
Fast methods to solve the pooling
problem

Anisha Kejriwal

A thesis submitted in partial fulfillment for the
degree of Master of Science (MSc)

University of Bergen
Faculty of Mathematics and Natural Sciences

Department of Informatics

May 31, 2014
Supervisor

Dag Haugland

http://www.uib.no/en/
http://www.uib.no/en/matnat
http://www.uib.no/en/ii

Acknowledgements

First of all, I am very thankful to God for a great opportunity to write this
thesis and for giving me the strength and courage to complete this work.

I am extremely grateful to my supervisor, Professor Dag Haugland, for
his excellent guidance. I have always received valuable suggestions and
encouragement from him. His support, patience and tireless proofreading
throughout this work is commendable.

I would like to acknowledge the staff in the Department of Informatics for
their help. I am also thankful to the students of the optimization group with
whom I shared an office for maintaining a good academic environment.

I am deeply grateful to my former colleagues at Tobii Technology Norge
AS for their well wishes.

Finally, I would like to express my sincere gratitude to my parents, siblings
and friends for their constant support and unconditional love.

iii

Abstract

In pipeline transportation of natural gas, simple network flow problems are
replaced by hard ones when bounds on the flow quality are imposed. The
sources, typically represented by gas wells, provide flow of unequal composi-
tions. For instance, some sources may be richer in undesired contaminants,
such as CO2, than others. At the terminals, constraints on the relative content
of the contaminant may be imposed. Flow streams are blended at junction
points in the network, where the relative CO2-content becomes a weighted
average of the relative CO2-content in entering streams. To account for the
quality bounds at the terminals, the quality therefore must be traced from
the sources via junction points to the terminals.

The problem of allocating flow at minimum cost is referred to as the
pooling problem when the above-mentioned quality bounds are imposed. It
is known that the pooling problem is NP-hard, which means that it is very
unlikely that exact solutions can be found in instances of large scale. Some
exact methods, based on strong mathematical formulations and intended for
instances of small and medium size, have recently been developed. However,
the literature offers few approaches to approximation algorithms and other
inexact methods dedicated for large pooling problem instances.

This thesis focuses on the development of inexact or heuristic techniques
for the pooling problem. The aim of these techniques is to find good feasible
solutions for large pooling problem instances at a reasonable computation
cost, and the methods do not guarantee global optimality. In order to achieve
this, three approaches are discussed in this thesis. First, we propose an
improvement heuristic which iteratively reduces the total cost. Since the
quality of the solutions provided by the improvement method depends upon
good initial solutions, we propose construction heuristic methods that give
good feasible solutions for the pooling problem. The methods construct a
sequence of sub-graphs, each of which contains a single terminal, and an

v

Abstract

associated linear program for optimizing the flow to the terminal. The optimal
solution to each linear program serves as a feasible augmentation of total flow
accumulated so far. Finally, we combine both the above mentioned methods,
such that the solution given by the construction heuristic is used as the
starting solution by the improvement method. Computational experiments
indicate that all the heuristic methods proposed in this thesis are faster
compared to the heuristics that were proposed earlier.

Since the exact solutions are not known in large instances, the solutions
given by the heuristic methods are compared to lower bounds on the optimal
objective function value. In this thesis, we also propose a constraint generation
algorithm, that aims to compute lower bounds on the minimum cost fast.

May 31, 2014 – Bergen, Norway,
Anisha Kejriwal

vi

Contents

Acknowledgements iii

Abstract v

List of Algorithms ix

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Background and motivation 2
1.2 Previous work (literature review) 6

1.2.1 Local optimization techniques 6
1.2.2 Global optimization techniques 8

1.3 Problem definition . 9
1.4 Structure of the thesis . 9

2 Model formulations for the pooling problem 10
2.1 The quality formulation . 10
2.2 Proportion formulations . 11

2.2.1 Formulations with source proportions 12
2.2.2 Formulation with terminal proportions 15
2.2.3 Formulation with both source and terminal proportions 16

3 Heuristic methods 18
3.1 Improvement heuristic . 18
3.2 Basic construction heuristic 20

3.2.1 Construction heuristic 23

vii

Contents

4 Relaxations 27
4.1 Fast computation of lower bounds on the minimum cost 27

5 Numerical experiments 30
5.1 Test instances . 30
5.2 Experiments with heuristic methods 31

5.2.1 Comparisons between heuristic methods 42
5.3 Experiments with relaxations 44
5.4 Observations . 47

6 Conclusion and future work 50
6.1 Conclusion . 50
6.2 Future work . 52

Bibliography 53

viii

List of Algorithms

1 Alternating proportions. 19
2 Basic construction method. 22
3 The construction method. 25
4 Lower bound on optimal cost. 28

ix

List of Figures

1.1 Minimum-cost network flow problem. 2
1.2 A sample blending problem. 3
1.3 The Haverly1 pooling problem instance. 4
1.4 A generalized pooling problem instance. 5

x

List of Tables

5.1 Size of small-scale instances. 31
5.2 Size of large-scale instances. 31
5.3 Comparison between the improvement heuristic and the opti-

mal solution for small-scale instances. 32
5.4 Comparison between the improvement heuristic and the bound

from a global solver for large-scale instances. 33
5.5 Comparison between the basic construction heuristic, the con-

struction heuristic and the optimal solution for small-scale
instances. 34

5.6 Comparison between the basic construction heuristic, the con-
struction heuristic and the bound from a global solver for
large-scale instances. 35

5.7 Comparison between the three versions of the construction
heuristic and the optimal solution for small-scale instances. . . 36

5.8 Comparison between the three versions of the construction
heuristic and the bound from a global solver for large-scale
instances. 37

5.9 Results from the improvement heuristic with initial solution
from the construction heuristic using no-ranking method for
small-scale instances. 38

5.10 Results from the improvement heuristic with initial solution
from the construction heuristic using no-ranking method for
large-scale instances. 39

5.11 Results from the improvement heuristic with initial solution
from the construction heuristic using one-time ranking method
for small-scale instances. 39

xi

List of Tables

5.12 Results from the improvement heuristic with initial solution
from the construction heuristic using one-time ranking method
for large-scale instances. 40

5.13 Results from the improvement heuristic with initial solution
from the construction heuristic using re-ranking method for
small-scale instances. 40

5.14 Results from the improvement heuristic with initial solution
from the construction heuristic using re-ranking method for
large-scale instances. 41

5.15 Comparing output from the improvement method in combina-
tion with the three versions of the construction heuristic for
large-scale instances. 42

5.16 Comparison between Impr1, Impr2 and the bound from a
global solver for large-scale instances. 44

5.17 Comparison between the time required by our algorithm and
the STP -relaxation for small-scale instances. 45

5.18 Comparison between the time required by our algorithm and
the STP -relaxation for large-scale instances. 46

5.19 Comparison between our heuristics, the construction heuristic
in [3] and the bound from a global solver for large-scale instances. 48

xii

Chapter 1

Introduction

The pooling problem is an important global optimization problem. One
application area is pipeline transportation of natural gas. Natural gas has
various uses such as heating households, air conditioning and providing fuel
for cooking as it is available at affordable prices. Since natural gas burns
cleaner than gasoline or diesel, natural gas-powered cars, trucks and buses
are being used to reduce emissions. Therefore, efficient and economical ways
of transporting natural gas to the consumers is very important. Natural
gas is transported from the sources to the terminals through a pipeline
network. Since pipelines are safe, efficient and, they are unseen as most of
them are buried, they are the primary means of transporting natural gas to
the consumer markets. The sources, typically represented by gas wells, can
supply natural gas having different components like carbon dioxide (CO2),
nitrogen (N2), ethane (C2H6), propane (C3H8) etc in varying amounts. At
the terminals, constraints on the relative content of the contaminant may be
imposed for the natural gas to be of use. Since the network does not have
any nodes for purifying the natural gas, the only way to control the level of
contaminants is by means of blending operations either at the terminals or at
intermediate nodes within the network called pools. At the pools, the relative
content of a contaminant (eg CO2) becomes a weighted average of the relative
CO2-content in the source streams. To account for the quality bounds at the
terminals, the quality therefore must be traced from the sources via pools
to the terminals. The optimization problem of allocating flow at minimum
cost is referred to as the pooling problem when the above-mentioned quality
bounds are imposed.

Apart from pipeline transportation of natural gas, the pooling problem

1

Section 1.1. Background and motivation

can also occur in petroleum refining and waste-water treatment. For a
detailed review of industrial applications, the reader can refer to the works
by Visweswaran [35] and Kallrath [21].

1.1 Background and motivation

The pooling problem is an extension of the minimum-cost network flow
problem. The minimum-cost network flow problem consists of a flow network,
that is, a directed graph D = (N,A), where N is the set of nodes and A
is the set of arcs. bi denotes the net supply (arc flow out - arc flow in) at
each node i ∈ N . The value of bi is determined by the nature of node i.
In particular, bi is positive for a supply node, negative for a demand node
and zero for intermediate nodes. Each arc (i, j) ∈ A has a flow capacity
uij and a unit cost cij associated with it. The flow may be routed through
intermediate nodes that reflect warehouses or distribution centers instead
of being sent directly from sources to terminals. The objective is to send
a homogeneous flow at a minimum cost from a set of sources to a set of
terminals that satisfies the demand at the terminals. The arc flows fij for
each (i, j) ∈ A must be non-negative and must be no greater than the arc
capacities. Flow conservation must also be satisfied at all the intermediate
nodes. An example of this problem is illustrated in Figure 1.1.

125

2

3

4 −10

5 −15

(15, 4)

(8, 4)

(4, 2)

(2, 2)

(10, 6)

(15, 1)

(5, 3)

(6, 2)

(4, 1)

Figure 1.1: Minimum-cost network flow problem.

In Figure 1.1, node 1 is a supply node supplying 25 flow units, and nodes
4 and 5 are demand nodes requiring 10 and 15 flow units, respectively, as

2

Chapter 1. Introduction

indicated by the negative signs. The remaining nodes have no net supply
or demand and are called the intermediate nodes. The numbers next to the
arcs specify the arc capacity and the cost of shipping 1 unit along the arc,
respectively. Hence, the flow on arc 1-2 must be between 0 and 15 flow units,
and each unit of flow on this arc costs 4 units. It is well known that this
problem can be formulated as a linear programming problem and can hence
be solved by means of efficient algorithms.

The minimum-cost network flow problem needs to be extended when the
flow coming from different sources have different qualities. The blending
problem which typically occurs in petroleum refining has only two sets of
nodes: sources and terminals. The quality of the flow at different sources
varies. The flow from the sources is blended at the terminals in such a way
that the quality bounds at the terminals are respected. This problem can
also be formulated as a linear program and can hence be solved fast. The
objective in the blending problem is to minimize the total cost of producing
demand at the terminals. An example of the blending problem is illustrated
in Figure 1.2.

s1

s2

s3

t1

t2

Figure 1.2: A sample blending problem.

The pooling problem combines features of both the minimum-cost network
flow problem and the blending problem. The pooling problem network
is tripartite and consists of sources, intermediate nodes called pools and
terminals. The sources supply raw materials (eg natural gas), having different
qualities. The natural gas is first blended in the pools or sent directly to the
terminals in such a way that the demand at the terminals are met and the total
cost of transportation is minimized. In addition, like in the blending problem,
the flow must be assigned such that the resulting quality at the terminals

3

Section 1.1. Background and motivation

is below the given bounds. The presence of pools introduces non-linearities
and non-convexities in the model, thus making the problem difficult. In [20],
Haverly defines the pooling problem by means of an instance that is studied
quite frequently, referred to as Haverly1 [20]. We illustrate this instance in
Figure 1.3.

s13% CO2

s21% CO2

s32% CO2

p1 t1 Max 2.5% CO2
Demand: 100

t2 Max 1.5% CO2
Demand: 200

6$

16$

1$

−5$

−9$

−15$

Figure 1.3: The Haverly1 pooling problem instance.

In Figure 1.3, there are three sources s1, s2 and s3 that supply natural gas
with different levels of contaminant CO2. The amount of CO2 contamination
at the sources s1, s2 and s3 are given as 3%, 1% and 2%, respectively. The
natural gas from sources s1 and s2 is blended in the pool p1 and then sent
to the terminals t1 and t2. The natural gas from source s3 is sent directly
to the terminals t1 and t2. The demand at the terminals t1 and t2 is 100
and 200 units of natural gas, respectively, and they will pay for the natural
gas only if its CO2 content does not exceed 2.5% and 1.5%, respectively. In
many pooling problem instances, for example in Haverly1 in [20], the price
of the natural gas and their selling prices are specific to source and terminal
nodes, respectively. These can be translated into arc costs in the network as
follows: Since one unit of natural gas at sources s1 and s2 costs 6$ and 16$,
respectively, hence, the costs of transporting one unit of natural gas from
s1 to p1 and from s2 to p1 are 6$ and 16$, respectively. Terminals t1 and t2
pay 9$ and 15$, respectively, for one unit of natural gas. Hence, the costs of
transporting one unit of natural gas along arcs (p1, t1) and (p1, t2) are -9$ and
-15$, respectively. Similarly, the cost of one unit of natural gas at source s3 is
10$. Hence, the transportation costs per unit of natural gas from s3 − t1 and
s3− t2 are 1$ (10-9) and -5$ (10-15), respectively, as shown in Figure 1.3.

4

Chapter 1. Introduction

The pooling problem similar to Haverly1 stated above is referred to as
the standard pooling problem where the only links in the network are from
sources to pools, pools to terminals and sources to terminals. A more complex
pooling problem was introduced by Audet et al. [7] by allowing links between
pools as well, referred to as the generalized pooling problem, an example of
which is given in Figure 1.4. In this thesis, we focus only on the standard
pooling problem.

s1

s2

s3

p1

p2

t1

t2

Figure 1.4: A generalized pooling problem instance.

It is known that the pooling problem is NP-hard [2], which means that
it is very unlikely that exact solutions can be found in instances of large
scale. Some exact methods, based on strong mathematical formulations and
intended for instances of small and medium size, have recently been developed
[2]. However, the literature offers few approaches to approximation algorithms
and other inexact methods dedicated for large pooling problem instances.
Therefore, it is important to develop and implement fast methods for the
pooling problem.

5

Section 1.2. Previous work (literature review)

1.2 Previous work (literature review)

The pooling problem has been extensively studied over the last four decades.
The literature offers different solution techniques that have been proposed,
and can be classified into local and global optimization techniques.

