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Abstract 
 
The effect of low salinity water (LSW) on enhanced oil recovery has been known for 

decades. Although much research is done on the topic, a general agreement of the 

prevailing mechanism for the low salinity effect has still not emerged. 

 

The present study compares the effect of LSW in secondary and tertiary mode in six 

Berea cores. Following tertiary mode LSW injection, low salinity surfactant polymer 

(LSSP) floods were conducted. In addition, measurements of density, pH, viscosity and 

interfacial tension was executed on the fluids used. 

 

In secondary mode, aged and unaged cores were used for injection of synthetic seawater 

and diluted  synthetic seawater (10%). The results show a higher production (1-12% 

OOIP) when injecting synthetic seawater compared to the diluted synthetic seawater 

(10%) in  secondary mode. No fines or pH variation was observed during the floods.  

 

In tertiary mode the cores were flooded with a sequence of brines with different 

composition (synthetic seawater without divalent ions, diluted  synthetic seawater 

(10%) and 3000 ppm NaCl). Some enhanced production (5-9% ROIP) was observed 

when altering ion composition or reducing total salinity. The extra oil production was 

observed in some of the cores, but seems no to be reproduced in all parallel experiments. 

No fines or significant pH increase was observed during the floods.  

 

Combining low salinity brine with surfactants and polymers yielded varying production, 

ranging from 11-32% ROIP. It was observed that the aged cores generally had a higher 

recovery compared to unaged cores.  
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Nomenclature 
 
Variables 
 

A Area  [m2] 
A Apparatus constant [K∙m3/kg] 
AN Acid Number [mg KOH/g oil] 

B Atmospheric Pressure [Pa] 
BN Base Number [mg KOH/g oil] 

a0 Effective area per polar head group of 
surfactant [m2] 

C, c Concentration [kg ∙ m−3]  
dp Differential pressure [mbar] 

E Electric potential [mV] 
EA Area sweep efficiency dimensionless 
ED Microscopic displacement efficiency dimensionless 
ER Recovery factor  dimensionless 
EV Vertical sweep efficiency dimensionless 
Evol Volumetric displacement efficiency dimensionless 
F Relative humidity dimensionless 
F Faraday constant [96485 C ∙ mol−1] 
IA-H Amott-Harvey index dimensionless 
IUSBM USBM index dimensionless 
h Height [m] 
I Ion Strength [mol/L] 
K Absolute permeability [m2]   (1 D = 0.98692∙10-12 m2) 

ke,i Effective permeability of phase i [m2]   (1-D = 0.98692∙10-12 m2) 
kend,i End point permeability of phase I  [m2]   (1-D = 0.98692∙10-12 m2) 
kri Relative permeability of phase i dimensionless 
L Length [m] 
l Effective length of HC chain [m] 
M Mobility ratio dimensionless 
M0 End point mobility ratio  dimensionless 
m mass [kg] 
N Total reserves originally in place [m3] 
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Ns Surfactant parameter dimensionless 
Np Produced reserves [m3] 
Nvc Capillary number dimensionless 
P Pressure [Pa]   (1 mmHg = 133.322 Pa) 
PV Pore volume dimensionless 
Q Flow rate [m3 ∙ s−1] 
R Molar gas constant [8.314 J ∙ mol.1 ∙ K−1] 
R, r Radius [m] 
RRF Residual resistance factor dimensionless 
S Saturation  dimensionless 
S Spreading coefficient dimensionless 
T Temperature [K] (0°C = 273.13 K) 

T Period [s-1] 
t Time [s] 
u Darcy velocity [m ∙ s−1] 
V Volume [m3] 
WC Water cut dimensionless 
∆ Difference dimensionless 
γ Shear rate [s-1] 
η Viscosity (depended on shear rate) [Pa∙s]   (1 Pa∙s = 103 Cp) 
θ Contact angle [°] 
λ Mobility [m2/Pa ∙ s]  
λ0 End point mobility [m2 /Pa ∙ s]  
μ Viscosity [Pa∙s]   (1 Pa∙s = 103 Cp) 
ρ Density [kg ∙ m−3]  
σ Interfacial tension [N ∙ m2] 
τ Shear stress [Pa] 
ϕ Porosity dimensionless 
ν Volume of hydrophobic chain [m3] 
ω Angular velocity [rpm] [s-1] 
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Subscripts 
 

A area 
abs absolute 
b bulk 
c capillary 
c core channel 
D microscopic 
diff differential 
eff effective 
g gas 
i component (phase) 
i initial 
i irreducible 
ineff ineffective 
inj injected 
max maximum 
o oil 
pol polymer 
p pore 
p produced 
r relative 
r residual 
R recovery 
tot total 
V vertical 
vol volumetric 
w water 
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Abbreviations 
 

CDC Capillary desaturation curve 
CMC Critical micelle concentration 
COBR Crude oil/brine/rock system 
Ca2+ Calcium ion 
CIPR Centre for Integrated Petroleum Research 
CP Cone & plate 
DG Double gap 
DLVO Deryaguin, Landau, Verwey and Overbeek 
EOR Enhanced oil recovery 
FW Fractionally wet 
IOR Improved oil recovery 
IFT Interfacial tension 
HC Hydrocarbon 
HPAM Hydrolyzed polyacrylamide 
LSW Low salinity water 
LSSP Low salinity surfactant polymer 
MIE Multicomponent ionic exchange 
Mg2+ Magnesium ion 
MWL Mixed wet large 
MWS Mixed wet small 
NSO Nitrogen, sulfur, oxygen 
OOIP Original Oil in Place 
ppm Parts per million 
ROIP Residual oil in place 
RPM Revolutions per minute 
SARA Saturates, aromatics, resins and asphaltenes analysis 
SCAL Special Core Analysis 
SSW Synthetic seawater 
SW1 Synthetic seawater 
SW2 Synthetic seawater without divalent ions 
TDS Total dissolved solids 
WBT Water breakthrough 
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1 Introduction 
 
The most applied method for oil recovery is injecting water into the reservoir for 

pressure support and sweep. The connate water in the reservoir has usually a 

different composition than the injected water. In later years, it has been found that 

the composition of the injection water is of importance for the total oil recovery. 

This has resulted in an increase in papers produced on the effect of low salinity 

brine on recovery, as observed in Figure 1.1. 

 

 

 
Conventional waterflood brines are seawater and/or aquifer water. The salinity 

of these fluids are high, ranging from 35 000 ppm to 300 000 ppm, respectively. 

By reducing  salinity to under 6000 ppm, the brine is regarded as low salinity 

water (LSW) [2].  In studies on LSW, salinity usually ranges between 500 to 5000 

ppm. Evidence of the low salinity effect (LSE) and its influence on recovery is 

discussed further in Chapter 3. 

 

The benefit of combining the low salinity environment created with LSW with 

chemical additives such as surfactants and polymers is seen as an extension of the 

potential of LSW.  The effectiveness of many chemical additives is dependent on 

the brine concentration, and are found to be more stable at low salt 

Figure 1.1: Publications regarding LSW submitted per year [1] 
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concentrations.  In addition, surfactants that yield low interfacial tension (IFT) at 

low salinity are more readily available and less expensive compared to those 

which are constructed to endure high salinity conditions.  The combination of LSW 

with surfactant and polymers is discussed in Chapter 3.2 and 3.3.  

 

The present study compares the effect of low salinity brine in secondary and 

tertiary mode in six Berea cores. Following tertiary mode LSW injection, low 

salinity surfactant polymer (LSSP) floods were conducted.  All experiments were 

executed under ambient temperatures. In addition, analysis of the fluids utilized 

in the experiments were carried out to give a greater insight to the experiments. 

 

This thesis consists of seven chapters, the first one addressing basic fundamental 

principles in reservoir engineering. These concepts are important to understand 

as the terms will be applied in the following chapters. In the next chapter, 

emphasis is put on enhanced oil recovery including a literature study of the EOR 

mechanisms relevant for this thesis. This includes a summary of research done on 

the low salinity effect, its effect on field scale and the proposed mechanisms for 

the increased recovery by LSW. In addition, research combining the low salinity 

effect with surfactant and polymers is also included.  

 

Chapter 4 discusses the experimental procedures and experimental setup used 

during the experimental work in this thesis. Result and discussion is found in 

Chapter 5, starting with basic fluid and rock properties followed up by waterflood 

experimental data. Conclusion and suggestions for further work are given in 

Chapter 6 and Chapter 7, respectively. All data gathered during the experiments 

are summarized in the appendices at the end of the thesis.  
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2 Fundamental Principles in Reservoir Physics 
 
2.1 Porosity 
 

Porosity is the void part of a rock`s total volume, unoccupied by rock grains and 

mineral cement [3].  Depending on the time of formation, the porosity can be 

divided into primary and secondary porosity. Primary porosity is created during 

deposition, and is dependent on the rock type, grain size, grain shape, sorting and 

packing.  Secondary porosity is post-depositional alterations to the porosity, 

resulting from chemical reactions, like cementation, or fracturing of the formation. 

  

The absolute porosity is expressed as the ratio between the total void volume and 

bulk volume. 

 

 ∅ =  
𝑉𝑉𝑝𝑝𝑎𝑎
𝑉𝑉𝑏𝑏

 ( 2.1 ) 

 

Where Φ is porosity, Vpa is the absolute pore volume and Vb is the bulk volume. 

Depending on the pores interconnectivity, the absolute porosity is divided into 

effective and ineffective porosity. 

 

 ∅𝑎𝑎𝑎𝑎𝑎𝑎 = ∅𝑒𝑒𝑒𝑒𝑒𝑒 + ∅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ( 2.2 ) 

 

Where φabs is the absolute porosity, φeff is the effective porosity and φineff is the 

ineffective porosity.  
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Pores with no connectivity to other pores are part of the ineffective porosity. 

These pores have no capacity for fluid flow. Pores that constitute in the effective 

porosity are catenary and cul-de-sac pores (Figure 2.1), hence pores which fluid 

can flow in.  

