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Summary 
 
Khat chewing is a highly prevalent habit in Yemen and East Africa. None of the few 

studies that investigated the effect of this habit on dental and oral health provides 

information about its influence on oral microbiota (Paper 1, a review). The aim of the 

study was to investigate the effects of khat chewing and aqueous khat extracts on a panel 

of periodontal and cariogenic bacteria, in a step towards better understanding of the 

relation of the khat chewing habit to periodontitis and dental caries. Materials: A total of 

408 plaque samples obtained from 51 khat chewer and non-chewer young males, 

lyophilized crude aqueous khat extracts made from three cultivars, and a panel of 36 oral 

microorganisms. Methods: The plaque samples were analyzed by the DNA-DNA 

checkerboard hybridization method, comparing the prevalence and levels of 14 selected 

periodontal bacteria in sub- and supragingival plaque samples of khat chewers and non-

chewers and of the khat chewing and non-chewing sides (Paper 2). For evaluation of 

antimicrobial properties of khat, the extracts were tested against 33 oral strains using the 

agar dilution method of the National Committee for Clinical Laboratory Standards 

(NCCLS) (Paper 3); in addition, the extracts were tested for their ability to potentiate 

activity of tetracycline and penicillin G against three resistant isolates (Paper 3). The 

extracts at various concentrations (0.125-2% w/v) were also evaluated for their effect on 

key virulence factors of S. mutans: planktonic growth, sucrose-dependent colonization, 

glucan synthesis, and glucosyltransferases (GTFs) production (Paper 4). Results: Khat 

chewing increased the prevalence or/and levels of a number of periodontal health-

associated species, while it did not influence, and in some cases decreased, those of 

periodontal pathogens (Paper 2). Subsequent findings showed that the khat extracts 

demonstrated selective antimicrobial properties in vitro, with the majority of susceptible 

strains being periodontal pathogens; the extracts also potentiated the activity of 

tetracycline and penicillin G against the tested isolates (Paper 3). Concerning the 

virulence factors of S. mutans, the extracts inhibited formation of adherent biofilms while 

they enhanced planktonic growth, and inhibited synthesis of both types of glucans while 
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they unregulated GTFs production (Paper 4). Conclusions: Khat chewing does not seem 

to induce a microbial profile that would put the periodontium at risk of developing 

disease; it rather favors presence of species that are compatible with periodontal health. 

This may be attributed, at least in part, to the selective antibacterial properties of khat. 

Khat also has water-soluble ingredients, probably tannins, with cariostatic properties. In 

addition, there is preliminary evidence for the presence of resistance –modifying 

components.  
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Introduction  
1. Khat  
Khat, or Catha edulis, is an evergreen shrub of the plant family Celastraceae (Figure 1). It 

is widely cultivated in Yemen and East Africa, where its fresh leaves are habitually 

chewed for their amphetamine-like effects. This many-centuries-old habit is practiced by 

millions of people, and has been introduced to the western countries by immigrants. 

There is an extensive literature about khat, providing information about its history, 

botany, production, geographical distribution, chemistry and pharmacology, and 

exploring the social, economic, medical, psychological, and oral aspects of its use. 

Despite this extensive literature, studies that have investigated its effect on the different 

aspects of dental or/and oral health are much less than one may expect. Searching 

pubmed by using keyword combinations like “khat and oral” or “khat and dental” 

resulted in a total of only 10 hits (as for January 2005). These few studies focused on 

investigating the possible association between khat chewing and periodontitis, dental 

caries, and mucosal changes including malignancy. None of them touched upon the 

possibility of interaction between the habit and oral microbiota. Paper 1 provides an 

extensive up-to-date review on khat with emphasis on the pharmacological, medical and 

oral aspects of its use. 

 

Figure 1. Three different khat cultivars from yemen (Nashat Al-hebshi) 
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2. Oral microbiota 
2.1  The mouth as a microbial habitat 

The oral cavity, like other parts of the gastrointestinal tract, possesses natural microflora. 

It has a number of features that makes it a unique microbial habitat. Teeth 

characteristically provide hard non-shedding surfaces that allow accumulation of large 

masses of microorganisms (dental plaque), especially in stagnant areas. Such 

accumulation is restricted on mucosal surfaces due to continuous epithelial 

desquamation; the only exception is the dorsum of the tongue that is highly papillated and 

thus supports higher densities of microbes (Marsh, 2000). Another important feature is 

that the oral cavity is continuously bathed with saliva, which has a profound effect on the 

ecology of the mouth. Saliva has a pH range (6.75-7.25) that favors growth of many 

microorganisms. Salivary components influence oral microbes by one of four 

mechanisms: aggregating microbes to facilitate their clearance from the mouth, adsorbing 

to teeth surface to form an acquired pellicle to which microorganisms can attach, serving 

as a primary source of nutrients, and mediating microbial inhibition or killing 

(Scannapieco, 1994).  In addition to saliva, the gingival crevicular fluid (GCF), a plasma-

derived fluid that flows through the junctional epithelium, provides microbes in the 

gingival crevice with nutrients and carries host immune components that play an 

important role in regulating the microflora therein (Marsh, 2000). 

 The oral cavity is not a homogenous environment. There are differences among 

sites in key ecological factors like adhesion ligands, pH, nutrients, redox potential, 

oxygen and temperature. Thus the lips, palate, cheek, tongue and the different teeth 

surfaces are distinct habitats, each supports a characteristic microbial community. Which 

species occupy a particular habitat depends on the habitat properties; however, 

metabolism of these species may modify the surrounding environment, making it suitable 

for other species to colonize. For example, early colonizers will deplete oxygen, lowering 

the redox potential and therefore providing a suitable environment for anaerobes.  Thus, 

we find a bidirectional relation between the habitat and the microbial community within 

(Marsh, 2000).    
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 Oral microbes are predominantly bacteria but fungi, viruses, mycoplasmas and 

even protozoa (Marsh, 2000) and archaea (Kulik et al., 2001) can also be found. Antony 

van Leeuwenhoek was the first to point out the diversity of oral microbiota when he 

examined a sample of his own dental plaque under his primitive microscope in 1683 

(Theilade and Theilade, 1976). With cultivation-based techniques about 350 cultivable 

bacterial species have been detected in samples from the oral cavity (Moore and Moore, 

1994). Amplification, cloning and sequencing of 16S ribosomal RNA genes have 

recently enabled the identification of a whole range of oral bacteria that have yet to be 

cultured. Paster et al. (2001) identified 182 novel clone phylotypes in subgingival plaque 

samples and estimated that total species diversity of the oral cavity to be between 500-

600 species. In a very recent report, the number tops out at 700 (Pennisi, 2005). Much of 

this diversity exists in dental plaque. The genera that are found in the oral cavity are 

presented in Table 1. 

