performed using the Freesurfer software 

(v 5.1) installed on CentOS 5.6 x86-64 workstation. The software is freely 

available for download online (http://surfer.nmr.mgh.harvard.edu). The image 

preprocessing details are described in prior publications (112-116). In short, the 

pipeline includes skull stripping and removal of non-brain soft tissues with a 

hybrid watershed/surface deformation procedure (117), automated Talairach 

transformation, intensity normalization (118), tessellation of the gray matter 

white matter boundary, topology correction (119), and surface deformation to 

optimally place the gray/white and gray/cerebrospinal fluid borders (112, 114). 

After the cortical reconstruction, a number of deformable procedures are 

performed: surface inflation (120), registration to a spherical atlas utilizing 

individual cortical folding patterns to match cortical geometry across subjects 

(116), parcellation of the cerebral cortex into units based on gyral and sulcal 

characteristics (113, 121). This method uses both intensity and continuity 

information from the whole three-dimensional MR volume during segmentation 

and deformation procedures to produce representations of cortical thickness, 

calculated as the closest distance from the gray/white boundary to the gray/CSF 

boundary at each vertex on the tessellated surface (114). The maps are generated 
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using spatial intensity gradients across tissue classes and are not reliant only on 

absolute signal intensity. The maps produced are able to detect submillimeter 

differences between groups. Procedures for the measurement of cortical 

thickness have been validated against histological analysis (122) and manual 

measurements (123, 124). Freesurfer morphometric procedures have been 

demonstrated to show good test-retest reliability across scanner manufacturers 

and across field strengths (125).  

The described surface-based pipeline produced several morphometric modalities: 

cortical thickness (papers I, II, III), Jacobian maps (paper II), sulcal depth (paper 

II).  

At the final step, 327684 normalized measurements acquired for every subject 

were concatenated into large matrices (one for each high-dimensional 

morphometric modality).  

41 volumetric measurements for all subjects (paper II) were corrected for 

intracranial volume (ICV) using linear modeling (removing linear effects of ICV) 

and finally concatenated into a n-by-41 matrix that was used in the subsequent 

analysis. 

Of note, the Freesurfer output for all subjects underwent visual quality control 

and misclassified areas (mainly, regions near cerebellar sinuses and orbitofrontal 

cortex) were corrected manually, blindly to the clinical diagnosis.  

Semi-automated quantification of striatal dopamine transporter binding ratio 

(paper IV) 

The DaTSCAN images were reconstructed using iterative reconstruction 

algorithm as implemented in the Hermes software (Medical Solutions, 

Stockholm, Sweden) at a central SPECT Core lab in New Haven (Connecticut, 

United States). Chang 0 attenuation correction was applied using an empirically 

derived attenuation coefficient, µ, based on measurement at the scanners during 

the preceding technical site visit. Finally, the image volumes were spatially 
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normalized using the mentioned software and a standardized volume of interest 

template was used to determine the spatial location of the right and left caudate 

nucleus and putamen, as well as occipital reference regions. Specific binding 

ratios were calculated for the left and right caudate nucleus and putamen 

according to specific binding ratio=(striatal region)/(occipital)-1.  

Voxel-based framework (paper IV) 

As a first step, a population template was generated from the bias-corrected T1 

structural images using the Diffeomorphic Anatomical Registration Through 

Exponentiated Lie Algebra (DARTEL) algorithm (126) in order to improve 

normalization quality.  

For the fMRI data, two initial echo-planar volumes were automatically removed 

by the scanner software to minimize T1 effects on the T2* echo-planar images, 

and the remaining 210 volumes underwent preprocessing in the SPM8-based 

(http://www.fil.ion.ucl.ac.uk/spm) pipeline implemented in the Data Processing 

Assistant for Resting-State fMRI: Advanced Edition (DPARSFA, version 2.3) 

(127), installed within the MATLAB environment (128).  

Next, functional images underwent the following preprocessing steps: spatial 

realignment and slice-timing correction, co-registration with the high-resolution 

structural scans. Finally, the co-registered BOLD volumes were normalized into 

standardized Montreal Neurological Institute (MNI) space using the DARTEL 

template and resampled to 3 mm3 isotropic voxels. Spurious variance was 

reduced by a voxel-specific head motion correction (129) and by regressing-out 

time-series from the white matter and cerebrospinal fluid. Next, the images were 

smoothed with a 2 mm3 Gaussian kernel, band-pass filtered to eliminate 

biologically non-relevant signals (130, 131) and the resulting low-frequency 

fluctuations were extracted from 90 regions-of-interest defined in the Automated 

Anatomical Labeling (AAL) atlas (132) and were used in the subsequent network 

analysis (133).  
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4.3 Statistical Analysis 

Paper I 

A multivariate analysis of surface-based cortical thickness measurements was 

performed using “spls” (Sparse Partial Least Squares) R-package (version 2.1); 

its methodology has been described elsewhere (134, 135), and the documentation 

is available via the following link: http://cran.r-

project.org/web/packages/spls/spls.pdf. The general principle of this 

methodology is to impose Least Angle Regression (LARS) algorithm for the 

variable selection within the context of partial least squares (135).  

