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Abstract

A Large Ion Collider Experiment (ALICE)[1] is one of four experiments at the
Large Hadron Collider (LHC) at CERN[2]. The detectors in the ALICE experiment
produce data at a rate of 4 GB/s after being filtered and compressed online. The
data are stored and processed in a Grid system[3]. A Grid system allows for sharing
globally distributed computing resources crossing administrative domains. The
ALICE collaboration have created its own Grid middleware called Alice Environment
(AliEn)[4] to facilitate the processing and storage.

This project will examine a possible way of better utilizing AliEn computing
resources by using Cloud techniques[5], more specifically OpenStack[6] together
with the virtual appliance CernVM[7]. Cloud techniques allow for adding and
removing virtual computing resources through an API, providing elasticity in a
computing center. This technique gives the possibility of removing the need for
physical dedicated AliEn computer resources, and instead make them disposable;
the virtual computing resources should only exist while needed.

This report will begin with a short general introduction and history of the
technologies used in this thesis, followed by an introduction to Grid technology and
AliEn. An introduction to Cloud technologies, OpenStack, and Virtual machines will
then follow. After introducing the main concepts and tools, a description of a testbed
and its setup process will be given, followed by an implementation of a prototype.
Lastly, a short performance test, evaluation of the prototype and conclusions will
follow.

Results show that implementing an elastic AliEn site using Cloud techniques is
indeed feasible. The solution give an overhead of ~2:30 minutes per AliEn job agent,
which is short compared to the lifespan of AliEn job agents, which normally is of 48
hours. Additionally, some possible ways of further reducing the overhead will be
described in this report.

iii



iv



Contents

1 Introduction and Background 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Grid Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Cloud Operating System . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Motivation for this project . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and history 5
2.1 Computing in High Energy Physics . . . . . . . . . . . . . . . . . . 5
2.2 CERN and ALICE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Grid computing 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Virtual Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Proxy certificates . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Job Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Job definition . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 File transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Alice Environment (AliEn) 17
4.1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Job Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Installation of packages . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Cloud technologies 21
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Why Grid instead of Cloud? . . . . . . . . . . . . . . . . . . . . . . 22

v



vi CONTENTS

5.3 Infrastructure as a Service . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Elastic Compute Cloud (EC2) . . . . . . . . . . . . . . . . . . . . . 23

5.4.1 Introduction to EC2 . . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 EC2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.3 Why use the EC2 API? . . . . . . . . . . . . . . . . . . . . 24

5.5 OpenStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5.1 Introduction to OpenStack . . . . . . . . . . . . . . . . . . . 25

5.6 OpenStack concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6.1 Users and Tenants . . . . . . . . . . . . . . . . . . . . . . . 26
5.6.2 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6.3 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6.4 Virtual Machine Flavors . . . . . . . . . . . . . . . . . . . . 27
5.6.5 Security Groups . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6.6 EC2 User Data . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.7 OpenStack with EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Virtual Machines 29
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Virtualization in IaaS . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Virtual Appliances . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4.1 CernVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.2 CernVM File System . . . . . . . . . . . . . . . . . . . . . . 34
6.4.3 Why use CernVM . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.4 µCernVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Copy on write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 System setup 37
7.1 Testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Libraries and frameworks . . . . . . . . . . . . . . . . . . . . 39
7.1.4 Virtual machines . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1 OpenStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2 CernVM-FS . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.3 CernVM contextualisation . . . . . . . . . . . . . . . . . . . 44
7.2.4 OpenStack and CernVM automated installation script . . . . 45
7.2.5 AliEn site . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.6 Central Services . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Proposed solution 49
8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Idea behind the solution . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2.1 AliEn CE Type . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.2 Lifecycle management . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS vii

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4 Design decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.5.1 Lifecycle Management Service (AliEC2) . . . . . . . . . . . 53
8.5.2 AliEn::LQ::EC2 batch system interface . . . . . . . . . . . . 56
8.5.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.6.1 Building instances . . . . . . . . . . . . . . . . . . . . . . . 59
8.6.2 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.6.3 Job Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.6.4 Lifecycle management . . . . . . . . . . . . . . . . . . . . . 63
8.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 Similar Solutions 67
9.1 Cloud Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2 CoPilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3 ROCED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10 Evaluation and Conclusion 71
10.1 Evaluation of requirements . . . . . . . . . . . . . . . . . . . . . . . 71
10.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 72

10.2.1 CernVM performance . . . . . . . . . . . . . . . . . . . . . . 72
10.2.2 AliEC2 Performance . . . . . . . . . . . . . . . . . . . . . . 72

10.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendices 75

A AliEC2 Installation 77



viii CONTENTS



List of Figures

1.1 Local Grid cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Local Grid cluster using Cloud techniques . . . . . . . . . . . . . . 4

2.1 ALICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Cloud virtualization layer . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Grid Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Heterogenous Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 AliEn status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 AliEn Job Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 AliEn File Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Infrastructure as a Service . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Cloud revenue comparison . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 OpenStack architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Non virtualized system . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Software virtualization . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Hardware virtualization . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Paravirtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 CernVM components . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.6 µCernVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.7 Copy On Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Amiconfig example . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.1 Overview of the internal flow on a site . . . . . . . . . . . . . . . . 52
8.2 AliEC2 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3 AliEC2 Update Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Instance build time . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.5 Instance startup time . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.6 CernVM Page faults . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.7 CernVM execution time benchmarks . . . . . . . . . . . . . . . . . 63
8.8 CVMFS AliEn download . . . . . . . . . . . . . . . . . . . . . . . . 64
8.9 VM instance startup . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



x LIST OF FIGURES

9.1 Cloud Scheduler architecture . . . . . . . . . . . . . . . . . . . . . . 68
9.2 CernVM CoPilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Tables

3.1 Sample JDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 OpenStack flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.1 Hardware in the testing environment . . . . . . . . . . . . . . . . . 37
7.2 PackStack answer file . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Virtual machines in the testing environment . . . . . . . . . . . . . 43
7.4 CVMFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5 AliEn environment variables . . . . . . . . . . . . . . . . . . . . . . 46
7.6 AliEn startup configuration . . . . . . . . . . . . . . . . . . . . . . 46
7.7 Key LDAP entries . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.1 Web service functions . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 AliEC2 database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 AliEC2 configuration parameters . . . . . . . . . . . . . . . . . . . 58

xi



Chapter 1

Introduction and Background

1.1 Background

The ALICE (A Large Ion Collider Experiment) project is an experiment at CERN
which aim is to study the physics of strongly interacting matter at extreme energy
densities[1]. When these interactions occur, the collider’s detectors record huge
amounts of data which must be stored and processed; more than what a single
computer or even a single data center can handle. For this purpose, Grid systems
have been developed.

A Grid system is composed of geographically distributed computing resources
facilitated by a Grid middleware. It is designed to run computing tasks that are
too demanding for a single computer to handle, and to store huge amounts of data.
Combined, these distributed computer resources make a “virtual super computer”
which can be used by multiple organizations from all over the world[8]. A more
detailed description of Grid systems will be given in chapter 3.

Cloud computing[5] is a different approach to distributed computing. Both Cloud
and Grid systems offer large scale computing where the complexity of the software
systems and the computer system is hidden for the end users. The differences of
Grid and Cloud systems are found in the services provided by the systems. The
Grid offer storage and an execution environment for jobs (typically an executable file
with accompanying data to work with), while the Cloud provide predefined services
which are divided into three groups:

• Software as a Service (SaaS): Typically web applications running in the
Cloud, like Google Docs and ShareLatex.

• Platform as a Service (Paas): Typically a platform or container providing
a sandbox environment for running software (often web-services) like Google

1



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

App Engine and Microsoft Azure.

• Infrastructure as a Service (IaaS): Most commonly associated with virtual
machine hosting where the machine specifications can be defined by the customer
(OS, RAM, Cpu-cores etc.), but usually also provide other virtual computing
resources like networking and storage etc.

Cloud computing will be described in more detail in chapter 5.

1.2 Grid Middleware

A Grid Middleware is a set of software composed of components, services and
protocols which automate machine to machine interactions, constituting a seamless
distributed Grid accessible to its users[9]. The main purpose of a Grid middleware
is to provide a secure envelope over all transactions, data management tools, single
sign on, information services and APIs[3]. Some examples of Grid middlewares are
Advanced Resource Connector (ARC), Open Science Grid, gLite, and AliEn, where
the latter will be the one used in this project.

AliEn is a Grid middleware built upon existing open source components using a
combination of web services and a distributed agent model. It started within the
ALICE Off-line Project at CERN and constitutes the production environment for
simulation, reconstruction, and analysis of physics data for ALICE[10].

1.3 Cloud Operating System

A Cloud operating system is a software system designed to control large pools of
computer resources within a data center. Compute, storage and networking resources
are managed through an interface like e.g. command line tools or a web interface,
and are collectively used to provide virtual computing resources for customers, users,
organizations etc. The main service provided by a Cloud OS is infrastructure (IaaS).
From now on the term Cloud will be a reference to IaaS. A Cloud OS often consist
of a hypervisor (a piece of computer software, firmware or hardware that creates
and runs virtual machines) and resources such as a virtual machine disk image
library, raw (block) and file-based storage, firewalls, load balancers, IP addresses,
virtual local area networks (VLANs), and software bundles. Some examples of Cloud
Operating Systems are Eucalyptus, CloudStack, Joyent, and lastly OpenStack which
will be used in this project.
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OpenStack[6] is an open source Cloud Operating System originally launched by
RackSpace and NASA in 2010. Today the project consist of contributions from over
200 companies and over 9000 developers. The project is managed by the OpenStack
Foundation, a non-profit corporate entity established in September 2012. OpenStack
has a modular architecture that encompasses the following components (with code
name): Compute (Nova), Object Storage (Swift), Image Service (Glance), OpenStack
Identity (Keystone), Dashboard (Horizon), Networking (Quantum), Block Storage
(Cinder). OpenStack APIs are to some degree compatible with Amazon EC2 (Elastic
Compute Cloud) and Amazon S3 (Amazon Simple Storage Service) and thus client
applications written for the Amazon Web Services can be used with OpenStack with
minimal porting effort.

1.4 Motivation for this project

Figure 1.1: A local Grid cluster with physical dedicated resources

Today’s AliEn Grid sites, and other typical Grid sites, uses dedicated resources for
Grid middleware, as figure 1.1 show. A number of physical machines are dedicated
to AliEn and its necessary software packages, where each machine can handle a
given number of jobs simultanously, independent of the size of the jobs. When these
resources are not running an AliEn job, they are still reserved for AliEn jobs instead
of being free to use for other purposes. The motivation for this project is better
utilization of these computer resources by using disposable virtual machines hosted
on cloud systems. Cloud systems can ease addition and subtraction of physical
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resources to Grid sites, providing elasticity within a data center, and better balance
the load of virtual machines over the physical machines.

Figure 1.2: A local Grid cluster with dynamic resources using cloud techniques

This project will investigate the use of virtual appliances and Cloud techniques,
CernVM[7] and OpenStack respectively, as a solution to this problem. By applying
this solution to a Grid data center using the AliEn Grid middleware, virtual machines
will be spawned on a data center when needed and be deleted when their work is
done, automating their lifecycles, and additionally giving the possibility of limiting
the maximum number of active virtual machines. Figure 1.2 display a sketch of the
final implementation of the proposed solution.

The research method will be to build a prototype of a solution which functions
and performance will be evaluated. Building the prototype will include developing a
replacement of an AliEn component as well as a service for managing the lifecycle
of virtual machines as Grid resources. After implementing these components, the
potential loss of performance caused by virtualization will be measured, ending the
thesis with an evaluation of the solution and the feasibility of applying the proposed
solution on a Grid site.



Chapter 2

Background and history

In the introduction, a few new concepts and technologies were introduced. This chap-
ter will give a short introduction to the history and applications of the technologies
related to this thesis.

2.1 Computing in High Energy Physics

Computing is having an important role in todays science. The possibility of storing
and processing immense amounts of data have revolutionized many fields. Allowing
scientists to spend less time on automatable calculations and tasks, and instead
analyze the results of these calculations, have been made possible by the introduction
of computers and recently multi-core and -processor systems, and since the mid 90s,
distributed computing.