     

 

 

   Table 1. Bacterial genera found in the oral cavity (adapted from Marsh and Martin, 1999)) 
 

 Gram-positive Gram-negative 

 

Cocci 

 

Abiotrophia 
Enterococcus 
Peptostreptococcus 
Streptococcus 
Staphylococcus 
Stomatococcus 

Moraxella 
Neisseria 
Veillonella 
 
 
 

 

Rods 

Actinomyces 
Bifidobacterium 
Corynebacterium 
Eubacterium 
Lactobacillus 
Propionibacterium 
Pseudoramibacter 
Rothia 

Actinobacillus               Haemophilus 
Bacteroids                     Johnsonii 
Campylobacter              Leptotrichia 
Cantonella                     Prophyromonas 
Capnocytophaga           Prevotella 
Cantipedia                     Selenomonas 
Desulphovibro               Simonsiella 
Desulphobacter              Tannarella* 
Eikenella                        Treponema 
Fusobacterium               Wolinella 

* A new genus; not present in the original source. 
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2.2  Dental plaque 

2.2.1 Definition 

Clinically, dental plaque is the soft, tenacious deposit that forms on tooth surfaces and 

which is not readily removed by rinsing with water (Bowen, 1976). Microbiologically, it 

can be defined as the diverse community of microorganisms found on the tooth surface as 

a biofilm, embedded in an extracelluar matrix of polymers of host and microbial origin 

(Marsh, 2004). Since it is now recognized that dental plaque behaves as a typical 

microbial biofilm (Marsh, 2004), the new definition of a biofilm by Donlan et al. (2002) 

can be adopted to redefine dental plaque as a microbially derived sessile community 

characterized by cells that are irreversibly attached to the tooth surface or to each other, 

are embedded in a matrix of extracellular polymeric substances that they have produced, 

and exhibit an altered phenotype with respect to growth rate and gene transcription.  

 Dental plaque has the general properties of a biofilm that make the involved 

microorganisms dramatically different from their planktonic counterparts. Such 

properties include open architecture, protection from host defenses, enhanced resistance 

to antimicrobial agents, neutralization of inhibitors, novel gene expression, coordinated 

gene responses, spatial and environmental heterogeneity, broader habitat range and more 

efficient metabolism (Marsh, 2004).   

  Of all oral microbial ecosystems, dental plaque has been the major focus of oral 

microbiological research probably because of its characteristic features as a complex 

polymicrobial biofilm and its association with dental caries and periodontal diseases. 

According to its location, dental biofilm can be classified into fissure, smooth surface, 

approximal, supragingival, and subgingival. Composition of dental biofilm varies among 

these sites due to differences in their biological properties. 

   

2.2.2 Structure 

Dental biofilm is primarily composed of microorganisms; one gram of wet plaque 

contains approximately 2× 1011 bacteria. The intercellular matrix account for 20-30% of 
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the biofilm mass, and is principally made up of polysaccharides of microbial origin 

(glucans and fructans) (Carranza and Newman, 1996). 

 Structural studies of dental biofilm have traditionally been performed using 

conventional light and electron microscopy (Listgarten, 1976; Nyvad and Fejerskov, 

1987; Takeuchi and Yamamoto, 2001). With these techniques, however, biofilm 

preparation (dehydration, fixation, and staining) may result in artifacts, e.g. shrinkage and 

distortion. The advent of confocal laser scanning microscopy (CLSM) provided 

researchers with a valuable tool for studying the structure of biofilms in their fully 

hydrated intact form, with the possibility of making thin optical sections that can be 

reassembled into 3-dimensional information (Lawrence et al., 1991). Wood et al. (2000), 

using CLSM, showed that plaque has an open heterogeneous architecture with fluid-filled 

pores and channels, some of which extend through the entire thickness of the biofilm, 

interspersing mushroom-like bacterial/matrix masses that have narrow attachments to the 

enamel. This is in contrast to the densely packed structure of mature dental biofilm when 

viewed by light or electron microscope (Listgarten, 1994). Combined with vitality 

staining, species-specific florescence-labeled antibody probes or florescence markers, 

CLSM has also been used to study dental biofilm vitality (Auschill et al., 2001; Arweiler 

et al., 2004), spatial arrangement of species in dental biofilms (Guggenheim et al., 2001), 

or mass transport in biofilms (Thurnheer et al., 2003), respectively. Results suggest that 

bacterial vitality vary across the biofilm, but studies were inconsistent with regard to the 

pattern of such variation (Auschill et al., 2001; Arweiler et al., 2004).   

     

2.2.3 Formation 

Formation of dental plaque is a dynamic process involving continuous attachment, 

growth, detachment, and reattachment of oral microorganisms, but can be divided into 

several stages. As delineated by Marsh (2000), these stages are: 

a) Formation of the acquired enamel (or dental) pellicle - This conditioning film 

forms immediately by selective adsorption of mainly salivary, but also some 

microbial, molecules to the tooth surface. Molecules detected in the acquired 
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pellicle include albumin, amylase, carbonic anhydrase II, sIgA, IgG, IgM, 

lactoferrin, lysozyme, proline-rich proteins (PRP), statherin, histatin 1, and mucous 

glycoprotein 1 (Li et al., 2004).  Some of these like PRP, amylase, mucins and 

statherin function as receptors for bacterial adhesins (Lamont and Jenkinson, 

2000). Glucosyltransferases can also be found in the active form in the enamel 

pellicle where it synthesizes glucan that serves as a ligand for glucan binding 

proteins on streptococci. 

b) Passive transport of microorganisms to the coated tooth surface by the flow of oral 

fluids. 

c) Reversible bacterial adhesion - This results from long-range (10-20 nm) physico-

chemical interactions between the bacterial surface and the pellicle-coated tooth. 

The interplay of repulsive electrostatic forces (both surfaces are negatively 

charged) and van der Waals attraction result in a weak net attraction.  This can be 

augmented by cation bridging and hydrophobic interactions or further weakened 

by hydration forces (Lamont and Jenkinson, 2000). 

d) Irreversible bacterial adhesion - This results from short-range (<1nm) stronger, 

specific stereochemical interactions involving bacterial surface components 

(adhesins) and cognate receptors on the pellicle. A common type of such 

interactions is what is called lectin-like adhesion, which involves binding of 

carbohydrate (glycosidic) receptors by bacterial polypeptide adhesins. Binding of 

glucan by bacterial glucan binding protien is one example (Lamont and Jenkinson, 

2000). 

e) Later colonization (coadhesion or coaggregation) - This involves adhesin-receptor 

interaction between approaching bacteria and already attached early colonizers, 

increasing the diversity of the biofilm. The cohesion process results in 

characteristic morphological structures such as corncobs and test-tube brushes 

(Listgarten, 1999), and  may facilitate metabolic interactions. 

f) Multiplication of the attached microorganisms - The bulk of the biofilm results 

from cell division of the attached cells (Listgarten, 1999). Metabolism of 
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microorganisms modifies the local environment and creates gradients in key 

parameters (oxygen, redox potential, pH, nutrients, metabolic end products) 

creating micro-environments that enable coexistence and growth of diverse 

bacteria with conflicting needs (Marsh and Bradshaw, 1999).  Synthesis of 

extracellular polysaccharides also takes place, resulting in the formation of 

intercellular matrix. The spatial arrangement of the cells and intercellular matrix 

will determine the architecture of the biofilm (Marsh, 2004).  

g) Active detachment - Bacteria within the biofilm can produce enzymes that break 

specific adhesins, enabling cells to detach into saliva and probably colonize 

elsewhere (Marsh, 2004). 

  

2.2.4 Microbial homeostasis  

Despite its diversity, once established, dental biofilm is characterized by a high degree of 

stability. Such stable community is referred to as climax community.  It is maintained in 

spite of host defense and modest environmental stresses, like changes in saliva flow, 

diets, regular exposure to mouth rinses and tooth pastes, challenge by exogenous species 

and exposure to antimicrobials. This stability, referred to as microbial homeostasis, 

involves negative feedback mechanisms and results from a balance of dynamic 

synergistic and antagonistic microbial interactions. This state of homeostasis is of great 

importance to oral health as it insures that potentially harmful species stay at low 

numbers, and that dental biofilm retains its protective function in terms of colonization 

resistance (Marsh, 2000). 