Applying LARS algorithm for the variable selection by penalizing loadings we 

end up with two adjusting parameters: ‘eta’ – the measure of sparsity (varying 

between 0 and 1; when ‘eta’ is 0, regular PLS is used) and ‘K’ – the number of 

latent variables. For the details see (135). 

We chose these parameters within a preliminary specified range (1–5 for ‘K’ and 

0–0.5 with the increment of 0.1 for ‘eta’). We limited our search by 5 latent 

variables (K), since after this point we did not observe significant increase of the 

explained variance percentage, and ‘eta’ value limit was set to 0.5, because, 

according to our previous observations, higher values produce oversmoothed 

models. We applied the described approach for several smoothing kernels of 0, 5, 

10, 15, 20 and 25 FWHM (Full Width at Half Maximum) after removing age-

related effects. 

For each FWHM the best model had been selected based on its mean squared 

error of prediction (MSPE), whereupon the models’ Leave-one–out (LOO) cross-

validated sensitivity and specificity as well as their performance on the 

independent dataset of 27 AD subjects were compared. 

After choosing the best model we plotted its sensitivity and specificity and 

calculated area under the ROC curve (AUC). When reporting sensitivity and 

specificity, we used 0.5 as a cut-off value, which was the middle point between 
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the minimum (0) and maximum (1) likelihoods for Lewy Body Pathology across 

the all models.  

Finally, we mapped the variable coefficients from the best model into the brain 

space in order to define the regions, which were the most relevant for the 

AD/DLB classification. 

Paper II 

Statistical analysis was carried out using the R programming language (R Core 

Team, 2012)(101), version 2.15.1, on R-Cloud built on EBI 64-bit Linux Cluster 

(136). Demographic and clinical features were compared using parametric and 

non-parametric tests as appropriate. Principal component analysis (PCA) from 

the R ‘base’ package was used with visual inspection of PCA score-plot for the 

outlier detection (137). One subject was excluded during this procedure. The 

‘randomForest’ package (138) was used in further analysis. 

The Random Forest algorithm is formally defined as a collection of tree-

structured classifiers: !(!, !!), ! = 1, 2,… ! ,!; where !! are random vectors that 

meet i.i.d. (independent and identically distributed) assumption (139) and each 

tree casts a unit vote for the most popular class at input x (140). For classification 

problems, the forest prediction is the unweighted plurality of class votes 

(majority vote). The algorithm converges with a large enough number of trees. 

For more detailed explanation see (140). 

The R package ‘caret’ (141) was used to implement recursive feature elimination 

(RFE) based on Gini-criterion with 5-fold cross-validation (CV) within the 

context of RF (142). Each of the steps described below were performed for all 

modalities: cortical thickness, sulcal depth, Jacobian maps, non-cortical volumes, 

combined parcellated measurements of cortical thickness and non-cortical 

volumes. First, the measurements with near-zero variance were removed from 

the feature sets and the resulting output underwent stepwise RFE. 10 000 trees 

were used to “grow” the first forest (using full feature set), and afterwards RFE 
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was performed based on feature importance vector (defined in Eq. 2) derived 

from the first forest, by removing lowest-ranked 5% of the features at each step 

(gradually reducing the dimensionality as 100%, 95%, … etc., up to 50%), and 

by the subsequent accuracy comparison with 5-fold CV.  In order to reduce CPU, 

RAM and time usage the forests were trained with 1000 trees (instead of 10 000 

for the first forest) at each step of RFE. After selection of the optimal feature 

subset, mtry-parameter adjustment was also performed using 1000 trees (search 

range ∈ [ !!"#$%&"'
! ! ; ! !!"#$%&"' ∗ 2.5], step = 

!!"#$%&"'
! !), and finally the forests 

were retrained with optimal parameters using 10 000 trees. For the parcellated 

data (non-cortical volumes and parcellated thickness), an exhaustive search for 

optimal feature subset and mtry-parameter was performed, “growing” 1000 trees 

at each step with 10-fold CV.  

The following parameters from the final models were reported to characterize 

performance: out-of-bag error [for the term definition see (140)], area under the 

ROC curve (AUC), sensitivity/specificity and overall accuracy on the testing 

datasets of AD, HC and MCI subjects (see “Subsampling”). ROC-curves of the 

best models were compared using DeLong's test for two correlated ROCs, as 

implemented in the ‘pROC’ R-package (143). 

The robustness of each model was also tested with respect to cohort differences 

(using a different cohort of AD and HC subjects from the AddNeuroMed study 

(105).  

Finally, variables of importance were mapped from the best model into the brain 

space in order to identify the regions, which were most relevant for the 

classification. 

The classifiers trained with individual morphometric modality were combined by 

a majority vote and subsequently compared with the best model that 

demonstrated the highest accuracy (the one trained using parcellated thickness 

and volumetric measurements) on the test set. 
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To investigate the effect of different atlases, we selected cortical thickness as a 

measurement type that produced the most accurate models and applied two 

parcellations implemented in the Freesurfer package – Desikan-Killiany (DK) 

and Destrieux (D) atlases – to extract averaged values from the predefined 

regions.  

 

Paper III 

Analyses of clinical and behavioral data were carried out using SPSS 20.0. 