One of the scientific fields heavily reliant on computing is the field of High Energy
Physics (HEP). HEP adopted computing as a tool for storage and number crunching
early in the 1970s and has been indispensable for the time after. The detectors
within the ALICE experiment e.g. produce data at a rate of 4 GB/s after being
filtered and compressed online[4].

The HEP field has not only been taking advantage of the computing technologies,
but have also paved the way for many new technologies. One of the most notable is
the World Wide Web (WWW) which was designed starting from the late 1980s by
Tim Berners-Lee to help share data and discoveries among scientists.

2.2 CERN and ALICE

CERN (Conseil Européen pour la Recherche Nucléaire or European Organization for
Nuclear Research) was founded in 1954 to establish a world-class physics research
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6 CHAPTER 2. BACKGROUND AND HISTORY

organization and laboratory[2]. It is located on the Franco-Swiss border just outside
Geneva, currently has 21 member states. 2400 people are employed at CERN
and 10,000 particle physicists from 113 countries, about half of the worlds particle
physicists, are participating in different experiments.

There are several ongoing projects at CERN studying everything from the biolog-
ical effects of antiprotons[11] to how crystals could help to steer particle beams in
high-energy colliders[12]. One of these projects, which is related to this thesis, is
ALICE.

Figure 2.1: The ALICE experiment[1].

ALICE, A Large Ion Collider Experiment[1], is a heavy-ion detector (Figure 2.1)
on the Large Hadron Collider (LHC) ring, designed to study the physics of strongly
interacting matter at extreme energy densities, where a phase of matter called
quark-gluon plasma is formed[13]. When interactions occur, the detectors in ALICE
generate huge amounts of data. The AliEn Grid middleware was developed to help
store, process and give access to these data.

2.3 Grid

The first types of distributed computing appeared in the 1960s and 1970s. In the
beginning, these systems were mostly locally connected computers or multiprocessor
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systems built for high performance computing. The first geographically distributed
computing system was ARPANET (Advanced Research Projects Agency Network).
It was deployed in 1969 and had initially a 50 Kbit/s network connecting four
computer nodes in the United States.

Five years later, the Transmission Control Protocol (TCP) was introduced and
four years further on the Internet Protocol (IP) was developed. IP was used together
with TCP forming what is called TCP/IP, which quickly became universally adopted,
and is still the backbone of todays internet[3].

The introduction of the globally distributed packet-switched network gave the pos-
sibility of geographically distributed computing, but implementing it was expensive
and computer hardware and operating systems (OS) were also expensive. During
the 1980s and 90s the hardware and OS cost decreased, and with accessibility to
cheaper hardware and operating systems the first types of networked clusters, called
Beowulf clusters[14], appeared. Named after a NASA project, the term was used for
clusters composed of commodity hardware running the Linux operating system and
connected by commodity ethernet switches. This solution proved to be more cost
effective than using state of the art computers connected by specialized high speed
cluster interconnections. The Beowulf clusters were among the first clusters looking
like what today could be a Grid site.

On the 1995 Super Computer conference, the first large-scale Grid was demon-
strated, named the I-Way project[3]. It included 17 geographically distributed
supercomputer sites, and over 60 applications from various fields were demonstrated.
This project was the start of the Globus Toolkit, a toolkit consisting of Grid middle-
ware components such as security, job submission and resource management. This
toolkit is still actively developed and many of its components are used in other Grid
middleware projects, AliEn mentioned in 2.2 being one of them.

2.4 Virtual Machines

The first Virtual Machines were created in the 1960’s when IBM wanted to share
physical hardware between different users. The demand for computer access were
increasing but the cost was high and the existing Operating Systems support for
multiple concurrent users were limited. The virtual machines gave each user its own
environment seemingly running directly on the hardware[15].

Later in the 60’s virtual execution environment for intermediate languages were
introduced. O-code[16] was the first intermediate language, produced by a Basic
Combined Programming Language (BCPL)[17] compiler, and executed much like
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todays java byte-code on the Java Virtual Machine (JVM)[18].
As the price of hardware decreased virtual machines served less purpose than

earlier, resulting in lower interest in virtual machines, and the advances in the
development of the virtual machines in the 80’s and early 90’s were few. People
could now afford their own computers and the hardware produced for desktop
computers had no support for virtualization.

Later in the 90’s researchers and businesses saw the potential of virtual machines
as a way of hosting several operating system instances in on one machine as well
as to conserve server space[15]. When researchers at Stanford university found a
way to virtualize on commodity hardware, the interest for virtual machines started
growing again[19]. Today multiple virtual machine managers(VMM) exists. This
software hosting virtual machines, each with different requirements and performance
are trying to provide quicker virtualization than the other, driving the effectivity of
virtualization forward.

2.5 Cloud Computing

Over the next decade after the internet was introduced, more and more companies,
institutions and other customers wanted and needed to get online. Server hardware
was getting increasingly expensive following the growth of demand, getting too
expensive for smaller companies. To make servers affordable for smaller companies,
the same techniques as IBM used in the 1960s was applied to split the servers into
multiple machines. Servers could be virtualized into shared hosting environments,
Virtual Private Servers and Virtual Dedicated Servers.

Figure 2.2: Virtualization on cloud resources is used to provide virtual hardware resources[20].
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Later, with decreasing server hardware prices, more people and companies could
afford their own servers and also building server parks. With an increase of internet
consumers, sites needed bigger servers and server parks to handle the increase of
traffic. There was now a need to combine resources as shown in figure 2.2. This was
solved by using what today is called Cloud Computing or Utility Computing. With
hypervisors (VMMs) installed on multiple nodes, the combined computing resources
could be represented as one node with the combined power of all the nodes.

Today a combination of virtualization and combined computers are popular in
public Infrastructure as a Service clouds. Data centers are connected by a Cloud
Operating System combining its resources. These resources are split into different
scalable sizes to provide multiple scalable virtual machines for customers[20].
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Chapter 3

Grid computing

Figure 3.1: A user send a job to the Grid without being concerned about where the job is executed.

A simplified view of the Grid as shown in figure 3.1 is something which a user or
service can send a job (see Section 3.4.1) to and retrieve the results of that job later.
Since its introduction Grid systems have become one of the most important tools
enabling processing of large amounts of data requiring high processing power, and
large amounts of memory and input/output operations. These processing demands
especially applies to the scientific world of high energy physics, but also in other
technological, engineering and business areas. This chapter will give an introduction
to some of the key aspects of Grid computing.

3.1 Introduction

Grid computing uses geographically distributed interconnected computer resources
collectively to achieve higher performance computing and resource sharing. It was
first displayed in the mid-1990s, and the growth of high-speed networks and the
Internet allowed distributed computer systems to be easily interconnected[3].

Grid systems are often heterogenous both in terms of hardware and software, as a
result of its distributed nature and decentralized control. Figure 3.2 shows different
sites with different configurations on the same Grid, communicating using the public

11
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Figure 3.2: A Grid typically have sites with different hardware running different operating systems
with different configurations.

internet. Ensuring safe data transport and access control over the Internet as well
as effectively utilizing the resources are the main challenges of constructing a Grid
middleware.

3.2 Virtual Organizations

Grid systems are normally used by between many different users. A virtual organi-
zation (VO) is a term used to describe an agreement between organizationally and
geograhically distributed groups of organizations/institutes. These groups are work-
ing together for a common purpose, sharing their resources such as data, computers,
databases, networks.

The purpose of a VO is to help managing a Grid by having the administrative
responsibilities in a virtual domain, crossing multiple administrative domains. Re-
sources can be shared between multiple Virtual Organizations, and to facilitate this
resource sharing different Grid systems have been developed. The key aspect of a
VO is its formation for a common purpose.

3.3 Security

In Grid computing it is important to provide secure data storage and transfer, to
have access control to the resources, and to trust the different participants. There are
many threats against data traffic, and as Grid systems are distributed, cross-domain
and use public networks, they are also prone to these threats. Security techniques
have been developed to protect data against eavesdropping and to secure that data
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cannot be altered while under transportation. The terms data confidentiality and
data integrity are used to describe this protection.

In a Grid system it is also important to ensure that an identity can be validated
and that the provided identity have access to the requested resources. The terms
used for this is authentication and authorization. These four terms constitute the
basis for the Grid Security Infrastructure (GSI).

Public Key Infrastructure (PKI)[21] is a powerful arrangement that incorporate
all the terms described above, ensuring a secure connection. PKI uses asymmetric
key cryptography which is designed such that a user get two keys where one can
decrypt messages encrypted by the other and vice versa, and both keys are associated
with the owner. The keys are called Public Key and Private Key where the latter is
kept private by the user, hence it’s name.

Data integrity is ensured by digesting (encrypted hash of the original message)
the message before sending and after receiving it. The digest is sent along with
the message and compared to the digest of the recipient. If the digests differ, the
message has been altered.

Data confidentiality is achieved by encrypting the data using the senders private
key. The recipient may decrypt the message using the senders public key.

When authenticated, the user must be authorized for using a resource. In some
grid middlewares, the existence of a user on the resource is required. On other the
subject of a cetificate is stored together with the username of the certificate owner
in a "grid-mapfile" giving the user access to the resource.

To ensure that a key originate from a trusted user, the certificates are signed by
a Certificate Authority (CA). The CA is the ultimately trusted participant of a PKI,
and have the responsibility of signing, distributing and revoking digital certificates.
Revoked certificates are published as a list. This list contain certificates with valid
dates, but which should not be accepted.

3.3.1 Proxy certificates

When interacting with a remote service, a certificate is used to authenticate the user.
In a Grid system, these remote services often interact with other remote services on
the user’s behalf e.g. to transfer files, execute processes. To act on the user’s behalf,
the first remote service must prove that it is a delegation of the user.

A way of implementing delegation is to use proxy certificates, usually called a
proxy. A proxy keeps its own public and private keys, and is signed by the certificate
of the user which created it. It has a short lifecycle, and is usually valid for no more



14 CHAPTER 3. GRID COMPUTING

than 12-24 hours.

3.4 Job Distribution

The term job in terms of Grid describes a program to be executed on the Grid
initiated by a user. These programs can be software written by the user itself in
languages like Java, C++, Python etc., or it can be a pre-compiled application
package. This section will describe how these jobs typically are distributed in Grid
systems.

3.4.1 Job definition

The programs mentioned above might have different parameters, i.e. which files
to read data from and which files to write the result data to. They may also have
requirements in terms of execution location, extra software packages etc. Together
these parameters and requirements define a Grid job.

Jobs are defined differently on different Grid middlewares. ARC and Gridway use
the Job Submission Description Language (JSDL)[22] which is an XML specification
developed at the Global Grid Forum. AliEn uses the Job Description Language
(JDL)[23] which is based on the Classified Advertisement (ClassAd)[24] language.

Type = "Job";
JobType = "Normal";
Executable = "myexe";
StdInput = "myinput.txt";
StdOutput = "message.txt";
StdError = "error.txt";

Table 3.1: Sample JDL file contents

A JDL file consist of lines on the following format: attribute = expression;.
These attributes and expressions are used to describe job properties such as input
and output files, executable files and other dependencies like the example in table 3.1.
Computer resource requirements can also be specified. The job might require a
minimum amount of memory, or access to a number of CPU cores to be executed.

3.4.2 File transfer

As seen in table 3.1 jobs may have input and output files, also with the possibility
of multiple additional files. These files may be downloaded from a storage element
somewhere on the Grid. For this purpose the FTP protocol is used with some
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extensions giving it the name GridFTP. One of these extensions is giving support
for enhanced security by applying GSI to the FTP protocol. Another is allowing
increased download speed by enabling downloading different file segments from
multiple sources. In addition to these two advantages, GridFTP also have increased
fault tolerance and support for partial file transfers.

3.4.3 Load balancing

Balancing the jobs on a Grid is crucial to maximally utilize its effectiveness. There
are several challenges to load balancing on the Grid contrary to super computers, and
also regular PCs. The homogenous environments might have different performance
for different jobs, the location of the job data may impact transfer times etc.
Mechanisms for handling these challenges to properly balance load is necessary.