1.2.1 Local optimization techniques

The early approaches aimed to find a good local optimum. One of the
approaches was proposed by Haverly [20]. It is a recursive approach in
which the values of pool qualities are estimated and fixed. Then the flow is
optimized by solving the resulting linear program (LP), and the new qualities
are calculated by using the flow values from the solution of the LP. The
method stops if the estimated values of pool qualities coincide with their
new values, otherwise a new LP is constructed using the new values of the
pool qualities. It was observed that the solution obtained by this recursive
method depends on the initially estimated values of the pool qualities and
hence it may or may not converge to a local optimum. The method was also
known to be unstable and it took much computational time in large instances
[24]. Another recursive approach for the pooling problem was proposed by
Audet et al. [7] which was referred to as Alternate heuristic (ALT). A variable
neighborhood search (VNS) heuristic based upon the ALT heuristic was also
proposed by Audet et al. [7].

Successive linear programming (SLP) is another approach that has been
used to solve the pooling problem in the petrochemical industries. In this
method, the bi-linear terms are approximated using the first order Taylor’s
expansion and the resulting LP is solved. The solution from the LP is used
as the new base of the Taylor’s expansion, and the process is repeated until
it converges to a fixed point. SLP was introduced by the name mathematical
approximation program (MAP) by Griffith and Stewart [18] who tested the
approach on petroleum refinery optimization in Shell oil company. SLP and
the generalized reduced gradient (GRG) algorithms have been used by Lasdon
et al. [22] to solve the pooling problem, and the results have shown that
they have some advantages over Haverly’s recursive approach. For more
information about these algorithms, the reader can refer to Griffith and
Stewart [18], Palacios-Gomez et al. [27], Baker and Lasdon [8] and Greenberg
[17].

In [3], Alfaki and Haugland proposed a construction heuristic for the

6

Chapter 1. Introduction

pooling problem. This method constructs a sequence of sub-graphs, each
consisting of a single terminal, and a bi-linear program associated with it.
The bi-linear program was solved for optimizing the flow to the terminal, and
the corresponding flow augmentation was made for each sub-problem. This
method was designed to give good feasible solutions, especially in large-scale
instances, and it did not guarantee to find the optimal solution. Experimental
results showed that this heuristic outperformed multi-start local optimiza-
tion techniques provided by commercially available software in large-scale
instances.

Another approach to solve the pooling problem is decomposition. The
idea of this method is to decompose the problem into two linear sub-problems
by fixing a variable in the bi-linear terms. These sub-problems are solved for
their respective global optimums at each iteration, and the process continues
until the stopping criteria is satisfied. A well-known decomposition method
was proposed by Benders [9] for solving nonlinear optimization problems.
A generalization of Benders decomposition was proposed by Geoffrion [15].
Floudas and Aggarwal [12] proposed a method that searches for a global
solution based on the generalized Benders decomposition. It was observed
that this method could not guarantee convergence to a global solution.

The literature mentions some discretization approaches for the pooling
problem. In one of these approaches used by Tomasgard et al. [33] and Rømo
et al. [30], the quality variables were discretized to approximate the bi-linear
constraints. This resulted in the approximation of the pooling problem by
a mixed integer linear programming (MILP) problem. A similar approach
was used by Faria and Bagajewicz [11], Pham [28] and Pham et al. [29]. A
generalization of the discretization approach by Pham et al. [29], was proposed
by Alfaki and Haugland [4]. In this method, the bi-linear terms were linearized
by discretizing the domain of the proportion variables into a fixed number
of points. Computational experiments performed in [4], showed that this
method outperformed traditional solution methods where continuous models
were used. Recently, different discretization methods have been proposed to
approximate a bi-linear program as a MILP by Gupte et al. [19]. These ideas
were tested on random instances of the pooling problem. The experiments
suggested that discretization is a promising approach especially for large-scale
and generalized pooling problems.

An analysis on the sensitivity of local optimal solutions with respect to
problem parameters was performed by Greenberg [17] and Frimannslund et
al. [14].

7

Section 1.2. Previous work (literature review)

1.2.2 Global optimization techniques

During the last two decades, many global optimization techniques have been
proposed for the pooling problem. An approach based on duality theory
and Lagrangian relaxation was first proposed by Floudas and Aggarwal
[12] and Visweswaran and Floudas [34]. The method was called Global
Optimization Algorithm (GOP) which guaranteed convergence to a global
solution. Another duality related approach was proposed by Ben-Tal et al.
[10]. Some Lagrangian-based approaches for the pooling problem can be
found in [1] and [6]. McCormick [25] used convex and concave envelopes to
construct a relaxation which was applied in a branch-and-bound algorithm.
This approach was first applied to the pooling problem by Foulds et al.
[13]. Recently, different relaxation techniques have been integrated into the
branch-and-bound algorithm. Some of these relaxation techniques include
the reduced reformulation linearization technique by Liberti and Pantelides
[23] and the piecewise linear relaxation technique by Gounaris [16].

Global optimization algorithms are quite effective for instances of modest
size. In larger instances, however, global optimizers fail to converge in
reasonable time, while existing local optimizers depend largely on good initial
guesses [3]. For recent research on the pooling problem, the reader can refer
to the works by Alfaki [5] and Misener [26].

This research aims to develop fast methods to obtain optimal or near-
optimal solutions for the pooling problem. We propose improvement and
construction heuristic methods to achieve this. Our goal is to reduce the
computation time needed by these methods, especially for large-scale instances.
We follow the approach of linearizing the bi-linear problem by fixing the values
of the variables that participate in the bi-linear terms. The next chapters of
this thesis reviews some of the formulations for the pooling problem existing
in the literature, and then we describe various approaches we use in order to
get good feasible solutions.

8

Chapter 1. Introduction

1.3 Problem definition

We are given a directed graph D = (S, P, T,A), where the node set N =
(S, P, T) consists of the sources S, pools P and terminals T , and the arc
set A ⊆ (S × P) ∪ (P × T) ∪ (S × T) links sources with pools, pools with
terminals and sources with terminals. We let K be a finite set, and refer to
its elements as quality attributes. Define the vectors of unit cost c ∈ <A, and
let bi denote the flow capacity of node i ∈ N . For all k ∈ K, we are given an
input quality qks corresponding to attribute k ∈ K at each source s ∈ S, and
a quality bound qkt corresponding to attribute k ∈ K at each terminal t ∈ T .
For each pool p ∈ P , we denote the sets of neighbor sources and terminals
by Sp = {s ∈ S : (s, p) ∈ A} and Tp = {t ∈ T : (p, t) ∈ A}, respectively. For
each source s ∈ S and each terminal t ∈ T , respectively, we denote the sets
of neighbor pools by Ps = {p ∈ P : (s, i) ∈ A}, and Pt = {p ∈ P : (i, t) ∈ A}.
We also define St = {s ∈ S : (s, t) ∈ A} and Ts = {t ∈ T : (s, t) ∈ A}. The
set of arcs incident to some source is denoted AS = A ∩ (S × (P ∪ T)), and
the set of arcs incident to some terminal is denoted AT = A ∩ ((S ∪ P)× T).

Let fij denote the flow on arc (i, j) ∈ A. Then the pool qualities are

defined as wk
p =

∑
s∈Sp

qks fsp∑
s∈Sp

fsp
(p ∈ P , k ∈ K). That is, the quality at pool p is

a weighted average of the input qualities at the sources from which the pool
receives flow, and the weights are identical to the flow values. Analogously,

the terminal qualities are given as wk
t =

∑
s∈St

qks fst+
∑

p∈Pt
wk

pfpt∑
s∈St

fst+
∑

p∈Pt
fpt

.

1.4 Structure of the thesis

This thesis is composed of six chapters, including this introductory chapter.
The remaining chapters are organized as follows: Chapter 2 describes various
model formulations for the pooling problem. Chapter 3 explains the heuristic
methods, mainly the improvement and the construction heuristics, which aim
to find good feasible solutions for large pooling problem instances. Chapter
4 explains a constraint generation algorithm for fast computation of lower
bounds on the minimum cost. Chapter 5 presents the results of various
numerical experiments performed on the methods described in Chapters 3
and 4. Finally, Chapter 6 gives the conclusion and possible directions for
future work.

9

Chapter 2

Model formulations for the
pooling problem

The pooling problem can be formulated in different ways. These formulations
can lie into two major categories. The first one takes into account flow and
quality variables, whereas the second uses flow proportions instead of quality
variables. These formulations are discussed more in the following sections.

2.1 The quality formulation

Combining the flow and quality variables in a model, and utilizing
∑

s∈Sp
fsp =∑

t∈Tp
fpt (p ∈ P), leads to the so-called P -formulation of the problem which

was introduced by Haverly [20]:

10

Chapter 2. Model formulations for the pooling problem

min
f,w

∑
(i,j)∈A

cijfij (2.1)

s.t.
∑
p∈Ps

fsp +
∑
t∈Ts

fst ≤ bs s ∈ S (2.2)∑
s∈Sp

fsp ≤ bp p ∈ P (2.3)

∑
s∈St

fst +
∑
p∈Pt

fpt ≤ bt t ∈ t (2.4)∑
s∈Sp

fsp −
∑
t∈Tp

fpt = 0 p ∈ P (2.5)

∑
s∈Sp

qksfsp − wk
p

∑
t∈Tp

fpt = 0 p ∈ P, k ∈ K (2.6)

∑
s∈St

qksfst +
∑
p∈Pt

wk
pfpt

− qkt

(∑
s∈St

fst +
∑
p∈Pt

fpt

)
≤ 0 t ∈ T, k ∈ K (2.7)

fij ≥ 0 (i, j) ∈ A (2.8)

Constraints (2.2)–(2.4) reflect the flow capacity bound at all sources, pools
and the terminals. Constraint (2.5) expresses conservation of flow around the
pools. Constraint (2.6) results from the definition of pool qualities given in
Section 1.3. Constraint (2.7) results from the definition of terminal qualities
given in Section 1.3 and the quality bound constraint, wk

t ≤ qkt for all k ∈ K.
Constraint (2.8) reflects that the flow in the network must be non-negative.
We note that (2.1)–(2.8) is not a linear program, as constraints (2.6)–(2.7)
contain products of variables.

2.2 Proportion formulations

The pooling problem can be reformulated so that the quality variables can
be replaced by variables that represent proportions of flow. Two types of
proportion variables can be used, namely source and terminal proportions.
On that basis, the formulations can further be divided into two parts:

11

Section 2.2. Proportion formulations

2.2.1 Formulations with source proportions

2.2.1.1 Q-formulation

We introduce source proportions as variables associated with each pair con-
sisting of a pool and a source: For each p ∈ P and s ∈ Sp, let ysp denote
the proportion of the flow entering pool p that originates from source s, i.e.
ysp = fsp∑

t∈Tp
fpt

if the flow through p is non-zero. Then the flow variable fsp

can be replaced by ysp
∑

t∈Tp
fpt, and the pool quality wk

p can be replaced

by
∑

s∈Sp
qksy

s
p. We arrive at the Q-formulation which was first proposed by

Ben-Tal et al. [10]:

min
f,y

∑
s∈S

∑
t∈Ts

cstfst +
∑
s∈S

∑
p∈Ps

csp
∑
t∈Tp

yspfpt

+
∑
p∈P

∑
t∈Tp

cptfpt

s.t.
∑
p∈Ps

∑
t∈Tp

yspfpt +
∑
t∈Ts

fst ≤ bs s ∈ S (2.9)

∑
t∈Tp

fpt ≤ bp p ∈ P (2.10)

∑
s∈St

fst +
∑
p∈Pt

fpt ≤ bt t ∈ t∑
s∈St

qksfst +
∑
p∈Pt

∑
s∈Sp

qksy
s
pfpt

− qkt

(∑
s∈St

fst +
∑
p∈Pt

fpt

)
≤ 0 t ∈ T, k ∈ K (2.11)∑

s∈Sp

ysp = 1 p ∈ P (2.12)

0 ≤ ysp ≤ 1 p ∈ P, s ∈ Sp (2.13)

fst ≥ 0 s ∈ S, t ∈ Ts (2.14)

fpt ≥ 0 p ∈ P, t ∈ Tp (2.15)

We arrive at constraint (2.9) by replacing the value of fsp in constraint
(2.2), at (2.10) by utilizing the flow conservation in constraint (2.3) and at

12

Chapter 2. Model formulations for the pooling problem

(2.11) by replacing the value of wk
p in (2.7). The source proportions must lie

between 0 and 1 and they must sum to 1 which is reflected by constraints (2.13)
and (2.12), respectively. In this formulation, the flow variables correspond to
the arcs that are entering terminals and they must be non-negative as shown
by the constraints (2.14)-(2.15).

2.2.1.2 PQ-formulation

The Q-formulation can be extended to the PQ-formulation, which was intro-
duced by Tawarmalani and Sahinidis [32] by adding some constraints to it.
The new constraints are:

∑
t∈Tp

yspfpt − bpy
s
p ≤ 0 p ∈ P, s ∈ Sp (2.16)

fpt =
∑
s∈Sp

yspfpt p ∈ P, t ∈ Tp (2.17)

They are formed by applying the reformulation linearization technique
(RLT) [31] to constraints (2.10) and (2.12). Hence, constraint (2.16) is
obtained by multiplying (2.10) by ysp, and (2.17) by multiplying (2.12) by fpt.

Sometimes, it is convenient to introduce the variable xspt = yspfpt, denoting
the flow along path (s, p, t), where (s, p), (p, t) ∈ A. Then, we also have
fpt =

∑
s∈Sp

xspt, obtained by replacing yspfpt by xspt in constraint (2.17), and
the PQ-formulation becomes:

13

Section 2.2. Proportion formulations

min
f,y,x

∑
s∈S

∑
t∈Ts

cstfst +
∑
s∈S

∑
p∈Ps

csp
∑
t∈Tp

xspt

+
∑
p∈P

∑
t∈Tp

cptfpt

s.t.
∑
p∈Ps

∑
t∈Tp

xspt +
∑
t∈Ts

fst ≤ bs s ∈ S (2.18)

∑
t∈Tp

fpt ≤ bp p ∈ P

∑
s∈St

fst +
∑
p∈Pt

fpt ≤ bt t ∈ t∑
s∈St

qksfst +
∑
p∈Pt

∑
s∈Sp

qksxspt

− qkt

(∑
s∈St

fst +
∑
p∈Pt

fpt

)
≤ 0 t ∈ T, k ∈ K (2.19)∑

t∈Tp

xspt − bpy
s
p ≤ 0 p ∈ P, s ∈ Sp (2.20)

fpt =
∑
s∈Sp

xspt p ∈ P, t ∈ Tp (2.21)

xspt = yspfpt s ∈ S, p ∈ Ps, t ∈ Tp (2.22)∑
s∈Sp

ysp = 1 p ∈ P

0 ≤ ysp ≤ 1 p ∈ P, s ∈ Sp

fst ≥ 0 s ∈ S, t ∈ Ts

fpt ≥ 0 p ∈ P, t ∈ Tp

Constraints (2.18), (2.19) and (2.20) result from replacing the bi-linear
term yspfpt by xspt in constraints (2.9), (2.11) and (2.16), respectively. Con-
straint (2.21) ensures that the flow on the arc (p, t) equals the total flow on
paths intersecting the arc. Constraint (2.22) reflects that the flow along path
(s, p, t) equals the flow on arc (p, t) times the proportion of flow at pool p
coming from source s.

