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Sammendrag 

Studier har vist at emosjonssystemer brukes for å avgjøre adferd, noe som nylig har blitt 

undersøkt i en individbasert, matematisk modell for vertikalvandring i planktivor, mesopelagisk 

fisk. Individene i modellen veksler mellom å være i tilstandene “Redd” eller “Sulten”. Tilstanden 

avgjør hvordan de evaluerer omgivelsene sine og dermed også adferden. For å undersøke 

gyldigheten av resultatene fra denne modellen har jeg lagt til muligheten for økt presisjon i de 

nevrale responsfunksjonene ved å legge til flere gener, samt utført en sensitivitetsanalyse på 

tidsoppløsningen.  

 

Resultatene mine viser at nivået av frykt ikke stabiliserer seg selv i veldig lange simuleringer 

eller simuleringer med økt tidsoppløsning og at simuleringer som er kjørt med de eksakt samme 

parameterne ikke konvergerer når det gjelder nivå av frykt. I tillegg finner jeg at den totale 

eggproduksjonen i modellen er følsom for tidsoppløsningen i hver døgnsyklus, men ikke av antall 

døgnsykluser. Når tidsoppløsningen økes, veksler individene oftere mellom å være “Redd” og 

“Sulten” og har kortene kontinuerlige perioder med frykt i forhold til den totale livslengden sin. 

Alle egenskaper (kroppsmasse, mortalitet, fekunditet og dybdevalg) utenom frykt var stabile etter 

bare 2000 generasjoner. 

 

Når den genetiske kompleksiteten i modellen økes, utnytter fiskene dette i særdeles liten grad. 

Det eneste unntaket er under predatorangrep. Denne muligheten for mer avanserte responser på 

ytre stimuli gav ingen økning i den maksimale eggproduksjonen eller hvor fort denne ble 

oppnådd. Hvor mye den økte genetiske kompleksiteten ble utnyttet varierte mye mellom 

populasjonene og var ikke konsistent for de forskjellige genene i modellen. I likhet med tidligere 

versjoner av denne modellen ble det evolvert flere ulike løsninger i samme populasjon.  

 

Modellen kan derfor kjøres med høyere tidsoppløsning per døgnsyklus for å forbedre resultatene, 

men færre døgnsykluser for å spare regnetid. Antall generasjoner kan også reduseres kraftig, med 

mindre det er nivå av frykt som skal undersøkes. Økningen i genetisk kompleksitet viser seg å 

være uproblematisk for antall generasjoner som trengs for å finne frem til en god løsning, men er 

ikke nødvendig før arkitekturen i modellen og dens miljø er gjort mer komplisert.  



 

 

Abstract 

Many studies have shown that emotion systems are in use to direct behavior, which has also been 

utilized in a recent mathematical model. To investigate the general validity on the results from 

this model for vertical migration in planktivorous, mesopelagic fish, I increased the potential for 

precision in the neuronal response functions (by adding more genes) and executed a sensitivity 

analysis of the temporal resolution. I found that many aspects of the model were sensitive to the 

temporal resolution, especially when this was decreased. With fewer generations, it is possible to 

shorten simulation time by more than a factor of 10, but higher temporal resolutions gave better 

results. More complex neuronal responses did not seem to improve growth or survival.  

 

The increased genetic complexity did not incur longer time to find adaptive solutions in the 

model. One reason for this may be that the extra genes were only partly utilized to perform more 

complex neuronal responses by the simulated populations. It was found that for almost all stages 

in life, the increased genetic complexity was not needed. The usage of more genes to make more 

complex response curves to their perceptions varied between populations and was not consistent 

for the genes involved. Complex response curves were mostly used for increased ability to have 

gradually increasing responses at either very low or very high perception strengths, while still 

maintaining a sigmoid shape of the curve. As for previous versions of the model, several 

solutions evolved in the same population.  

 

Adding more time steps in each diel cycle gave a significantly higher population egg production 

at the highest resolution, while adding more diel cycles in a generation did not yield any 

differences. At the lowest temporal resolution, reducing the number of diel cycles gave lower 

population egg production. Total amount of fear during a lifetime varied considerably among 

simulations in each experiment, but showed no specific pattern in regard to temporal resolution. 

However, the relative length of continual periods of fear were longer in simulations with low 

resolution in each diel cycle and decreased as the resolution increased. The levels of fear in the 

different experiments did not stabilize or converge between simulations, opposite to the case for 

all other traits. Not even after 120,000 generations did levels of fear stabilize or converge 

between simulations. 
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1 Introduction 

1.1 Background 

Modeling behavior in ecology goes all the way back to Lotka (1907; 1925). He introduced an 

equation for fitness maximization whereby anatomy, life history and behavior can be evaluated 

with a common currency. This modeling paradigm assumed that organisms make optimal 

decisions and was developed further into Life History Theory by Fisher (1930). In the 1960’s this 

paradigm gave rise to Optimal Foraging Theory (Emlen, 1966, Macarthur and Pianka, 1966) and 

further developments of Life History Theory (Murdoch, 1966, Williams, 1966). Optimization is a 

method for mathematical simplification of a problem, based on that natural selection will evolve 

a solution towards an optimum, although the optimum itself may never be reached (Fisher, 1930). 

However, while alternate forces operate on the shaping of the gene pool, organisms themselves 

are triggered by proximate events and processes. In the following quote from Lotka’s book, to 

illustrate that humans are not guided by rate of increase in body mass, he pointed out: 

 

“What guides a human being, for example in the selection of his activities, are his tastes, his 

desires, his pleasures and pains, actual or prospective.” (Lotka, 1925, p.352) 

 

McNamara and Houston (1986) and Mangel and Clark (1986) stressed that the temporal 

resolution in the early models was too coarse and that other methods were needed to study 

dynamic variation in behavior. Their methods, based on dynamic optimization, further developed 

the concept of a common currency to compare costs and benefits from actions of different 

impacts on fitness. However, these mathematical methods still did not take the proximate 

constraints of observation and decision making into account (Fawcett et al., 2013). Also, dynamic 

optimization models do not include density-dependent or frequency-dependent aspects of fitness 

(Giske et al., 1998). While ecologists separate age-dependent (Lotka, 1925, Fisher, 1930), state-

dependent (Houston and Mcnamara, 1986, Mangel and Clark, 1986), density-dependent (Fretwell 

and Lucas, 1970) and frequency-dependent (Maynard Smith and Price, 1973) motivations for 

behavior by different methodologies, the instantaneous combination of these motivations seems 
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possible for the animals themselves. Mendl et al. (2009) pointed out that the emotion system 

which uses reward/punishment mechanisms in directing behavioral decisions, is the way 

evolution developed an operational common currency for animals. Based on this knowledge, 

modeling behavior by use of an emotion system is reasonable. Exactly what kind of emotion 

system a certain animal possesses and how these are to be modeled, are yet not well known.   

 

The assumption of optimality in the early models was a way to simplify the reality, as pointed out 

by Lotka in the opening quote, in order to find an analytical or simple numerical solution. To find 

optimal solutions by use of the Euler-Lotka equation is a simplified method for finding the best 

life history that evolution over time will arrive at, but unlike the assumptions of these early 

models of animal behavior, all solutions evolved in nature have been under some proximate 

constraints. In a complex environment, a very large brain would be needed to encounter all 

situations in an optimal way, and this would come at great expense (Giske et al., 1998, Nilsson, 

2000). It has also been shown that animal behavior is not always optimal (Pompilio and Kacelnik, 

2005, Henly et al., 2008, Pavlic and Passino, 2010), thus deviating from the predictions of 

rational choice theory (Fawcett et al., 2014), a phenomenon that has been termed outcome bias 

(Marshall et al., 2013). This makes much more sense in an evolutionary perspective since it is 

impossible for an animal in a partly stochastic world to have inherited an ability to foresee the 

optimal response to every situation it can possibly encounter (McNamara and Houston, 2009, 

Goldstein and Gigerenzer, 2011).  

 

‘Rules of thumb’ are therefore much more realistic to have evolved to handle the large amount of 

incoming information. The behavior may not be optimal, but will work more like a general rule 

and do well over a large range of situations, including those never encountered before 

(Hutchinson and Gigerenzer, 2005). Individual differences in behavior have also been observed 

to be consistent over time and situations. This has been referred to as syndromes, personalities 

and behavioral types (Sih et al., 2004, Bell, 2007, Dingemanse et al., 2010).  

 

An emotion system is thus an evolved version of a ‘rules of thumb’ or a ‘common currency’ 

system when evaluation outcome from behavior (Cabanac, 1979, Leknes and Tracey, 2008). It 

describes the path from receiving information, through motivation and state of the individual, to a 
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physiological and behavioral outcome (Panksepp, 2005, de Waal, 2011). The role of an emotion 

system is to help an organism in surviving and reproducing by serving different adaptive 

purposes (LeDoux, 2012b). The exact understanding of an emotion in an emotion system is, on 

the other hand, more uncertain. It is important to note that the use of the term ‘emotion system’ in 

this text does not refer to a physical part of a brain. Rather, an emotion system is a system for 

adaptive responses to stimuli at the organismal level.  

1.2 Emotions, global organismic states and survival circuits 

Emotions can be explained as activity in the brain that takes over the usual perceptions of an 

individual’s surroundings (Panksepp, 1998) or a state of the brain that changes the evaluation of 

stimuli (Kalueff et al., 2012).While the attempts are numerous, there is no objective definition or 

consensus of the term emotion (Izard, 2010a, LeDoux, 2012a). This has led to different usage of 

the term emotions in the scientific literature. Some use it almost as a synonym for feelings 

(Kittilsen, 2013). This assumes a degree of consciousness, i.e. awareness of own thoughts (Mendl 

and Paul, 2004). Consciousness in different groups of animals is a widely discussed topic, but it 

is not necessary to have conscious experience to possess an emotion system (Mendl et al., 2011, 

Rose et al., 2014).  The two major competing theories in the field of emotions disagree in this 

aspect (Panksepp, 2003). While the theory of Panksepp (1998) states that consciousness is 

obligatory for emotions, the theory of LeDoux (2012b) is independent of consciousness. This 

means that unconscious animals can have emotions, according to LeDoux, while Panksepp 

presupposes affect, the ancient form of consciousness that at least is shared by all mammals, an 

aspect that LeDoux think is a minor detail of the field of emotion research.    

 

The word emotion, a keyword in modern psychological theory, suffers from having many 

different meanings in the scientific literature (Izard, 2010b). Through the history of the word, 

starting in the 17
th

 century, it has been associated with the entire aspect of human mental life 

(Dixon, 2012). This broad use is carried on by psychologists and behavioral neuroscientists today 

and it is not likely that it can be defined in a way that is adequate for all fields where it is 

currently used (Izard, 2010a). Some have suggested to avoid the word and some try to distinguish 

between the many usages of it (Dixon, 2012). 
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In a theory for fear LeDoux (2012b) does not use the word ‘emotion’ due to these historical 

constraints (see Dixon, 2012). Instead he introduces the concepts of ‘survival circuits’ and ‘global 

organismic states’ (GOS). These concepts do not require emotions and hence the problem of 

confusion is avoided. He points out that reactions by bacteria to both beneficial and harmful 

stimuli (Macnab and Koshland, 1972) are evolutionary precursors and the neurobiological 

foundation for what humans today experience as emotions. Our experiences of these emotions 

and our consciousness have evolved gradually since early forms of life. Similarities in 

neurochemistry and behavior between vertebrates and invertebrates are indications of the early 

origin of brain systems that are functionally much alike when it comes to processing stimuli. The 

arguments for this will be laid out below.  

 

The theory by LeDoux (2012b) does not need any conscious experience by the organism 

(LeDoux, 2014) and emotions are not necessary when addressing survival circuits and GOS. I am 

not stating that one of the theories of LeDoux (2012b) or Panksepp (1998) are more correct than 

the other, but my work is more consistent with that of LeDoux (2012b) which has been expanded 

by Giske et al. (2013) to also include a circuit for hunger, not just fear.  

 

The GOS in the theory by LeDoux (2012b) is a state of the whole organism where the individual 

allocates the resources of its brain, and hence also its other physical resources, towards a 

challenge or opportunity. By entering the GOS, attention towards relevant stimuli are enhanced 

while other less relevant stimuli are more or less ignored (LeDoux, 2012b). An example of the 

consequences of attention can be lower feeding efficiency (Lastein et al., 2008), but better 

chances of survival when in an afraid GOS (Ashley et al., 2009, Braithwaite and Boulcott, 2007). 

 

A survival circuit, as one of the core components of the theory by LeDoux (2012b), is an 

important factor that contributes to activate the GOS. A survival circuit is a process that serves an 

adaptive purpose by restricting attention and arousing the relevant parts of the brain and body 

(LeDoux, 2012b). There exist survival circuits for all basic life-sustaining mechanisms. Some of 

these are feeding (Figure 1), thermoregulation and reproduction (LeDoux, 2014). Survival 

circuits, as with most other neurological mechanisms, are most widely studied in mammals, were 

they are highly conserved between species. At least to some extent, precursors to survival circuits 
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with similar functions exist in invertebrates (Bateson et al., 2011), but the organization may be 

different (LeDoux, 2014).  

 

Figure 1: The survival circuit for acquiring nutrition as it is represented in the model used in this study. 

Area shaded in red represents the survival circuit. The perception of food is processed twice in the model, 

both when going into a GOS and when producing behavior. When going from perception to behavior, the 

circuit interacts with responses from other perceptions (stomach capacity and conspecifics), 

developmental genes, competing GOS and restriction of attention set by the chosen GOS. In the GOS 

‘Hungry’ the attention is towards feeding while the attention towards predators is low, hence increasing the 

risk of being eaten. An explanation for the stages in the survival circuit is to the left in the figure and 

interactions with other circuits are to the right.  
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1.3 Comparison of human and non-human animals 

The concept of emotion is described from the human experience, but it is difficult to account for 

emotions in other animals even though this system originated from a more basic form already in 

bacteria (Macnab and Koshland, 1972). There is good evidence that mammals are in possession 

of an emotion system (Bekoff, 2000, Cabanac et al., 2009, LeDoux, 2012b) and that our behavior 

is primarily controlled by this (Panksepp, 2005). Several types of evidence support this. 

 

Brain anatomy is important for comparison of human and non-human animals. The size of the 

brain in relation to body size, the enchephalization quotient, is a good indicator of the mental 

capacity of a species (Herculano-Houzel, 2007, Cabanac et al., 2009). When looking at this 

quotient, there is a large difference between ectotherms and endotherms, as warm blooded 

animals have a brain that is about 10 times larger (Cabanac et al., 2009). This leaves a distinction 

between Amniota (mammals, reptiles and birds) and Lissamphibia (modern amphibians). In the 

amniotes, a new structure also emerges in the brain, the cortex (Aboitiz and Zamorano, 2013). 

This new component gave a new level of complexity to the animal brain. Humans share this brain 

structure with the rest of the amniotes, although there are large differences in architecture 

between reptiles and mammals (Aboitiz et al., 2003), making it more plausible that these animals 

experience emotions in a similar way as humans. The emergence of emotions in the transitions 

between amniotes and Lissamphibia is also supported by Rial et al. (2008).  

 

The discovery of the limbic system in non-human animals is important for comparing emotions 

in humans and non-human animals (Kittilsen, 2013). This is due to the function of the limbic 

system in motivated behavior and emotions in primates (Ono et al., 2000). The olfactory limbic 

system, which is tightly coupled with the emotion system (Reep et al., 2007), has been suggested 

to be the driving force of vertebrate brain evolution (Jacobs, 2012). This is due to the importance 

of odors when navigating in space, a property found in organism of all complexities, including 

insects (Strausfeld et al., 2009) and fish (DeBose and Nevitt, 2008).  

 

In terms of behavior, both mammals and birds produce many of the same responses when 

handled as humans do when experiencing an emotion (Rial et al., 2008). Among these responses 

are tachycardia and fever. The same responses are not observed in fish or amphibians according 
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to Cabanac et al. (2009). Other behaviors that are coupled with emotion states are observed in 

several other mammals, e.g. facial expressions (Evers et al., 2014) and vocal expressions (Paul et 

al., 2005). 

 

Another way to compare mental capacities is to look at neurochemical similarities between 

species (O'Connell and Hofmann, 2011). Dopamine, serotonin and opioids are associated with 

emotion systems in humans and are highly conserved in evolution (Mustard et al., 2005, Iliadi, 

2009, Curran and Chalasani, 2012). These chemical components are used in punishment and 

reward in the brain and function as a way of modifying behavior. The presences of these 

substances in other species are at least an indication of the presence of an emotion system in the 

form of utilizing a common currency.  

 

A major difference between emotion research in humans and non-human animals is that humans 

can verbally communicate their experience (Braithwaite and Boulcott, 2007). One recent example 

of this is a study by Nummenmaa et al. (2014) where they found bodily sensations to have a 

consistent pattern when experiencing a basic emotion (referring to the theory by Ekman (1992)). 

This is an indication from human research that such emotions have distinct representations in the 

body, that emotions (or emotion systems) activate certain physiological bodily components.  

 

Most of the research done in the field of emotions is conducted on mammals. Due to the large 

phylogenetic divergence between mammals and fish it is not likely to see the same structures 

(which we do not) of survival circuits. On the other hand, the principles of organization may be 

preserved. This is at least the thought behind survival circuits, they do not have to be looked at in 

a different way when working with different animals (LeDoux, 2012b). How the theory of 

emotion systems apply to fish will be treated independently as a literature review in the results 

section. 

 

Experiments with honeybees have revealed that these invertebrates display a cognitive bias 

(Bateson et al., 2011), meaning that their behavior indicates an effect of an emotional state 

preventing the most rational behavior (Mendl et al., 2009). This evidence for emotional states in 

invertebrates is as good as those for vertebrates (Mendl et al., 2011), where the number of studies 
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on different species are numerous (Enkel et al., 2010, Doyle et al., 2011). It is important to note 

that this does not refer to conscious emotions, but behavioral and physiological changes due to 

the possession of an emotion system (Paul et al., 2005, Mendl et al., 2009). Even though the brain 

of an invertebrate is very small compared to a vertebrate, recent studies show that the cognitive 

abilities of some insect species and other arthropods go beyond what previously acknowledged 

(Giurfa, 2013). This includes highly contingent integration of multiple sensory inputs in crabs 

(Hazlett and McLay, 2000), attention direction by fruit flies (van Swinderen and Greenspan, 

2003), application of general rules to new situations by honey bees (Srinivasan, 2010) and trade-

offs between speed and accuracy in vision of bumblebees (Dyer, 2012), suggesting sophisticated 

cognitive processes. In this text, cognition refers to the whole process of acquisition, processing, 

storing and acting on information (Shettleworth, 2009). 

1.4 Approach through modeling 

To investigate effects of an emotion system on behavior, a model including an emotion system 

has been developed for fish (Giske et al., 2013). The model represents the ocean’s midwater 

planktivore Maurolicus muelleri, Müller’s pearlside, but the focus here is not on the specific 

species. This species was originally chosen because of the knowledge of the behavior and life 

history of the organism based on good field observations (e.g. Rasmussen and Giske, 1994, 

Kristoffersen, 2007) and theoretical models (Giske and Aksnes, 1992, Rosland, 1997, Strand et 

al., 2002).  

 

However, the limitations to the Giske et al. (2013) model are many. One is that each individual is 

modeled to live for only seven days with 200 time steps in each day. In contrast, Maurolicus 

muelleri may live for up to five years (Gjøsæter, 1981, Kristoffersen and Salvanes, 1998) and can 

make instantaneous decisions (Balino and Aksnes, 1993, Staby et al., 2011).  

 

The phenotypes produced by the Giske et al. (2013) model are very consistent between 

simulations. Movement in the water column, body mass, death rates and fecundity show very 

little variation between independent simulations. On the other hand, the genetic composition and 

the distribution between the emotional states vary a lot among simulations (Giske et al., 2013). 
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This is due to the evolution of different shapes of the neuronal response functions (illustrated as 

sigmoid curves in Figure 1) among simulations. Hence, another limitation could be the shapes of 

these neuronal response curves, for which to our knowledge there exist no research. Therefore, 

the complexity of the neuronal response functions was increased. The genomic complexity of the 

organisms is thereby increased, measured by the amount of information that the genome encodes 

(Adami et al., 2000). It would then be interesting to see if there are evolved neuronal responses 

that utilize the possibilities of the increased complexity. Also, if there are changes in the 

consistencies of genotypes or phenotypes among the populations.  

 

The type of fish (planktivorous mesopelagic) this model is built for have an estimated combined 

biomass of 1000 million tons and is a potential unused food resource (Kaartvedt et al., 2012, 

Irigoien et al., 2014). To have good models for this type of fish is of great importance for 

investigating both how to develop an economically profitable fishery and the ecological 

implications of such activity.  

1.5 Hypotheses 

The purpose of the simulation experiments in this study is to investigate the sensitivity of the 

results obtained by Giske et al. (2013) to the temporal resolution of the model, as well as to the 

formulation of the neuronal response function. 

 

Giske et al. (2013) investigated emergent dynamics through 30 replicate simulations over 50,000 

generations, each resolved into 7 diel cycles with 200 time intervals in each cycle. Each 

simulation lasted approximately 2 weeks at the FIMM cluster at Parallab, the supercomputer 

facility of the University of Bergen. The sensitivity analyses performed here will investigate 

whether it is possible to obtain reliable results faster. Since the model describes an evolving 

population, the ultimate measure of performance is the fitness obtained. However, fitness is a 

measure at the level of the individual or even the allele, so the total egg production of the 

population is the nearest available measure of the performance of the evolving population. The 

question is if population egg production can be found in experiments with shorter simulations and 

also whether the egg production is sensitive to the resolution of days and time steps within days. 
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The model used here is scaled so the amount of food and the risk of being eaten are the same 

when the number of time steps in a generation is adjusted.   

 

The time an individual spends in the GOS ‘Afraid’ has a fitness cost in lost feeding and growth. 

Therefore, it would be beneficial to reduce any unnecessary fraction of time steps spent in this 

GOS. It is possible that the simplification of seven diel cycles and only 200 time steps per cycle 

is an artificial limitation that forces individuals to be afraid for longer periods at the time than if 

the resolution of the model had been higher. This is based on the thought that the individuals do 

not need to be hungry so often when they can make decisions more frequently. I will therefore 

investigate this by both a decrease and increase in the number of diel cycles and the number of 

time steps in each cycle from the previous standard. 

 

Giske et al. (2013) also found that the level of fear in populations did not converge. They claimed 

that this was a consequence of the evolutionary freedom given by the architecture, which means 

by many different possible pathways from sensory perceptions to behavior that can make the 

individual either move up or down. However, there are also alternative explanations to the 

phenomenon. One is that the temporal resolution was not good enough, another that simulation 

time was not long enough, and a third that the mathematical formulation of the neuronal response 

was too coarse, so that the organisms were not always able to make the best decisions. Both 

Giske et al. (2013) and my initial experiments showed rapid stabilization of population egg 

production. With a more accurate mathematical formulation of the neuronal response, it is 

possible that population egg production and other population traits will stabilize after fewer 

generations. 

 

The neuronal response from a perception in Giske et al. (2013) was made by using one pair of 

genes producing one neuronal response function (examples of functions given in Figure 1). In 

their experiments, Giske et al. (2013) found large variation in the neuronal responses between 

individuals, but also variation between the different simulations. The reason could be that the best 

response was not possible to evolve with only one pair of genes available, i.e. the mathematical 

formulation of the response was not accurate enough. Therefore, the number of genes was 

increased from one to three gene pairs for each perception. More complex neuronal response 
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functions are thereby allowed to evolve in the populations. The question is whether more 

complex functions will evolve and how this will affect the ultimate measure of performance: 

population egg production. 

 

To investigate these topics, I have therefore modified the code to allow other temporal resolutions 

and more precise neuronal response functions, and formulated these five testable hypotheses: 

 

H1: The level of both fear and egg production in the population will be stable after 1000 

generations in all experiments. 

H2: The level of fear in a population will converge between simulations in all experiments.  

H3: The population egg production is independent of the resolution of time. 

H4: The duration of a continual period of fear is independent of the resolution of time.  

H5: When individuals may use more complex neuronal response functions, they will tend to do 

so, with higher population egg production and shorter time to evolve it, as the result. 
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2 Methods 

2.1 The model 

The model used for the simulations is modified from Giske et al. (2013). Their model follows the 

concept of survival circuits and GOS of LeDoux (2012b), but excludes learning and enables the 

organisms to enter a GOS of either hunger or fear. When in one of these states, an individual 

concentrates its attention towards certain perceptions, but always maintains a minimum attention 

towards predators and food. Each perception P an individual receives of food, conspecifics, light, 

predators and its own stomach fullness is modulated into a neuronal response R by two genes, x 

and y in the 0.1 – 10.0 range: 

 

   
    ⁄  

       ⁄                                                                                                                                            [ ] 

 

For each type of perception there is an own x, y and R. This makes 18 genes for the nine 

responses. The responses have an additive effect on one of the GOS and their collective strength 

is further modulated by genes for development, D. Each individual have four D-genes with 

values ranging between 0 and 1. A value of 1 means full focus on food and a value of 0 means 

full focus on fear. Which gene that is in use is determined by body mass. Gene D4 is used at 

maximum body mass and gene one when the mass is zero. Genes D2 and D3 are used at 1/3 and 

2/3 of maximum mass, respectively. D-values of body masses in between two of these four are 

found by linear interpolation. Which one of the GOS an individual enters, is determined by the 

stronger of Equations 2 and 3.  