Load balancing on the Grid is a matter of having an overview of available/u-
navailable resources and queued jobs. Normally a broker service select the computer
resource on which the job can be executed. There might be several criterias for a job
which have to match with a computer resource to label it as a candidate computer
resource. These criterias are normally listed in the job description file. If a candidate
resource is available, the job will be sent to it and be executed there.

The method for distributing the jobs may vary from Grid to Grid. One such
method is using agents. Agents are representatives of local grid resources and handle
load balancing and resource discovery by communicating with each other[25]. This
technique makes the information about a site and its computer resources easily
available on the Grid system, alleviating the information gathering on the job
brokering services.

3.4.4 Parallelization

A distributed Grid is well suited for performing parallel computing tasks. Paral-
lelization is a term used to describe the technique of splitting the work of a program
into smaller independent tasks, instead of executing all tasks sequentially. However,
parallelization on the Grid have some prerequisites to perform optimally.

Parallel programs often need to communicate intermediate results between pro-
cesses. With the possibility of these processes running on the opposite side of the
earth, the cost of communication increase in terms of execution time. Therefore,
parallel Grid jobs are often of the type coined "embarassingly parallel"; processes
requiring minimal to no communication between themselves. A typical job in High
Energy Physics is easily solveable. Data from an event in a detector usually needs
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smaller amount of computing power to be analyzed, but as the events are numerous,
the jobs are easily parallelized.



Chapter 4

Alice Environment (AliEn)

In the previous chapter, Grid systems and the main problems solved by Grid mid-
dleware were introduced. This chapter will in greater detail descibe the middleware
used for this project, called AliEn (short for ALICE Environment). This chapter
will give an introduction to its current status and describe the components of this
Grid middleware.

4.1 Status

Figure 4.1: Display of the status of the AliEn Grid sites (including planned sites) as of May 7th
2014[26].

AliEn is currently running on 67 sites across the world and the number of sites
are still growing. 53 sites are located in Europe, 8 in Asia, 4 in North America and
one in both Africa and South America. In addition, 8 new sites are planned for
future AliEn deployment. In total these sites execute on average 250 000 jobs per
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day with an average job efficiency of 75 percent[27]. Figure 4.1 display the global
distribution of the AliEn sites with their current status as of May 7th 2014.

4.2 Components

Systems for distributing jobs and receiving them, as well as monitoring the jobs and
other components are needed for a Grid to function as a distributed system. The
AliEn Grid middleware is composed of several components working independently.
This section will describe these components and their responsibilities.

4.2.1 Job Execution

Figure 4.2: The different components involved in AliEn job execution, and the communication
between them[28].

There are 5 actors in the job execution process displayed in figure 4.2. The
Cluster Monitor is a service on each site keeping track of the Job Agents on the
site. This service is also communicating with the Broker Service on the Central
Services. The broker is matching job requirements with the information provided
by the cluster monitors to find sites suitable to execute a job. A job is defined in
the Job Description Language (JDL) and is stored in the database on the Central
Services. The Compute Element (CE) is a service on each site responsible for
executing jobs. They are usually pointing to a resource manager like TORQUE[29]
or HTCondor[30]. When a job is matched with a site, the compute element create a
Job Agent (JA) which is started on a computing resource or a Worker Node (WN).
The JA is functioning as a wrapper for a job, doing any necessary preparations for
a job to run, checking that the resource is capable of running the job, clean up
after the job has finished. When the JA is started, it pulls the job from the Central
Services and executes it.
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4.2.2 Storage

As mentioned earlier, Grids are not only used for job execution, but also data storage.
The large amounts of data read from the ALICE detector are stored on the sites
composing the Grid. These sites usually have one or more storage elements (SE),
although some have none. Most SEs use a highly scalable file server called Xrootd[31].
This file server provide a POSIX-like file access interface and is optimized for minimal
latency and network efficiency.

4.2.3 Catalogue

Figure 4.3: The AliEn file catalogue are navigated like a UNIX file system, although files may be
on different locations. Behind the scenes the files are mapped to their physical location[32].

As displayed by figure 4.3, the AliEn file and metadata catalogue is a database
with pointers, or Logical File Names (LFN), to the files physical locations (PFN),
provoding mapping of files between diffferent SEs on different sites. From the
perspective of a user, the catalogue are navigated similarly to a UNIX filesystem.

4.2.4 Monitoring

MonALISA (Monitoring Agents using a Large Integrated Services Architecture)[33]
is the monitoring service employed by AliEn. It is collecting information on the
systems as well as working on optimization of workflows. Additionally it provides a
web GUI visualisin the Grid as displayed in figure 4.1.
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4.3 Installation of packages

When the job agent prepare for the execution of a job, it is also downloading the
software packages needed by the job. Over the years of AliEns existence, three
different techniques have been used for this purpose, each developed to replace the
others. All three are still being used, but most sites have transitioned to use the
newest.

The first installer is PackMan, a package manager for homogenous environments.
It keeps a list of installed and available packages, as well as installing, uninstalling
them, and handling dependencies.

The second is the torrent installer. As the name implies, it is using the torrent
protocol to download software packages. This technique downloads and install AliEn
using torrent, and then install the packages. Over the last few years it has been
replaced with CernVM-FS.

CernVM-FS (CVMFS), as described in section 6.4.2, is the last and newest of the
installation methods, and is being transitioned to today. This technique give access
to both AliEn and the required packages as if they were already installed on the
system.



Chapter 5

Cloud technologies

The last two chapters gave an introduction to the first core technology of this project.
This chapter will focus on the second which is Cloud technologies, more specifically
Infrastructure as a Service, a technology taking advantage of virtualization (will be
described in chapter 6) and related technologies.

5.1 Introduction

The US National Institute of Standards and Technology have developed the following
definition for the term Cloud Computing.

"Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction."[34]

The model is composed of five essential characteristics, three service models which
was mentioned in section 1.1, and four deployment models.

Characteristics

• On-demand self service: Customers can administrate resource without human
interaction with the service provider.

• Broad network access: Resource administration is available via standard com-
munication platforms.

• Resource pooling: Resources are shared among multiple customers and a con-
sumer have no control or knowledge over resource location.

21
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• Rapid elasticity: The amount of resources used can be scaled on-demand at
any time.

• Measured service: Resource usage can be monitored, controlled and reported.

Deployment models

• Private cloud: Infrastructure provisioned for use by a single organisation.

• Community cloud: Infrastructure provisioned for use by a specific community
from organisations.

• Public cloud: Cloud infrastructure procisioned for use by the general public.

• Hybrid cloud: A hybrid of the above deployment models.

Clouds are considered a solution to some of the problems encountered with early
adaptations of Grid computing where the site retains control over the resources and
the user must adapt their application to the local operating system, software and
policies[35].

5.2 Why Grid instead of Cloud?

Both the Grid and the Cloud provides distributed computing, but in different forms.
What makes the one better suited for scientific purposes than the other? Why is
Grid used for this purpose instead of Cloud which is more widely used today for
distributed computing?

The main reason is that the Cloud does not offer the execution environment which
the Grid does. Platform as a Service (PaaS) is the closest the cloud get to provide
what is needed for scientific purposes, but PaaS typically offer a container for web
applications/services. This container is often a sandbox envirnoment limited to one
specific programming language and with limitations concerning network, file access
and software libraries. There are typically no Cloud service offering an environment
for executing arbitrary executables, compiled or not, written in the user’s preferred
language.

What the Grid need is computer infrastructure, which can be provided virtually
by one of the three Cloud service models, Infrastructure as a Service. How the Grid
might benefit of this model will be discussed in the next section (5.3).
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Figure 5.1: The Cloud operating system use physical computer resources to provide virtual scalable
virtual resources like virtual machines and virtual networking.

5.3 Infrastructure as a Service

Infrastructure as a Service (Figure 5.1) and the systems providing this service will
from now on be referred to as Cloud Operating Systems or Cloud OS. A Cloud OS
provides computing resources like virtual machines, storage, networking (bandwidth,
dhcp, load balancing) etc. for customers, users, organisations etc. This model has
several benefits like scalability, location independence, physical security of data
centre locations and no single point of failure. Most of these are most interesting
from a business perspective. The most interesting feature of IaaS concerning this
project is the scalability provided by IaaS.

As mentioned in the introduction (Section 1.4), this thesis aims for elastic Grid
computing resources. These resources should be created on demand and deleted
when the resources are no longer needed. This can be achieved by taking advantage
of the scalability provided by IaaS. By creating an interface between a Cloud OS
and a Grid middleware, Grid resources can be spawned and deleted based on the
current need for computer resources.

5.4 Elastic Compute Cloud (EC2)

5.4.1 Introduction to EC2

EC2 is the Insfrastructure as a Service component of Amazon’s public cloud platform.
It was officially released in October 2008 after being in beta since August 2006, and
has since its release gained a huge share in the public Cloud IaaS market. Figure 5.2
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give some insight to the magnitude of Amazon’s market share compared to its main
competitors on the IaaS and PaaS market.

Figure 5.2: Cloud revenue comparison[36]. It is clear that Amazon IaaS/PaaS have the larger
market share.

5.4.2 EC2 API

Different ways to interact with IaaS systems have been developed. Web interfaces,
command line tools and APIs have been developed for different Cloud systems to
provide various ways of interaction. Among these are the EC2 Application Program-
ming Interface (API). The EC2 API is designed to send and receive commands or
data to Amazon Web Services (AWS), primarily to virtual machines in the EC2
system, but it has also over the years been adopted by other IaaS systems.

5.4.3 Why use the EC2 API?

Due to EC2s great popularity several cloud system developers have adopted the EC2
API to their IaaS projects to give users a smoother transition from the public cloud
to a private/hybrid cloud solution. In addition to being widely used by other cloud
systems, it also provide our project with the necessary functionality for starting,
stopping, communication and transmitting user data etc. to the virtual machines.

Instead of using a cloud operating system’s specific API (in our case OpenStack’s
own API), EC2’s API is more general and is used alongside several other cloud
OS APIs like OpenNebula[37], Apache Cloud Stack[38] and Eucalyptus[39]. This
allow our project to be run together with other cloud OSes than OpenStack giving
eventual users (datacenters) more options when choosing Cloud OS.
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5.5 OpenStack

Infrastructure as a Service has been introduced along with the selected API to access
such a service. The IaaS system chosen for this project is OpenStack[6]. The reason
behind this selection is based on the large user and developer base of OpenStack.

5.5.1 Introduction to OpenStack

OpenStack is an IaaS software stack composing a cloud operating system originally
developed by NASA[40] and RackSpace[41]. It is released under the Apache Licence,
making it free and open source. Its mission is to "produce the ubiquitous Open
Source Cloud Computing platform that will meet the needs of public and private
clouds regardless of size, by being simple to implement and massively scalable[42]."
Along with its growth many companies have joined the development adding up to
more than 200 companies by the end of 2013, including big names like AT&T, IBM,
Intel, Oracle and VMware.

Figure 5.3: The different components of OpenStack and how they are related to each other[43].

OpenStack has a modular architecture with various components serving differ-
ent purposes, allowing to spread functions of the systems over multiple computer
resources. Figure 5.3 show the different components of OpenStack and how they are
related to each other. The components main responsibilities, along with the names
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of the components, are[43]:

• Compute (Nova) providing the execution platform for the virtual machines.

• Object Storage (Swift) a general storage service used to store e.g. images.

• Block Storage (Cinder) providing virtual storage devices for virtual ma-
chines.

• Networking (Neutron) a networking service giving IP addresses to virtual
machines and managing the virtual networks.

• Dashboard (Horizon) a web interface to administrate organisations/users
virtual machines.

• Identity Service (Keystone) the authorization and authentication service
of OpenStack.

• Image Service (Glance) for storing virtual machine images.

This project will mostly have to interact with Nova, the Compute service, but
also during the setup process Keystone will be used for creating user accounts and
EC2 credentials, Glance for OS image handling and Cinder for creating and using
volumes.

5.6 OpenStack concepts

Along with the different components of OpenStack is a set of concepts used among
these components. This section will describe some of the OpenStack concepts
relevant for this thesis.