14

Chapter 2. Model formulations for the pooling problem

2.2.2 Formulation with terminal proportions

A sibling formulation to the PQ-formulation was developed in [2] by intro-
ducing the terminal proportions ytp (p ∈ P , t ∈ Tp). For each pool p ∈ P , ytp
is defined as the proportion of flow at p that goes to the terminal t ∈ T , i.e.
ytp = fpt∑

s∈Sp
fsp

if the flow through p is non-zero. The TP -formulation reads:

min
f,y,x

∑
s∈S

∑
t∈Ts

cstfst +
∑
s∈S

∑
p∈Ps

cspfsp

+
∑
p∈P

∑
t∈Tp

cpt
∑
s∈Sp

xspt

s.t.
∑
p∈Ps

fsp +
∑
t∈Ts

fst ≤ bs s ∈ S∑
s∈Sp

fsp ≤ bp p ∈ P

∑
s∈St

fst +
∑
p∈Pt

∑
s∈Sp

xspt ≤ bt t ∈ t

∑
s∈St

qksfst +
∑
p∈Pt

∑
s∈Sp

qksxspt

− qkt

∑
s∈St

fst +
∑
p∈Pt

∑
s∈Sp

xspt

 ≤ 0 t ∈ T, k ∈ K

∑
s∈Sp

xspt − bpy
t
p ≤ 0 p ∈ P, t ∈ Tp (2.23)

fsp =
∑
t∈Tp

xspt p ∈ P, s ∈ Sp (2.24)

xspt = ytpfsp s ∈ S, p ∈ Ps, t ∈ Tp (2.25)∑
t∈Tp

ytp = 1 p ∈ P (2.26)

0 ≤ ytp ≤ 1 p ∈ P, t ∈ Tp (2.27)

fsp ≥ 0 s ∈ S, p ∈ Ps (2.28)

fst ≥ 0 s ∈ S, t ∈ Ts (2.29)

The constraints can be interpreted as TP -variants of the constraints in

15

Section 2.2. Proportion formulations

the PQ-formulation. Hence, the flow variable fpt equals ytp
∑

s∈Sp
fsp, and

the path flow xspt = ytpfsp as shown by the constraint (2.25). Then, we
also have fsp =

∑
t∈Tp

xspt as given by the constraint (2.24). The terminal
proportions must lie between 0 and 1 and they must sum to 1 which is
reflected by constraints (2.27) and (2.26), respectively. In this formulation,
the flow variables correspond to the arcs that are leaving sources and they
must be non-negative as shown by the constraints (2.28)-(2.29).

2.2.3 Formulation with both source and terminal pro-
portions

In [2], Alfaki and Haugland derived the STP -formulation by combining both
the source and terminal proportions in one model. Therefore, all the variables
and the constraints from both the PQ and TP -formulations are merged. The
linear relaxations of the PQ, TP and STP -formulations defined in [2] are
referred to as PQ, TP and STP -relaxations, respectively. The lower bound
on the optimal objective function value provided by the STP -relaxation, is at
least as tight as those provided by the PQ and TP -relaxations. Experiments
performed in [2], show that, the STP -relaxation gave a bound identical to
the best of those given by the PQ and TP -relaxations in all the small-scale
instances, whereas, it gives tighter bounds than its two competitors in most
of the large-scale instances. The STP -formulation can be stated as follows:

16

Chapter 2. Model formulations for the pooling problem

min
f,y,x

∑
(i,j)∈A

cijfij (2.30)

s.t.
∑
p∈Ps

fsp +
∑
t∈Ts

fst ≤ bs s ∈ S (2.31)∑
s∈Sp

fsp ≤ bp p ∈ P (2.32)

∑
s∈St

fst +
∑
p∈Pt

fpt ≤ bt t ∈ t (2.33)∑
s∈St

qksfst +
∑
p∈Pt

∑
s∈Sp

qksxspt

− qkt

(∑
s∈St

fst +
∑
p∈Pt

fpt

)
≤ 0 t ∈ T, k ∈ K (2.34)

fsp =
∑
t∈Tp

xspt p ∈ P, s ∈ Sp (2.35)

fpt =
∑
s∈Sp

xspt p ∈ P, t ∈ Tp (2.36)

fij ≥ 0 (i, j) ∈ A (2.37)

xspt = yspfpt s ∈ S, p ∈ Ps, t ∈ Tp (2.38)

xspt = ytpfsp s ∈ S, p ∈ Ps, t ∈ Tp (2.39)∑
s∈Sp

ysp = 1 p ∈ P (2.40)

∑
t∈Tp

ytp = 1 p ∈ P (2.41)

∑
t∈Tp

xspt − bpy
s
p ≤ 0 p ∈ P, s ∈ Sp (2.42)

∑
s∈Sp

xspt − bpy
t
p ≤ 0 p ∈ P, t ∈ Tp (2.43)

0 ≤ ysp, y
t
p ≤ 1 p ∈ P, s ∈ Sp, t ∈ Tp (2.44)

17

Chapter 3

Heuristic methods

Since the pooling problem is NP-hard [2], it is essential to develop fast
heuristic methods that in many instances can produce optimal or near-optimal
solutions.

3.1 Improvement heuristic

A popular idea is to utilize the bi-linear structure of the problem, which
means that we get a linear program if e.g. the y-variables are fixed. We
consider the problem where all constraints involving y-variables are removed
from the STP -formulation, i.e. the problem defined by (2.30)–(2.37). We
refer to the reduced problem, which we observe is a linear program, as the
independent flow relaxation. It corresponds to neglect of the fact that flow
streams are blended at the pools. Another interpretation is that we allow
that, for instance, 80% of the flow from source s1 to pool p is sent to terminal
t, whereas, for instance, 30% of the flow from source s2 to pool p is sent
to terminal t. In practice, these proportions have to be identical, which is
ensured by constraints (2.38)–(2.44).

Once we have solved the independent flow relaxation (let (f̂ , x̂) denote
an optimal solution to it), we make an estimate of either all the source
proportions or all the terminal proportions. For the sake of reasoning, we
choose the source proportions. The proportion of the flow through pool p

entering from source s, is naturally estimated as ŷsp = f̂sp∑
t∈Tp

f̂pt
. Again, since

(2.38) is not imposed, we do not necessarily have that ŷsp = x̂spt

fpt
for t ∈ Tp.

18

Chapter 3. Heuristic methods

Next, we solve the independent flow relaxation with the additional con-
straints xspt − ŷspfpt = 0 for all s ∈ S, p ∈ Ps, and t ∈ Tp. This is identical
to (2.38) with fixed source proportions (ŷsp is a constant, not a variable), and

the constraints become linear. Based on the new optimal solution (f̂ , x̂),

we estimate the terminal proportions ŷtp = f̂pt∑
s∈Sp

f̂sp
, and we solve the inde-

pendent flow relaxation with side constraints xspt − ŷtpfsp = 0 for all s ∈ S,
p ∈ Ps, and t ∈ Tp. As expressed in Algorithm 1, the procedure continues by
alternations between fixed source and terminal proportions until no significant
flow changes are observed.

Algorithm 1 Alternating proportions.

1: Let
(
f̂ , x̂

)
be an optimal solution to (2.30)–(2.37)

2: Let mode equal either S or T
3: repeat
4: if mode=S then
5: for p ∈ P , s ∈ Sp do

6: ŷsp ←
f̂sp∑

t∈Tp
f̂pt

7: end for
8:

(
f̂ , x̂

)
← optimal solution to (2.30)–(2.37) with additional con-

straints
9: xspt − ŷspfpt = 0 for all s ∈ S, p ∈ Ps, and t ∈ Tp.
10: mode ← T
11: else
12: for p ∈ P , t ∈ Tp do

13: ŷtp ←
f̂pt∑

s∈Sp
f̂sp

14: end for
15:

(
f̂ , x̂

)
← optimal solution to (2.30)–(2.37) with additional con-

straints
16: xspt − ŷtpfsp = 0 for all s ∈ S, p ∈ Ps, and t ∈ Tp.
17: mode ← S
18: end if
19: until no change in f̂

19

Section 3.2. Basic construction heuristic

3.2 Basic construction heuristic

The quality of the solutions provided by the improvement heuristic described
in the previous section depends upon good initial solutions. Therefore, we
develop a basic construction heuristic for the pooling problem in this section.
This method is designed to give good feasible solutions. The idea of this
method is to construct a flow by sending to only one terminal at a time and
accumulating the corresponding flow. The selection of terminal is based on a
ranking system. Since a linear program (LP) is used to do this, it makes the
method fast.

The pooling problem with a single terminal denoted by tn ∈ T where
n ∈ {1, 2...|T |}, can be expressed as a LP given by:

min
f

∑
(i,j)∈A

cijfij (3.1)

s.t.
∑
p∈Ps

fsp + fstn ≤ bs −
∑

i∈Ps∪Ts

Fsi s ∈ S (3.2)∑
s∈Sp

fsp ≤ bp · openp p ∈ Ptn (3.3)

∑
s∈Stn

fstn +
∑
p∈Ptn

fptn ≤ btn (3.4)

∑
s∈Sp

fsp − fptn = 0 p ∈ Ptn (3.5)

∑
s∈Stn

(qks − qktn)fstn +
∑
p∈Ptn

∑
s∈Sp

(qks − qktn)fsp ≤ 0 k ∈ K (3.6)

fij ≥ 0 (i, j) ∈ A (3.7)

It is linear as we have eliminated all the terminals except one. We define
openp for p ∈ Ptn which equals 1 if pool p is open and 0 otherwise. We
set openp to 1 initially. In the above LP, constraints (3.2)–(3.4) reflect the
flow capacity bound at all sources, pools and the terminal tn, respectively.
Constraint (3.5) is for conservation of flow at the pools. Constraint (3.7)
reflects that the flow in the network must be non-negative. Constraint (3.6)
reflects the quality bounds at the terminal tn, and can be explained as follows:

Let us assume that the sources supply natural gas with only one contami-
nant which is CO2. Then, qks denotes the relative CO2 content that enters

20

Chapter 3. Heuristic methods

the network at the sources. The natural gas containing CO2 flows to the
terminal tn only. The total flow at tn is written as:

∑
s∈Stn

fstn +
∑

p∈Ptn
fptn

which equals
∑

s∈Stn
fstn +

∑
p∈Ptn

∑
s∈Sp

fsp. The total amount of CO2 sent

to tn is
∑

s∈Stn
qksfstn +

∑
p∈Ptn

∑
s∈Sp

qksfsp. The relative CO2 content at

tn,
∑

s∈Stn
qks fstn+

∑
p∈Ptn

∑
s∈Sp

qks fsp∑
s∈Stn

fstn+
∑

p∈Ptn

∑
s∈Sp

fsp
, must be below the quality bound at that

terminal, qktn .
Multiplying qktn with the denominator of the fraction stated above and

moving it to the the left hand side of the inequality, we get:∑
s∈Stn

qksfstn+
∑

p∈Ptn

∑
s∈Sp

qksfsp−
∑

s∈Stn
qktnfstn−

∑
p∈Ptn

∑
s∈Sp

qktnfsp ≤
0. This can be expressed as constraint (3.6) which is linear. We note that,
when all the flow in the network is directed to a single terminal tn, the absolute
amount of CO2 after natural gas is blended in the pools is

∑
p∈Ptn

∑
s∈Sp

qksfsp
from the pools p ∈ Ptn to tn. Whereas, when the network has multiple termi-
nals to which the flow is directed to, the absolute amount of CO2 from the
pools p ∈ Pt to a terminal t ∈ T is

∑
p∈Pt

wk
pfpt which is a bi-linear function.

Therefore, only when the pooling problem network has a single terminal, it
can be expressed as a linear program.

The initial step of our basic construction method constitutes of ranking
the terminals. We let Fij denote the flow accumulation on arc (i, j) ∈ A and
set it to 0 initially. In order to rank the terminals, the LP given by (3.1)–(3.7)
is solved for each terminal. As a result of solving the LP for all terminals,
the terminal which receives flow at minimum cost is ranked one and so on.
In ranked order, let the terminals be denoted by t1, t2...t|T |.

In the next step, we start with the terminal which is ranked first, i.e. t1.
Optimal flow is given to this terminal by solving the LP (3.1)–(3.7). In order
to protect the higher ranked terminals from quality deterioration, we block
the pools assigning flow to the current terminal, i.e. no more flow can be
received by these pools and no more flow can be sent from them to any other
terminal. Therefore, we set the value of openp to 0 for the pools p that we
block. The value of Fij is updated if there is some flow in the network. This
constitutes one iteration in the basic construction heuristic algorithm. After
that, the terminal ranked second is selected, i.e. t2. We have to deduct the
flow already assigned by the sources in the previous iteration from the source
flow capacity. Hence, in constraint (3.2), the sum of all the flow assigned by
source s ∈ S, i.e.

∑
i∈Ps∪Ts

Fsi is subtracted from bs. Even when all pools are
closed, the remaining terminals can still receive flow directly from the sources

21

Section 3.2. Basic construction heuristic

if it is profitable. This procedure continues until all terminals are processed,
as stated in Algorithm 2.

Since our basic construction heuristic solves only a linear program in each
iteration, it is expected to be faster than construction methods based on
bi-linear sub-problems [3].

Algorithm 2 Basic construction method.

