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Abstract

In 2007 the AEGIS experiment was started at CERN with the goal to determine the
gravitational acceleration of the antihydrogen atom. This is achieved through accelerating
the antihydrogen atoms toward a detector and measure the path of flight. To achieve the
desired accuracy of the measurement, a large enough amount of antihydrogen atoms have
to reach the detector. To obtain this objective, the use of quantum polarization control
has been put forward. [1]

The main obstacle turns out to be the large unknown number of initial states, the limited
numbers of coupling and the symmetry of the dynamics. In the thesis, quantum control in
the time domain is described and applied to Rydberg atoms. A code has been modified
and extended with respect to unknown initial conditions. Several applications of the
code illustrate the given challenge. In addition, controlled excitation (or de-excitation)
indicate that increased initial polarization can be achieved.
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Chapter 1

Introduction

1.1 Background

There is no better measurement of the progress in science than our conquest and control of
the dimensions. Our ancestors could see the sun and some of the planets, and had myths
about our creation. They even had an idea about an indivisible unit called an atom.
However, there is no doubt that they would have been surprised to find that we now can
study galaxies billions of lightyears away and even try to reconstruct the beginning of
the universe. The most astonishing achievement is perhaps how small the things we can
study are. We can explain what an atom consists of and study its properties. Today we
are not content with only studying atoms, we also want to control and use them, one by
one.

The idea of control at atomic scale was introduced by Richard Feynman1 in 1959 when
he held his famous speech "There is plenty of room at the bottom" [3]. There he foretold
the possibility of creating materials and structures atom by atom and stated that this
was an inevitable development of science. This was the start of the field that was to
be known as nanotechnology2. Nanotechnology is hard to define, but its broadest and
most general definition is as found in the European Union code of conduct for responsible
nanotechnology:

Nanotechnology and Nano science research encompasses all research activities
dealing with matter at the nanometric scale (1 to 100 nm) [5].

To achieve control at this scale it is necessary with the right equipment, and instruments
with better and better resolution have been developed [6]. In 1970 separate atoms were
seen for the first time by Crewe et al. [7]. Later the scanning tunnelling microscope
(STM) [8] and the atomic force microscope (AFM) were invented [9] making it possible
to study surfaces with extremely high resolution. What more, they were soon showed to
be able to manipulate atoms. In 1989 Don Eigler at the IBM used the STM to position

1Richard Feynman(1918-1988) shared the Nobel prize in 1965 for "fundamental work in quantum
electrodynamics" [2].

2Coined by Norio Taniguchi(1912-1999) in 1974 [4].
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35 Xenon atoms to form the IBM logo [10]. STM has also been used to influence the
electronic structure of atoms and promote bond-forming and -breaking by adding or
remove electrons. The diversity in the applications of STM has made it an important
tool within nanotechnology.

One of the most difficult aspects of control on the nanoscale is also one of the properties
that makes nanotechnology so interesting. When the objects we are studying are at a
very small scale, they cannot really be seen as clearly defined objects, but behave more
like waves. This means that we cannot use classical mechanics to do calculations on
them, instead we relay on quantum mechanics. This theory was introduced in the 20th
century to try to describe some results that were unexplained by classical mechanics. In
1926, Erwin Schrödinger published his paper on "An Undulatory Theory of the Mechanics
of Atoms and Molecules" [11].In this article he formulated what has later been known
as the time dependent Schrödinger equation (TDSE). The solution of the Schrödinger
equation is a wave function that is the most general description of the quantummechanical
system. Together with Einstein’s and Planck’s3 theories about quantized energy packets
[14] [15] and Heisenberg’s uncertainty principle [16] this laid the ground work for quantum
mechanics as a theory to explain the behaviour of particles at atomic and subatomic
scale. As a mathematical description for the atomic world, this theory introduced us to
new physical phenomenons like wave-particle duality, quantum entanglement and later,
antimatter.

1.2 Antimatter

In 1928, Paul Dirac 4 presented his paper "The quantum theory of the electron" where the
Dirac equation was first published [20]. The equation combines both the quantum theory
and special relativity, allowing the behaviour of electrons moving at relativistic speed to
be calculated. The equation also has two solutions, one for electrons with positive energy
and one for electrons with negative energy. This predicted the existence of antiparticles
for the first time. Antiparticles are the building blocks of antimatter in the same way that
matter consists of particles. Antiparticles have the same mass and the same magnitude
of charge and spin as their corresponding particles. However, they have opposite sign for
the charge as well as other particle properties. When antimatter and matter collides they
can annihilate and release energy corresponding to their mass as explained by Einstein’s
law of energy-mass equivalence, E = mc2.

In 1932, Carl Anderson discovered the positron, the antiparticle of the electron, proving
the prediction of Dirac [21]. Following this, research has sequentially discovered the
different antiparticles the antiatom consists of [22] [23] [24]. In 1995 the first antihydrogen
was produced in the "Low Energy Antiproton Ring" at CERN [25] and in 2011 it was
confirmed that CERN had been able to trap antihydrogen for 1000 seconds [26]. This

3Albert Einstein(1879-1955), Nobel prize in 1965 "for his services to Theoretical Physics" [12], and
Max Planck(1858-1957) , Nobel prize in 1921 for "his discovery of energy quanta" [13].

4Paul Dirac(1902-1984) and Erwin Schrödinger(1887-1961) won the Nobel prize in 1933 "for the
discovery of new productive forms of atomic theory" [17] [18], while Werner Heisenberg(1901-1976) at
the same time was awarded the 1932 Nobel prize "for the creation of quantum mechanics" [19].
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allowed for the first time detailed studies of antimatter and comparisons with normal
matter.

Antihydrogen is the simplest antiatom and the antiparticle of hydrogen. The hydrogen
atom is one of the best understood physical systems as well as the most abundant element.
It has only one electron and one electron-nucleus interaction and the Schrödinger equation
can be exactly solved for the system. The equation can successfully reproduce the spectral
line of the hydrogen atom, responding to the energy levels in the Bohr model. Since we
have such a throughout insight to the hydrogen atom, we have many properties we can
compare to the antihydrogen and from them we can search for differences between matter
and antimatter.

One of the differences regarding matter and antimatter is that there seems to be only
matter left. When the universe was created it is believed that both matter and antimatter
were created, but now it seems like matter greatly outnumber antimatter. The general
perception is that there was an asymmetry when the universe was created and what we can
see around us is the surplus of matter that was created. This asymmetry in the universe
is called the Baryon asymmetry problem [27] and there is not yet any scientific proved
explanation for why there should be an asymmetry. The lack of complete answers has
led to different theories to explain the abundance of matter. One theory is the existence
of antigravity. In the same way as matter attracts itself, the theory says that antimatter
should attract antimatter. However the idea is that there also will be a repulsion or an
altered attraction between antimatter and normal matter [28] [29]. If this theory is correct
it could explain why we can only find normal matter. There exists an equal amount of
matter and antimatter, but they repel each other and has therefore not been able to react.
There can exist galaxies containing only antimatter, but from far away we are not able
to distinguish them from normal matter because they emit identical photons. While the
general consensus is that there is no difference in gravity between matter and antimatter,
it is a question that begs to be answered. To try to answer the question experimentally,
the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) project was
established at CERN in 2007.

1.3 The AEGIS experiment

The AEGIS experiment [1] is a modern version of the experiment where Galileo Galilei
(supposedly) dropped different iron spheres from the Tower of Pisa to show that they
fell with the same acceleration. In the AEGIS experiment the equipment is a bit more
sophisticated, but the principle is the same. The antihydrogen atom will be formed by
combining excited positrons and antiproton in an antimatter trap. The reaction used in
the experiment is

Ps5 + p̄→ H̄ + e. (1.1)

In this trap the antihydrogen atoms will be kept stable by strong magnetic fields before
they are accelerated by an electric field. When they leave the acceleration area they will be

5Postironium, an unstable system cosistent of an electron and a positron.
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Figure 1.1: The experimental setup for the antihydrogen creation and acceleration step
in the AEGIS experiment [1].

shot towards a detector. From the detected values a flight of path will be calculated and
one will hopefully be able to measure the effect of gravity. In the AEGIS experiment the
goal is to achieve a precision of 1% on the gravity measurement. To achieve this precision,
about 1.3 ∗ 105 antihydrogen atoms have to reach the detector. The experimental setup
is shown in Figure 1.1.

In order for enough antimatter to reach the detector one has to make sure that the
antihydrogen atoms are in fact being accelerated towards the detector by the electric
field. For an electrostatic force to affect the neutral antihydrogen atom, there must be
introduced a charge displacement in the atom. This induces a dipole where the negative
antiproton acts as the negative pole and the positron is the positive pole. This is called
polarization and it has a direction depending on where the positron is located. When
the antihydrogen atoms are formed, they are created with positrons excited to many
different energy levels. The resulting antihydrogen atoms will thus also have the positrons
in many different energy levels and therefore in many different polarized states. If the
antihydrogen atom is polarized in the wrong direction or not polarized at all, it will not
accelerate towards the detector.

The antihydrogen atoms in the AEGIS experiment will have the positrons excited to
high main quantum numbers (n). Atoms with highly exited electrons are called Rydberg
atoms. In this experiment n is going to be between 30 and 40. This corresponds to
a radius of about 50-85 nm and thus the dynamic of the single atom is nanoscience.
The very large radius of Rydberg atoms results in very loosely bonded electrons, a fact
stemming from the Coulomb interaction,

E =
1

4πε0

Q1Q2

R
. (1.2)
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The low potential together with the fact that the energy levels get closer with higher
n-levels make it easy for electrons to be ionized or shifted to other levels. The large
radius also gives a possibility for large dipole moments of the Rydberg atom. In an
external electric field a dipole will experience a shift in its energy. Electronic states with
the electrons/positrons located along the field in the right direction will experience a
lowering in energy. This is known as a Stark shift [30]. All these effects make Rydberg
atoms "easy" to manipulate using laser pulses.

A laser pulse is an intense burst of coherent photons. In 1917 Einstein published a paper
on stimulated emission giving the framework for the development of lasers [31]. In 1960
the first laser was invented [32] and technology has progressed since making it possible
to create shorter bursts and shape the pulses. This progress has even made it possible to
use lasers to control chemical reactions [33] [34].

The goal of this thesis has been to study if it will be possible to take the antihydrogen
system from any of the initial states to a target state that has the correct polarization.
It is possible to control the transitions of electrons using pulses and the challenge will be
to find one that can do the right transitions in the right time frame.

1.4 Quantum control to control polarization

There has been developed numerous theoretical frameworks for finding an optimal pulse.
In this work we use quantum control based on optimal control theory (OCT) to find a
pulse to control the polarization of the antihydrogen. OCT is a mathematical technique
applied to calculate the (optimal) control functions of a given equation of motion. OCT
is today used in various engineering fields where you have a differential equation and an
external parameter that influences the system. The basis of an OCT problem is that
you have a functional where you want to maximize the outcome, and a variable that
can be adjusted to find the best solution. In our case the functional depends on the
optimizations, which are the population in the target state and the restriction on the
field, the equation of motion which is the TDSE, and the variable which is the pulse. [35]

This type of quantum control is based on a closed learning loop where we have an initial
guess on the pulse. Then we solve the TDSE forward in timesteps and see if we have
reached the target state at the final time. If not, the final population will be used as a
starting point for a backward propagation of the TDSE in time. The solutions in each
time step for both the forward and backward propagations is used to calculate a new field
for the next iteration (more detailed in Chapter 2). This will hopefully converge towards
a pulse that optimizes the output. To ensure convergence, the initial guess for the pulse
is important. For the iterations we need computational power and a fast iterative scheme
is desirable.