5.6.1 Users and Tenants

OpenStack is designed to be used by different consumers and groups of consumers.
A tenant is a representation of a project and its resources quotas. It has a defined
limits for resources such as RAM, instances, volumes, Virtual CPUs, and IP ranges.

A user is a participant of one or more tenants with different privileges on each
tenant. It may have different roles with different access, like assigning public IP
addresses, starting stopping instances.

The user/tenant model is well suited for our project. A site running OpenStack
may set up a tenant for different VOs having their own set of rules, users and
resources.
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5.6.2 Instances

Instances in OpenStack are individual VM instances running on physical compute
nodes. An instance must have a few properties specified before started, like which
volumes to attach, which flavor, security groups, networks etc. These properties are
a combination of different concepts which will be described below.

5.6.3 Volumes

OpenStack offers the possibility to create predefined disks which can be attached
to virtual machine instances using the Logical Volume Manager on Linux. Some
Virtual Machine Appliances (see section 6.4) are distributed as disk partitions, e.g.
CernVM (see section 6.4.1). As CernVM (CMV) is a partition containing a Linux
installation, a CVM partition can be added as a volume to OpenStack. This way a
virtual machine instance can attach the volume and boot up from it.

5.6.4 Virtual Machine Flavors

A VM flavor is a set of predefined virtual hardware configurations that can be
selected when booting a VM instance. By default there are five flavors distributed
along with OpenStack as listed in table 5.1.

ID Name Memory (MB) Disk (GB) Ephemeral (GB) VCPUs

1 m1.tiny 512 1 0 1

2 m1.small 2048 10 20 1

3 m1.medium 4098 10 40 2

4 m1.large 8192 10 80 4

5 m1.xlarge 16384 10 160 8

Table 5.1: OpenStack is distributed with six different VM flavors.

Each flavor have a name and a unique ID in case of naming conflicts. Memory is
specified in megabytes and disks in gigabytes. The Disk field is the size of the root
disk of the virtual machine (/dev/vda) while the Ephemral field is an additional disk
(/dev/vdb) which can be attached to the VM. The VCPU field correspond to the
number of Virtual CPUs the VM can make use of. A few other parameters can also
be specified, e.g. whether the flavor is public, swap size. For this project another
flavor will be created to better suit the testing environment.
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5.6.5 Security Groups

A security group is a set of IP and port filter rules. These rules are applied to the
VM instances networking. When specifying a new rule for a security group, the port
to be opened must be provided along with a range of IP-addresses which are allowed
through the port.

5.6.6 EC2 User Data

EC2 User data is a file assosiated with a VM instance. The VM instance can
download this file from a special URL (http://169.254.169.254/latest/user-data).
The contents of the user data file is specified before starting a VM instance, and
often contains different configuration data of different forms for the instance and/or
executable scripts.

5.7 OpenStack with EC2

Although most EC2 functions are implemented in OpenStack, some functionality
which could have been useful for this project have been removed or have not yet
been implemented. One of these give the possibility of determining what to do
when a machine is shut down. When creating a new virtual machine with EC2,
an optional flag shutdown_behavior could be specified. An option for this flag is
terminate. This would allow us to have the machine automatically deleted from the
system once it got turned off. This functionality have unfortunately been removed
because OpenStack could no longer see the need for this function[44].
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Virtual Machines

Virtualization and Virtual Machines are key components of Cloud Systems providing
Infrastucture as a Service. This chapter will give an introduction to different
virtualization techniques, ways to utilize virtualization and how virtualization is
facilitating IaaS.

6.1 Introduction

A Virtual Machine (VM) is a software implementation of a computer, and is executing
programs like on a traditional physical machine. This software is executed on top of
a Virtual Machine Manager (VMM), often called a hypervisor. Virtual machines are
separated into two classes; System virtual machines and process virtual machines.

A process virtual machine, often called Managed Runtime Environment, is an
execution platform for a single process. These virtual machines are usually run
as a normal application on its host OS. An example is the Java Virtual Machine
providing an abstraction layer for a range of programming languages, most important
Java, but also other languages are gaining popularity as they’re maturing, like Scala,
Clojure and Groovy.

A System virtual machine provides a complete system platform allowing the
execution of complete operating systems. This gives the possibility of hosting
multiple isolated operating systems on the same hardware (i.e. computer). Kernel
Virtual Machine (KVM), VMware and VirtualBox are some examples of system
virtual machine software. This class is the most interesting for this project. The
term VM will from now refer to System VM.

Virtual machines introduce overhead impacting the performance of the guest
OS and its applications. Although with hardware virtualization support, proper
hardware and setup, the performance loss can be greatly reduced.
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6.2 Virtualization

Today the term virtualization is usually associated with x86 virtualization. The
term x86 is used for instruction set architectures which are backward compatible and
based on the Intel 8086 CPU from 1978. Lots of instructions have later been added
to the set of which most are backward compatible. Among the added instructions
are the support for hardware virtualization. Before hardware virtualization was
added, other approaches for achieving virtualization were developed instead.

Figure 6.1: Non virtualized system[45]

Figure 6.1 show the path of instructions for a non virtualized system. x86 operating
systems assume they are running directly on top of the computer hardware. The
x86 architecture provides four levels of privileges called rings. As seen in the figure,
the operating system is executed at ring 0, the ring which allow calling hardware
and memory instructions (privileged instructions). These instructions have different
semantics when not executed from ring 0. The problem with virtualization is to
execute privileged instructions while not in ring 0.

Software Virtualization

With software virtualization, each virtual machine instance is provided with virtual
BIOS, devices and memory management by the virtual machine monitor. Privileged
instruction calls get caught and translated into sequences of instructions which
together execute with the same intended behaviour. This technique, as seen in
figure 6.2, is called binary translation. User application instructions are executed
directly on the hardware and does not need to be translated. This technique provide
full virtualization as the guest OS is fully decoupled from the underlying hardware.
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Figure 6.2: Binary translations on privileged instructions[45]

Figure 6.3: Hardware virtualization[45]

Hardware Virtualization

To improve the virtualization performance, several additions had to be added to
processors and chipsets. In 2006, AMD and Intel added support for hardware
virtualization (figure 6.3) with their technologies AMD-V and Intel-VT-x. The
current hardware virtualization is divided into three components.

The first and most important component is CPU virtualization; trapping the
privileged instructions from the guest OS and emulate them on the CPU.

The second component is memory virtualization, sharing the physical memory
with virtual machines.

The thrid and final component is Device and I/O virtualization; routing I/O
instruction requests between virtual devices and physical devices.
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Figure 6.4: Paravirtualization[45]

Paravirtualization

Paravirtualization is a technique where the guest OS uses hardware drivers specialized
for the underlying VMM. The guest OS must also be modified to run on the VMM.
Non-virtualizable instructions are replaced by hypercalls in the OS kernel. Hypercalls
are communicating directly with the hypervisor providing the virtualization layer.

6.3 Virtualization in IaaS

Virtualization and virtual machines are key components of Infrastructure as a Service
in terms of providing virtual hardware. As displayed by figure 5.1 Cloud OSs balance
the load of virtual machines on top of physical hardware and provide networking
and other resources for the VM instances.

Cloud OSs also provide possibilities of pausing and suspending instances, migrat-
ing instances from one physical machine to another, or even to different data centers,
duplicating instances etc. All in all Cloud OSs provide ways to manage and operate
virtual machine instances on multiple physical machines.

6.4 Virtual Appliances

A virtual appliance is a virtual machine image designed to run on a virtualization
platform, designed to eliminate the maintenance cost of running complex software
stacks, and to minimize the need for configuration.

Virtual appliances are distributed with Just Enough Operating System(JeOS)[46],
a customized and minimal OS that fits the needs of a particular application. They
are normally distributed as a pre-configured disk partition with no need for OS
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installation. This approach give advantages such as a homogenous environment for
the patricular application, simplified VM deployment and improved isolation for
applications.

Virtual appliances is just what is needed for our solution. The homogenous
isolated environment can prevent AliEn from any unnecessary interaction and
relations to other services, and at the same time give only one platform to support.
Its minimal nature can potentially give a short startup process. The remaining
dependency is tailoring the appliance for a specific software application, in this case
AliEn. CernVM together with CernVM-FS (CernVM File System), as we will see in
the following sections, will provide what’s needed to fulfill the last dependency.

6.4.1 CernVM

CernVM[7] is a virtual software appliance designed to provide a runtime environment
for the LHC experiments. It is built using a commercial tool for automating
application deployment on virtualized or physical resources by rPath, called rBuilder.
This tool gives software providers the capability to quickly pack applications with a
minimal OS. The minimal OS use the Conary Package Manager.

Figure 6.5: CernVM consist of, among others, a minimal OS (JeOS), components for contextualisa-
tion and the CernVM File system[47].

The idea of CernVM is to reduce the number of platforms to support and minimize
time used for setting up experiment environments. In figure 6.5 we see the CernVM
components. Its minimal OS is a modified version of Scientific Linux, a Linux
distribution based on Red Hat Linux. The Contextualization component provides a
way to specify the purpose of a CernVM instance through different parameters. These
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parameters can be used to e.g. start services, create users and other configuration
parameters. A script may also be executed on startup using the contextualization
component.

6.4.2 CernVM File System

As a way of generalizing the OS while still being highly customized, CernVM can be
configured to use different software repositories with pre-built software.

CernVM-FS (CVMFS) is a HTTP-based read-only file system. When accessing
a folder, only stubs for the files are downloaded so that they can be listed. The
actual file contents will only be downloaded when accessed directly. From a user
perspective it behaves like a regular read-only UNIX file system. Files can be
accessed by "/cvmfs/server/path/to/executable" where server is the DNS name of
the CernVM-FS host.

Another benefit is that CVMFS is currently being installed on all AliEn sites, re-
placing torrent as the install method for software packages[27]. The more widespread
the system is, the more supported it will be considering quality of servers, bandwidth
and number of available packages.

In addition to the benefits described above, this technique allows the OS to be
minimal. Most of the software not used in the startup process can be removed from
the distributed virtual appliance, and instead be downloaded when needed.

For this project, the contextualisation parameters can be used to tell CernVM
to add alice.cern.ch as a cvmfs repository, giving CernVM access to all the AliEn
software appearing as it is already installed, when in fact it is being downloaded
when needed.

6.4.3 Why use CernVM

The Contextualization feature is of particular interest for this project as it provides
a way to specify which software sources to use for an instance without editing
the image itself. By giving the instance a list of parameters, the instance will be
customized on boot up. In addition to these parameters a bash script, which will be
executed on start up, can be added to these contextualization data. A more detailed
description of the importance of this feature will be given in chapter 8

ALICE is hosting a CernVM-FS software repository in which AliEn can be found
at "/cvmfs/alice.cern.ch/". By accessing AliEn this way, the contextualisation script
can be simplified by treating the system like AliEn is already installed, where the
alternative would to use other installation methods like wget to grab alien-installer
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which use torrent installation etc.

From a Grid perspective CernVM provide a homogenized execution environment,
easing distribution of software packages. At the same time, as a natural advantage
of virtualization, CernVM provide isolation from the underlying host system, giving
confidentiality of data.

6.4.4 µCernVM

Figure 6.6: Overview of the components of µCernVM[48].

µCernVM (micro CernVM) is the next generation CernVM or CernVM 3.0. It is
distributed as a 10MB disk image containing only the linux kernel and the CernVM-
FS client as seen in figure 6.6. The rest of the OS is downloaded and cached on
demand by CernVM-FS. Downloading all required software can take time depending
on the internet connection speed. To solve this each cluster can have a local cache
so that the software is only downloaded from an external source once. Downloading
from a local source is normally faster than from an external. Although some software
must be downloaded, only the software actually used will be downloaded instead of
having unused software, and with a local cache the download time will generally be
short.