 

                    
        

                                                                                           [2] 

 

                    
             

                
                                                            [3] 

 

R indicates a neuronal response for stomach capacity, food, light, predators and conspecifics. The 

subscript A indicates that it is used in emotional appraisal, which is the calculation of Equations 2 
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and 3. Fish evaluates the available depths according to the attention in their current GOS. They 

can choose from depths ranging from two depths above to two depths below the current depth. 

The depths are evaluated by two neuronal responses, based on GOS, and it moves to the depth 

that maximizes the net neuronal response (Equations 4 and 5).  

 

                   
                

                                                                                            [4] 

 

                           
         

                                                                                              [5] 

 

In Equation 4, H indicates the GOS ‘Hungry’ were the response from food has a positive effect 

and conspecifics have a negative effect when evaluating depths. The F in Equation 5 indicates 

that the individual is frightened (GOS ‘Afraid’) were the response from conspecifics has a 

positive effect and light has a negative effect when evaluating depths.  

 

For description of environment and reproduction, see Appendix A. 

 

If the number of individuals in a population goes beneath a certain level (1500), a restart is 

initiated. The restart creates some random individuals and some copies of the remaining ones. 

This is to avoid a population to die out and is often necessary in some of the early generations of 

a simulation.  

 

In this text, the word fecundity is used as the total egg production of the population in a 

generation.  
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2.2 Changes to the previous version of the model 

2.2.1 Sensitivity analysis of temporal resolution 

In earlier versions of this model, each generation has gone through seven diel cycles consisting of 

200 time steps, 1400 time steps in total. By varying the number of diel cycles and number of time 

steps per cycle, the life length and the time resolution are adjusted. An increase in the parameters 

means longer computation time and a decrease can alter the results from the model. Both 

parameters are increased and decreased in a set of experiments to investigate the effects.  

 

Predation risk due to predatory attacks had to be modified so it would be possible to scale the 

length of the attacks between the versions with different amount of time steps in each generation. 

Instead of having an attack increasing the risk in two time steps and then give full risk for a 

specified number of time steps, the model was adjusted to calculate the length of an attack based 

on the total number of time steps (for code see Appendix B.2). The length now varies from one to 

36 time steps. The risk for an attack occurring and the background predation risk are also scaled 

to the number of time steps per generation. 

 

Other parameters in the model are also scaled to the number of time steps per generation. These 

include the amount of food available, the energetic costs of living and the rate of digestion. For 

food, energetic costs, digestion and predation risk, this is done by dividing their value by the total 

number of time steps in a generation (‘span’ in the Fortran equations below). This results in an 

equal amount of predation risk and food in the different experiments along with a scaled 

metabolic rate. How these four variables are scaled is presented in the following four equations 

from the actual Fortran code (Equations 6, 7, 8 and 9): 

 

Food encounter rate: 

                                                                       [ ]                       

 

Energetic costs: 

                                                                          [7] 
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Rate of digestion: 

                                                                        [8] 

 

Predation risk: 

                                                                          [9] 

 

Here, ind is the current individual and dep is the current depth. Didgain(dep) and didrisk(dep) are 

the density independent gain and predation risk in the depth at this time step, respectively. The 

unscaled food encounter rate is parta, periodcost is the energetic costs for one time step, 

fbodymass(ind) is the body mass of the individual, flivingcost is a fixed parameter for the 

metabolic costs, digestion is the reduction in stomach content in one time step, fstomach(ind,0) is 

the stomach content of the individual at the start of a time step, autorisk is a fixed parameter for 

the level of predation and visr is the current visual range of the fish.  

 

60 initial simulations with three different combinations of number of diel cycles and time steps 

were run over 20,000 generations to find out how long the simulations in the main experiments 

had to be to reach a stable solution. These were combinations with lower or equal number of time 

steps and diel cycles as the previous standard. There was little change in fecundity, mortality and 

level of fear after 3000 generations and therefore 4000 generations was set as length of the main 

experiments (Figure 2).  

 

The data used for all analyses were only from the ‘Normal’ generations. This is the most common 

of the nine generation long fluctuation pattern (occurring in 20 % of the generations) and have 

both intermediate food concentration and predation risk in addition to a fixed number (four) of 

predator attacks starting when a fixed fraction of the time steps have passed. The standardization 

of the predator attacks in time is done make accurate comparison of simulations possible.  
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Figure 2: Fecundity in initial simulations. These simulations were executed to determine how long the 

main simulations had to be to achieve a stable solution. Data points show the average values of 20 

simulations at intervals of 4000 generations. Horizontal error bars indicate a 95 % confidence interval of 

the mean. A) 7 diel cycles and 200 time steps per cycle (previous standard). B) 7 diel cycles and 100 time 

steps per cycle. C) 4 diel cycles and 100 time steps per cycle. Only ‘Normal’ generations were used for 

comparison of fecundities. ‘Normal’ generations are explained in Appendix A.1. 
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Nine experiments were then executed on the FIMM cluster at Parallab, the UiB center for high 

performance computing, operated by Uni computing. 50 simulations were run for each of 4, 8 

and 16 diel cycles, each with 67, 200 and 600 time steps per diel cycle, making nine experiments 

with a total of 450 simulations. Later in this text, the experiments are referred to with an 

abbreviation, e.g. D4 TS200 for the experiment with four diel cycles and 200 tie steps per cycle. 

These nine experiments were run with three additive components of each neuronal response, see 

below. There were also two extra experiments with the same number of diel cycles and time steps 

as in Giske et al. (2013) (7 diel cycles and 200 time steps per cycle), but where one had only one 

additive component for each neuronal response and the other had three as in the nine other 

experiments. Each simulation is based on a different random number sequence, generated by a 

random seed generator at the start of a simulation, thus giving all simulations different initial 

gene values and different random fluctuations. The random number is saved for the opportunity 

to restart a simulation in the case of a crash, yielding the exact same result. All output files from 

all simulations are stored (3.5 TB). 

 

In addition to these new experiments, some already available data from the old version of the 

model were used to investigate the stabilization and convergence of fear in longer simulations 

(hypothesis 1 and 2). The data are for 10 simulations that run for 125,000 – 180,000 generations. 

These simulations had seven diel cycles and 200 time steps per cycle and only one component for 

every neuronal response.  

2.2.2 Complex neuronal responses 

The responses produced by the three single neuronal response functions are added together 

(Equation 10), making up a new and possibly more complex function.  

 

   
     ⁄   

        ⁄   
   

     ⁄   

        ⁄   
   

     ⁄   

        ⁄   
                                                               [  ]  

 

The differences in the new and old neuronal responses are demonstrated in Figure 3. There are 

now responses available that was impossible to produce before, e.g. low but significant response 
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at low perceptions in combination with a highly increasing response when exceeding a certain 

value of perception (Figure 3, left).   

 

 

Figure 3: Examples of complex neuronal response functions (red) that can be produced by the new 

version where three single response functions (black) are added together. 

 

After a simulation, the strength of each of the three components of each of the nine complex 

responses is ranked for each individual due to their strength through life. This is done by reading 

individual gene data and perceptions from the last generation and calculating the strongest of 

each component of each response of the individual in every time step. Each component is added 

up through life and ranked from strongest to weakest. The strongest component of each complex 

neuronal response function is denoted NR1. The way NR1 is calculated means that it does not 

have to be the function that gives the highest maximum response at all possible perception 

values. There could be ranges of perception where the generally weaker components give a 

higher response than NR1, e.g. at very low perceptions. Code for the calculation of NR1 is found 

in Appendix C.1. 

 

Later in this text, the term ‘set of neuronal response components’ is used to indicate how many of 

the three components of the complex neuronal responses (Equation 10) that is utilized to 

determine the GOS. One set of neuronal response components refers here to the strongest 

components of all the five complex neuronal responses that contribute to the choice of a GOS. 

Two and three sets then refer to when the second and third components are included, 

respectively. (Code for these calculations is found in Appendix C.1.) 
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2.3 Programs and language 

The code is written in Fortran 90 (.f90) and for debugging and compiling Parallell Studio XE 

with VS2010 was used. SSH Secure Shell and FileZilla 3.4.7.1 were used in transferring files 

from FIMM to own locations. Scripts for efficient transferring processes to FIMM by creating the 

required DOS code and altered parameter files, were written in MATLAB code (for code see 

Appendix H) using MATLAB R2012b. MATLAB code was also written and used in statistical 

analysis. Excel was used for some statistical analysis and for making most of the figures. 

2.4 Data processing 

When processing the data, some output files were run through a second Fortran program. The 

data used here were only from the “Normal” generations. A new subroutine had to be added to 

this program for calculations on the complex neuronal response functions and another had to be 

modified (for code see Appendices C.1 and C.2). The output from this program is designed to be 

inserted into Excel. One spreadsheet was created for each of the nine experiments in the 

sensitivity analysis, in addition to one for experiment comparison.   

 

In the second Fortran program, the sensory information for all individuals in the last generation 

are read and the average strength of the strongest of the three neuronal response components for 

the five neuronal responses that determine GOS was calculated. The strongest neuronal response 

component (NR1) was determined by sorting them by strength due to the sensory input to that 

individual at its depth over its life time. For five of the 50 simulations the fraction of the complex 

neuronal response that was coming from NR1 was calculated for all nine neuronal responses. The 

fraction of total hunger or fear and fraction of the response towards the depth that were chosen 

due to the strength of the different neuronal responses, were also calculated.  

2.5 Statistical analysis 

When comparing the different experiments, a one-way ANOVA (α = 0.05) was applied to data 

for mortality, fecundity, fear and body mass from the second Fortran program. Then a multiple 

comparison procedure was applied (multcompare), using Tukey’s honestly significant difference 
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criterion (α = 0.05). These tests were done in MATLAB and produced the plots in the Figures 4, 

5, 14, 15 and 16. The script can be found in Appendix G.2, procedure 1. The function 

‘multcompare’ produces plots that compare the confidence intervals of different data sets with the 

response variable on the x-axis. The values in Table 1 are obtained by calculating linear least 

squares lines (lsline) (Appendix G.2, procedure 2).   

 

95 % confidence intervals of the mean of all simulations were calculated at each 1000
th

 

generation for mortality, fecundity, fear and body mass by the second Fortran program (see 

Appendix C.2). These values were used to plot the mean and 95 % confidence intervals of the 

mean in Figure 8.  
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3 Results 

3.1 How does the theory of emotion systems apply to fish? - 

Literature review on the emotion system in fish  

In an evolutionary perspective, emotions are likely to be present in fish as a common currency 

mechanism because of the advantages such a system gives in coping with the wide range of 

situations that an individual encounters during a lifetime (Braithwaite et al., 2013). It is also 

likely that emotion system that we see in mammals had a precursor in early vertebrates (Kalueff 

et al., 2012), indicated by the homologies in brain anatomy and neurochemistry (Chandroo et al., 

2004). A study on Atlantic salmon, similar to the one done on honeybees by Bateson et al. 

(2011), showed results of cognitive bias and hence indicating effects of an emotion state (Vindas 

et al., 2012). The last shared ancestor of honeybees and salmon is the last common protostome-

deuterosome ancestor (PDA). The divergence of these two lineages have been estimated based on 

conservation of developmental regulatory principles and paleontological evidence to have started 

about 550 million years ago, but this estimate is very uncertain (Erwin and Davidson, 2002). The 

organismic complexity of the PDA varies depending on what the estimate of time of divergence 

is. Some argue for a more complex expression of genes (for use in more complex nervous 

system) (Hui et al., 2009), while others argue for a simpler construction of the PDA (Erwin and 

Davidson, 2002). 

 

The size and structure of the brains of amniotes and other vertebrates, e.g. fish, are very different 

(Kotrschal et al., 1998). Some studies therefore state that fish are not in possession of an emotion 

system (Rose, 2002, Cabanac et al., 2009). There is an ongoing discussion on both whether and 

which parts of fish brains are homologous to the parts of the mammalian brain needed for an 

emotion system (Mok and Munro, 1998). An example of this is the mammalian amygdala, which 

is highly involved in the emotion system (LeDoux, 2000, LeDoux, 2003) and the reward system 

in the brain (Parkinson et al., 2001, Paton et al., 2006, Bermudez et al., 2012). There are different 

views on homologies to the amygdala in the brain of teleosts (Jesuthasan, 2012). One problem 

with identifying homologous brain structures between mammals and fish is that their 
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telencephalic development happens through inversion and eversion, respectively. This places 

similar structures in different locations in the adult brain (Yamamoto et al., 2007, Maximino et 

al., 2013). Despite of this, Maximino et al. (2013) summarizes the evidence for the teleost ventral 

subpallium and the dorsomedial pallium  as homologous structures to the mammalian basolateral 

and central amygdala, respectively. These are mammalian structures processing information 

about fear and pain and expresses innate behavior and anxiety (Cheng et al., 2014). Structures 

like the extended amygdala have not been shown to have any homologies in teleosts (O'Connell 

and Hofmann, 2011). 

 

While there are some differences in the anatomy and neurochemistry, the functional role of the 

emotion system can still be comparable to that of mammals (Vargas et al., 2009, Panula et al., 

2010). The similarities implicate that fish also maybe utilize its emotion system as a common 

currency to guide the behavior when evaluating widely different perceptions thus simplifying and 

speeding up the decision process (Mendl et al., 2009). Fish brains produce many of the 

substances associated with the mammalian emotion system, like dopamine, serotonin and 

oxytocin/isotocin (Winberg and Nilsson, 1993, Thompson and Walton, 2004, Kittilsen, 2013). 

These neurochemical substances are involved in systems for reward and punishment in the brain 

and seem to be strongly conserved in evolution (Bonga, 1997, Tognoli et al., 2010, Sørensen et 

al., 2013). When treated with drugs that affect the emotion system, the effects in the form of 

behavior and physiological changes are quite similar between mammals and teleosts (Maximino 

and Herculano, 2010). However, this is not the case for all drugs tested (Sackerman et al., 2010), 

but when summing up results from different studies, Lillesaar (2011) concludes that for 

substances acting on the serotonergic system (relating to fear and anxiety behavior), the effects 

on related behavior were similar between mammals and fish.  

 

When arguing for emotion systems in fish, it is also natural to look into implications for global 

organismic states (GOS). For example attention towards predators and prey are key components 

of survival and will most definitely be evaluated different (or ignored) when in different GOS. 

There are very few studies investigating GOS since this is still an emerging topic, but there are 

indications in some studies. Teleosts evaluate predation risk differently when either in pain 

(Ashley et al., 2009) or in a specific reproductive stage (Lastein et al., 2008), indicating a GOS. 
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Gravid female three-spined sticklebacks differ significantly from non-gravid females in their anti-

predator behavior (Frommen et al., 2009). When directing attention towards one perception, 

attention to others must decline. This has been demonstrated by Braithwaite and Boulcott (2007) 

by showing that motivation towards feeding was low when the fish had just experienced pain.  

 

In species where courting activity decides mating success, there is a trade-off between mating and 

predation risk (Magnhagen, 1991). This is the case for the two-spotted goby where males have to 

balance this trade-off throughout the breeding season. Early and in the middle of the season, 

competition between males is fierce and they exhibit bold behavior. At the end of the season 

there are much more females than males due to high male mortality and females starts competing 

for males (Forsgren et al., 2004). This shifts the trade-off for the males and they do not have to be 

bold to achieve mating (Myhre et al., 2012, Magnhagen et al., 2014). This change in boldness can 

be seen as a change in the state of the organism, but as stated above, this was not the aim of these 

researchers and therefore not emphasized in the studies. In this specific case it is not the aim of 

the organism (to reproduce) that is changing with its state, but how it balances its chances of 

survival while achieving reproduction.  

 

Another aspect of emotion systems is how they manifest themselves in terms of behavior. The 

result from an emotion system is an advanced form of ‘rules of thumb’ that works well for many 

situations (Hutchinson and Gigerenzer, 2005). The behavior can be consistent over time and 

situations and include individual differences in a population. This is then referred to as behavioral 

syndromes (Sih et al., 2004), but has also been given other names in the scientific literature. 

Examples are coping styles (Koolhaas et al., 1999), temperament (Budaev, 1997) and animal 

personalities (Dingemanse et al., 2010).  Behavioral syndromes have been found in a large range 

of animal groups, including teleosts, and that is important in this context (Sørensen et al., 2013) 

because behavioral syndromes imply limited behavioral plasticity in individuals and hence 

constraining behavior from being optimal (Conrad et al., 2011). The constraints can be genetic, 

but they can also be psychological mechanisms, e.g. learning (Fawcett et al., 2013). To determine 

whether it is genetic or physiological traits that gives a behavioral syndrome of a fish in nature is 

very hard to measure. When using models, all details are available. Therefore, models of high 

complexity that focuses on the mechanisms behind behavioral syndromes can be useful.  
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3.2 Sensitivity analysis of temporal resolution 

The level of fear did not stabilize after 1000 generations in any of the nine experiments. The level 

of fecundity was much more stable, although in most experiments there was a significant 

difference between generations 1000 and 4000. Despite these statistically significant differences, 

the biological differences between generations 1000 and 4000 are very small. Levels of fear did 

not converge within experiments. Neither stabilization of fear level nor convergence between 

simulations were evident when examining data from simulations over 120,000 generations. 

Fecundity is found to depend on the resolution of time in each diel cycle. The length of continual 

periods of fear also becomes shorter when increasing this resolution.  

3.2.1 Hypothesis 1: Sensitivity after 1000 generations 

The percentage of time that females spend afraid show a larger change between early and late in 

evolution than fecundity did (Figures 4 and 5). Even though only two of the experiments do not 

have significantly different total population fecundity when comparing generations 1000 and 

4000, the changes between these two stages in evolution are very small. This is due to the small 

variation between populations in this trait. When comparing fear at each 1000
th

 generation, all 

experiments show significant difference between generations 1000 and 4000 despite a much 

larger confidence interval.  

 

To compare change in fecundity and fear in females the percentage increase between generation 

1000 and 4000 was calculated (Table 1). The percentage increase differs with about one order of 

magnitude between these two traits in most of the experiments. This shows that there is much 

more change in fear than in fecundity after generation 1000, even though fecundity also shows 

significant difference between generation 1000 and 4000 in most cases.  
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Figure 4: Statistical comparison within each of the nine experiments of total population fecundity after 

1000, 2000, 3000 and 4000 generations (α = 0.05). Horizontal lines indicate a 95 % confidence interval of 

the mean. These are present in all panels, but so small that they are hard to see. Only the experiments 

with four diel cycles and 67 time steps per cycle (top left) and 16 diel cycles and 200 time steps per cycle 

(bottom middle) do not have a significant difference between their fecundity after 1000 and 4000 

generations. All other series show significant difference and increase in fecundity. Only ‘Normal’ 

generations are used for comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure 5: Statistical comparison within each of the nine experiments of percent of time in the state afraid 

after 1000, 2000, 3000 and 4000 generations (α = 0.05). Horizontal lines indicate a 95 % confidence 

interval of the mean. All series show significant increase in fear between generation 1000 and 4000. Only 

‘Normal’ generations are used for comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Experiment Mortality Fecundity 
Females: Percent 

of time afraid 
Females: Final 

body mass 

D4 TS67 1.175 5.820 50.834 1.175 

D8 TS67 0.060 5.591 91.054 0.060 

D4 TS200 -4.456 3.591 144.329 -4.456 

D16 TS67 2.901 3.619 22.221 2.901 

D8 TS200 -5.127 1.680 56.229 -5.127 

D4 TS600 -5.084 2.154 69.694 -5.084 

D16 TS200 -2.545 2.487 58.173 -2.545 

D8 TS600 -4.410 0.924 44.407 -4.410 

D16 TS600 -1.301 1.989 45.743 -1.301 

 

Table 1:  Comparison of change in mortality, fecundity, fear (females) and final body mass (females) after 

1000 generations. Percent increase in average value among the 50 simulations from generation 1000 to 

4000 in each of the nine experiments. Values are the percent increase according to the linear least 

squares line from generation 1000 to 4000 divided by the intersection of this line at generation 1000. The 

linear least squares line is based on the 50 observations at 1000, 2000, 3000 and 4000 generations. The 

values in this table therefore represent the relative change after 1000 generations and until the end of the 

simulations. Only ‘Normal’ generations are used for comparison. ‘Normal’ generations are explained in 

Appendix A.1. 

 

These results show that fecundity is more or less stabilized after 1000 generations and at least 

after 4000 generations. This is also the case for the mortality rate and final body mass for females 

(Table 1). The level of fear in females does not stabilize to the same degree. The 10 simulations 

that were run for 125,000 - 180,000 generations (Figures 6 and 7) show that the levels of fear did 

not even stabilize after >120,000 generations. 
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Figure 6: Percent afraid females in 10 simulations (denoted A-J) over >120,000 generations. These are 

the long simulations run with the Giske et al. (2013) version of the model. Only ‘Normal’ generations are 

used for comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure 7: Percent afraid males in 10 simulations (denoted A-J) over >120,000 generations. These are the 

long simulations run with the Giske et al. (2013) version of the model. Only ‘Normal’ generations are used 

for comparison. ‘Normal’ generations are explained in Appendix A.1. 
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3.2.2 Hypothesis 2: Convergence of fear between experiments 

The amount of variation of mortality, fecundity, fear and body mass within the nine series are 

very consistent through life. Horizontal bars (Figure 8) indicate 95 % confidence intervals of the 

mean. For females, the percent of time afraid (Figure 8 C) varies a lot between simulations. This 

variation diminishes through time, but is still much larger than for all the other traits. All eight 

other experiments show very similar patterns in both variation and time of stabilization of all 

traits (for equivalent figures to Figures 8 and 9 for all experiments, see Figures A5-A19 in 

Appendix E).  

 

The distribution of death rate through life, final body mass and depth at reproduction for both 

females and males are very consistent between simulations after 4000 generations (Figure 9). 

However, the distribution of the frequency of the fraction of time spent afraid, varies much more 

between simulations (Figure 9 C). The level of fear does not converge between simulations in 

any of the nine experiments. Most of the other nine experiments show more or less the same 

pattern in regard to less consistency between simulations for time spent afraid than for other traits 

(for figures, see Appendix E). This lack of convergence of fear level between simulations can be 

due to the length of these experiments.  
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Figure 8: The average in each generation of mortality (A), fecundity (B), percent of time steps in the GOS 

afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 8 diel cycles and 200 time steps per cycle. The orange markers indicate the mean of all 

50 populations at 1000, 2000, 3000 and 4000 generations. If this generation was not a ‘Normal’ 

generation, the first one after this was used. 95 % confidence intervals of the mean are marked by red 

bars at these four points. In some plots (e.g. D), these bars are almost covered by the orange marker. 

‘Normal’ generations are explained in Appendix A.1. 
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Figure 9, previous page: Comparison of the last 20 ‘Normal’ generations in the 50 simulations in the series 

with 4 diel cycles and 67 time steps her cycle. A- B) Death rates through life for females and males, 

respectively. C- D) The frequency of individuals and what fraction of the time they spent in the GOS 

‘Afraid’. E-F) Body mass at the end of a generation for females and males, respectively. G-H) The depth at 

which individuals reproduce (i.e. are located in the last time step) for females and males, respectively. 

‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels A and B, E and F and F and G 

are scaled as a fraction of maximum age, maximum body mass and maximum depth, respectively.  

 

One experiment that stands out from the others when it comes to stabilization and variation, is the 

one with the fewest time steps in total: four diel cycles and 67 time steps per cycle (Figure 10). 

This experiment has a much less stable level of fecundity and mortality than the other eight. 

Many of the drops in fecundity represent the same simulation, but about half of the simulations 

have at least one drop. The simulations that have this sudden decrease in fecundity struggle at 

low fecundity for a few generations before a restart is initiated. This is not always the case, 

sometimes high fecundity is achieved again without a restart. The fact that there are such a large 

number of restarts late in evolution means that many of the simulations never become adapted. 

This result is expected because the same pattern of frequent restarts and drops in fecundity was 

seen in the initial experiments in the simulation series with 4 diel cycles and 100 time steps per 

cycle.  

 

Since the levels of fear did not converge between simulations in any of the nine experiments, 

available data from longer simulations were used to compare levels of fear (Figure 11). After 

120,000 generations there is still not convergence in level of fear between the 10 simulations 

studied (Figure 11 E and F). These data are from the version of the model used in Giske et al. 

(2013) and hence have only one component for each neuronal response function. However, this 

does not seem to affect the stabilization or convergence of fear levels. I therefore assume that 

longer simulations with three neuronal response components not would have given more stable or 

converging levels of fear either.  
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Figure 10: The average in each generation of mortality (A), fecundity (B), percent of time steps in the GOS 

afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 4 diel cycles and 67 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure 11: Frequency distribution of fraction of time spent in the GOS ‘Afraid’. Each curve represents one 

of 10 simulations. A-B) The distribution for the last 20 ‘Normal’ generations before generation 20,000 for 

females and males. C-D) The distribution for the last 20 ‘Normal’ generations before generation 80,000 for 

females and males. E-F) The distribution for the last 20 ‘Normal’ generations before generation 120,000 

for females and males. ‘Normal’ generations are explained in Appendix A.1. These are the long 

simulations run with the Giske et al. (2013) version of the model. 