 

 ∅𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝑉𝑉𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑏𝑏
 ( 2.3 ) 

 

Where Vp,eff is the effective pore volume and Vb is the bulk volume of the rock 

sample. The effective porosity depends on several factors, such as rock type, grain 

size, packing and orientation, cementation, weathering, leaching and type, content 

and hydration of clay minerals [3]. 

 

2.2 Permeability 
 

Permeability is an expression for a porous medium´s capability to transmit fluids 

through its network of interconnected pores. Permeability is affected by many 

factors, among them porosity, tortuosity, grain size, grain shape and packing.  

Permeability is expressed by Darcy´s law [3] 

 

 𝑢𝑢 =
𝑄𝑄
𝐴𝐴

=  −
𝐾𝐾
𝜇𝜇
∗
𝑑𝑑𝑑𝑑
𝐿𝐿

 ( 2.4 ) 

Figure 2.1: Three basic types of pores  
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Figure 2.2: Fluid flow in porous media 

 

Where u is the Darcy velocity, Q is the fluid flow rate, A is the cross-sectional area, 

k is the absolute permeability, μ is the fluids viscosity and  𝑑𝑑𝑑𝑑
𝐿𝐿

  is the pressure 

gradient. This is illustrated in Figure 2.2.  For Darcy´s law ( 2.4 ) to be valid, the 

following basic conditions has to be satisfied: 

 

• 100% saturated with only one fluid 

• Incompressible fluid 

• Laminar and stationary fluid flow 

• No chemical reaction between the fluid and rock 

• Horizontal position of fluid flow (eliminating the force of gravity) 

 

Permeability is regarded as a rock property if the rock is 100% saturated with one 

fluid.  This is the absolute permeability, as expressed in equation ( 2.4 ), and is 

independent of fluid type. Permeability has the SI-dimension m2, but is normally 

expressed in Darcy (1 Darcy=10-12 m2). 

 

If multiple fluids are flowing through the pores, the effective permeability of each 

fluid will depend upon their relative saturations. The fluids will hinder flow for 

each other, and the effective permeability is reduced compared to the absolute 

permeability. Hence, Darcy´s law in equation ( 2.4 ) needs to take each phase into 

account. 
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 𝑢𝑢𝑖𝑖 =
𝑄𝑄𝑖𝑖
𝐴𝐴

= −
𝐾𝐾𝑖𝑖
𝜇𝜇𝑖𝑖
∗
𝑑𝑑𝑑𝑑
𝐿𝐿

 ( 2.5 ) 

 

Where i denotes the fluid phase. The relationship between absolute and effective 

permeability is given by the relative permeability.  It expresses the ratio between 

the effective and absolute permeability.  

 

 𝑘𝑘𝑟𝑟,𝑖𝑖 = −
𝑘𝑘𝑒𝑒,𝑖𝑖

𝐾𝐾
 ( 2.6 ) 

 

Relative permeability is a function of wettability, pore geometry, fluid 

distribution, saturation and saturation history [4].  

 
 
2.3 Saturation 
 

In a porous medium multiple fluids can be present at the same time. In a reservoir 

or core plug these are often oil, water and gas.  

 

 𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑤𝑤 + 𝑉𝑉𝑜𝑜 + 𝑉𝑉𝑔𝑔 ( 2.7 ) 

 

The saturation of a fluid is the fraction of fluid volume to the pore volume. 

 
Where Si is the saturation of fluid i, Vi is the volume of fluid i and Vp is the pore 
volume. 
 
 
2.4 Residual Oil Saturation 
 

When crude oil is displaced by water or gas, some of the oil will remain due to 

capillary trapping, caused by the tension between non miscible phases. The 

residual saturation is denoted Sor. There are several models which describe the 

residual oil saturation after water injection, but the following two models are the 

most acknowledged. 

 𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝑉𝑉𝑝𝑝

 ( 2.8 ) 
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The pore doublet model 
 

The pore doublet model takes into account a pore channel that splits into two 

channels. If one of the channels is narrower, then the wetting fluid will intrude this 

channel quicker due to capillary differences. This will lead to trapping of oil in the 

broad channel, as seen in Figure 2.3. 

  

  

 

Snap-off model 
 

In the snap-off model, oil is trapped due to the surface tension between oil and 

water. As the displacing water film increases in the pore, the oil film gradually 

becomes thinner, before it eventually snaps off and resides in the middle of the 

pore.  When the oil is no longer continuous, it is trapped by capillary forces and is 

immobile. 

 

Figure 2.3  Trapping in a pore doublet model [5] 

Figure 2.4: Trapping of oil by snap-off [5]  
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2.5 Fluid & Fluid Flow Properties 
 

 Ionic Strength 
 
The ionic strength, I, of a solution is defined as 
 
 

 𝐼𝐼 =
1
2
�(𝑐𝑐𝑖𝑖 ∙ 𝑧𝑧𝑖𝑖2)
𝑛𝑛

𝑖𝑖=1

 ( 2.9 ) 

 
Where ci is the concentration of the ion in solution, zi is the charge of the ion and 

n is the sum of ionic species present in the solution.  

 

 pH 
 
The pH is a measure of the acidity or basicity of an aqueous solution. It is defined 

as the negative logarithm of the concentration of the solvated hydrogen ion  

 
 𝑝𝑝𝑝𝑝 =  −𝑙𝑙𝑙𝑙𝑙𝑙10[𝐻𝐻+] ( 2.10 ) 

 
The pH is non-negative, ranging from 1 to 14. The solution is regarded acidic if the 

solution has a pH less than 7, and basic or alkaline for pH greater than 7.  

 
 Density 

 
The density, ρ, is defined as a substance´s mass per unit volume 
 
 

 𝜌𝜌 =
𝑚𝑚
𝑉𝑉

 ( 2.11 ) 

 
Where m is the mass of the substance, and V denotes the volume. In most cases, 

the density decreases with increased temperature [6].  
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 Viscosity 
 

Viscosity is a fluid`s internal resistance to flow.  At low viscosity the fluid flows 

easy, whereas flow is reduced at higher viscosity.  The dynamic shear viscosity is 

expressed as 

 

 𝜇𝜇 =
𝜏𝜏
𝛾̇𝛾

 ( 2.12 ) 

 

Where μ denotes viscosity, τ is the shear stress and 𝛾̇𝛾  is shear rate. The shear 

stress is defined as a tangential force acting upon an upper area plane, whilst the 

lower plane is at rest. If the material between the two planes starts to flow, a 

velocity gradient through the material will develop. This gradient is the shear rate 

[3]. This is illustrated in Figure 2.5.  

 

 

 

Depending on the viscosity behavior, fluids may be divided into Newtonian fluids 

and non-Newtonian fluids. In Newtonian fluids the viscosity is constant, 

independent of the shear stress rate, while non-Newtonian fluids are shear 

dependent. In ordinary conditions gases, water and many common liquids are 

regarded as Newtonian. Examples of non-Newtonian fluids are colloidal systems 

and polymer solutions.  

Figure 2.5: Flow between two parallell plates [7]  
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 Mobility 
 

The mobility (λ) of a fluid is a defined as its relative permeability divided by its 

viscosity.  

 𝜆𝜆𝑖𝑖 =
𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑖𝑖

 ( 2.13 ) 

 

Where i denotes the fluid phase; oil, water or gas. Mobility ratio is defined as the 

mobility of the displacing phase divided by the mobility of the displaced phase, 

and is given for a waterflood as  

 

  𝑀𝑀𝑤𝑤𝑤𝑤 = 𝜆𝜆𝑟𝑟𝑟𝑟
𝜆𝜆𝑟𝑟𝑟𝑟

= 𝑘𝑘𝑟𝑟𝑟𝑟
𝑘𝑘𝑟𝑟𝑟𝑟

𝜇𝜇𝑜𝑜
𝜇𝜇𝑤𝑤

 ( 2.14 )  

 

To calculate the stability of a waterflood the endpoint mobility ratio is used and is 

denoted M°wo , where ° indicates that the measurements are done at the endpoints 

Sor and Siw. This parameter has a significant influence on the production behavior. 

 

 𝑀𝑀𝑤𝑤𝑤𝑤
° =

𝜆𝜆𝑟𝑟𝑟𝑟
𝜆𝜆𝑟𝑟𝑟𝑟

=
𝑘𝑘𝑟𝑟𝑟𝑟°

𝑘𝑘𝑟𝑟𝑟𝑟°
𝜇𝜇𝑜𝑜
𝜇𝜇𝑤𝑤

 ( 2.15 ) 

 

The endpoint mobility ratio assumes a plug-like displacement between the oil 

phase, at connate-water saturation before the flood front, and the water phase at 

residual oil saturation behind the front [8]. 
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As illustrated in Figure 2.6 high mobility ratios (>1) are unfavorable as it yields 

early water breakthrough and a long tail production.  The viscosity of the oil is 

much higher than the displacing water, thus the water will travel faster towards 

the production well.  

 
Figure 2.6: Effect of Mobility ratio on displacement efficiency [5] 

 

Low mobility ratios (≤1) are optimal, meaning that the viscosity of the displacing 

water is higher than for the oil.  This implies that the oil phase can move quicker 

through the reservoir rock as opposed to the displacing water phase. The water 

breakthrough will appear late in production and a small tail production occurs. 

 

Despite ultralow M° values, the limit for production is the residual oil saturation, 

and the ultimate microscopic displacement efficiency is therefore defined as 

 
  𝐸𝐸𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 = 1 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑜𝑜𝑜𝑜
 ( 2.16 ) 
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2.6 Capillary Pressure 
 

Capillary pressure is the internal pressure difference over the interface of two 

immiscible fluids, the wetting fluid and the non-wetting fluid. The pressure 

difference is a consequence of electrostatic forces acting between the fluids. 