1: F ← 0
2: openp ← 1 for all p ∈ Ptn

3: Solve an LP given by (3.1)–(3.7) for each t ∈ T .
4: Rank the terminals t1, t2...t|T | by the criterion of minimum cost of sending

flow to it.
5: n← 1
6: repeat
7: t← tn
8: f̂ ← optimal solution to (3.1)–(3.7)
9: for p ∈ P do

10: if f̂ptn > 0 then
11: openp ← 0
12: end if
13: end for
14: F ← F + f̂
15: n← n + 1
16: until n > |T |

22

Chapter 3. Heuristic methods

3.2.1 Construction heuristic

The basic construction heuristic stated above can be improved so that we
get a better feasible solution, and thereby an upper bound on the optimal
objective function value that is closer to the global solution. Blocking pools
that send flow to the current terminal is unnecessarily strict. Therefore, the
idea of improving it is to reuse the pools. In addition, preliminary experiments
suggest that the terminals that received zero flow during the ranking process,
do not contribute to the profit. Hence, we eliminate such terminals and as
a result of it, the method becomes fast as well. Henceforth, we refer to this
method when applying the term construction heuristic.

For simplicity, we divide the pools into 2 sets. Let U denote the set of
pools that are used and the set U ′ denote the pools that are unused. For
each terminal t ∈ T , we denote the sets of used and unused neighbor pools
by Ut = {u ∈ U : (u, t) ∈ A} and U ′t = {u′ ∈ U ′ : (u′, t) ∈ A}, respectively.

The LP that is solved to rank the terminals and that assigns optimal flow
to the selected terminal tn is stated as follows:

min
f

∑
(i,j)∈A

cijfij (3.8)

s.t.
∑
p∈Ps

fsp + fstn ≤ bs −
∑

i∈Ps∪Ts

Fsi s ∈ S (3.9)∑
s∈Sp

fsp ≤ bp − Fptn p ∈ Utn (3.10)

∑
s∈Stn

fstn +
∑
p∈Ptn

fptn ≤ btn (3.11)

∑
s∈Sp

fsp − fptn = 0 p ∈ Utn (3.12)

∑
p∈Utn

(qkp − qktn)fptn +
∑
p∈U ′

tn

∑
s∈Sp

(qks − qktn)fsp

+
∑
s∈Stn

(qks − qktn)fstn ≤ 0 k ∈ K (3.13)

fij ≥ 0 (i, j) ∈ A (3.14)∑
s∈Sp

(qkp − qks)fsp ≥ 0 p ∈ Utn (3.15)

23

Section 3.2. Basic construction heuristic

Constraints (3.9), (3.11), (3.12) and (3.14) are the same as constraints
(3.2), (3.4), (3.5) and (3.7), respectively. As the pools are not blocked any
more, we deduct the flow already assigned by the used pools from the pool
flow capacity. Hence, in constraint (3.10), the flow assigned by p ∈ Utn , i.e.
Fptn is subtracted from bp.

Flow to terminal tn+1 may intersect the pools supporting t1, t2..., tn. Hence,
we have to make sure that the quality at the terminals does not deteriorate as
a result of more flow assigned to the pools. Since in iterations n+1, n+2..., |T |,
we do not send flow to terminal tn, quality deterioration at this terminal is
avoided if we add the constraints that the quality at the pools sending flow

to tn does not deteriorate. The pool qualities are defined as wk
p =

∑
s∈Sp

qks fsp∑
s∈Sp

fsp

(p ∈ P , k ∈ K). That is, the quality at pool p is a weighted average of
the input qualities at the sources from which the pool receives flow, and
the weights are identical to the flow values. We define the required pool
quality qkp for p ∈ Utn corresponding to attribute k ∈ K, to be identical to

the current pool quality
∑

s∈Sp
qksFsp∑

s∈Sp
Fsp

. The pool quality after flow is assigned

to tn+1 should be at least as good as the quality before the flow assignment.

This gives the inequality qkp ≥ wk
p . Thus, qkp ≥

∑
s∈Sp

qks fsp∑
s∈Sp

fsp
. Multiplying qkp

with
∑

s∈Sp
fsp and moving

∑
s∈Sp

qksfsp to the left hand side of the inequality,

we get: qkp
∑

s∈Sp
fsp −

∑
s∈Sp

qksfsp ≥ 0 which can be expressed as the linear

constraint (3.15).
The quality bounds at terminal tn are given by constraint (3.13). The

current terminal tn receives flow from U , U ′ and S. The total flow at tn
is:
∑

p∈Utn
fptn +

∑
p∈U ′

tn

∑
s∈Sp

fsp +
∑

s∈Stn
fstn . Assuming again that the

quality attribute k corresponds to relative CO2-content, the total amount
of the contaminant CO2 sent to tn is:

∑
p∈Utn

wk
pfptn +

∑
p∈U ′

tn

∑
s∈Sp

qksfsp +∑
s∈Stn

qksfstn which is a bi-linear expression. Hence, the relative CO2 content
at tn becomes:∑

p∈Utn
wk

pfptn+
∑

p∈U′
tn

∑
s∈Sp

qks fsp+
∑

s∈Stn
qks fstn∑

p∈Utn
fptn+

∑
p∈U′

tn

∑
s∈Sp

fsp+
∑

s∈Stn
fstn

≤ qktn . Multiplying qktn with

the denominator of the fraction, moving it to the left hand side of the
inequality, rearranging it, and replacing wk

p with qkp , we get constraint (3.13).
This constraint is overly strict (qkp ≥ wk

p) which is a deliberate choice we made
as qkp is a constant, thus keeping the sub-problem linear.

We now propose three versions of the construction heuristic named no

24

Chapter 3. Heuristic methods

ranking, one time ranking and re-ranking. The one time ranking method
proceeds in the same way as the basic construction heuristic except that in
this method, the pools are not blocked and the terminals that received zero
flow during the ranking process are eliminated. We denote the set of all the
terminals that receive non-zero flow during the ranking process by T ′. The
method proceeds as shown in Algorithm 3. In the no ranking method, the
terminals are not ranked at all. In this method, optimal flow is sent to each
terminal by selecting them in the order in which they are input. Apart from
the ranking strategy, the rest of the algorithm proceeds in the same way as
Algorithm 3. In the re-ranking method, all the terminals which are ranked
after the current terminal, are re-ranked by the end of each iteration. Here
again, the terminals that receive zero flow during the ranking process are
eliminated and the set T ′ is updated. In the next iteration, the terminal
that is ranked first according to the new ranking system, is selected. The
re-ranking process is reflected in Algorithm 3 by replacing steps 16 and 17
with steps 18 to 23.

Algorithm 3 The construction method.

1: F ← 0
2: U ← { } (the set of used pools)
3: T ′ ← T (the set of all terminals that receive non-zero flow)
4: *Solve an LP given by (3.8)–(3.14) for each t ∈ T ′.
5: T ′ ← T ′ − {t ∈ T ′ :

∑
i∈St∪Pt

fit = 0}
6: Rank the terminals t1, t2...t|T ′| by the criterion of minimum cost of sending

flow to it.
7: n← 1
8: repeat
9: t← tn
10: for p ∈ Utn , k ∈ K do

11: qkp ←
∑

s∈Sp
qksFsp∑

s∈Sp
Fsp

12: end for
13: f̂ ← optimal solution to (3.8)–(3.15)
14: U ← U ∪ {p ∈ P :

∑
p∈Ptn

f̂ptn > 0}
15: F ← F + f̂
16: n← n + 1
17: until n > |T ′|

25

Section 3.2. Basic construction heuristic

*For the no ranking method, steps 4 to 6 are omitted and t1, t2...t|T | denote
the terminals in the order they are input to the algorithm.

Additional steps for the re-ranking method.

18: T ′ ← T ′ − tn
19: Solve an LP given by (3.8)–(3.15) for each t ∈ T ′.
20: T ′ ← T ′ − {t ∈ T ′ :

∑
i∈St∪Pt

f̂it = 0}
21: New rank of the terminals is t1, t2...t|T ′| by the criterion of minimum cost

of sending flow to it.
22: n← 1
23: until T ′ 6= { }

26

Chapter 4

Relaxations

4.1 Fast computation of lower bounds on the

minimum cost

Since the independent flow relaxation (2.30)–(2.37) is defined by removing
constraints from the STP -formulation of the pooling problem, its optimal
objective function value, z0, is a lower bound on the optimal objective function
value, z∗, of the pooling problem. That is, z0 ≤ z∗, and by solving (2.30)–
(2.37), we easily get a bound on how good any solution possibly can be.
Computing z∗ is not realistic in large instances, and therefore, we have to
compare the solutions from our heuristics to bounds like e.g. z0.

Unfortunately, the bound z0 may be very weak in the sense that it is
much smaller than z∗. In such cases, it tells little about how good our
heuristic solutions are. A better bound can be obtained by adding more valid
constraints.

Since pool p receives only a fraction ysp of its flow from source s ∈ Sp, the
flow fsp can at most spend the same proportion of the pool capacity bp. Hence,
fsp ≤ bpy

s
p is a valid constraint for all s ∈ S, p ∈ Ps and t ∈ Tp. Analogously,

we get fpt ≤ bpy
t
p. Further, let bsp = min{bs, bp} and bpt = min{bp, bt} be the

flow capacities of arcs (s, p) and (p, t), respectively. Since the flow from source
s occupies at most a proportion ysp of the capacity of arc (p, t), we have the
constraint xspt ≤ bpty

s
p. Likewise, we get xspt ≤ bspy

t
p.

In Algorithm 4, we demonstrate how the suggested constraints can be
added gradually in order to improve the lower bound. We start out by solving
the independent flow relaxation, which contains no new constraints and no

27

Section 4.1. Fast computation of lower bounds on the minimum cost

proportion variables. Once the relaxation is solved, we estimate the excluded
proportions as suggested in Algorithm 1. All violated constraints of the types
discussed above are added to the relaxation, which is solved again. This
procedure is repeated until no violations are found. Note that we gradually
extend two initially empty sets of pools, denoted PS and PT . The former
contains all pools p ∈ P for which the source proportions ysp have been added,
and the latter holds the same information related to terminal proportions.
We note that the constraints in the independent flow relaxation are a proper
subset of the constraints in the STP -relaxation proposed in [2]. Constraints
added in Algorithm 4 are violated STP -constraints. Hence, the algorithm
converges to the STP -relaxation.

Algorithm 4 Lower bound on optimal cost.

1: PS ← ∅, PT ← ∅
2: Let LP be the LP-problem (2.30)–(2.37)

3: Let
(
f̂ , x̂

)
be an optimal solution to LP

4: repeat
5: for s ∈ S, p ∈ Ps, t ∈ Tp do
6: if p 6∈ PS then

7: ŷsp ←
f̂sp∑

t∈Tp
f̂pt

8: end if
9: if p 6∈ PT then

10: ŷtp ←
f̂pt∑

s∈Sp
f̂sp

11: end if
12: if f̂sp > bpŷ

s
p then

13: Extend LP by the constraint fsp ≤ bpy
s
p

14: if p 6∈ PS then
15: Extend LP by the constraints

∑
s∈Sp

ysp = 1 and ysp ≥ 0

16: PS ← PS ∪ {p}
17: end if
18: end if

28

Chapter 4. Relaxations

19: if f̂pt > bpŷ
t
p then

20: Extend LP by the constraint fpt ≤ bpy
t
p

21: if p 6∈ PT then
22: Extend LP by the constraints

∑
t∈Tp

ytp = 1 and ytp ≥ 0

23: PT ← PT ∪ {p}
24: end if
25: end if
26: if x̂spt > bptŷ

s
p then

27: Extend LP by the constraint xspt ≤ bpty
s
p

28: if p 6∈ PS then
29: Extend LP by the constraints

∑
s∈Sp

ysp = 1 and ysp ≥ 0

30: PS ← PS ∪ {p}
31: end if
32: end if
33: if x̂spt > bspŷ

t
p then

34: Extend LP by the constraint xspt ≤ bspy
t
p

35: if p 6∈ PT then
36: Extend LP by the constraints

∑
t∈Tp

ytp = 1 and ytp ≥ 0

37: PT ← PT ∪ {p}
38: end if
39: end if
40: end for
41:

(
f̂ , x̂, ŷ

)
← optimal solution to LP

42: until no violations were found
43: return the optimal objective function value of LP

29

Chapter 5

Numerical experiments

All experiments were run on a 64 bit Ubuntu (Release 12.04) computer
equipped with 3.00 GHz Intel(R) quad-core processor and 8GB RAM. All
models and algorithms have been written in GAMS modeling language.

5.1 Test instances

The experiments were carried out on 13 small-scale and 20 large-scale standard
pooling problem instances, the size of which are shown in Table 5.1 and
5.2, respectively. All instances can be downloaded in GAMS-format from
http://www.ii.uib.no/~mohammeda/spooling/. In Table 5.1, the instance
identifier is given in the first column. Columns 2-5 give the number of sources,
pools, terminals and quality attributes for each small-scale instance. In Table
5.2, columns 1-5 give the same type of information as given in Table 5.1 and
column 6 gives the number of arcs for each large-scale instance.

30

http://www.ii.uib.no/~mohammeda/spooling/

Chapter 5. Numerical experiments

Table 5.1: Size of small-scale instances.

Instance |S| |P | |T | |K|
Adhya1 5 2 4 4
Adhya2 5 2 4 6
Adhya3 8 3 4 6
Adhya4 8 2 5 4
Bental4 4 1 2 1
Bental5 5 3 5 2
Foulds2 6 2 4 1
Foulds3 11 8 16 1
Foulds4 11 8 16 1
Foulds5 11 4 16 1
Haverly1 3 1 2 1
Haverly2 3 1 2 1
Haverly3 3 1 2 1

Table 5.2: Size of large-scale instances.

Instance |S| |P | |T | |K| |A|
A0 20 10 15 24 171
A1 20 10 15 24 179
A2 20 10 15 24 192
A3 20 10 15 24 218
A4 20 10 15 24 248
A5 20 10 15 24 277
A6 20 10 15 24 281
A7 20 10 15 24 325
A8 20 10 15 24 365
A9 20 10 15 24 407
B0 35 17 21 34 384
B1 35 17 21 34 515
B2 35 17 21 34 646
B3 35 17 21 34 790
B4 35 17 21 34 943
B5 35 17 21 34 1044
C0 60 15 50 40 811
C1 60 15 50 40 1070
C2 60 15 50 40 1248
C3 60 15 50 40 1451

5.2 Experiments with heuristic methods

In this section, we present the results of numerical experiments performed
in order to analyze the efficiency of different heuristic methods that were
proposed in Chapter 3.