Differences between groups in demographic, socio-demographic, clinical and 

neuropsychological variables were analyzed using Mann-Whitney U tests for 

non-normally distributed data (as indicated by the Kolmogorov-Smirnov test), 

student’s T-test for normally distributed data, and Chi-squared X2 for categorical 

data. Proportions with 95% CI were also calculated.  

The analyses involving neuroimaging data were performed in FreeSurfer. In 

particular, differences in cortical thickness between controls, PD with normal 

cognition (PD-CN) and PD-MCI were examined on the cortical surface maps 

vertex by vertex using a general linear model. Confounding variables such as 

age, gender, education, MRI software version (syngo MR B15 or syngo MR 

B17) and scanner (Siemens Tim Trio or Siemens Verio) were included as 

covariates in these analyses to ensure they did not contribute to any group 

differences. In addition, for the PD-CN and PD-MCI group comparisons, the 

UPDRS III total scores were also included as additional covariates. To assess the 

neuroanatomical substrates of cognitive impairment, correlation analyses 

between cortical surface maps and cognition were also carried out, while 

adjusting for the previous covariates. First, we performed correlations between 

cortical thickness and the z-scores of the three cognitive domains. In addition, 

since by combining tests into domain some specific information might be lost, 

we also correlated cortical thickness with z-scores of the individual continuous 

cognitive tests. In all imaging analyses, cluster-wise correction using Monte 
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Carlo simulation with 10.000 iterations (vertex-wise threshold of p < 0.05) was 

applied in order to control for multiple comparisons.  

 

Paper IV  

Automated meta-analysis  

In order to support our hypotheses and to objectively identify regions that are 

relevant for cognitive functions, an automated search using the meta-analytical 

software Neurosynth (http://neurosynth.org) was undertaken (see Figure M-1). 

This approach utilizes text-mining and machine-learning techniques to perform 

probabilistic mapping between neural and cognitive states (144). In the present 

study, the Python-based version (https://github.com/neurosynth/neurosynth) was 

used. The database was accessed on 24.10.13, searching for the key-words 

“executive” (237 studies), “visuospatial” (n=116) and “memory” (n=1470). 

After the search overlapping patterns were found between cognitive domains. 

They were in line with the regions that have revealed an association with 

cognitive impairment in PD highlighted in the introduction. Thus, the profile of 

visuospatial functions included prefrontal, parietal and occipital regions. The 

“executive” pattern contained prefrontal (with more extended involvement of 

DLPFC), cingulate, superior parietal, temporo-occipital, basal ganglia and 

cerebellar regions. Finally, the “memory” profile, in addition to prefrontal and 

parietal regions, also included hippocampus, temporal areas and basal ganglia.  

Due to the observed overlap, the resulting statistical maps were merged and 

overlaid with the Automated Anatomical Labeling (AAL) atlas in order to have 

an unbiased definition of ROIs associated with cognitive functions for further 

network analysis.  

 

Network Analysis 

The data analysis workflow was developed in order to assess both regional and 

global network-level correlates of presynaptic DAT uptake and cognitive 
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functions. To do this, two metrics were selected: nodal strength (local measure) 

and modularity of a network (global measure). 

The Brain Connectivity Toolbox (BCT, http://www.brain-connectivity-

toolbox.net) (133) was used to compute the described measures. Of note, 

connectivity matrices were neither thresholded nor binarized. Instead we 

employed a strategy that aimed to analyze weighted graphs by taking into 

account both positive and negative weights. 

Next, the analysis proceeded in two directions with the aim of assessing local and 

global network-level correlates of cognitive functioning in PD and the impact of 

nigrostriatal dopaminergic deficiency on these networks. 

All statistical analyses were performed using the R programming language (R 

Core Team, 2012)(101). 

Partial Least Squares Regression (PLSR) was performed to reduce the 

dimensionality of the data, estimating latent components associated with 

composite scores for each domain (executive, memory, visuospatial).  

PLSR is an effective data-driven method that allows high-dimensional 

associations between explanatory and response variables to be reduced into a 

small set of latent variables (LVs) (145). After decomposition, each of the LVs 

represents a distinct pattern of brain–behavior associations.  

The following elements of these components were of particular interest in our 

study: (1) eigenvector (loadings) showing the degree to which a given latent 

variable contributes to the variance within the X-matrix (in our case, brain 

network measures), and (2) a set of scores representing a transform of a 

particular data-point into a latent component’s space (the degree to which a given 

component is “represented” in a particular subject). 

The models were assessed with leave-one-out cross-validation. As a result, 3 

LVs minimizing total Root Mean Squared Error Prediction (RMSEP) for all 3 

domains were selected. Individual LV scores were subsequently correlated with 3 

cognitive domains using motor function, age and sex as nuisance covariates. 

GLM formula: 
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LVN-score ~ (executive domain) + (memory domain) + (visuospatial domain) + 

(motor domain) + (age) + (sex). 

Finally, the scores were correlated with mean caudate DaT binding ratios in order 

to investigate which of them were influenced by nigrostriatal dopamine 

deficiency. The analysis was focused only on the caudate nuclei (without 

putamen), as this striatal structure is well documented to be involved in 

cognition. 

Impact of nigrostriatal deficiency on the modularity of cognitive brain circuitry. 