The greatest problem with quantum control is that it does not necessarily find a pulse
which is experimentally feasible. To account for this we need to put some restrictions on
what pulses are allowed. This restriction can somewhat be applied in the equations, but
it still does not guarantee a good pulse. Development in laser pulses has come a long
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way, but there are still limitations in terms of signal-to-noise ratio and shaping. These
limitations are things we need to take into account if we are to find an experimentally
useful pulse. Another is the setup of the experiment. How will the strong magnetic field
affect the energy levels? How much do we have to expose the system to our laser field
and what kind of lasers do we have available for the system?

1.5 Outline and outlook

The goal of this thesis is to look at the chances for a multi-initial optimization to be
applicable for the AEGIS project and see what limitations and requirements must be
taken into account. To do this we use smaller systems that validly can be compared to
the situation in the AEGIS project.

As the reader now hopefully has realised this thesis is a theoretical endeavour. It would
not be purposeful to try out different pulses on real antihydrogen to try to find the correct
one. In this work there have done simulations using Fortran and Matlab codes. Some
of them are based on work done by former students in the group of optic and atomic
physics at UiB, Lene Sælen and Raymond Nepestad. As an outline we will first go more
in depth on the theory briefly touched upon in this chapter. It will also show the general
iterative scheme for finding an optimal pulse as well as some variations you can apply.
In this thesis we will be using atomic units, described in Appendix A, unless otherwise
mentioned.

The first case will be a ten level asymmetric well system. Here we will study the general
quantum control problem and see if we can optimize the transition from one state to
another. Then we will expand this to two initial states and look on how this effects the
optimization. From here we move over to a two dimensional (2D) hydrogen representation
and look at some of the parameters that influence the optimization of an atom. In the
2D hydrogen study, we will try to find a pulse that pushes the electron to the electronic
state that gives the highest dipole moment in the y-direction. Finally we will look into
how a magnetic field influences the three dimensional(3D) atomic system and see if this
promotes a different result than the 2D model when we try to optimize the polarization
in the z-direction.

The background for this thesis is the AEGIS experiment, but quantum control can be
utilized in many different areas. The target for the optimization can vary, and the only
initial restriction is that it must be an hermitian operator to satisfy the quantum mechan-
ical rules. By using quantum control to design pulses one may be able to control many
atoms at the same time, making it more effective than the STM. This might be useful for
nanotechnology to realize new applications. One possibility is to control the electronic
states of quantum dots. A quantum dot can be simply described as an artificial atom
where the potential is constructed. We can therefore make materials with energy-levels
that suits our purpose. One purpose for the quantum dot is as a q-bit in the theorized
quantum computer. If we are able to do this, we have really reached the possibility to
create machines from atoms like Feynman foretold.
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Chapter 2

Theory

This chapter will include some of the basic theory that this thesis builds on. In general
the information is from [30], unless otherwise stated.

2.1 Optimal control theory

The optimizations in this thesis will be based on a mathematical framework called optimal
control theory. Optimal control theory has its foundation in Bernoulli’s1 solution to
the Brachystochrone problem 2. From his solution and onward to variation theory, the
great breakthrough came in 1958 with the Pontryagin Maximum Principle which will be
described below. Fuelled by the space race and optimizing of rocket trajectories the field
developed and is today used in almost all engineering disciplines.

2.1.1 Theory

In [37] the basic problem of optimization is described as follows,

ẋ(t) = f[x(t),v(t)]. (2.1)

Here x(t) is the system dynamics with an initial condition x(t = 0) = x0 and a set of
controls v(t) in the vector space U. The objective is to find u(t) such that the total
functional

J = J1[x(T )] +

∫ T

0

dtJ2[x(t),v(t)] (2.2)

is maximized where J1 represents the maximization of the outcome at the final time T ,
and J2 is the restriction of the input. Depending on the system in equation (2.1) and

1Johann Bernoulli(1667-1748).
2The Brachystochrone problem was formulated in 1696 and asked the reader to find the orbit that

took the moveable point M under influence of its own weight from A to B in the shortest amount of
time. The solution to the problem was found to be the cycloid [36].
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the allowed controls, U, the found solution ũ(t) is not necessarily unique and there may
exist other solutions. Since the goal is a maximization of J , it is natural to do a variation
with respect to the control u(t). However, it is difficult to do the variation directly, so
the functional J is replaced by

J̃ = J −
∫ T

0

dtλ†(t){ẋ(t)− f[x(t),v(t)]}. (2.3)

From equation (2.1) we have that the expression inside the curly brackets equals to zero,
and the constrained problem has been transformed to an unconstrained one.

By using the new functional in the variation ∂J̃ = 0 we get a set of equations and
conditions for optimality, which are called Pontryagin Maximum Principle (PMP)

The theorem and complete proof can be found in [38]. Theorem: Suppose u(t) ∈ U and
x(t) represent the optimal control and state trajectory for the optimal control problem
described by 2.1 and 2.2 . Then there is an adjoint trajectory λ(t) such that together
u(t) and λ(t) satisfy

ẋ(t) = f[x(t),u(t)], (2.4)
x(t = 0) = x0, (2.5)

−λ̇†(t) = λ†(t)fx[x(t),u(t)] +∇J2[x(t),u(t)], (2.6)
λ†(t) = ∇J1[x(T )], (2.7)

where fx represents the matrix of partial derivatives

fx = ∇f =

(
∂

∂xj

fi(x,u

)
.

For all t, 0 ≤ t ≤ T , and all v ∈ U

H[λ(t),x(t),v(t)] ≤ H[λ(t),x(t),u(t)], (2.8)

where H is the Hamiltonian

H[λ(t),x(t),u(t)] = λ†(t)f [x(t),u(t)] +∇J2[x(t),u(t)]. (2.9)

2.1.2 Classical example - the triangle problem

This example is taken from [37]. It is desired to draw a curve x(t), 0 ≤ t ≤ T , starting at
x(0) = 0, whose slope at each point is no greater than 1 and attains maximum hight at
T. This is a simple problem, for it is clear that the solution is to select x(t) as the straight
line with slope equal to 1. However it shows the mechanics of the maximum principle.
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Figure 2.1: Possible and optimal solutions of the triangle problem.

The problem can formulated in the following way,

ẋ(t) = u(t),

x(0) = 0,

u(t) ≤ 1,

J = x(T ).

The objective is to maximize the hight and the control to do so is the slope. In this
problem we do not have any restrictions on u, such that ∇J2 = 0. We also have fx(x, u) =
0 and therefore, the adjoint equation is

−λ̇(t) = 0

The final condition is λ(T ) = 1, since J1(x) = x. Hence we get that λ(t) = 1. The
Hamiltonian becomes

H = λu = u

Thus to maximize the Hamiltonian, u(t) needs to be as large as possible. From the
constraint u(t) ≤ 1 we see that we must have u(t) = 1 which agrees with the intuitive
solution.

2.2 Quantum mechanics

From the previous section we saw that optimal control theory needs an equation of motion
for the system. In quantum systems, Newton’s equations are not longer valid, instead
the dynamics are described by the time dependent Schrödinger equation (TDSE),

i
∂Ψ

∂t
= ĤΨ. (2.10)
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Here Ψ is the wavefunction of the system and Ĥ is the hermitian 3 Hamilton operator
(this Hamiltonian must not be confused with the one in equation (2.9)). We see that this
equation can easily be written on the form in equation (2.1).

If the Hamilton operator does not explicitly include a time-part, the wavefunction can
be separated into a time independent equation,

Ψ(~r, t) = ψ(~r)T (t), (2.11)

thus we have from equation (2.10)

i
dT (t)/dt

T (t)
=
Ĥψ(~r)

ψ(~r)
. (2.12)

The left side is only dependent on t and the right side is only dependent on ~r. Both sides
has to be equal to a constant E. This gives us two equations, one for T(t) and one for
ψ(~r).

The solution to
i
dT (t)/dt

T (t)
= E, (2.13)

is
T (t) = Ce−iEt. (2.14)

The other equation

Ĥψ(~r) = Eψ(~r), (2.15)

is called the time independent Schrödinger equation (TISE) and is an eigenvalue problem.
The solutions ψ(~r) are called stationary states while the constant E is the eigenvalue of
the Hamiltonian and in most cases the energy of the system.

The total time dependent wavefuncion Ψ can be described by a set of stationary basis
functions ψi,

Ψ(~r, t) =
∑
i

ciψi(~r)e
−iEit. (2.16)

Where the basis must meet the orthonormal requirement,

∫ τ

ψ∗iψj∂τ = 〈ψi|ψj〉4 =

{
1, if i = j

0, if i 6= j
. (2.17)

Where τ represents the whole space where the functions are defined.
3A hermitan matrix is one that is self-conjugated, H = H∗.
4The notation with the angles is called Bra-ket notation and will be used from here in the thesis
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In equation (2.16) ci is the development coefficient. If we assume that the system is
completely described by the function Ψ, with the energy spectrum E then the probability
of the operator giving the outcome, Ei, is equal to |ci|2.

Generally we can say that the measurable outcome of an operator is one of the eigenvalues
to the complete set of eigenstates. And the expectation value of the operator is

〈F 〉 =
∑
i

|ci|2fi. (2.18)

Since |ci|2 is equal to the probability, ci is called the probability amplitude and
∑

i |ci|2 =
1.

Let us go back to the Hamiltonian operator Ĥ. For a particle in a potential the Hamil-
tonian consists of two parts, the kinetic energy and the potential energy.

Ĥ(~p, ~r) =
~̂p2

2m
+ V (~r). (2.19)

Here ~p = i∇ and represents the momentum of the particle and m is the mass of the
particle. Using this, equation (2.10) turns into

i
∂Ψ

∂t
=

[
− 1

2m
∇2 + V (~r)

]
Ψ. (2.20)

Since the Hamiltonian is time independent we can use equation (2.15) and we get

− 1

2m
∇2ψ + V ψ(~r) = Eψ(~r), (2.21)

and here E represents the total energy of the system.

If the potential is known the equation can be solved and we find the eigenstates (wavefunc-
tions) and eigenvalues (energies) of the system. The nature of the potential determines
if the solution is exactly or must be approximated.

2.2.1 One dimensional asymmetrical well

We show an example of solving the TISE using a potential from [35], the asymmetrical
well, which is defined as follows,

V (x) =
ω4

0

64B
x4 − ω2

0

4
x2 + βx3. (2.22)

The TISE becomes [
− d2

dx2
+

ω4
0

64B
x4 − ω2

0

4
x2 + βx3

]
ψ(~r) = Eψ(~r) (2.23)
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To solve this problem we need a basis set of orthonormal functions. For harmonic oscilla-
tors, Hermite polynoms are very useful. This is a large group of orthogonal polynomials
and can be defined by:

Hn(x) = ex
2

(
− d

dx

)n
e−x

2

, (2.24)

Hn+1 = 2xHn − 2nHn−1, (2.25)
H ′n = 2nHn−1, (2.26)∫ ∞

−∞
H2
n(x)e−x

2

dx =
√
π2nn!, (2.27)∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 0(n 6= m). (2.28)

The Hermite polynomials can be incorporated to the solutions through the following
equation

ψn =
(m
π

) 1
4 1√

2nn!
Hn(x)e−

1
2
x2 . (2.29)

Since we now can construct a basis set of a size k of our own choosing, we need to solve
equation (2.15) for our potential to find the probability amplitudes cn and the energies of
the n ∈ k lowest states. Solving large matrices are normally done by computers, which
solves the eigenvalue problem using built in algorithms, like the Arnoldi method [39].

By solving the equation we find the energies and the eigenstates. For a basis set with
k = 100, the ten lowest energy levels are listed in Table 2.1 while the scaled probability
distribution for the 5 lowest states are shown in Figure 2.2.

Table 2.1: The energy of the ten lowest state in the asymmetrical well.