   

2.2.5 Microbial interactions 

Microorganisms within dental biofilm are spatially arranged in close proximity to each 

other, which facilitates interactions among them. These interactions can be synergistic 

and thus beneficial to the involved population, or antagonistic.  Ultimately, both 

contribute to the diversity and homeostasis of the biofilm (Marsh, 2000).  
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 One group of beneficial interactions is necessary for nutrition acquisition (Marsh 

and Bradshaw, 1999).  Bacteria within the biofilm have overlapping patterns of enzymes, 

the concerted action of which enables complete degradation of complex host molecules, 

for example mucin, liberating an array of nutrients (Bradshaw et al., 1994). Biofilm 

bacteria are also involved in formation of food chains and webs to completely catabolize 

dietary sugars and other nutrients. Veillonella spp., for example, utilize lactic acid which 

is an end product of dietary carbohydrate metabolism by streptococci and actinomyces, 

and produce acetic and propionic acid that are in turn consumed by other species. 

Similarly, Fusobacterium and Prevotella species provide Campylobacter spp. with 

hydrogen and formate, while black pigmented bacteria benefits from protohaeme released 

by the latter. Another form of nutritional interaction is the degradation of extracellular 

polysaccharides, e.g. fructans, by some bacteria in the biofilm (Marsh and Bradshaw, 

1999).   

The other group of beneficial interactions is important for persistence of involved 

species under environmental stresses such as aeration, pH fluctuations, antimicrobials and 

host defenses (Marsh and Bradshaw, 1999). Experiments showed that anaerobes were 

able to persist and grow when aerated in presence of oxygen-tolerant species, but not in 

their absence (Bradshaw et al., 1996). The role of coaggregation was found to be 

important in this respect, especially in presence of a bridging species like Fusobacterium 

nucleatum (Bradshaw et al., 1998).  Similarly with pH, species in mixed cultures were 

shown to withstand pH values that they could not tolerate in pure cultures (McDermid et 

al., 1986). Biofilms comprising complex mixtures of oral bacteria were found to have pH 

gradients and micro-zones: discrete areas of low pH surrounded by areas of neutrality 

(Vroom et al., 1999).  Certain interactions can also contribute to the increased resistance 

of biofilm species to antimicrobials and host defenses. For example, an organism can be 

protected by being close to neighbors that produce β-lactamase or sIgA protease (Marsh 

and Bradshaw, 1999).  

 Antagonistic interactions also play an important role in determining the 

composition of dental biofilm, and maintaining its homeostasis. A classical example of 
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such interactions is the production of bacteriocins or bacteriocin-like substances. These 

are polypeptide antibacterial substances produced by some plaque species, e.g. mutacin 

by S. mutans and sanguicin by S. sanguis, to interfere with the growth of others. 

Antagonism is also manifested by production of other inhibitory factors such as organic 

acids, hydrogen peroxide, and diacetyl (Marsh and Bradshaw, 1999).   

   In addition to the above described biochemical and metabolic interactions, cells 

have also been found to communicate with each other within the biofilm using signal 

molecules (autoinducers). When such signaling is activated in response to cell density, it 

is called quorum sensing. Quorum sensing is mediated by competence stimulating 

peptides (CSPs) and a group of homoserine lactones in Gram-positive and Gram-negative 

bacteria, respectively. These molecules are often specific and thus serve intraspecies 

communication purposes. More recently, another communication system, called 

autoinducer system 2 (AI-2), has been described; it mediates interspecies communication. 

Signaling molecules are recognized by two-component signal transduction systems that 

are involved in control of gene expression, resulting in an altered phenotype such as 

increased competence for natural transformation and enhanced ability to form biofilms 

(Scheie and Petersen, 2004) .   

       

2.2.6 Association with disease - plaque hypotheses 

The fact that periodontitis and dental caries, the most prevalent diseases in humans, are 

dental plaque-mediated diseases is very well established (Theilade and Theilade, 1976; 

Sbordone and Bortolaia, 2003). However, despite 120 years of active research, there has 

been on-going controversy as to which bacteria within the biofilm are involved in 

causation of these diseases. Traditionally, there have been two hypotheses in this respect: 

the non-specific and specific plaque hypotheses (NSPH and SPH), first delineated by 

Loesche (1976). The NSPH assumes that the entire plaque flora elaborate noxious 

products that, if exceeding the host detoxification threshold, result in slow tissue 

destruction. Consequently, the hypothesis relies upon mechanical debribement of dental 

biofilm from the tooth surfaces for treatment and prevention; this non-specific plaque 
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mass reduction has been the paradigm of dental care for more than 100 years (Loesche, 

1999). The SPH, on the other hand, states that only plaque with certain pathogens and/or 

a relative increase in levels of given indigenous plaque organisms causes infections. It 

therefore entails that treatment should be aimed at diagnosis and then elimination of 

causative organisms, involving an antimicrobial component. While there is evidence to 

support effectiveness of such an approach (Loesche et al., 1996; Loesche, 1997; Loesche 

et al., 2002), the current treatment paradigm dictated by the NSPH still predominates 

(Loesche and Grossman, 2001).   

More recently, Marsh (1994) has proposed a third hypothesis: the ecological 

plaque hypothesis (EPH). According to this, species in the dental biofilm, including 

opportunistic pathogens in low numbers, represent a stable homeostatic microbial 

community maintained by a number of synergistic and antagonistic interactions and 

negative feedback mechanisms. Major environmental perturbations, e.g. pH or redox 

potential changes, are necessary to break the homeostasis; this favors overgrowth of 

cariogenic bacteria or periodontal pathogens and enhance expression of their virulence 

factors.  The EPH implies that disease can be prevented not only by targeting pathogens, 

but also by an ecological approach that interferes with environmental stresses that can 

break microbial homeostasis of dental biofilms (Marsh and Bradshaw, 1997). 

 

2.3  Microbiology of periodontitis 

Studies during the golden era of microbiology (1880-1930) suggested four 

microorganisms as etiological agents of periodontitis: amebae, spirochetes, fusiforms and 

streptococci. Interest in searching for a specific etiological agent of periodontitis then 

faded for about three decades before it revived again in the 1960s and has survived up to 

the present (Socransky and Haffajee, 1994). Indeed, in the last 25 years, there have been 

more than 200 studies that have compared the bacteria associated with periodontal health 

to that associated with periodontitis, using culture techniques or molecular methods such 

as DNA probes and PCR (Loesche and Grossman, 2001). However, there have been 

inherent difficulties in identifying periodontal pathogens, principally because 
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periodontitis occurs at sites with pre-existing complex normal flora, making 

discrimination of opportunistic pathogens from host-compatible species a real challenge, 

especially that the pathogens may be carried in low numbers at health (carrier state) 

(Haffajee and Socransky, 1994; Marsh, 2000). In addition, many of the periodontal 

bacteria are difficult or impossible to cultivate. Furthermore, periodontal infections seem 

to be mixed in nature, involving more than one species, rendering evaluation of the 

etiology of periodontitis even more difficult. For this and others reasons, Koch’s 

postulates have been replaced by a set of criteria to define periodontal pathogens. These 

criteria include 1) association (the species is found more frequently and at higher levels in 

disease compared to health), 2) elimination (elimination of the species is paralleled by 

remission of disease), 3) host response (presence of immune response against that 

species), 4) possession of virulence factors, and 5) induction of disease in animals 

(Haffajee and Socransky, 1994).  