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, males

B

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, females

A

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, males

D

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, females

C

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, males

F

0

0.5

0 0.5

F
re

q
u
en

c
y

Fraction of time afraid, females

E



 

36 

 

3.2.3 Hypothesis 3: Egg production insensitive to temporal resolution 

When comparing the mean of all simulations between the nine experiments through evolution, 

most traits seem to stabilize relatively fast, but more importantly, they appear to stabilize at 

different levels (Figure 12). Both mortality, fecundity and body mass show little change after 

2000 generations. The exception is fear, especially for females, where there is still an increase 

towards the end of the experiments. For most traits, graphs with the same color (indicating the 

same amount of time steps per diel cycle) group together after reaching stable values. Again, the 

exception is fear. The blue graphs, experiments with 67 time steps per diel cycle, do not show the 

same degree of clustering as the red and green graphs. 

 

For final body mass, experiments with the same number of time steps per diel cycle show a 

similar distribution (Figure 13 A and B). The exception is the experiment with 16 diel cycles and 

67 time steps per cycle. This experiment shows a higher final body mass than the other two 

experiments with 67 time steps per cycle. The depths where individuals reproduce, i.e. their depth 

in the last time step of a generation, follow more or less the same pattern as the distribution of 

body mass (Figure 13 C and D). Individuals in experiments with more time steps per diel cycle 

stay deeper at time of reproduction and have a higher body mass.  

 

The individual mortality risk in the model is dependent on the body mass in two ways. Larger 

fish needs more food and is more easily detected by predators. This means that water with higher 

light intensities is much more dangerous for a large fish, but there is also where the higher food 

concentrations are and more importantly higher food encounter rate which is dependent on light 

intensity and food concentration. The green graphs show that fish with higher body mass stay 

deeper in the water column at the time of reproduction (Figure 13).  
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Figure 12: Comparison of the nine experiments. Each graph represents the average of all simulations in 

one experiment through life for mortality (A), fecundity (B), percent of total time spent in the GOS afraid for 

females (C) and males (D) and final body mass for females (E) and males (F). Blue graphs indicate 67, 

red 200 and green 600 time steps per diel cycle. Dotted graphs indicate 4, dashed 8 and solid 16 diel 

cycles per generation. Only ‘Normal’ generations are used for comparison. ‘Normal’ generations are 

explained in Appendix A.1. 
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Figure 13: Comparison of the nine series. Each graph represents the average of all simulations in one 

experiment from the last 20 ‘Normal’ generations for frequencies of final body mass for females (A) and 

males (B) and frequencies for depth at reproduction for females (C) and males (D). ‘Normal’ generations 

are explained in Appendix A.1. Blue graphs indicate 67, red 200 and green 600 time steps per diel cycle. 

Dotted graphs indicate 4, dashed 8 and solid 16 diel cycles per generation. The black graph in C and D 

indicate the food encounter rate at the last time step and is given as a fraction of the maximum food 

concentration in that time step. The x-axes in A and B are given as a fraction of the largest possible body 

mass and the x-axes in C and D ranges from the surface (0) to the bottom (1).  

 

As body mass increases, the organisms change which developmental genes they utilize. A general 

trend for these genes is that the fourth gene has a smaller value than gene two and three (see 

figure 3 in Giske et al. (2013)). This makes it more likely for larger individuals to become afraid 

and will keep the mortality risk down by moving to darker depths and larger groups. The 

experiments with 200 time steps per diel cycle (red graphs) have a depth distribution that appear 

to be best according to the food encounter rate. Experiments with the highest temporal resolution 

in each diel cycle (green graphs) distribute deeper in the water column and this may be due to 

their larger size and hence higher risk in depths with higher light intensities.  
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Distribution of final body mass and depth at reproduction show a very similar pattern between 

males and females when comparing the nine experiments, but males arrive at a slightly higher 

body mass (Figure 13). Males are chosen as mates by the females dependent on their body mass 

(see Appendix A.2). This makes it more important for males to become larger than their 

competitors and results in higher body mass (Figure 16) and higher mortality (Figure 15) than for 

the females. 

 

Fecundity is the only evolutionary measure of the quality of these simulations. When statistically 

comparing the fecundity in the last generation of the nine experiments, a clear pattern emerges. 

Experiments with 600 time steps per diel cycle have a significantly higher fecundity than all other 

experiments, but are not significantly different from each other (Figure 14, top). Also, 

experiments with 200 time steps per diel cycle have significantly lower fecundity than those with 

600, but significantly higher fecundity than those with 67 and are not significantly different from 

each other. Experiments with 67 time steps per diel cycle have the lowest fecundities and they 

also have significantly lower fecundity with fewer diel cycles. The populations will according to 

this achieve increasing fecundity with shorter time steps, while increasing the number of diel 

cycles is not important. However if the number of time steps is strongly reduced, then the number 

of diel cycles matter for the fecundity.  

 

For the level of fear in the last generation, the pattern is not the same as for the fecundity (Figure 

14, middle and bottom). Experiments with both 4 and 8 diel cycles per generation show a trend of 

increasing percent of fear with increasing number of time steps per generation. The three 

experiments with 16 diel cycles show the opposite trend, decreasing percent of fear in the 

population with increasing number of time steps per diel cycle. This pattern is the same for both 

females and males.  
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Figure 14: Statistical comparison of the nine experiments at the last generation. The Y-axes specify the 

experiment where D is the number of diel cycles and TS is the number of time steps in each diel cycle. 

The series are sorted by increasing number of time steps in a generation from top to bottom. For each 

series, the ‘X’ indicates the mean of fecundity (top), percent of time afraid for the females (middle) and 

percent of time afraid for the males (bottom). The horizontal lines are the 95 % confidence interval of the 

mean for the respective series. Blue series represent those with 67 time steps in each cycle, red those 

with 200 and green those with 600. Solid lines for the confidence interval represent series with 16 diel 

cycles, dashed lines 200 and shaded lines 67. Only ‘Normal’ generations are used for comparison. 

‘Normal’ generations are explained in Appendix A.1. 
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The increase in fecundity when increasing the number of time steps per diel cycle can be due to 

an increase in body mass or a decrease in mortality, or a combination of the two. When 

increasing the number of time steps per diel cycle from 200 to 600, but keeping the number of 

diel cycles, there are no significant changes in mortality for females (Figure 15). However, there 

is significant increase in the final female body mass in the two cases with 8 and 16 diel cycles 

(dashed and solid lines) (Figure 16). This explains the increase in fecundity. In the case with four 

diel cycles, there is only a slight increase in body mass while there is also an increase in 

mortality. The increase in body mass then outweighs the increase in mortality and results in a 

higher fecundity. Females are the gender of interest here since it is their body mass that gives the 

fecundity. Male body mass is interesting only in respect to competition for females. 

 

When increasing the number of time steps per diel cycle from 67 to 200, the mortality for females 

decreases and the final body mass increases for all three cases. Both factors contribute to the 

large increase in fecundity that we see between these experiments (Figure 14, top). Again, it is 

the mortality and body mass of the females that is of interest here. Males show in most cases the 

same trends as the females, but not in all (Figures 14-16).  
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Figure 15: Statistical comparison of the nine experiments at the last generation. The Y-axes specify the 

experiment where D is the number of diel cycles and TS is the number of time steps in each diel cycle. 

The series are sorted by increasing number of time steps in a generation from top to bottom. For each 

series, the ‘X’ indicates the mean of fraction dead before reproduction (mortality) in the last 20 ‘Normal’ 

generations for females (top) and males (bottom). The horizontal lines are the 95 % confidence interval of 

the mean for the respective series. Blue series represent those with 67 time steps in each cycle, red those 

with 200 and green those with 600. Solid lines for the confidence interval represent series with 16 diel 

cycles, dashed lines 200 and shaded lines 67. Only ‘Normal’ generations are used for comparison. 

‘Normal’ generations are explained in Appendix A.1. 
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Figure 16: Statistical comparison of the nine experiments at the last generation. The Y-axes specify the 

experiment where D is the number of diel cycles and TS is the number of time steps in each diel cycle. 

The series are sorted by increasing number of time steps in a generation from top to bottom. For each 

series, the ‘X’ indicates the mean of final body mass for females (top) and males (bottom). The horizontal 

lines are the 95 % confidence interval of the mean for the respective series. Blue series represent those 

with 67 time steps in each cycle, red those with 200 and green those with 600. Solid lines for the 

confidence interval represent series with 16 diel cycles, dashed lines 200 and shaded lines 67. Only 

‘Normal’ generations are used for comparison. ‘Normal’ generations are explained in Appendix A.1. 
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3.2.4 Hypothesis 4: Duration of fear periods insensitive to temporal resolution 

Even though there is no clear pattern between the different experiments in the level of fear, there 

is a much clearer pattern when looking at the length of the periods of fear (Figure 17). The 

simulations with few time steps per diel cycle (blue dots) have a much higher frequency of longer 

periods of fear. The length of a period is scaled to the length of the generation. To give an 

example: Experiment D4 TS200 and D16 TS600 have very similar levels of fear (Figure 14). 

However, when individuals in D16 TS600 are afraid, they are so on average for a much shorter 

period of their life than individuals in D4 TS200 (comparing red dots in top panel and green dots 

in bottom panel in Figure 17). When having the possibility of choosing more often, the chain of 

time steps in the GOS ‘Afraid’ will be interrupted more often relatively to the total number of 

time steps in the generation. Higher resolution in the model in the form of more time steps per 

diel cycle may not result in less fear in the population, but the relative length of the continual 

periods of fear will decrease. Continual periods of fear are longer in the experiments with four 

diel cycles, than in those with eight and 16.  

 

In all simulations series there are individuals that stay afraid their entire lives (for illustration see 

Figure A20 in Appendix F, bar to the right in all panels). The number of individuals that display 

this behavior ranges from two (D4 TS67) to 94 (D8 TS200) in the last generation in all 

simulations in each experiment. There are much fewer that are afraid half their life, in most series 

none. The individuals that display the behavior of always being afraid are both males and 

females, but all end up at very low body masses (about 10 % of average final body mass). These 

individuals almost never produce offspring in the next generation due to this low body mass. It is 

likely that this life strategy is the result of a recent random mutation (or a combination of 

mutations) that makes the individuals choose the GOS ‘Afraid’ all the time and hence have good 

chances of surviving to the end of the generation, but arriving at a small size and therefore most 

likely leave no offspring. 
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Figure 17: Frequency of time spent in continual periods of fear. The three panels represent experiments 

with 4 (top), 8 (middle) and 16 (bottom) diel cycles per generation. Blue series represent those with 67 

time steps in each cycle, red those with 200 and green those with 600. The duration of a continual fear 

period is scaled to the number of time steps per diel cycle. There are therefore nine green markers for 
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each blue marker on the x-axes since one time step in the green series equals only one ninth of the time 

in a generation compared to the blue series. Because behavior is generally repeated when number of diel 

cycles are increased (and hence each time step represents less of the total life length), the length of the x-

axes are decreased accordingly. The x-axes are cut off at 0.1 or lower because periods longer than this 

rarely occur. Only ‘Normal’ generations are used for comparison. ‘Normal’ generations are explained in 

Appendix A.1. 

3.3 Complex neuronal responses 

All analyses are done on the last generation in the simulations in the experiment with eight diel 

cycles and 200 time steps per cycle (D8 TS200), except for the comparison of levels of fecundity. 

To what degree the different populations evolved a complex neuronal response function where 

more than one of the three components had substantial influence, showed consistency for some of 

the neuronal responses, but not all. The second and third set of components of Equation 10 were 

almost never needed to determine the GOS, the only exceptions were under predator attacks. 

When more than one component was utilized, this was to achieve a response function that yielded 

a still increasing response even at high perception levels or to have a graded response at very low 

perception levels, and in both cases keep the sigmoid shape of the response function. Also, I 

found that there is more than one way to become afraid, even when having the opportunity to 

evolve a more complex neuronal response.  

3.3.1  Hypothesis 5: Complex neuronal responses improve fitness 

The  average between all the 50 simulations of the frequency of how many sets of neuronal 

response components that they need to pick the same GOS as they did in the real simulation 

showed that more than one set was almost never needed (Figure 18). The four peaks of use of two 

sets of components indicate the occurrence of predator attacks. During a predator attack, the 

perception strength of the predation risk increases tenfold. This indicates that the responses to 

predators are largely comprised of one single component up to a certain point where from a 

second (and sometimes third) component also contributes to make the individual choose the GOS 

‘Afraid’. An example of how such a complex response function looks is given in later in the text 

(Figure 27).  
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Figure 18: The number of components from each complex neuronal response, starting with the one giving 

the strongest response, which is needed to find the right GOS through life. The right GOS is the one that 

the individual chose in the actual simulation. The four peaks in use of the second and third set of 

responses are at the time of a predator attack. All individuals in the last generation (‘Normal’) in all 

simulations from the D8 TS200 experiment are used here.  

 

In 95.3 % of the cases when an individual needed more than one component to find its right 

GOS, this GOS was ‘Afraid’. Since most of these cases are during a predator attack, this is not 

very surprising. The second and third components are hence generally used to ensure that an 

individual becomes afraid at the time of a predator attack.   

 

If looking at which one of the three contributors to fear (light and predators increasing fear and 

conspecifics decreasing it) that contributed most with its second and third component and hence 

was the factor that gave the choice, there is no consistency between simulations (Figure 19). 

However, in most of the simulations one of the three contributed with more than 90 %. This 

illustrates that it is possible to achieve the same GOS, but by utilizing the neuronal responses in 

different ways.  
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Figure 19: The percent of the strength of the neurobiological response to fear by the two weakest sets of 

neuronal response components that comes from each of the three contributors. The histogram presents 

average values in the last generation (‘Normal’) for all simulations in the D8 TS200 experiment.  

 

When more than one set of neuronal response components are needed, it is the responses from 

predation and light that are dominating (predation has a negative contribution to fear). In most 

simulations, one of the two stood for >90 % of the response from the second and third set. For 

eight of the simulations light was the dominating factor. The rest of the simulations had predation 

as the dominating factor when they needed more than one set of components.  

 

The maximum level of fecundity and how fast this level was reached did not differ between 

experiments that only differed in the number of components in their complex neuronal response 

functions (Figure 20). These two experiments were run with seven diel cycles and 200 time steps 

per cycle, the previous standard for this model and the settings that were used in Giske et al. 

(2013).  
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Figure 20: Comparison of mean fecundity in two experiments. These experiments were run with the Giske 

et al. (2013) standard (7 diel cycles and 200 time steps per cycle), but differed in respect to one (left) and 

three (right) components of the neuronal responses. The orange markers indicate the mean of all 50 

populations at 1000, 2000, 3000 and 4000 generations. If this generation was not a ‘Normal’ generation, 

the first one after this was used. 95 % confidence intervals of the mean are marked by red bars at these 

four points. ‘Normal’ generations are explained in Appendix A.1. 

3.3.2 Comparison of all simulations 

I have now presented the results that directly relate to hypothesis 5. In the following sections I 

will go further into how the different simulations vary and what the more complex neuronal 

response functions look like. For all five neuronal responses that contribute to deciding the GOS, 

the strongest component comprised > 90 % of the response in most simulations (Figure 21). 

However, there were also some simulations which deviated from this trend. In most cases the 

average relative strength of the strongest neuronal response (NR1) equals one, meaning that the 

entire complex response function is made up of one single component. None of the neuronal 

responses have average relative strengths that is less than half, indicating that there always is one 

component that is much stronger that the other two and not two or three almost equally strong 

components.  
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Figure 21: Frequency distribution among 50 simulations of average relative strength through life of the 

strongest of the three components in a complex neuronal response function. High average strengths for 

the strongest component indicate that the population only utilizes one neuronal response function. The 

histograms show frequencies for the neuronal responses that are a part of emotional appraisal, either 

towards hunger (A-B) or fear (C-E). Only ‘Normal’ generations are used for comparison. ‘Normal’ 

generations are explained in Appendix A.1.Here, the last generation (‘Normal’) in all simulations in the D8 

TS200 experiment is presented. 

 

For the four neuronal responses that determine depth choice when individuals have entered a 

GOS, there is a lot of variation in the distribution of the average strength of strongest neuronal 

response component between simulations (Figure 22). This means that the different populations 

differ in to what extent they utilize multiple components when choosing a new depth. The 

utilization of a complex neuronal response function was more frequent during the emotional 

response (Figure 21) than when choosing depth. When doing this, hungry individuals benefited 
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from the second, and maybe third, component when evaluating food concentration (Figure 21 A), 

while frightened individuals had a tendency to use a complex function both when evaluating 

conspecifics (Figure 21 C) and light (Figure 21 D). However, the use of multiple components 

varied a lot between simulations for the frightened individuals. In comparison to response to food 

when hungry, frightened individuals used only one component in a substantial fraction of the 

simulations. 

 

 

Figure 22: Frequency distribution among 50 simulations of average relative strength through life of the 

strongest of the three components in a complex neuronal response function. High average strengths for 

the strongest component indicate that the population only utilizes one neuronal response function. The 

histograms show frequencies for the neuronal responses that are a part of depth choice when hungry (A-

B) or afraid (C-D). Only ‘Normal’ generations are used for comparison. ‘Normal’ generations are explained 

in Appendix A.1. Here, the last generation (‘Normal’) in all simulations in the D8 TS200 experiment is 

presented. 

 

All neuronal responses do not display the same pattern of variation. The response to conspecifics 

when in the hungry state shows that almost all simulations only use one component (Figure 22 

B).  Here, there was much less variation between simulations.  
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3.3.3 Comparison of five simulations through life 

The fraction of the total response that comes from the strongest neuronal response component 

(NR1) does in some cases show similar patterns between simulations through life (Figure 23). 

When this is to only use NR1, it indicates that all populations have evolved a complex response 

consisting of only a single component (Figure 23 C). The other two are then evolved to a level 

where they do not contribute. Some simulations have an opposite pattern when it comes to use of 

other components than NR1 (Figure 23 D) and some have just very different use of NR1, both in 

the overall level and the variation of this level through life. Equivalents for simulations 6-10 for 

the Figures 23-26 can be found in Appendix D. 

 

Whether one, two or three components are in use in a complex neuronal response, is not very 

important if the strength of that response is negligible. When choosing a GOS, the sums of two 

and three responses are calculated, for hunger and fear respectively where conspecifics have a 

negative value for fear. The strength of the neurobiological state of hunger (Equation 2) comes 

almost entirely from the stomach (Figure 24 A). For the fear response (Equation 3), the response 

from conspecifics is the most dominant one except during a predator attack (Figure 24 B). Then 

the fear response changes to consist of almost only the response from predation (Figure 24 D).  

 

Not all simulations have evolved the same mechanism for becoming afraid. Among these five 

simulations, there is one that stands out with a totally different pattern (blue graph in Figure 24 

B-C). In this particular simulation, the response to light (Figure 24 C) has a much stronger effect 

on fear than the other two. This again illustrates that the architecture of the model gives the 

opportunity to evolve different solutions to the same problem.  
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Figure 23: Relative contribution from components in complex neuronal response functions: Comparison of 

the last generation of five simulations from the D8 TS200 experiment, shown with same color in all panels. 

A-B) The fraction of the total neuronal response contributed by the stronger (NR1) of the two contributors 

to hunger: food (A) and available stomach capacity (B) through life. C-E) The fraction of the total neuronal 

response contributed by the stronger (NR1) of the three contributors to fear: reduction by conspecifics (C) 

and increase of fear by light (D) and predation (E) through life.  
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Figure 24: Relative contribution from the complex neuronal response functions when selecting GOS: 

Comparison of the last generation of five simulations from the D8 TS200 experiment, shown with same 

color in all panels. A) The relative strength of the neuronal response from available stomach capacity 

impacting hunger through life. B-D) The relative strength of the three neuronal responses impacting fear: 

conspecifics (B), light (C) and predation (D) through life. Data are from all individuals in the last generation 

of the simulations. 

 

The consistency in use of multiple components varies a lot between the different neuronal 

responses that is used to choose depth. The fraction of the complex neuronal response that comes 

from strongest neuronal response component is very consistent between simulations in the 

response to conspecifics when in the GOS ‘Hungry’ (Figure 25 B). All simulations utilize only 

one component in this case. The response to food in this state is also consistent between 

simulations in regard to using more than one neuronal response (Figure 25 A). The degree of use 

varies, but the patterns through life are very similar.  
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For other neuronal responses, the use of multiple components varies much more between 

simulations, exemplified by the use of strongest neuronal response component in the complex 

response to both conspecifics and light when in the GOS ‘Afraid’ (Figure 25 D and E).  Some of 

the simulations used only one and some used multiple components.  

 

 

Figure 25: Relative contribution from components in complex neuronal response functions and 

contribution from the complex neuronal response functions when selecting depth: Comparison of the last 

generation of five simulations from the D8 TS200 experiment, shown with the same color in all panels. A-

B) The fraction of the total neuronal response contributed by the stronger (NR1) of the three components 

through life when hungry for attraction from food (A) and repulsion from conspecifics (B). C) The fraction 

of the attraction towards a depth coming from food when in the GOS hungry through life. D-E) The fraction 

of the total neuronal response contributed by the stronger (NR1) of the three components through life 

when afraid for attraction from conspecifics (D) and repulsion from light (E). 
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When in the GOS ‘Hungry’, the fraction of the response that comes from food is generally much 

larger than the fraction from conspecifics (Figure 25 C). However, eight times during the last 

generation the fraction shifts to be almost entirely dominated by the response from conspecifics. 

This is due to the eight diel cycles in the simulation. The perception of food is determined by the 

amount of food and the visual range of the fish. The visual range decreases quadraticly with the 

ambient light intensity (see Equation A2 in Appendix A.1). Therefore, when the light intensity 

drops to a certain level, the response from food becomes much smaller than the one from 

conspecifics which is not dependent on light.  

 

The fraction of the evaluation of a depth that comes from the response to light when in the GOS 

‘Afraid’ varies a lot between simulations (Figure 26). Some do not consider light at all when 

choosing a depth, and those that do varies a lot in how strong this response is compared to the 

competing one (conspecifics).   

 

It does not appear to be consistency in the way different populations utilize the increased number 

of neuronal response components, except in the response to conspecifics when in the hungry 

state. Here almost all populations utilize only one neuronal response, although the fraction of the 

total evaluation of a depth that it contributes to, still varies a lot between populations (Figure 25 

C). 
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Figure 26: Relative contribution from light when selecting depth: The fraction of the repulsion from a depth 

coming from light when in the GOS afraid through life. Data are from all individuals in the last generation 

of simulations 1 (top) to 5 (bottom). The fraction at all 1600 time steps in each panel are the average of 

that age ± 4 time steps, i.e. the average of 9 time steps. This is to make graphs easier to interpret. The 

graphs represent the last generation (‘Normal’) in the first five simulations in the D8 TS200 experiment. 
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3.3.4 How the increased genetic complexity are utilized by the populations 

What kind of neuronal responses that are evolved and how the ability to add responses together to 

achieve new forms in these simulations is presented below. All examples are taken from 

simulation number two in the D8 TS200 experiment if not stated otherwise. This was picked 

because it was not among the few that deviated a lot from the rest according to the amount of fear 

in the population and had a pattern in the usage of multiple components in the complex neuronal 

response that were similar that of the majority of the other simulations. 

 

I will go through how the different responses are used in the order that they appear in the model. 

First, the five neuronal responses that are used in emotional appraisal. This means that they 

together with the developmental modulation genes determine the GOS. Last, the four neuronal 

responses (for which only two are used dependent on GOS) to choose between the possible 

depths. All complex neuronal response functions that are presented in the Figures 27-30 are 

function that have evolved in simulation number two in the D8 TS200 experiment and where a 

considerable amount (>30 %) of the population have this (or a very similar) response function.  

3.3.4.1 Choosing GOS – Emotional appraisal 

One way to utilize multiple neuronal responses is to have a graded response even at high and low 

perceptions, i.e. discriminating at the extremes. This form is found for the complex neuronal 

response function for light when choosing a GOS and is not possible to make with only a single 

response function (Figure 27, left). Another example of an evolved function that has a similar 

shape, discriminating even at high perceptions, is one for the response to predators (Figure 23, 

right). The shape of this function serves to make sure that the organism enters the GOS ‘Afraid’ 

during a predator attack and the addition of the second component further ensures this at the 

highest perceptions without increasing response at low perceptions. Both complex function 

presented here only utilize two components, the gene values of the third component have evolved 

to values where it does not give any response.  
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Figure 27: Complex neuronal responses that have evolved in the new version of the model. These 

complex neuronal responses are used to keep a sigmoid shape and still have increasing response at the 

highest perceptions. Complex neuronal responses to light (left, gene values: x1(0.62), y1(0.02), x2(0.22), 

y2(0.12), x3(0.31), y3(0.69)) and predators (right, gene values: x1(0.90), y1(0.04), x2(0.82), y2(0.11), 

x3(0.97), y3(0.14)) that contribute to fear when choosing GOS. The black lines indicate the single neuronal 

response components and the red line is the complex neuronal response. In both panels, the third 

component has evolved to very low values and therefore its graph does not show.  