For the second part, adjacency matrices were constructed using 60 AAL ROIs 

identified during the meta-analysis step. Next, modularity was estimated based 

on both negative and positive weights (as described in Eq. 2a and 2b). 

Finally, an association between network modularity and mean DaT uptake in the 

caudate nuclei was analyzed using linear modeling. 
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5. Results 

Within this project, we studied 1240 patients with Alzheimer’s, Parkinson’s 

disease, Lewy body dementia and mild cognitive impairment, and 325 healthy 

controls, in total (See Table M-1). 

5.1 Paper I 

SPLS Classification: AD vs DLB 

During the search for the optimal model we observed optimal performance for 

FWHM of 20 mm in both cohorts. ‘K’/‘eta’ parameters were set as 2/0.3 for the 

first (Dem- West) cohort and 2/0.4 for the second (Slo) cohort, respectively. 

Sensitivity/specificity/AUC for AD/DLB were 94.4/ 88.89 %/0.978 for the 

DemWest cohort and 88.2/94.1 %/0.969 for the Slo cohort (see Figure 1.1). 

Overall accuracies were 91.64 and 91.15 in the training DemWest and Slo 

datasets, respectively. Additionally, 21 out of 27 probable AD subjects from the 

independent dataset of the DemWest cohort were correctly classified by the 

corresponding model (accuracy = 77.78 %), suggesting appropriate 

generalization. 

In the mixed cohort, ‘K’/‘eta’ parameters were set as 2/0.4. 

sensitivity/specificity/AUC were 82.1/85.7 %/0.948 for the training and 77.8/75 

%/0.731 for testing datasets (overall accuracies were 83.9 and 76.4, respectively). 

As expected, when tested on data from different cohorts (DemWest models on 

Slo data and vice versa) the models failed to produce appropriate accuracy. Thus, 

the DemWest model showed 0.59/0.59/ 0.67 for sensitivity/specificity/AUC on 

the Slo data, and the Slo model demonstrated 0.61/56/0.56 on the DemWest data, 

respectively. 
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Figure 1.1. SPLS model performance. 

 

The graphs are the ROC curves for the classifiers in two cohorts (DemWest, Slo) 

and in the mixed sample, consisted of the equivalently combined training dataset 

(26/ 26 AD and DLB patients) and of the independent dataset (remaining 36/9 

AD/DLB cases). Leave-one-out cross validation performance is plotted for each 

model. For the mixed sample, classifier performance on the independent dataset 

is also provided. FWHM full width at half maximum (smoothing kernel), VN 

number of the selected features (vertices), opt.K/opt.eta optimal ‘K’ (number of 

latent components) and ‘eta’ (sparsity) parameters, MSPE mean squared 

prediction error, AUC area under the ROC curve. 

Regions of relevance for AD/DLB classification 

Mapping the coefficients into the brain space revealed several regions, which 

appeared to be the most relevant for the classification. The pattern of difference 

was similar in all cohorts (Figure 1.2). Cortical thinning, which increased the 

chances for the subject to be classified as an AD patient, was observed bilaterally 

in anterior parahippocampal region and temporal pole (the most relevant areas), 

subcallosal (subgenual cingulate) and occipital regions. 
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Figure 1.2. Regions of relevance for AD/DLB classification. 

 

The figure shows regions of relevance for AD/DLB classification from three 

models obtained in DemWest, Slo and mixed cohorts. The last sample consisted 

of the equivalently combined training dataset (26 AD and 26 DLB patients) and 

of the independent dataset (remaining 36/9 AD/ DLB cases). Red spectrum 

reflects pattern of cortical thinning that increased chances for the subject to be 

classified as an AD patient. Green spectrum is the regions of importance for 

DLB. 

Cortical thinning relevant for DLB was observed bilaterally in the cingulate 

region (affecting middle and posterior parts on the right side and middle on the 

left), superior temporo-occipital areas, and lateral orbitofrontal cortex. 

In the DemWest and in the mixed sample, AD-associated patterns also included 

changes in the parietal region, whereas DLB-supportive thinning was 

additionally found in insular area. This was not observed in the Slo cohort. 
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5.2 Paper II 

AD/HC Classification  

Three models had competing performances on the testing set (Figure 2.1). The 

model trained using high-dimensional thickness measurements demonstrated 

AD-detection sensitivity/specificity of 88.6%/90.7%, its AUC (95% C.I.) was 

0.93 (0.9-0.96); while the model trained using volumetric measurements resulted 

in sensitivity/specificity = 82.9%/86.7%, AUC = 0.91 (0.88-0.95); and using 

parcellated measurements of cortical thickness and subcortical structures resulted 

in sensitivity/specificity = 88.6%/92.0%, AUC = 0.94 (0.91-0.96).  

Figure 2.1. ROC curves: Morphometric Modalities (AD/HC) 

 

The figure illustrates ROC-curves of the models trained with different 
morphometric input. Three inputs demonstrate competing performances: high-
dimensional (HD) cortical thickness, volumetric data and combined parcellated 
measurements. 
AD/HC – Alzheimer’s Disease / Healthy Controls 

The best ability to predict MCI-to-AD conversion based on imaging data only 

was observed for the model in which all RF ensembles were combined by a 
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majority vote, and was achieved at 76.6% in overall MCI-to-AD conversion 

detection sensitivity, 2 years before actual dementia onset (averaged value for 

6th-, 12th-, 18th- and 24th-month converters) with a specificity of 75.0%. 