Basis state Energy
ψ1 -0.6206
ψ2 -0.4638
ψ3 0.0816
ψ4 0.3941
ψ5 0.9088
ψ6 1.4762
ψ7 2.1116
ψ8 2.8012
ψ9 3.5395
ψ10 4.3216

22



Figure 2.2: The asymmetric well with the density distribution of the 5 lowest states,
scaled to the energies.

Figure 2.2 tells us that the lowest states are highly polarized in each of the wells. In
the lowest state the particle is found exclusively in the lowest well to the left. While
the second lowest state is almost entirely located in the well to the right. As we reach
higher excited states the difference in the energies of the wells are of less importance and
the states become less polarized. We see from the figure that already at state 5, the
density is almost completely symmetrically distributed in the potential. We also notice
the property of quantum mechanics called tunnelling. There is a small chance of finding
the particle inside the "wall" of the well and if the wall is thin enough, the particle might
be found on the other side. This is apparent for the second state; while the energy of state
is lower than the potential barrier between the wells, there is a tiny chance of finding the
particle in the left well. For the side walls however the potential grows so fast that the
probability of finding them inside the wall is dying quickly.

We will return to the asymmetrical well and do more experimentation later.
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2.3 Electromagnetic fields

In Maxwell’s equations the electric, E(r,t) and magnetic field, B(r,r) are described by
the following relations,

E(r, t) = −∇φ− ∂

∂t
A(r, t), (2.30)

B(r, t) = ∇×A(r, t), (2.31)

where φ(r, t) is a scalar potential and A(r, t) is a vector potential.

These two potentials can be incorporated into the Schrödinger equation for a single
particle with charge q and mass m.

Using the Coulomb gauge, ∇ ·A = 0 and φ = 0, we get the Hamiltonian,

Ĥ =
p2

2m
− q

m
p ·A(r, t) +

q2

2m
A(r, t)2. (2.32)

In a case where the field is used to probe the transitions within an atomic system, the
wavelength will typically be much larger than the characteristic size of the atom. If the
field intensity is not too high the spatial dependence of the field is negligible. This is
often guaranteed with the quantitative restriction that k · r� 1. This approximation is
called the dipole approximation. This leads to a strictly time dependent vector potential
and the Hamiltonian becomes,

Ĥ =
p2

2m
− q

m
p ·A(t) +

q2

2m
A(t)2 + V (r). (2.33)

This can be transformed to a Hamiltonian with time dependence on the magnetic and
electric field.

Ĥ =
p2

2m
+

q

2m
L̂ ·B(t) + qr ·E(t) + V (r) (2.34)

Equation (2.34) is missing a diamagnetic term. The magnetic field scales with 1/cE
and is usually neglected. However for strong magnetic fields it must be included. For a
magnetic field in the z-direction, it is

q2B2
z

8m
(x2 + y2) (2.35)

2.4 Quantum control

In a potential field the Hamiltonian will normally have the form as in equation (2.19), and
we can call this Ĥ0. However in quantum control we want to achieve a desired outcome
and to do this we apply an arbitrary laser pulse to disturb the system. This can be seen
as a perturbation to the Hamiltonian, and the new quantum mechanical operator turns
into
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Ĥ1 = Ĥ0 − µε(t). (2.36)

Here H0 represents the time independent operator, including the potential and the kinetic
energy. µ is the external interaction, and ε is the temporal profile of the field(s). If the
field is an electric field in the x-direction, µ = qx for a single particle, and a form of ε
could be ε(t) = A0cos(ωt+ δ). We will now follow [35] to obtain the control equations.

The new pertubated TDSE becomes,

i
δ

δt
Ψ =

(
Ĥ0 − µε(t)

)
Ψ. (2.37)

Our goal is to find a laser pulse that drives the system from an initial condition to a
final state that optimizes the expectation value of a target operator Ô at the end of
the laser interaction. However there is not certain that there is such a control and [40]
and [41] has tried to determine some requirements the system must meet to be completely
controllable.

The optimization of the expectation value can be expressed as,

max
ε(t)
〈Ψ(T )|Ô|Ψ(T )〉︸ ︷︷ ︸

J1

. (2.38)

The only restriction on Ô is that it has to be a Hermitian operator. Here Ψ(T )i is the
solution in the final timestep to equation (2.37) with initial condition Ψ(t = 0) = Φ0.

In addition to maximize J1, we minimize the fluency of the laser field. By this we want
to reduce the efforts to obtain our desired outcome. The expression for this restriction is

J2[ε] = −
∑
j

∫ T

0

dtαjε
2
j(t), j = x, y. (2.39)

Here α is the penalty factor, introduced to control the energy of the field. Together J1

and J2 forms a functional that we want to maximize,

J [ε] = 〈Ψ(T )|Ô|Ψ(T )〉 −
∑
j

∫ T

0

dtαjε
2
j(t), j = x, y. (2.40)

We see that the value of the penalty factor determines how much weight the limitation
of the field has compared to the optimization of the expectation value. There is also the
restriction that the wave function has to satisfy the TDSE. This is expressed through

J3[ε,Ψ, χ] = −2Im

∫ T

0

dt
〈
χ(t)

∣∣∣(i∂t − Ĥ(t)
)∣∣∣Ψ(t)

〉
, (2.41)
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where χ is an introduced Lagrange multiplier. Applying variation to the total functional
with respect to all the variables ε, Ψ and χ we get

δεkJ =

∫ T

0

dτ{−2Im〈χ(τ)|µ̂k|Ψ(τ)〉 − 2αεk(τ)}δεk(τ), (2.42)

δχJ = −i
∫ T

0

d(τ)
〈(
i∂τ − Ĥ(τ)

)
Ψ(τ)|δχ(τ)

〉
, (2.43)

δΨJ =
〈

Ψ(T )
∣∣∣Ô∣∣∣ δΨ(T )

〉
+ i

∫ T

0

dτ
〈(
i∂τ − Ĥ(τ)

)
χ(τ)

∣∣∣ δΨ(τ)〉

−〈χ(T )|δΨ(T )〉+ 〈χ(0)|δΨ(0)〉. (2.44)

We want to find the extremum of the functional and therefore we set the variations equal
to 0. This leads to some relations

αkεk(t) = −Im〈χ(t)|µ̂k|Ψ(t)〉, k = x, y, (2.45)(
i∂t − Ĥ(t)

)
Ψ(r, t) = 0,Ψ(r, 0) = φi(r), (2.46)(

i∂t − Ĥ(t)
)
χ(r, t) = i

(
χ(r, t)− ÔΨ(r, t)

)
δ(t− T ), (2.47)(

i∂t − Ĥ(t)
)
χ(r, t) = 0, (2.48)

χ(r, T ) = ÔΨ(r, T ). (2.49)

These equations can be transformed to the more comprehensible forms

ε(t) = −Im〈µΨ(t)|χ(t)〉
α

, (2.50)

i
∂

∂t
Ψ =

(
Ĥ0 − ε(t)µ

)
Ψ, (2.51)

Ψ(0) = Φ0 (2.52)

i
∂

∂t
χ =

(
Ĥ0 − ε(t)µ

)
χ, (2.53)

χ(T ) = ÔΨ(T ). (2.54)

Ψ is the solution of the initial value problem, called the forward solution, while χ is the
solution of the terminal value problem, called the backward solution.

The common way to solve the problem above is to split the time into a time grid and
approximate the solution taking the field to be piecewise constant, ε(ti) = ui, ti ∈ [0, T ].
Then we can iterate to find the optimal solution. For the first iteration we use an initial
guess for the control. After the propagation, calculate the yield, |〈Φt|ΨI(T )〉|2. There
are many different possible algorithms to implement and solve the equations above and
they all use a feedback cycle. The most common algorithm scheme is described below.
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2.4.1 Algorithm scheme

The standard way to solve the control equations (2.50),(2.51),(2.52),(2.53) and (2.54)
follows [42], which builds on [43]. In [44] a discussion on the convergence of the algorithm
can be found.

In the first step of the algorithm you solve the Schrödinger forward using an initial field
which we chose. A common choice is a constant field ε0(t) = C where C can be equal to
zero. However, it may be favourable to chose a field of considerable strength because if
the

∣∣∣∣∣∣ÔΨ(T )
∣∣∣∣∣∣ is too low, the optimization tends to get stuck.

step 0 : Ψ(0) ε(0)(t)−−−→ Ψ(0)(T )

After the forward iteration we can use equation (2.54) to find the final state for the
Lagrange multiplier, χ(0)(T ), and thus the starting point for the backward propagation.
The propagation from χ(0)(T ) to χ(0)(T − dt) is done with the field ε̄(0)(T ), where χ0(T )
and Ψ(0)(T ) are used in equation (2.50) to find it. The error the piecewise constant field
introduces is reduced by choosing sufficiently small timesteps. In the next step from
χ(0)(T − dt) to χ(0)(T − 2dt) the procedure is repeated, but instead with χ(0)(T − dt)
and Ψ(0)(T − dt) to calculate the new field value in equation (2.50). This proceeds until
we reach χ(0)(0). We either have to save the previous forward propagation or propagate
backward with the old field in parallel to have access to the Ψ0(t) solutions. The step
can be summarized as:

step k : ÔΨ(k)(T ) = χ(k)(T )
ε̄(k)(t)−−−→ χ(k)(0) (2.55)

The last part of the zeroth step consists of setting Ψ(1)(0) = φi and propagate Ψ(0)(0)
forward with the field ε(1)(t), determined by equation (2.50), where χ(0)(t) and Ψ(k+1)(t)
are used. Again we see that we either have to save the values of the backward propagation
or propagate in parallel forward from χ(0) to χ(T ) with the old field ε̄(k)(t). The step can
summarized as

φi = Ψ(k+1)(0)
ε(k+1)(t)−−−−−→ Ψ(k+1)(T ) (2.56)

After the forward propagation the yield is calculated using equation (2.38). If the yield is
high enough the optimization ends, if not the loop starts over again with equation (2.55).

The algorithm continues until it reaches an acceptable yield or a set number of iterations.
The whole scheme can be summarized as follows:

step 0: Ψ(0)(0)
ε(0)(t)−−−→ Ψ(0)(T )

step k: [Ψ(k)(T )
ε(k)(t)−−−→ Ψ(k)(0)]

ÔΨ(k)(T ) = χ(k)(T )
ε̄(k)(t)−−−→ χ(k)(0)

[χ(k)(0)
ε(k)(t)−−−→ χ(k)(T )]

φi = Ψ(k+1)(0)
ε(k+1)(t)−−−−−→ Ψ(k+1)(T ).
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The steps in the square brackets are the alternative parallel steps.

2.4.2 Laser field constraints

While there have been great advances in pulse shaping techniques, it is still not possible
to create completely arbitrary pulses. To obtain more realistic pulses there have been
developed restraints that can be applied to the laser pulse.

The most important factor that can be constrained are; limitation of the pulse energy,
finite rise time of the electric field, fixing the laser fluence to a given value, spectral con-
straints on the laser field, phase-only shaping and a combination of the above mentioned.

The most common, and the two we will use in this work, are the before mentioned penalty
factor and introducing an envelope by setting a time-dependence on α. Any additional
restrictions on the field must be incorporated in the algorithm and this can lead to some
problems. Some might not be general enough to be applicable in all situations, while
others have poor convergence or strong dependence on the initial pulse.

To constrain the fluence to a certain value E0, the functional J2 is altered to

J̃2 = −
∑
j=x,y

αj

[∫ T

0

dtε2j(t)− E0j

]
. (2.57)

Here αj is a time independent Lagrange multiplier. Instead of a specific value for this
multiplier, a set value is prescribed E0j . When we then do variation with respect to αj
we get the new equation,

∫ T

0

dtε2k(t) = E0k , k = x, y. (2.58)

This leads to the need formula for the Lagrange multiplier which is incorporated in the
algorithm and updated for each iteration

αk =

√∫ T
0
dt [Im〈χ(t)|µ̂k|Ψ(t)〉]2

E0k

, k = x, y. (2.59)

For the other filtering techniques a general filter is applied to the laser field for every
iteration.