Although µCernVM will not be used for our project, it is an interesting piece of
technology which should be tested in combination with the proposed solution in
chapter 8 (will be discussed in section 10.3).
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6.5 Copy on write

Virtual appliances are disk images prepared to be run on a hypervisor. In the case
of CernVM this image contain a disk partition which is expanded to 9.7GB when
it is mounted. Creating multiple VM instances would normally include the work
of copying the whole partition for each instance, and with almost 10GB to copy
it requires a lot of I/O operations which usually is a slow process and thus would
significantly increase VM startup times.

Figure 6.7: Copy on Write reads unmodified data from a source image and stores modifications on
a differencing image.

Copy On Write (COW)[49] is a solution to this problem. This technique uses
the disk image as a reference image and all changes done by the VM instance are
written to a differencing image. The differencing image contains all changes from the
reference image, starting at close to zero bytes and increasing based on the changes
done by the VM instance. As seen in figure 6.7 this leaves just one of the original
image (reference) and one differencing image per VM instance, saving a lot of I/O,
storage space and time.



Chapter 7

System setup

Earlier chapters have described the concepts and technologies which is the foundation
for this thesis. The final implementation of the proposed solution requires that these
technologies are installed and correctly configured. This chapter will describe the
setup of the system on which the prototype will be implemented.

7.1 Testing environment

A test environment for the designed prototype has been set up. This section will
describe the process of installing the software systems described in the previous
chapters with some discussion about choices of extra software and configurations.

7.1.1 Hardware

The test environment consists of 4 similar computers, as displayed in figure 7.1. One
computer runs the central services and storage element of AliEn. Another computer
is running as VO-Box, Compute Element, Cloud host, and Cloud compute node.
The last two computers are running as extra OpenStack compute nodes, adding up
to a total of three compute nodes.

CPU Intel i5 2500k @ 3300 Mhz

CPU cores 4

RAM 4096MB DDR3

RAM Clock 1600MHz

Table 7.1: The testing environment consist of four machines with similar hardware setup.

This setup gives the possibility of hosting 12 VM instances with 1GB RAM and
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Figure 7.1: The different machines within the testing environment. They are named os, cs, n2 and
n3 and are in the domain hib.no

1 VCPU on the three compute nodes. This amount of virtual resources should be
sufficient to test the VM instance lifecycle management of the proposed solution
(will be introduced in section 8.2).

7.1.2 Software

The software versions used in this project will be described in this section.

• Host OS: The physical machines in the testing environment run Scientific
Linux 6 (SL6), a derivative of Red Hat Enterprise Linux 6 (RHEL6). Although
some resources in the AliEn Grid are still using SL5, over the last few years
most AliEn sites have transitioned from using SL5 to SL6, making SL6 the
most natural choice of version to use[27].

• Grid middleware: AliEn v2-19.233 released on December 16th 2010 is the
most recent stable release of the AliEn Grid middleware.

• Virtual Appliance: CernVM v2.7.1 released on October 14th 2013, late
in the projects course. Initially CernVM 2.6 was intended to be used, but
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an error prevented the contextualisation data to be loaded correctly. The
component responsible for contextualisation, amiconfig, was unable to detect
the OpenStack EC2 user data URL. Without this URL, the EC2 user data
could not be downloaded and executed, impairing an important part of the
designed solution for this project. After some investigation, the error turned
out to be a variable in the amiconfig scripts which never got assigned when the
VM was hosted on EC2 clouds.

• Cloud OS: OpenStack Grizzly was used while developing the solution, although
two new stable releases called Havana and Icehouse have been released in the
meantime.

• Hypervisor: As hypervisor used with OpenStack, the Kernel Virtual Machine
(KVM) was selected because KVM is the hypervisor which RHEL6, and thus
SL6, have chosen to support.

EC2 and OpenStack uses different conventions for giving IDs to instances, images
etc. OpenStack uses random hex-strings, while EC2 uses a component identifier
followed by a unique number e.g. ami-00000001, where ami means image and
the following number represent the unique incremented image ID. The EC2 ID
format is needed when using the EC2 API. When using the OpenStack Command
Line Interface (CLI), the EC2 ID is not shown. Therefore the eucalyptus CLI
euca2ools[50], a CLI for Amazon Web Services(AWS) compatible web services, will
be used to get the EC2 IDs.

7.1.3 Libraries and frameworks

This section will describe the range of libraries and frameworks used for implementing
the prototype.

• This project have used an open source EC2 library created by Lincoln Stein,
at Ontario Institute for Cancer Research, called LibVM-EC2 (VM::EC2)[51].
LibVM-EC2 did initially only support EC2 endpoints using the default EC2
API port. A small change to the code was requested[52], enabling support for
OpenStacks default EC2 endpoint. This change allows for altering the port
used to connect to the EC2 endpoint.

• For loading configuration files the Perl library Config::Simple have been used.
This library provides a simple way of reading and storing configuration param-
eters.



40 CHAPTER 7. SYSTEM SETUP

• Perl Dancer[53] have been chosen for developing the AliEC2 (will be introduced
in section 8.5.1) web service. It was chosen for its simplicity and its good
reputation.

• For interaction with databases using Perl, Perl Database Interface (DBI) was
selected, as it is the standard database interface module for Perl. It has multiple
extensions for different databases like MySQL, SQLite, PostgreSQL etc.

• The database software used for the web service is SQLite. SQLite is a serverless
SQL database engine which require no configuration, and is thus convenient for
development purposes. The implementation can use any SQL engine, so SQLite
is not required and is easily replaceable in the configuration (see section 8.5.3.)

• For contacting the web service from AliEn::LQ::EC2 (will be introduced in
section 8.5.2) Net::Curl::Easy was used along with Net::Curl::Form. Note that
the latter require the libcurl-devel package to be installed.

All the Perl libraries and frameworks are made available by CPAN (Com-
prehensive Perl Archive Network)[54] as VM::EC2, Config::Simple, Dancer and
DBI (with extensions like DBD::SQLite and DBD::MySQL) respectively (see ap-
pendix A). Other dependencies which must be installed (also available through CPAN)
are DateTime, DateTime::Format::DBI, Log::Log4perl, DateTime::Format::SQLite,
Dancer::Plugin::Form and Dancer::Logger::Log4perl.

7.1.4 Virtual machines

CernVM is distributed in different formats based on hypervisor and on intended
use. As KVM is selected as hypervisor on OpenStack and the CernVM instances are
supposed to run as batch nodes, the CernVM batch node release for KVM was the
natural choice. CernVM instances are created using the qcow2 format (a Copy on
Write implementation as described in section 6.5).

7.2 Installation

This section will describe the process of setting up OpenStack, AliEn, CernVM and
CernVM-FS, and describe the most important configuration parameters used.

7.2.1 OpenStack

OpenStack has a lot of different components which could be installed on different
computing resources. As the installation for this project is not on a production site,
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this setup can be simplified by installing all components on one resource, called
an all-in-one setup. Two extra compute elements will also be set up to allow more
virtual machines.

All-in-one

The widespread use of OpenStack has lead to a range of automated setup tools,
making the OpenStack installation process painless. However none have greatly
simplified the installation on multiple nodes.

PackStack is a tool simplifying the deployment of OpenStack. It provides a
simple way of installing an all-in-one setup which is exactly what is needed for this
project. As mentioned in section 7.1.1, the all-in-one node will be running on the
same machine as the VO-Box. The installation of the last two machines running as
OpenStack compute node only, will be covered in the next subsection.

The packstack command with the option --generate-answer-file creates a file with
all parameters needed to setup all openstack components, everything from default
user of the system to the login on the MySQL database used by OpenStack. The
passwords in this generated file are random strings, so all these can be replaced
making them easier to remember. Some of the most important configuration
parameters are listed in table 7.2.

CONFIG_MYSQL_USER Username of the mysql admin user.

Important if mysql is already installed.

CONFIG_MYSQL_PW Password of the mysql admin user.

Important if mysql is already installed.

CONFIG_KEYSTONE_ADMIN_PW The password of the admin user of OpenStack

CONFIG_NOVA_NETWORK_FLOATRANGE The IP range for virtual machines.

Table 7.2: PackStack have a wide array of configuration parameters. These are the most important
variables to change manually for an all-in-one setup.

The next step is to actually install the components. PackStack provides the
command packstack --all-in-one --answer-file=theAnswerFileCreatedAbove. This
process usually takes some time, as there is a lot to install.

When the installation step is done, a new file called keystonerc_admin will
appear in the root user’s home folder. This is a bash-file exporting environment
variables used for authenticating when working with the OpenStack client tools.
When working with the command line interface of OpenStack (some of the CLI tools
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used are called nova, glance, cinder and keystone) this file must be sourced (source
keystonerc_admin) to provide the environment variables needed to operate the CLI.

Additional Compute Nodes

The hardware described in subsection 7.1.1 uses 3 OpenStack compute nodes. During
the all-in-one installation, only one compute node is set up. Adding compute nodes
to OpenStack can be done in a few simple steps by editing some variables in the
packstack answer file. First the name of the private network interfaces for the host
(the all-in-one node) must be changed (CONFIG_NOVA_NETWORK_PRIVIF
and CONFIG_NOVA_COMPUTE_PRIVIF) from loopback (lo) to the name of a
network card (i.e. eth0). Additionally, the IP addresses of the new compute nodes
must be added to the comma separated list CONFIG_NOVA_COMPUTE_HOSTS,
and it must be ensured that the IP address of the host is contained in the key CON-
FIG_NOVA_NETWORK_HOSTS. After applying these changes, the packstack
tool with the edited answer file needs to be re-run. The new compute nodes are
installed and added to the cloud system.

EC2 Credentials

By default, OpenStack uses a username and password authentication model. To be
more flexible when it comes to supporting different Cloud Operating Systems, EC2
was chosen as the API to use. EC2 is having its own authentication model with
access keys and secure keys, both 32 character hexadecimal keys. To be able to use
the EC2 API programatically with LibVM-EC2, these keys must be created. By
providing the tenant-ID and user-ID of the OpenStack user, the command keystone
ec2-credentials-create --user-id=$USER-ID --tenant-id=$TENANT-ID will create
EC2 credentials for the user of the tenant. The values for user-ID and tenant-ID
can be found respectively by keystone user-list and keystone tenant-list. For this
project, the default user and tenant admin have been used.

The EC2 credentials generated are needed by the eucalyptus CLI tools and should
be added to the keystonerc_admin file as EC2_ACCESS_KEY, EC2_SECRET_KEY
and EC2_URL.

Virtual Appliance

CernVM is distributed in many formats. One of these formats are specialized for
KVM. The image is formatted to the QCOW2 format, a copy on write format, after
downloading. This image is uploaded to the glance image store where it can be
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accessed and used when creating differencing images. The first virtual machine using
this image will have a few minutes of extra startup time to prepare the image for
copy on write, and because of reasons mentioned in the next chapter, this should be
done manually outside the solution of this project.

Virtual CPUs 1

Memory 1024 MB

Swap space 2GB

Disk space 10GB

Table 7.3: The virtual resources given to the virtual machines for this setup

Although the CernVM batch distribution is small of size when distributed, when
mounted on a virtual machine, it expands to about 9.7GB. The VM flavor selected
for running CernVM should therefore have a disk size of about 10GB.

The physical compute nodes have 12 CPU cores and 12GB RAM when added up.
Splitting these resources evenly on virtual machines will give the setup described in
table 7.3, 12 VM instances with 1 VCPU and 1Gb RAM, or 9 if leaving one CPU
and some RAM to each physical machines, a number which should be sufficient for
testing the lifecycle management. Considering swap space, a general rule of thumb
in the Linux community dictates that a Linux OS should have twice the amount of
RAM as swap space, hence 2GB.

Security groups

Security groups were introduced in section 5.6.5, but are not necessarily required for
this project. The worker nodes need no inbound ports opened, but for debugging
purposes port 22 is opened to allow SSH connections. This only applies to this
project, and will not be needed in a production environment. Anyhow, adding and
removing security group rules is a trivial matter.

Keypairs

To allow SSH connections, an OpenStack keypair has to be created. An OpenStack
keypair is specified by a keypair name and a public key. The public key is automati-
cally added to the virtual machines authorized_keys-file by OpenStack, allowing
passwordless SSH connections. As CernVM has no default password for the root
user, it can not be accessed using a password without making any changes to the
image itself, and therefore the OpenStack keypair can be used if SSH access to the
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CVMFS_REPOSITORIES=grid.cern.ch,alice.cern.ch

CVMFS_HTTP_PROXY=DIRECT

Table 7.4: The file /etc/cvmfs/default.local must be created and this configuration must be added
to it.

virtual machines is desirable.