Adding ApoE genotype and demographics (age, sex, education) as additional 

predictors into our best AD/HC model, trained using combined cortical thickness 

and non-cortical volumetric measurements, did not improve AD/HC 

classification accuracy (sensitivity/specificity/OA = 90.7%/82.9%/86.7%). 

However, its accuracy for MCI-to-AD conversion was significantly higher 

compared to other models with maximum sensitivity/specificity/OA values of 

83.3%/81.3%/82.3%. Averaged sensitivity for the first two-year converters was 

79.2%. 

Robustness in different cohorts 

Testing the ADNI models on AddNeuroMed data revealed good generalizability 

of the classifiers. The best stability (both for AD detection and prediction) was 

found for the models trained with high-dimensional measures of cortical 

thickness and parcellated thickness with volumetric measures. Combined models 

trained using both imaging and non-imaging data demonstrated absence of 

accuracy drop (see Table 2.1). 
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Table 2.1. Classifiers’ performance in the same (ADNI) and separate 

(AddNeuroMed) cohorts. 

Models 

AD: Sens/Spec (OA) MCI-converter 1yr sensitivity* 

Same cohort 

(ADNI) 

Separate cohort 

(AddNeuroMed) 

Same cohort 

(ADNI) 

Separate cohort 

(AddNeuroMed) 

Thickness 
88.6%/90.7% 

(89.62%) 
87%/78% (82.5%) 79.0% 76.2% 

Sulcal Depth 
80.0%/74.7% 

(77.3%) 
Failed 74.4% Failed 

Jacobian 
77.1%/81.3% 

(79.2%) 

78.5%/72% 

(75.25%) 
65.4% 57.1% 

Volumes 
82.9%/86.7% 

(84.7%) 

70.1%/89% 

(79.5%) 
75.7% 57.1% 

Thickness + 

volumes (parc) 

88.6%/92.0% 

(90.3%) 

83.2%/89% 

(86.1%) 
79.0% 71.4% 

Morphometry 

+ApoE 

+demographics 

90.7%/82.9% 

(86.7%) 

84.2%/88.3% 

(86.25%) 
78.0% 79% 

The classifiers were trained on the subset from the ADNI dataset and then 
validated on testing sets from both ADNI (same) and AddNeuroMed (separate) 
cohorts. 
Sens/Spec (OA) – Sensitivity/Specificity (Overall Accuracy); 
* – for the AddNeuroMed cohort, definition of the MCI-to-AD converters 
subgroup (n=21) was defined based on 1-year follow-up. 
NB: We did not compare accuracy to detect MCI non-converters due to only 1-
year follow-up available for the AddNeuroMed cohort 
 

Regions of relevance  

As expected, the observed pattern of feature relevance was typical for AD and 

similar in models trained using high-dimensional and parcellated input (Figures 

2.2 and 2.3. It included atrophy in temporal areas (with more extensive changes 
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in entorhinal cortex, hippocampus, amygdala), lateral ventricular size differences 

and parietal cortical abnormalities. 

Figure 2.2. Cortical pattern of relevance for Alzheimer's Disease detection: high-

dimensional morphometric data. 

 

The figure illustrates regions, which were the most relevant for Alzheimer’s 

disease detection based on the mean decrease of the Gini index. In all three high-

dimensional modalities, the pattern was AD-specific and included changes 

predominantly in temporal lobes (with maximum relevance of entorhinal region). 
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Figure 2.3. Pattern of relevance for Alzheimer's Disease detection: parcellated 

morphometric data (cortical thickness [DK-atlas] + non-cortical volumes). 

 

ctx – cortex; Inf. – inferior; Mid. – middle; Sup. – superior; 
STS – superior temporal sulcus. 
The figure illustrates regions, which were the most relevant for Alzheimer’s 
Disease detection based on the mean decrease of the Gini index. Likewise in the 
high-dimensional input, the pattern-of-relevance is AD-specific. 
 

5.3 Paper III 

Cortical thickness in PD with and without MCI 

Mass-univariate analysis revealed cortical thinning in the right inferior temporal 

gyrus in PD-CN patients compared to healthy controls (Figure 3.1). 

Comparison of PD-MCI with healthy controls revealed bilateral atrophy in this 

area, with more prominent thinning in the left hemisphere. Apart from this, PD-

MCI patients demonstrated changes in the left superior parietal cortex, 
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precuneus, lateral occipital, temporal, anterior cingulate and superior frontal 

areas (Figure 3.1). 

Compared to PD-CN, PD-MCI patients demonstrated greater thinning in the left 

precuneus (Figure 3.1).  

Figure 3.1. Mass-univariate comparison of cortical thickness between A) 

controls and cognitively normal PD patients (PD-CN), B) controls and PD 

patients with MCI (PD-MCI) and C) PD-CN and PD-MCI, following the 

modified PD-MCI-MDS criteria and the PD-MCI-Domains criteria. 

 

The color scale bar shows the logarithmic scale of p-values (-log10). Rh, Right 
hemisphere; Lh, Left hemisphere. 
 