εout,j(t) = G[εin,j(t)], j = x, y. (2.60)

In principle, the filter can be any operator, but here we mention the most common (with
j = x, y):

• Spectral filtering:
εout,j(t) = F−1[fj(ω)F [εin,j(t)]], (2.61)

where F indicates as Fourier-transform and fj(ω) is a frequency dependent function.
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• Filtering in the time domain:

εout,j(t) = hj(t)εin,j(t) (2.62)

with the time-dependent envelope hj(t).

• Filtering for the phase-only optimization:

εj(ω) = F [εin,j(t)],

εout,j(t) = F−1

[
Aj(ω)

εj(ω)

|εj(ω)|

]
. (2.63)

Where Aj(ω) is a given amplitude spectrum for the polarization j.

There exist other possible restrictions that can be allied and many are summarized in [35].
One promising example are piecewise constant control functions as demonstrated in [45].
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Chapter 3

One Dimensional Asymmetrical Well

3.1 Single transition

We will now apply the algorithm we learned about in Chapter 2 to optimize a transition.
We use the asymmetrical well discussed in Section 2.2.1 and shown in Figure 2.2. We
will optimize the transition from the state that is centred on the lowest well to the state
that is centred on the second well. From the previous chapter we have the basis and the
energy of the ten lowest sates as seen in 2.1. The coupling elements can be calculated
from equation (2.34). We assume that there is only an electric field (the laser) that affects
the system. This means that the coupling elements between the different electronic states
is calculated as

µ = 〈Ψi|X|Ψj〉 for i 6= j ∈ n (3.1)

This leads to the matrix of coupling elements in Table 3.1

Table 3.1: The Coupling matrix for the ten lowest state in the asymmetrical well.

1 2 3 4 5 6 7 8 9 10
1 - -0.3921 -0.6382 0.3865 0.1414 0.0568 -0.0173 -0.0060 0.0017 -0.0005
2 -0.3921 - -0.7037 -0.4630 0.2118 -0.0591 -0.0253 0.0060 0.00249 0.0005
3 -0.6382 -0.7037 - 1.7051 0.1593 0.2968 -0.0212 -0.0310 0.0021 -0.0027
4 0.3865 -0.4630 1.7051 - -1.7862 0.0157 0.2416 0.0002 0.0228 -0.0001
5 0.1414 -0.2118 0.1593 1.7862 - 1.9498 -0.0197 0.2253 -0.0030 0.0198
6 -0.0568 -0.0591 -0.2968 0.0157 1.9498 - 2.0607 -0.0130 0.2136 -0.0020
7 0.0173 -0.0253 0.0212 0.2416 -0.0197 2.0607 - 2.1566 -0.0119 0.2060
8 -0.0060 -0.0060 -0.0310 0.0002 0.2253 -0.0130 2.1566 - 2.2420 -0.0106
9 0.0017 -0.0024 0.0021 0.0228 -0.0030 0.2136 -0.0119 2.2420 - 2.3201
10 -0.0005 0.0005 -0.0027 -0.0001 0.0198 -0.0020 0.2060 -0.0106 2.3201 -

The initial state is set to be the state laying in the lowest well with the lowest energy;
φi = Ψ1, and the target state is set to be the first excited state which is laying in the
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second well; φt = Ψ2. The operator we want to maximize the expectation value of is
Ô = |φt〉〈φt|. For the initial propagation I have chosen a constant field, ε(t) = 0.01 and
for the following iterations there is a restriction on the form of the field that it has to
follow a sine-mask,

mask = sin(π · /T )2.

This will assure that the field will be zero at the start and the end. The other parameters
for the simulation is summarized in Table 3.2. We see the initial and target state in
Figure 3.1.

Figure 3.1: The two lowest energy states in the asymmetrical well with density distribu-
tion. The lowest state (with high population in the left well) is the initial state, φi, while
the second lowest state (with high population in the right well) is the target state, φt.

The result of the optimization is shown in Table 3.3 and Figure 3.2. We see that it is
very likely that we will be in the second well after the influence of the laser pulse. The
density distribution was 96.63% in state 2 and 3.37% in state 1. The populations in the
higher excited states were negligible.
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Figure 3.2: The final distribution between the states (dashed lines) and comparison to
the original state and complete transition (dotted lines). The populations in the higher
states were negligible.
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Table 3.2: The simulation parameters for the single transition optimization.

Simulation parameter Value
Basis size 10
Propagation time 2000 a.u.
Time step 0.05 a.u.
Initial field Constant with amplitude 0.01
Max iterations 100
Yield 0.999
Mask sin(π · t/T )2

Penalty factor 10

Table 3.3: Results of the single transition optimization.

Paramter Value
Yield 0.9663
Total functional 0.7789
Norm 1.0000
Final density in state 1 0.0337
Final density in state 2 0.9663

If we study the development of the yield in Figure 3.3 we notice that already after 10
iterations the increase in yield for each iteration is dramatically decreasing. After 20
iterations there is almost no change in the yield at all. The total functional (blue line)
which we want to maximize, optimize the yield and minimize the value of the field, follows
the same trend as the yield. This means that there are small changes in the field after
10 iterations as well.

The first and the final fields are shown in Figure 3.4.
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Figure 3.3: The development for the yield, in red, and the total functional, in blue, during
the run. The optimization went on for 100 iteration, but is cut here to 50 due to limited
increase after this point.

35



Figure 3.4: The initial guess for starting field in blue and the final optimized field in red.

From this optimization we see that we can quite effectively optimize single transitions,
but what is the story for multiple initial states?

3.2 Multiple initial states

As mentioned in the introduction of the thesis, one of the greatest challenges of the
AEGIS experiment is that we cannot control what state the antihydrogens will be in
when they are created. This means that we want to find a pulse that takes the system
to the correct final state independent of what the initial state is.

We want to test this by replicate the example from the previous section, but now optimize
the transition from both state 1 and state 3 to state 2. However the two optimizations
must be completely separated from each other. This is solved by extending the basis to
20 states, where 1 to 10 and 11 to 20 are identical. State 11 is the same as state 1, but
in the state 3 to state 2 transition etc.. It follows that there is a coupling between the
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10 first states and there is coupling between the 10 last states, but not between the two
groups. The structure of the coupling matrix will look like in Table 3.4

Table 3.4: Structure of the coupling matrix for 2 initial states.

1 2 ... 10 11 12 ... 20
1 -0.3921 ... -0.0005
2 -0.3921 ... 0.0005
... ... ... ...
10 -0.0005 0.0005 ...
11 -0.3921 ... -0.0005
12 -0.3921 ... 0.0005
... ... ... ...
20 -0.0005 0.0005 ...

Similarly the energies of the states will just be a duplication of the energy matrix of the
single optimization.

The parameters for the simulation is summarized in Table 3.5 while the main results are
summarized in Table 3.6. The final distribution of the density in the states is shown in
Figure 3.5

Table 3.5: Simulation parameters for 2 initial states optimization.

Simulation parameter Value
Basis size 20
Propagation time 2000
Time step 0.05
Initial field Constant with amplitude 0.01
Max iterations 25
Yield 0.999
Mask sin(π · t/T )2

Penalty factor 20

Table 3.6: Result of the 2 initial state optimization.

Parameters Value
Final yield 0.4522
Final functional 0.3104
Norm 1.0000
Final density in state 2 0.1521
Final density in state 12 0.3147
Final density in state 1 0.3458
Final density in state 13 0.0358
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Figure 3.5: The density distribution between the twenty (really ten) states after 25
iterations.

Since the wavefunction is normalized, the maximum possible density in each of the two
target states (2 and 12) is 0.5. This means that in reality the probability for each of
the states being in the target state is twice of what is listed here. However the average
probability of the electron being in the correct state is the sum of the two probabilities
listed here. Thus if we have an even distribution of electrons in state 1 and 3 the field
would take a random particle to the second state with a probability of 46.68%.

The interesting, but disappointing, fact is that this is no better then the single optimiza-
tion. In the single transition the likelihood of finding the particle in the second well after
the laser interaction is 96.63%. If half of the atoms is in the first state and half is in the
third state then the average probability of a random particle to be in the second state is
0.9663 · 0.5 = 0.48315. Hence it is better to just optimize the 1 to 2 transition and not
bother about the third state.

It should be pointed out that the optimization for the single transition went on for 100
iterations while this last one only was 25. However from looking at the development
in figure 3.6 and figure 3.7 we see that already after 10 iterations the optimization has
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Figure 3.6: The development of the populations in the starting states and the target
states. Target state 2 is blue while the initial state 1 is the blue stapled line. Similarly
the red line is the target state 12(2), and the red stapled line is the initial state 13(3).
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Figure 3.7: The development of the yield(red) and total functional(blue) for the two
initial states optimization.

reached its peak so the difference is minimal. The penalty factor is also higher for this
optimization, so all things considered, the two options are not very different. The final
field for this optimization is shown in Figure 3.8.
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Figure 3.8: The optimal field for the transitions 1-2 and 3-2 found after 25 iterations.

From the previous exercise we concluded that a field optimization for two transitions is
not better than focusing on just one of the transitions. This prompts the idea of a signal
that consists of a train of two pulses, first the pulse for the 1 to 2 transition and then a
pulse for the 3 to 2 transition. First we find the optimal pulse for the 3 to 2 transitions.
This is done using the same simulation parameters as for the 1-2 optimization, listed in
Table 3.2. The only difference is that now the initial state is the third state. The result
of the optimization is shown in Table 3.7.

Table 3.7: The result of the 3 to 2 optimization.

Paramter Value
Final yield 0.9813
Final Total functional 0.9071
Norm 1.0000
Final density in state 3 0.0187
Final density in state 2 0.9813
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We see that the optimization for the 3 to 2 transition is even better than the first transition
using the exact same run parameters. The field found is shown in Figure 3.9.

Figure 3.9: The optimized field for the 3 to 2 transition.

By creating a sequence of the two single transition optimization pulses, we get the pulse
train shown in Figure 3.10. Hence, we have an initial field predefined by us lasting for
4000 atomic units of time. The field can then be used in the algorithm were the initial
state is both the first state (1) and the third state (13).
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Figure 3.10: The string of pulses that first optimizes the 1 to 2 transition followed by the
3 to 2 optimization.

The results are shown in Table 3.8 and Figure 3.11. Notice first that the experiment does
not yield the desired result. Combining two successful pulses is not any better than the
single pulse. From the columns in Figure 3.11 we find that the second pulse has worked
as designed. The population that was originally situated in state 13 (3) has been almost
completely transferred to state 12 (2). However, we can also see that the first part of the
optimization did not worked as intended. The population that was originally situated in
state 1 has been mostly transferred to the third state, while the goal was to populate the
second state. The conclusion is that while the first pulse probably took the density from
the first state to the second state, the second pulse probably both transferred the density
in state 13 to 12 and the density in state 2 to state 3.
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Table 3.8: The result after the puls train simulation.