7.2.2 CernVM-FS

Besides using CernVM-FS to install AliEn on the virtual worker nodes, CernVM-FS
is used for running the AliEn services on the local site on the testbed. The CernVM
website[48] provides the RPM packages required for installation, cernvmfs-keys and
cernvmfs-client. The cernvmfs-init-scripts package provide a few helpful tools for
debugging and setup verification. This package is not required for the installation,
but is used in this project for its convenience.

After installing the packages, the client has to be configured to use the CVMFS
repositories of ALICE (alice.cern.ch), grid tools (grid.cern.ch), and to set which
proxy to use. The proxy configuration tell where to download data from.

Table 7.4 shows the configuration used on this project. The configuration file
/etc/cvmfs/default.local must be created and the values listed must be added. Oddly,
the mandatory variable CMVFS_HTTP_PROXY does not have DIRECT as default
value. In fact it does not have a default value at all. DIRECT means that CVMFS
download directly from the repositories specified instead of using another, possibly
local, proxy server.

The init setup script, cvmfs_config setup, needs to be run after the CVMFS
configuration have been done. When the init scripts are done, checking that the
configuration is working correctly can be done by running cvmfs_config chkconfig.

7.2.3 CernVM contextualisation

As mentioned in section 6.4.1, the purpose of a CernVM instance can be specified by
using a contextualisation file. The contextualisation file is composed of two parts;
an executable script and a set of python style configuration blocks.

A part of the contextualisation file, which will be described in section 8.5.2, is
the amiconfig contextualization parameters. This is a list of parameters and values
grouped by plugin using the python configuration block style. There are a many
plugins available within CernVM, but the most interesting is rootsshkeys which is
enabled by default and the cernvm plugin. The plugin rootsshkeys allows injecting a
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Figure 7.2: An example of amiconfig used for contextualisation. It starts with executing an
exit-terminated script followed by parsing python style configuration blocks.

public key into the authorized_keys file of the root user of the host OS. The plugin
cernvm enable further contextualization parameters specific to CernVM. An example
of amiconfig configuration can be seen in figure 7.2. The amiconfig block is used to
activate or deactivate plugins.

The other part of the contextualization file is an executable script. The script
will be generated as seen in the next chapter. The components used to generate the
full script are available from github, see appendix A for the reference.

7.2.4 OpenStack and CernVM automated installation script

To simplify the installation process while trying different configurations of OpenStack
together with CernVM, scripts for both automating the installation and uninstalling
OpenStack with CernVM were developed. The script can be found and downloaded
on github (see appendix A for the reference). It has two optional flags, -g for only
generating the answer-file used by packstack, and -a for using an exsisting answer file.
The script will ask for MySQL username and password, and requires sudo access.

The install.sh script installs and does basic configuration of OpenStack, creates a
security group with a filter opening port 22 for instances. Moreover, it downloads
the CernVM-image and uploads it to OpenStack, creates the CernVM volume, adds
keypair for the user executing the script (it creates a pubkey if not found), and lastly
it creates a CernVM instance and applies the settings from section 7.2.3.

The uninstall.sh script removes everything related to OpenStack, including soft-
ware packages, openstack repositories, volume groups, configuration files and other
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application data related to OpenStack. This script should be used carefully.

7.2.5 AliEn site

The introduction of CVMFS has eliminated the need for manually downloading
and installing the AliEn site related software packages. Although the software is
accessible, some configuration and setup must be done before it is useable. This
process includes configuring the site services as well as the AliEn client.

AlienVO user

The front node of the site in this testbed is running the Compute Element (CE) and
VO-Box software. These software packages are run as the user alienvo on the Linux
system. To run the AliEn services as the alienvo user, some environment variables
must be set.

ALIEN_ROOT /cvmfs/alice.cern.ch/ Location of the root install directory

of AliEn

ALIEN_HOME /share/home/alienvo/.alien/ Location of AliEn configuration files

and certificates

ALIEN_USER aliprod The site’s user on AliEn.

ALIEN_NTP_HOST hib-gsw.hib.no The NTP server to use

ALIEN_DOMAIN os.hib.no The domain name of the machine.

Table 7.5: Some of the key environment variables for an AliEn VO-Box

The variables listed in table 7.5 show the configuration used in this project.
The ALIEN_HOME directory contains the configuration for the AliEn site. The
ALIEN_ROOT variable refers to the root folder of the AliEn installation, which in
this project is in the CernVM File-System.

Startup configuration

AliEnUser alienvo The Linux user which run the AliEn services

AliEnCommand "/cvmfs/alice.cern.ch/bin/alien" Location of the AliEn command on the

host machine, but also on the worker nodes.

AliEnServices "Monitor CE CMreport" The services to be run on this box.

Table 7.6: The file $ALIEN_HOME/etc/aliend/ALIENBERGEN/startup.conf contains the startup
configuration for AliEn on the host machine.
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AliEn startup configuration is specified in $ALIEN_HOME/etc/aliend/startup.conf.
This file contains a variable called ALIEN_ORGANISATIONS which value is set
to ALIENBERGEN. That value further correspond to a folder $ALIEN_HOME/etc/
aliend/ALIENBERGEN/ which contain another startup.conf file, which contain the
startup configuration for AliEn on the host machine. One variable to note is the
AliEnCommand variable which will be used when generating the job agent (JA)
startup script to describe the location of AliEn on the worker nodes.

7.2.6 Central Services

The Central Services used in this project was already set up by one of the supervisors,
Bjarte Kileng, leaving close to no work except a few operations for this project.

LDAP

INSTALLMETHOD CVMFS Which package installer the CE should use.

TYPE EC2 Which batch system interface the CE should use.

Table 7.7: The key LDAP entries used for this testbed.

Lightweight Directory Access Protocol (LDAP) is a protocol for accessing static
configuration parameters/directives remotely. This service is used to configure VOs,
sites, and other services in the AliEn Grid. Settings like service URLs and ports,
location of certificates, job management commands etc. are specified here. A large
and complex LDAP database may be hard to maintain. Apache Directory Studio[55]
provide a helpful way for doing so.

There are two key LDAP entries which values must be set as listed in table 7.7.
The first LDAP entry important for this project is the INSTALLMETHOD entry of
the CE of the testbed. The value of the entry must be set to "CVMFS", and is used
for generating JA startup scripts on the CE as will be demonstrated in section 8.5.2.

The second important LDAP entry also for the CE of the testbed is the TYPE
entry which must be set to "EC2". This value is used by the CE to choose which
batch system interface to be used. As will be demonstrated in section 8.5.1, a new
batch system interface is implemented, and the TYPE entry must correspond to
the name of the new interface.

Environment Variables

Although most of the site configuration can be done using LDAP, there is also some
configurations which can be done locally on the site. Most of these specify how the
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system will interact with the users, like the shell used within AliEn, and paths to
software installations. While testing different configurations, the CE can be locally
configured by overriding the LDAP variables. This can be done by adding the prefix
CE_ to the name of the LDAP entries and add them to the alienbergen.conf file.



Chapter 8

Proposed solution

This chapter describes the requirements of a solution to the problem described in
section 1.4, followed by an introduction to this proposed solution and how it fulfills
the requirements. In the previous chapter it was shown how to set up and configure
the systems needed to implement the proposed solution. Now remains the glue
between these systems to complete the proposed solution.

8.1 Requirements

There are some requirements specified in the problem description in section 1.4
which the solution must satisfy.

• A virtual machine instance should exist only while executing a job. When a
job is detected on the central services by a compute element on a site, a new
VM instance should be started. Further on, when the job is done executing,
the VM instance should be deleted. This approach will result in AliEn using
computer resources only when needed, resulting in an elastic AliEn site.

• The proposed solution should have a minimal footprint on the existing AliEn
Grid, both from a users perspective and the site administrators. A user should
not be concerned about whether his/her job is running on a traditional AliEn
worker node or on a virtual worker node in a Cloud system.

• A system administrator should have to do a minimum of changes to the existing
system when implementing this proposed solution on a site. This requirement
may vary from site to site depending on the systems already installed. Some
sites may already have installed an EC2 enabled cloud system, and most sites
already have AliEn set up.

49
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• Minimal changes on the Central Services (CS), especially in the code running
the Central Services, is required.

8.2 Idea behind the solution

This section will give insight into the idea behind the proposed solution. The
proposed solution is split into two main components where the first is extending the
AliEn CE, while the second is used to manage the lifecycle of the VM instances.

8.2.1 AliEn CE Type

AliEn sites have the option to choose which type of batch system to be used on a
Compute Element. This can be specified in LDAP and be overridden by a local
configuration on the VO-box. As explained in section 4.2.1 the CE is responsible for
sending job agents to the local job queue on its site. To do so, the CE executes a
function on a batch system interface, using a perl module which is imported into
the code of the CE (AliEn::CE) based on the specified type of batch system. By
creating a new module acting as a batch system interface, this function can be used
to start virtual machine instances instead.

When the CE is started it looks for the specified batch system interface in the
AliEn::LQ package and imports it. One of the purposes of the batch system interface
is to handle the event when the CE has a job ready for scheduling. On this event,
the submit function of the interface is executed. By overriding this function, the
batch system interface can be used to request new VM instances.

Moreover, the AliEn::CE module contains a function for generating job agent
startup scripts, a bash script for starting AliEn job agents on worker nodes. As
mentioned in section 6.4.3 CernVM uses contextualization to adapt for different
purposes. One way to achieve contextualization is to use EC2 user data (mentioned
in 5.6.6). By adding the job agent startup script to the EC2 user data, the job agent
can be started once the VM instance have started, contrary to actively accessing
the VM instance through e.g. SSH to start a job agent.

8.2.2 Lifecycle management

As mentioned in the previous section, by creating a new batch system interface, AliEn
can now request new VM instances as worker nodes. This will require some interface
between the batch system interface and the EC2 enabled cloud system. This could
be achieved either by using the EC2 API directly, or by creating another component
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responsible for EC2 communication. Keeping in mind that the VM instances should
be terminated when the job agent is done, the latter gives the possibility of creating
a component responsible for both starting and terminating instances. The other
alternative would have the batch system interface being responsible for starting
instances and another component being responsible for terminating. By having one
component responsible for EC2 communication, all EC2 functionality required for
the proposed solution will reside in one component. Another alternative would be
to stop the VM instances from the batch system interface, but that is impossible
as the submit function of the batch system interface is dead after requesting a new
worker node.

Termination of instances might seem like a trivial problem, but it is not. Events
which might happen, like job software freezing, VM instances not starting, or
other trouble with the virtual appliance which leave the VM instance in a zombie
state, must be expected and handled. If not, VM instances may keep the resource
indefinitely while in a zombie state.

To handle these problems a web service was decided to be the most fitting
solution; a service running on the site with "clients" running on the virtual machines
contacting the service by a specified interval. By doing this, the VM instances can
tell the service that they are still alive and responsive. The instances can also tell
the service to delete the VM instance when their Job Agent is done. Any virtual
machine not giving an update within the specified interval can be assumed dead
and be deleted. The service can also be contacted for aquiring new VM instances,
essentially managing the lifecycle of the instances related to AliEn. The service will
from now on be referred to as AliEC2.

8.3 Summary

Adding the requirements from section 8.1 with the idea from section 8.2, we get a
list of guidelines for the implementation.

• The worker node should tell HTTP service it is still alive. Service will kill the
VM if no response.

• Worker node should tell the service when it is done.

• The service should delete non responsive machines after specified period. This
period should be sufficient for a VM to start up and should be configurable.

• The solution should be transparent for end users. Users of the AliEn Grid
should have no need for being aware of the changes done to a site.
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• The service can be contacted for requesting new worker nodes.

Figure 8.1: The web service act as an interface between the AliEn batch system interface and the
underlying EC2 enabled cloud system (OpenStack in this case). It is responsible for managing the
lifecycle of the VM instances.