Capillary pressure is expressed by the Laplace-equation [3] 

 

 𝑃𝑃𝑐𝑐,𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑤𝑤 = 𝜎𝜎𝑜𝑜𝑜𝑜(
1
𝑅𝑅1

−
1
𝑅𝑅2

) ( 2.17 ) 

 

For flow in a tube or a capillary, the Young-Laplace equation [3] is derived 

 

 𝑃𝑃𝑐𝑐 = 𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑤𝑤 =
2𝜎𝜎𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟
 ( 2.18 ) 

 

The Young-Laplace equation suggests that capillary pressure is a function of 

chemical composition of the fluid and rock, pore size distribution and the 

saturation of fluids. Although not specified in the equation ( 2.18 ), capillary 

pressure is also a function of saturation history due to hysteresis. 
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2.7 Drainage/Imbibition 
 

The capillary pressure is important when observing pore filling. As observed in 

the Young Laplace equation ( 2.18 ), small pore radii results in high capillary 

pressure. In the opposite case, bigger pore radii gives low capillary pressure. This 

is decisive in pore filling sequences. 

 

Imbibition refers to flow that leads to an increase in wetting phase saturation. 

During imbibition of a water-wet system, due to capillary pressure, the small 

pores will fill first. This is observed in the Young Laplace equation ( 2.18 ), where 

small pores needs the least pressure in the wetting phase to imbibe. Subsequent 

flooding will fill pores with increasing radii as the pressure in the wetting phase 

increases.  

 

The process of decreasing the wetting phase saturation is referred to as a drainage 

process.  For drainage processes, the non-wetting phase will fill the big pores first, 

and then pores with decreasing radii. 
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2.8 Capillary Number and CDC 
 

The capillary number (Nvc) is a dimensionless number, expressing the ratio 

between the viscous forces and the capillary forces. There are many ways of 

defining the capillary number, and by Darcy`s law it can be expressed as 

 

 

Where uw is the Darcy velocity of water, μw is the viscosity of water and σo/w is the 

oil water interfacial tension. 

 

Laboratory experiments have shown correlation between the capillary number 

and the residual oil saturation [9, 10]. Increasing the viscous force or reducing the 

capillary forces leads to mobilization of oil, resulting in a decrease in residual oil 

saturation. This relationship is represented by a capillary desaturation curve 

(CDC), illustrated in Figure 2.7. 

 

From Figure 2.7, it is observed that normal waterfloods are usually in the range of 

low Nvc.  As the magnitude of the capillary number increases a knee in the curve is 

observed, denoted the critical capillary number. Above this value the residual oil 

saturation starts decreasing. It is noteworthy that the critical capillary number is 

higher for the wetting phase opposed to the non-wetting phase. 

 

The CDC is influenced by the wettability preference and pore size distribution 

(PSD) of the porous medium. The knee in the curve in Figure 2.7. will be less 

pronounced if the PSD is wide [3]. 

 𝑁𝑁𝑣𝑣𝑣𝑣 =
𝑢𝑢𝑤𝑤 ∗ 𝜇𝜇𝑤𝑤
𝜎𝜎𝑜𝑜/𝑤𝑤

 ( 2.19 ) 
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To achieve a reduction in residual oil saturation the parameters in equation ( 2.18) 

must be altered to increase the capillary number. This may be done by increasing 

the velocity of the water, increasing the viscosity of the water or decreasing the 

IFT between oil and water. 

 

In a field perspective, increasing the Darcy velocity of water is not practical. This 

is due to capacity and pressure limitations in the injection equipment. Adding 

polymers may be an alternative, but reduction in injectivity limits the range. 

 

The most convenient way of increasing the capillary number is by adding 

surfactants to the injection water. By lowering the interfacial tension between the 

oil and water, a significant increase in capillary number may occur, reducing the 

residual oil. 

 
  

Figure 2.7: CDC wetting and non-wetting phase [11] 

15 
 



    

2.9 Wettability 
 

Wettability of a solid can be defined as the tendency of one fluid to spread on, or 

adhere to, the solid surface in the presence of another immiscible fluid.  Which 

fluid that will spread is determined by the spreading coefficient. The fluid with 

non-negative spreading coefficient will be the wetting phase, and spreads 

spontaneously at the surface. This is the fluid with the strongest adhesion to the 

solid. The driving force for spreading of fluid B at the A-C interface is given as  

 

 𝑆𝑆𝐵𝐵/𝐴𝐴 = 𝜎𝜎𝐴𝐴/𝐶𝐶 −  𝜎𝜎𝐴𝐴/𝐵𝐵 − 𝜎𝜎𝐵𝐵/𝐶𝐶  ( 2.20 ) 

 

Where SB/A is the spreading coefficient for fluid B spreading on A and σ is the 

interfacial tension between phases A, B and C.  Wettability is often expressed by 

the contact angle (θ) between liquid-liquid or the liquid-gas interface and the solid 

surface. For a oil-water system the Young-Dupré equation is expressed as: 

 

 𝐶𝐶𝐶𝐶𝐶𝐶 𝜃𝜃 =  
𝜎𝜎𝑜𝑜/𝑠𝑠 −  𝜎𝜎𝑤𝑤/𝑠𝑠

𝜎𝜎𝑜𝑜/𝑤𝑤
 ( 2.21 ) 

 

Where θ denotes the contact angle between the two immiscible fluids, and σ 

denotes the interfacial tension between the phases. The geometrical explanation 

is illustrated in Figure 2.8.  The contact angle is always measured through the 

denser phase. The relationship between wetting angle and wettability is given in 

Table 2.1.  

Figure 2.8: Oil/water/rock system at thermodynamic equilibrium state 
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Table 2.1: Wettability and contact angles [3] 

 

Besides expressing the wettability by the contact angle, it is also common to use 

both the Amott-Harvey Index (IA-H) and the US Bureau of Mines Index (IUSBM).   

 

The Amott-Harvey Index is an empirical method based on studying spontaneous 

and forced imbibition processes.  From special core analysis (SCAL) it is possible 

to obtain a curve representing capillary pressure as a function of water saturation.  

Based on this curve, a value ranging from -1 for strongly oil wet to +1 for strongly 

water-wet is given. 

 

 𝐼𝐼𝐴𝐴−𝐻𝐻 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑖𝑖𝑖𝑖𝑖𝑖.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑖𝑖𝑖𝑖𝑖𝑖
−  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖𝑖𝑖𝑖𝑖.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖𝑖𝑖𝑖𝑖.
 ( 2.22 ) 

 

The USBM method is based on the same capillary curve as the Amott-Harvey 

method.  It is a measure of the work required imbibe the fluids. 

 

 𝐼𝐼𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝐴𝐴1
𝐴𝐴2

 ( 2.23 ) 

If A1 >A2 the wettability is defined as water wet. For the opposite case, the 

wettability is defined as oil-wet.  

 

Skauge et al. [12] proposed that the intermediate wettability could be subdivided 

into three different sub-classes; mixed-wet-large (MWL), mixed-wet-small (MWS) 

and fractionally-wet (FW).  Skauge et al. [12] proposed that different pore shapes 

can develop different wetting conditions. The existence of these wetting-classes 

was proved through experiments. 

Contact Angle (°) Wettability preference 

0-30 Strongly water-wet 

30-90 Preferentially water-wet 

90 Neutral Wettability 

90-150 Preferentially oil-wet 

150-180 Strongly oil-wet 
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In a MWL system, the large pores tend to be oil-wet, while the small pores are 

water-wet. The water-wet pores have probably not been in contact with oil, and 

have not developed an affinity for it. In MWS systems, the small pores are oil wet, 

and the bigger pores are water-wet. For FW systems there are no correspondence 

between pore size and wettability, the oil films are found as spots that have 

adhered to the surface. This is illustrated in Figure 2.9.  

 

 

 

 
Figure 2.9: Illustration of the intermediate sub-classes, α is the fraction of oil-wet 
pores [12].  
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 Effect of Wettability on Waterfloods and Sor 
 
Wettability has long been known to affect waterflood behavior and recovery 

performance [13].  Generally, experimental data have shown that strongly water-

wet cores exhibit higher recoveries than strongly oil-wet cores during 

waterflooding [14]. Wettability affects waterflood behavior by controlling the 

flow and spatial distribution of fluids in a porous medium [14]. 

Figure 2.10: Water displacing oil from a pore during a waterflood: a) Strongly 
Water-wet b) Strongly Oil-wet [15] 

 

During a waterflood in a strongly water-wet system, the water is imbibed into the 

smaller pores and oil is displaced into the larger pores. The displacement is such 

that the water phase maintains a fairly uniform front, resulting in a large fraction 

of the OOIP recovered before water breakthrough. After breakthrough, none or 

little oil is recovered and the water-oil ratio (WOR) increases rapidly [14, 16]. The 

remaining oil is capillary trapped as globules in the center of the core, as seen in 

Figure 2.10. 
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In oil-wet cores, the water breakthrough appears early and most of the oil is 

recovered in the tail production. This is primarily due to fingering and channeling 

of water through the big pores, leaving oil in the small pores and creavices. Figure 

2.10 illustrates how the water invades the center of the pores, recovering oil by 

reducing the thickness of the oil film.  Waterflooding in oil-wet systems are less 

efficient compared to water-wet, as less water imbibe spontaneously. The residual 

oil in oil-wet systems are typically found as continuous films over the pore surface, 

in pore throats or/and in big pockets of oil trapped by surrounding water [16].  

 

In the transition between the two boundary conditions, strongly water-wet and 

strongly oil-wet, the trend observed is an earlier breakthrough and longer tail 

production. This is due to the facts that the system shifts towards more oil-wet 

conditions. 

 

Skauge & Ottesen [17] summarized water flooding experiments from 350 North 

Sea reservoir cores. Their studies showed a minimum residual oil saturation for 

intermediate wetting systems, as displayed in Figure 2.11. 

 

 

Figure 2.11: Residual Oil Saturation measuments for 30 North Sea reservoirs [17] 
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 Effect of Wettability on Relative Permeability 
 
The wettability state of the rock is a parameter that strongly determines the value 

of the relative permeability. Wettability affects relative permeability since it is a 

major factor in the control of flow, location and distribution of fluids in a porous 

medium. As the rock has an affinity for the wetting phase, adhesion will reduce the 

permeability of the wetting phase.  