Parameter Value
Yield 0.2525
Total functional -0.0065
Norm 1.0000
Density in state 1 0.0186
Density in state 2 0.0090
Density in state 3 0.4724
Density in state 11 0.0000
Density in state 12 0.4889
Density in state 13 0.0093

Figure 3.11: The distribution of the population after the pulsetrain has affected the
system
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3.3 Summary

The conclusion of this Chapter is that neither of the possible setups are optimal for
multiple initial states. It seems that every solution is stuck in a distribution that is close
to a 50% probability of finding the particle in the correct state. While it seems certain
that the pulse train that the optimization for 3 to 2 also optimizes the 2 to 3 transition
it is less conclusive for the single pulse. However, the field looks more complicated and
it is reasonable to believe that the problem also is prominent here, but the field secures
a more even distribution between the states. A thing worth noting is that more initial
states probably will lead to more complicated pulse shapes, which is an experimental
limiting factor. In the next chapter we will look more into what factors that affects how
successful an optimization is.
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Chapter 4

Two Dimensional Hydrogen Atom

From the asymmetrical well, we move on to the two dimensional (2D) Coulomb problem.
This chapter explains and portrays some of the aspects that we also will encounter in
the three dimensional hydrogen atom, but here we can address them in a simple setting.
The derivation of the wavefunction is found in [30] and [46]

4.1 Polar coordinates and separation of variables

For the 2D hydrogen atom, the electron is only located in the xy-plane at a distance
from the core in the center. The potential energy in the Hamilton will be equal to the
Coulomb potential

V (r) = −1

r
, (4.1)

while the kinetic term only is considered for the electron,

− 1

2
∇2 = −1

2

(
∂2

∂x2
+

∂2

∂y2

)
. (4.2)

To simplify our Hamilton we use polar coordinates to transform the Laplace operator

x = r sinφ, (4.3)
y = r cosφ.

The inverse transformation is

r =
√
x2 + y2, r ∈ [0,∞), (4.4)

φ = tan−1 x

y
, φ ∈ [0, 2π].
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the derivatives now turns to

∂

∂x
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ
, (4.5)

∂

∂y
= cosφ

∂

∂r
− sinφ

r

∂

∂φ
.

By algebraic transformation we find the Laplace operator given in the new coordinates

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
. (4.6)

The general time-independent Schrödinger eqation is expressed in polar coordinates as(
−1

2
∇2 + V

)
Ψ(r) = −1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
Ψ(r) + V (r)Ψ(r) = EΨ(r). (4.7)

The 2-dimensional squared angular momentum is identified as

L̂2
2D = − ∂2

∂φ2
. (4.8)

We now introduce the Coulomb potential from equation (4.1) to the Schrödinger equation,

− 1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
+

2

r

)
Ψ(r) = EΨ(r). (4.9)

This equation can be solved by separation of variables. We write the wavefunction as a
product of a radial part and a angular part. This yields,

Ψ(r) = R(r)Φ(φ). (4.10)

By examining equation (4.9), we see that it is possible to separate the equation in to two
parts dependent on each own variable. These two parts must be equal to a constant,

r2

R(r)

(
∂2

∂r2
+

1

r

∂

∂r
+

2

r
+ 2E

)
R(r) = − 1

Φ(φ)

∂2

∂φ2
Φ(phi) = m2. (4.11)

Thus we have two equations that can be solved separately. The angular part has the
solution,

Φ(φ) =
1√
2π
eimφ. (4.12)

The angular function has to fulfill the requirement to be similar after a full rotation to
be physical viable. This can be expressed as
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eimφ = eim(φ+2π). (4.13)

This holds true when m is an integer: m = 0,±1,±2, ....

The radial equation which is on the form

− 1

2

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
R(r) = ER(r), (4.14)

is solved by introducing an auxiliary function u(r) which has the relation R(r) = r−
1
2u(r).

By substituting for R(r) and differentiating, we get the following equation for u(r),

− 1

2

(
∂2

∂r2
+

2

r
−
m2 − 1

4

r2

)
u(r) = Eu(r). (4.15)

To simplify, the dimensionless coordinate, ρ, is introduced with the relation

ρ = 2εr, (4.16)

where

E = −1

2
ε2. (4.17)

By using this in equation (4.15) we get

(
∂2

∂ρ2
+

1

ερ
−
m2 − 1

4

ρ2
− 1

4

)
u(ρ) = 0. (4.18)

When ρ goes to infinity the only surviving terms of equation are

∂2u(ρ)

∂ρ2
≈ 1

4
u(ρ). (4.19)

This has the solutions e±ρ/2. We need a solution that does not goes toward infinity,
namely e−ρ/2. From this we will try solutions on the form u(ρ) = e−ρ/2ν(ρ). Inserting
this into equation (4.18) and differentiating we get,

(
∂2

∂ρ2
− ∂

∂ρ
+

1

ερ
−
m2 − 1

4

ρ2

)
ν(ρ) = 0. (4.20)

We solve by doing a series expansion of ν(ρ). Omitting details, the solution is
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ν(ρ) =
∞∑
j=0

ao
|m|+ j − n
j(2|m|+ j)

ρ|m|+
1
2

+j, (4.21)

where a0 is the normalization constant. To simplify the equation, n = 1
ε

+ 1
2
has been

introduced.

The problem with this solution is that it diverges for ρ > 1. To avoid this, it is required
that the series terminates after a finite numbers of terms, while keeping at least one. This
is achieved if n = |m|+ nr, nr = 1, 2.... We see that |m| < n.

Finally the total radial solution become; R(ρ) = r−
1
2 e−

ρ
2 ν(ρ),

Rn,m(ρ) = e−
ρ
2

N(n)∑
j=0

a0
|m|+ j − n
j(2|m|+ j)

ρ|m|+j, (4.22)

with quantum numbers n = 1, 2, 3, ... and |m| = 0, 1, 2, ..., n − 1. By this definition of n
and equation (4.17) we find an expression for the energy

En = −1

2
ε2 = − 1

2(n− 1
2
)2
. (4.23)

However we will not use the power series solution, but instead realise that equation (4.15)
is the Whittaker’s equation [47]. The solutions are in form of Whittaker functions,

u(ρ) = e−
ρ
2ρ|m|+

1
2M

(
|m| − 1

ε
+

1

2
, 2|m|+ 1, ρ

)
. (4.24)

Since n = 1
ε

+ 1
2
, the first part of the argument is always less or equal to zero. The Whit-

taker’s functions can then be written in terms of the associated Laguerre polynomials,

M(|m| − n+ 1, 2|m|+ 1, ρ) = CL
2|m|
n−|m|−1(ρ). (4.25)

The radial function R(ρ) = r−
−1
2 u(ρ), becomes

Rn|m|(ρ) = Nn|m|e
− ρ

2ρ|m|L
2|m|
n−|m|−1, (4.26)

where Nn|m| is the normalization constant.

We write the total wavefunction to the Coloumb potential as a product of the angular
solution and the radial solution

Ψn,m(r) = Nn|m|e
− ρ

2ρ|m|L
2|m|
n−|m|−1

1√
2π
eimφ, (4.27)
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with energylevels

En = − 1

2(n− 1
2
)2
. (4.28)

We realize that m does not affect the energy levels which is comparable to the 3-
dimensional hydrogen atom, where different l-quantum numbers does not affect the en-
ergy. This is because all the potential is only dependent on the distance between the
electron and the core. The resulting eigenstates are all symmetrical and the angle is not
affecting the potential at all.

4.2 Optimization example for n=5

We apply the solutions from the previous discussion, to an physical example where we
will do a transition optimization.

We choose a hydrogen atom with only the n = 5 level available. In a real hydrogen atom
there would be other energy levels available that would also been affected by the electric
field. However if we restrict the pulse fluency, the Stark effect has less impact and the
n-levels would not be mixed. So by restricting the field we can assume that electrons in
the n=5 level will stay there and we diminish there error of excluding other energy-levels.

With n = 5, we have m = −4, ..., 0, ...4 giving a total of 9 basis functions. From equation
(4.28) we have that the energy levels are degenerated with value E = −0.0247. The
quantum numbers and energy of the system is summarized in Table B.1 in Appendix A.

We use equation (4.26) to calculate the radial wavefunction for our basis. We set the
maximum radius for where we calculate the wavefunction to 75a.u. Outside this radius
the wavefunction is set to zero. The radial distribution is shown in Figure 4.1.
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Figure 4.1: The radial distribution functions for the different quantum numbers, n=5
and |m|=0,...,4.

Since the radial distribution only takes the absolute value of the m-quantum number,
the radial distribution will be equal for the same integer. It is also worth noting that the
radial distribution follow the rule of n−m− 1 nodal planes, as in the figure |m| = 4 (in
blue) has no radial nodes. We see that the radial functions dies before reaching 75 so this
is an acceptable cut off distance. Finally we add the angular part of the solution, which
is described in equation 4.12.

By including the angular parts we have the complete wave functions. In Figure 4.2 the
real parts of the wavefunctions are shown for the different m-values.
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Figure 4.2: The real part of the basis wavefuntions for n=5 and m=-4,...0,...,4.

We notice that the real part of the total wavefunction is identical for wavefunctions with
the same absolute value of the angular quantum number. This can be explained by the
form of the angular solution, which can be rewritten as

e−imφ = cos(mφ)− i sin(mφ). (4.29)

The real part only depends on the cosine and its value is not dependent on the sign of
m. Correspondingly the imaginary part will have opposite values for wavefunction with
the same |m|. From Figure 4.2 we can also identify the angular nodes, and notice that
they follow the relation of |m| = number of angular nodes
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The rules for nodes are

Total nodes = n− 1

Angular nodes = m

Radial nodes = n−m− 1 (4.30)

Because of the nodes and the different signs of the wavefunctions for the real and imag-
inary parts, the correct combinations of the two can form polarized states in a selected
direction. From a basis of k states, we can create k new linearly independent combinations
of the states. The resulting polarized states are shown in Figure 4.3.

Figure 4.3: This figure shows the polarized states that occur when the n = 5-states are
affected by an y-polarized electric field.
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The most polarized states are states 1 and 9, so the goal is to optimize population in one
of these.

First we calculate the coupling elements. Different from the asymmetrical well, here there
are only transitions from state m to m ± 1. The result is that it will be harder to do
a successful optimization. The coupling matrix is as shown in Table B.2 in Appendix
A. We choose to set our target as the 9th state in Figure 4.3. This state has the linear
combination shown in Table 4.1 and a polarization value of y= 26.9748.

Table 4.1: The values of the development coefficients c1...c9 for the polarized state shown
in frame 9 in 4.3.

Basis state Development coefficient value
Ψ1 0.0625
Ψ2 0 + 0.1768i
Ψ3 −0.3307
Ψ4 0− 0.4677i
Ψ5 0.5229
Ψ6 0 + 0.4677i
Ψ7 −0.3307
Ψ8 0− 0.1768i
Ψ9 0.0625

We will now try to optimize a transition from all the available states to the the target
state. The matrices are set up similarly like the one in the multi-initial asymmetrical well
example, but now we will start in all 9 available basis states. The coupling matrix will
thus be a nine times replica of the one in Table B.2 and the energies will be multiplied
similarly.

The simulation parameters are as listed in Table 4.2

Table 4.2: The simulation parameters for the optimization from all available initial states
to the most polarized state.

Simulation parameter Value
Basis size 81
Propagation time 5000
Time step 0.05
Initial field Constant with amplitude 0.05
Max iterations 50
Yield 0.999
Mask sin(π · t/T )2

Penalty factor 5

The results are unfortunately not very promising. The development of the yield and the
total functional are shown in Figure 4.4.
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Figure 4.4: The development of the yield in blue and the total functional in red for the
50 step optimization.

We notice that while the functional is still increasing slowly after 50 iterations, implying
a successful optimization, the yield already reached it’s peak after 14 iterations at 0.1101.
After 14 iterations the increase in the total functional stems from an reduction in the
flux that outweighs the reduction in yield. This is quite revealing as the penalty factor
is only set to 5, which should favour a yield maximization rather than a field reduction.

This first observation tied with that the yield limit is almost exactly 1/9, means that we
again reach this seemingly theoretical boundary of maximum 1

initial states yield for multi-
initial optimization. It looks like it is impossible to increase the yield beyond this point
and any further probing will only lead to less fluence. The yield indicates that one of the
9 starting states should have reached the state after the 50 iterations. In Figure 4.5 the
final state for all of the initial states are plotted.
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Figure 4.5: The final states for all the initial states in the 2D n=5 optimization.