 

For the neuronal response to stomach capacity, the same complex neuronal response has evolved 

by use of both one and two components (Figure 28). There are here two very similar complex 

functions in the same population, but where only about half have utilized the second component 

to slightly alter the response to stomach capacity. The parameter values (‘alleles’) of the second 

components in these two complex functions are not very similar. This means that it is not just a 

trait that happens to have some variation in the population, but two distinct genotypes. The 

strongest components have very similar values which can change the response a lot by just small 

mutations, so in practice, they have the same phenotype.  
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Figure 28: Complex neuronal responses that have evolved in the new version of the model. Neuronal 

responses to stomach capacity that contributes to hunger. Two solutions that evolved in the population 

where one (left, gene values: x1(0.41), y1(0.09), x2(0.30), y2(0.19), x3(0.72), y3(0.45)) utilized two simple 

responses and the other utilized only one (right, gene values: x1(0.40), y1(0.09), x2(0.47), y2(0.70), 

x3(0.73), y3(0.55)).  

3.3.4.2 Choosing depth 

Another way to utilize the increased complexity of the neuronal responses is to have some 

response even at low perceptions by use of the second (and possibly third) component. This is 

seen for a response to light in the GOS ‘Afraid’ (Figure 29, left plot). If the perception of light 

becomes high, this complex function will ensure a strong response and the organism will move 

according to light. When perception of light is weak, this function will still be able to 

discriminate between two depths because of the effect from the second component. This would 

be valuable when the concentration of conspecifics is the same in the evaluated depths since 

choosing the darkest depth will give lower predation risk.  
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Figure 29: Complex neuronal responses that have evolved in the new version of the model. Neuronal 

responses to light when in the GOS ‘Afraid’. The black lines indicate the three simple neuronal responses 

(here one is unused in both cases) and the red line is the complex neuronal response. The figure shows 

how combination of multiple responses can give a more complex response function that gives responses 

even at low levels of perceptions without losing the sigmoid shape (left, gene values: x1(0.78), y1(0.06), 

x2(0.13), y2(0.21), x3(1.00), y3(0.61)). It also presents how a population can evolve more than one solution 

(left and right), in this case as the response to light when in the GOS ‘Afraid’. (Right panel gene values: 

gene values: x1(0.08), y1(0.38), x2(0.18), y2(0.53), x3(0.17), y3(0.96).)  

 

It is worth mentioning that the perception of light intensity rarely exceeds 0.1. The right half of 

the functions (Figure 29) are therefore only used by individuals that stay high in the water 

column at the highest surface light intensities.  

 

As for previous versions of the model, evolution yields more than one solution for the neuronal 

response functions (Figure 29, both plots). Even though multiple components were used in the 

response to light when afraid, this was not the case for the responses to conspecifics when 

hungry, which also exhibited two very different complex neuronal response functions (Figure 

30). This was also the neuronal response that showed very little variation between simulations 

(Figure 22 B).  
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Figure 30: Complex neuronal responses that have evolved in the new version of the model. Two different 

neuronal responses to conspecifics when in the GOS ‘Hungry’ (left panel gene values: x1(0.11), y1(0.97), 

x2(0.46), y2(0.76), x3(0.70), y3(0.85), right panel gene values: x1(0.58), y1(0.02), x2(0.54), y2(0.41), x3(0.90), 

y3(0.84). The red line is the complex neuronal response. Only one neuronal response component was 

utilized in both cases and this therefore gives the complex function.  
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4 Discussion 

4.1 Optimization, adaptation and emotion systems 

Evolutionary optimization theory was founded by Lotka early in the 20
th

 century. He only 

considered age to predict survival and fecundity, by use of the Euler–Lotka equation (Euler, 

1760, Lotka, 1925), which allowed changing priorities through life. This method works well if 

age is the major explanatory variable. By the development of optimization theory into Optimal 

Foraging Theory (Emlen, 1966, Macarthur and Pianka, 1966), Life History Theory (Murdoch, 

1966, Williams, 1966) and Game Theory (Maynard Smith and Price, 1973), other aspects of the 

individuals were taken into consideration. Exclusively for Game Theory is that the strategies of 

other individuals are considered. All these theories are based on optimality, but differ in what is 

to be maximized (Giske et al., 1998).  

 

Combining Life History Theory and state dependency, Stochastic Dynamic Programming was 

developed (Mangel and Clark, 1986, Houston et al., 1988), still based on the simplicity 

assumption of the optimal solution. This approach allowed studies of trade-offs between the 

different components of fitness (Mangel and Clark, 1986, McNamara and Houston, 1986) and 

multiple physiological states could be evaluated in the same model together with age. All of these 

methods based on optimization have the advantage that they will arrive at the best solution, based 

on what that is to be maximized. However, if the number of solutions to be compared, i.e. the 

solution space, gets too large because of many variables, the computational complexity soon 

becomes enormous (Houston et al., 1988). 

 

A way to solve complex problems in ecological research, including density- time- and state-

dependency simultaneously is by use of adaptive models (Huse and Giske, 2004), utilizing 

techniques such as the Genetic Algorithm (Holland, 1975) and Individual-Based Modeling 

(Deangelis et al., 1980, Huse et al., 2002, Railsback and Grimm, 2011). This approach produces 

increasingly better solutions after each cycle in the algorithm. The Genetic Algorithm can be 

linked with a system for processing stimuli, e.g. Artificial Neural Networks (ANN) (Huse and 

Giske, 1998, Huse et al., 1999, Strand et al., 2002), specific equation sets (Giske et al., 2003) or 
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emotion systems (Giske et al., 2013), which yields insight into how individuals make their 

decisions. The need to include proximate elements in ecological research to explain the ultimate 

motivation has been called for by the scientific community (Ricklefs and Wikelski, 2002, 

McNamara and Houston, 2009, Fawcett et al., 2013). The proximate mechanisms and their 

constraints are of great interest of research on animal personalities (Dingemanse and Reale, 2005, 

Bell, 2007, Dingemanse and Wolf, 2013) and this have now been investigated by modeling an 

emotion system (Giske et al., 2013). To use an Individual-Based Model gives the advantage that 

each individual is represented by its own characteristics and behavior (Railsback and Grimm, 

2011). 

 

However, a problem with adaptive models is that the final solution can be at a local optimum, 

stuck on a small peak in the large fitness landscape (Mitchell, 1998). It is also a method that 

requires a lot of computational power. Whether to use optimization or adaptation as an approach 

is therefore dependent on the complexity needed to answer the question asked.  

 

Diel vertical migration (DVM) has been investigated in many groups of animals by use of 

optimization modeling for more than 50 years (McLaren, 1963, McLaren, 1974, Clark and Levy, 

1988, Hugie and Dill, 1994). A group of organisms that are thoroughly studied by use of such 

models is mesopelagic fish (Giske and Aksnes, 1992, Rosland and Giske, 1994; 1997, Rosland, 

1997, Staby et al., 2013) and these models gave results that were consistent with field 

observations (e.g. Giske and Aksnes, 1992, Rasmussen and Giske, 1994, Staby et al., 2011). 

These models, which calculate behavior through rational equations, therefore seem to describe 

these organisms relatively well.  However, more recent results (Giske et al., 2013, this thesis) 

show the same consistency with field data when fish behavior is modeled according to the theory 

of emotion systems. These results show that whether to base modeling on rational optimization or 

emotion theory is still an unanswered question. The theory of emotion systems is recent and 

therefore few field and lab studies have investigated such behavior. As a consequence, work by 

others has to be interpreted according to emotion theory since the authors did not consider it. 

However, it is likely that there will be produced more and better field and lab studies that 

investigate emotion theory in the years to come.  
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4.2 Stabilization of GOS levels 

The still increasing level of fear (especially for females) after 4000 generations (Figure 12) in 

experiments with all tested levels of temporal resolution may be interpreted as the number of 

generations was not sufficient. However, when investigating much longer simulations, the levels 

of fear remain unstable even after 120,000 generations. Longer simulations are therefore not the 

answer to the unstable levels of fear. Neither did the increase in number of genes and hence the 

possibility to evolve more complex neuronal response functions yield stable fear levels or 

convergence of fear levels between simulations. There are two possibilities to why this does not 

happen. First, the unpredictability may be a consequence of the behavioral architecture and 

actually reflects the evolutionary dynamics of natural populations. Alternatively, to achieve 

stability, a change in complexity in the architecture of the model is needed. Architecture here 

refers to how the different genes and responses affect each other and are essential in generating 

phenotypic variation (Kirschner and Gerhart, 1998, Doyle and Csete, 2011). 

4.2.1 Natural instability 

The chance of becoming afraid is influenced by all five neuronal responses, those relating to fear 

and those relating to hunger (Equations 2 and 3). The chance of becoming afraid is also 

modulated by the four developmental genes. This results in freedom of usage of one of the many 

possible behavioral pathways. This freedom may explain the unpredictability at architectural 

levels between the genotype and the phenotype that is seen in the model. Similar explanations 

have previously been suggested by Wagner (2011) for biochemical systems. Other adaptive 

models using other brain configurations have also produced such pathway-dependent 

unpredictability, e.g. ANNs (Enquist and Arak, 1994, Huse and Giske, 1998, Strand et al., 2002, 

Duarte et al., 2011).  

 

In addition to the freedom generated by the unpredictability in the behavioral pathways, the 

evolutionary history of a population is also a source of path dependency. Based on whether some 

strategies persist or go extinct, a population will end up with a certain configuration, leading to an 

evolutionary historic path dependency (Mangel, 1991).  The numerous ways that the genes of an 

individual interact gives multiple sources of variation. Since the genes of an individual are 
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dependent on the other genes of that individual and all individuals are dependent on what the 

others do, the mechanisms above result in a historic contingency. As for this model, diversity in 

behavior has also been demonstrated between and within natural fish populations (Brown et al., 

2005a, Wark et al., 2011, Ariyomo and Watt, 2012). If the unpredictability produced by the 

behavioral architecture and the historic contingency represents natural populations, these studies 

indicate that diversity in genetics and neurobiological states can emerge without long term 

differences in environment. 

4.2.2 Model-dependent instability 

In the complexity of the architecture lays many opportunities for change that can contribute to 

more stable levels of fear. The developmental modulation system is currently linked to the sex-

gene in the model and this yields clear differences between the sexes. However, it is possible to 

couple other genes together to achieve more stability.  This could be to group all genes for a 

specific GOS or all genes for responses to a perception (e.g. all genes for the three neuronal 

responses for conspecifics) on the same chromosome and hence decrease the complexity. A way 

to increase the architectural complexity of this model is the addition of new modulation systems 

(in addition to the current developmental modulation system). These modulation systems 

(inherited as gene values, operating as hormones) can relate to personality traits like aggression, 

boldness, exploration etc. and can modulate many of the existing neuronal responses. This may 

lead to the evolution of distinct personalities in the model, as speculated by Giske et al. (2013). It 

is possible that this can result in convergence and stability of fear, but this remains to be seen. I 

have tried to achieve this by increasing the temporal resolution and the genetic complexity, with 

only negative results.   

4.3 Increased genetic complexity 

When the second or third set of components of the complex neuronal response was needed to 

pick the right GOS, this was mainly to become afraid during a predator attack (Figure 18). 

Contributing to the GOS ‘Afraid’ is light, conspecifics and predation. In most simulations, either 

light or predation contributed with > 90 % of the strength from the second and third set of 
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components (Figure 19). This illustrate that it is possible to achieve the same GOS, but by 

utilizing the neuronal responses in different ways.  

 

A predator attack can be seen as one of the more complex features of the environment in this 

model since these events occur at random intervals and at all stages of life. Thus, when dealing 

with a more complex and unpredictable environment, a more complex neuronal response may 

seem to be beneficial. The level of complexity that the model is at today appears not to be in need 

for more complex neuronal responses. However, if the complexity of the environment is 

increased, an increase in complexity similar to what I have introduced can be beneficial.  

 

With respect to the neuronal responses, different simulations emphasize the different factors in 

their environment in totally different ways (Figure 24-26). This has also has been found in earlier 

versions of the model, without the increased complexity in the neuronal responses (Giske et al., 

2013). In Equations 2-5 there are very many parameters that can evolve in relation to each other. 

This means that several distinctly different genetic parameter sets can evolve, all resulting in the 

same behavior, as also seen for ANNs (Strand et al., 2002). However, this can be an artefact 

because natural fish in the natural world live in much more complex environments. Their 

“equations” have an even larger amount of parameters and a model with even more complex 

equations might give more consistency between simulations.  

 

The complex neuronal responses that evolved in the new version of the model use the second and 

third components to make relatively small alterations of the neuronal response function. One of 

these changes is to have still increasing response at high perceptions while keeping the sigmoid 

shape (Figure 27). The other change is to have graded response at weak perceptions also keeping 

the sigmoid shape (Figure 29). These two forms of the complex neuronal response function were 

not possible with only one component. It is therefore reasonable to think that these new functions 

are “better” in some way than the ones appearing in the version of the model by Giske et al. 

(2013). However, higher fitness was not found (Figure 20).  

 

The number of generations the genetic algorithm used to find the best solution (highest level of 

fecundity) did not increase with the increase in genetic complexity (Figure 20). Therefore, 
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increasing the genetic complexity is not a problematic alteration to the model. Another reason 

why more generations were not needed could be that the additional genes were minimally 

utilized. Each neuronal response component can take the shape of a sigmoidal function, chosen 

for this and earlier versions of the model to make responses at very low perceptions possible. (For 

discussion see Brown and Holmes (2001), Brown et al. (2005b) and Bogacz et al. (2007).) Even 

though much more complex functions were allowed to evolve, they did not differ much from 

those allowed by a single sigmoid function. Since more genes for possibly more complex 

functions requires more hours of computation, more memory and more storage and did not yield 

faster or better solutions, it is not advantageous to include increased genetic complexity before 

the complexity of the architecture and environment in the model is increased.   

4.4 Emotion systems in fish 

The similarities between teleosts and tetrapods that were outlined in section 3.1 regarding 

anatomy, neurochemistry and behavior indicate that teleosts experience both pain and fear, a 

view supported by many (Sneddon et al., 2003, Braithwaite and Huntingford, 2004, Chandroo et 

al., 2004). The sufficient cognitive capacities, which are essential (at least according to some) for 

considering welfare (Duncan and Petherick, 1991), may therefore be present in fish. This is of 

major importance to problems regarding fish welfare: if fish do not suffer physically (pain) or 

mentally (fear), it may not matter if they are treated in a way that would inflict such discomfort in 

other species, e.g. mammals (Bermond, 1997).  

 

Over the last decades there has been a substantial increase in the interest for fish welfare 

(Needham and Lehman, 1991, Chandroo et al., 2004, Branson, 2008, Braithwaite, 2010, Turnbull 

and Huntingford, 2012, Kittilsen, 2013). Research conducted with the purpose of increasing the 

welfare of fish will to some degree include harming living individuals. If models are developed 

that are able to replace research with living animals, this could be of great benefit for fish welfare 

research. 

 

The most obvious benefit with using models in welfare research is that no real animals suffer. 

The number and length of experiments are only limited by computation time capacity. When 
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studying welfare in fish, both mental states and behavior are used as indicators (Martins et al., 

2012), e.g. fear as an indicator of negative welfare and feed intake as an indicator of positive 

welfare (Huntingford et al., 2006). To measure a mental state like fear or even behaviors as 

proxies for these states in fish, are very hard. Working with a model, all data are available, e.g. 

the mental states of the modeled individuals.  

 

In the model currently used, only the ‘Hungry’ and ‘Afraid’ states of the fish are included. A 

natural fish has many more states and to include some of these in the model can possibly improve 

its predictive value. However, my results imply that in order to arrive at a stable solution, a lot of 

computation time is required and even then there can be large variation between populations. 

This variation indicates that there are several equally good solutions to the use of the two states. 

More fundamental research as suggested above is needed before GOS can be modulated for 

natural populations, and it is then likely that more precise and complex modeling of both 

environment and physiology is required.  

4.5 Sensitivity analysis of temporal resolution 

As the initial simulations indicated, the experiment with the lowest resolution (four diel cycles 

and 67 time steps per cycle) gave simulations that were not stable and hence were not adapted. It 

is therefore not meaningful to run the model with so low resolution.  For all other experiments, all 

traits (except fear) had reached a stable level after just about 1000 generations. In the next 3000 

generations, there was little change. As such, if anything except the tendency to be hungry or 

afraid is to be studied with this model, the number of generations needed could be further 

adjusted down.  

 

It was found that time steps per diel cycle and not number of diel cycle repetitions during a 

lifetime was most important for the number off eggs that can be produced in a generation 

(fecundity). This is not very surprising since the addition of more diel cycles only makes the 

individuals repeat the same behavior (migrate vertically). The increase of time steps per diel 

cycle gives the opportunity to make more choices during one cycle, both of GOS and of vertical 
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movement. It would have been interesting to see if further increase in resolution will result in 

even higher fecundities.  

 

Changing the resolution from 200 to 600 time steps in the experiments gives a higher population 

fecundity that is due to an increase in body mass and not a decrease in mortality. The possibility 

to switch faster between the two GOS can be the reason for the increase in final body mass 

without increase in mortality and hence the increased population fecundity. In addition, the 

higher temporal resolution also gives the opportunity to change depth more frequently during a 

diel cycle.  

 

There is a large effect of GOS when it comes to feeding and predation risk. When afraid, feeding 

is reduced to 10 % of the potential due to attention restriction (Giske et al., 2013). Therefore, 

feeding is mainly initiated by entering the GOS ‘Hungry’. With low temporal resolution, the 

amount of food available in a time step when the fish is hungry is very large, maybe much larger 

than the individual really needs. By increasing this resolution an individual can choose the 

appropriate size of its meals by adjusting the number of time steps that it stays hungry. This is 

one possible mechanism that could explain the increase in body mass without increasing the 

mortality. However, the details behind such mechanisms can be very complicated and hard to 

extract.  

 

Based on the current results, the model can be run with fewer diel cycles, but will benefit from an 

increased number of time steps per diel cycle. Four diel cycles and 600 time steps per cycle gives 

simulation of 2400 time steps per generation and this increases calculation time with 70 % 

compared to the previous standard. Dependent on what traits that is to be investigated this can be 

compensated for in fewer generations. Also, there may not be need to increase the number of 

time steps to 600 as 400 might be enough. However, to increase the number of time steps per diel 

cycle even more (e.g. 1200 per cycle) can possibly yield even better results.  

 

All my experiments were based on 50 simulations with identical parameters. This required a large 

amount of computation time and also storage space for output data. In all experiments, there was 
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found little variation between simulations for all traits except level of fear. Based on this, the 

number of simulations can be heavily reduced in experiments where GOS is not the main focus.  

 

A pattern in the overall level of fear between the experiments were not found, but the continual 

periods of fear (scaled to the maximum length of a life) become shorter when increasing the 

number of time steps in each diel cycle (Figure 17). This of course means that the relative length 

of the continual hunger periods also becomes shorter. More frequent changes of GOS gave 

increased fecundity, here found to be mainly due to an increase in body mass and not a decrease 

in mortality. How individuals achieved higher body mass without higher mortality rates is not 

known. Possible explanations can be a better fine tuning of the DVM or more precise meal sizes, 

but to get these answers, more research is needed.  

 

An interesting experiment that could be done with this model in the future is to run it with a full 

annual cycle with seasonal changes. To run simulations with 365 diel cycles per year, and maybe 

several years per generation, would take too many hours of computation. Based on the current 

sensitivity analysis on temporal resolution, the resolution in each diel cycle is more important that 

the repetitions of cycles. Therefore, to run the model for one or more entire annual cycles, 12 diel 

cycles can be run with high temporal resolution (e.g. 600 time steps) and different seasonal 

environment and the individual result from each diel cycle (mortality risk and weight gain) can be 

multiplied with 30. As such, the model can be run for a full annual cycle with good temporal 

resolution without using an enormous amount of calculation time. Modeling seasonal cycles of 

mesopelagic fish have been done before, but then by use of Stochastic Dynamic Programming 

that did not account for density dependence for competition and predation risk (Rosland and 

Giske, 1997). This model also had a much courser temporal resolution (time steps of five days). 

17 years later, the computational power is available to increase the temporal resolution, as I have 

suggested.  
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5 Recommendations 

The increased complexity of the neuronal responses was only utilized at a very small degree by 

the populations in these experiments and this did not result in increased population fecundity. 

This may be due to the lack of complexity of the environment and the behavioral architecture in 

the model. Increasing the genetic complexity as I did is therefore not needed before other changes 

to this model have been done.  

 

To improve the quality of the output from the model, I recommend that it should be run with 

higher temporal resolution in each diel cycle (>200 time steps). However, the number of diel 

cycles can be reduced to save computation time. Also, the number of simulations per experiment 

and the length of these can be reduced. I suggest experiments with a number of generations 

between 2000 and 4000, reducing computation time more than tenfold compared to Giske et al. 

(2013) where simulations were 50,000 generations long. It is possible that even more than 600 

time steps per diel cycles will give better results and to determine this there has to be done more 

research.  

 

To further investigate levels of fear within and among populations the effects of complexity in 

the architecture of the model can be explored. This can be done by increasing the number of 

GOS, implementing and connecting new modulating systems or changing the genetic complexity. 

These changes can be accompanied by a more complex model environment.  
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A Model description 

A.1 Environment 

The model consists of a population of mesopelagic planktivorous fish, performing diel vertical 

migration and starts off with 10.000 individuals which is also the highest possible number. Diel 

cycles are represented by cycles of surface light intensity (Equation A1) and the light is 

attenuated down in the water column according to Beer’s law (Aksnes and Giske, 1993, Aksnes 

and Utne, 1997).  

 

                 (
   

 
)                                                                                                        [  ] 

 

assumes 50 % scattering in the surface layer and gives the light intensity just beneath this layer, 

L(t). Also, d is the number of diel cycles in a simulation, t the current time step, Ω the total 

number of time steps and      the maximum surface irradiance. Prey also moves vertically, 

following the light with a vertical bell-shaped distribution. The amount of food an individual can 

consume in a time step         is the dependent of the attention a, visual range r(z,t), local prey 

density C(z,t) and number of conspecifics in the same depth N(z,t) where z is the depth and t is 

the time step: 

 

                                                                                                                                 [  ] 

 

However, constraining the food consumption is the stomach capacity of the individual. 

Calculation of visual range is based on the improved model for visual range in fish by Aksnes 

and Utne (1997). Every time step, the prey population is renewed, bringing prey densities back to 

initial concentrations. The environment also varies between generations. Each generation can 

exhibit one of nine fluctuation patterns which again contain shorter random fluctuations (full 

description of the environments in the online supplementary in Giske et al. (2013)). In the 

generation long fluctuations the rate of predation, prey density and light density are different. 

One of these patterns (Normal) is used when comparing simulations and are those presented in 

the results. The ‘Normal’ generations have intermediate levels of predation risk and food 
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concentration and the last generation of a simulation is always a ‘Normal’ one. It is also the most 

common of the nine generation long fluctuation pattern (occurring in 20 % of the generations) 

and have both intermediate food concentration and predation risk in addition to a fixed number 

(four) of predator attacks starting when a fixed fraction of the time steps have passed. The 

standardization of the predator attacks in time is done make accurate comparison of simulations 

possible.  

 

During the whole life cycle of an individual, there is always a relatively low predation risk. The 

predators that are eating the planktivorous fish are visual feeders and hence the risk of being 

eating diminishes with light intensity down in the water column (Aksnes and Utne, 1997). Larger 

body mass also increases the chance of being detected. Predation risk M(z,t) is determined by  

 

                                                                                                                                [  ]                                                

 

Where a is the fraction of attention towards predators derived from the developmental 

modulation genes, m(t) the background mortality, r(z,t) the visual range of the fish, B is body 

mass and N(z,t) is the number of fish at a specific depth. A few times in every generation, there is 

an attack from a school of predators. This increases the predation risk to 10 times the background 

risk.  

A.2 Reproduction 

Generations are non-overlapping and reproduction happens only at the end by those who survive. 

Females produce eggs dependent of own body mass and search for males in the ambient depth. 

The largest among three randomly encountered males, are chosen. All six genes for a neuronal 

response are inherited together on one separate chromosome. The sex gene along with the four D-

genes are located on a chromosome together and hence allow differences between the sexes. This 

chromosome with its five genes makes up one of the in total 10 chromosomes with 59 genes 

altogether.  
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A.3 References in Appendix A 
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B Major changes to the Fortran code HED23.f90 

B.1 Adding multiple neuronal responses 

To test the effects of increased genetic complexity in the model, the number of genes was 

increased. In the code, this was done by extending the genes with one dimension. The result were 

more genes, I run the model with three for each trait. This gives three simple neuronal response 

functions to make up one complex function. An example of code that is extended with this extra 

dimension is given under. Such alterations were done in the entire code.  