The implementation will work as described in figure 8.1. The batch system
interface module discussed above will contact the service when new resources are
needed. The service will through the EC2 API request a new CernVM instance
from OpenStack and transfer the Job Agent startup script to the new VM instance
by using EC2 user data. The AliEC2 service will at specified intervals look for
and kill zombie instances, instances which have not told the service that it is alive.
Instances contacting the service because its job agent is done will also be deleted
immediately. Moreover, as displayed in figure 8.1 the two components have been
named AliEn::LQ::EC2 as the batch system interface, and AliEC2 as the AliEn-EC2
interface service.
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8.4 Design decision

There are multiple ways of implementing the proposed solution, some more fitting
than others. This section will describe why the design described in the above sections
was chosen, and compare it with other possibilities.

Early on, the plan was to locate events in the AliEn system, one event telling
that a job have been submitted, and the other event telling that a job has been
finished. The first event have been located, but the second event could not be found
and it was later on confirmed by the AliEn team that no such event existed. With
no such event, a way to monitor the job agents and the VM instances was needed. A
way to implement this is to have a service on the site with active clients contacting
the service and updating their status.

Another option would be to have passive clients with a service making queries.
This approach would require more open ports on the clients, and also downloading
of libraries and frameworks for hosting an endpoint which the service could contact
asking for the job agent status.

For this purpose the first option, a web service with active clients updating
their status, seemed the most obvious solution with the least drawbacks. Moreover,
as mentioned in section 8.2.2 the service may also be used for creating new VM
instances, and thus it gathers all EC2 communication in one component.

8.5 Implementation

The layout for the system displayed by figure 8.1 has been implemented and set
up on the testbed described in chapter 7. This section will give a more detailed
description of the implementation of the two components described in section 8.2.

Most of the programming for the implementation has been done using the Perl
programming language, but also some bash scripting was used for the contextualisa-
tion scripts of the virtual machines. In addition, some SQL was used in the AliEC2
Web Service component for handling the database.

8.5.1 Lifecycle Management Service (AliEC2)

The lifecycle management service, named AliEC2, has two main functions. The first
main function is acting as a web service, and the second is running an update loop
for checking the state of the VM instances and delete zombie instances. A thread
for each of these functions are created when AliEC2 is started.
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GET /alive/:id VM with ":id" tell the WS it’s alive.

GET /done/:id VM with ":id" tell the WS it’s done and can be deleted.

POST /spawn AliEn::LQ::EC2 uses this to request a new VM instance.

POST parameter "script" can be used to provide EC2 user data.

Table 8.1: The web service have a set of functions which can be contacted by the VM instances
and the new AliEn::LQ module.

The first main function, the web service component, was implemented as a web
service (WS) using the Perl Dancer web framework. Three HTTP functions are
needed as listed in table 8.1. Figure 8.2 shows the flow of the different web service
functions.

The first function (/alive/:id) is used by the VM instance to tell the WS that
it is still alive and responsive. The second function (/done/:id) is also used by the
VM instance to tell the WS that its job agent is done and that the instance can be
terminated. The last function (/spawn) is for the AliEn::LQ::EC2 (see section 8.5.2)
batch system interface to request a new VM instance. The agent startup script
generated by the CE code (as mentioned in section 8.2.1) should be supplied as
POST data.

The communication with EC2 is extracted to its own module AliEC2::EC2 (not
to be confused with AliEn::LQ::EC2) to group the EC2 functionality in its own
module. The web service uses functions of the AliEC2::EC2 module to create and
delete VM instances. AliEC2::EC2 uses VM::EC2 (LibVM-EC2, as mentioned in
section 7.1.3) for EC2 communication.

The second main function is running a loop within a specified configurable interval
(e.g. every 60 second), iterating over the instances listed in the database looking
for instances which have not given an update within that interval. The database
will be described in more detail later in this section. The update loop differentiate
between recently spawned instances and instances which have already given an
update. Instances recently spawned are given a larger interval to ensure that it is
not deleted while starting up.

As mentioned in the beginning of this section, the web services component use the
Dancer framework for handling HTTP calls. Each HTTP call forward their job and
instance ID parameters to a database handler module (AliEC2::DB). AliEC2::DB use
the Perl Database Interface (DBI) which supports multiple database types. While
this project uses SQLite (DBD::SQLite), in theory any database supported by DBI
could be used.
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Figure 8.2: A sequence diagram displaying the actions and components behind each function of
the web service.

The database (Table 8.2) is used to store the state and time of the last update
of each VM instance. The state can be either ’Spawned’ or ’Alive’ to differentiate
between newly spawned instances and instances which have updated their status
at least once. Newly spawned instances may have a longer time limit to send a
heartbeat before they are deleted.

Summed up, the AliEC2 service is composed of the following parts:

• AliEC2: The main module of the AliEC2 service. It initiates and starts the
web service functionality of the AliEC2 service, as well as running the update
loop.

• AliEC2::EC2: This module is responsible for all EC2 communication. The
AliEC2 module uses this module for EC2 communication.

• AliEC2::DB: This module is responsible for handling the database.
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Figure 8.3: The update loop is looking for zombie VM instances. A zombie is an instance which
have not updated within the update time limit.

8.5.2 AliEn::LQ::EC2 batch system interface

When the AliEn CE detects a job on the CS, it calls the submit function on the
specified AliEn::LQ batch system interface module. By creating a new AliEn::LQ
module, the submit function can be overridden and used to start new VM instances.
This new module is called AliEn::LQ::EC2, not to be confused with AliEC2::EC2 of
the lifecycle management service.

The implementation of AliEn::LQ::EC2 is a modified version of AliEn::LQ::PBS
(the batch system interface for PBS/TORQUE) where the submit function has

Field Type Description

InstanceName Text ID of an instance.

LastUpdate Timestamp Time of last instance update.

Status Text Status of the VM. Can be "Spawned" or "Alive"

Table 8.2: The different fields of the AliEC2 database.
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been replaced. The submit function starts by generating the EC2 user data used
to contextualize the CernVM instances. The process of generating the EC2 user
data will be described later. Because the job agent startup script depends on the
AliEn package installer of the CE and on the AliEnCommand of the AliEn startup
configuration (as mentioned in section 7.2.5), the job agent startup script, and thus
the EC2 user data may be different from site to site and must be generated when
requesting a new virtual worker node.

The EC2 user data is generated by concatinating two files containing the parts
of the contextualization data which dont need to be generated per worker node.
In between the concatination, the job agent startup script is inserted. The JA
startup script is generated by an existing AliEn function based on the selected
package installer of AliEn, in this case CVMFS. After generating the EC2 user data,
AliEn::LQ::EC2 contacts the AliEC2 web service by the /spawn HTTP function,
requesting a new VM instance. The EC2 user data is attached as POST data within
the HTTP request.

The contextualisation script is executed when the VM instance is started. It
starts with exporting some necessary AliEn environment variables. Further on it
starts the JA startup script in a new process so that it will not block the rest of
the VM startup process. When the job agent is done, the script then contacts the
AliEC2 web service through the /done/:id function asking to get the VM instance
killed.

In parallel on startup, the contextualization script creates a new thread for
monitoring the job agent. This thread regularly checks that the job agent process
ID exists. If it exist, the thread contacts the Web Service on the VO-Box to show
that it is still working and is alive. If not, the thread assumes the job agent is dead
and tells the WS that the VM instance can be killed.

8.5.3 Configuration

The setup requires some configurations specific to the AliEn installation and the
OpenStack setup used in this project. The two new components, AliEC2 and
AliEn::LQ::EC2, must be configurable both for testing different configurations and
for adapting to different environments. The EC2 API requires a specific URL and
needs both an access key and a secret key for authentication. In addition to these,
parameters for time limits and update intervals can be specified. Table 8.3 shows an
example configuration.

AliEC2 stores the status in an SQL database. The example in table 8.3 uses
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ec2_endpoint http://localhost:8337/2007-15-12/ EC2 endpoint URL

ec2_access_key abcdef1234 EC2 Access key

ec2_secret_key 4321fedcba EC2 Secret key

check_interval 120 The interval of which the service look

for zombie instances.

spawn_time_limit 300 The maximum time an instance is given

to start up.

alive_time_limit 120 The interval a started instance must

reply within before it is considered a

zombie instance.

db_type SQLite Type of database. Corresponding to the

libraries DateTime::Format (::SQLite) and

DBD:: (SQLite) mentioned in section 7.1.3.

db_host blank Database host. As SQLite is used, it is

local only.

db_name aliec2.db Database name. A filename in the case of

SQLite.

db_user blank Database username.

db_pass blank Database password.

aliec2_host 10.0.0.35:8000 AliEC2 WS host IP address.

Table 8.3: Configuration parameters used by AliEC2 along with a description of each parameter
and an example value.
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an SQLite database file with no authentication for simplicity. This can easily be
changed to use an already existing database. AliEC2 will create the tables needed.

In case of a CVMFS installation of AliEn on a site, the new AliEn::LQ module
can not be added to the AliEn/LQ folder where AliEn normally looks for CE
implementations, because CVMFS is read-only. There are two solutions to this
problem. The first one is to put the new module in its own folder and add the folder
to the PERL5LIB environment variable. The second one is to use mount --bind
to override the folder pointer in the file system. This way the folder containing
AliEn::LQ::EC2 can override the location where AliEn look for AliEn::LQ modules.

8.6 Performance

In this section the extra overhead caused by the proposed solution will be studied.
The software implemented in this project will have a minimal impact on the overhead.
Instead the systems used, OpenStack and CernVM with KVM along with CVMFS,
will have the biggest impact on the performance. Additionally, components which
could be further improved are identified in this section.

The lifecycle of the VM instances can be split into four parts: building the
instance, boot up, execution of jobs and termination. Measuring the performance of
each part individually allows for easier identification of weaknesses in the system. If
building the instance is especially time consuming, the cloud system or the hypervisor
is the probable cause. If the boot process is taking a long time, the hypervisor or
the virtual appliance is the probable cause.

8.6.1 Building instances

After requesting a new VM instance, the instance is in the ’BUILD’ state. Building
instances is a matter of creating a new virtual machine, creating a differencing image
from the source image and other steps such as assigning IP-addresses, setting up
port filters; steps done by the hypervisor and the cloud OS. Measuring the time
consumed when building VM instances is a matter of recording the time when the
VM instance was requested until the state of the instance change from ’Build’ to
’Active’.

To measure the build time of a VM instance, the timestamp just before the
instance was requested and the timestamp just after the instance get the ’Active’
state, was recorded. Figure 8.4 show the build time of instances on the testbed.
The average build time is 29.8 seconds while the maximum is 33.8 seconds and
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Figure 8.4: Building instances on the testbed on average take 29.8 seconds with a minimum of 29.1
seconds and a maximum of 33.8 seconds

the minimum is 29.1 seconds. The variation from minimum to maximum is of 4.7
seconds.

8.6.2 Startup

After the status of the VM instance have transitioned from ’Build’ to ’Active’, the
boot process of the Guest OS is starting. To find the time consumption of this
process, the interval between the instance’s status was set to ’Active’ and until the
instance could access the /alive/:id function on the AliEC2 service was measured. To
access the /alive/:id function, the contextualization script was used. The execution
start of the contextualization script marks the end of the startup process and is
when the job agent is starting.

Figure 8.5 shows that starting instances takes on average 92.6 seconds. The
maximum and minimum boot time took 96.7 seconds and 88.8 seconds respectively,
with a maximum difference of 7.9 seconds. In total the startup and build have a
worst case of 130.6 seconds and best case of 117.9 seconds with an average of 122.3
seconds.

As the startup step was the most time consuming, some investigation was done in
this step to understand the time consumption. A particularly interesting contribution
to the time consumed is a file system check happening for each instance, a process
measured to consume about 5 seconds. As the instances for this project are disposable,
no changes have been done to the filesystems before the instance has started and
should not require any checking. This step should not have to be executed and could
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Figure 8.5: Starting instances on the testbed on average take 92.6 seconds with a minimum of 88.8
seconds and a maximum of 96.7 seconds

be considered a waste of time.