 
As mentioned, wettability effects the saturation distribution in the pore. For 

strongly water-wet cases, at Sor, the water will adhere to the pore walls letting the 

water flow in the water film. In the center of the pore, capillary trapped residual 

oil exists as globules acting as an obstacle for free water flow through the pores. 

Thus, the water relative permeability is reduced compared to the absolute water 

permeability.  

 

 

 

 

 

Figure 2.12: Steady State oil/water relative permeabilities [4] 
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In an oil-wet system, the distribution will be reversed as to the water-wet case, 

with water located in the center of the core and with oil adhering to the rock as 

seen in Figure 2.10. Naturally, the ease of flow will be higher for water in an oil-

wet case compared to a water-wet case, as observed in Figure 2.11. 

 

In order to predict wettability from relative permeability curves, Craig [18] 

proposed the following rule of thumb 

 

Table 2.2: Wettability prediction, rule of thumb 

 Water-wet Oil-wet 
Siw > 0.2 - 0.25 < 0.15 

Sw, intersection > 0.5 < 0.5 

Krw,or < 0.3 >  0.5 

 
 
The Sw, intersection is the saturation at which oil and water permeabilites are equal 

(crossover saturation).  
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2.10 Wettability Alteration 
 
Historically, all petroleum reservoirs were believed to be water-wet. This was 

based on the experience that all clean sedimentary rocks were water-wet and the 

fact that sedimentary rocks were deposited in aqueous environments. Later 

studies have shown that the wettability in reservoir rocks ranges from strongly 

water-wet to oil-wet state [12, 19-22].  

 

Originally, all reservoir rocks are water-wet, but as migration of oil into the 

reservoir occurs the wettability of the rock may shift toward a more oil-wet state. 

As observed earlier, the degree of wettability alteration may be important prior to 

field implementation as production behavior may differ greatly depending on the 

wettability of the reservoir. 

 

The degree of wettability alteration is dependent on multiple factors, such as 

crude oil composition, connate water (pH, salinity, and saturation), injected brine 

(pH and salinity) and lithology of the rock. Buckley et al. [21] studied several 

mechanism affecting wettability alteration by crude oils. Following are the main 

categories of crude oil/brine/rock (COBR) interactions identified in changing 

wettability  

 

• Polar interactions – This mechanism predominates in the absence of a 

water film between the oil and solid.  In the absence of a water film, the 

polar components in the oil have direct access to polar components on the 

solid surface, promoting wettability alteration. Parameters affecting the 

degree of wettability alteration is type of clay, type of cations, nitrogen 

content in the oil, and the ability of the oil to be a solvent for the polar 

components. (Figure 2.13 a)  
 

• Surface precipitation – Depends mainly on the solvency of polar 

components in the oil. If the oil is a poor solvent for asphaltenes, the 

tendency of wettability alteration is enhanced. (Figure 2.13 b) 
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• Acid/base reactions – In the presence of water, both the solid and oil 

surface becomes charged. Polar functional groups on both the solid and in 

the oil can act as acids (giving away a proton and becoming negatively 

charged) and bases (gaining a proton and becoming positively charged). 

This may affect the stability of the water film or influence the degree of 

adsorption, leading to a wettability alteration. (Figure 2.13 c) 
 

• Ion-binding – When Ca2+ is present, several interactions are possible: 
1. Oil – Ca2+ - Oil 
2. Mineral – Ca2+ - Oil, see (Figure 2.13 d) 
3. Mineral – Ca2+ -Mineral 
1 and 3 may limit the wettability alteration while 2 may promote it 

 

Figure 2.13: Mechanism of interaction between crude oil components and solid 
surfaces [21] 
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3 Enhanced Oil Recovery (EOR) 
 

The demand for oil followed by high oil prices has driven the oil industry to seek 

for new methods to produce more from existing fields. These methods are 

referred to as improved oil recovery (IOR) methods. IOR processes are defined as 

all economic measures that are intended to improve the oil recovery factor and/or 

accelerate reserves [5]. This can be improved geological surveys, infill drilling, 

improved completion solutions, reservoir management, enhanced oil recovery 

(EOR) etc.  

 

The lifespan of a reservoir may be divided into three different phases; primary, 

secondary, and tertiary recovery.  Muskat [23] defines the “primary” production 

life (hence primary recovery) as to be from the moment of ”field discovery and 

continuing until the original energy source for oil expulsion are no longer alone 

able to sustain profitable producing rates.” Although this definition limits primary 

recovery to production by the natural drive of the reservoir, some definitions also 

include the use of artificial lifts. The natural drive of the reservoir may produce 

the oil by mechanisms as expansion drive, solution gas drive, gas cap drive and 

water drive.  As a result of these mechanism the pressure in the reservoir drops, 

and they are therefore known as pressure depletion mechanisms.  

 

Muskat defines secondary  recovery as the injection of fluids after the reservoir 

has ”reached a state of substantially complete depletion of its initial content of 

energy available for expulsion or where the production rates have approached the 

limits of profitable operation” [23]. The most common mechanism of secondary 

production is by gas or water injection. By injecting fluids into the reservoir the 

pressure is maintained and the injected fluid will displace the oil.  

 

Lake [11] defined EOR as “oil recovery by the injection of materials not normally 

present in the reservoir”. Methods with purpose to maintain pressure as 

waterflooding and gasflooding are therefore not considered as EOR measures. 

Although much attention is on EOR as a tertiary method, this definition doesn’t 

limit EOR to a phase. When production from the reservoir is no more economical 
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with conventional methods, EOR methods may be used to extract more of the oil 

at an economical manner. Thermal methods and injection of chemicals as 

polymers, surfactants or low salinity water are among the EOR methods used to 

increase oil recovery. 

 

Oil recovery is the ratio between produced reserves and oil originally in place and 

is given by [5] 

 

 

 𝐸𝐸𝑅𝑅 =  𝐸𝐸𝐷𝐷 ∗ 𝐸𝐸𝐴𝐴 ∗ 𝐸𝐸𝑉𝑉 = 𝐸𝐸𝐷𝐷 ∗ 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑁𝑁𝑝𝑝
𝑁𝑁

 ( 3.1 ) 

Where 

• ER is the recovery factor 

• ED is the microscopic displacement efficiency 

• EA is the areal sweep efficiency 

• EV is the vertical sweep efficiency 

• Evol is the volumetric displacement efficiency 

• Np is the produced volumes 

• N is the total cumulative reserves originally in place 

 

The two parameters which EOR methods has greatest impact on is the 

microscopic and volumetric displacement efficiency.  

 

 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 ( 3.2 ) 

 

 𝐸𝐸𝐷𝐷 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 ( 3.3 ) 

 

The aim for EOR methods are therefore to increase the volume that is contacted 

by the injection fluid, and increase the amount of displaced oil in the pores. The 

use of surfactants mobilizes oil that has been capillary trapped by reducing the 

interfacial tension between oil and water.  By mobilizing the oil, more oil is 

produced from the pores that has been in contact with the surfactant. It will 
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therefore increase the microscopic displacement efficiency, hence the recovery 

factor. This will be further discussed in chapter 3.2. 

 

The most well-known method for increasing the volumetric displacement 

efficiency is polymer injection. By injecting a more viscous fluid, the displacement 

front will stabilize and sweep of the reservoir is increased.  

 

This study will look into the effect of low salinity brine injection in combination 

with injection of polymer and surfactant. Other EOR methods will therefore not be 

discussed further. 
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3.1 Low Salinity Waterflooding 
 
Waterflooding has been the most used method for extracting oil from reservoirs 

for over a century. The first waterflood was performed in 1865 in Pennsylvania, 

as water accidentally entered the reservoir [18]. In the 1880s, waterflooding was 

used primarily as pressure maintenance, but as the effects of waterflooding on 

recovery got more well-known the practice increased. In the 1920s waterflooding 

had become a common oilfield practice [8]. Although practiced for a long time, it 

was not only before early 1950s that the applicability of waterflooding was 

understood. 

 

Traditionally the water injected has been from the most convenient source 

(seawater, produced formation water), and little attention has been given to the 

composition of the injected water.  

 

In 1967, Bernard G. [24] investigated the effect on recovery injecting freshwater 

relative to injecting seawater. Experiments showed an increase in recovery using 

freshwater instead of seawater, both as secondary and tertiary mode, but only if 

accompanied by a big pressure drop across the cores. Experiments injecting 

different salinities of sodium chloride was also executed, showing that increased 

recovery was only observed for salinities lower than 1 wt % NaCl. 

 

Studies of low salinity increased in the 1990s, following the work of Morrow et al. 

[20, 25-31] 

 

Jadhunandan and Morrow [25] studied the effect of wettability on waterflood 

recovery for crude-oil/brine/rock systems. By investigating fifty Berea corefloods 

at slow-rate water injection, they concluded that recovery is at its maximum on 

weakly water-wet cores, corresponding to 0.2 on the Amott-Harvey Index. 

Mechanisms that were demonstrated to effect wettability was aging temperature, 

initial water saturation and crude oil and brine composition. 
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Yildiz and Morrow [28] confirmed the work of Jadhunandan [32] observing an 

increase in oil recovery on Moutray crude oil by injecting 2% CaCl2 compared to 

injecting 4% NaCl + 0,5% CaCl2.  Later, the opposite effect was observed by Yildiz 

and Morrow [20] on Prudhoe bay oil by injecting brine with the same properties.  

The conclusion was therefore that the effect of the brine composition must be 

specific to the crude oil. Yildiz and Morrow[20], as Jadhunandan and Morrow [25], 

experienced that the aging conditions are decisive on recovery performance. 