 

Extending all genes with an extra dimension (n) that is the number of simple neuronal responses: 

 
   do n = 1,NRcomp !Number of neuronal responses 
       do gn = 1,3 !Components of each gene, only 2 (x and y) used. 'egg' identifies a                             
newbord individual 
          geneAFlight(egg,n,gn) = min(max(EGGAFlight(egg,n,gn),allmin),allmax) 
          geneAFother(egg,n,gn) = min(max(EGGAFother(egg,n,gn),allmin),allmax) 
          geneAFmort(egg,n,gn) = min(max(EGGAFmort(egg,n,gn),allmin),allmax) 
          geneAHstom(egg,n,gn) = min(max(EGGAHstom(egg,n,gn),allmin),allmax) 
          geneAHfood(egg,n,gn) = min(max(EGGAHfood(egg,n,gn),allmin),allmax) 
          geneHFlight(egg,n,gn) = min(max(EGGHFlight(egg,n,gn),allmin),allmax) 
          geneHFother(egg,n,gn) = min(max(EGGHFother(egg,n,gn),allmin),allmax) 
          geneHHfood(egg,n,gn) = min(max(EGGHHfood(egg,n,gn),allmin),allmax) 
          geneHHother(egg,n,gn) = min(max(EGGHHother(egg,n,gn),allmin),allmax) 
 
          mutAFlight(egg,n,gn) = mEGGAFlight(egg,n,gn) 
          mutAFother(egg,n,gn) = mEGGAFother(egg,n,gn) 
          mutAFmort(egg,n,gn) = mEGGAFmort(egg,n,gn) 
          mutAHstom(egg,n,gn) = mEGGAHstom(egg,n,gn) 
          mutAHfood(egg,n,gn) = mEGGAHfood(egg,n,gn) 
          mutHFlight(egg,n,gn) = mEGGHFlight(egg,n,gn) 
          mutHFother(egg,n,gn) = mEGGHFother(egg,n,gn) 
          mutHHfood(egg,n,gn) = mEGGHHfood(egg,n,gn) 
          mutHHother(egg,n,gn) = mEGGHHother(egg,n,gn) 
      end do 
  end do !n 
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B.2 New calculation of the length of a predator attack 

The number of attacks is the same in each of the nine experiments. To make the accumulated risk 

the same in all experiments, the number of time steps had to be adjusted according to the number 

of time steps in the experiment. For this purpose, a new variable was introduced, ‘attacklength’. 

In the old code, predation risk was increased over a few time steps before reaching the maximum 

risk. This is not done in this new version. 

 

Code for calculating length of predator attack: 

 
!BSA 16.12.13 
attacklength = NINT((1.*flifespan) / (67. * 4.))  
!67*4 is set because length of maximum risk (attack) when flifespan=1400 is 5.  

 

(following if-statement done for all ages) 
if (dev > 1) then ! predator schools may attack at any random time step 
     if (attack == 0) then !no current predator attack 
      call random_number (rand) 
      if (rand < attrisk) then ! attack initiated just now 
         if (screenplot == 2) write(6,*)"attack now" 
         oldrisk = autorisk !memory of risk before attack (and after) 
         attack = 1  !current status 
         attacks = attacks + 1 !sum of attacks in generation 
         duration = 1 !counter for duration of attack 
         danger = 10   !present elevation BSA 16.12.13 set to 10 
         autorisk = oldrisk * danger 
       end if 
      else !ongoing attack 
       duration = duration + 1 
       if (duration .le. attacklength) then 
        !  danger = 4 !BSA 16.12.13 removed 
        !  autorisk = oldrisk * danger 
        !else if (duration < 8) then  
          danger = 10 
          autorisk = oldrisk * danger 
         else    !attack terminated at time step 8 
          attack = 0 
          duration = 0 
          danger = 1 
          autorisk = oldrisk  !background risk reestablished 
       end if !duration 
     end if ! attack = 0 
  else !dev = 1, i.e. "Normal" 
    !5 fixed time steps of initiation of attack 
      if (age == flifespan/7 .or. age == flifespan/3 .or. age == int(0.6*flifespan) .or. 
age == int(0.85*flifespan)) then 
         oldrisk = autorisk  !memory of risk before attack (and after) 
         attack = 1  !current status 
         attacks = attacks + 1 !sum of attacks in generation 
         duration = 1 !counter for duration of attack 
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         danger = 2   !present elevation 
         autorisk = oldrisk * danger 
        else if (attack == 1) then !attack is already going on 
          duration = duration + 1 
       if (duration .le. attacklength) then 
        !  danger = 4 !BSA 16.12.13 removed 
        !  autorisk = oldrisk * danger 
        !else if (duration < 8) then  
            danger = 10 
            autorisk = oldrisk * danger 
           else    !attack terminated at time step 8 
            attack = 0 
             duration = 0 
            danger = 1 
            autorisk = oldrisk  !background risk reestablished 
           end if !duration 
       end if !age  
   end if !dev 

 

 

C Data processing with a Fortran program 

Data from the simulations are run through another Fortran program for further processing after 

the simulations are done. The program consists of many subroutines. The two subroutines (SR19 

and SR13) that I worked the most with, and done most changes to, are presented here.  

C.1 SR19 

This subroutine had to be written from scratch to process the new data that the model produces 

due to the adding of multiple components of the neuronal responses. This subroutine ranks the 

three components due to their strength and then finds the fraction of the total strength of the 

complex neuronal response that is due to the strongest (NR1) of the three components. It also 

calculates how many sets of neuronal responses that are needed to find the GOS that the 

individual choose in the actual simulation.  

 

!------------------------------------- 
subroutine 
SR19NRComponents(runtag,first,files,milestone,flifespan,datetag,dumpinterval,normal) !BSA 
28.01.14 
!------------------------------------- 
!Find the effects of each component in complex neuronal response functions 
!in each age in last generation in all simulations 
! - find the fraction of strength of each complex NR from parts 1, 2 and 3 
! - find the probability of change in GOS from 1 to 2 components, and from 2 to 3 
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implicit none 
!Variables used in this Subroutine 
integer g,j,e,z,b,c,d,n,first,files,milestone,nextdir,flifespan 
integer dummy,dummy1,fpop,forget(12),new,newz 
integer MS,a,i,s,IND,nr,test,test2,jump,comps,comp,choice,zrange 
integer numfish(30,9600),autocop(30,9600),alive(2,9600) 
integer comphabval(4,9600),comp1GOS(9600),comp2GOS(9600),comp3GOS(9600),comp4GOS(9600) 
!BSA 30.01.14 
integer idepth(9600),iweight(9600),dumpinterval,za,neu !BSA 28.01.14 
integer thirdH,thirdA !BSA 28.04.14 
real streHs, streHf, streFl, streFo, streFm !BSA 28.04.14 
 real stocap(9600), normal !BSA 28.01.14 
real hunger(3,10000),fear(3,10000) !BSA 31.01.14 
real a1(3),a2(3),a4(3),a5(3),a6(3),a7(3),a8(3),a9(3),BM,rdummy1,rdummy2,rdummy3,rdummy4 
real 
p1,p2,p3,p4,p5,p7,p8,FL(5,3),FO(5,3),HF(5,3),HO(5,3),HdomF(5,3),HdomO(5,3),FdomL(5,3),Fdom
O(5,3) 
real sumlight,sumother,sumotherA,sumotherH,sumfood,summort,sumstom,living,Hsize 
real errorP,skip(7),MaxPercept(7),finfo(19) 
real autorisk(9600),visran(30,9600),zlight(30,9600) 
real geneAHsize(4),geneAFlight(3,2),geneAFother(3,2),geneAFmort(3,2),geneAHstom(3,2) !BSA 
29.01.14, changed from (2,3) to (3,2) 
real geneAHfood(3,2),geneHFlight(3,2),geneHFother(3,2),geneHHfood(3,2),geneHHother(3,2) 
real 
gamma2gene,gamma3gene,linearABM,linearABM2,ABMgenes(4),frac(9,3,9600),strength(9,3,9600) 
!BSA 10.02.14 
real 
Flight(3),Fother(3),Fmort(3),Hstom(3),Hfood(3),lightA(3,2),otherA(3,2),foodH(3,2),otherH(3
,2) 
real sumfrac(9,3) !BSA 30.01.14 
real avgstrength(9,3), avgfrac(9,3) !BSA 11.02.14 
integer rank(9,3) !BSA 30.01.14 
real interval(9,3) !BSA 03.02.14 
real Hsize1,Hsize2 
real hu1,hu2,hu3,fe1,fe2,fe3,e1,e2 
real light32(2),food32(2),cons32(2) ! BSA 03.02.14 
real sumHO,sumHF,sumFL,sumFO,r  ! BSA 03.02.14 
real habval(3,5),value !BSA 04.02.14 
character (1)  GOS(9600) 
character(12) T12 
character(7) T7 !BSA 28.01.14 
character(8) T8 !BSA 28.01.14 
character(6)  runtag 
character(20) string1 !BSA 28.01.14 
character(11)  string8 !BSA 28.01.14 
character(10)  string9 !BSA 28.01.14 
character(7)  string10 !BSA 28.01.14 
character(45) stringMAX 
character(51) stringENV 
character(45) stringHAB 
character(45) stringHED 
character(56) stringZ !BSA 28.01.14 
character(56) stringBM !BSA 28.01.14 
character(56) stringMS 
character(56) stringSTO 
character(49) stringNRs 
character(48) stringNRstrength !BSA 10.02.14 
character(32) stringAVGF !BSA 11.02.14 
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character(32) stringAVGS !BSA 11.02.14 
character(4) datetag !BSA 28.01.14 
 
 
write(6,*) "starting SR19NRComponents" 
!write(6,*) "milestone ", milestone 
write(6,*) "runtag ", runtag 
test = 0  !1 if searching for errors 
test2 = 0 
 
!set level of idividual error-making 
errorP = 0.1 !BSA 28.01.14 
 
!for each simulation SIM: 
 !open files for each simulation (BSA: First part of the names to the right are old, but 
that does not matter) 
 !  read max perception in final generation for each simulation from  HED18-JerP10-Exx-
o014-max-perception.txt 
 !  read environment each depth & time from                           HED18-JerP10-Exx-
o029-environment-each-age.txt 
 !  read habitat each depth & time from                               HED18-JerP10-Exx-
o011-habitat-part10.txt 
 !read data for one and one individual from these files 
 !  read genes of each individual from                                HED18-JerP10-Exx-
o030-HEDgene-part10.txt  
 !  read depth for each ind each age from                             HED18-JerP10-Exx-
o060-depth-all-ages-genr-50000.txt 
 !  read body mass for each ind each age from                         HED18-JerP10-Exx-
o061-bmass-all-ages-genr-50000.txt 
 !  read stomach for each ind each age from                           HED18-JerP10-Exx-
o063-stcap_rst-all-ages-genr-50000.txt 
 !  read motivational state for each ind each age from                HED18-JerP10-Exx-
o062-affect-all-ages-genr-50000.txt 
 !  calculate the contribution to the statistics for this individual throughtout all ages 
it was alive 
 !next ind 
 !close all input files 
 ! 
 !write output file for each SIM of .. 
 !for each age 
 !      NR      fraction of NR strength     fraction decided by component 
 !     (#        1         2         3         1         2           3)   x 9   
!read for next simulation 
 
 
nextdir = milestone 
if (nextdir > 9999999) then 
    write(string8,1008) "g-",nextdir 
  else if (nextdir > 9999999) then 
    write(string8,1007) "ge-",nextdir 
  else if (nextdir > 999999) then 
    write(string8,1006) "gen-",nextdir 
  else if (nextdir > 99999) then 
    write(string8,1005) "gene-",nextdir 
  else if (nextdir > 9999) then 
    write(string8,1004) "gener-",nextdir 
  else if (nextdir > 999) then 
    write(string8,1003) "genera-",nextdir 
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  else if (nextdir > 99) then 
    write(string8,1002) "generat-",nextdir 
  else if (nextdir > 9) then 
    write(string8,1002) "generati-",nextdir 
  else 
    write(string8,1001) "generatio-",nextdir 
end if 
1001 format(A9,I2) 
1002 format(A8,I3) 
1003 format(A7,I4) 
1004 format(A6,I5) 
1005 format(A5,I6) 
1006 format(A4,I7) 
1007 format(A3,I8) 
1008 format(A2,I9) 
  
if (nextdir > 9999999) then ! BSA 28.01.14 different string for o062 
    write(string9,1608) "g-",nextdir 
  else if (nextdir > 999999) then 
    write(string9,1607) "ge-",nextdir 
  else if (nextdir > 99999) then 
    write(string9,1606) "gen-",nextdir 
  else if (nextdir > 9999) then 
    write(string9,1605) "gene-",nextdir 
  else if (nextdir > 999) then 
    write(string9,1604) "gener-",nextdir 
  else if (nextdir > 99) then 
    write(string9,1603) "genera-",nextdir 
  else if (nextdir > 9) then 
    write(string9,1602) "generat-",nextdir 
  else 
    write(string9,1601) "generati-",nextdir 
end if      
1601 format(A9,I1) 
1602 format(A8,I2) 
1603 format(A7,I3) 
1604 format(A6,I4) 
1605 format(A5,I5) 
1606 format(A4,I6) 
1607 format(A3,I7) 
1608 format(A2,I8) 
      
if (nextdir > 9999999) then ! BSA 28.01.14 different string for o063 
    write(string10,1506) "g-",nextdir 
  else if (nextdir > 999999) then 
    write(string10,1506) "ge-",nextdir 
  else if (nextdir > 99999) then 
    write(string10,1506) "-",nextdir !BSA This does not work for 100k or more. (!) 
  else if (nextdir > 9999) then 
    write(string10,1505) "g-",nextdir 
  else if (nextdir > 999) then 
    write(string10,1504) "gn-",nextdir 
  else if (nextdir > 99) then 
    write(string10,1503) "gnr-",nextdir 
  else if (nextdir > 9) then 
    write(string10,1502) "genr-",nextdir 
  else 
    write(string10,1501) "gener-",nextdir 
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end if    
1501 format(A6,I1) 
1502 format(A5,I2) 
1503 format(A4,I3) 
1504 format(A3,I4) 
1505 format(A2,I5) 
1506 format(A1,I6) 
!1507 format(A3,I7) 
!1508 format(A2,I8)  
 
!BSA: Opening AVG-files 
write(stringAVGF,7010)"HED23-",datetag,runtag,"o048-NR-AVGF.txt" 
write(stringAVGS,7011)"HED23-",datetag,runtag,"o049-NR-AVGS.txt" 
7010 format(A6,A4,A6,A16) !BSA 11.02.14 
7011 format(A6,A4,A6,A16) !BSA 11.02.14  
open(48, file = stringAVGF) !BSA 11.02.14 
open(49, file = stringAVGS) !BSA 11.02.14 
 
write(48,4802)"sim","f1cFLIG","f2cFLIG","f3cFLIG","f1cFOTH","f2cFOTH","f3cFOTH","f1cFPRD",
"f2cFPRD","f3cFPRD", & 
          
"f1cHSTO","f2cHSTO","f3cFSTO","f1cHFOD","f2cHFOD","f3cHFOD","f1cALIG","f2cALIG","f3cALIG", 
& 
          
"f1cAOTH","f2cAOTH","f3cAOTH","f1cHFOD","f2cHFOD","f3cHFOD","f1cHOTH","f2cHOTH","f3cHOTH" 
write(49,4802)"sim","f1sFLIG","f2sFLIG","f3sFLIG","f1sFOTH","f2sFOTH","f3sFOTH","f1sFPRD",
"f2sFPRD","f3sFPRD", & 
          
"f1sHSTO","f2sHSTO","f3sFSTO","f1sHFOD","f2sHFOD","f3sHFOD","f1sALIG","f2sALIG","f3sALIG", 
& 
          
"f1sAOTH","f2sAOTH","f3sAOTH","f1sHFOD","f2sHFOD","f3sHFOD","f1sHOTH","f2sHOTH","f3sHOTH" 
4802 format(28A14) 
      
do nr = first,files 
   write(6,*)"starting simulation nr",nr 
    
   !Changing datetags and skipping crash-simulations 
   if (nr == 20) GOTO 4343 ! D8 200 
   if (nr == 1) datetag = '1219' 
   if (nr == 2) datetag = '1219' 
   if (nr == 3) datetag = '1220' 
   if (nr == 4) datetag = '1219' 
   if (nr == 5) datetag = '1220' 
 
  !reset arrays for this SIM 
  do a = 1,flifespan 
     comp1gos(a) = 0 
     comp2gos(a) = 0 
     comp3gos(a) = 0 
     comp4gos(a) = 0 !BSA 30.01.14 
     do comp = 1,4 
        comphabval(comp,a) = 0 
     end do 
     do MS = 1,2 
         alive(MS,a) = 0 
     end do !MS 
     do n = 1,9 
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        do comp = 1,3 
           frac(n,comp,a) = 0. 
           strength(n,comp,a) = 0. 
        end do  
    end do !n 
  end do 
  !BSA 28.01.14 
 
 
 !!! Opening files  !!! 
 
 if (nr < 10) then 
     write(string1, 5001)"HED23-",datetag,runtag,"-E0",nr !BSA 28.01.14 
    else 
     write(string1, 5002)"HED23-",datetag,runtag,"-E",nr !BSA 28.01.14 
 end if 
 write(6,*)" " 
 write(6,*)"now starting simulation  ", string1 
5001 format(A6,A4,A6,A3,I1) !BSA 28.01.14 
5002 format(A6,A4,A6,A2,I2) !BSA 28.01.14 
 
!files for input data 
write(stringMAX,7001)string1,"-o014-max-perception.txt" 
write(stringENV,7002)string1,"-o029-environment-each-age.txt" 
write(stringHAB,7001)string1,"-o011-habitat-part10.txt" 
write(stringHED,7001)string1,"-o030-HEDgene-part10.txt" 
write(stringZ,7003)  string1,"-o060-depth-all-ages-",string8,".txt" !BSA 28.01.14 
write(stringBM,7003) string1,"-o061-bmass-all-ages-",string8,".txt" 
write(stringMS,7007) string1,"-o062-affect-all-ages-",string9,".txt" 
write(stringSTO,7008)string1,"-o063-stcap_rst-all-ages-",string10,".txt" 
!files for output of results 
write(stringNRs,7005)string1,"-o042-NR-components.txt" 
write(stringNRstrength,7009)string1,"-o043-NR-strengths.txt"!BSA 20.02.14 
7001 format(A20,A24) !BSA 28.01.14 
7002 format(A20,A30) !BSA 28.01.14 
7003 format(A20,A21,A11,A4) !BSA 28.01.14 
7007 format(A20,A22,A10,A4) !BSA 28.01.14 
7008 format(A20,A25,A7,A4) !BSA 28.01.14 
7004 format(A16,A25,F5.2,A4) 
!7005 format(A16,A23,F5.2,A4) 
7005 format(A20,A23) !BSA 28.01.14 
7009 format(A20,A22) !BSA 10.02.14  
7006 format(A16,A22,F5.2,A4) 
 
open(11, file = stringHAB) 
open(14, file = stringMAX) 
open(29, file = stringENV) 
open(30, file = stringHED) 
open(60, file = stringZ) 
open(61, file = stringBM) 
open(62, file = stringMS) 
open(63, file = stringSTO) 
open(42, file = stringNRs) 
open(43, file = stringNRstrength) !BSA 10.02.14 
 
write(6,*) "reading file 29" 
!jump =  (milestone-1)*flifespan + 1 !(milestone-1) generations, flifespan ages and 1 
heading line 
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jump =  (((dumpinterval*normal) - 1)*flifespan) + 1 !dumped generations (200) -1, 
flifespan and 1 heading line, !BSA 28.01.14 
do g = 1,jump  
   read (29,*)  !skip all but the last generation 
end do 
 
!read environment information for each age 
do a = 1,flifespan 
   read(29,2929) dummy,T12,dummy1,rdummy1,rdummy2,rdummy3,rdummy4,autorisk(a)  !,   & 
!                    Rage,foodmax,Rage,autocop(foodmax,age),Rage,autotemp(foodmax),      & 
!                    alive,avgdepth,neighbors,mortnow,feednow,growthnow,fearlevel  
end do 
2929 format(I12,A12,I10,F10.3,F10.2,F10.3,2F10.5) 
!,F10.3,I10,F10.3,I12,F10.3,F12.2,I10,F12.2,F12.0,2F12.4,2F12.3) 
 
 
write(6,*) "reading file 11" 
jump = 10*flifespan*33 !generations, ages, 30 z + 3 heading lines 
do g = 1,jump  
   read (11,*)  !skip all but the last generation 
end do 
do a = 1,flifespan 
   read (11,*)  !skip 3 heading lines 
   read (11,*)  !skip 3 heading lines 
   read (11,*)  !skip 3 heading lines 
   do z = 1,30 
      read(11,1102) dummy,dummy,dummy,zlight(z,a),visran(z,a),T7,autocop(z,a),numfish(z,a) 
!BSA 28.01.14, added T7 
!           ,Hnum(dep),Anum(dep),HavgBM(dep),AavgBM(dep),Havgcost, & 
!           Aavgcost,HavgPstAvail(dep),AavgPstAvail(dep),didgain(dep),    & 
!           fgain(dep),restattention*fgain(dep),didrisk(dep),frisk(dep),     & 
!           Hrisk,Arisk,100.*ffeeling(dep,age) 
   end do !z 
end do !a 
1102 format (I5,2I5,F10.4,F9.4,A7,I8,I7)  !2I7,2F8.1,4F7.1,F10.1,3F10.3,3F13.7,F10.1) 
 
close(11) 
close(29) 
 
 
!read maximum perception data 
write(6,*) "reading file 14" 
write(6,1404)"Ex","Stomach","Light","Agents","Bodymass","Prey","Age","Risk" 
do g = 1,milestone + 1  
   read (14,*)    !skip all but the last line 
end do 
read (14,1402)dummy,(skip(i),i=1,7),(MaxPercept(i),i=1,7) 
write(6,1403)nr,(MaxPercept(i),i=1,7) 
 
close(14) 
1402 format(I8,16F12.2) 
1403 format(I12,7F12.2) 
1404 format(8A12) 
 
!read individual-data for genetics 
 write(6,*)"now reading ", stringHED 
   !read genetic data for each individual 
   !This file contains the data for the 10 last generations 
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   !The procedure is to skip the 9 first and read the tenth 
   do g = 1,9 !the 9 first and unused generations in the file 
      read(30,*)  !skip first line with simulation number 
      read(30,*)  !skip second line with generation number 
      read(30,*)  !skip third line with survivors 
      read(30,3001)fpop  !read number of inds to be skipped 
      do i = 1,fpop+1 
         read(30,*)  !skip heading line line and all inds in generation        
      end do 
   end do 
 
   read(30,*)  !skip first line with simulation number 
   read(30,3001) dummy !read second line with generation number 
   read(30,*)  !skip third line with survivors 
   read(30,3001)fpop  !read number of inds to be read 
   write(6,*) "generation",dummy,"has",fpop,"individuals. Reading file." 
   read(30,*)  !skip heading line for last generation 
   !read individual-data for each age 
   read(60,*) !heading 
   read(60,*) !heading 
   read(61,*) !heading 
   read(61,*) !heading 
   read(62,*) !heading 
   read(62,*) !heading 
   read(63,*) !heading 
   read(63,*) !heading 
 
 
!------- LONG individual-loop starting here ----------------------------------------------
----------- 
!data are read individual-by-individual to save memory (individuals are not in arrays), 
!but at the cost of slower reading of files 30 and 60-63. 
 
do while (.not. EOF(30)) !read all inds in this sim 
            read(30,3010) ind,(forget(j), j = 1,7), & ! BSA 29.01.14 modefied 
                   (forget(j), j = 1,3),rdummy1, forget(j),rdummy2, & 
                   rdummy3,forget(j),T8, (forget(j), j = 1,10),(forget(j), j = 1,5), & 
                   rdummy1,rdummy2, & 
                    (geneAHsize(g),g = 1,4),((geneAFlight(n,g),g = 1,2),n=1,3), &               
!gABM = 4 
                    ((geneAFother(n,g),g = 1,2),n=1,3),((geneAFmort(n,g),g = 1,2),n=1,3),  
& 
                    ((geneAHstom(n,g),g = 1,2),n=1,3),    & 
                    ((geneAHfood(n,g),g = 1,2),n=1,3),((geneHFlight(n,g),g = 1,2),n=1,3),   
& 
                    ((geneHFother(n,g),g = 1,2),n=1,3),((geneHHfood(n,g),g = 1,2),n=1,3),   
& 
                    ((geneHHother(n,g),g = 1,2),n=1,3) 
       read(60,6102)i,(idepth(a), a=1,flifespan) 
       read(61,6103)i,(iweight(a), a=1,flifespan) 
       read(62,6104)i,(GOS(a), a=1,flifespan) 
       read(63,6106)i,(stocap(a), a=1,flifespan) 
 
   3001 format(I6)            
3010 format(8I8,              & 
!i,fgender(i),fbd,frd,fmove,fdeathdepth(i),fdeathage(i),fdeathaffect(ind), 
            3I8,F8.0,I8,F8.0, & 
!fdeathBM(ind),fstatus(i),fnumberafraid(i),fbodymax(ind),strBM,fbodymass(i),  
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            F8.3,I8,A8,15I8,  & 
!fgonad(i),foffspring(i),"x",motherpop(i),mcreation(i),gcreation(i),acreation(i),icreation
(i), 
            2F8.4,            & !(motherstring(i,el),el = 1,motherlength),(geneMemo(i,g),g 
= 1,2), 
            200F8.2)            !(geneAHsize(i,g),g = 1,gABM),(geneAFlight(i,ng),g = 1,1-
3), n = 1,NRcomp), etc              
             