The result of the optimization is that we end in all the available polarized states instead of
just in the 9th state. Only the particle that originated from the Ψm=4 state is transferred
to the desired polarized state. If we take a closer look at the density distribution for
each of the starting states in Figure 4.6 we realize that the result of the optimization for
states with the same |m|-value are exact mirrors of each other, while the m = 0 state is
completely symmetrical.
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Figure 4.6: The density distribution after the 50 iterations for each of the 9 starting basis
states.

To understand this we study the system parameters in Tables B.2 and B.1. Firstly the
energies are degenerated, there is no difference between the states and thus it cannot be
used to differentiate the effect of the laser pulse on the different states. Secondly the
coupling values are also mirrored of each other. The coupling from the Ψm=−4 to Ψm=−3

is equal to the coupling between Ψm=4 and Ψm=3 and this is true for all the couplings.
The result is that the field that tries to take an electron starting in Ψm=4 to the linear
combination in Table 4.1 will simultaneously take the electron starting in the Ψm=−4 to
the direct opposite values leading to the state with opposite polarization.

4.3 Comparison of individual and joint optimization
for initial state in Ψn=5,m=−4 and Ψn=5,m=4

By comparing a single optimizations for two states and then look at a combined opti-
mization we will solidify the result we found in the previous Section. By starting in Ψ1
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Table 4.3: The simulation parameters for the optimization for the transitions from|m| = 4
to the most polarized state.

Simulation parameter Value
Basis size 9
Propagation time 200
Time step 0.05
Initial field Constant with amplitude 0.05
Max iterations 50
Yield 0.999
Mask sin(π · t/T )2

Penalty factor 5

Table 4.4: The result of the optimization from basis state 1 to the polarized state.

Parameter Value
Yield 0.9525
Total functional 0.8302
Norm 1.0000

and then in Ψ9 and using the simulation parameters summarized in Table 4.3 we get the
results in Tables 4.4 and 4.5, and as shown in Figures 4.7 and 4.8.

Table 4.5: The result of the optimization from basis state 9 to the polarized state.

Parameter Value
Yield 0.9971
Total functional 0.9883
Norm 1.0000
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Figure 4.7: The density distribution for the two different initial states after each indi-
vidual optimization. The distribution for start in basis state 1 and 9, from left to right
respectively.

Figure 4.8: The final polarized state for the two different initial states after each individual
optimization. The polarized state from start in basis state 1 and 9 from left to right
respectively.

We see that both optimizations are successful with high yields and a final states very
similar to our desired target. Individually it is possible to optimize transitions from both
Ψ1 and Ψ9. However, if we try to do the optimization for both state at the same time
with otherwise identical simulation parameters, the result changes as seen in Figures 4.9
and 4.10.
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Figure 4.9: The density distribution for the two different initial states after the joint opti-
mization. The distribution for start oin basis state 1 and 9, from left to right respectively.

Figure 4.10: The final polarized state for the two different initial states after the joint
optimization.The polarized state from start in basis state 1 and 9 is to the left and right
respectively.

From the density distribution in Figure 4.9 we see that it is symmetrical for the two
states, which results in the two opposite polarizations, shown in Figure 4.10. It is clear
that the symmetry of the hydrogen atom is a limiting factor in our goal to optimize
multi-initial systems. While it may be possible to optimize a transitions for a any single
of the basis states, it is not possible if you start in two states with opposite angular
quantum number. The final results are summarized in Table 4.6. In this optimization
we normalized each initial state to 1, so the maximum yield for each of the states is 1.
This explain why the yield is as high as it is in Table 4.6 which is almost the same yield
as the for the single optimization from Ψ1 to the target state. It is interesting that the
optimization optimized this transition instead of the transition from Ψ9 which yielded a
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slightly better result. This may be a result from our initial guess for the field which gets
the optimization stuck in this solution.

A special case is that a start in an initial state with m=0 will not be successfully trans-
ferred to the targeted polarization state even in a single optimization. From the coupling
values in Table B.2 we see that every value is mirrored across the m=0 state. So any
attempt to push the particle from its initial state to a target state would at the same
time push it equally to the opposite target state. Thus a polarized state is not possible
to achieve from the m=0 state in this situation.

Table 4.6: The result of the optimization from basis states 1 and 9 to the polarized state.

Parameter Value
Yield 0.9526
Total functional 0.8304
Norm 2.0000

4.4 Summary

In this chapter we have found the wavefunctions for the two dimensional hydrogen atom
and seen how we can combine them to get polarized states. We have also tried to optimize
the population in the the most polarized state in positive y-direction, but is finding some
problems.

We still encounters the problem of limitation on the yield due to multiple-initial states,
and it does not seem like there is any obvious solution to this problem. However in this
chapter we have also seen that the geometry of he hydrogen atom can be an obstacle.
Due to degenerated energy-states and coupling values that are mirror of each other, it is
impossible to do an optimization on states that starts in opposite initial states.

In a real hydrogen there will be other n-levels available, however the inclusion of these
will not improve the result. There will be more allowed transitions, but the coupling
values will still be symmetrical across the different levels.

To try to counter this problem we need something to break the symmetry, which will
make it possible for the field to distinguish specific transitions. We will take this into
account when we continue to the three dimensional hydrogen atom in the next Chapter.
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Chapter 5

Three Dimensional Hydrogen in
Magnetic Field

Wemove on from our description of the 2-dimensional hydrogen atom, to the 3-dimensional
problem. We will now solve the time-independent Schrödinger equation for the coulomb
problem in three dimension which is described in detail in [30].

5.1 The three-dimensional Coulomb problem

As in the 2-dimensional problem, wedo a transformation on the coordinates, Cartesian
to spherical coordinates. The transformation is

x = r sin θ sinφ, (5.1)
y = r sin θ cosφ,

z = r cos θ.

The inverse transformations are

r2. =
√
x2 + y2 + z2, 0 ≤ θ ≤ π, (5.2)

φ = tan−1(
x

), 0 ≤ φ ≤ 2π,

θ = tan−1

(√
x2 + y2

z

)
.

Through transformation we get the following Laplace operator,

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (5.3)
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The last part is identified as the the squared angular momentum operator

L̂2 = −
(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (5.4)

The time-independent Schrödinger equation becomes

− 1

2

(
∂2

∂r2
+

2

r

∂

∂r
− L̂2

r2

)
ψ(~r) + V (~r)ψ(~r) = Eψ(~r). (5.5)

If the potential in equation (5.5) is only dependent on the distance (V (~r) = V (r)), we
can separate the variables as in the two dimensional case by stating that ψ(r, θ, φ) =
R(r)Y (θ, φ). We can then solve the two eigenvalue problems, one for the angular part

L̂2Y (θ, φ) = l(l + 1)Y (θ, φ), (5.6)

and one for the radial part,

[
−1

2

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
+ V (r)

]
R(r) = ER(r). (5.7)

5.1.1 Angular Solutions

The angular momentum components are defined as follows

L̂x = z
∂

∂y
− y ∂

∂z
, L̂y = x

∂

∂z
− z ∂

∂y
.L̂z = y

∂

∂z
− x ∂

∂y
. (5.8)

By transforming them to spherical coordinates and add the squares of hem together we
find that

L̂2 = L̂2
x + L̂2

y + L̂2
z, (5.9)

L̂z = −i ∂
∂φ
. (5.10)

Notice that L̂2 commutes with all of its components, [L̂2, L̂i] = 0, i = x, y, z, but the
components do not commute with each other. This means that we simultaneously can find
eigenfunctions to both L̂z and L̂2. We do a new variable separation, Y (θ, φ) = Θ(θ)Φm(φ).
The eigenvalue equation for L̂z is

L̂zΦ(φ) = mΦ(φ)⇒ Φm(φ) = eimφ. (5.11)

64



As in the the 2D case the condition Φm(0) = Φm(2π) states that m must be an integer
or zero. The eigenvalue equation for Θ(θ) becomes

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

m2

sin2 θ

)
θ(θ) = l(l + 1)Θ(θ). (5.12)

Substituting ζ = cos(θ) we get the following equation[
(1− ζ2)

∂2

∂ζ2
− 2ζ

∂

∂ζ
+ l(l + 1)− m2

1− ζ2

]
Pm
l (ζ) = 0. (5.13)

We suppose Pl(ζ) solves the equation for m = 0

[
(1− ζ2)

∂

∂ζ2
− 2ζ

∂

∂ζ
+ l(l + 1)

]
Pl(ζ) = 0 (5.14)

Differentiating the above equation |m| times gives

[
(1− ζ2)

∂2

∂ζ2
− 2ζ

∂

∂ζ
+ l(l + 1)− m2

1− ζ2

]
(1− ζ2)

|m|
2
d|m|Pl(ζ)

∂ζ |m|
= 0, (5.15)

From which it follows that

P
|m|
l (ζ) = (1− ζ2)

|m|
2

∂|m|Pl(ζ)

∂ζ |m|
(5.16)

are solutions of Equation 5.13 for m = 0,±1,±2, .... m appears as m2 in the equation and
therefore negative m are included. Pl(ζ) are the Legendre polynomials, for l = 0, 1, ...,
and Pm

l are the associated Legendre polynomials which are known as seen in [30]. The
Legendre polynomial Pl(ζ) is a polynomial of degree l, thus Pm

l (ζ) is nonzero only when
|m| ≤ l.

5.1.2 Radial solutions

Following [30] we find the radial 3D solution.

[
−1

2

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
+ V (r)− E

]
R(r) = 0. (5.17)

Again we introduce an auxiliary function, u(r) = rR(r) together with

ρ = 2εr (5.18)

E = −ε
2

2
,
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and rewrite equation (5.17) as

(
∂2

∂ρ2
− l(l + 1)

r2
+

1

ερ
− 1

4

)
u(ρ) = 0 (5.19)

When ρ→∞ equation (5.19) reduces to

∂2u(ρ)

∂∂ρ2
' 1

4
u(ρ). (5.20)

Here the non-divergent solution is e−
ρ
2 . When ρ→ 0, the term l(l+1)

2ρ2
is dominant and we

get

∂2u(ρ)

∂ρ2
' l(l + 1)

ρ2
u(ρ). (5.21)

The non-singular solution is ρl+1.

Based on these results we try with the product solution

u(ρ) = Nnle−ρ/2ρl+1h(ρ), (5.22)

giving the final equation

ρ
∂2h

∂ρ2
+ (2l + 2− ρ)

∂h

∂ρ
+

(
1

ε
− 1− l

)
h = 0. (5.23)

This equation can identified with the associated Laguerre differential equation,

x
∂2h

∂ρ2
+ (ν + 1− x)

∂y

∂x
+ λy = 0. (5.24)

with ν = 2l + 1 and λ = 1
ε
− 1 − l. The above equation has solution in terms of the

associated Laguerre polynomials, L(ν)
λ (ρ),

L
(ν)
λ (rho) =

λ∑
i=0

(−1)i
(λ+ ν)!

(λ− i)!(ν + i)!i!
ρi, (5.25)

with λ = 1
ε
− 1− l = 0, 1, 2, .... The associated Laguerre polynomials is of order λ. From

the solution we obtain the recursion relation for the coefficients in the series above

ai+1 =
λ− i

(i+ 1)(ν + i+ 1)
ai. (5.26)
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The polynomial solution arises from attempting the infinite power series solution
∑∞

i=0 aip
i.

The resulting series will not converge for all ρ and should be terminated after a finite
number of terms. From the recursion relation we see that this requires λ = 0, 1, 2, ... and
we obtain the associated Laguerre polynomials.