In the first experiment, we have implemented the improvement heuristic
described in Section 3.1. In this method, the initial solution is obtained

31

Section 5.2. Experiments with heuristic methods

by solving the independent flow relaxation (IFR) defined by (2.30)–(2.37).
It is a sub-problem of the pooling problem obtained by eliminating all the
constraints involving the proportion variables from the STP -formulation.
Consequently, the relaxation is a linear program. There are two starting
modes in which the proportion values are estimated: S and T. If the starting
mode is S, the source proportions are estimated first and if the starting mode
is T, then the terminal proportions are estimated first. Table 5.3 shows the
results of the experiment for small-scale instances. The first column gives
the instance identifier. Columns 2-4 report the elapsed time (in seconds), the
number of iterations and the objective function value of the best solution
found using the improvement heuristic, respectively, when the heuristic starts
from S-mode. Columns 5-7 report the same type of information when the
heuristic starts from T-mode. The elapsed times reported in columns 2 and
5, include the time spent in finding the solution to the independent flow
relaxation. Column 8 states the optimal solution. In each instance, the best
solution is given in bold. Henceforth, we use the same strategy to bold values
in all the tables.

Table 5.3: Comparison between the improvement heuristic and the optimal
solution for small-scale instances.

Instance
Start from S mode Start from T mode

time(sec) #It. Obj. value time(sec) #It. Obj. value Opt. solution

Adhya1 0.33 3 -68.74 0.18 1 0 -549.80
Adhya2 0.20 1 0 0.35 3 -549.33 -549.80
Adhya3 0.21 1 0 0.35 3 -549.33 -561.05
Adhya4 0.33 3 -372.54 0.21 1 0 -877.65
Bental4 0.20 1 0 0.38 4 -450.00 -450.00
Bental5 0.23 2 -3500.00 0.27 2 -3500.00 -3500.00
Foulds2 0.31 2 -1100.00 0.26 2 -1100.00 -1100.00
Foulds3 0.30 2 -8.00 0.27 1 0 -8.00
Foulds4 0.31 2 -7.50 0.38 3 -8.00 -8.00
Foulds5 0.29 2 -8.00 0.35 2 -0.5 -8.00
Haverly1 0.21 1 0 0.32 3 -400.00 -400.00
Haverly2 0.32 3 -600.00 0.21 1 0 -600.00
Haverly3 0.21 1 0 0.30 3 -750.00 -750.00

Table 5.4 gives the results of the same experiment described above for
large-scale instances. Columns 1-7 give the same type of information as given
in Table 5.3 for the respective columns. Column 8 reports the upper bound

32

Chapter 5. Numerical experiments

on the global minimum cost, obtained by applying the STP -formulation
on BARON as global solver. These results were found when BARON was
interrupted after one CPU-hour of computations, if it could not solve the
problem. We name this as the interrupted BARON solution denoted as Int.
BARON in the table.

Table 5.4: Comparison between the improvement heuristic and the bound
from a global solver for large-scale instances.

Instance
Start from S mode Start from T mode Int. BARON

time(sec) #It. ub time(sec) #It. ub ub

A0 1.33 11 -24613.94 0.75 4 -13642.09 -35812.33
A1 1.22 9 -14486.35 0.66 4 -11778.18 -29276.56
A2 0.78 5 -13889.79 0.70 2 -4703.16 -23042.04
A3 2.58 19 -36037.89 0.67 4 -29675.13 -39446.54
A4 1.61 9 -33565.23 1.40 9 -36534.11 -33687.13
A5 1.68 8 -20850.75 2.40 13 -20567.13 -24015.54
A6 3.61 21 -41312.16 5.18 30 -41004.36 -37074.67
A7 5.41 27 -39665.69 5.20 24 -42034.55 -38074.67
A8 1.99 9 -29202.94 2.66 12 -30075.17 -28795.26
A9 1.89 7 -18763.35 3.61 16 -21750.30 -21912.35
B0 10.91 51 -31145.11 5.89 26 -41481.88 -20802.12
B1 2.47 7 -55690.60 4.48 14 -59568.55 -50055.21
B2 14.83 35 -46046.19 10.48 23 -52504.93 -18567.64
B3 30.67 50 -63843.69 16.23 26 -73469.18 -18327.40
B4 56.05 65 -56762.53 31.90 36 -58929.99 -3711.84
B5 15.42 13 -56252.02 20.52 18 -59382.28 -10653.72
C0 18.02 35 -69821.59 20.81 35 -28379.66 -15197.45
C1 26.90 33 -72821.42 13.95 13 -33152.34 -25196.93
C2 49.63 40 -109122.14 12.31 6 -40873.07 -7497.52
C3 37.19 21 -95101.15 30.24 15 -112167.75 -7163.54

The results from the above table show that the improvement heuristic
gave better upper bounds than the global solver in 14 (A4, A6-A8, B0-B5,
C0-C3) out of 20 large-scale instances. It can also be observed from Tables 5.3
and 5.4, that in most of the instances, the modes from which the improvement
heuristic starts with, i.e. S and T-modes can make a big difference on how
good the objective function values are. We can observe from Table 5.4 that,
in most large-scale instances, starting from the T-mode gives better results
than starting from the S-mode and the T-mode is faster, hence needing fewer
iterations. We also note that the improvement heuristic is very fast compared
to the global solver. The results obtained from the global solver required one

33

Section 5.2. Experiments with heuristic methods

CPU-hour of computations while those from the improvement heuristic take
less than a minute in all the instances, and the longest time recorded is 56.05
seconds in instance B4 when the method started from the S-mode.

In the second experiment, we have implemented the basic construction
heuristic and the one time ranking version of the construction heuristic
described in Sections 3.2 and 3.2.1, respectively. We have then made a
comparison between the two methods and the global solution. Table 5.5
shows the results of the experiment for small-scale instances. The instance
identifiers are given in the first column. Columns 2-3 report the elapsed time
(in seconds) and the objective function value of the best solution found by
using the basic construction heuristic, respectively. Columns 4-5 report the
same type of information when we use the one time ranking version of the
construction heuristic. Column 6 states the optimal solution.

Table 5.5: Comparison between the basic construction heuristic, the construc-
tion heuristic and the optimal solution for small-scale instances.

Instance
Basic construction heuristic Construction heuristic

time(sec) Obj. value time(sec) Obj. value Opt. solution

Adhya1 0.79 -509.78 0.43 -509.78 -549.80
Adhya2 0.80 -509.78 0.43 -509.78 -549.80
Adhya3 0.96 -518.98 0.40 -552.85 -561.05
Adhya4 0.88 -505.61 0.50 -877.65 -877.65
Bental4 0.34 -450.00 0.39 -450.00 -450.00
Bental5 0.72 -3100.00 0.64 -3500.00 -3500.00
Foulds2 0.59 -1000.00 0.51 -1100.00 -1100.00
Foulds3 2.40 -3.00 1.99 -6.00 -8.00
Foulds4 3.97 -3.00 2.10 -7.50 -8.00
Foulds5 3.46 -1.50 2.02 -8.00 -8.00
Haverly1 0.97 -400.00 0.28 -400.00 -400.00
Haverly2 0.29 -600.00 0.28 -600.00 -600.00
Haverly3 0.80 -750.00 0.29 -750.00 -750.00

The results in the above table show that in terms of solution quality,
the construction heuristic performed as well as or better than the basic
construction heuristic in all the instances. The construction heuristic is
also observed to be faster than the other method in all the instances except
Bental4.

34

Chapter 5. Numerical experiments

Table 5.6 gives the results of the same experiment described above for
large-scale instances. Columns 1-5 give the same type of information as given
in Table 5.5 for the respective columns. Column 6 states the interrupted
BARON solution.

Table 5.6: Comparison between the basic construction heuristic, the construc-
tion heuristic and the bound from a global solver for large-scale instances.

Instance
Basic construction heuristic Construction heuristic Int. BARON

time(sec) ub time(sec) ub ub

A0 2.63 -22574.21 1.92 -23620.99 -35812.33
A1 2.60 -20981.72 1.71 -23068.09 -29276.56
A2 2.63 -14107.38 1.76 -14134.63 -23042.04
A3 2.87 -26388.90 2.00 -29311.53 -39446.54
A4 4.02 -29385.01 2.06 -28173.99 -33687.13
A5 2.68 -16339.52 1.73 -18698.44 -24015.54
A6 2.27 -26905.93 3.29 -28087.85 -37074.67
A7 2.97 -29889.10 2.20 -31807.11 -38074.67
A8 3.50 -24213.43 2.45 -24092.10 -28795.26
A9 2.38 -14342.84 1.71 -14342.84 -21912.35
B0 4.69 -27764.53 3.63 -29099.91 -20802.12
B1 6.04 -44195.44 3.81 -48000.75 -50055.21
B2 4.78 -37618.34 4.32 -38592.58 -18567.64
B3 5.43 -49463.28 4.30 -52800.38 -18327.40
B4 5.38 -44648.39 4.44 -47552.56 -3711.84
B5 6.32 -40743.71 5.25 -41808.46 -10653.72
C0 12.79 -51200.65 13.90 -54381.41 -15197.45
C1 10.27 -63415.24 14.80 -67526.37 -25196.93
C2 11.50 -68514.59 16.64 -75472.87 -7497.52
C3 12.74 -73872.22 15.60 -85085.64 -7163.54

The results from the above table show that in terms of solution quality,
the construction heuristic performed as well as or better than the basic
construction heuristic in all the instances except A4 and A8. Except 5
instances (A6 and C0-C3), the construction heuristic is observed to be faster
than the other method.

We note that both the heuristics in this experiment are faster than the
global solver. We observe that in 11 instances (A0-A9 and B1), the global

35

Section 5.2. Experiments with heuristic methods

solver provides better results than both the heuristics after one CPU-hour.
However, in the remaining instances (B0, B2-B5 and C0-C3), the construction
heuristic found better upper bounds than the global solver in less than twenty
seconds. The longest time recorded is 16.64 seconds in instance C2.

In the third experiment, we have implemented three versions of the
construction heuristic described in Section 3.2.1. Tables 5.7 and 5.8 show the
results of the experiment for small-scale and large-scale instances, respectively.
In these tables, the instance identifiers are given in the first column. Columns
2 and 3 report the elapsed time (in seconds) and the objective function value,
respectively, obtained by using the construction heuristic with the no ranking
method. Columns 4-5 and 6-7 give the same type of information as given in
columns 2 and 3 by using the one time ranking and the re-ranking methods,
respectively. In Table 5.7, column 8 states the optimal solution, while in
Table 5.8, it states the interrupted BARON solution.

Table 5.7: Comparison between the three versions of the construction heuristic
and the optimal solution for small-scale instances.

Instance
No ranking One time ranking Re-ranking

time(sec) Obj. value time(sec) Obj. value time(sec) Obj. value Opt. solution

Adhya1 0.25 -509.78 0.43 -509.78 0.51 -509.78 -549.80
Adhya2 0.23 -509.78 0.43 -509.78 0.44 -509.78 -549.80
Adhya3 0.24 -552.85 0.40 -552.85 0.56 -552.85 -561.05
Adhya4 0.30 -470.83 0.50 -877.65 0.91 -877.65 -877.65
Bental4 0.15 -100.00 0.39 -450.00 0.31 -450.00 -450.00
Bental5 0.29 -3500.00 0.64 -3500.00 1.37 -3500.00 -3500.00
Foulds2 0.28 -1100.00 0.51 -1100.00 0.93 -1100.00 -1100.00
Foulds3 1.08 -8.00 1.99 -6.00 7.06 -6.50 -8.00
Foulds4 1.09 -8.00 2.10 -7.50 10.01 -7.50 -8.00
Foulds5 0.99 -8.00 2.02 -8.00 13.19 -8.00 -8.00
Haverly1 0.14 -100.00 0.28 -400.00 0.32 -400.00 -400.00
Haverly2 0.15 -600.00 0.28 -600.00 0.34 -600.00 -600.00
Haverly3 0.16 -125.00 0.29 -750.00 0.33 -750.00 -750.00

From Table 5.7, we observe that in instances Foulds3 and Foulds4, the no
ranking method gave the optimal solution while the other two methods did
not. In instances Adhya4, Bental4, Haverly1 and Haverly3, the no ranking
method could not give the optimal solution unlike the other two methods. In
the rest of the instances, all three methods gave the same solution.

36

Chapter 5. Numerical experiments

Table 5.8: Comparison between the three versions of the construction heuristic
and the bound from a global solver for large-scale instances.

Instance
No ranking One time ranking Re-ranking Int. BARON

time(sec) ub time(sec) ub time(sec) ub ub

A0 1.12 -22763.91 1.92 -23620.99 3.85 -24320.97 -35812.33
A1 1.16 -12027.73 1.71 -23068.09 3.72 -23068.09 -29276.56
A2 1.15 -7407.32 1.76 -14134.63 2.40 -14134.63 -23042.04
A3 1.13 -23580.98 2.00 -29311.53 4.73 -27056.05 -39446.54
A4 1.23 -24000.23 2.06 -28173.99 4.33 -29462.14 -33687.13
A5 1.15 -18058.07 1.73 -18698.44 3.29 -18364.42 -24015.54
A6 1.34 -30202.84 3.29 -28087.85 6.42 -28400.16 -37074.67
A7 1.24 -32612.05 2.20 -31807.11 4.07 -31807.11 -38074.67
A8 1.18 -20689.08 2.45 -24092.10 6.16 -24092.10 -28795.26
A9 1.16 -15462.14 1.71 -14342.84 2.93 -14342.84 -21912.35
B0 2.51 -26075.28 3.63 -29099.91 7.08 -29099.91 -20802.12
B1 2.56 -41381.16 3.81 -48000.75 9.90 -45818.85 -50055.21
B2 2.90 -27296.44 4.32 -38592.58 10.44 -35835.71 -18567.64
B3 2.94 -55667.34 4.30 -52800.38 12.24 -49880.27 -18327.40
B4 2.99 -44137.71 4.44 -47552.56 13.27 -47000.63 -3711.84
B5 3.21 -41396.91 5.25 -41808.46 14.32 -43048.22 -10653.72
C0 11.98 -50757.30 13.90 -54381.41 31.78 -56092.77 -15197.45
C1 12.72 -49163.00 14.80 -67526.37 32.91 -65713.76 -25196.93
C2 13.39 -55591.08 16.64 -75472.87 46.28 -74354.66 -7497.52
C3 13.59 -72177.07 15.60 -85085.64 41.88 -80173.56 -7163.54

From Table 5.8, we observe that the no ranking method gives better upper
bounds than the other two methods in 4 instances (A6, A7, A9 and B3). The
re-ranking method is also better than the other two methods in 4 different
instances (A0, A4, B5 and C0), and the one time ranking method gives better
bounds than the other two methods in 8 instances (A3, A5, B1, B2, B4 and
C1-C3). In the rest of the instances, the one time ranking and the re-ranking
methods give the same upper bounds, which are better than the bounds given
by the no ranking method. We also observe that in 9 instances (B0, B2-B5
and C0-C3), the construction heuristic gives better upper bounds than the
global solver. From the above two tables, we note that the algorithm without
ranking is the fastest, and the re-ranking algorithm is the slowest. This is
obvious, because many linear programs are solved for ranking the terminals.