In light of these criteria, searching through the growing literature enabled researches 

pointing out some candidates as etiological agents of periodontitis (Haffajee and 

Socransky, 1994). There was a strong evidence to support a consensus implicating 

Porphyromonas gingivalis and Bacteroids forsythus (current name: Tanerella forsythia) 

as etiological agents of adult periodontitis (now classified as chronic periodontitis), and 

Actinobacillus actinomycetemcomitans as that of early onset periodontitis (now classified 

as aggressive periodontitis). There was also moderate evidence for the involvement of 

other species such as Treponema denticula, Fusobacterium nucleatum, Prevotella 

intermedia/nigrescens, Peptostreptococcus micros, Eubacterium nodatum, and 

Campylobacter rectus (Consensus report,1996).  

It is now known that established and putative periodontal pathogens as well as other 

periodontal bacteria exist in bacterial complexes in subgingival plaque (Table 2). Species 

belonging to the so-called red complex, and to a lesser extent the orange complex, are 

strongly associated with the clinical signs of periodontitis. Bacteria of the other 

complexes do not show an association with periodontitis and seem to be compatible with 

periodontal health (Socransky et al., 1998). It is worth mentioning that periodontal 
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pathogens have also been detected in supragingival plaque in association with 

periodontitis (Ximenez-Fyvie et al., 2000a; Ximenez-Fyvie et al., 2000b).  

 

 
Table 2. Microbial complexes in subgingival plaque (Socransky et al., 1998) 
 
Red complex 
Porphyromonas gingivalis 
Tanerella  Forsythia 
Treponema denticula 

Yellow complex 
Eikenella corrodens  
Capnocytophaga gingivalis 
Capnocytophaga ochracea 
Capnocytophaga sputigena 
Campylobacter concisus 
Actinobacillus actinomycetemcomitans 

Purple complex 
Veillonella parvula 
Actinomyces odontolyticus 

Orange complex 
Prevotella intermedia 
Fusobacterium nucleatum 
Fusobacterium periodonticum 
Prevotella nigrescens 
Petptostreptococcus micros 
Campylobacter rectus 
Campylobacter gracilis 
Campylobacter showae 
Eubacterium nodatum 
Streptococcus constellatus 
 

Green complex 
Streptococcus mitis 
Streptococcus oralis 
Streptococcus sanguis 
Streptococcus intermedius 
Streptococcus gordonii 

 
  

 Recently, some attention has been given to the so far uncultivable bacteria; studies 

using 16S rRNA gene analysis suggest that certain as-yet-uncultivable species may also 

be involved in the etiology of periodontal disease (Dewhirst et al., 2000; Sakamoto et al., 

2002). Outside the “bacteria and periodontitis” mainstream, studies also have lately been 

evaluating the role of other microorganisms in the etiology of periodontitis.  Indeed, there 

is a growing body of data supporting the belief that viruses such as cytomegalovirus 

contributes to the severity of periodontal disease, probably by altering the host’s immune 

control of plaque bacteria (Slots, 2004). Interestingly, there is a recent report implicating 

archeae as a possible etiological factor of periodontitis (Lepp et al., 2004).    

 

2.4  Microbiology of dental caries 

The first to establish the role of microorganisms in demineralization of enamel was 

Miller in 1890, who was able to demonstrate the ability of the mixed bacteria in saliva to 
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produce acid from fermentable carbohydrates in quantities sufficient to decalcify teeth 

(Kleinberg, 2002); however, he failed to identify a specific bacterium, providing the 

earliest basis for the NSPH of etiology of dental caries (Loesche, 1976).  Despite Miller’s 

findings, the 20th century witnessed extensive investigation of the causative agent(s) of 

dental caries. In fact, a systematic review of the literature from 1966 to 2000 revealed 

2,730 publications in English on the role of bacteria in human primary dental caries 

(Tanzer et al., 2001). Generally, four groups of bacteria are frequently encountered in 

association with dental caries: mutans streptococci, lactobacilli, actinomyces and non-

mutans streptococci. 

 In first half of the 20th century, lactobacilli were widely considered as the prime 

suspect in the etiology of dental caries (the lactobacilli era), largely because they were 

consistently isolated from deep carious lesions (Hamilton, 2000). This is no surprise, 

knowing that these bacteria are highly acidogenic and acidouric (van Houte, 1994). 

Lactobacilli have low avidity for teeth; they preferentially colonize dorsum of the tongue 

and are carried in saliva (Tanzer et al., 2001). Thus, they are not a requisite for 

development of lesions; however, given their frequent detection in large numbers in 

advanced caries, they are believed to be important for the progression of established 

lesions (Loesche, 1986; van Houte, 1994). Lactobacilli isolated from human dental caries 

include L. acidophilus, L. casei, L. paracasei, L. rhamnosus, and L. fermentum (Martin et 

al., 2002). In fact, a recent study, using molecular approaches, has detected in advanced 

carious lesions other lactobacillus species such as L. gasseri, L. ultunensis, L. crispatus, 

L. gallinarum, and L. delbrueckii as well as novel phylotypes, suggesting that lactobacilli 

in advanced caries are more diverse than previously thought (Byun et al., 2004).  

 Streptococcus mutans was first isolated from carious lesions by Clarke in 1924, 

but subsequently almost disappeared from the literature for more than three decades 

(Hardie and Whiley, 1999). Interest in S. mutans flared up in 1960s when it was used to 

demonstrate the infectious and transmissible nature of dental caries in experimental 

animal models (Keyes, 1960). Since then, S. mutans has become the primary focus of 

caries microbiology. Hundreds of cross-sectional, longitudinal, case control, and 
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interventional clinical studies have been conducted, providing strong evidence for the 

central role of S. mutans in the initiation of dental caries (Tanzer et al., 2001).  

Recognizing the considerable serological and genetic heterogeneity of human and 

animal S. mutans strains, they were grouped into eight species collectively referred to as 

mutans streptococci (MS); the major species in humans are S. mutans (serotype c,e,f) and 

S. sobrinus (serotype d,g) with occasional isolation of S. rattus (seroype b) and S. cricetus 

(seroype a). S. mutans serotype c account for 70-100% of human isolates of MS 

(Loesche, 1986).  

The biological and virulence properties of S. mutans have been the subject of an 

enormous number of studies, which have been comprehensively reviewed by several 

authors (Loesche, 1986; van Houte, 1994; Banas, 2004). Virulence factors of S. mutans 

are mainly adhesion, acidogenicity, and acid tolerance. S. mutans adheres to teeth 

surfaces by sucrose-dependent and sucrose-independent mechanisms. The former 

involves extracelluar glucosyltransferases (GTFs) for synthesis of glucans (glucose 

polymers) that mediate bacterial adhesion and contribute to biofilm formation (Loesche, 

1986). S. mutans has three GTFs: GTF B, GTF C, and GTF D. The former two 

synthesize primarily water-insoluble glucans, while the latter synthesizes only water-

soluble glucans; the activity of all three enzymes is required for optimal adherence of S. 

mutans (Ooshima et al., 2001). S. sobrinus also possesses 4 GTFs: GTF I, GTF T, GTF S, 

and GTF U; only GTF I synthesizes insoluble glucans (Nanbu et al., 2000). Sucrose-

independent colonization of S. mutans involves interaction between cell surface 

polymers, such as the cell surface protein antigen PAc (also called antigen І/ІІ, B, IF, P1 

or MSL-1), and the acquired dental pellicle (Yu et al., 1997). 