Furthermore we define the principal quantum number to be

n =
1

ε
, (5.27)

and from the expression for λ it is seen that

n = 1, 2, 3, ... (5.28)
l ≤ n− 1.

The bound state energy can be solves for using the definitions E = −1
2
ε2, λ = 1

ε
− 1 − l

and lastly n = 1
ε
, which gives

En = − 1

2n2
, n = 1, 2, 3, ... (5.29)

In total this gives

Rnl(ρ) = Nnle−ρ/2ρlL(2l+1)
n−l−1(ρ), (5.30)

with normalisation constant

Nnl = (
2

n
)3/2 ×

[
(n− l − 1)!

2n(n+ l)!

]1/2

. (5.31)

In total we have no found an expression for the solutions to the 3D Coulomb problem.

5.2 Matrix elements for hydrogen in a magnetic field

The problem we experienced in the 2D case was connected to the symmetry of the poten-
tial. The degenerated energies of the atomic states as the symmetric coupling elements
made it impossible for a field to optimize selected transitions. In the 3D case we still
have a highly symmetric potential and the same problems would naturally occur here as
well.

However in the AEGIS project the antihydrogen atoms are stabilized in a strong magnetic
field and this leads to a splitting in the energy called the Zeeman effect.

The Hamilton operator for a particle in an electric and magnetic field included the
quadratic term is as follows,
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Ĥ = H0 + r ·E(t) +
L̂zBz(t)

2
+
B2
z

8
(x2 + y2). (5.32)

The energy of the unperturbed Hamilton operator to the hydrogen atom is calculated
from equation (5.29). We have already found that the eigenvalues from the L̂z operator
is m, so the change to energy from the first magnetic interaction becomes

∆E =
m

2
B, (m = −l,−l + 1, ..., l − 1, l). (5.33)

For the last part of the Hamiltonian we need to do calculation over r2 sin2 θ and for
any interaction with the electric field we need to do another calculation over one of the
coordinates (x,y,z). These calculations are done by using the work laid out in [48].

〈n2l2|rk|n1l1〉 = 2l1+l2+2bk(n2−n1)n2−l2−1

(n1+n2)n2+l1+k+2 nl2+k+1
1 nl1+k+1

2[
(n1−l1−1)!(n2−l2−1)!

(n1+l1)!(n2+l2)!

] 1
2 ∑n1−l1−1

q=0

∑n2−l2−1
m=0

(−1)q2q+mnm1 n
q
2

q!(n1+n1)q(n1−n2)m(
n1+l1

n1−l1−1−q

)(
n2+l2

2l2+1+m

)(
l1−l2+k+1+q

m

)
(l1 + l2 + k + 2 + q)! (5.34)

5.3 Optimization of hydrogen atom polarization in mag-
netic field

Our goal is to optimize the population in a set target state. While it has not been a
success in our previous attempts, this time a magnetic field is introduced and that will
skew the energy levels assuring a non-degenerated system.

We start this optimization with a hydrogen atom with the n = 3 level available. This
gives (from our previous equations) the angular quantum numbers l = 2, 1, 0 and magnetic
quantum numbersm = −l, ..., 0, .., l, in total nine possible states. Undisturbed these basis
states will be degenerated as in the 2D case, with the energy E = −0.0556. To change
this we apply a magnetic field in the z-direction. We see from the new Hamiltonian,
equation (5.32), that the Zeeman effect is proportional to the magnitude of the magnetic
field. Using equation (5.34) the new energy levels can be calculated. For our system the
splitting effect is shown in Figure 5.1.
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Figure 5.1: The energy splitting effect for increasing magnetic field strength for our n=3
level system.

As intended the energy levels are no longer degenerated and we get nine distinct states. It
is also promising that the energy differences between the states aren’t the same something
that was found favourable in [41]. We continue our problem with the states obtained when
a constant magnetic field of 1T, is applied. 1T is a strong magnetic field, but it ensures
a greater separation between the states and more distinct pulses for each transition. The
energies of the new basis states are summarized in Table B.5 in Appendix A. We choose
to optimize the Z-polarization, meaning that we need to calculate the coupling values for
the new states over Z, or r sin θ. Again we use equation (5.34) to calculate the coupling
elements, shown in Table B.5. From this matrix we obtain the most polarized state in
positive Z-direction which we set to be the target state. The Z-value for this state is 9.0
and the development coefficients for the state is shown in Table 5.1.

We notice that the target state only contains the basis states 4, 5 and 6. Combining
this with the fact that the only coupling to these states are among themselves, we realise
that it is impossible to reach this state from all the initial states. We lay this problem at
rest for the moment and do an optimization from all of the available initial states. The
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Table 5.1: The values of the development coefficients c1...c9 for the most polarized state
in the positive z-direction.

Basis states Development coefficient values
Ψ1 0.0000
Ψ2 0.0000
Ψ3 0.0000
Ψ4 0.6514
Ψ5 0.7071
Ψ6 −0.2752
Ψ7 0.0000
Ψ8 0.0000
Ψ9 0.0000

simulation parameters are shown in Table 5.2 while the initial pulse is shown in Figure
5.2.

Table 5.2: The simulation parameters for the 3-level optimisation with common target
state.

Simulation parameters Values
Basis size 81
Propagation time 2000
Time step 0.05
Initial field 0.01 cos(0.05t) ·mask
Max iterations 50
Yield 8.999
Mask mask = sin(π · t/T )2

Penalty factor 75
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Figure 5.2: The initial testing field.

The results of the optimization are shown in Figure 5.3 and Table 5.3, while the the final
optimized field is shown in Figure 5.4.

Table 5.3: The result of the optimization from all the magnetic basis states to the polar-
ized target state.

Parameter Value
Yield 1.0000
Total functional -1.5167
Norm 9.0000
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Figure 5.3: The development for the yield (in blue) and the total functional (red) for the
two initial optimization.

We notice that the optimization is successful with an increasing functional, however we
also note that this is not the merit of the yield. From the start the change in the yield is
microscopic and we can conclude that the breaking of the symmetry has not cured all of
the problems.

It was expected that the yield would be hampered by the fact that some of the states did
not couple to the target state. However the particles that started in the states 4, 5 and
6 should be able to reach the desired polarization. When we look at the field we see that
only minor changes have happened and we expect that there has been almost no change
in the density distribution from the start.
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Figure 5.4: The final z-polarized field found in the optimization.

As the symmetry is not longer present there must be another reason for this 1/initial states
barrier that blocks our progress. If we go back to the asymmetrical well we remember
that we did not achieve the desired outcome that time either, and we suspected that the
reason was that the field that optimizes the transition from the initial position to the
target position also optimizes the opposite transition. When we want to go from state 4
to the target distribution among states 4,5 and 6, the field will also move the population
in initial states 5 and 6 to the opposite distribution. The result is that instead of finding
the polarized state the states stay more or less as before.

5.4 Target level optimization

We return to the problem we had with the initial states. As explained most of the initial
states had no possibility to reach the target state. However, the particles in these states
will not necessarily stay motionless in the field, but will enter new electronic states as
the field changes their Hamiltonian as well. We do not know if this state is polarized in
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a desired direction. A possible solution is to find additional target states for these initial
states.

However if we optimize transition from all possible magnetic basic states in the n = 3 level
to a possible target state polarized in the correct direction, we encounter a new problem.
From the nine available magnetic states we can create nine new polarized states, where
three are polarized in the positive z-direction, three in the negative and three are not
polarized at all (Table B.6 in appendix A). If we want to do an optimization from each
initial state, we have two choices with two different undesired results. Either we choose
an individual target state for each initial state, which will lead to a net polarization of
zero. Else we give a common target state for some of the initial states which will again
result in our earlier problems with a common target state.

The essential problem is that we have too few available target states and our solution is
to introduce more of them. In the 2D study inclusion of a second n-level would because of
symmetry not improve our results. Here however, we have managed to lose the symmetry
and this is also true for higher n-levels as we see in Figure 5.5 and in Tables B.7 and B.8
in Appendix A.

Figure 5.5: The splitting of the energies for the n = 3 and n = 4 level states.
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For the level with principle quantum number n = 4 we get the possible angular quantum
numbers l = 3, 2, 1 and magnetic quantum numbersml = −l, .., l, in total 16 states. From
them we get 16 new non-degenerated magnetic states which again can be combined to
16 polarized states of which 10 are polarized in the positive z-direction or not polarized
at all as seen in Table B.9. This means that by studying the coupling matrix and the
polarized states we can identify an unique target state with positive or zero polarization
for each of the nine available initial states. These states are shown in Table 5.4 where
the position is marking which initial state it is target for.

Table 5.4: The target states for each of the nine initial states. The first column is the
target state for the first initial state etc.

Basis States Development coefficient
Ψ10 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Ψ11 −0.7071 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ψ12 0.0 −0.6102 −0.5052 0.0 0.0 0.0 0.0 0.0 0.0
Ψ13 0.0013 0.0 0.0 0.6632 −0.2453 0.0 0.0 0.0 0.0
Ψ14 0.0007 0.0 0.0 0.6943 −0.1337 −0.0 0.0 0.0 0.0
Ψ15 0.0 0.7071 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ψ16 0.7071 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ψ17 0.0035 0.0 0.0 −0.2453 −0.6632 −0.0 0.0 0.0 0.0
Ψ18 0.0 0.0 0.0 0.0 0.0 0.0 0.5052 0.6102 0.0
Ψ19 0.0 0.3572 −0.8630 0.0 0.0 0.0 0.0 0.0 0.0
Ψ20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7071 0.
Ψ21 −0.0036 0.0 0.0 0.1337 0.6943 0.0 0.0 0.0 0.0
Ψ22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.7071
Ψ23 0.0 0.0 0.0 0.0 0.0 0.0 0.8630 −0.3572 0.0
Ψ24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7071
Ψ25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We will now do the optimization from the nine basis states in the magnetic field to the
target states. The simulation parameters are summarized in Table 5.5.

Table 5.5: The simulation parameters for the 3-level optimization with common target
state.

Simulation parameters Values
Basis size 25
Propagation time 2000
Time step 0.05
Initial field 0.01 cos(0.05t) ·mask
Max iterations 50
Mask sin(π · t/T )2

Yield 8.999
Penalty factor 75
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The results of the optimization are found in Table 5.6 and Figure 5.6.

Table 5.6: The result of the optimization from the 9 initial states to the 9 individual
target states.

Parameter Value
Yield 1.7638
Total functional 1.6791
Norm 9.0000

Figure 5.6: The development for the yield (in blue) and the total functional (red) for the
multi initial optimization with individual target states.

We see from the development that we finally has broken the 1/initial states yield limit.
While a yield of 1.7638 out possible 9 is not a great outcome, it indicates that we can
reach higher yield than previously experienced. The convergence of the yield and the
functional is positive, and this with minimal shaping of the pulse. The field after 50
iterations is plotted in Figure 5.7.
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Figure 5.7: The final optimized z-polarized field for the optimization from all the nine
initial states in level 3 to each individual target state in level 4.

In this optimization, the field has changed considerably from the initial pulse. In the
optimization in Section 4.1 the system mechanics restricted the pulse to do effective
optimization and thus the were small changes between the initial and final pulse. Here
however, when we introduced 9 initial states and individual target states the field changed
considerably. In this optimization we only put on a penalty factor and a mask to restrict
the field. I am positive that with more experimentation with filters, more iterations and
longer pulse duration, a higher yield could be achieved.

A key factor of this optimization is of course that we have slightly altered our goal. From
trying to populate a set target state from all possible initial state, we have moved more
over to try to optimize the polarization of the hydrogen atoms. This means that all the
hydrogen atoms will not have the same polarization, but our previous results shows that
this would not be possible in any case. In this new case we can at least be more certain
that the hydrogen atoms will have a polarization in our desired direction. This revelation
means that it might be more fruitful to change the operator we want to maximize. In
this work I’ve used a algorithm that optimized the expectation value of the projector
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operator Ô = |Ψt〉〈Ψt|, but with our new realisations it might be better to optimize the
position operator Ô = Ẑ. This will probably ensure that most of the initial states reaches
different states polarized in the right direction, as we have tried to do here.