37

Section 5.2. Experiments with heuristic methods

In order to further improve the upper bounds on the optimal objective
function value, we performed a fourth experiment. In this experiment, we used
the solution that we obtained from the different versions of the construction
heuristic as the starting solution for the improvement heuristic. The results
of the experiment are recorded in Tables 5.9 to 5.14. The formats of all
these tables are the same. The first column gives the instance identifier.
Columns 2 and 3 report the elapsed time (in seconds) and the objective
function value, respectively, found by using one of the three versions of the
construction heuristic. These values are taken from Tables 5.7 and 5.8, and
are only included to verify if the improvement method improved the solution
of the different versions of the construction heuristic. Columns 4-5 and 6-7
report the same type of information as reported in columns 2-3 when the
improvement method is used starting from S-mode and T-mode, respectively.
The elapsed times reported in columns 4 and 6 include the time needed to
construct the solution, i.e. the time reported in column 2. In Tables 5.9, 5.11
and 5.13, column 8 states the optimal solution, while in Tables 5.10, 5.12 and
5.14, it states the interrupted BARON solution.

Table 5.9: Results from the improvement heuristic with initial solution from
the construction heuristic using no-ranking method for small-scale instances.

Instance
No ranking Impr. method S mode Impr. method T mode

time(sec) Obj. value time(sec) Obj. value time(sec) Obj. value Opt. solution

Adhya1 0.25 -509.78 0.42 -509.78 0.48 -509.78 -549.80
Adhya2 0.23 -509.78 0.51 -509.78 0.46 -509.78 -549.80
Adhya3 0.24 -552.85 0.51 -552.85 0.48 -552.85 -561.05
Adhya4 0.30 -470.83 0.48 -470.83 0.50 -470.83 -877.65
Bental4 0.15 -100.00 0.32 -100.00 0.30 -100.00 -450.00
Bental5 0.29 -3500.00 0.49 -3500.00 0.47 -3500.00 -3500.00
Foulds2 0.28 -1100.00 0.48 -1100.00 0.41 -1100.00 -1100.00
Foulds3 1.08 -8.00 1.18 -8.00 1.19 -8.00 -8.00
Foulds4 1.09 -8.00 1.21 -8.00 1.33 -8.00 -8.00
Foulds5 0.99 -8.00 1.46 -8.00 1.47 -8.00 -8.00
Haverly1 0.14 -100.00 0.32 -100.00 0.32 -100.00 -400.00
Haverly2 0.15 -600.00 0.31 -600.00 0.32 -600.00 -600.00
Haverly3 0.16 -125.00 0.30 -125.00 0.30 -125.00 -750.00

38

Chapter 5. Numerical experiments

Table 5.10: Results from the improvement heuristic with initial solution from
the construction heuristic using no-ranking method for large-scale instances.

Instance
No ranking Impr. method S mode Impr. method T mode Int. BARON

time(sec) ub time(sec) ub time(sec) ub ub

A0 1.12 -22763.91 6.67 -29780.50 2.21 -24429.90 -35812.33
A1 1.16 -12027.73 2.15 -21710.13 2.41 -21002.94 -29276.56
A2 1.15 -7407.32 1.55 -7546.06 1.87 -7546.06 -23042.04
A3 1.13 -23580.98 3.53 -29818.48 4.19 -34468.35 -39446.54
A4 1.23 -24000.23 3.62 -31645.54 5.55 -36930.53 -33687.13
A5 1.15 -18058.07 4.36 -24888.63 4.25 -24838.55 -24015.54
A6 1.34 -30202.84 5.46 -41670.94 6.45 -41646.83 -37074.67
A7 1.24 -32612.05 5.46 -39961.53 5.72 -39877.52 -38074.67
A8 1.18 -20689.08 4.87 -24467.09 5.39 -22091.16 -28795.26
A9 1.16 -15462.14 4.61 -21062.36 4.73 -21256.51 -21912.35
B0 2.51 -26075.28 9.62 -37451.60 9.03 -39761.39 -20802.12
B1 2.56 -41381.16 11.24 -56375.22 7.53 -58189.39 -50055.21
B2 2.90 -27296.44 11.24 -51079.37 16.96 -51526.15 -18567.64
B3 2.94 -55667.34 26.29 -68823.92 13.05 -59995.96 -18327.40
B4 2.99 -44137.71 28.35 -58924.51 38.68 -56239.56 -3711.84
B5 3.21 -41396.91 35.94 -59725.70 26.67 -59733.81 -10653.72
C0 11.98 -50757.30 29.97 -72105.91 34.49 -73286.24 -15197.45
C1 12.72 -49163.00 45.49 -77600.57 64.59 -72423.04 -25196.93
C2 13.39 -55591.08 54.52 -104662.46 76.44 -101158.79 -7497.52
C3 13.59 -72177.07 60.92 -105069.65 90.87 -102406.46 -7163.54

Table 5.11: Results from the improvement heuristic with initial solution from
the construction heuristic using one-time ranking method for small-scale
instances.

Instance
One time ranking Impr. method S mode Impr. method T mode

time(sec) Obj. value time(sec) Obj. value time(sec) Obj. value Opt. solution

Adhya1 0.43 -509.78 0.82 -509.78 1.46 -509.78 -549.80
Adhya2 0.43 -509.78 0.96 -509.78 1.12 -509.78 -549.80
Adhya3 0.40 -552.85 1.47 -552.85 0.87 -552.85 -561.05
Adhya4 0.50 -877.65 0.81 -877.65 1.12 -877.65 -877.65
Bental4 0.39 -450.00 0.78 -450.00 0.75 -450.00 -450.00
Bental5 0.64 -3500.00 1.76 -3500.00 2.07 -3500.00 -3500.00
Foulds2 0.51 -1100.00 1.02 -1100.00 1.51 -1100.00 -1100.00
Foulds3 1.99 -6.00 3.12 -8.00 4.51 -6.00 -8.00
Foulds4 2.10 -7.50 3.02 -7.50 4.20 -7.50 -8.00
Foulds5 2.02 -8.00 3.99 -8.00 3.87 -8.00 -8.00
Haverly1 0.28 -400.00 1.48 -400.00 0.64 -400.00 -400.00
Haverly2 0.28 -600.00 1.22 -600.00 0.70 -600.00 -600.00
Haverly3 0.29 -750.00 0.86 -750.00 1.76 -750.00 -750.00

39

Section 5.2. Experiments with heuristic methods

Table 5.12: Results from the improvement heuristic with initial solution
from the construction heuristic using one-time ranking method for large-scale
instances.

Instance
One time ranking Impr. method S mode Impr. method T mode Int. BARON

time(sec) ub time(sec) ub time(sec) ub ub

A0 1.92 -23620.99 5.60 -26591.74 4.04 -30337.70 -35812.33
A1 1.71 -23068.09 4.43 -23539.35 3.13 -23524.47 -29276.56
A2 1.76 -14134.63 6.71 -18917.70 3.24 -18817.43 -23042.04
A3 2.00 -29311.53 10.13 -31004.79 6.01 -31679.76 -39446.54
A4 2.06 -28173.99 7.48 -37723.94 6.68 -37567.94 -33687.13
A5 1.73 -18698.44 8.90 -23386.91 7.40 -22415.50 -24015.54
A6 3.29 -28087.85 6.06 -40482.00 4.70 -41341.00 -37074.67
A7 2.20 -31807.11 10.08 -40769.62 4.88 -40405.92 -38074.67
A8 2.45 -24092.10 12.79 -26626.57 10.57 -29368.42 -28795.26
A9 1.71 -14342.84 19.98 -21604.48 8.38 -21017.71 -21912.35
B0 3.63 -29099.91 16.47 -34910.51 8.18 -35317.30 -20802.12
B1 3.81 -48000.75 15.90 -55929.08 9.72 -54290.30 -50055.21
B2 4.32 -38592.58 21.22 -48820.71 22.41 -49946.69 -18567.64
B3 4.30 -52800.38 52.00 -69089.90 68.44 -69856.72 -18327.40
B4 4.44 -47552.56 38.60 -58886.14 50.91 -58979.56 -3711.84
B5 5.25 -41808.46 30.57 -56538.58 53.90 -55865.29 -10653.72
C0 13.90 -54381.41 48.15 -69276.53 29.74 -68978.86 -15197.45
C1 14.80 -67526.37 43.46 -79698.41 43.73 -76039.49 -25196.93
C2 16.64 -75472.87 80.14 -111453.91 71.44 -117736.60 -7497.52
C3 15.60 -85085.64 49.93 -107587.08 110.70 -103627.95 -7163.54

Table 5.13: Results from the improvement heuristic with initial solution from
the construction heuristic using re-ranking method for small-scale instances.

Instance
Re-ranking Impr. method S mode Impr. method T mode

time(sec) Obj. value time(sec) Obj. value time(sec) Obj. value Opt. solution

Adhya1 0.51 -509.78 0.68 -509.78 0.62 -509.78 -549.80
Adhya2 0.44 -509.78 0.65 -509.78 0.59 -509.78 -549.80
Adhya3 0.56 -552.85 0.71 -552.85 0.90 -552.85 -561.05
Adhya4 0.91 -877.65 0.99 -877.65 0.92 -877.65 -877.65
Bental4 0.31 -450.00 0.67 -450.00 0.45 -450.00 -450.00
Bental5 1.37 -3500.00 1.78 -3500.00 1.64 -3500.00 -3500.00
Foulds2 0.93 -1100.00 1.14 -1100.00 1.02 -1100.00 -1100.00
Foulds3 7.06 -6.50 7.88 -6.50 7.04 -6.50 -8.00
Foulds4 8.83 -7.50 8.90 -7.50 9.21 -7.50 -8.00
Foulds5 9.10 -8.00 9.50 -8.00 9.26 -8.00 -8.00
Haverly1 0.32 -400.00 0.67 -400.00 0.45 -400.00 -400.00
Haverly2 0.34 -600.00 0.44 -600.00 0.44 -600.00 -600.00
Haverly3 0.33 -750.00 0.79 -750.00 0.51 -750.00 -750.00

40

Chapter 5. Numerical experiments

Table 5.14: Results from the improvement heuristic with initial solution from
the construction heuristic using re-ranking method for large-scale instances.

Instance
Re-ranking Impr. method S mode Impr. method T mode Int. BARON

time(sec) ub time(sec) ub time(sec) ub ub

A0 3.85 -24320.97 4.21 -27447.51 5.02 -27625.79 -35812.33
A1 3.72 -23068.09 4.36 -23539.35 5.05 -23524.47 -29276.56
A2 2.40 -14134.63 4.31 -18917.70 4.60 -18817.43 -23042.04
A3 4.73 -27056.05 6.31 -30893.75 8.43 -33468.45 -39446.54
A4 4.33 -29462.14 7.23 -36271.35 8.61 -36252.81 -33687.13
A5 3.29 -18364.42 6.04 -21562.94 7.03 -21628.55 -24015.54
A6 6.42 -28400.16 6.56 -40527.00 7.77 -41341.00 -37074.67
A7 4.07 -31807.11 7.02 -40769.62 7.14 -40405.92 -38074.67
A8 6.16 -24092.10 9.45 -26626.57 14.85 -29368.42 -28795.26
A9 2.93 -14342.84 15.16 -21604.48 9.26 -21017.71 -21912.35
B0 7.08 -29099.91 10.26 -34910.51 21.92 -40421.55 -20802.12
B1 9.90 -45818.85 16.10 -57747.66 18.20 -55808.31 -50055.21
B2 10.44 -35835.71 21.65 -46372.38 38.61 -47921.77 -18567.64
B3 12.24 -49880.27 41.36 -71448.88 30.57 -70086.77 -18327.40
B4 13.27 -47000.63 32.39 -56023.98 29.16 -56670.11 -3711.84
B5 14.32 -43048.22 36.76 -57824.22 67.22 -56557.78 -10653.72
C0 31.78 -56092.77 49.74 -68031.43 59.55 -67114.21 -15197.45
C1 32.91 -65713.76 47.26 -83248.11 58.81 -83980.63 -25196.93
C2 46.28 -74354.66 58.15 -95739.27 168.88 -108483.44 -7497.52
C3 41.88 -80173.56 108.68 -107581.79 61.09 -95373.62 -7163.54

From Tables 5.10, 5.12 and 5.14, we observe that for all large-scale in-
stances, the solution produced by the construction heuristic has been improved
by the improvement heuristic. We also observe from these tables that the
modes from which the improvement heuristic starts with, i.e. S and T modes
can make a difference on how good the objective function values are. However,
based on the results obtained, we cannot say that one of the modes is always
better than the other. Tables 5.9 and 5.13 show that in the small-scale
instances, the improvement heuristic did not improve the solution obtained
from the construction heuristic. We can observe the same thing from Table
5.11 with one exception, Foulds3, whose solution is improved to achieve the
optimal solution.

In order to analyze the efficiency of the improvement method combined
with the three versions of the construction heuristic, we report experiments
comparing them in the next section.

41

Section 5.2. Experiments with heuristic methods

5.2.1 Comparisons between heuristic methods

We now compare the results of the improvement heuristic starting with
the solutions obtained from each of the three versions of the construction
heuristic. Only the results for large-scale instances are compared. For the
ease of comparison, we have collected the best values obtained by all these
methods in Table 5.15. We also compare these solutions with the interrupted
BARON solution. Column 1 of this table gives the instance identifier. Column
2 gives the elapsed time (in seconds), obtained by adding the time needed by
the improvement method in the S and T-modes, and using the solution given
by the no ranking method as initial solution. Column 3 reports the minimum
of the objective function values in the S and T-modes obtained by the same
method as mentioned above. Columns 4-5 and 6-7 report the same type of
information as reported in columns 2-3, obtained by using the improvement
method in combination with the one time ranking and the re-ranking methods,
respectively. Column 8 gives the interrupted BARON solution.