  In spite of the strong association between MS and caries, there have been some 

reports of caries incidence in the absence of MS, or of very low caries prevalence in their 

presence in high numbers. These findings indicate that other species should not 

discounted as potential etiological agents on occasions (Hamilton, 2000). In fact, some 

recent studies have shown an association between non-mutans streptococci (non-MS) and 

carious lesions in humans, and have been able to demonstrate the ability of these non-MS 
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to generate acid at low pH with a capability of lowering the pH below 4.4 (Van Houte et 

al., 1991; Sansone et al., 1993; van Houte et al., 1996). Little information is known about 

the individual species of these “low pH” non-MS, but S. mitis may be an important 

member (Hamilton, 2000).  

 Actinomyces, especially A. naeslundii genospecies 1 and 2 (previously A. 

viscosus), have been consistently associated with root caries (Bowden et al., 1999); 

however, there is now evidence to suggest a polymicrobial etiology of root caries as 

recent studies have demonstrated increasing numbers of genera like Prevotella, 

Capnocytophaga, Eubacterium, Corynebacterium and Clostridium in association with 

root caries (Hamilton, 2000).  Such diversity has also been observed recently, using 

molecular methods, in coronal caries (Chhour et al., 2005). 

 

2.5  Oral habits and oral microbiota 

Humans in different parts of the world developed certain oral habits. Smoking, coca 

leaves chewing in central and South America, betel quid chewing in Southeast Asia, and 

khat chewing in Yemen and East Africa are examples. Such habits have implications for 

oral health. Smoking, for example, is an established risk factor of periodontitis; 

approximately half of periodontitis cases have been attributed to either current or former 

smoking and up to 90 percent of refractory periodontitis patients are smokers (Johnson 

and Slach, 2001). Results from studies on betel or areca nut chewing suggest that it may 

exaggerate pre-existing periodontitis, while confer protection against dental caries 

(Trivedy et al., 2002). Studies on the oral effects of khat chewing are reviewed in Paper 

1.  

 In line with this, and given the microbial origin of common oral diseases, some of 

the oral habits have been evaluated for their effect on oral microbiota. Most of such 

studies focused on smoking; while some of them showed little effect (Stoltenberg et al., 

1993), others demonstrated that smoking resulted in an increase of certain 

periodontopathogens (Kamma et al., 1999).  A more recent study, in which 7,271 

subgingival plaque samples from 272 adults with different smoking histories were 
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analyzed with the DNA-DNA hybridization methods, showed that members of the orange 

and red complexes including E. nodatum, F. nucleatum ss vincentii, P. intermedia, P. 

micros, P. nigrescens, T. forsythia, P. gingivalis and T. denticola were significantly more 

prevalent in current smokers than in past or never smokers (Haffajee and Socransky, 

2001). These differences were only found at sites with pocket depth <4 mm, suggesting 

the difficulty of demonstrating the effect of smoking (and probably of other oral habits) 

in deeper pockets. Betel quid chewing was found to increase the likelihood of subgingival 

infection with A. actinomycetemcomitans and P. gingivalis (Ling et al., 2001). On the 

other hand, areca nut was also shown to have antibacterial properties in vitro and this has 

been given as a possible explanation for its cariostatic role (Trivedy et al., 2002). 

 Up-to-date, the only published study on the microbiological aspects of khat is the 

one by Elhag et al. (1999) who showed that two compounds isolated from khat (22 ß-

hydroxytingenone and tingenone) possessed potent antimicrobial activity against Bacillus 

subtilis, Staphylococcus aureus, Streptococcus durans and Mycobacterium species but 

not against Escherichia coli and Candida albicans. Notably, there is no single report 

about the possible effects of khat on oral microbiota.   
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Rationale 
Periodontitits and dental caries are both infections due to ecologically driven overgrowth 

of opportunistic pathogens present in dental biofilm. Khat leaves are chewed and kept in 

the oral cavity for several hours daily, and it is possible that the various chemicals 

leaching from them may directly or indirectly affect oral bacteria including periodontal 

and cariogenic ones. This brings to mind many questions. Does khat chewing really result 

in any oral bacterial changes or shifts? If so, what are these changes or shifts? Are they 

relevant to periodontitis or dental caries?  

Answers to such questions shall improve our understanding of the yet unclear 

relationship between the khat chewing habit and these two diseases, and provide dental 

practitioners with some knowledge that may influence their assessment of khat chewer 

patients.   

 

Study aim and objectives 
The general aim of the current study project was to investigate oral microbiological 

effects of khat that may influence the pathogenesis of periodontitis and dental caries.  The 

specific objectives were: 

1- To study the effect of khat chewing on presence of selected health- and disease-

associated periodontal bacteria in dental plaque by 

a) assessing  and comparing the prevalence and levels of 14 periodontal bacteria in 

sub- and supra-gingival plaque of khat chewers and non-chewers, and 

b) assessing and comparing the prevalence and levels of 14 periodontal bacteria in 

sub- and supra-gingival plaque of khat chewing and non-chewing sides. 

2- To evaluate the antimicrobial and resistance-modifying properties of crude aqueous 

khat extracts against a panel of cariogenic and periodontal bacteria in vitro. 

3- To test in vitro effects of crude aqueous khat extracts on growth and sucrose-

dependent colonization of S. mutans, and on activity and production of its 

glucosyltransferases.   
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Study Design 
 
 
 
 

Presenting the state of the art concerning 
khat and the medical and oral aspects of its 
use

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Periodontal bacteria 

Cariogenic bacteria 

Khat Paper 1 

Assessing and comparing the prevalence 
and levels of selected periodontal bacteria in 
sub- and supragingival plaque of khat 
chewers and khat non-chewers and of khat 
chewing and non-chewing sides: 
 
Analysis of 408 sub- and supragingival 
plaque samples from 51 young males 
using the DNA-DNA checkerboard 
hybridization method 

Paper 2 

Evaluation of the antimicrobial and 
resistance modifying properties of crude 
aqueous khat extracts in vitro: 
 
Thirty-three strains tested against 
extracts from 3 khat cultivars using the 
agar dilution method of the NCCLS. 
The MICs of tetracycline and penicillin G 
determined for 3 resistant isolates in 
presence and absence of khat using the E-
test

Paper 3

Testing the in vitro effect of crude aqueous 
khat extracts on growth and sucrose-
dependent colonization of S. mutans, and on 
production and activity of its 
glucosyltransferases (GTFs): 
 
The extracts applied at various 
concentrations to different assays: 
planktonic growth, adherent biofilms 
formation in glass culture tubes, synthesis 
of soluble and insoluble glucans, and 
GTFs production 

Paper 4
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Recapitulation of the results 
Paper 2 
The khat chewers (n=29; mean age 23.7 years) and khat non-chewers (n=22; mean age 

21.8 years) did not differ significantly in any of the clinical parameters measured; 

cigarette smoking was significantly more prevalent in the chewers. The khat-chewing 

sides showed a slightly but statistically significant lower mean pocket depth than did the 

khat non-chewing sides. Subgingivally, the khat chewers had significantly higher 

prevalence of S. intermedius and V. parvula, and significantly higher levels of the latter 

species and E. corrodens; these increases followed a khat chewing frequency-dependent 

manner. Consistently, the chewing sides demonstrated a significant increase in 

prevalence of the same three species; in addition, they also had significantly lower 

prevalence and levels of the pathogen T. forsythia. Supragingivally, there were no 

significant differences between the two study groups; however, the khat non-chewing 

sides showed significantly higher levels of V. parvula and A. israelii, and significantly 

lower prevalence of C. gingivalis and F. nucleatum. 