One advantage I can see from our approach to go the projection operator path, is a higher
control on the transitions we wants to happen. I do believe that with this approach we
can put on weight factors on the different initial states to ensure that some are more likely
to happen. While the position operator will prefer the transitions to the most polarized
state and neglect the less polarized state, we can with the projection operator scale the
value of these less populated target states. This means that the J1 functional will be
maximized if this transition is most successful.

5.5 Summary

In this chapter we have shown that by including higher unpopulated n-levels we can design
target states for each of the possible states. This is possible because the applied magnetic
field breaks the inherit symmetry of the hydrogen atom. By designing individual target
states we bypasses the problem we previously experienced with yield restriction. This
leads to a larger amount of hydrogen atoms polarized in the correct direction if not in
the most polarized state. This should also be possible for higher energy levels, but will
demand more work and computational power.
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Chapter 6

Conclusion and Outlook

The background for this master thesis was the AEGIS project and the desire to improve
the data collection by increasing the amount of antihydrogen that reaches the detector
through quantum control and laser manipulation. In this work we have encountered and
addressed some of the issues that will be effecting this endeavour, though in much smaller
scale.

The main issue of the optimization is the unknown initial conditions. We only know
that the antihydrogen atoms will be created in highly exited states with the principle
quantum number between n = 30 and n = 40. This leaves a huge amount of possible
initial states which all must be optimized to a desired target state. We learned from our
1D well in Chapter 3 that a single transition optimization is highly achievable, but when
we introduce an additional initial state the yield was restricted to half of what possible.
This happens even though both initial states could successfully be transferred to the
target state on their own. We also found that using a pulse train with pulses from each
individual transition did not help and indicated that while a pulse that optimized the
transition from an initial state to the target state, also optimizes the opposite transition.
This makes the whole concept with identical target states very difficult to accomplish.

In Chapter 4 we studied the 2D hydrogen atom and experienced a second problem. Due to
the high symmetry of the hydrogen atom we found that all the optimization parameters
were symmetrical or identical. This meant that if two initial states had the opposite
angular quantum number, they would end up in opposite polarized state of each other
meaning that to try to optimize a polarization of all the available states would be futile.
Inclusion of higher levels to find polarized states there was not helpful as the symmetry
still was intact. This problem would also have carried on to the similarly symmetrical
3D atom.

In the AEGIS project the antihydrogen atoms are stabilized by a strong magnetic field,
and this is of crucial importance as it also affects the energy levels and coupling of the
antihydrogen states. We took advantage of this in our 3D hydrogen model in Chapter
5, where we optimized multiple initial states without ending in opposite polarized states.
To counter the problem of multiple initial states and common target states we introduced
a higher level of available target states, which we could couple an individual initial state
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to. This lead to a higher yield than our before mentioned 1/initial states-limit.

While the scope of this thesis has been on a much smaller scale and with a hydrogen
model instead of antihydrogen, I think it can say something about the possibilities for
this project. While we cannot be certain in what states the antihydrogen atoms will be
in when they are created, we can make quite good assumptions in where they will not be.
In the project description it says that the antihydrogen atoms will be in states between
n = 30 and n = 40. This means that we can create target states for levels higher than
this and try to design paths for each of the available target initial states. The next step
from this master thesis would be to try to find a unique target state for all the available
initial states and do an optimization that get as high yield as possible as well as adjusting
the field to be experimentally feasible.

There are some problematic aspect with this of course. The huge amount of designed
transitions will demand a very complicated field; maybe too complicated to be able to
construct. It may also be that the sheer number of transitions will be impossible to
control and the yield will not be as high as desired and it will demand a lot of computer
power to calculate the field.

The most important thing is however that we increase the amount of hydrogen or anti
hydrogen atoms polarized in the correct direction. Even though we do not achieve a 100%
projection, more anti hydrogen atoms will be accelerated towards the detector. This was
also true for the 2-dimensional case. While the initial states ends up in direct opposite
polarized states and the average polarization is still 0 after the optimization, half of the
states are polarized in the correct direction and will be accelerated towards the detector.

In addition to this approach, new angles to address the problem might be applied in
future. I have already mentioned that changing the operator to a position operator
might be an easier way to achieve the desired polarized states.

Hopefully one of these approaches will one day give a pulse that yields the desired polar-
ization and is experimentally valid. Then it might be applied to the AEGIS project and
contribute to get a final answer to one of the mysteries that surrounds antimatter.
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Appendix A

Atomic Units

The atomic unit system is often used in calculations on atomic length scales, and this
system of units is given in Table A.1 [49].

This system of units is obtained by setting the quantities me, e, ~ and a0 equal to unity.
Quantities that are given in atomic units are abbreviated by the symbol a.u.

Table A.1: Table of the atomic unit system and how the quantities are related to the SI
system of units

Physical
Unit

Unit Physical origin Value in SI units

Mass m Electron mass 9.10938× 10−31 kg
Charge e Absolute value of the elec-

tron charge
1.60218× 10−19 C

Angular
Momen-
tum

~ The reduced Planck’s con-
stant

1.05457× 10−34 Js−1

Length a0 Bohr radius for atomic hy-
drogen (with infinite nu-
clear mass)

5.29177× 10−11 m

Velocity v0 = αc Magnitude of electron ve-
locity in first Bohr orbit

2.18769× 106 ms−1

Momentum p0 = mv0 Magnitude of electron mo-
mentum in the first Bohr or-
bit

1.99285× 10−24 kg m s−1

Time a0
v0

Time required for electron
in first Bohr orbit to travel
one Bohr radius

2.41888× 10−17 s

Frequency v0
2πa0

Angular frequency of elec-
tron in first Bohr orbit di-
vided by 2π

6.57969× 1015 s−1
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Energy e2

4πε0a0
Twice the ionization po-
tential of atomic hydrogen
(with infinite nuclear mass)

4.35974× 10−18 J

Electric
field
strength

e
(4πε0)a20

Strength of the Coulomb
field experienced by an elec-
tron in the first Bohr orbit
of atomic hydrogen (with
infinite nuclear mass)

5.14221× 1011 Vm−1
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Appendix B

Simulation Matrices

B.1 Two dimensional hydrogen optimization

Table B.1: The principal(n) and angular(m) quantum numbers for the 9 basis states as
well as their Energy.

Basis state n m E
Ψ1 5 -4 -0.0247
Ψ2 5 -3 -0.0247
Ψ3 5 -2 -0.0247
Ψ4 5 -1 -0.0247
Ψ5 5 0 -0.0247
Ψ6 5 1 -0.0247
Ψ7 5 2 -0.0247
Ψ8 5 3 -0.0247
Ψ9 5 4 -0.0247

Table B.2: The coupling values between the nine n=5 basis states.

Ψi Ψj Coupling value
1 2 -9.5459
2 3 -12.6280
3 4 -14.3187
4 5 -15.0931
5 6 -15.0931
6 7 -14.3187
7 8 -12.6280
8 9 -9.5459
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Table B.3: The sorted polarization values for the 9 polarized states from the n=5 2D
basis.

The polarization values
-27.0242
-20.2744
-13.5246
-6.7746
-0.0247
6.7252
13.4752
20.2251
26.9748

B.2 Three dimensional hydrogen optimization

B.2.1 3-level matrices

Table B.4: The energies to the n=3 states separated by the magnetic field.

Basis state Energy
Ψ1 -0.0589
Ψ2 -0.0576
Ψ3 -0.0565
Ψ4 -0.0560
Ψ5 -0.0557
Ψ6 -0.0542
Ψ7 -0.0531
Ψ8 -0.0523
Ψ9 -0.0504

Table B.5: The coupling matrix for the n=3 states set ut by the magnetic field.

Ψi Ψj Coupling value
2 3 4.5000
4 5 8.2905
4 6 4.7093e-14
5 6 -3.5025
7 8 -4.5000
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Table B.6: The sorted polarization values for the 9 polarized states from the n=3 magnetic
basis

.

The polarization values
-9.0000
-4.5000
-4.5000

0
0

0.0000
4.5000
4.5000
9.0000

B.2.2 3- and 4-level matrices

Table B.7: The energies to the n=4 states splitted by the magnetic field.

Basis state Energy
Ψ10 -0.0347
Ψ11 -0.0341
Ψ12 -0.0333
Ψ13 -0.0331
Ψ14 -0.0329
Ψ15 -0.0322
Ψ16 -0.0317
Ψ17 -0.0296
Ψ18 -0.0291
Ψ19 -0.0290
Ψ20 -0.0280
Ψ21 -0.0267
Ψ22 -0.0255
Ψ23 -0.0247
Ψ24 -0.0232
Ψ25 -0.0220

Table B.8: The coupling matrix for the n=3 and n=4 states.

Ψi Ψj Coupling value
1 11 -3.7123
2 3 4.6163
2 12 4.5915
2 15 7.6543e-15
2 19 -1.0717
3 12 -9.6441e-15
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3 15 3.4370
3 19 1.4657e-15
4 5 8.6094
4 6 1.6770e-16
4 13 -4.5086
4 14 7.8847e-14
4 17 -1.7735
4 21 6.4975e-16
5 6 3.4313
5 13 7.1161e-14
5 14 4.1868
5 17 3.4076e-15
5 21 0.9715
6 13 -0.2843
6 14 1.3478e-15
6 17 3.5806
6 21 2.1988e-15
7 8 4.6163
7 18 4.5915
7 20 1.7241e-14
7 23 -1.0717
8 18 -1.2288e-14
8 20 3.4370
8 23 8.2916e-15
9 22 -3.7123
11 16 6.0967
12 15 10.3475
12 19 7.2068e-15
13 14 -16.7950
13 17 7.0502e-14
13 21 1.2149
14 17 5.0636
14 21 -6.6979e-15
15 19 6.1265
17 21 -6.7571
18 20 10.3475
18 23 1.0611e-14
20 23 6.1265
22 24 6.0967
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Table B.9: The sorted polarization values for the 9 polarized states from the n=4 magnetic
basis.

The polarization values
-18.0000
-12.0000
-12.0000
-6.0000
-6.0000
-6.0000
-0.0000
0.0000
0.0000
0.0000
6.0000
6.0000
6.0000
12.0000
12.0000
18.0000
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Appendix C

Programs

During this thesis a number of programs have been developed in MATLAB. These include
a program to calculate the energies and coupling matrix as well as the target state for all
the systems. There was also developed a converter program and a visualization program.

C.1 1D asymmetrical well

A program was created to find energies and the wavefunction of the 1D asymmetrical
well. This was done using hermite polynomials. The program also calculated the coupling
matrix for the basis states and plotted the selected n lowest states in potential s well as
one plotting the resulting states of the optimization.

C.2 2D hydrogen atom

A routine was made to find the basis functions of the 2D hydrogen atom, involving
Laguerre polynomials. It also calculated the coupling matrix and plotted the radial
distributions and the polarized forms of the basis functions. A corresponding routine
visualised the resulting polarized forms from the optimization.

C.3 3D hydrogen atom in magnetic field

A Fortran routine calculated the matrix elements for the basis functions. A MATLAB
program was made to visualise the effect of the magnetic field, as well as finding the
polarized states of the new basis set up by the magnetic field.
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C.4 Visualisation program

A program was made to obtain the results from the multi-initial optimizations and visu-
alize the key result such as yield, functional, density distribution and optimized fields.

C.5 Converter

Due to the task of doing multi-initial optimization a routine was made to duplicate all
the necessary matrices for all the cases and convert them to be read by the Fortran
optimization program.
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