 
Cortical thickness and cognitive performance 

Results of the analysis of associations between cortical thickness and cognitive 

domains composite scores are shown in Figure 3.2. 
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Visuospatial performance was associated with superior parietal thickness 

bilaterally with more extended associations in the right hemisphere (cluster also 

included the right superior frontal gyrus and precuneus) 

The executive domain scores revealed associations with cortical thickness in the 

superior frontal, precentral, temporal and parietal regions (Figure 3.2).  

Composite scores of the memory domain did not reveal significant associations 

with thickness in any cortical area. 

Figure 3.2. Mass-univariate GLM analysis of associations between cortical 

thickness and composite scores in the Visuospatial (A) and Executive (B) 

cognitive domains in PD patients. 

 

The color scale bar shows the logarithmic scale of p-values (-log10). Rh –  Right 
hemisphere; Lh – Left hemisphere.



5.4 Paper IV 

In this study, PLS was used for dimensionality reduction. Each PLS LV score 

represents one brain-behavior covariance pattern. 

 

Nodal Strength 

The first PLS LV represented global effects. Its higher scores were associated with 

higher strength of all 90 nodes with largest effects on motor, prefrontal cortices and 

striatum. On a behavioral level, this component was positively associated with motor 

function (see Figure 4.1). 

The second LV was associated with higher degree of posterior (supramarginal, 

superior parietal, posterior cingulate, occipital regions) and striatal nodes, and lower 

prefronto-limbic (orbitofrontal, anterior cingulate, parahippocampal, temporopolar 

regions) nodal strength (except for operculo-triangular, middle frontal areas and left 

hippocampus, which demonstrated positive associations). Behaviorally, this 

component displayed a negative association with memory function, that is to say that 

better memory performance was associated with reversed component pattern, 

favoring the involvement of prefronto-limbic nodes (see Figure 4.1).  

The third LV, in turn, favored cortical-subcortical segregation with positive 

associations found in dorsal cortical nodes (dorsolateral prefrontal, frontal and 

parietal areas) and negative in subcortical structures (hippocampi, striatum, globus 

pallidus), primary visual, middle temporal and paralimbic (ventral prefrontal) areas. 

Higher scores of this component were associated with better executive performance 

(see Figure 4.1) 
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Figure 4.1. Associations between component scores and cognitive functions. 

 

 
A: Between-component correlation plot. Positive association (r=0.5) was found 

between latent variables (LVs) I and III. 

B: Associations between LV scores extracted from the nodal strength data and 

performance in 3 cognitive (executive, memory, visuospatial) and motor domains. On 

the right-hand side of the graph, corresponding loading maps are depicted in brain 

space, reflecting the relevance of the nodes (spheres) for a particular LV, the 

magnitude of which is represented by nodal size. Positive loading values are depicted 

as red spheres, whereas negative ones are shown in blue. 

* - p<0.05 

** - p<0.01 

 

 

 

 



 63 

Latent Variable scores and caudate DaT uptake 

Analysis of the effects of nigrostriatal dopaminergic deficiency on the LVs estimated 

from the nodal strength revealed significant positive associations of mean caudate 

SBR ratios with I and III LV-scores (Figure 4.2). 

This means that higher caudate DaT binding is associated with global increase of 

nodal strength and segregation toward more active dorsal cortical processing when 

the subject is at rest. 

 

Figure 4.2. Associations between component scores and mean caudate DaT binding. 

 
Associations of latent variable (LV) scores extracted from the nodal strength data 

with nigrostriatal dopaminergic function measured by 123I-FP-CIT SPECT (mean 

caudate SBR ratios). 

Positive associations (* - p<0.05) were found for the Ist (“global/motor”) and IIIrd  

(“executive”) LVs.  

Corresponding loading maps are depicted in brain space, reflecting the relevance of 

the nodes (spheres) for a particular LV, the magnitude of which is represented by 
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nodal size. Positive loading values are depicted as red spheres, whereas negative 

ones are shown in blue. 

 

Modularity of the cognitive circuitry and caudate DaT uptake 

The analysis revealed negative effects of the preserved dopaminergic function on 

modularity of the cognitive circuit (T = -3.6, 17 DOF, p=0.002), suggesting greater 

integration among regions within this network (see Figure 4.3) 

 

Figure 4.3. Caudate DaT uptake and modularity of the cognitive circuitry at rest. 

 

The figure shows significant (p<0.01) negative association between modularity of the 
cognitive circuitry (identified with automated meta-analysis) and nigrostriatal dopaminergic 
function measured by 123I-FP-CIT SPECT (mean caudate SBR ratios). 
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6. Discussion 

In this thesis we found that cognitive impairment in the elderly has different brain 

profiles depending on the predominant neurodegenerative pathology and affected 

cognitive functions.  

Our work is one of the first to demonstrate that with use of pattern recognition 

techniques applied for MRI data, DLB can be successfully differentiated from AD. 

This finding was replicated in two independent cohorts (paper I). 

The results also suggest that with use of automated computer-aided tools and 

advanced image processing techniques, Alzheimer’s disease can be robustly 

identified and predicted two years before the actual dementia onset.  

Previous studies have successfully employed pattern recognition techniques to 

classify MRI images from different cohorts only within the combined sets (146).  In 

this thesis we showed that employing our methodology, it is possible to produce 

classifiers not only with high accuracy, but also with good between-cohort robustness 

when imaging protocols are carefully aligned (paper II). 