Paper 3 
Eighteen out of the 33 strains (55%) tested were sensitive to the extracts with MICs of 

0.5-2% (w/v). Most of these were periodontal pathogens with P. gingivalis and T. 

forsythia  being the most susceptible (MIC 0.5-1%); only C. rectus and one clinical strain 

of F. nucleatum were resistant; A. actinomycetemcomitans ATCC 43717 and the clinical 

strain were only sensitive to the Hamdani cultivar extract but showed marked growth 

reduction (MGR) at 2 % of the other two extracts. Periodontal health-associated bacteria 

were less susceptible with only five strains being sensitive at the highest concentration 

tested (2%). None of the cariogenic bacteria were sensitive. However, L. acidophilus 

showed MGR at 1%. The extracts were active against Streptococcus pyogenes (MIC 1-

2%) but not against Candida albicans and Staphylococcus aureus. The presence of the 

khat extracts at a sub-MIC resulted in a 2-4-fold potentiation of the tested antibiotics 

against the resistant strains.  
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Paper 4 
The khat extracts effectively inhibited formation of adherent biofilms by S. mutans. The 

minimum biofilm inhibitory concentration (MBIC) varied among the three khat cultivars 

(0.25-1% w/v). The extracts also inhibited synthesis of both glucan types, particularly 

insoluble glucans (average 85% inhibition at 1%), with similar differences among the 

cultivars. However, khat increased bacterial growth and, at sub-MBIC, also increased 

viability within biofilms in a dose-dependent manner; there were no inter-cultivar 

differences. In addition, the extracts resulted in 2.5-fold up-regulation of GTFs. 

Differences in the total tannins content of the three cultivars corresponded well to the 

differences in their biofilm formation and glucan synthesis inhibitory properties.  
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Discussion 
1.  Methodological considerations 
1.1 Study subjects 

Fifty-one males were recruited from among dental students/recently graduated dentists 

for the in vivo part of the study (Paper 2). Females were excluded on the basis of usually 

being light and occasional khat chewers, and considering the cultural restrictions on 

young unmarried women practicing the habit. Having such a fairly homogenous sample 

of dentists assured that the effect of potential confounders was minimized. Studies on the 

effect of an oral habit on oral microbiota usually adjust for the effect of disease severity 

by including it as an independent variable; however, this is confusing because disease 

severity is by principle a dependent variable (Figure 2); such an approach results in 

detection of a small or no effect. Conducting the study on young subjects enabled 

avoiding such mixing that would have been encountered if subjects with age related 

periodontitis were included. Furthermore, Haffajee et al. (2001) showed that smoking had 

an effect only on microbiota of pockets <4mm, suggesting that it is more logical to study 

the effect of an oral habit on microbiota in shallow pockets rather than established ones. 

The ultimate goal was thus to have a somewhat controlled semi-experimental model to 

test whether or not khat chewing per se affects the presence of periodontal bacteria in 

dental plaque.  

 

    Independent                                   Intermediate                                   Outcome (dependent) 

Periodontal bacteria 
Host immune response

   
Periodontal status

     
An oral habit 

Figure 2. A simple schematic presentation of the causal pathway between an oral habit  and 

periodontal status. 

 

1.2 DNA-DNA checkerboard hybridization 

Since its introduction, the DNA-DNA checkerboard hybridization method (Haffajee and 

Socransky, 1994) has been used by many researchers, and enabled analysis of huge 
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numbers of plaque samples. At Forsyth Dental institute alone, about 34,400 plaque 

samples were analyzed between 1993 and 1999 (Haffajee et al., 1999). Indeed, much of 

the current knowledge about the bacteriology of periodontitis and the microbial 

complexes in dental plaque came from studies that employed this method (Colombo et 

al., 1998; Haffajee et al., 1998; Socransky et al., 1998; Tanner et al., 1998; Papapanou et 

al., 2000; Ximenez-Fyvie et al., 2000; Ximenez-Fyvie et al., 2000; Socransky et al., 

2002). The technique has the advantage of a fast identification of a wide range of bacteria 

(up to 40) in a large number of samples in one run, a low cost per sample, the possibility 

of striping and reprobing, and the ability to detect dead and uncultivable species. The 

sensitivity of the assay is in the range of 104 bacterial cells (Socransky et al., 2004).  Like 

any other method, however, this technique has its disadvantages. Firstly, the detection is 

limited to species for which probes are available. Secondly, the technique employs whole 

genomic DNA probes, which may increase the possibility of cross-reactions between 

closely related species. Such cross-reactions may contribute to the higher detection rate 

obtained by DNA probes compared to culture methods (Papapanou et al., 1997). In a 

study, in which 40 probes were run against 80 species, 93.5% of all probe-heterologous 

species reactions exhibited cross-reactions amounting to <5% of the homologous probe 

signal (Socransky et al., 2004). It is possible then that weak signals may represent cross-

reactions; therefore, signals corresponding to <105 bacterial cells were excluded in the 

current study to minimize false-positives.  

 During my attempts to maximize intensity of signals in the assay, I found that 

proper cross-linking of target DNA to the nylon membrane was one important factor. I 

could show that air-drying the membrane for 30 minutes after deposition of the samples, 

followed by exposure to 70mJ/cm2 of 312-nm UV light gave the best results (Al-hebshi 

and Skaug, 2003). Nevertheless, and with many other efforts, I was not able to reach the 

optimal sensitivity, i.e. 104 bacteria cells, for all species. That is another reason why I 

excluded weak signals so that to have the same detection sensitivity for all species.  
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1.3 Antimicrobial susceptibility testing 

The National Committee for Clinical Laboratory Standards (NCCLS) - now called 

Clinical and Laboratory standard institute (CLSI) – provides consensus standards and 

guidelines for various laboratory procedures including antimicrobial susceptibility 

testing. The agar dilution method used in my thesis to evaluate the antibacterial properties 

of khat (Paper3), is relatively time-consuming and labor-intensive, but allows testing of a 

large number of strains simultaneously, and in fact, was the most practical method to use 

with the khat extracts. Reproducible inoculation of plates was made possible by using an 

automatic multipoint inoculator. The use of broth microdilution or macrodilution method 

proved to be technically impossible because addition of the khat extracts resulted in 

formation of a precipitate that hampered reading the results. In addition, the NCCLS 

guidelines for the broth microdilution method for anaerobes are meant to be used with the 

Bacteroids fragilis group only.  

 The Epsilometer test (E test; AB Biodisk, Sweden) has been shown to be a reliable 

method for MICs determinations, with results comparable to those obtained by the 

NCCLS methods (Wust and Hardegger, 1992; Pierard et al., 1996). Though the 

proprietary antibiotic-impregnated E test strips are expensive, the procedure requires less 

labor and is easily carried out, and thus might be a preferable method for testing small 

numbers of strains (Best et al., 2003). Therefore, I preferred to use it to determine the 

MICs of tetracycline and penicillin G for the three resistant isolates.  