Table 5.15: Comparing output from the improvement method in combination
with the three versions of the construction heuristic for large-scale instances.

Instance
No ranking impr. One time ranking impr. Re-ranking impr. Int. BARON

time(sec) ub time(sec) ub time(sec) ub ub

A0 8.88 -29780.50 9.64 -30337.70 9.23 -27625.79 -35812.33
A1 4.56 -21710.13 7.56 -23539.35 9.41 -23539.35 -29276.56
A2 3.42 -7546.06 9.95 -18917.70 8.91 -18917.70 -23042.04
A3 7.72 -34468.35 16.14 -31679.76 14.74 -33468.45 -39446.54
A4 9.17 -36930.53 14.16 -37723.94 15.84 -36271.35 -33687.13
A5 8.61 -24888.63 16.30 -23386.91 13.07 -21628.55 -24015.54
A6 11.91 -41670.94 10.76 -41341.00 14.33 -41341.00 -37074.67
A7 11.18 -39961.53 14.96 -40769.62 14.16 -40769.62 -38074.67
A8 15.13 -24467.09 23.36 -29368.42 24.30 -29368.42 -28795.26
A9 9.34 -21256.51 28.36 -21604.48 24.42 -21604.48 -21912.35
B0 18.65 -39761.39 24.65 -35317.30 32.18 -40421.55 -20802.12
B1 18.77 -58189.39 25.62 -55929.08 34.30 -57747.66 -50055.21
B2 28.20 -51526.15 43.63 -49946.69 60.26 -47921.77 -18567.64
B3 39.34 -68823.92 120.44 -69856.72 71.93 -71448.88 -18327.40
B4 67.03 -58924.51 89.51 -58979.56 61.55 -56670.11 -3711.84
B5 62.61 -59733.81 84.47 -56538.58 103.98 -57824.22 -10653.72
C0 64.46 -73286.24 77.89 -69276.53 109.29 -68031.43 -15197.45
C1 110.08 -77600.57 87.19 -79698.41 106.07 -83980.63 -25196.93
C2 130.96 -104662.46 151.58 -117736.60 227.03 -108483.44 -7497.52
C3 151.79 -105069.65 160.63 -107587.08 169.77 -107581.79 -7163.54

42

Chapter 5. Numerical experiments

From the above table, we observe that the no ranking method gives better
upper bounds than the other two methods in 7 instances (A3, A5, A6, B1, B2,
B5 and C0). The one time ranking method gives better bounds than the other
two methods in 5 instances (A0, A4, B4, C2 and C3), and the re-ranking
method is better than the other two methods in 3 instances (B0, B3 and C1).
In the rest of the instances, the one time ranking and the re-ranking methods
give the same upper bounds, which are better than the bounds given by the
no ranking method. We note that the no ranking method is faster than the
other two methods in all instances except 3 (A6, B4 and C1). Among the
one time ranking and the re-ranking methods, the former method is faster
than the latter in 12 instances (A1, A4, A6, A8, B0-B2, B5 and C0-C3). We
also observe that for 15 instances (A4-A8, B0-B5 and C0-C3), we got better
upper bounds than the interrupted version of global solver.

The results from Table 5.15 also indicate that we can not choose any one
method which will always succeed in giving better feasible solutions than the
remaining two methods. Since we do not know which of the three methods
would perform best in terms of solution quality, we propose an approach in
which all the three methods are run sequentially. Henceforth, this approach
is referred to as Impr2, and it reports the best solution given among the
three versions of the construction heuristic. The time required by Impr2 is
the sum of the times required by each of the three improvement methods
individually. The results obtained by applying Impr2 is reported in the
following comparison.

Next, we compare Impr2 with the improvement method starting with the
solution from the independent flow relaxation (named Impr1). Note that
the experiments on Impr1 have already been performed at the beginning of
Section 5.2. In Table 5.16, column 1 gives the instance identifier. Column 2
reports the elapsed time (in seconds), obtained by adding the time needed by
Impr1 in the S and T-modes. Column 3 reports the minimum of the objective
function values in the S and T-modes obtained by the same method. Column
4 states the elapsed time (in seconds), required by Impr2 and column 5 states
the objective function value given by it. Column 6 reports the interrupted
BARON solution.

43

Section 5.3. Experiments with relaxations

Table 5.16: Comparison between Impr1, Impr2 and the bound from a global
solver for large-scale instances.

Instance
Impr1 Impr2 Int. BARON

time(sec) ub time(sec) ub ub

A0 2.08 -24613.94 27.75 -30337.70 -35812.33
A1 1.88 -14486.35 21.53 -23539.35 -29276.56
A2 1.48 -13889.79 22.28 -18917.70 -23042.04
A3 3.25 -36037.89 38.60 -34468.35 -39446.54
A4 3.01 -36534.11 39.17 -37723.94 -33687.13
A5 4.08 -20850.75 37.98 -24888.63 -24015.54
A6 8.79 -41312.16 37.00 -41670.94 -37074.67
A7 10.61 -42034.55 40.30 -40769.62 -38074.67
A8 4.65 -30075.17 62.79 -29368.42 -28795.26
A9 5.50 -21750.30 62.12 -21604.48 -21912.35
B0 16.80 -41481.88 75.48 -40421.55 -20802.12
B1 6.95 -59568.55 78.69 -58189.39 -50055.21
B2 25.31 -52504.93 132.09 -51526.15 -18567.64
B3 46.90 -73469.18 231.71 -71448.88 -18327.40
B4 87.95 -58929.99 218.09 -58979.56 -3711.84
B5 35.94 -59382.28 251.06 -59733.81 -10653.72
C0 38.83 -69821.59 251.64 -73286.24 -15197.45
C1 40.85 -72821.42 303.34 -83980.63 -25196.93
C2 61.94 -109122.14 509.57 -117736.60 -7497.52
C3 67.43 -112167.75 482.19 -107587.08 -7163.54

From Table 5.16, we observe that Impr1 is faster compared to Impr2. The
longest time recorded for Impr1 is 87.95 seconds in instance B4, whereas, for
Impr2 is 509.57 seconds in instance C2. We also note that in terms of solution
quality, Impr2 performs better than Impr1 in 11 instances (A0-A2, A4-A6,
B4-B5, C0-C2), whereas, Impr1 is better than Impr2 in the remaining 9 out
of 20 large-scale instances. We observe that our heuristics have provided
better solutions than the global solver in 15 (A4-A6, A7-A8, B0-B5, C0-C3)
out of 20 large-scale instances.

5.3 Experiments with relaxations

In this section, we present the results of a numerical experiment performed
in order to analyze the efficiency of the algorithm proposed in Chapter 4 for
fast computation of lower bounds.

44

Chapter 5. Numerical experiments

In this experiment, we have implemented the algorithm described in
Section 4.1. The solution with which the algorithm starts, is obtained by
solving the independent flow relaxation (IFR) defined by (2.30)–(2.37). As
mentioned earlier, it is a sub-problem of the pooling problem obtained by
eliminating all the constraints involving the proportion variables from the
STP -formulation. Consequently, the relaxation is a linear program. After
solving the independent flow relaxation, violated constraints are added to it
and it is solved again, in order to improve the lower bound, until no violations
are found.

Table 5.17 shows the results of the experiment for small-scale instances.
Column 1 gives the instance identifier. Columns 2-3 report the elapsed
time (in seconds) and the objective function value obtained by solving the
independent flow relaxation, respectively. Columns 4-6 report the elapsed time
(in seconds), the number of iterations needed, and the number of constraints
added to the independent flow relaxation, respectively, by our algorithm. The
elapsed time reported in column 4 includes the time required to solve the
independent flow relaxation, i.e. the time reported in column 2. Columns
7-8 state the elapsed time (in seconds) and the lower bound on the global
minimum cost, obtained by solving the STP -relaxation [2].

Table 5.17: Comparison between the time required by our algorithm and the
STP -relaxation for small-scale instances.

Instance time(sec) IFR time(sec) #It. #Const. time(sec) lb
Adhya1 0.16 -856.25 0.23 2 5 1.00 -840.27
Adhya2 0.16 -574.78 0.31 3 6 0.53 -574.78
Adhya3 0.19 -574.78 0.37 3 6 0.38 -574.78
Adhya4 0.15 -976.44 0.34 3 6 0.37 -961.93
Bental4 0.18 -550.00 0.38 3 9 1.06 -541.67
Bental5 0.24 -3500.00 0.26 2 2 0.40 -3500.00
Foulds2 0.17 -1100.00 0.22 2 2 0.42 -1100.00
Foulds3 0.20 -8.00 0.55 5 103 1.19 -8.00
Foulds4 0.21 -8.00 1.31 7 184 0.62 -8.00
Foulds5 0.25 -8.00 1.31 7 337 0.57 -8.00
Haverly1 0.17 -500.00 0.34 2 1 0.96 -500.00
Haverly2 0.18 -1000.00 0.32 2 1 0.85 -1000.00
Haverly3 0.14 -875.00 0.31 2 2 0.97 -800.00

From the above table we observe that our algorithm is faster than the

45

Section 5.3. Experiments with relaxations

STP -relaxation in all instances except Foulds4-Foulds5. We also note that the
solution to the independent flow relaxation, is as good as that obtained from
the STP -relaxation in 9 instances (Adhya2-Adhya3, Bental5, Foulds2-Foulds5,
Haverly1-Haverly2).

Table 5.18 shows the results of the same experiment for large-scale in-
stances. Columns 1-8 give the same type of information as given in Table
5.17.

Table 5.18: Comparison between the time required by our algorithm and the
STP -relaxation for large-scale instances.

Instance time(sec) IFR time(sec) #It. #Const. time(sec) lb
A0 0.25 -37819.45 1.14 7 261 0.57 -37412.23
A1 0.22 -31689.93 0.90 8 312 1.06 -31438.51
A2 0.23 -23902.41 1.28 8 450 0.54 -23743.36
A3 0.27 -42253.73 1.79 8 187 0.52 -42032.79
A4 0.27 -43475.58 1.92 10 651 0.95 -43396.84
A5 0.32 -28257.75 2.56 11 1398 0.76 -28257.75
A6 0.31 -42463.05 3.01 11 1637 1.50 -42463.05
A7 0.40 -44682.25 3.41 13 1943 2.17 -44682.25
A8 0.40 -30666.87 3.94 13 2115 3.55 -30666.87
A9 0.31 -21933.99 3.49 12 2185 1.62 -21933.99
B0 0.44 -45466.54 2.78 7 942 1.37 -45465.92
B1 0.72 -65528.17 5.85 13 1647 2.04 -65523.34
B2 0.93 -56537.36 10.93 16 3739 6.75 -56438.06
B3 1.36 -74050.47 13.36 16 5210 11.80 -74050.47
B4 2.31 -59469.66 16.56 17 7993 26.27 -59469.66
B5 4.66 -60696.36 28.86 20 12370 41.19 -60696.36
C0 1.10 -100125.94 22.48 14 2665 11.97 -98218.60
C1 1.75 -120669.99 33.35 12 6223 40.24 -118673.48
C2 3.48 -136398.61 75.53 21 8617 44.74 -135740.45
C3 4.32 -130315.02 65.65 18 12134 681.31 -130315.02

From the above two tables, we observe that in all the instances, the
solution to the independent flow relaxation can be found in much less time
than the time required by the STP -relaxation.

From Table 5.18 we observe that the solution to the independent flow
relaxation, is as good as that obtained from the STP -relaxation in 9 instances
(A5-A9, B3-B5, C3). We also note that our algorithm is faster than the
STP -relaxation in 5 instances (A1, B4, B5, C1, C3). In the rest of the
instances the STP -relaxation is faster than our algorithm. The largest time

46

Chapter 5. Numerical experiments

difference between the two methods is observed in the instance C3, in which
our method is around ten times faster than the other method.

5.4 Observations

Experiments with heuristic methods indicate that in terms of speed, the
improvement method with the initial solution obtained from the independent
flow relaxation, wins over the improvement method with the initial solution
obtained from the construction heuristic. In terms of the quality of solutions,
the results indicate that the winner is the other way round.

In order to determine the efficiency of our heuristic methods with respect
to other heuristics existing in the literature, we compare the best results
obtained from our heuristics with the construction heuristic given by Alfaki
and Haugland [3]. The heuristic method described in [3] was coded in GAMS
modelling language, and the experiments for this method were run on a
computer equipped with 3.00 GHz Intel(R) quad-core processor and 8GB
RAM. The comparison between the two methods is shown in Table 5.19.

Column 1 of this table gives the instance identifier. Column 3 gives the
minimum of the objective function values among Impr1 and Impr2, that were
mentioned in Table 5.16 of Section 5.2.1, and column 2 gives a sum of the
elapsed time (in seconds) corresponding to both the methods stated above.
Column 5 gives a sum of the CPU-time (in seconds) needed by the heuristic
stated in [3], when it uses each of the P and PQ-formulations. Column
6 states the minimum of the objective function values found by the same
heuristic using either the P or PQ-formulation. The values in the above two
columns are collected from [3]. Columns 4 and 7 state the optimality gap in
percentage for our heuristic and the heuristic in [3], respectively, calculated by
the formula: |ub−lb

lb
|.100 %, where lb refers to the lower bound on the global

minimum cost, collected from [2], and is reported in column 8. Column 9
states the interrupted BARON solution.

47

Section 5.4. Observations

Table 5.19: Comparison between our heuristics, the construction heuristic in
[3] and the bound from a global solver for large-scale instances.