We also demonstrated that the accuracy to predict MCI-to-AD conversion (but not 

AD detection) could be further improved by adding other biomarkers (such as ApoE-

genotype) and demographic data. This effect was demonstrated in two completely 

independent cohorts from North America and Europe (paper II). Further 

improvement in MCI-to-AD prediction accuracy can potentially be achieved by 

adding more imaging and non-imaging (i.e., cerebrospinal fluid levels of amyloid-

beta, p-tau and t-tau (147)) biomarker modalities and/or by using better image post-

processing protocols.  

To the best of our knowledge, our work is also the first to investigate the impact of 

different parcellation schemes and dimensionality of the imaging features on machine 

learning modelling accuracy, computation/memory and time costs.  In the present 

work (paper II), more disease-specific parcellation scheme (Destrieux’s) produced 
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more accurate models (paper II). Measurement-specific parcellation schemes may 

also be useful for further accuracy improvement. 

Using the largest cohort (to date), our work demonstrated that MCI in PD is 

associated with temporo-parietal and superior frontal thinning and that memory, 

visuospatial and executive cognitive performances are related to temporo-parietal and 

superior frontal thinning (paper III). In contrast to previous studies suggesting that 

PD without cognitive impairment is not associated with brain atrophy (148, 149), we 

also found that temporal thinning is present even in PD patients that do not meet 

criteria for MCI.  

On a large-scale network level, better executive performance in PD is associated with 

increased dorsal fronto-parietal cortical processing and inhibited subcortical and 

primary sensory involvement when the subject is at resting state. This pattern is 

positively influenced by the relative preservation of nigrostriatal dopaminergic 

function (paper IV). In general, higher DaT binding values had integrative effects on 

the brain (global increase of nodal strength). These findings are in line with previous 

functional studies employing different methods that revealed abnormally enhanced 

fronto-subcortical connectivity in PD (87, 150-153) 

Influence of nigrostriatal deficiency on brain dynamics underlying PD-related 

cognitive impairment was also confirmed using global graph theoretical metrics, 

when higher DaT SBR ratios (relative preservation of dopaminergic function) were 

associated with lower modularity of cognitive circuitry defined with automated meta-

analysis. This is also in line with previous fMRI and magnetoencephalography 

studies that indicated globally impaired network-level processing in PD (154-156). 

The basal ganglia are known to be crucial for sustaining the balance between 

facilitation and suppression of movements (157). Under certain assumptions, 

executive functions can be considered as the “movement of thoughts” within this 

context. According to a widely accepted notion of cognitive cortico-strio-thalamo-

cortical loops, DLPFC circuit mediates set-shifting, complex problem-solving, 

retrieval abilities, organizational strategies, concept-formation, working memory 
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(158) and other executive functions known to be affected in PD. The nigrostriatal 

dopamine system therefore may not only allow effective execution/termination of 

motor activity, but may also assist in smooth switching between cognitive patterns, 

controlling mutual inhibition and/or facilitation of fronto-subcortical circuits. This is 

also supported by computational models of the basal ganglia that highlight their 

routing role in various cognitive functions, particularly for action-selection (159). 

Several limitations of our work have to be acknowledged. Nearly all patients were 

diagnosed clinically, and thus there is a risk for misclassification. This is especially 

relevant for study I, since DLB and AD can be difficult to differentiate, and mixed 

Alzheimer’s and Lewy body pathology may be present in both AD and DLB groups. 

However, preliminary post-mortem pathological diagnosis is now available for 21 

patients from the DemWest study, and all cases with a clinical diagnosis of probable 

DLB had cortical or limbic Lewy bodies. In addition, the use of DaTSCAN to 

confirm the diagnoses of DLB and PD (papers I, III, IV) is a strength that partially 

overcomes this issue. Another limitation is relatively small sample sizes in the studies 

I and IV, which may influence feature selection and modeling accuracy. However, 

the results from study I were replicated in two independent cohorts, and the results of 

the study IV had high statistical significance and were replicated with two 

independent approaches using both local (nodal strength) and global metrics 

(modularity of the cognitive circuitry, defined with meta-analysis). In study III, there 

is also a potential bias of including “super-normal” controls with MoCA scores > 26, 

which may artificially increase the difference between PD and control subjects. For 

the PPMI-based studies (III and IV), there may also be a selection bias due to the fact 

that the subjects were recruited from highly specialized research centers and might 

not be representative of a population-based sample. From a methodological 

standpoint, in study IV, the resting state setting hampers direct interpretation of the 

findings regarding to the role of brain circuits in the performance of cognitive tasks. 