 

Tang & Morrow [26] performed spontaneous water imbibition and water flooding 

tests to examine the impact salinity of injected brine and connate water has on oil 

recovery. Berea cores were saturated to Swi with Dagang crude oil (DG) and 

modified synthetic Dagang reservoir brine (DG RB) before aging at elevated 

temperatures. They observed that when injecting water with same composition 

as the connate water (referred as standard case), an increase in recovery was seen 

with decrease in salinity. It was also observed that waterflood recoveries 

increased in extent with increased spontaneous imbibition recovery. This was 

surprising as it contradicted to prior studies [25]. Further experimentation with 

varying injected brine salinity and varying connate water salinity showed 

increased recovery with decrease in salinity, but in a less extent than for the 

standard case. 

 

Tang & Morrow [27] continued their work, studying the influence of brine 

composition on COBR interactions. By firing at 800°C and acidizing some of the 

Berea cores, it was also possible to study the effect of fines migration.  From their 

studies, it was evident that fines mobilization played an important role on the 

effect of low salinity. Their experiments showed an increase in spontaneous 

imbibition and waterflooding recovery on unfired Berea cores with decrease in 

salinity, consistent with prior studies [26]. For the unfired Berea cores, the 

behavior was different. The cores showed no sensitivity to salinity, and the 

recovery from spontaneous imbibition was lower than for unfired cores. It was 

also observed that Bentheimer and Clashash, sandstones with less clay content 

than Berea, were less sensitive to salinity. These results raised the discussion 

about the impact of clay in sandstones on recovery. 
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Tang and Morrow [27] discovered that refined oils gave no effect in increased 

recovery.  This giving an indication that adsorption of polar components in crude 

oil is necessary to give an effect in low salinity brine injections. This observation 

was as expected and consistent with previous studies [20, 28, 32].  Another 

observation was that when no connate water  was present (core 100% saturated 

with crude oil), no effect of low salinity injection was noticed.  Both observations 

were later noticed by Sharma and Filoco [33]. This lead to Tang and Morrow 

postulating that the presence of clay, crude oil and initial water saturation were 

necessary for the LSE. 

 

Sharma and Filoco [33] experienced an increase in production with decreased 

salinity of the brine on Prudhoe Bay oil. The salinities of the connate water and 

the injected brine were in this case the same, and coincided with the research of 

Tang & Morrow [26, 27].  Further investigation showed that injection with 

different salinity brines (0.3%, 3% and 20% NaCl) at a fixed connate water salinity 

(3%) gave no response in increased recovery. However, increased recovery was 

experienced when altering the connate water salinity, with a fixed injection brine. 

Hence, the increased recovery that was previously observed had to be an effect of 

the connate water composition and not the composition of the injected low 

salinity brine.  Based on these results, they suggested that the observed increase 

in recovery was due to wettability alteration from a water-wet state to a mixed-

wet state when salinity decreased. 

 

Zhang & Morrow [29] extended the study of connate water saturation, looking into 

the impact of variation in initial water saturation (Swi). The experiments were 

executed on a reservoir core and Berea cores with permeability ranging from 60 

to 1100 mD. Three types of crude oil (Minnelusa, CS Crude and “crude A”) was 

utilized in combination with reservoir brines (CS RB, Minnelusa RB) and its 

dilutions. Based on their observations it was concluded that sandstone properties 

are the most significant factor in improving recovery by injection of low salinity 

brine. The experiments showed an increase in recovery factor with increase in Siw. 

Cores with low permeability, 60 mD to 140 mD, showed little effect of low salinity 

injection. According to Zhang & Morrow, this was due to the presence of chlorite 
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and not due to the low permeability of the cores. In the reservoir core, the 

response to tertiary injection of low salinity was positive, leading to an 

incremental recovery of 27% compared to the secondary high salinity flood.      

 

Wickramathilaka et al. [34] studied the effect of salinity on oil recovery by 

spontaneous imbibition. By testing the imbibition potential of different types of 

cores, they discovered an increase in oil recovery in Berea and RS reservoir cores 

with decrease in salinity and brine composition. This was observed both in 

secondary and tertiary imbibition mode. Al-Aulaqi et al. [35]  also experienced the 

same trend. By studying i) imbibition of cores with constant connate water salinity 

and varying  injection brine and ii) imbibition of cores with varying connate water 

salinity and constant injection brine, they experienced an increase in recovery 

with decreasing salinity. Observing the changes in the Amott-Harvey index (0.19 

to 0.5), gave an indication of more water-wet state by decreasing the salinity in 

both cases.  

 

Nasralla et al. [36] studied the efficiency of oil recovery by low salinity brine 

injection in Berea sandstone cores. The experiments were run with low salinity 

brine in secondary and tertiary modes, using brines of different compositions. The 

highest recovery experienced (22%) occurred when injecting deionized water, 

with a decrease in recovery with increase in salinity. Although efficient in a 

secondary mode, no effect of low salinity brine was seen in tertiary mode. 

 

Ashraf et al. [37] investigated the effect of wettability in Berea sandstone cores as 

LSW was used as a secondary recovery process. The experiments were conducted 

on four different wettabilities; water wet, neutral-wet, neutral-wet TOW (towards 

oil-wet) and oil-wet. The trend observed was that in all cases recovery increased 

with reduction in salinity of the invading brine. The highest ultimate recovery was 

observed for core plugs with neutral with conditions (IA-H = 0.12).  
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Winoto et al. [38] performed secondary and tertiary injection of low salinity brine 

on outcrop and reservoir rocks. Figure 3.1 illustrates their results on  recovery in 

tertiary mode for outcrop and reservoir cores as well as the results obtained by 

Lager et al. [39] and McGuire et al. [40]. For sandstone, their studies showed a 

greater average response to low salinity brine in reservoir cores (11.1%) 

compared to outcrop cores (3.9%).  This was also experienced for the carbonate 

cores. 

 

Although much research concur with the results of Tang & Morrow [27], there are 

also reports of increased recovery without the presence of clay minerals. Al-Aulaqi 

et al. [35] studied the effect of brine salinity and temperature in reservoir 

sandstone cores. They experienced an increase in oil recovery with decreasing 

salinity of sodium chloride in Berea cores and reservoir sandstone. As no clay was 

present in the reservoir sandstone, this conflicted with previous theory postulated 

by Tang and Morrow [27]. Al-Aulaqi et al. proposed that the existence of 

Figure 3.1: Incremental tertiary recovery by LSW in a) sandstone and b) carbonate 
[38] 

32 
 



    

negatively charged silica surface was enough to promote a wettability alteration 

towards a more water-wet state, resulting in enhanced oil recovery.   

 

There have also been reports of little or no effect of low salinity brine on recovery. 

Thyne & Gamage[41] experienced no incremental recovery for Minnelusa 

reservoir core plugs. This behavior was also confirmed by Thyne & Gamage [42], 

where they studied the effect of low salinity waterflooding for 26 fields in the 

Minnelusa Formation. By comparing recovery data from fields treated with low 

salinity brine compared to high saline brine, they concluded that there were no 

incremental benefit of using low salinity brine. This behavior could be attributed 

to the lack of mobile clay, as experimental studies in Berea cores with the same oil 

and water showed incremental production. 

 
Shiran & Skauge [43] studied the effect of wettability on low salinity brine 

recovery. The study was performed in Berea and Bentheimer cores, with different 

wettability states. From literature, it was expected that the clay content in Berea 

cores and the oil-wet character of the Bentheimer cores would make them good 

candidates for low salinity effect. However, experimental data showed no or little 

increase on oil recovery in the Bentheimer and Berea cores when low salinity 

brine was injected as a tertiary recovery mode. 

 
Rivet et al. [44] conducted 21 different tertiary waterfloods using brines of 

different composition in Berea and sandstone reservoir cores. They experienced 

that although low salinity brine gave an effect on most of the cores, in some cases 

where the wettability was not altered, and no incremental production was seen. 

 
Loahardjo et al. [45] also experienced a lack in response by injection of low salinity 

brine in tertiary mode. Nineteen outcrop sandstones cores were screened for low 

salinity effect, whereas four cores showed no response to low salinity brine. All 

cores met the screening criteria postulated by Tang and Morrow [27] (presence 

of clay, crude oil and initial water saturation), pointing out the complexity of LSE. 
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 Observed Effects of LSW on Field Scale 
 
As the amount of positive experimental results from low salinity waterflods 

amplified, the interest from oil companies, and implementation on field scale 

increased. 

 
Webb et al. [46] performed a log-inject-log field test measuring the residual oil 

saturation (Sor) in the near wellbore after low salinity brine injection. To begin 

with it was injected 0.1 to 0.15 pore volumes of high salinity water to reach the 

baseline residual oil saturation. This was followed by a sequence of three different 

water injections with decrease in salinity and a high salinity flood for calibration 

purposes.  In all three logging  sections a decrease in Sor with low salinity brine 

injection was experienced. The results coincided with laboratory results, showing 

a 25-50% decrease in Sor.   

 
In the North Sea, the Snorre field was seen as a prospect for increased recovery by 

low salinity brine  injection. Through laboratory and field tests Skrettingland et al. 

[47] got results showing little or no potential injecting low salinity brine. This 

behavior was also experienced in laboratory tests. The reason was believed to be 

the natural wetting of the formation, being already optimal (neutral-wet to slightly 

water wet). Under these conditions seawater injection was already efficient. 

 
Lager et al. [48] demonstrated the effect of injecting low salinity brine into an 

Alaskan reservoir. By using a single injector and two production wells, they 

monitored the production data, observing changes in behavior during low salinity 

injection. The produced water was also sampled for ionic analysis. Additionally, 

the reservoirs response to low salinity brine injection was confirmed by a single 

well chemical tracer test. They experienced a change in chemical composition 

simultaneously as the drop in WOR occurred.  In Figure 3.2, the increased 

production is illustrated. 
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Figure 3.2: The effects of LS injection on oil rate [bbls/day] [48] 

 

In 2010, Seccombe et al. [49] published a paper describing a comprehensive inter-

well field trial on the Endicot field, North Slope Alaska. This was the first British 

Petroleum (BP) operated tertiary reduced-salinity EOR pilot. By monitoring the 

changes in watercut and ionic composition at the producer, the researchers could 

detect the EOR responses. Three months after the low salinity water injection had 

commenced a reduction in watercut and water salinity was observed in the 

production well. The result was an incremental oil recovery of around 10% of the 

total pore volume in the swept area. These results concurred with previous 

studies of low salinity effects on the Endicot field [50]. 