Instance
Our heuristics Heuristic in [3] Int. BARON

time(sec) ub gap(%) time(sec) ub gap(%) lb ub

A0 29.83 -30337.70 16.68 967.91 -32289.61 11.31 -36411.10 -35812.33
A1 23.41 -23539.35 20.94 4796.53 -23398.40 21.42 -29775.79 -29276.56
A2 23.76 -18917.70 17.90 529.41 -16828.37 26.97 -23042.04 -23042.04
A3 41.85 -36037.89 10.25 971.02 -32766.89 18.40 -40155.50 -39446.54
A4 42.18 -37723.94 10.98 1073.48 -35084.35 17.20 -42374.92 -33687.13
A5 42.06 -24888.63 11.90 2661.33 -20758.56 26.52 -28251.33 -24015.54
A6 45.79 -41670.94 1.86 33.01 -32002.94 24.63 -42460.51 -37074.67
A7 50.91 -42034.55 5.93 1182.29 -30958.66 30.71 -44682.25 -38074.67
A8 67.44 -30075.17 1.93 1643.33 -22965.36 25.11 -30666.87 -28795.26
A9 67.62 -21750.30 0.74 1726.28 -15650.97 28.57 -21912.35 -21912.35
B0 92.28 -41481.88 8.19 4432.81 -32158.57 28.82 -45179.93 -20802.12
B1 85.64 -59568.55 8.42 4006.95 -48944.04 24.76 -65048.03 -50055.21
B2 157.40 -52504.93 6.38 1851.10 -33388.34 40.47 -56083.32 -18567.64
B3 278.61 -73469.18 0.78 1768.17 -55964.56 24.42 -74050.47 -18327.40
B4 306.04 -58979.56 0.82 1611.84 -37413.97 37.09 -59469.66 -3711.84
B5 287.00 -59733.81 1.59 3430.97 -36333.67 40.14 -60696.36 -10653.72
C0 287.47 -73286.24 23.86 3862.77 -66213.11 31.21 -96256.99 -15197.45
C1 344.19 -83980.63 28.34 3868.22 -80219.43 31.54 -117185.23 -25196.93
C2 571.51 -117736.60 12.93 1800.58 -68571.44 49.29 -135228.17 -7497.52
C3 549.62 -112167.75 13.93 2610.69 -79446.89 39.03 -130315.02 -7163.54

The results in the above table, are considerably in the favor of our heuristics.
We observe that in all the instances except A0, our heuristics give better
upper bounds on the optimal solution than the construction heuristic in
[3]. Observing the time, our heuristics is much faster than theirs in all the
instances except A6. Our heuristics are faster because they solve only linear
programs, whereas the other construction heuristic solves bi-linear programs.

We also note that in all the instances except A0, our heuristics give the
smallest optimality gap. In 6 instances (A6, A8, A9 and B3-B5), our heuristics
reduced the optimality gap to less than 2 %, while the gap given by the other
heuristic method is above 24 % in the same instances. Also, we have been
able to give better solutions than the global solver in 15 (A4-A8, B0-B5 and
C0-C3) out of 20 large-scale instances and those solutions are, to the best of
our knowledge, the best solutions known to date.

Experiments with relaxations indicate that our algorithm can compute
lower bounds faster than the STP -relaxation, in most of the small scale
instances. In large-scale instances, our algorithm is faster than the STP -

48

Chapter 5. Numerical experiments

relaxation in 5 instances. It is observed from Table 5.18, that in all the
instances except C3, the times required by the two methods are in the same
range. In the instance C3, our algorithm is around ten times faster than the
STP -relaxation. Our experiments also show that in 9 out of 20 large-scale
instances, the optimal solution to the independent flow relaxation coincides
with the solution to the STP -relaxation. We observe that the independent
flow relaxation has the same optimal solution when it is re-solved after adding
violated constraints to it. This indicates that the relaxation has multiple
optima. Hence, the time spent by algorithm in iterative re-solves is not
productive.

49

Chapter 6

Conclusion and future work

6.1 Conclusion

In the past, various inexact and exact solution techniques have been pro-
posed for the pooling problem. Solving large pooling problem instances at a
reasonable computation cost has been a challenge, because of the bi-linear
structure of the problem. Most of the inexact solution methods that focus on
large pooling problem instances, depend upon good starting solutions, and
therefore they can be trapped easily at weak solutions. In this thesis, our goal
was to develop solution techniques that can compute optimal or near optimal
solutions fast for large pooling problem instances. We have implemented
heuristic methods to achieve this.

First, we proposed an improvement heuristic which starts with the solution
to the independent flow relaxation. The relaxation is obtained by eliminating
all the constraints involving the bi-linear terms. Then, either the source
or the terminal proportions are estimated and fixed, and the sub-problem
is solved again with the additional constraints. The procedure is repeated
by alternations between fixed source and terminal proportions until there is
no significant changes in the flow. Experimental results indicate that even
in large instances, this heuristic is very fast and it gives fairly good upper
bounds on the global minimum cost.

Next, in order to provide good initial solutions for the improvement
heuristic, we developed a basic construction heuristic. This heuristic considers
a sequence of sub-graphs, each of which consists of a single terminal, and
an associated linear program for optimizing the flow to the terminal. The

50

Chapter 6. Conclusion and future work

terminal is selected based on a ranking system. The optimal solution to each
linear program serves as a feasible augmentation of total flow accumulated
so far. In the basic construction method, we blocked the pools that send
flow to a terminal, in order to avoid deterioration of quality at the remaining
terminals. As this technique is unnecessarily strict, we proposed an improved
version of it called the construction heuristic in which the pools are reused,
and we add a constraint which ensures that the quality at the terminals does
not deteriorate as a result of it. Also, the terminals that received zero flow
during the ranking process are eliminated since they do not contribute to
the profit. Experimental results suggest that the latter method improves the
solution provided by the former one.

In order to further improve the solutions, we merged the improvement and
the construction heuristic. We used the solution provided by the construction
heuristic as the starting solution for the improvement heuristic. Experimental
results on 20 large-scale instances indicate that, this method outperformed
other methods with respect to the quality of the solutions. As it needed
additional time to construct the solutions, this method was observed to be
the slowest.

Overall, experimental results on 20 large scale pooling problem instances
indicate that, our heuristic methods outperformed other heuristic methods
that have been proposed earlier.

Finally, we have proposed an algorithm to compute the lower bound for
the pooling problem fast. This algorithm starts with the solution to the
independent flow relaxation. This starting solution is a lower bound on the
optimal objective function value and it may be weak. In order to improve
this bound, we add valid constraints to the relaxation and solve it again.
The procedure is repeated until no constraints are violated. The speed of
this algorithm is compared to the speed of a relaxation method from the
literature. The two methods converge to the same solution as they involve
the same constraints. Experimental results indicate that our algorithm is fast
for most of the small pooling problem instances. In large-scale instances, it
was observed to be faster than the other method in five instances. Except
one large instance, the time required by the two methods was in the same
range. It was also observed that the independent flow relaxation has multiple
optima. Therefore, in some instances, the algorithm re-solves the relaxation
iteratively until none of the constraints are violated, even though there is no
change in the cost.

51

Section 6.2. Future work

6.2 Future work

Possible directions for future work would be to investigate other heuristics
similar to the ones proposed by us. Some modifications can be done to the
improvement heuristic. In this method, the proportion variables are fixed and
the algorithm can possibly be trapped in a solution close to the initial one.
As an alternative to fixing the proportions, deviations from the last observed
proportions can be penalized and the penalties can be increased gradually.
This would offer more freedom to search for good solutions in early iterations
than what is the case when proportions are fixed.

Another direction for future work would be to further improve the con-
struction heuristic proposed by us, such that it can find even better feasible
solutions.

In Algorithm 4 for fast computation of lower bounds, we observed that the
algorithm re-solves the independent flow relaxation iteratively after adding
violated constraints to it, even when there is no change in the cost. An
improvement to this algorithm would be to modify the stopping criteria such
that it terminates if the cost is unchanged after a fixed number of iterations.

A possible extension of this work can also be the implementation of the
methods proposed in this thesis for the generalized version of the pooling
problem in which the network consists of links between pools as well, and has
applications in refineries, chemical plants and water treatment facilities.

It would also be interesting to note the performance of the algorithms in
terms of speed if they are implemented in a platform other than GAMS such
as C++ or Java.

52

Bibliography

[1] Adhya, N., Tawarmalani, M., and Sahinidis, N.V. (1999). A Lagrangian
approach to the pooling problem. Industrial & Engineering Chemistry
Research, 38 (5), 1956-1972.

[2] Alfaki, M. and Haugland, D. (2013). Strong formulations for the pooling
problem. Journal of Global Optimization, 56 (3), 897-916.

[3] Alfaki, M. and Haugland, D. (2013). A cost minimization heuristic for
the pooling problem. Annals of Operations Research, 1-15.

[4] Alfaki, M., and Haugland, D. (2011). Comparison of discrete and contin-
uous models for the pooling problem. In A. Caprara and S. Kontogiannis
(Eds.), 11th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (Vol. 20, pp. 112-121). OASICS.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany.

[5] Alfaki, M. (2012). Models and Solution Methods for the Pooling Problem
(Doctoral dissertation, The University of Bergen).

[6] Almutairi, H., and Elhedhli, S. (2009). A new Lagrangian approach to
the pooling problem. Journal of Global Optimization, 45 (2), 237-257.

[7] Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., and Mladenovic, N.
(2004). Pooling problem: Alternate formulations and solution methods.
Management Science, 50 (6), 761-776.

[8] Baker, T.E., and Lasdon, L.S. (1985). Successive linear programming at
Exxon. Management Science, 31 (3), 264-274.

[9] Benders, J.F. (1962). Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4 (1), 238-252.

53

Section Bibliography

[10] Ben-Tal, A., Eiger, G., and Gershovitz, V. (1994). Global minimization
by reducing the duality gap. Mathematical Programming, 63 (2), 193-212.

[11] Faria, D.C., and Bagajewicz, M.J. (2008). A new approach for the
design of multi-component water/wastewater networks. Computer Aided
Chemical Engineering, 25, 43-48.

[12] Floudas, C.A., and Aggarwal, A. (1990). A decomposition strategy for
global optimization search in the pooling problem. Operations Research
Journal On Computing, 2 (3), 225-235.

[13] Foulds, L.R., Haugland, D., and Jörnsten, K. (1992). A bilinear approach
to the pooling problem. Optimization, 24 (1), 165-180.

[14] Frimannslund, L., Gundersen, G., and Haugland, D. (2008). Sensitivity
analysis applied to the pooling problem. Technical Report 380, University
of Bergen.

[15] Geoffrion, A.M. (1972). Generalized benders decomposition. Journal of
Optimization Theory and Applications, 10 (4), 237-260.

[16] Gounaris, C.E., Misener, R., and Floudas, C.A. (2009). Computational
comparison of piecewise-linear relaxation for pooling problems. Industrial
& Engineering Chemistry Research, 48 (12), 5742-5766.

[17] Greenberg H.J. (1995). Analysing the Pooling Problem. ORSA Journal
of Computing, 7 (2), 205-217.

[18] Griffith, R.E., and Stewart, R.A. (1961). A nonlinear programming tech-
nique for the optimization of continuous processing systems. Management
Science, 7 (4), 379-392.

[19] Gupte, A., Ahmed, S., Dey, S.S., and Cheon, M.S. (2013). Pooling
problems: relaxations and discretizations. School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA. and
ExxonMobil Research and Engineering Company, Annandale, NJ.

[20] Haverly, C.A. (1978). Studies of the behavior of recursion for the pooling
problem. ACM SIGMAP Bulletin, 25, 19-28.

54

Bibliography

[21] Kallrath, J. (2000). Mixed integer optimization in the chemical pro-
cess industry: Experience, potential and future perspectives. Chemical
Engineering Research and Design, 78 (6), 809-822.

[22] Lasdon, L.S., Waren, A.D., Sarkar, S., and Palacios, F. (1979). Solving
the pooling problem using generalized reduced gradient and successive
linear programming algorithms. ACM Sigmap Bulletin, 27, 9-15.

[23] Liberti, L., and Pantelides, C.C. (2006). An exact reformulation algorithm
for large nonconvex NLPs involving bilinear terms. Journal of Global
Optimization, 36 (2), 161-189.

[24] Main, R.A. (1993). Large recursion models: Practical aspects of recur-
sion techniques. In T. Ciriani and R. Leachman (Eds.), Optimization
in Industry: Mathematical Programming and Modeling Techniques in
Practice (pp. 241-249). New York, USA: John Wiley & Sons Ltd.

[25] McCormick, G.P. (1976). Computability of global solutions to factorable
nonconvex programs: part I - convex underestimating problems. Mathe-
matical Programming, 10 (1), 147-175.

[26] Misener, R. (2013). Novel global optimization methods: Theoretical
and computational studies on pooling problems with environmental
constraints. (Doctoral dissertation, Princeton University).

[27] Palacios-Gomez, F., Lasdon, L.S., and Engquist, M. (1982). Nonlinear
optimization by successive linear programming. Management Science,
28 (10), 1106-1120.

[28] Pham, V. (2007). A Global Optimization Approach to Pooling Problems
in Refineries. (Masters thesis, Department of Chemical Engineering,
Texas A&M University, Texas, USA).

[29] Pham, V., Laird, C., and El-Halwagi, M. (2009). Convex hull discretiza-
tion approach to the global optimization of pooling problems. Industrial
& Engineering Chemistry Research, 48 (4), 1973-1979.

[30] Rømo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B.H., and
Pedersen, B. (2009). Optimizing the Norwegian natural gas production
and transport. Interfaces, 39 (1), 46-56.

55

Section Bibliography

[31] Sherali, H.D., and Adams, W.P. (1998). A reformulation-linearization
technique for solving discrete and continuous non-convex problems. Non-
convex Optimization and its Applications. 31, Kluwer Academic Pub-
lishers.

[32] Tawarmalani, M., and Sahinidis, N.V. (2002). Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear Programming:
Theory, Algorithms, Software, and Applications. Dordrecht, The Nether-
lands: Kluwer Academic Publishers.

[33] Tomasgard, A., Rømo, F., Fodstad, M., and Midthun, K. (2007). Op-
timization models for the natural gas value chain. In G. Hasle, K. Lie
and E. Quak (Eds.), Geometric Modelling, Numerical Simulation, and
Optimization: Applied Mathematics at SINTEF (pp. 521-558). Springer.

[34] Visweswaran, V., and Floudas, C.A. (1990). A global optimization
algorithm (GOP) for certain classes of nonconvex NLPs-II. Application
of theory and test problems. Computers & chemical engineering, 14
(12), 1419-1434.

[35] Visweswaran, V. (2009). MINLP: Applications in blending and pooling
problems. Encyclopedia of Optimization, Springer US, 2114-2121.

56

	Acknowledgements
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Previous work (literature review)
	Local optimization techniques
	Global optimization techniques

	Problem definition
	Structure of the thesis

	Model formulations for the pooling problem
	The quality formulation
	Proportion formulations
	Formulations with source proportions
	Formulation with terminal proportions
	Formulation with both source and terminal proportions

	Heuristic methods
	Improvement heuristic
	Basic construction heuristic
	Construction heuristic

	Relaxations
	Fast computation of lower bounds on the minimum cost

	Numerical experiments
	Test instances
	Experiments with heuristic methods
	Comparisons between heuristic methods

	Experiments with relaxations
	Observations

	Conclusion and future work
	Conclusion
	Future work

	Bibliography