Active cognitive processing is associated with patterns of brain dynamics that are 

different from the ones occurring at rest. These patterns may have different 

associations with altered dopaminergic function in PD. Another limitation of study IV 

pertains to the specificity of nigrostriatal dopaminergic deficiency measured by 123I-
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FP-CIT SPECT, which might also reflect indirect effects of neurodegeneration of 

dopaminergic neurons within other pathways (because the severity of dopaminergic 

deficits may correlate across different systems). Therefore, the results of the study IV 

should be interpreted with caution. Finally, it is necessary to note that all the cohorts 

(except for the Slovenian sample) are drawn from the multicenter studies (DemWest, 

ADNI, AddNeuroMed, PPMI). Within this context, harmonization of clinical and 

imaging protocols is especially crucial and may represent an issue if not carefully 

completed. For these studies, cross-center harmonization and reliability assessment 

steps have been performed using artificial and human phantom scans. Necessity of 

the harmonization has specifically been demonstrated in the study I, when the model 

trained on the data from one cohort did not produce appropriate performance on the 

imaging data acquired without MRI protocol harmonization. However, the model was 

still effective when trained on the mixed data from non-harmonized cohorts.  

 

Computer-aided framework for the diagnosis of cognitive impairment in clinical 

practice 

Our findings provide a good support for further diagnostic clinical trials of image-

based computer-aided models for diagnosis and monitoring of cognitive impairment, 

particularly for Alzheimer’s disease, and suggest that there is a potential of such an 

implementation for the diagnosis of cognitive impairment associated with PD. 

Computerized medical decision-support systems is a rapidly developing field with a 

very strong potential to be used in clinical practice. The results of the present thesis 

deepen our understanding of brain mechanisms underlying cognitive impairment in 

the elderly and suggest good implementation feasibility of CAD systems.  

However, it is important to note that CAD systems should not be considered as a 

substitute for a clinician or any other medical specialist. Instead, such a framework 

implies the use of predictions from computer models as a second opinion that can be 

taken into account or rejected depending on the clinical context.  
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In practice, there are many levels at which CAD systems may be beneficial and can 

be incorporated within the clinical setting (Figure D-1). 

 

Figure D-1. Application of CAD in geriatric practice: general scheme. 

 

Thus, for example, making a decision on whether a patient with subjective cognitive 

impairment should be further evaluated, treated or carefully monitored can be 

substantially augmented with use of CAD. Likewise, such a framework can be used 

to aid differential diagnosis and prediction of further cognitive decline among 

patients with early stages of neurodegenerative disease, and finally, to enroll patients 

at early stages of the diseases to the clinical trials in order to make such interventions 

most effective and beneficial for the patients. 

Nevertheless, it is important to acknowledge that computer-aided medical decision 

support systems are much more than just optimized pipelines, producing reliable and 
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accurate models. Instead, such an implementation requires a user-friendly interface 

easily accessible for a clinician after the specific training is completed. 

Clinicians do not necessarily need to participate in the image preprocessing at any 

stage except for probably general image quality control step. An ideal CAD system of 

this kind would be software with “point-and-click” interface that would take DICOM 

images as an input and produce the required measures and predictions as an output.   

Incorporating this is not an easy task to accomplish for several reasons. First of all, 

image-processing packages are being constantly updated improving quality and 

efficiency of the data preparation step. This, in turn, influences prediction accuracy of 

the models and not always towards its improvement. Pattern recognition algorithms 

and their implementations are also being optimized in the newest version of the 

toolboxes. All of the above requires flexible and modifiable implementation, as well 

as coordinated work of several IT and medical specialists. On the other hand, there is 

a well-known tradeoff between functionality/capability on the one side and 

complexity/cost on the other. Therefore, every update of the software should be 

standalone and non-modifiable for the clinical users. 

Another important issue pertains to the clinical setting itself, within which 

information about patients and clinical details including the diagnosis itself can be 

changed after a while. Within the context of continuous image data and clinical 

information flow it would be beneficial to incorporate so-called “online” machine 

learning setting, where the model gradually "learns" using one instance at a time 

(instead of traditional "offline" or “batch” learning framework, where the whole 

training set is available to the algorithm at the beginning and therefore does not allow 

any modifications of the models after the training has been completed). 

This framework also provides valid estimations of the prediction confidence under a 

general i.i.d. assumption (independent and identically distributed) (160-162).  

Since this approach can be applied to an individual patient and gives reliable 

estimations of possible diagnoses, it has strong potential to be used in clinical practice 



 71 

and, to our opinion, would be the best candidate for diagnostic trials employing 

computer-aided medical decision-support systems. 

There are also many important organizational issues pertaining to the implementation 

of CAD system in clinical practice, which were beyond the scope of the thesis, such 

as incentives for clinicians and practicalities related to data transfer and patients’ 

confidentiality. These issues are relevant for any IT innovations in medicine and can 

be effectively addressed as well. 
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7. Conclusions 

Cognitive impairment in the elderly has different brain profiles depending on the 

predominant neurodegenerative pathology and cognitive functions affected. With the 

use of automated computer-aided tools and advanced image processing techniques, 

Alzheimer’s disease can be robustly identified, predicted two years before the actual 

dementia onset and differentiated from dementia with Lewy bodies. After certain 

modifications and adaptations for clinicians, the models can be successfully 

incorporated into medical decision-support systems and be evaluated in subsequent 

diagnostic clinical trials. 

The identified brain structural and functional profile associated with Parkinson’s-

related cognitive impairment is also robust and, holding strong diagnostic potential, 

must be detectable using computer-aided systems of similar design, the development 

of which is the matter of our future research. The development and future elaboration 

of clinically realistic computer-aided systems for the diagnosis of neurodegenerative 

diseases is an important topic for future research. 
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