 

In all studies [46-50] correlation between field and laboratory tests was 

experienced, showing the importance of laboratory tests prior to field 

implementation. 
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 Proposed Mechanisms 

 

Laboratory and field experiments have shown the potential of LSW. The 

mechanisms behind the LSE is still not fully understood due to the complex nature 

of crude oil-brine-rock (COBR) interactions. Still, some mechanism are more 

accepted than others, and following are the proposed  main mechanisms  

 

• Fines migration 

• pH variation 

• Wettability alteration 

• Multicomponent ionic exchange (MIE) 

 

 

Fines Migration 

  
As mentioned, Tang & Morrow [27] observed that the amount of clay present in 

the core affected the sensitivity of low salinity flooding. In addition to observing 

the recovery from the cores, an effluent analysis was performed. Production of 

fines, mainly kaolinite, was observed in the effluent. This behavior was ascribed 

to partial stripping of mixed-wet fines from pore walls during flooding. 

 

Tang & Morrow explained this behavior with the DLVO (Deryaguin-Landau-

Verwey-Overbeek) theory. The DLVO theory explains the stability of colloids in 

aqueous dispersions and describes the forces between charged surfaces 

interacting through a liquid medium [51]. 

 

The DLVO theory is expressed as the sum of the attractive van der Waals forces 

and the electrostatic repulsion. 

 

 ∅𝑛𝑛𝑛𝑛𝑛𝑛 = ∅𝐴𝐴 +  ∅𝑅𝑅 ( 3.4 ) 

 

The electrostatic repulsion is an effect of the electric double layer of counterions 

surrounding an object in liquid. 
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The electric double layer explains the structure of ions in a solvent close to a 

charged solid, like a clay mineral. It consists of two layers. The inner layer , called 

the Stern layer, contains strongly bound counterions. The outer layer contains 

ions that are in Brownian motion in the adjacent liquid. The thickness of the 

double layer, called the Debye length, depends on the electrolyte concentration 

and ion valency. Low magnitude of one of the two latter leads to a thicker double 

layer.  

 

 

Reducing the salinity of the injected brine results in an expansion of the double 

layer and an increased tendency of stripping fines. By mobilizing fines, Tang & 

Morrow [27] concluded that increase in recovery came as a result of either 

wettability alteration or diversion of flow.  

 

Presence of high salinity brine has no effect on clay, and clay retains its oil-wet 

nature while in contact with high salinity brine. Whencontacted by low salinity 

brine, the clay will be destabilized and the fines will be stripped from the pore 

walls (Figure 3.4 b) This will lead to a wettability change towards a more water-

wet condition, which is consistent with previously published results [25, 28, 31, 

32]. It was also proposed that detachment of fines which had oil attached to it 

could increase the recovery (Figure 3.4c). As mentioned, the detachment of fines 

Figure 3.3: Illustration of the electric double layer [52] 
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can also result in blockage of pore throats, resulting in a diversion of flow. This 

hypothesis was supported by a noticeable reduction in permeability when 

reducing the salinity of injected brine [27] . 

 

Although Tang & Morrow [27] observed production of fines, other research have 

shown that fine production in the effluent is not essential to observe enhanced oil 

production with low salinity injection [30, 35, 39]. The recent discoveries of the 

effect of low salinity brine in carbonate also support this [53-57]. Carbonates are 

clay free, ruling out the effect of clay swelling and fines migration being the 

primary mechanism for the low salinity effect. This suggests that although fine 

migration may be an effect in increased oil recovery with low salinity injection in 

sandstone, it is not the primary mechanism. 

 

 
 

Figure 3.4: Role of potentially mobile fines in crude/oil/brine interactions and 
increase in oil recovery with decrease in salinity [27] 
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pH variation  

 

A high pH in the effluent during LSW flooding have been noticed in many 

laboratory experiments [27, 39, 40]. There are two proposed mechanisms 

influencing the change in pH; carbonate dissolution and cation exchange. The 

dissolution of carbonate is given in equation ( 3.5 ) and ( 3.6 ),  showing an excess 

of OH- will occur when carbonate is dissoluted, inducing an increase in pH. 

Kinetically, this is a slow reaction and depends on the amount of carbonate 

material present. 

 

 CaCO3(s) ⇆ Ca2+ (aq) +  CO3
2− (aq) ( 3.5 ) 

 

 𝐶𝐶𝑂𝑂32−(𝑎𝑎𝑎𝑎)  +  𝐻𝐻2O ⇆ 𝐻𝐻𝐻𝐻𝑂𝑂3− (𝑎𝑎𝑎𝑎) +  𝑂𝑂𝐻𝐻−(𝑎𝑎𝑎𝑎 ( 3.6 ) 

 

Cation exchange is a reaction between cations in solution and cations attached to 

clay minerals. By substituting cations on the clay surface with H+ ions in the 

solution, the pH of the effluent increases. The affinity of several ions for clay sites 

is [58]: 

 

𝐿𝐿𝐿𝐿+ < 𝑁𝑁𝑁𝑁+ < 𝐾𝐾+ < 𝑅𝑅𝑅𝑅+ < 𝐶𝐶𝐶𝐶+ < 𝑀𝑀𝑀𝑀2+ < 𝐶𝐶𝐶𝐶2+ < 𝑆𝑆𝑆𝑆2+ < 𝐵𝐵𝐵𝐵2+ < 𝐻𝐻+ 

 

Cation exchange is a process much faster than carbonate dissolution and is 

dependent on the cation exchange capacity (CEC), which is specific for a given 

rock.  CEC is a measure of to which degree clay can adsorb and exchange cations. 

CEC is mainly influenced by the clay texture (surface area, solubility of clay, 

organic matter), the relative concentration of the cations in place and pH.   

 

McGuire et al. [40] proposed that low salinity waterfloods worked like an alkaline 

waterflood. This implying that the high pH, which was observed in the effluent, 

could have changed the wettability of the reservoir and cause saponification, 

reducing the interfacial tension between oil and water. This hypothesis is 

controversial as it has been shown that a high acid number (>0.2) is needed to 

create enough surfactants to sufficiently reduce the interfacial tension [59]. This 
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contradicts the theory of McGuire et al. [40] as the corefloods that gave the best 

response to injection of low salinity brine were of very low acid number. 

 

Lager et al. [39] concluded that high pH could not be the reason for increase in oil 

recovery with low salinity brine due to proton buffering (desorption of proton H+ 

from oxides and organic matter), and the presence of CO2 in the reservoir. This 

conclusion has later been supported by Jerauld et al. [60]. 

 

Wettability Alterations 

 

Wettability alterations towards more water-wet state or oil-wet state has been 

proposed to be the cause of increased oil recovery with low salinity waterflooding. 

The degree of wettability alteration is strongly dependent on the stability of the 

water film between the mineral surface and the oil phase. The stability of the 

water film is dependent on the disjoining pressure. 

 

Disjoining pressure (Π) is the force acting between two interfaces separated by a 

thin film. The disjoining pressure is a result of three different forces; electrostatic 

interactions, van der Waals interactions and hydration forces. The disjoining 

pressure quantifies the driving force for spontaneous thickening. If the disjoining 

pressure is positive, the two interfaces will repel each other and the film is stable. 

However, if the disjoining pressure is negative the interfaces will attract each 

other and the film is unstable. This will promote a wettability alteration towards 

less water-wet state [12].  

 

Buckley et al. [21] experienced through adhesion tests that high salinity brines 

had more stable films and were less prone to wettability alteration. This giving 

indications that low salinity brine could be expected to be more susceptible to 

modification of the wettability towards a more oil-wet state. This concurring with 

the conclusion of Sharma & Filoco [33]. 
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Studies concurring with the results of Buckley and Sharma & Filoco has later 

emerged. Sandengen et al. [61] interpreted relative permeability and capillary 

pressure data from secondary injection of high and low salinity water. Based on 

their results they concluded that the wettability shifted towards a more oil-wet 

state, increasing the recovery.  

 

Fjelde et al. [62] performed low salinity waterflood experiments with the objective 

of describing the brine-rock interactions at high and low salinity on North Sea 

sandstone reservoir cores. This was done by studying recovery data and analyzing 

the ion concentrations and pH of the effluent. By history matching production and 

differential pressure data they were capable of simulating relative permeability 

(kr) and capillary pressure curves (Pc). They noted that while the high salinity 

waterflood gave a close to piston-like displacement, the low salinity waterflood 

produced for a longer time. This giving an indication of a less water-wet state 

occurring during low salinity waterflood.  These indications were later supported 

by kr and Pc curve estimations showing a more water-wet state during flooding 

with formation water compared to diluted formation water. In addition, modeling 

of cation-exchange showed that the concentration of divalent cations on the clay 

surfaces were higher during injection of low salinity brine. As mentioned earlier, 

divalent ions may lead to a more oil-wet surface due to increased adsorption of 

acidic oil components by cation binding.  

 

Although the general perception is that mixed-wet wettability is the optimum for 

increased recovery [16, 17, 19, 25, 63], a lot of research have shown an increase 

in recovery with increased water wetness during low salinity brine injection.   

 

As previously mentioned, Tang & Morrow [26, 27] performed waterflood and 

imbibition tests in Berea cores, studying the influence of connate and invading 

brines on wettability and oil recovery. 
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Figure 3.5: Recovery of CS crude oil by spontaneous imbibition and waterflooding 
with changing brine composition [27] 

 

Based on their experiments, as illustrated in Figure 3.5, they concluded that water 

wetness and/or oil recovery increased with decrease in salinity. Multiple authors 

have later verified this conclusion [29, 30, 34, 35, 44].   