   6102 format(I6,14000I4) 
   6103 format(I6,14000I6) 
   6104 format(I6,14000A4) 
   6106 format(I6,14000F6.2) 
 
!write(6,*)"find NRs of hungry and afraid" 
!Perceptions, Neuronal responses and size-dependent developmental modulation 
 
do a = 1,flifespan 
    do comp = 1,3 
        do neu = 1,5 
            strength2(neu,comp,a) = 0. 
        end do 
    end do 
end do 
 
!!!! Take the organism through all ages !!!! 
do a = 1,flifespan 
     
    if (a > 1) then !test for alive 
        if(iweight(a-1) < 100.) goto 990 
    end if 
     
    !Global Organismal State 
    if (GOS(a) == "H") then  
        MS = 1 
    else  
        MS = 2  
    end if 
     
    !count inds alive in each MS 
    alive(MS,a) = alive(MS,a) + 1 
    !reset arrays and variables 
    !do comp = 1,3 
    ! fear(comp,a) = 0. 
    ! hunger(comp,a) = 0. 
    !end do !comp 
     
    do n = 1,9 
        do c = 1,3 !reset 
            sumfrac(n,c) = 0. 
        end do 
    end do !n 
     
    !Perception of predators is the same for all inds 
    finfo(19) = autorisk(a)/MaxPercept(7) 
     
    !Developmental modulation 
    do g = 1,4 
        ABMgenes(g) = geneAHsize(g) 
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    end do 
     
    !find body mass (finfo(12)) 
    !Bodymass in this routine is BEFORE behaviour in time step, so it is the stored BM 
from the time before. 
    if (a == 1) then 
        BM = 250. !the birth weight of all inds (cop2egg) 
    else 
        BM = iweight(a-1) 
    end if 
     
    !rescale BM to fit finfo(12) in the 0-1 range: 
    BM = BM/MaxPercept(4) 
    !interpolate between nearest two values to find F&Hsize at current BM 
    e1 = 0.1 
    e2 = -.1 
    Hsize1 = linearABM2(ABMgenes,BM,4,e1)  
    Hsize2 = linearABM2(ABMgenes,BM,4,e2)  
    if (MS == 1) then 
       Hsize = max(Hsize1,Hsize2) 
      else 
       Hsize = min(Hsize1,Hsize2) 
    end if 
    b = max(a-1,1) !last age, where 0 --> 1 
    z = idepth(b) !the position of the fish BEFORE its move 
    !Fear of light 
    finfo(4) = zlight(z,a)/MaxPercept(2) 
     
    !Fear reduction by others 
    !if (a == 1) then 
        finfo(9) = numfish(z,a)/MaxPercept(3) 
   ! else 
   !     ! finfo(9) = 0.5*(numfish(z,a-1)+numfish(z,a))/MaxPercept(3) 
   !     finfo(9) = numfish(z,a-1)/MaxPercept(3) 
   ! end if 
     
    !Hunger from stomach 
    ! full capacity is MAXSTOMCAP * body mass 
    !comp1 = 1.- fstomach(ind,1)/(maxstomcap*fbodymass(ind)) !fraction of allowed capacity 
remaining 
    !error coorection from stored values: 
    !correct C: comp1 = 1-stom/(0.15BM) 
    !stored L: Lastgenstocap = 1-stom/(0.25BM)  
    ! 5/3 (L-1) = stom/0.15BM = K 
    ! K = 5/3 - 5/3L 
    ! C = 1 - K = 1 - 1.66 + 5/3L = 5/3L - 2/3 
    finfo(1) = 1.666*stocap(a) - 0.666 !BSA 05.02.14 changed from b to a 
    finfo(1) = finfo(1)/MaxPercept(1) 
    !Hunger from food 
    !finfo(15) = visran(z,a)*visran(z,a)*autocop(z,b)/MaxPercept(5)  
    finfo(15) = visran(z,b)*visran(z,b)*autocop(z,b)/MaxPercept(5) 
     
    !Neuronal responses 
    p1 = finfo(1) 
    p2 = finfo(19) 
    p3 = finfo(9) 
    p4 = finfo(4) 
    p5 = finfo(15) 
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    do comp = 1,3 
        ! gamma2gene is a function that calculates the response based on the perception 
and the error 
        Flight(comp) = gamma2gene(10*geneAFlight(comp,1),10*geneAFlight(comp,2),p4,errorP)  
        Fother(comp) = gamma2gene(10*geneAFother(comp,1),10*geneAFother(comp,2),p3,errorP) 
        Fmort(comp) = gamma2gene(10*geneAFmort(comp,1),10*geneAFmort(comp,2),p2,errorP)  
        Hstom(comp) = gamma2gene(10*geneAHstom(comp,1),10*geneAHstom(comp,2),p1,errorP)  
        Hfood(comp) = gamma2gene(10*geneAHfood(comp,1),10*geneAHfood(comp,2),p5,errorP)  
        sumfrac(1,comp) = sumfrac(1,comp) + Flight(comp)  
        sumfrac(2,comp) = sumfrac(2,comp) + Fother(comp) 
        sumfrac(3,comp) = sumfrac(3,comp) + Fmort(comp) 
        sumfrac(4,comp) = sumfrac(4,comp) + Hstom(comp) 
        sumfrac(5,comp) = sumfrac(5,comp) + Hfood(comp) 
        ! fear(comp,a) = (1.-Hsize) * (Flight(comp) - Fother(comp) + Fmort(comp)) 
        ! hunger(comp,a) = Hsize * (Hstom(comp) + Hfood(comp)) 
    end do !comp 
     
    !!!What fraction of total NR did each component contain? 
    !!sumlight = Flight(1) + Flight(2) + Flight(3) 
    !!sumother = Fother(1) + Fother(2) + Fother(3) 
    !!summort = Fmort(1) + Fmort(2) + Fmort(3) 
    !!sumstom = Hstom(1) + Hstom(2) + Hstom(3) 
    !!sumfood = Hfood(1) + Hfood(2) + Hfood(3)  
    !!do comp = 1,3 
    !! if (sumlight > 0.) frac(1,comp,a) = frac(1,comp,a) + Flight(comp)/sumlight 
    !! if (sumother > 0.) frac(2,comp,a) = frac(2,comp,a) + Fother(comp)/sumother 
    !! if (summort > 0.) frac(3,comp,a) = frac(3,comp,a) + Fmort(comp)/summort 
    !! if (sumstom > 0.) frac(4,comp,a) = frac(4,comp,a) + Hstom(comp)/sumstom 
    !! if (sumfood > 0.) frac(5,comp,a) = frac(5,comp,a) + Hfood(comp)/sumfood 
    !!end do 
end do !a 
 990 continue !with next ind, after skipping dead fish  
 
 
 
!rank the 3 components of each NR by numerical significance in falling order 
    do n = 1,5 
        do c = 1,3  
            rank(n,c) = c !initiate assumed rank order: 1,2,3 
        end do 
        do comp = 2,3 
            do c = 1,comp-1 !compare with better ranked components and change rank order 
if wrong 
                if (sumfrac(n,comp) > sumfrac(n,c)) then 
                    rank(n,comp) = rank(n,comp) - 1 
                    rank(n,c) = rank(n,c) + 1 
                end if 
            end do !c 
        end do !comp 
    end do !n 
     
if (ind == 100 .or. ind == 200 .or. ind == 300) then 
    write(6,*)ind 
    write(6,166) (Flight(c),c= 1,3), (sumfrac(1,c),c= 1,3), (rank(1,c),c= 1,3) 
    write(6,166) (Fother(c),c= 1,3), (sumfrac(2,c),c= 1,3), (rank(2,c),c= 1,3) 
    write(6,166) (Fmort(c),c= 1,3), (sumfrac(3,c),c= 1,3), (rank(3,c),c= 1,3) 
    write(6,166) (Hstom(c),c= 1,3), (sumfrac(4,c),c= 1,3), (rank(4,c),c= 1,3) 
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    write(6,166) (Hfood(c),c= 1,3), (sumfrac(5,c),c= 1,3), (rank(5,c),c= 1,3) 
end if 
166 format (6E12.4,3I3) 
 
        !reset arrays and variables 
    do n = 1,9 
        do c = 1,3 !reset 
        sumfrac(n,c) = 0. 
        end do 
    end do !n 
 
!Recalculate rank-sorted NR-compoents through all ages 
do a = 1,flifespan 
     
    if (a > 1) then !test for alive 
        if(iweight(a-1) < 100.) goto 994 
    end if 
     
    !Global Organismal State, BSA uncommented 
    if (GOS(a) == "H") then  
     MS = 1 
     else  
     MS = 2  
    end if 
    !count inds alive in each MS 
    ! alive(MS,a) = alive(MS,a) + 1 
     
    !reset arrays and variables 
    do comp = 1,3 
        fear(comp,a) = 0. 
        hunger(comp,a) = 0. 
    end do !comp 
     
    !Perception of predators is the same for all inds 
    finfo(19) = autorisk(a)/MaxPercept(7) 
     
    !Developmental modulation 
    !do g = 1,4 
    ! ABMgenes(g) = geneAHsize(g) 
    !end do 
    !find body mass (finfo(12)) 
    !Bodymass in this routine is BEFORE behaviour in time step, so it is the stored BM 
from the time before. 
     
    if (a == 1) then  
        BM = 250. !the birth weight of all inds (cop2egg) 
    else 
        BM = iweight(a-1) 
    end if 
     
    !rescale BM to fit finfo(12) in the 0-1 range: 
    BM = BM/MaxPercept(4) 
    !interpolate between nearest two values to find F&Hsize at current BM 
     
    e1 = 0.1 ! BSA inserted if-statement 
    e2 = -.1 
    Hsize1 = linearABM2(ABMgenes,BM,4,e1)  
    Hsize2 = linearABM2(ABMgenes,BM,4,e2)  
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    if (MS == 1) then 
       Hsize = max(Hsize1,Hsize2) 
      else 
       Hsize = min(Hsize1,Hsize2) 
    end if 
     
    !Hsize = linearABM(ABMgenes,BM,4,errorP)  
!    Hsize2 = linearABM(ABMgenes,BM,4,errorP) 
 
    b = max(a-1,1) !last age, where 0 --> 1 
    z = idepth(b) !the position of the fish BEFORE its move 
    !Fear of light 
    do d = -2,2 
       s = max(z+d,1) 
       s = min(30,s) 
       finfo(4+d) = zlight(s,a)/MaxPercept(2) 
    end do    
  
    !Fear reduction by others 
   ! if (a == 1) then 
      do d = -2,2 
       s = max(z+d,1) 
       s = min(30,s) 
        finfo(9+d) = numfish(s,a)/MaxPercept(3) 
      end do 
    !else 
    !! finfo(9) = 0.5*(numfish(z,a-1)+numfish(z,a))/MaxPercept(3) 
    !  do d = -2,2 
    !   s = max(z,1) 
    !   s = min(30,s) 
    !    finfo(9+d) = numfish(s,a-1)/MaxPercept(3) 
    !  end do 
    !end if 
     
    !Hunger from stomach 
    ! full capacity is MAXSTOMCAP * body mass 
    !comp1 = 1.- fstomach(ind,1)/(maxstomcap*fbodymass(ind)) !fraction of allowed capacity 
remaining 
    !error correction from stored values: 
    !correct C: comp1 = 1-stom/(0.15BM) 
    !stored L: Lastgenstocap = 1-stom/(0.25BM)  
    ! 5/3 (L-1) = stom/0.15BM = K 
    ! K = 5/3 - 5/3L 
    ! C = 1 - K = 1 - 1.66 + 5/3L = 5/3L - 2/3 
    finfo(1) = 1.666*stocap(a) - 0.666 !BSA 05.02.14 b to a 
    finfo(1) = finfo(1)/MaxPercept(1) 
       
     
    !Hunger from food 
      do d = -2,2 
       s = max(z+d,1) 
       s = min(30,s) 
       ! finfo(15+d) = visran(s,a)*visran(s,a)*autocop(s,b)/MaxPercept(5)  
        finfo(15+d) = visran(s,b)*visran(s,b)*autocop(s,b)/MaxPercept(5)  
      end do 
     
    !Neuronal responses 
    p1 = finfo(1) 
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    p2 = finfo(19) 
    p3 = finfo(9) 
    p4 = finfo(4) 
    p5 = finfo(15) 
     
    IF (MS == 1) then !hungry 
        e1 = -.1 
        e2 = .1 
       else           !afraid 
        e1 = .1 
        e2 = -.1 
    ENDIF 
        
        
    do comp = 1,3 ! this time we do not follow the gene order, but the rank order! 
        c = rank(1,comp) !the genes in comp shall be used in Flight for rank c 
        Flight(c) = gamma3gene(10*geneAFlight(comp,1),10*geneAFlight(comp,2),p4,e1)  
        c = rank(2,comp) 
        Fother(c) = gamma3gene(10*geneAFother(comp,1),10*geneAFother(comp,2),p3,e2) 
        c = rank(3,comp) 
        Fmort(c) = gamma3gene(10*geneAFmort(comp,1),10*geneAFmort(comp,2),p2,e1)  
        c = rank(4,comp) 
        Hstom(c) = gamma3gene(10*geneAHstom(comp,1),10*geneAHstom(comp,2),p1,e2)  
        c = rank(5,comp) 
        Hfood(c) = gamma3gene(10*geneAHfood(comp,1),10*geneAHfood(comp,2),p5,e2)  
    end do 
     
    do c = 1,3 !now find fear and hunger for COMP in falling raink order 
        fear(c,a) = (1.-Hsize) * (Flight(c) - Fother(c) + Fmort(c)) 
        hunger(c,a) = Hsize * (Hstom(c) + Hfood(c)) 
    end do !c 
     
    !What fraction of total NR did each component contain? 
    sumlight = Flight(1) + Flight(2) + Flight(3) 
    sumother = Fother(1) + Fother(2) + Fother(3) 
    summort = Fmort(1) + Fmort(2) + Fmort(3) 
    sumstom = Hstom(1) + Hstom(2) + Hstom(3) 
    sumfood = Hfood(1) + Hfood(2) + Hfood(3)  
     
    do comp = 1,3 ! BSA 10.02.14 extended to strength 
        !Calculation of strength of NR1 as fraction of total strength 
        if (sumlight > 0.) frac(1,comp,a) = frac(1,comp,a) + Flight(comp)/sumlight 
        if (sumlight > 0.) strength(1,comp,a) = strength(1,comp,a) + Flight(comp) 
        if (sumlight > 0.) strength2(1,comp,a) = strength2(1,comp,a) + Flight(comp) 
        if (sumother > 0.) frac(2,comp,a) = frac(2,comp,a) + Fother(comp)/sumother 
        if (sumother> 0.) strength(2,comp,a) = strength(2,comp,a) + Fother(comp) 
        if (sumother> 0.) strength2(2,comp,a) = strength2(2,comp,a) + Fother(comp) 
        if (summort > 0.) frac(3,comp,a) = frac(3,comp,a) + Fmort(comp)/summort 
        if (summort> 0.) strength(3,comp,a) = strength(3,comp,a) + Fmort(comp) 
        if (summort> 0.) strength2(3,comp,a) = strength2(3,comp,a) + Fmort(comp) 
        if (sumstom > 0.) frac(4,comp,a) = frac(4,comp,a) + Hstom(comp)/sumstom 
        if (sumstom> 0.) strength(4,comp,a) = strength(4,comp,a) + Hstom(comp) 
        if (sumstom> 0.) strength2(4,comp,a) = strength2(4,comp,a) + Hstom(comp) 
        if (sumfood > 0.) frac(5,comp,a) = frac(5,comp,a) + Hfood(comp)/sumfood 
        if (sumfood> 0.) strength(5,comp,a) = strength(5,comp,a) + Hfood(comp) 
        if (sumfood> 0.) strength2(5,comp,a) = strength2(5,comp,a) + Hfood(comp) 
    end do 
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end do !a 
994 continue !with next ind, after skipping dead fish , BSA 31.01.14 
 
     
!!! New individual loop !!!! 
!--- Calculations for GOS ---! 
     
do a = 1,flifespan 
    !How many components were needed to find Global Organismal State? 
    ! BSA 30.01.14: Introduced comp4gos 
    if (a > 1) then !test for alive 
        if(iweight(a-1) < 100.) goto 995 
    end if 
     
    if (GOS(a) == "H") then !hungry 
        if(hunger(1,a) > fear(1,a)) then !case solved after 1 component 
            comp1gos(a) = comp1gos(a) + 1 
        else if (hunger(1,a) + hunger(2,a) > fear(1,a) + fear(2,a)) then ! 2 needed 
            comp2gos(a) = comp2gos(a) + 1 
        else if (hunger(1,a) + hunger(2,a) + hunger(3,a) > fear(1,a) + fear(2,a) 
+fear(3,a)) then ! 3 needed 
            comp3gos(a) = comp3gos(a) + 1 
            ! Found the right state, HUNGRY, with all three: This means that hunger(3,a) 
was bigger than fear(3,a) 
            thirdH = thirdH + 1 
            streHs = streHs + strength2(4,3,a) 
            streHf = streHf + strength2(5,3,a) 
        else 
            comp4gos(a) = comp4gos(a) +1 ! Depth was not found with all 3 components - 
error 
        end if 
    else !fish afraid 
        if(hunger(1,a) < fear(1,a)) then 
            comp1gos(a) = comp1gos(a) + 1 
        else if (hunger(1,a) + hunger(2,a) < fear(1,a) + fear(2,a)) then 
            comp2gos(a) = comp2gos(a) + 1 
                thirdA = thirdA + 1 
                streFl = streFl + strength2(1,2,a) 
                streFo = streFo + strength2(2,2,a) 
                streFm = streFm + strength2(3,2,a) 
        else if (hunger(1,a) + hunger(2,a) + hunger(3,a) < max(0.001, fear(1,a) + 
fear(2,a) +fear(3,a))) then ! 3 needed 
            if (fear(1,a) + fear(2,a) +fear(3,a) .ge. 0.001) then !BSA 03.05.14 
                comp3gos(a) = comp3gos(a) + 1 
                thirdA = thirdA + 1 
                streFl = streFl + strength2(1,3,a) 
                streFo = streFo + strength2(2,3,a) 
                streFm = streFm + strength2(3,3,a) 
            else 
                comp5gos(a) = comp5gos(a) +1 ! afraid due to lack of hunger 
            end if 
        else 
            comp4gos(a) = comp4gos(a) +1 ! Depth was not found with all 3 components - 
error 
        end if  
    end if 
     
end do !a 
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    995 continue !with next ind, after skipping dead fish , BSA 31.01.14 
 
     997 continue !with next ind, after skipping dead fish , BSA 31.01.14 
 
    
end do !while file 30... 
!------- LONG individual-loops ending here -----------------------------------------------
---------- 
 
 
!!!! PRINTING RESULTS !!!! 
 
!Results for use of GOS and what factors that contribute 
write(9191,9199) thirdH, thirdA, ((1.*thirdH)/(1.*(thirdA+thirdH))), streHs, streHf, 
streFl, streFo, streFm 
9199 format(2I16,F16.4,5F16.4) 
 
 
!after all individuals are calculated for all ages, print results for each age 
write(6,*) "make prints" 
!make headings for prints from each simulation 
write(42,4242)"age","hungry","afraid","age","f1cGOS","f2cGOS","f3cGOS","f4cGOS","age","f1c
DEP","f2cDEP","f3cDEP","f4cDEP",  & ! BSA 29.01.14 removed " ", 
          
"age","f1cFLIG","f2cFLIG","f3cFLIG","age","f1cFOTH","f2cFOTH","f3cFOTH","age","f1cFPRD","f
2cFPRD","f3cFPRD", & 
          
"age","f1cHSTO","f2cHSTO","f3cFSTO","age","f1cHFOD","f2cHFOD","f3cHFOD","age","f1cALIG","f
2cALIG","f3cALIG", & 
          
"age","f1cAOTH","f2cAOTH","f3cAOTH","age","f1cHFOD","f2cHFOD","f3cHFOD","age","f1cHOTH","f
2cHOTH","f3cHOTH" 
 
 
do a = 1,flifespan 
   !print results 
     living = 1.*(alive(1,a) + alive(2,a)) 
     do N = 1,5 !find GOS 
        do c = 1,3 
           if (living > 0.) frac(N,c,a) = frac(N,c,a)/living 
        end do 
     end do 
     do N = 6,7 !when GOS = afraid 
        do c = 1,3 
           if (alive(2,a) > 0) frac(N,c,a) = frac(N,c,a)/(1.*alive(2,a)) !divide by the 
frightened 
        end do 
     end do 
     do N = 8,9 !when GOS = hungry 
        do c = 1,3 
           if (alive(1,a) > 0) frac(N,c,a) = frac(N,c,a)/(1.*alive(1,a)) !divide by the 
hungry 
        end do 
     end do 
      
     !BSA 04.02.14: If-statement to avoid writing 0 when no ind in GOS at TS 
     if (living > 0.) then 
         if (alive(2,a) == 0) then 
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          write(42,4243) a,alive(1,a),alive(2,a),a,comp1gos(a)/living,   & 
          
comp2gos(a)/living,comp3gos(a)/living,comp4gos(a)/living,a,((comphabval(c,a)/living),c=1,4
),  & 
          
a,(frac(1,c,a),c=1,3),a,(frac(2,c,a),c=1,3),a,(frac(3,c,a),c=1,3),a,(frac(4,c,a),c=1,3),a,
(frac(5,c,a),c=1,3), & 
          
a,"None","None","None",a,"None","None","None",a,(frac(8,c,a),c=1,3),a,(frac(9,c,a),c=1,3) 
         else if (alive(1,a) == 0) then 
          write(42,4244) a,alive(1,a),alive(2,a),a,comp1gos(a)/living,   & 
          
comp2gos(a)/living,comp3gos(a)/living,comp4gos(a)/living,a,((comphabval(c,a)/living),c=1,4
),  & 
          
a,(frac(1,c,a),c=1,3),a,(frac(2,c,a),c=1,3),a,(frac(3,c,a),c=1,3),a,(frac(4,c,a),c=1,3),a,
(frac(5,c,a),c=1,3), & 
          
a,(frac(6,c,a),c=1,3),a,(frac(7,c,a),c=1,3),a,"None","None","None",a,"None","None","None" 
         else 
          write(42,4240) a,alive(1,a),alive(2,a),a,comp1gos(a)/living,   & 
          
comp2gos(a)/living,comp3gos(a)/living,comp4gos(a)/living,a,((comphabval(c,a)/living),c=1,4
),  & 
          
a,(frac(1,c,a),c=1,3),a,(frac(2,c,a),c=1,3),a,(frac(3,c,a),c=1,3),a,(frac(4,c,a),c=1,3),a,
(frac(5,c,a),c=1,3), & 
          
a,(frac(6,c,a),c=1,3),a,(frac(7,c,a),c=1,3),a,(frac(8,c,a),c=1,3),a,(frac(9,c,a),c=1,3) 
         end if 
     end if 
      
end do !a 
 
4240 format(4I12,4E12.5,I12,4E12.5,9(I12,3E12.5)) 
4243 format(4I12,4E12.5,I12,4E12.5,5(I12,3E12.5),2(I12,3A12),2(I12,3E12.5)) 
4244 format(4I12,4E12.5,I12,4E12.5,5(I12,3E12.5),2(I12,3E12.5),2(I12,3A12)) 
4242 format(49A12) 
!9922 continue !avoid SIM 22 
close(42) 
 
!BSA 10.02.14 - Making print for strengths: 
!after all individuals are calculated for all ages, print results for each age 
write(6,*) "make prints for strength" 
!make headings for prints from each simulation 
write(43,4242)"age","f1sFLIG","f2sFLIG","f3sFLIG","age","f1sFOTH","f2sFOTH","f3sFOTH","age
","f1sFPRD","f2sFPRD","f3sFPRD", & 
          
"age","f1sHSTO","f2sHSTO","f3sFSTO","age","f1sHFOD","f2sHFOD","f3sHFOD","age","f1sALIG","f
2sALIG","f3sALIG", & 
          
"age","f1sAOTH","f2sAOTH","f3sAOTH","age","f1sHFOD","f2sHFOD","f3sHFOD","age","f1sHOTH","f
2sHOTH","f3sHOTH" 
 
do a = 1,flifespan 
    living = 1.*(alive(1,a) + alive(2,a)) 
     do N = 1,5 !find GOS 
        do c = 1,3 
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           if (living > 0.) strength(N,c,a) = strength(N,c,a)/living 
        end do 
     end do 
    do N = 6,7 !when GOS = afraid 
        do c = 1,3 
           if (alive(2,a) > 0) strength(N,c,a) = strength(N,c,a)/(1.*alive(2,a)) !divide 
by the frightened 
        end do 
     end do 
     do N = 8,9 !when GOS = hungry 
        do c = 1,3 
           if (alive(1,a) > 0) strength(N,c,a) = strength(N,c,a)/(1.*alive(1,a)) !divide 
by the hungry 
        end do 
     end do 
 
     
    !BSA 10.02.14: If-statement to avoid writing 0 when no ind in GOS at TS 
     if (living > 0.) then 
         if (alive(2,a) == 0) then 
         write(43,4303) a,(strength(1,c,a), c=1,3),a,(strength(2,c,a), 
c=1,3),a,(strength(3,c,a), c=1,3),& 
                   a,(strength(4,c,a), c=1,3),a,(strength(5,c,a), c=1,3),& 
                    a,"None","None","None",a,"None","None","None",& 
                    a,(strength(8,c,a), c=1,3),a,(strength(9,c,a), c=1,3) 
         else if (alive(1,a) == 0) then 
         write(43,4304) a,(strength(1,c,a), c=1,3),a,(strength(2,c,a), 
c=1,3),a,(strength(3,c,a), c=1,3),& 
                   a,(strength(4,c,a), c=1,3),a,(strength(5,c,a), c=1,3),& 
                    a,(strength(6,c,a), c=1,3),a,(strength(7,c,a), c=1,3),& 
                    a,"None","None","None",a,"None","None","None" 
         else 
         write(43,4301) a,(strength(1,c,a), c=1,3),a,(strength(2,c,a), 
c=1,3),a,(strength(3,c,a), c=1,3),& 
                   a,(strength(4,c,a), c=1,3),a,(strength(5,c,a), c=1,3),& 
                    a,(strength(6,c,a), c=1,3),a,(strength(7,c,a), c=1,3),& 
                    a,(strength(8,c,a), c=1,3),a,(strength(9,c,a), c=1,3) 
         end if 
     end if 
     
     
end do ! a 
 
4301 format(9(I12,3E12.5)) 
4303 format(5(I12,3E12.5),2(I12,3A12),2(I12,3E12.5)) 
4304 format(7(I12,3E12.5),2(I12,3A12))     
4302 format(36A12)   
 
close(43)      
 
!BSA 12.02.14 Making prints of AVG values 
do i = 1,9 
    do c = 1,3 
            avgstrength(i,c) = 0. 
            avgfrac(i,c) = 0. 
    end do 
end do 
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do a = 1,flifespan 
    do i = 1,9 
        do c = 1,3 
            avgstrength(i,c) = avgstrength(i,c) + strength(i,c,a) 
            avgfrac(i,c) = avgfrac(i,c) + frac(i,c,a) 
        end do 
    end do !i 
end do 
 
do i = 1,9 
    do c = 1,3 
            avgstrength(i,c) = avgstrength(i,c)/(1.*flifespan) 
            avgfrac(i,c) = avgfrac(i,c)/(1.*flifespan) 
    end do 
end do 
 
write(48,4801) nr,((avgfrac(i,c), c=1,3),i=1,9) 
write(49,4801) nr,((avgstrength(i,c), c=1,3),i=1,9) 
 
4801 format(I12,27E14.5) 
 
 
4343 continue 
end do !nr (simulations) 
close(48) 
close(49) 
 
 
end !SR19NRComponents 

 

 

C.2 SR13 

This subroutine is used to calculate the mean values and 95 % confidence intervals of the mean 

for all 50 simulations at each 1000
th

 generation for all experiments and print them in different 

formats dependent on which figures the data is to be used in.  