 

1.4 The biofilm model 

The biofilm model used in my study (Paper 4) is a simple but valuable tool for assessing 

sucrose-dependent colonization of S. mutans. Such colonization is a very important 

virulence factor of this bacterium (Loesche, 1986; Banas, 2004). However, I do 

appreciate that the situation in vivo is much more complex, in which other mechanisms of 

attachment are involved, a variety of species contribute to biofilm formation, and 

exposure to khat is not continuous. Therefore, I was convinced that khat should also be 

evaluated in an advanced biofilm model under more realistic conditions. B. Guggenheim 

 



                                                                                              Khat and oral microbiota                              
 

29

kindly accepted to test the extracts in the mutlispecies Zurich biofilm model 

(Guggenheim et al., 2001; Shapiro et al., 2002).  In this model, six species representative 

of supragingival plaque (S. sobrinus, S. oralis, F. nucleatum, Veillonella dispar, A. 

naeslundii, and Candida alblicans) are used to generate biofilms over 64.5 hours on 

salivary pellicle-coated hydroxyapatite discs, in 24-well culture dishes incubated 

anaerobically at 37°C. The khat extract was tested  in the feast-famine modification of 

this biofilm model (Van Der Ploeg and Guggenheim, 2004), which closely simulates the 

meal pattern of man. The biofilms were fed for 45 min 3 times daily, and in the 

remaining time, they were either subjected to the khat extract or incubated in saliva. The 

khat extract were applied at concentrations of 0.25% and 0.5% (w/v) for 3 hours, 4 times 

during the biofilm formation period (Figure 3).  

     

 
            Tuesday                   Wednesday                                     Thursday                      Friday              
  
    1530                                          800                 1145             1530                         800                 1145                 1530                              800

                                                                                            
 
 
 
 
                                                                          
 
 
 
 
  
 

E 

Inoculation 
Incubation in processed saliva  
45-minute feeding  
Washing 3× in saline 
3-hour exposure to khat extract 

Harvesting
(64.5 h)

E E E E 

Figure 3. Schematic presentation of the experimental procedures used to test the effect of the 
khat extract on the formation of  biofilms. 
 
 
 The harvested biofilms were then subjected to vitality staining and CFU counting on 

non-selective and selective media. There was no difference in percentage of living cells 

among control and khat-exposed biofilms (about 89% living cells in all). The effect of 

exposures on CFUs in the biofilms is presented in Figure 4. The total CFUs were slightly 

higher in biofilms exposed to the khat extract, and the numbers of S. sobrinus remained 
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almost unchanged. The khat extracts thus failed to exert biofilm inhibitory properties in 

this model. However, this should not be considered as an absolute contradiction to the 

results obtained with the S. mutans biofilm model for a number of reasons. First, 

formation of the mutli-species biofilm probably involves, in addition to sucrose-

dependent colonization, other colonization mechanisms that are not affected by khat. 

Secondly, the Zurich biofilms were exposed to khat for relatively short periods while the 

S. mutans biofilms were formed under continuous presence of khat. Finally, adherence of 

formed biofilms was not challenged by vortexing as was done with the S. mutans 

biofilms.  

 

 
    Figure 4. Box plots of CFUs in biofilms exposed to control and khat solutions for 3 hours, 4     
    times during the biofilm formation period.  Box plots represent median and range of three 
    determinations. The figure was provided by Dr. B. Guggenheim.    
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 Apart from these primary results, some interesting and relevant secondary results 

popped up when proportions were calculated. S. oralis constituted only 9% of control 

biofilms while it made up 15 and 48% of biofilm exposed to 0.25 and 0.5% of the khat 

extract, respectively.  Such striking increase in the proportion of S. oralis was paralleled 

with a drop in the proportion of non-streptococci from 66% in control biofilms to 29% in 

biofilms exposed to 0.5% khat; it is unfortunate that the results do not inform whether the 

four non-streptococcus species were equally or differentially affected. The proportion of 

S. sobrinus differed only slightly, being less (23%) in biofilms exposed to khat than in 

control biofilms (29%). These findings indicate that khat results in some shifts in the 

biofilm, probably by favoring growth of some species and/or retarding that of other 

species.  

 

1.5 GTFs activity and production 

The drawbacks of using a crude GTFs preparation in the glucan synthesis assay are 

discussed in Paper 4. Nevertheless, the preparation did allow reliable testing of the effect 

of the khat extracts on synthesis of soluble and insoluble glucans.  All experimental 

setups and parallels were carried out using the same preparation so that variations due to 

use of different preparations were avoided. Quantification errors due to precipitation of 

khat carbohydrates along with glucans were adjusted for as described in the material and 

methods section of Paper 4. 

 Extracting the GTFs from khat containing-cultures in the GTFs production assay was 

the real technical challenge. Khat tannins, and probably other polyphenols, made 

complexes with proteins in the broth, interfering with their extraction, quantification, and 

electrophoresis. Therefore, I chose to test the effect of khat on GTFs production by 

including the extracts in agar rather than in broth. It was possible then to harvest bacteria 

from the agar surface and extract the GTFs with minimum interference from khat tannins.   
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2. General discussion 
2.1  Motives and basis 

The lack of information concerning oral microbiological effects of khat chewing was the 

major motive to conduct the current study. Dental practitioners in the regions where khat 

is chewed need to have a scientifically-based knowledge about possible oral effects of 

khat. In Yemen, dentists’ views on this matter are largely anecdotal and, in many cases, 

are not different from those of the public. The studies that deal with this topic are few, 

and their results have not been disseminated among local dentists, probably because 

investigators were frequently foreigners. In this thesis, I reviewed results from previous 

studies (Paper 1) and added my own findings (Papers 2, 3, and 4), to elucidate the 

possible relationship between khat and oral diseases, specifically dental caries and 

periodontitis.  

The very few published studies on the relation between khat chewing on the one 

hand and dental caries and periodontitis one the other provided a background for the 

current study. Information in the literature concerning the effect of khat chewing on the 

periodontium are contradictory; while one  study showed that khat is detrimental (Mengel 

et al., 1996), others suggested the opposite (Hill and Gibson, 1987; Jorgensen and 

Kaimenyi, 1990). Therefore, it was not possible to formulate a one-sided hypothesis on 

the effect of khat on periodontal bacteria. The purpose thus was to provide 

microbiological information that would support one of the two views (Papers 2 and 3). 

Reports of low caries prevalence in khat chewers (Luqman and Danowski, 1976; Hill and 

Gibson, 1987) point to the possibility that khat has cariostatic properties at the 

microbiological level. This, together with studies on the inhibitory effects of some plant 

extracts on S. mutans, formed the hypothetical basis for Paper 4.  

 

2.2 Khat and periodontal bacteria in vivo 

Results from the in vivo study (Paper 2) indicate that khat chewing generally favors 

presence of periodontal health-associated bacteria, while discouraged that of some 

periodontal pathogens. Most prominent was the strong association between khat chewing 
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and presence of V. parvula, S. intermedius, and E. corrodens in subgingival plaque; 

striking also was the significantly lower prevalence and levels of the pathogen T. 

forsythia in the khat chewing sides compared to the khat non-chewing sides. Consistent 

with this “healthy” microbial profile was also the significantly higher levels of V. parvula 

and A. israelii, and significantly lower prevalence of F. nucleatum in supragingival 

plaque of the khat chewing sides. In addition, there were also some tendencies (0.05> p 

value ≤ 0.1) that fitted well with the main results. Subgingival plaque of the khat chewing 

sides tended to have lower prevalence of the pathogens P. gingivalis, but higher 

prevalence of A. israelii and increased levels of V. parvula. Supragingivally, there was 

somewhat higher prevalence of S. intermedius in the khat chewers compared to the khat 

non-chewers, and in the khat chewing sides than in the khat non-chewing sides; the khat 

chewers and the khat chewing sides also tended to have lower prevalence of A. 

actinomycetemcomitans.  

Since the probe species were selected to represent the color-coded microbial 

complexes (Table 2), the results obtained may allow speculation as to the association 

between khat chewing and other periodontal species. Such speculation is based on the 

fact that members of the same complex tend to coexist (Socransky et al., 1998). 