8.6.3 Job Execution

Some benchmarking of CernVM has already been done[56] on different hypervisors,
including KVM, and have been compared to a native linux installation. The
applications used for testing are typical Grid analysis software and as OpenStack
use the KVM as hypervisor by default, these benchmarks should still be relevant.
The referred study was done in 2010/2011 by Brynjulv Brynjulvsen.

From the figures 8.6 and 8.7 we see that KVM was not the best suited hypervi-
sor for CernVM running experiment software. However, more recent benchmarks
(2013)[57] of KVM matched against other hypervisors have been done. A study
done at the George Washington University along with IBM have compared the
performance of KVM, vSphere, VMWare and XEN. These tests have not used
CernVM or any typical analysis software, but test how the hypervisors perform
under different tests. The study done at the George Washington University conclude
that the hypervisors outperform each other within different areas, and that there
is no single hypervisor outperforming the other altogether. It also suggest that
matching hypervisors to different applications require more attention.

With the application performance measured, the most interesting part of the job
execution for this project is the downloading of AliEn and the required software,
using CVMFS, to start a job agent. This process was measured by recording the time
before starting the job agent and after retrieving a short job (executing /bin/date).
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Figure 8.6: CernVM page faults running ppBench with 512MB (upper graph) and 1024MB (lower
graph) RAM[56]

The results were then compared with a cached CVMFS node to be able to extract
the download time.

Figure 8.8 displays the download times of the software required to start an
AliEn job agent from the job agent startup script of the EC2 user data. The
measurements were done at the network of Bergen University College downloading
from the repositories of ALICE. The amount of data to be downloaded to start a
job agent is 39.5MB and with the average of 33.5 seconds the average download
speed from the repositories are about 1.17MB/s or ~9.4 Mbps with a peak of ~15.8
Mbps and a minimum of ~7 Mbps. The slow download rates are clearly a drawback
and could be greatly increased by using a local cache on the site. By having the
disposable worker nodes use a local cache, the time consumed by downloading
AliEn software can in theory be decreased to ~3.16 seconds on a 100Mbps LAN and
obviously even further decreased on a 1Gbps LAN.
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Figure 8.7: CernVM execution time of different simulation software with 512MB (upper graph)
and 1024MB (lower graph) RAM[56]

8.6.4 Lifecycle management

To test the lifecycle management several short jobs was submitted. Short jobs gives
the virtual worker node a short lifetime, so that the spawning and killing of the
virtual worker nodes can easily be observed in the AliEC2 logs or from the output of
AliEC2. By submitting more jobs than the system can provide virtual machines for,
the limiting of virtual machines can also be tested. The VM limit is a configurable
size dictating how many VM instances the system can handle. To test the limiting,
virtual machines with fewer resources increase the VM limit which the system can
provide.

From observing the logs of AliEC2, the functionality of the lifecycle management
service is working correctly on the testbed specified in chapter 7. New virtual worker
nodes are spawned when AliEn::LQ::EC2 request new worker nodes, provided that
the system have free resources. When there are no more jobs for the job agents on
the virtual worker nodes to do, the worker nodes tell AliEC2 that they are done,
followed by AliEC2 deleting them.
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Figure 8.8: The required software for starting the job agent is downloaded by CVMFS. The amount
of data to download is 39.5MB and on average this process takes 33.5 seconds.

8.6.5 Summary

Figure 8.9: The total time consumed before the job agent starts may vary from ~137 seconds up to
~175 seconds.

By adding the time consumed in the steps described in the above sections we get
an estimate of the total overhead of the virtual machines. Figure 8.9 shows that in
total the solution on this testbed give an average job agent startup time of ~155
seconds, or close to 2:30 minutes. A job agent normally have a maximum lifetime of
48 hours. An extra startup time of two minutes and thirty seconds are therefore
quite low.



8.6. PERFORMANCE 65

The startup time could be optimized in a few ways, but the most drastic change
could be done by simply adding a local cache to the site as seen in section 8.6.3, which
could reduce the startup time by 20-30 seconds. Moreover, by looking at the logs
from the CernVM startup (section 8.6.2), some optimizations of the CernVM startup
process could be done to shorten the startup process of the CernVM instances, e.g.
disabling the file system check.
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Chapter 9

Similar Solutions

Some projects working towards a similar goal exist. Although they are somewhat
similar, there’s still some important differences. This chapter will give a brief
introduction to some of these projects, describe the key differences from our project,
and the purposes of these projects versus this proposed solution.

9.1 Cloud Scheduler

Cloud Scheduler[58] is developed at the University of Victoria, Canada by the High
Energy Physics Research Computing group (HEPRC), along with the CANFAR
project, and NRC-Sussex in Ottawa. It is designed for use in the CANFAR project[59]
and in the HEP Legacy Data Project[60], both of which are funded by CANARIE[61].

From figure 9.1 we observe that the scheduler looks at the job-queue to discover
which VM-Image to boot up for a job. This image must be specified in the job
submission file and it must also be prepared and uploaded by the user. In addition the
user must specify other VM parameters like CPU cores, memory, CPU architecture,
network type and storage.

This goes against one principle of our proposed solution; the user of the Grid
should have no concern regarding where and on which platform the job is running.
Cloud scheduler is also designed to be running as a complete solution for its targeted
projects, as opposed to our solution which is designed as an additional component
to an already existing system (AliEn).

9.2 CoPilot

CoPilot[62] is a project at CERN developed by the CernVM team. From figure 9.2
we see the components of CoPilot: the job manager, agent, storage and monitor
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Figure 9.1: An overview of the Cloud Scheduler architecture.[58]

services, interfacing different Grid systems with cloud systems. The job manager
maintains the job queue, keeps track of job states and distribute jobs for execution.
The agents request jobs from the job manager, execute the jobs and upload the job
results to the storage. The monitor collects and stores information about the state
of the system, data such as number of jobs in the queue, and the space available
in the storage. New resources running the CoPilot agent register to the CoPilot
Manager.

CoPilot is designed to collect and orchestrate different forms of free resources
from volunteer PCs to Cloud Instances. The resources are not requested based on
demand, and the resources are not freed after a job is done executing, lacking the
lifecycle management needed by the problem described in section 1.4, and does not
provide elasticity on the same level as our solution.

9.3 ROCED

ROCED (Responsive on-demand Cloud Enabled Deployment)[63] is a meta-scheduler
developed by researchers from the Karlsruhe Institute of Technology. This solution
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Figure 9.2: The architecture of CernVM-CoPilot[62]

require a customized OS image with Torque or PBS installed running in the cloud
and is primarily designed to extend static resources on local clusters by using public
cloud resources.

9.4 Summary

Cloud scheduler, CoPilot and ROCED are more general purpose and in some cases
are replacements for AliEn on the clusters, whereas our solution is an add-on to
the existing AliEn cluster setup. Moreover, some solutions are not transparent to
the users of the Grid, and some solutions lack the key functionality this prototype
provide. Another noticeable difference is that all of them need batch systems,
whereas our solution use cloud functionality to replace the needs for batch systems.
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Chapter 10

Evaluation and Conclusion

There are several factors to evaluate, regarding the requirements described in
section 8.1 and issues concerning possible loss of performance. Evaluating the re-
quirements is a matter of matching the solution with the requirements and discussing
whether the solution fulfills the specified requirements.

10.1 Evaluation of requirements

This section will focus on the requirements of the solution, beginning with a short
recap on the requirements. The solution should

• not run any virtual worker nodes while there are no jobs to run.

• have a minimal footprint in the existing AliEn grid.

The first requirement is fulfilled by implementing a service managing the lifecycle
of the virtual machine instances, including starting and stopping VM instances, as
well as taking care of any errors which might occur to the instances. The reporting
system facilitates detecting unresponsiveness from a machine, and non responsive
virtual machines will be deleted after a limited amount of time.

The second requirement is a bit harder to evaluate as the footprint is hard to
measure. Installing this extension on a Grid site should be simple as guides and
some scripts are provided along with this thesis (see chapter 7 and appendix A).
As mentioned in section 8.1, the amount of work to be done while applying this
proposed solution may vary from site to site depending on the software already
installed on the site.

Setting up AliEn and OpenStack correctly is comprehensive work. The interface
and service developed in chapter 8 is simply a matter of installing the required perl
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libraries and frameworks described in chapter 7 followed by setting AliEn to use the
AliEn::LQ::EC2 interface and starting the AliEC2 service.

10.2 Performance Evaluation

Evaulating the performance is a matter of what amount of overhead is acceptable.
This value is not specified anywhere, leaving this report to reason about what is
acceptable and what is not.

10.2.1 CernVM performance

Some testing have already been done as mentioned in section 8.6.3. One of these
tests was conducted in 2010/2011 comparing different hypervisors running CernVM
with different physics analysis software. This study concluded that KVM was not
the most suited hypervisor for hosting CernVM instances. However, the second
study conducted in 2013 which compared different hypervisors under different
circumstances, including KVM, concluded that none of the hypervisors tested
outperformed each other. These two tests tell that the KVM performance might
begin to challenge other hypervisors, but also that the overhead of all the hypervisors
should be acceptable for AliEn jobs.

10.2.2 AliEC2 Performance

The performance benchmarking done in section 8.6 shows that the total job execution
time will have an average additional time of ~two minutes and thirtyfive seconds,
varying from ~two minutes and seventeen seconds to ~two minutes and fiftyfive
seconds. Keeping in mind that the maximum lifetime of a Job Agent normally is
set to 48 hours, the additional VM startup times are very low. The results from
section 10.2.1 show that in 2011 the CernVM performance along with KVM was not
the best, but later benchmarking suggest that in more general cases KVM perform
similarly well as other hypervisors.

The lifecycle management service has not been tested on more than 12 concurrent
instances, but the tests show that the service is performing as it should; starting
when requested and deleting instances when they are done or have not updated, and
also ignoring new instance requests when the instance limit has been reached.
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10.3 Further Work

The implementation of the proposed solution is a functioning prototype. Much have
been done, but some issues remains.

This solution has not taken any security aspects into consideration. Authentication
could be added to the web service component of AliEC2 to improve the security.

Investigation of the overhead may further reduce the startup time. One approach
for reducing the overhead might be to always have a number of extra VM instances
active, ready to start a job agent. When a new job is submitted, the active instance
grab the job while a new instance is started. Moreover, the overhead of the current
implementation could be reduced by adding a local CVMFS-cache to the site.
Additionally, the CernVM startup process could be better fitted for this prototype,
e.g. the startup time could be shortened by removing the file system check as
mentioned in section 8.6.

10.4 Conclusion

CernVM along with OpenStack, and possibly other EC2 enabled cloud systems,
seems well suited for providing an elastic and homogenous Grid environment. The
extra startup time of less than three minutes is negligible compared to a job agent
lifecycle of 48 hours. The complexity of applying the implementation on a data center
are mostly dependent on whether the center use an EC2 enabled cloud system or not.
With OpenStack and AliEn already correctly set up, applying the implementation
should be fairly trivial with the resources provided in appendix A and in chapter 7.
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Appendices
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Appendix A

AliEC2 Installation

Install Perl libraries and frameworks required by AliEC2 and EC2.pm from CPAN:
sudo cpan YAML DBI DBD::SQLite Net::Curl::Easy Net::Curl::Form Dancer
Dancer::Logger::Log4perl Log::Log4perl DateTime DateTime::Format::DBI Date-
Time::Format::SQLite VM::EC2 Config::Simple

The installation script for setting up OpenStack all-in-one can be downloaded
from github:
git clone https://github.com/Joachricar/Joastack.git
The installer can be run by ./install.sh -g to generate the answer-file. After checking
that all values are correct, run ./install -a to install with the packstack-answers.txt
generated. This script installs OpenStack all-in-one, creates a security group, adds
keypair for the user executing the installer, downloads CernVM 2.7.1 batch node
from cernvm.cern.ch, creates a CernVM qcow2 volume and starts an instance of
CernVM.

AliEC2 can also be downloaded from github:
git clone https://github.com/Joachricar/AliEC2.git
The file aliec2ws.pl is the executable for AliEC2. ec2.conf is used to configure the
service.
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