 
!---------------------------------- 
subroutine SR13Normalo12(runtag,first,files,datetag,alpha) 
!---------------------------------- 
!Denne SR skriver ut verdier for 
!generation, %mortality, offspring, %fear females, % fear males 
!for hver NORMAL generasjon i hver simulering 
!i en felles fil der hver nye simulering følger under den forrige men med data i egne 
kolonner 
!SR altered by BSA 21.03.14 to write CI to file 113 
! variables used in last part of routine, where only one gen from each pop is used, are 
have a S in the name (e.g. SUMSmort..) 
 
implicit none 
character(8) deviation 
character(7) help 
character(6) runtag 
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character(20) string1 ! BSA 13.01.14 
character(36) string12 ! BSA 13.01.14 
character(55) string13! BSA 13.01.14 
character(55) string15! BSA 13.01.14 
character(55) string16 
character(55) string14! BSA 13.01.14 
character(4) datetag !BSA 13.01.14 
integer expmt,files,first,line,l,e,g,k,p,Nnr,genera,ngen,Npoint,divgen 
real m,ff,mf,alpha,bfM,bfF 
real fmultrisk,reprocap,fsurvR0,AvMut 
integer attacks,preymax,fpop,alive,fnewpop,neverA(2) 
integer kids(20000,0:100),Ckids(20000,0:100) ! BSA 13.01.14 Extended 2nd dimension to 
0:100 
real mort(20000,0:100),femF(20000,0:100),maleF(20000,0:100) 
 
!BSA 21.03.14 Added variables for CI 
real Cmort(20000,0:100),CfemF(20000,0:100),CmaleF(20000,0:100) 
real 
SUMCmort(8,0:100),SUMCkids(8,0:100),SUMCfemF(8,0:100),SUMCmaleF(8,0:100)!,SUMCbmF(8,0:100)
,SUMCbmM(8,0:100) 
real AVGcmort(8,0:100),AVGckids(8,0:100),AVGcfemF(8,0:100),AVGcmaleF(8,0:100) 
real 
VARCmort(8,0:100),VARCkids(8,0:100),VARCfemF(8,0:100),VARCmaleF(8,0:100)!,VARCbmF(8,0:100)
,VARCbmM(8,0:100) 
real CImort(8,0:100),CIkids(8,0:100),CIfemF(8,0:100),CImaleF(8,0:100) 
!BSA added variables for second part 
real 
Smort(8,0:100),Skids(8,0:100),SfemF(8,0:100),SmaleF(8,0:100),SbmF(8,0:100),SbmM(8,0:100) 
real SUMSmort(8),SUMSkids(8),SUMSfemF(8),SUMSmaleF(8),SUMSbmF(8),SUMSbmM(8) 
real AVGSmort(8),AVGSkids(8),AVGSfemF(8),AVGSmaleF(8),AVGSbmF(8),AVGSbmM(8) 
real VARSmort(8),VARSkids(8),VARSfemF(8),VARSmaleF(8),VARSbmF(8),VARSbmM(8) 
real SCImort(8),SCIkids(8),SCIfemF(8),SCImaleF(8),SCIbmF(8),SCIbmM(8) 
 
!dummy variables in reading 12 
real b1,b2,b3,b4,b5,z1,z2,z3,z4,z5,z6,z7,b11,b12,b13,b14,b15 
integer n1,n2,n3,n4,n5,n6 
 
write(6,*) "starting SR13Normalo12" 
 
!     read(12,1201) g,deviation,help,fmultrisk,reprocap,attacks,preymax,fpop,alive,  & 
!               m,fsurvR0,k,fnewpop,AvMut,neverA(1),XneverA(2),ff,mf 
!     1201 format(I6,2A9,2F8.2,I4,3I8,2F8.2,2I8,F8.2,2I8,2F9.4) 
 
!open output file 
write(string13, 5003)"HED23-",datetag,runtag,"-SR13-ALL-Ngener-mort-kids-fear.txt" 
write(string14, 5003)"HED23-",datetag,runtag,"-SR13-ALL-Ngener-ConfidInterval.txt" 
open(13, file = string13) 
open(113, file = string14) 
5003 format(1A6,A4,1A6,A35) ! BSA 13.01.14 
      
!Creating output file second part 
write(string15, 5003)"HED23-",datetag,runtag,"-SR13-CI-Comparing-simul-series.txt" 
open(20, file = string15) 
write(string16, 5003)"HED23-",datetag,runtag,"-SR13-Obs-for1-4kgen-MultCompar.txt" 
open(21, file = string16) 
2021 format(1A6,A4,1A6,A35)       
 
!Resetting variables used in CI-calculations, BSA 21.03.14      
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do expmt = first,files 
    do p = 1,4 !Number of compared data points 
        SUMCmort(p,expmt) = 0. 
        SUMCkids(p,expmt) = 0.  
        SUMCfemF(p,expmt) = 0. 
        SUMCmaleF(p,expmt) = 0.  
        AVGcmort(p,expmt) = 0.  
        AVGckids(p,expmt) = 0.  
        AVGcfemF(p,expmt) = 0.  
        AVGcmaleF(p,expmt) = 0.  
        VARCmort(p,expmt) = 0.  
        VARCkids(p,expmt) = 0.  
        VARCfemF(p,expmt) = 0.  
        VARCmaleF(p,expmt) = 0.  
        VARCmort(p,expmt) = 0.  
        VARCkids(p,expmt) = 0.  
        VARCfemF(p,expmt) = 0.  
        VARCmaleF(p,expmt) = 0.  
        CImort(p,expmt) = 0. 
        CIkids(p,expmt) = 0.  
        CIfemF(p,expmt) = 0.  
        CImaleF(p,expmt) = 0.  
        Smort(p,expmt) = 0. 
        Skids(p,expmt) = 0. 
        SfemF(p,expmt) = 0. 
        SmaleF(p,expmt) = 0. 
        SbmF(p,expmt) = 0. 
        SbmM(p,expmt) = 0. 
    end do 
end do 
do p = 1,4 
        SUMSmort(p) = 0.  
        SUMSkids(p) = 0.  
        SUMSfemF(p) = 0.  
        SUMSmaleF(p) = 0.  
        SUMSbmF(p) = 0.  
        SUMSbmM(p) = 0.  
        AVGSmort(p) = 0.  
        AVGSkids(p) = 0.  
        AVGSfemF(p) = 0.  
        AVGSmaleF(p) = 0.  
        AVGSbmF(p) = 0.  
        AVGSbmM(p) = 0. 
        VARSmort(p) = 0.  
        VARSkids(p) = 0.  
        VARSfemF(p) = 0.  
        VARSmaleF(p) = 0.  
        VARSfemF(p) = 0.  
        VARSmaleF(p) = 0. 
        SCImort(p) = 0. 
        SCIkids(p) = 0.  
        SCIfemF(p) = 0.  
        SCImaleF(p) = 0.  
        SCIbmF(p) = 0.  
        SCIbmM(p) = 0. 
end do 
 
!!!FIRST PART   
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!Used to calculate CI and mean values for each 1000th gen for each experiment 
!!!! Loop over number of simulations to analyse  !!!! 
 
do expmt = first,files    
     
  !reset arrays (set all data in all lines in output file to zero) 
  do e = first,files 
      genera = 0 
      Nnr = 0 
      Npoint = 0 
    do line = 1,20000  !never more than 20.000 generations, 30 simulations =600' 
        mort(line,e) = 0. 
        kids(line,e) = 0 
        femF(line,e) = 0. 
        maleF(line,e) = 0. 
        CMort(line,e) = 0. 
        Ckids(line,e) = 0. 
        CfemF(line,e) = 0. 
        CmaleF(line,e) = 0. 
    end do 
  end do 
  if (expmt < 10) then 
     write(string1, 5001)"HED23-",datetag,runtag,"-E0",expmt! BSA 13.01.14 
    else 
     write(string1, 5002)"HED23-",datetag,runtag,"-E",expmt! BSA 13.01.14 
  end if 
  write(string12,5013)string1,"-o012-popdyn.txt" 
  open(12, file = string12) 
  read(12,*) 
  line = 0  !no data lines are used, so far 
  write(6,*)"now reading ",string12 
  do while (.not. EOF(12)) 
     read(12,1201) g,deviation,help,fmultrisk,reprocap,attacks,preymax,fpop,alive,  & 
               
m,fsurvR0,k,fnewpop,AvMut,neverA(1),neverA(2),ff,mf,b1,b2,b3,b4,b5,bfF,z1,z2,z3,z4,z5,z6,z
7,n1,n2,n3,n4,n5,n6,b11,b12,b13,b14,b15,bfM 
     1201 format(I6,2A9,2F8.2,I4,3I8,2F8.2,2I8,F8.2,2I8,2F9.4,6F9.4,7F9.4,6F9.4,6F9.4) 
     if(deviation == "Normal") then 
       line = line + 1 !make new line in output file 
       mort(line,expmt) = m 
       kids(line,expmt) = k 
       femF(line,expmt) = ff 
       maleF(line,expmt) = mf 
       l = line 
       write(13,1202) 
g,(mort(l,e),e=first,4),g,(mort(l,e),e=first,files),g,(kids(l,e),e=first,files),g,(femF(l,
e),e=first,files),g,(maleF(l,e),e=first,files) ! BSA 13.01.14 1,30 to first,files 
 
     end if 
      
    if(deviation == "Normal") then  
        if ((g .gt. 800 .and. g .le. 1000) .or. (g .gt. 1800 .and. g .le. 2000) .or. (g 
.gt. 2800 .and. g .le. 3000) .or. (g .gt. 3800 .and. g .le. 4000)) then 
            genera = genera + 1 !number of normal generations passed in this block 
            Nnr = Nnr +1 !number passed in blocks in total 
            CMort(Nnr,expmt) = m 
            Ckids(Nnr,expmt) = k !Fecundity 
            CfemF(Nnr,expmt) = ff 
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            CmaleF(Nnr,expmt) = m 
        end if 
    end if 
     
     
    !Calculations of CI 
    if (g == 1000 .or. g == 2000 .or. g == 3000 .or. g == 4000) then 
        ! The number of normal generations to use is now genera 
        p = NINT(g/1000.) ! Gives p of 1,2,3,4 
        do ngen = (Nnr-genera+1),Nnr 
            SUMCmort(p,expmt) = SUMCmort(p,expmt) + Cmort(ngen,expmt) 
            SUMCkids(p,expmt) = SUMCkids(p,expmt) + Ckids(ngen,expmt) 
            SUMCfemF(p,expmt) = SUMCfemF(p,expmt) + CfemF(ngen,expmt) 
            SUMCmaleF(p,expmt) = SUMCmaleF(p,expmt) + CmaleF(ngen,expmt) 
        end do 
        AVGcmort(p,expmt) = SUMCmort(p,expmt)/(1.*genera) 
        AVGckids(p,expmt) = SUMCkids(p,expmt)/(1.*genera) 
        AVGcfemF(p,expmt) = SUMCfemF(p,expmt)/(1.*genera) 
        AVGcmaleF(p,expmt) = SUMCmaleF(p,expmt)/(1.*genera) 
        do ngen = (Nnr-genera+1),Nnr 
            VARCmort(p,expmt) = VARCmort(p,expmt) + (Cmort(ngen,expmt) - 
AVGCmort(p,expmt))**2. 
            VARCkids(p,expmt) = VARCkids(p,expmt) + (Ckids(ngen,expmt) - 
AVGCkids(p,expmt))**2. 
            VARCfemF(p,expmt) = VARCfemF(p,expmt) + (CfemF(ngen,expmt) - 
AVGCfemF(p,expmt))**2. 
            VARCmaleF(p,expmt) = VARCmaleF(p,expmt) + (CmaleF(ngen,expmt) - 
AVGCmaleF(p,expmt))**2. 
        end do 
        VARCmort(p,expmt) = VARCmort(p,expmt)/(1.*genera) !This is the variance 
        VARCkids(p,expmt) = VARCkids(p,expmt)/(1.*genera) !This is the variance 
        VARCfemF(p,expmt) = VARCfemF(p,expmt)/(1.*genera) !This is the variance 
        VARCmaleF(p,expmt) = VARCmaleF(p,expmt)/(1.*genera) !This is the variance 
        !find confidence interval (= alpha*SD/sqrt(N)) = alpha*sqrt(VAR/N)) 
        CImort(p,expmt) = alpha * sqrt(VARCmort(p,expmt)/(1.*genera)) 
        CIkids(p,expmt) = alpha * sqrt(VARCkids(p,expmt)/(1.*genera)) 
        CIfemF(p,expmt) = alpha * sqrt(VARCfemF(p,expmt)/(1.*genera)) 
        CImaleF(p,expmt) = alpha * sqrt(VARCmaleF(p,expmt)/(1.*genera)) 
    end if 
     
    if (g == 800 .or. g == 1800 .or. g == 2800 .or. g == 3800) then 
        genera = 0 ! Start counting normal generations for new point 
    end if 
     
    if (g == 1000 .or. g == 2000 .or. g == 3000 .or. g == 4000 .or. Npoint == 1) then 
        if (deviation == "Normal") then 
            p = NINT(g/1000.) ! Gives p of 1,2,3,4 
            Smort(p,expmt) = m 
            Skids(p,expmt) = k !Fecundity 
            SfemF(p,expmt) = ff 
            SmaleF(p,expmt) = mf 
            SbmF(p,expmt) = bfF 
            SbmM(p,expmt) = bfM 
             
            Npoint = 0   
            GOTO 1314 !Jump out of if-statement if normal is found 
        end if 
        Npoint = 1 !Entering IF next gen and hoping for a normal gen 
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    end if 
    1314 CONTINUE     
     
1202 format(I8,100F8.2,I8,100F8.2,I8,100F9.4,I8,100F9.4) ! BSA 13.01.14 extended to 100 
sim 
!1202 format(t1, I6,t1, I6,t1, I6,t1, I6)  
   end do !while  
   close(12) 
   1313 CONTINUE 
end do !expmt 
close(13) 
 
!Writing CI and avg 
write(113,5015) 
"Generation","CIMort","HighMort","LowMort","AVGMort","CIKids","Highkids","Lowkids","AVGkid
s","CIfemF","HighfemF","LowfemF","AVGfemF","CImaleF","HighmaleF","LowmaleF","AVGmaleF" 
do p = 1,4 
    do expmt = first,files 
        write(113,5014) (p*1000),CImort(p,expmt),(AVGCmort(p,expmt) + 
CImort(p,expmt)),(AVGCmort(p,expmt) - CImort(p,expmt)),AVGCmort(p,expmt), & 
                                 CIkids(p,expmt),(AVGCkids(p,expmt) + 
CIkids(p,expmt)),(AVGCkids(p,expmt) - CIkids(p,expmt)),AVGCkids(p,expmt), & 
                                 CIfemF(p,expmt),(AVGCfemF(p,expmt) + 
CIfemF(p,expmt)),(AVGCfemF(p,expmt) - CIfemF(p,expmt)),AVGCfemF(p,expmt), & 
                                 CImaleF(p,expmt),(AVGCmaleF(p,expmt) + 
CImaleF(p,expmt)),(AVGCmaleF(p,expmt) - CImaleF(p,expmt)),AVGCmaleF(p,expmt) 
    end do 
    write(113,*) "" !Blank line 
end do 
 
 
5001 format(1A6,1A4,1A6,A3,I1)! BSA 13.01.14 
5002 format(1A6,1A4,1A6,A2,I2)! BSA 13.01.14 
5013 format(A20,A16)! BSA 13.01.14 
5014 format(I12,16F12.4)      
5015 format(17A12)      
     
      
!SECOND PART      
!Calculations and output for CI - between series  
 
    divgen = 0 
    do expmt = first,files 
        if (expmt == 11) GOTO 1315 
        do p = 1,4 
            SUMSmort(p) = SUMSmort(p) + Smort(p,expmt) 
            SUMSkids(p) = SUMSkids(p) + Skids(p,expmt) 
            SUMSfemF(p) = SUMSfemF(p) + SfemF(p,expmt) 
            SUMSmaleF(p) = SUMSmaleF(p) + SmaleF(p,expmt) 
            SUMSbmF(p) = SUMSbmF(p) + SbmF(p,expmt) 
            SUMSbmM(p) = SUMSbmM(p) + SbmM(p,expmt) 
        end do 
        divgen = divgen + 1 
    1315 CONTINUE    
    end do 
     
    do p = 1,4 
        AVGSmort(p) = SUMSmort(p)/(1.*divgen) 
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        AVGSkids(p) = SUMSkids(p)/(1.*divgen) 
        AVGSfemF(p) = SUMSfemF(p)/(1.*divgen) 
        AVGSmaleF(p) = SUMSmaleF(p)/(1.*divgen) 
        AVGSbmF(p) = SUMSbmF(p)/(1.*divgen) 
        AVGSbmM(p) = SUMSbmM(p)/(1.*divgen) 
    end do 
         
    do expmt = first,files 
        do p = 1,4 
            VARSmort(p) = VARSmort(p) + (Smort(p,expmt) - AVGSmort(p))**2. 
            VARSkids(p) = VARSkids(p) + (Skids(p,expmt) - AVGSkids(p))**2. 
            VARSfemF(p) = VARSfemF(p) + (SfemF(p,expmt) - AVGSfemF(p))**2. 
            VARSmaleF(p) = VARSmaleF(p) + (SmaleF(p,expmt) - AVGSmaleF(p))**2. 
            VARSbmF(p) = VARSbmF(p) + (SbmF(p,expmt) - AVGSbmF(p))**2. 
            VARSbmM(p) = VARSbmM(p) + (SbmM(p,expmt) - AVGSbmM(p))**2. 
        end do 
    end do 
     
    do p = 1,4 
            VARSmort(p) = VARSmort(p)/(1.*divgen) 
            VARSkids(p) = VARSkids(p)/(1.*divgen) 
            VARSfemF(p) = VARSfemF(p)/(1.*divgen) 
            VARSmaleF(p) = VARSmaleF(p)/(1.*divgen) 
            VARSbmF(p) = VARSbmF(p)/(1.*divgen) 
            VARSbmM(p) = VARSbmM(p)/(1.*divgen) 
             
            !find confidence interval (= alpha*SD/sqrt(N)) = alpha*sqrt(VAR/N)) 
            SCImort(p) = alpha * sqrt(VARSmort(p)/(1.*divgen)) 
            SCIkids(p) = alpha * sqrt(VARSkids(p)/(1.*divgen)) 
            SCIfemF(p) = alpha * sqrt(VARSfemF(p)/(1.*divgen)) 
            SCImaleF(p) = alpha * sqrt(VARSmaleF(p)/(1.*divgen)) 
            SCIbmF(p) = alpha * sqrt(VARSbmF(p)/(1.*divgen)) 
            SCIbmM(p) = alpha * sqrt(VARSbmM(p)/(1.*divgen)) 
    end do 
     
          
write(20,5016) 
"CIMort","HighMort","LowMort","AVGMort","CIKids","Highkids","Lowkids","AVGkids","CIfemF","
HighfemF","LowfemF","AVGfemF","CImaleF","HighmaleF","LowmaleF","AVGmaleF", & 
               "CIbmF","HighbmF","LowbmF","AVGbmF","CIbmM","HighbmM","LowbmM","AVGbmM"      
do p = 1,4     
    write(20,5017) SCImort(p),AVGSmort(p) + SCImort(p),AVGSmort(p) - 
SCImort(p),AVGSmort(p),  &   
                    SCIkids(p),AVGSkids(p) + SCIkids(p),AVGSkids(p) - 
SCIkids(p),AVGSkids(p),  &   
                    SCIfemF(p),AVGSfemF(p) + SCIfemF(p),AVGSfemF(p) - 
SCIfemF(p),AVGSfemF(p),  &   
                    SCImaleF(p),AVGSmaleF(p) + SCImaleF(p),AVGSmaleF(p) - 
SCImaleF(p),AVGSmaleF(p),  &   
                    SCIbmF(p),AVGSbmF(p) + SCIbmF(p),AVGSbmF(p) - SCIbmF(p),AVGSbmF(p),  &   
                    SCIbmM(p),AVGSbmM(p) + SCIbmM(p),AVGSbmM(p) - SCIbmM(p),AVGSbmM(p) 
end do 
close(29) 
 
!Output used in Matlab procedure to compare experiments 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
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    write(21,5018) Smort(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
    write(21,5018) Skids(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
    write(21,5018) SfemF(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
    write(21,5018) SmaleF(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
    write(21,5018) SbmF(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
do p = 1,4 
do expmt = first,files 
    !if (expmt == 20) GOTO 1316 
    write(21,5018) SbmM(p,expmt) 
    !1316 CONTINUE 
end do 
end do 
 
5016 format(24A12) 
5017 format(24F12.4)   
5018 format(F12.4)      
close(21) 
 
end !SR SRNormalo12 
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D Figures for neuronal responses and their strength: 

Simulations 6-10 

The following four figures are equivalents to Figures 23-26 in the main text, but these represents 

simulations 6-10. 

 

 
Figure A1: Relative contribution from components in complex neuronal response functions: Comparison of 

the last generation of five simulations, shown with same color in all panels. A-B) The fraction of the total 

neuronal response contributed by the stronger (NR1) of the two contributors to hunger: food (A) and 

available stomach capacity (B) through life. C-E) The fraction of the total neuronal response contributed by 

the stronger (NR1) of the three contributors to fear: reduction by conspecifics (C) and increase of fear by 

light (D) and predation (E) through life.  
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Figure A2: Relative contribution from the complex neuronal response functions when selecting GOS: 

Comparison of the last generation of five simulations, shown with same color in all panels. A) The relative 

strength of the neuronal response from available stomach capacity impacting hunger through life. B-D) 

The relative strength of the three neuronal responses impacting fear: conspecifics (B), light (C) and 

predation (D) through life. Data are from all individuals in the last generation of the simulations. 