Consequently, it can be concluded that khat-chewing sides may harbor lower levels of T. 

denticula, based on findings concerning the other two members of the red complex. 

Similarly, it is likely that khat chewing is associated with members of the green complex 

because it showed a strong, dose-dependent association with S. intermedius. In fact this 

latter suggestion is supported by findings from the Zurich biofilm experiments, in which 

exposure of biofilms to 0.5% of the khat extracts resulted in a striking increase in the 

proportion of the biofilm made up by S. oralis (a green complex member) from 9% to 

48%. 

 

2.3 Khat and periodontal bacteria in vitro 

In an attempt to provide some sort of explanation to these findings, we conducted an 

antimicrobial study (Paper 3), in which the khat extracts were tested against 33 oral 
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strains using the agar dilution method of the CLSI (formerly NCCLS). To a great extent, 

the results were consistent with those of the in vivo study. For example, T. forsythia, 

which showed an inverse relation to khat chewing, was among the most susceptible 

strains to the khat extracts. V. parvula, S. intermedius, and E. corrodens, with which khat 

chewing was strongly associated, were not sensitive to the extracts and did not even show 

any growth retardation. Although some streptococci were sensitive at the highest 

concentration tested (2% w/v), all of them showed better growth at low concentrations of 

the extracts compared to controls. Thus, the extracts were mainly active against 

periodontal disease-associated bacteria. In one experimental setup and accidentally, I 

observed that the blackish spots of P. gingivalis on the khat-containing plates were 

speckled with whitish colonies that increased in number as concentration of khat 

increased until that whole spot became whitish; the control plates showed the usual 

homogenous black pigmented spots. Gram-stained smears revealed the presence of very 

low numbers of contaminating unidentified gram positive cocci in control spots; 

however, as khat concentration increased, the contaminant cells increased in numbers and 

at 1% (w/v) there was no evidence for presence of P. gingivalis and the spot consisted 

only of the contaminant cocci. This observation indicates that the microbial shifts 

induced by khat (Paper 2) can be explained, at least in part, by its selective antimicrobial 

properties (Paper 3). However, other mechanisms may also be involved. For example, it 

is possible that khat contains substrates that enhance growth of certain bacteria such as 

streptococci. 

 

2.4 Further elaboration 

The in vivo and in vitro findings discussed so far bring to the surface the issue of 

“prebiotics”. A prebiotic is a nondigestible food ingredient that beneficially affects the 

host by selectively stimulating the growth and/or activity of one or a limited number of 

bacteria in the colon that can improve the host health (Gibson and Roberfroid, 1995). The 

term “prebiotic”, as the definition indicates, is used in the context of gut microbiology. I 

found no study that uses the term in connection with oral microbiota (Pubmed search). 
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However, the essence of this prebiotic approach, i.e. the maintenance of a homeostatic 

situation characterized by dominance of health compatible-species, is central to the 

ecological plaque approach recently proposed to prevent dental plaque-related diseases 

(Marsh and Bradshaw, 1997). It is therefore possible that khat possesses components with 

“prebiotic” properties, which if isolated may serve therapeutic purposes. 

Though not within the context of the current discussion, it is worth mentioning 

that medically important bacteria such as S. pyogenes and S. pneumonia were also 

sensitive to the khat extracts. In addition to the selective antimicrobial properties, Paper 3 

also provided preliminary evidence for the presence in khat of components that modify 

bacterial resistance to antibiotics such as penicillin and tetracycline. It is premature, 

however, to make speculations as to how this may influence oral microbiota based on this 

preliminary information. More studies are therefore required.  

 

2.5 Khat and cariogenic bacteria in vitro 

Unlike periodontal bacteria, none of the cariogenic ones was sensitive to the khat extracts 

at the concentrations tested although L. acidophilus showed marked growth reduction at 

1% w/v (Paper 3). In studying the effects of the extracts on virulence factors of S. mutans 

(Paper4), it was found that the extracts resulted in a dose-dependent increase in 

planktonic bacterial growth and, at low concentrations, enhanced viability in the biofilms. 

However, two key virulence factors were inhibited in a dose-dependent manner: sucrose-

dependent colonization and glucans synthesis. It was previously shown that presence of 

glucan matrix is essential to the pH-lowering ability of S. mutans (Van Houte et al., 

1989). Indeed, an in vitro study demonstrated that maximum demineralization of enamel 

occurred when the artificial plaque consisted of 95% extracelluar polysaccharides and 

only 5% bacteria (Zero et al., 1986). Therefore, while khat favors growth of S. mutans 

(Paper 4), as it does with some other streptococci (Papers 2 and 3; the Zurich 

experiment), it also interferes with glucans synthesis and thus with S. mutans ability to 

colonize tooth surfaces and probably with its pH-lowering ability. As discussed in Paper 

4, these anticariogenic properties are probably due the tannins present in the extracts. We 
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identified some of these tannins as proanthocyanidins (condensed tannins), namely 

prodelphinidine and procyanidine (Al-Hebshi et al., 2005) 

 Western blot analysis showed that the khat extracts resulted in up-regulation of 

GTFs production by S. mutans. However, coomassie blue-stained one-dimensional 

polyacrlyamide gel electrophoresis revealed that a number of other extracellular and cell-

bound proteins were, on the other hand, down-regulated. This can be clearly seen in the 

50- to 75-kDa region. Glucan-binding proteins (Gbps) are cell surface-associated proteins 

with molecular weights that fall in that range; GbpA is 74 kDa while Gbps B and C are 

59 kDa (Russell et al., 1985; Smith et al., 1994; Sato et al., 1997). They are believed to 

contribute to adherence and carcinogenicity of S. mutans (Matsumura et al., 2003). It 

seems that these proteins were down-regulated by the extracts, but this has to be 

confirmed by Western blot analysis.  

 

2.6 Final remarks 

I would like to end this discussion by emphasizing that this work is not an attempt to give 

a good image of the khat chewing habit; I do appreciate that khat is a drug of abuse that 

has potential adverse economical, social and medical effects. However, this should not 

prevent us from objectively looking at the other side of the coin, i.e. investigating 

potential beneficial aspects. Of particular importance in this regard would be the 

possibility of isolating biologically active components that can be used therapeutically 

without harming the patient. This may be ironic, but in light of the previously reported 

cytotoxic activities of methanolic khat extracts and the antimicrobial, prebiotic and 

anticariogenic properties shown in this study, such a proposal is not implausible.       
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Conclusions 
1- Khat chewing-induced bacterial shifts in gingival plaque are compatible with 

periodontal health. 

2- Khat leaves and twigs contain water-soluble constituents possessing selective 

antimicrobial properties against oral microbiota. This explains, at least in part, the 

microbial shifts observed in vivo. 

3-  Khat leachables, probably tannins, have anticariogenic properties manifested as 

inhibition of S. mutans glucan synthesis and sucrose-dependent colonization. 

4- There is preliminary evidence for the presence in khat of components that can modify 

microbial resistance to antibiotics.   

5- Therefore, at the microbiological level, khat seems to play a preventive role in the 

pathogenesis of periodontitis and dental caries.  

 

Future perspectives 
The primary focus of a future work would be to perform an activity-guided fractionation 

of khat extracts, aimed at isolation and identification of the components that are 

responsible for the activities reported in this study. The active components would then be 

evaluated in mixed cultures and in vitro biofilm models. They may also be tested for their 

toxicity against human epithelial cells and fibroblasts!   
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