 

Ligthelm et al. [64] investigated the influence of LSW on reservoir wettability. The 

study showed an alteration towards a more water-wet state when the cores were 

flooded with low salinity brine. They proposed that the wettability alteration was 

caused by an expansion of the double layer between the clay and the oil interface 

leading to organic material release. As low salinity brine was injected into the core, 

the electrostatic repulsive forces emerged maintaining a high disjoining pressure. 

This leading to a shift towards water-wetness, and increased recovery. 

 

Alotaibi et al. [65] performed wettability studies using low salinity brine in 

sandstone cores. By studying the contact angle and zeta potential of the effluent 

they concluded that wettability of COBR systems depended on the salinity, 

temperature and the rock mineralogy. Although low salinity brine altered the 

wettability of Berea sandstone towards a water-wet state, the same system 

changed the wettability for the Scioto sandstone towards a neutral wet state. This 

behavior was explained by the key role of rock mineralogy. 
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Agbalaka et al. [66] performed coreflood studies on outcrop cores studying the 

effect of low salinity waterfloods  compared to high salinity waterfloods and the 

role of wettability in any observed recovery benefit. A benefit of utilizing low 

salinity brine was experienced as reduction in residual oil saturation was 

observed. Studying the Amott-Harvey index they also observed an increase in 

water-wetness with decrease in salinity. 

 

Proofs of wettability alteration on a field wide scale was given by Vleder et al. [67], 

studying the Omar field in Syria.  Observing the production over time gave 

indications of wettability alterations due to the observation of dual steps in water 

cut development. This was later supported by analyzing SCAL, NMR and 

spontaneous imbibition experiments on core material and log-inject-log tests in 

an analogue field. They estimated an incremental recovery due to LSW injection 

to 10-15% of the Stock Tank Oil Initially in Place (STOIIP). 

 

It is important to note that wettability conclusions based on imbibition test and 

waterfloods only provide an indication of the probable wettability, and does not 

give an exact answer.   

 

It is also important to note that both wetting alteration towards oil-wet or water-

wet state with increased recovery is plausible. Depending on the initial wetting 

state of the system, increase and decrease in production can be expected when 

altering the wettability. Referring to the studies of Skauge [17], intermediate 

wetting systems gives the highest recovery, as observed in Figure 2.11. 

 

In the case of an initial weakly oil-wet system, an increase in water wetness may 

lead to an increase in recovery. This is also the case if the system is initially weakly 

water-wet and the alteration is towards a less water-wet state. 
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Multicomponent ionic exchange (MIE) 

 

The rock surface has naturally occurring exchange sites. Under steady state 

chemical conditions, the composition will be in equilibrium with the resident 

formation brine. If there occurs a change in brine composition, the exchanger 

readjust its composition in order to reach equilibrium [68]. This readjustment was 

observed by Lager et al. [39], being the fundament for proposing multicomponent 

ionic exchange (MIE) as the primary mechanism for the low salinity effect.  By 

analyzing the effluent after flooding North Slope cores with low salinity brine, 

Lager et al. observed a decrease in Ca2+ and Mg2+ concentration. The concentration 

dropped lower than the initial injected brine concentration, giving evidence for 

strongly adsorption of Ca2+ and Mg2+ to the rock matrix.  This behavior had earlier 

been reported by Valocchi et al. [69]. 

 

This led to the proposal that MIE was responsible for the increase in oil recovery. 

Studies had shown that additional oil production increased with content of 

kaolinite in the formation due to the oil-wet nature of the kaolinite surface [13, 

60]. On an oil-wet surface, multivalent cations at the clay surface will bond with 

the polar component (resins and asphaltenes) present in the oil, forming organo-

metallic complexes. Injecting low salinity brine induces an expansion of the 

electrical double layer, which allows multivalent ions to be accessible for a 

multicomponent ion exchange process.  This process replaces the complex ions on 

the clay surface with uncomplex ions, leading to a change in wettability towards 

more water-wet conditions. 

 

According to the extended DLVO theory [70] and Sposito [71], there are eight 

mechanism that leads to adsorption of organic matter onto clay minerals. Among 

those, only four are strongly affected by cation exchange occurring during low 

salinity brine injection; cation exchange, cation bridging, ligand bonding and 

water bridging. 
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Cation exchange is regarded as the primary mechanism, and occurs when 

molecules containing quaternized nitrogen or a heterocyclic ring replace 

exchangeable metal cations initially bound to the clay surface. Cation bridging is a 

weak adsorption interaction between polar functional groups and exchangeable 

cations on the mineral surface. 

 

Ligand bonding refers to the direct bond formation between a multivalent cation 

and a carboxylate group. This leads to a detachment of organo-metallic complexes 

(RCOO-M; where M represent the multivalent cation) from the mineral surface. 

Ligand bonding is a bonds stronger than both cation exchange and bridging. 

 

If the exchangeable cation is strongly solvated (i.e Mg2+) water bridging will occur. 

It involves the complexation between the water molecule solvating the 

exchangeable cation and the polar functional group of the organic molecule. 

All these mechanism are illustrated in Figure 3.6. 

Figure 3.6: Illustration of oil-wettability mechanism [50] 

 

To test and confirm these mechanisms, Lager et al. [39] executed a low salinity 

injection experiment on cores where multivalent ions had been replaced by Na+.  

By doing so, all active components related to MIE were removed.  
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After flushing the cores sufficiently with brine containing NaCl, the cores were 

flooded until Swi with dead crude oil and aged. A high salinity waterflood 

consisting of NaCl at reservoir temperature (102°C) resulted in an oil recovery of 

48%. Continuing the flooding sequence with low salinity NaCl and a low salinity 

flood containing Ca2+ and Mg2+ gave no increase in recovery. This was as expected.  

 

In the initial high salinity flood, the recovery was expected to be high due to the 

absence of oil adsorption caused by ligand formation and multivalent cation 

bridging and exchange. The subsequent low salinity NaCl flood showed no 

increase in recovery as all the mobile oil had been displaced in the primary flood 

and no organo-metallic complexes were present. As the rock surface only 

contained non-complexable monovalent ions, Na+, no production by injecting low 

salinity brine containing Ca2+ and Mg2+ was experienced.  Lager et al. [39] argued 

that these evidences showed that MIE must be an important mechanism in low 

salinity flooding. This mechanism has later been supported by Lee et al. [72]. 
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3.2 Surfactants 
 

Surface-active agents, abbreviated surfactants, are amphiphilic molecules that are 

active at the interface between two immiscible phases. Amphiphilic molecules are 

molecules that are dual in nature, meaning that it consists of two parts, a 

hydrophilic and a lipophilic segment. The hydrophilic moiety is referred to as the 

“tail”, while the lipophilic segment is the “head-group”. 

 

 

 

Surfactants are distinguished upon their polar moieties and is classified into four 

different groups [51, 73]. 

 

Anionic surfactants contains a negatively charged component on the lipophilic 

head group.  This component is often a salt or an acid, most commonly sulphates, 

sulfonates, phosphates or carboxylates. To establish electroneutrality inorganic 

metals (most often sodium) is used.   When the anionic surfactant is dissolved in 

the aqueous phase, the surfactant dissociate into a cation and a monomer. Anionic 

surfactants are the most frequently used surfactant, due to its good reservoir 

properties and low cost. 

 

Cationic surfactants contains a positively charged salt. Cationic surfactants have 

little impact on recovery from oilfields due to retention. The positive nature of the 

polar group give rise to reactions with clay and silicates (often found in sandstone) 

and the surfactant adsorbs to the surface. 

 

Figure 3.7: Illustration of a surfacant molecule (left), molecular formula for the 
surfactant sodium alkyl benzene sulphonate (with the tail to the left, and 
sulphonate as the head)   
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Non-ionic surfactants contains no polar group, and the lipophilic moiety is often 

present by a chemical specie as alcohol, ether or epoxy group. Since the head 

group has no charge, non-ionic surfactants are less sensitive to salinity opposed 

to the two ionic groups. However, the solubility in water decreases with 

temperature [74]. Non-anionic surfactants are relatively cheap, and are mainly 

used as co-surfactants. 

 

Amphoteric surfactants can be anionic or cationic depending on the pH of the 

solution. 

 

The main effect of adding surfactants to a solution is reduction of the interfacial 

tension between two immiscible phases. Many other mechanisms can reduce the 

interfacial tension, but surfactants are special in that way that only small 

concentrations are needed to reduce the interfacial tension significantly. 

 

When surfactants are added to a mixture of two immiscible phases, for instance 

oil and water, the monomers will orient themselves at the interface with the 

hydrophilic segment in the water phase and the lipophilic segment in the oil phase. 

Addition of more surfactants will further lower the interfacial tension between oil 

and water.  At a point the monomers will start to self-aggregate, and the 

concentration where this occurs is called the critical micelle concentration (CMC). 

 
Figure 3.8: Parameters affected by CMC [51] 
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At CMC, the interface between the phases is full and an additional increase in 

surfactant concentration will not decrease the interfacial tension between the 

phases further [75]. CMC is therefore the concentration where the interfacial 

tension is at the lowest. Factors that affects the CMC are the length of the 

hydrophobic chain and its branching, the valence of the counterion and the 

effective size of the polar head group.  

 

McBain [76] showed that CMC could be discovered by multiple means. His 

experiments showed changes in conductivity, interfacial tension and osmotic 

pressure around CMC.  Later also changes in turbidity and other colligative 

properties have been seen to change close to CMC [75, 77].  

 

As mentioned, at CMC the surfactants will aggregate into micelles. In an aqueous 

solution, the surfactants orient themselves with their lipophilic segment toward 

the center of the structure, while the hydrophilic segment are in contact with the 

water.  To be able to predict the type of aggregate structure that is most likely to 

occur, Israelachvilli [78] introduced the dimensionless surfactant parameter (Ns). 