 

0

1

0 1600
Fr

ac
ti

o
n

 o
f 

fe
ar

 d
u

e 
to

 
lig

h
t

C

0

1

0 1600

Fr
ac

ti
o

n
 o

f f
ea

r 
d

u
e 

to
 

co
n

sp
e

ci
fi

cs B

0

1

0 1600

Fr
ac

ti
on

 o
f f

ea
r 

du
e 

to
 

pr
ed

at
io

n

Age

D

0

1

0 1600

Fr
ac

ti
o

n
 o

f 
h

u
n

ge
r 

d
u

e 
to

 
st

o
m

ac
h

Age

A



 

115 

 

 
Figure A3: Relative contribution from components in complex neuronal response functions and 

contribution from the complex neuronal response functions when selecting depth: Comparison of the last 

generation of five simulations, shown with the same color in all panels. A-B) The fraction of the total 

neuronal response contributed by the stronger (NR1) of the three components through life when hungry 

for attraction from food (A) and repulsion from conspecifics (B). C) The fraction of the attraction towards a 

depth coming from food when in the GOS hungry through life. D-E) The fraction of the total neuronal 

response contributed by the stronger (NR1) of the three components through life when afraid for attraction 

from conspecifics (D) and repulsion from light (E). 
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Figure A4: Relative contribution from light when selecting depth: The fraction of the repulsion from a depth 

coming from light when in the GOS afraid through life. Data are from all individuals in the last generation 

of simulations 6 (top) to 10 (bottom). The fraction at all 1600 time steps in each panel are the average of 

four time steps before and after that time step. This is to make graphs easier to interpret. 
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E Figures for all 9 experiments: Two figures for each 

experiment 
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Figure A5, previous page: Comparison of the last 20 generations in the 50 simulations in the series with 4 

diel cycles and 67 time steps per cycle. A- B) Death rates through life for females and males, respectively. 

C- D) The frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body 

mass at the end of a generation for females and males, respectively. G-H) The depth at which individuals 

reproduce (i.e. are located in the last time step) for females and males, respectively. X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. ‘Normal’ generations are explained in Appendix A.1. X-axes in the panels A 

and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. 
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Figure A6: The average in each generation of mortality (A), fecundity (B), percent of time steps in the GOS 

afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 8 diel cycles and 67 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A7: Comparison of the last 20 generations in the 50 simulations in the series with 8 diel cycles and 

67 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) The 

frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at the 

end of a generation for females and males, respectively. G-H) The depth at which individuals reproduce 

(i.e. are located in the last time step) for females and males, respectively. X-axes in the panels A and B, E 

and F and F and G are scaled as a fraction of maximum age, maximum body mass and maximum depth, 
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respectively. ‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels A and B, E and F 

and F and G are scaled as a fraction of maximum age, maximum body mass and maximum depth, 

respectively. 

 

 

Figure A8: The average in each generation of mortality (A), fecundity (B), percent of time steps in the GOS 

afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 4 diel cycles and 200 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A9: Comparison of the last 20 generations in the 50 simulations in the series with 4 diel cycles and 

200 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) The 

frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at the 

end of a generation for females and males, respectively. G-H) The depth at which individuals reproduce 

(i.e. are located in the last time step) for females and males, respectively. ‘Normal’ generations are 

explained in Appendix A.1.  X-axes in the panels A and B, E and F and F and G are scaled as a fraction of 
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maximum age, maximum body mass and maximum depth, respectively. X-axes in the panels A and B, E 

and F and F and G are scaled as a fraction of maximum age, maximum body mass and maximum depth, 

respectively. 

 
 

 

Figure A10: The average in each generation of mortality (A), fecundity (B), percent of time steps in the 

GOS afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 16 diel cycles and 67 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A11: Comparison of the last 20 generations in the 50 simulations in the series with 16 diel cycles 

and 67 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) The 

frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at the 

end of a generation for females and males, respectively. G-H) The depth at which individuals reproduce 

(i.e. are located in the last time step) for females and males, respectively. X-axes in the panels A and B, E 

and F and F and G are scaled as a fraction of maximum age, maximum body mass and maximum depth, 
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respectively. ‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels A and B, E and F 

and F and G are scaled as a fraction of maximum age, maximum body mass and maximum depth, 

respectively. 

 

 

Figure A12: The average in each generation of mortality (A), fecundity (B), percent of time steps in the 

GOS afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 4 diel cycles and 600 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 

0

100

0 4000

M
o

rt
a

li
ty

Generations

A

0

40

0 4000

P
e
rc

e
n

t 
a

fr
ia

d
, 

fe
m

a
le

s

Generations

C

0

40

0 4000

P
e
rc

e
n

t 
a

fr
a

id
, 

m
a

le
s

Generations

D

0

20000

0 4000

F
e
c
u

n
d

it
y

Generations

B

0

8000

0 4000

B
o

d
y
 m

a
ss

, f
e
m

a
le

s

Generations

E

0

8000

0 4000

B
o

d
y
 m

a
ss

, m
a

le
s

Generations

F

0

100

0 4000

M
o

rt
a

li
ty

Generations

A Diel cycles:             4
Time steps:        2400

0

40

0 4000

P
e
rc

e
n

t 
a

fr
ia

d
, 

fe
m

a
le

s

Generations

C

0

40

0 4000

P
e
rc

e
n

t 
a

fr
a

id
, 

m
a

le
s

Generations

D

0

20000

0 4000

F
e
c
u

n
d

it
y

Generations

B

0

8000

0 4000

B
o

d
y
 m

a
ss

, f
e
m

a
le

s

Generations

E

0

8000

0 4000

B
o

d
y
 m

a
ss

, m
a

le
s

Generations

F



 

126 

 

 
Figure A13: Comparison of the last 20 generations in the 50 simulations in the series with 4 diel cycles 

and 600 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) 

The frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at 

the end of a generation for females and males, respectively. G-H) The depth at which individuals 

reproduce (i.e. are located in the last time step) for females and males, respectively. ‘Normal’ generations 

are explained in Appendix A.1.  X-axes in the panels A and B, E and F and F and G are scaled as a 
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fraction of maximum age, maximum body mass and maximum depth, respectively. X-axes in the panels A 

and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. 

 

 

Figure A14: The average in each generation of mortality (A), fecundity (B), percent of time steps in the 

GOS afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 16 diel cycles and 200 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A15: Comparison of the last 20 generations in the 50 simulations in the series with 16 diel cycles 

and 200 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) 

The frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at 

the end of a generation for females and males, respectively. G-H) The depth at which individuals 

reproduce (i.e. are located in the last time step) for females and males, respectively. X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 
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maximum depth, respectively. ‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. 

 

 
Figure A16: The average in each generation of mortality (A), fecundity (B), percent of time steps in the 

GOS afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 8 diel cycles and 600 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A17: Comparison of the last 20 generations in the 50 simulations in the series with 8 diel cycles 

and 600 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) 

The frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at 

the end of a generation for females and males, respectively. G-H) The depth at which individuals 

reproduce (i.e. are located in the last time step) for females and males, respectively. X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

0

0.002

0 1

D
e
a

th
 r

a
te

 i
n

 t
im

e
 

st
e
p

, f
e
m

a
le

s

Age

A Diel cycles:             8
Time steps:        4800

0

0.3

0 1

F
re

q
u

e
n

c
y

Depth at reproduction, females

G

0

0.12

0 1

F
re

q
u

e
n

c
y

Final body mass, females

E

0

0.12

0 1

F
re

q
u

e
n

c
y

Final body mass, males

F

0

1

0 0.6

F
re

q
u

e
n

c
y

Fraction of time afraid, females

C

0

1

0 0.6

F
re

q
u

e
n

c
y

Fraction of time afraid, males

D

0

0.002

0 1

D
e
a

th
 r

a
te

 i
n

 t
im

e
 

st
e
p

, m
a

le
s

Age

B

0

0.3

0 1

F
re

q
u

e
n

c
y

Depth at reproduction, males

H



 

131 

 

maximum depth, respectively. ‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. 

 

 
Figure A18: The average in each generation of mortality (A), fecundity (B), percent of time steps in the 

GOS afraid for females (C) and males (D) and final body mass for females (E) and males (F) for all 50 

simulations with 16 diel cycles and 600 time steps per cycle. Only ‘Normal’ generations are used for 

comparison. ‘Normal’ generations are explained in Appendix A.1. 
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Figure A19: Comparison of the last 20 generations in the 50 simulations in the series with 16 diel cycles 

and 600 time steps per cycle. A- B) Death rates through life for females and males, respectively. C- D) 

The frequency of individuals and what fraction of the time they spent in the GOS afraid. E-F) Body mass at 

the end of a generation for females and males, respectively. G-H) The depth at which individuals 

reproduce (i.e. are located in the last time step) for females and males, respectively. X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 
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maximum depth, respectively. ‘Normal’ generations are explained in Appendix A.1.  X-axes in the panels 

A and B, E and F and F and G are scaled as a fraction of maximum age, maximum body mass and 

maximum depth, respectively. 

F Comparison of length of fear periods 
 

 

 

Figure A20: Comparison of length of the periods spent in the state afraid for both sexes in the last 

generation for the nine experiments. The X-axes display the length of the period in time steps divided by 

the total number of time steps in that experiment. The Y-axes are on a logarithmic scale. To the right in all 

panels, there are little peaks. These peaks represent individuals that were afraid in all time steps in the 

last generation. Only ‘Normal’ generations are used for comparison. ‘Normal’ generations are explained in 

Appendix A.1. 
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G Matlab script for statistical comparison of 

experiments and making figures 

G.1 Explanation 

This Matlab script contains two procedures. All data this script reads is produced by the program 

presented in App. 3.2. The first procedure uses the ‘anova1’ and ‘multcompare’ functions to test 

for differences between the nine experiments and to do a multiple comparison analysis.  It also 

produces the plots in figure 14, 15 and 16 in the main text. The second procedure calculates linear 

least square lines for multiple traits between each 1000
th

 generation that is needed for Table 1 and 

producing Figures 4 and 5 in the main text.  

G.2 The script 

%Comparing experiments and making figures 
%Containing two prodecures 
%BSA 26.03.14 

  
clear all; 
close all; 
cd 'W:\Snorre\Fungerende maler til Matlab'; 

  
file = 'W:\HED23NR\FIMM\HED23 3NR DAYSandTS - series compasrion.xlsx'; 
sheet = 'Sheet5'; 
range = 'A1:I1200'; 

  
C = xlsread(file,sheet,range); 

  
%Parameters for plot 
l = 4;     %Line width CI 
w = 2;     %Line width Marker 
s = 15;    %Size marker 
x = 'x';   %Marker 

  
%Making tag to label all subplots. OBS start with 9! 
tag = 

{'16D,600TS','8D,600TS','16D,200TS','4D,600TS','8D,200TS','16D,67TS','4D,200TS

','8D,67TS','4D,67TS'}; 

  

  
% %Procedure 1 
% %This precedure below was done for mortality, fecindity, fear (females and 

males) 
% %and final body mass (females and males) at generation 4000. (Only 
% %mortality is shown.) 
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%Mortality 
Mort4 = C(151:200,1:9); 
[p,t,stats] = anova1(Mort4); %ANOVA to test for differences between 

experiments 
[c,m,h,nms] = multcompare(stats); %Multiple comparison test to test which one 

that are different 
[nms(c(:,1)), nms(c(:,2)), num2cell(c(:,3:5))]; 
xlabel('Mortality','FontSize',24); 
% Create ylabel 
ylabel('Simulation series','FontSize',24); 
set(gca, 'Parent',figure,... 
    

'YTickLabel',{'16D,600TS','8D,600TS','16D,200TS','4D,600TS','8D,200TS','16D,67

TS','4D,200TS','8D,67TS','4D,67TS'},... 
    'YTick',[1 2 3 4 5 6 7 8 9],... 
    'XLim',[30 50],... 
    'XTick',[30 50],... 
    'Position',[0.0701047542304593 0.141414141414141 0.901692183722804 

0.783585858585859],... 
    'FontSize',20); 
set(gca, 'XTickLabel', {'30','50'}) 
box(gca,'off'); 
set(gcf, 'Tag','boxplot','Name','Multiple comparison of means',... 
    'Color',[1 1 1]); 
set(gcf,'NumberTitle','off'); 
graphnr = get(gca, 'Children'); 

  
%Changing colors on the plot that was made by MULTCOMPARE 
set(graphnr(1),'MarkerEdgeColor','none','LineStyle','-','Color',[0 1 

0],'LineWidth',l); 
set(graphnr(3),'MarkerEdgeColor','none','LineStyle','-.','Color',[0 1 

0],'LineWidth',l); 
set(graphnr(5),'MarkerEdgeColor','none','LineStyle','-','Color',[1 0 

0],'LineWidth',l); 
set(graphnr(7),'MarkerEdgeColor','none','LineStyle',':','Color',[0 1 

0],'LineWidth',l); 
set(graphnr(9),'MarkerEdgeColor','none','LineStyle','-.','Color',[1 0 

0],'LineWidth',l); 
set(graphnr(11),'MarkerEdgeColor','none','LineStyle','-','Color',[0 0 

1],'LineWidth',l); 
set(graphnr(13),'MarkerEdgeColor','none','LineStyle',':','Color',[1 0 

0],'LineWidth',l); 
set(graphnr(15),'MarkerEdgeColor','none','LineStyle','-.','Color',[0 0 

1],'LineWidth',l); 
set(graphnr(17),'MarkerEdgeColor','none','LineStyle',':','Color',[0 0 

1],'LineWidth',l); 
set(graphnr(2),'MarkerEdgeColor',[0 1 0],'Marker',x,'Color',[0 1 

0],'MarkerSize',s,'LineWidth',w); 
set(graphnr(4),'MarkerEdgeColor',[0 1 0],'Marker',x,'Color',[0 1 

0],'MarkerSize',s,'LineWidth',w); 
set(graphnr(6),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
set(graphnr(8),'MarkerEdgeColor',[0 1 0],'Marker',x,'Color',[0 1 

0],'MarkerSize',s,'LineWidth',w); 
set(graphnr(10),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
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set(graphnr(12),'MarkerEdgeColor',[0 0 1],'Marker',x,'Color',[0 0 

1],'MarkerSize',s,'LineWidth',w); 
set(graphnr(14),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
set(graphnr(16),'MarkerEdgeColor',[0 0 1],'Marker',x,'Color',[0 0 

1],'MarkerSize',s,'LineWidth',w); 
set(graphnr(18),'MarkerEdgeColor',[0 0 1],'Marker',x,'Color',[0 0 

1],'MarkerSize',s,'LineWidth',w); 
  

 
% % Procedure 2 
% % Comparing four points in evolution: 1000, 2000, 3000 and 4000 generations 
% % Calculating a linear least squares line to see the amount of change after 
% % generation 1000. 
% % Done for Mortality, fecindity, fear (females and males)and final body 
% % mass (females and males), but only shown for mortality 

  
% MORTALITY 

  
for j = 1:9; 
Mort{j} = zeros(50,4); 
end; 

  
for j = 1:9; 
    for i = 1:4; 
        %Fecundity 
        Mort{j}(1:50,i) = C((1+((i-1)*50)):(50+((i-1)*50)),j); 
    end; 
end; 

  
B = zeros(9,4); 
jj = 10; %Ensuring right tag on plots 
for j = 1:9; 
    jj = jj - 1; 
    [p,t,stats] = anova1(Mort{j}); 
    [c,m,h,nms] = multcompare(stats); 
    %xlabel(string,'FontSize',24); 
    % Create ylabel 
    set(gca, 'Parent',figure,... 
        'YTickLabel',{'4000','3000','2000','1000'},... 
        'YTick',[1 2 3 4],... 
        'YLim', [0.5 4.1],... 
        'XLim',[0 100],... 
        'XTick',[0 100],... 
        'FontSize',20); 
    box(gca,'off'); 
    set(gcf, 'Tag','boxplot','Name','Multiple comparison of means',... 
        'Color',[1 1 1]); 
    set(gcf,'NumberTitle','off','PaperSize',[1 1]); 
    set(gca, 'XTickLabel', {'0','100'}); 
    graphnr = get(gca, 'Children'); 

  
    set(graphnr(1),'MarkerEdgeColor','none','LineStyle','-','Color',[1 0 

0],'LineWidth',l); 
    set(graphnr(3),'MarkerEdgeColor','none','LineStyle','-','Color',[1 0 

0],'LineWidth',l); 
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    set(graphnr(5),'MarkerEdgeColor','none','LineStyle','-','Color',[1 0 

0],'LineWidth',l); 
    set(graphnr(7),'MarkerEdgeColor','none','LineStyle','-','Color',[1 0 

0],'LineWidth',l); 

     
    set(graphnr(2),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
    set(graphnr(4),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
    set(graphnr(6),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 
    set(graphnr(8),'MarkerEdgeColor',[1 0 0],'Marker',x,'Color',[1 0 

0],'MarkerSize',s,'LineWidth',w); 

     
    set(graphnr(9), 'Color', [1 1 1]); %Making vertical marker lines white 
    title([]); %Making empty title 
    legend(tag(jj),'EdgeColor',[1 1 1],'Location','SouthWest'); 

     
%Finding slope for alle nine series, linear regression 
    F = Mort{j}; 

  
for h = 1:4 
    for i = 1:50 
        F2(i+((h*50)-50),1) = h; 
        F2(i+((h*50)-50),2) = F(i,h); 
    end; 
end; 

  
%Making scatterplot with linear least squares line 
scatter(F2(:,1),F2(:,2)); 
lsline; %linear least squares line 
stop = 200; 
F3 = zeros(200,1); 
F3 = F2(:,2); 

  
N =(F2(:,2)); 
rem = isnan(N); 
F4 = F2(~rem); %Removing rows that was unfinished simulations 
F5 = F3(~rem); 

  
p = polyfit(F4,F5,1); %Finner stigningstall og skjæring med Y-akse. 

  
B(j,1:2) = p; 
B(j,3) = nanmean(F2(1:50,2)); %Mean at gen 1000 
B(j,4) = B(j,1)/(nanmean(F2(1:50,2)));% Prosentvis økning for hver 1000 gen 

etter gen 1000 ifølge lineær regresjon 
for h = 1:4 
    for i = 1:50 
        F2(i+((h*50)-50),1) = 0; 
        F2(i+((h*50)-50),2) = 0; 
    end; 
end; 
end; 

 

 



 

138 

 

H Matlab script for efficient uploading processes to 

FIMM 

The main experiment for this master thesis consists of 600 simulations. These simulations were 

executed at Parallab, the UiB center for high performance computing, operated by Uni 

computing. The computer used is called FIMM. Every simulation needs a parameter file where 

the simulation number and the conditions the particular simulation are specified. In addition, a 

batch file is needed. To avoid having to manually changing the specifications in all these files, I 

wrote a script in Matlab that did this for me.  

H.1 Explanation for the script “Simulations on FIMM” 

Before starting the program, the folder that is to be copied to FIMM needs to contain the 

preferred version of the program that will be run. In this case HED23.f90. Also the folder needs 

to contain the parameter file Commonfish.txt and i101-parameters.txt. The latter one has to be 

renamed “Ni101-parameters.txt” before starting.  

 

The Matlab script runs through a loop of the length of the wanted number of simulations. This 

loop starts of by creating a folder for the simulation and copies a version of Commonfish.txt and 

the HED23.f90 into it. After this it writes the DOS-code needed for uploading on FIMM to a pbs 

file, here called snorre2.pbs. This file is located in the folder that contains all the folders that each 

contains one simulation. Then a batch file is written and put in the simulation folder. This file is 

called snorre.pbs. The same is done with the parameter file i101-parameters.txt.  

 

All the simulation folders can now be uploaded to FIMM and copying all the DOS-code from the 

snorre2.pbs file to the transfer window, all simulations will be executed.  

H.2 The script 

%    SIMULATIONS on FIMM      % 

  
%Making folders, snorre2.pbs, pbs-files and parameter files  
clear all; 
sep = filesep; % = \ 
slash = '/'; 
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%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%% 

  
number = 54;                                         % Number of duplicates 

that will be made 
fdir = ['W:' sep 'HED23NR' sep 'FIMM' sep '24Feb'];  % Directory where all 

folders are created 
f90 = 'HED23.f90';                                   % Name of HEDxx.f90 file 
para = 'i101-parameters.txt';                        % Name of parameter file  
common = 'Commonfish.txt';                           % Name of Commonfish file 
letter = 'X';                                        % Letter before expt nr 

(X or S) 
pbs = ['snorre.pbs'];                                % Name of pbs.files 
dest = ['cd /work/snorre/24Feb'];               % Destination for sim series 

(on fimm) 
trans = ['sed -i -e ''s/^M$//'' -e ''s/\\x0D$//''']; % Two backlashed before 

x0D,becomes one when printed to txt-file. 
jobn = ['NR-24Feb-'];                               % Name used on sim set on 

fimm 
runtag = ['20T07D'];                                 %! runtag 6 alfanumeric 

characters, must be allowed in file name 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% PROGRAM STARTS 

  
cd (fdir); 
fdirf90 = strcat(fdir,sep,f90); 
fdirP = strcat(fdir,sep,para); 
fdirC = strcat(fdir,sep,common); 
letter2 = strcat(letter,'0'); 

  
T = strcat(dest,slash,letter); %Directory 
V = strcat(dest,slash,letter2);%Directory 
U = ['qsub ' pbs];   
S = [trans ' ' pbs]; 
pbs2 = ['2' pbs]; 
zz = '"'; 

  
file = fopen(pbs2,'w'); %Opening pbs file  

  
% i101-parameters.txt: 
dd = '      ! experiment     simulation number in current experiment'; 
rn = ' ! runtag         6 alfanumeric characters, must be allowed in file 

name'; 
run = strcat(runtag,rn); 

  

  
% pbs file: 
a = '#! /bin/sh -'; 
b = '#'; 
c = '# Give the job a name (optional)'; 
d = strcat('#PBS -N "', jobn); 
f = '#'; 
g = '# Specify the project the job should be accounted on (obligatory)'; 
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h = '#PBS -A bio'; 
k = '#'; 
l = '# The time this job needs on 1 CPU (obligatory)'; 
m = '#PBS -l ncpus=1,walltime=300:00:00'; % WALLTIME 
n = '#'; 
o = '# Memory requirements (obligatory)'; 
p = '#PBS -l mem=1000mb'; 
q = '#'; 
r = '# Write the standard output and errors of the job to file (optional)'; 
s = '#PBS -j oe -o HED23.out.txt'; %HED23 
t = '# Make sure I am in the correct directory'; 
u = '# set unlimited stack size'; 
v = 'ulimit -s unlimited'; 
w = 'module unload pgi'; 
y = 'module load intel'; 
aa = 'ifort -O1 HED23.f90 -o HED23'; %HED23 
bb = '# Invoke the (sequential!) executable'; 
cc = './HED23'; %HED23 

  
%Starting loop 
for i = 1:number 
    %%%% Creating folders and Copy Commonfish and .f90 into all folders 
    z = num2str(i); 
    if (i > 9) 
        dir = letter; 
        dz = strcat(d,letter,z,zz); 
    else;      
        dir = letter2; 
        dz = strcat(d,letter2,z,zz); 
    end; 
    dirz = strcat(dir,z); 
    mkdir(fdir,dirz) 
    fdirz = strcat(fdir,sep,dirz); 
    copyfile(fdirf90,fdirz); 
    copyfile(fdirC,fdirz); 

  

  
%%% 2snorre.pbs 
    TT = strcat(T,z); 
    VV = strcat(V,z); 
    if i < 10 ; 
    fprintf(file,VV); 
    fprintf(file,'\r\n'); %New line 
    else; 
    fprintf(file,TT); 
    fprintf(file,'\r\n'); 
    end; 
    fprintf(file,S); 
    fprintf(file,'\r\n'); 
    fprintf(file,U); 
    fprintf(file,'\r\n');   

  
%%%%%%%%%%% pbs files 

  
    cd (fdirz); 
    filen = fopen(pbs,'w'); 
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%Start printing 
    fprintf(filen,a); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,b); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,c); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,dz); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,f); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,g); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,h); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,k); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,l); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,m); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,n); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,o); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,p); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,q); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,r); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,s); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,'\r\n'); %Extra line 
    fprintf(filen,t); 
    fprintf(filen,'\r\n'); 

     
    if i < 10 ; 
    fprintf(filen,VV); 
    fprintf(filen,'\r\n'); %New line 
    else; 
    fprintf(filen,TT); 
    fprintf(filen,'\r\n'); 
    end; 

     
    fprintf(filen,'\r\n'); 
    fprintf(filen,u); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,v); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,w); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,y); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,aa); 
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    fprintf(filen,'\r\n'); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,bb); 
    fprintf(filen,'\r\n'); 
    fprintf(filen,cc); 

     
    %%%%%%%%%%%%% Creates a parameter file in every folder with the right 
    %%%%%%%%%%%%% experiment nr 
    cd (fdir); 

     
    fid = fopen('Ni101-parameters.txt','r'); 
    j = 1; 

     
    tline = fgetl(fid); 
    A{j} = tline; 
    while ischar(tline) 
        j = j+1; 
        tline = fgetl(fid); 
        A{j} = tline; 
    end 
    fclose(fid); 

     
    cd (fdirz); 

     
    par = fopen(para,'w'); 
    fprintf(par,'%s', A{1}); 
    fprintf(par,'\r\n'); 
    zdd = strcat(z,dd); 
    fprintf(par, zdd); 
    fprintf(par,'\r\n'); 
    fprintf(par, run); 
    for ii=3:length(A) 
        fprintf(par,'%s', A{ii}); 
        fprintf(par,'\r\n'); 
    end; 

  

     
end; %End loop for nr sim 

 

 

 

 
 

 

 

 

 

 