 

 𝑁𝑁𝑠𝑠 =
𝑣𝑣
𝑙𝑙𝑎𝑎0

 ( 3.7 ) 

 

Where ν is the volume of the hydrophobic chain, l is the effective length of the 

hydrocarbon chain and a0 is the effective area per polar head group. The effective 

head group area, a0, is not generally calculable a priori and depends not only on 

the physical size of the head group, but also on its state of hydration, ionization, 

ionic environment etc. [51]. 

 

Spherical micelles:                 Ns  < 0.33 

Infinite cylinders: 0.33 <  Ns  < 0.5 

Flexible bilayers, vesicles, lamellar structures: 0.5 < Ns  < 1 

Planar bilayers:            Ns ~ 1 

Inverted cylinders and micelles:             Ns >  1 
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 Phase Behavior 

 

The surfactant phase behavior is strongly affected by the salinity of the brine. 

Winsor [79] defined in 1954  three types of microemulsions that can emerge in a 

surfactant-oil-brine system. The theory was later adapted to surfactant flooding 

[80, 81].   

 

A microemulsion is an isotropic solution containing substantial amounts of both a 

strongly polar component (usually water) and a strongly apolar component that 

are stabilized thermodynamically by an amphiphilic additive [77]. 

Microemulsions must consist of at least three components; water, oil and 

surfactant, although other components such as dissolved salt or co-surfactants 

may also be present [51].  

Figure 3.9: Amphiphilic aggregate structures a) spherical micelle b) cylindrical 

micelle c) planar bilayers d) inverted micelle e) bicontinuous structures 

 f) vesicles [77] 
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Winsor type I microemulsion are termed oil in water microemulsions (Figure 

3.10). These microemulsions occurs at low brine salinity exhibiting good 

surfactant solubility in the aqueous phase and poor solubility in the oleic phase. 

Therefore, two phases will occur: an excess oil phase and a microemulsion phase 

that contains brine, surfactant and solubilized oil.  The solubilized oil occupies the 

core of the micelles. 

 

Winsor type II microemulsions are referred to as water in oil microemulsions 

(Figure 3.10). Type II occurs at higher salinities as higher electrostatic forces 

drastically decrease the surfactants solubility in the aqueous phase. This leads to 

formation of an excess brine phase and a microemulsion phase containing swollen 

micelles of surfactant with solubilized brine. Opposed to the Windsor type I 

microemulsion, the micelles are inverted, with brine at their cores.  

Figure 3.10: Schematic representation of Winsor type I (II-) and Winsor type II 
(II+) [11] 
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Figure 3.11: Schematic representation of Winsor type III [11] 

 
In between Winsor type I and type II salinities there must be a continuous change 

in systems. At intermediate salinities a third microemulsion phase occurs, 

Windsor type III. This is illustrated in Figure 3.11. An overall composition within 

the three-phase region separates into excess oil and brine phases, and into a 

microemulsion phase whose composition is represented by the invarient point. 

Experimental studies have shown that lowest interfacial tensions are obtained at 

these conditions [3]. 

 
Although salinity is a significant parameter in surfactant-oil-brine interactions, 

other parameters also contribute to shifts in phase environment, such as [11]: 

• Type of salt 

• Varying concentration and type of alcohol 

• Ratio between water and the oleic phases 

• Type of oil 

• Pressure 

• Temperature 
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 Low Salinity Surfactant Flooding 
 

As salinity is an important parameter in surfactant flooding, increased interest in 

the use of surfactants in combinations with low salinity brine has grown.  

 

In 2010, Alagic & Skauge [73] presented a new hybrid EOR process combining the 

effect of low salinity brine injection with surfactant flooding.  By performing 

coreflood experiments on outcrop sandstone cores, they experienced a recovery 

of 90% of OOIP when injecting anionic surfactants in a tertiary mode.  This 

behavior was confirmed in three experiments. They also reported that the effect 

of surfactant injection as a tertiary recovery mechanism was significantly reduced 

when no prior pre-flush of low salinity brine was done. The increased effect of 

surfactants was attributed to destabilization of oil layers caused by change in 

brine salinity and simultaneous mobilization of residual oil at low IFT. During 

surfactant flooding the surfactants formed a Windsor type I microemulsion, giving 

low retention. This in combination with high recoveries promotes this hybrid EOR 

method as an economical attractive method. 

 

Alagic et al. [82] executed core displacement tests on aged and unaged Berea 

cores, testing the effect of low salinity surfactant flooding. The studies confirmed 

the results of Alagic & Skauge [73], showing high incremental recoveries for both 

unaged and aged cores. The highest effect was seen on the aged cores, in both low 

salinity flooding and combined low salinity with surfactant flooding. This 

indicating that less water-wet cores could have more unstable oil layers with 

larger degree of continuous oil. 

 

Spildo et al. [83] continued the work of Alagic et al.[73, 82] studying the effect of 

low salinity brine at reduced capillarity. The experiments were executed on Berea 

sandstone cores using brines with total dissolved solids (TDS) of 36 393 ppm 

(SSW) and 3002 ppm (LSW). The cores were first pre flushed with SSW to 

establish Sor, followed by a LSW flood to create a low salinity environment. 

Marginal production was seen injecting LSW in a tertiary mode. The cores were 

then injected with a low salinity surfactant solution. During flooding, a Windsor 
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type I system developed, exhibiting good recoveries and low retention. In 

conclusion, Spildo et al. [83] claimed that  reduction of interfacial tension in low 

salinity waterfloods generates an increase in oil recovery which exceeds the 

expected performance of injecting a solution with the same reduction in interfacial 

tension but without the low salinity contribution. 

 

Johannessen & Spildo [84] furthered their study on combining surfactants with 

low salinity injection. Their experiments using syntethic seawater (SSW), 43% 

diluted SSW (Optimal salinity surfactant) and 7% diluted SSW showed 

insignificant response to low salinity brine on Berea sandstone cores compared to 

SSW alone. Injecting surfactants in tertiary mode gave higher oil recoveries for 7 

% SSW than what would be predicted by the capillary number relationship. It was 

also observed that moderate reduction in IFT under low salinity conditions gave 

the same oil recovery as ultralow IFT gave for higher salinities. In addition it was 

observed that flooding in low salinity environment had less retention compared 

to higher salinities, making it more economical feasible.  

 

Studies regarding the effect of low salinity surfactant flooding has mainly been 

done on Berea cores. In 2012, Riisøen [85] conducted four coreflooding 

experiments evaluating the effect of low salinity surfactant injection on oil 

recovery in aged Bentheimer sandstones. The effect of low salinity alone was 

marginal on Bentheimer, concurring with the studies of Shiran & Skauge [43]. 

However, combining low salinity brine with surfactant flooding resulted in a 

significant increase in oil recovery, giving incremental recoveries of 8-26% OOIP.  
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3.3 Polymers 
 
Polymers are long chained molecules with repeating units (monomers) linked by 

covalent bonds. By adding polymers to the injection water, the viscosity is 

increased resulting in more favorable mobility ratio. For EOR purposes, 

researchers distinguish between two types of water-soluble viscosity enhancing 

polymers; biopolymers and synthetic polymers. 

 

Biopolymers are biological polymers formed through fermentation processes. 

Historically, the two types of biopolymers primarily used are Xanthan and 

Sclergoglucan polymers.  

 

Synthetic polymers are formed in laboratories, and are therefore cheaper and can 

be produced in larger quantities than biopolymers. They have emerged to become 

the predominant and preferred polymer type for use in commercial oilfield 

conformance-improvement operations. This is  because of the inherent chemical 

and biological stability of synthetic polymers, along with injectivity and cost [8]. 

 

The most widely used synthetic polymers are acrylamide polymers, mainly 

polyacrylamide (PAM) and partially hydrolyzed polyacrylamide (HPAM). Due to 

the slightly positively charge of pure polyacrylamide in acidic or neutral pH 

environment, polyacrylamide tends to adsorb onto reservoir rock surfaces, 

especially sandstone. Therefore, in sandstone, HPAM is most often favored. 

 

The structure of HPAM is flexible, and the viscofying effect is dependent on many 

factors. In brines of low salinity, electrostatic repulsion between the negatively 

charged carboxylate groups results in a relative stiff rodlike molecule, providing a 

strong viscofying effect. Increasing the salinity of the brine, leads to a coiled 

structure of the molecule with lower viscofying power. In particular, divalent ions 

like Mg2+ and Ca2+ strongly reduce viscosity of a HPAM solution [86]. 
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The Carreau model explains the behavior of polymer solutions at pure shear flows 

where the velocity gradient (or shear rate) is orthogonal to the direction of flow 

[3]. 

 

At low shear rates the molecules rotate at a constant angular velocity without 

significant conformation change. Hence, the viscosity remains constant and the 

regime of flow is Newtonian. With increase in shear rate, the macromolecules start 

to deform and/or orient themselves in the direction of flow. This results in a 

decrease in viscosity. At high shear rates all the macromolecules are oriented in 

the flow direction and does not affect the viscosity of the polymer solution. The 

viscosity is low, and flow is back to Newtonian. 

 

In a porous medium, the shear rate will depend on the solution velocity and on the 

properties of the media (porosity, permeability). In order to predict the efficiency 

of a polymer flood one has to deal with averaged values [3]. Chauveteau [87] 

defined the active porous medium shear rate as: 

 

 

 𝛾̇𝛾 =  𝛼𝛼
4 ∗ 𝑢𝑢

(8 ∗ 𝜑𝜑 ∗ 𝑘𝑘)1/2 ( 3.8 ) 

 

Where α is constant related to pore geometry and type of porous media. According 

to Stavland [88] α=2.5 for Berea cores. 

 

 Low Salinity Polymer Flooding 
 
Ayirala et al. [89] conducted a cost-performance analysis on the effect of low 

salinity and polymer flooding applications on offshore projects. The conclusion 

was that the use of low salinity brine reduced the operating costs of offshore 

polymer floods. A change from high salinity to low salinity brine was anticipated 

to contribute to a 5-10 times reduction in polymer consumption due to less 

retention at low salinities. This, in combination with the increased effect of low 

salinity brine on recovery, suggested low salinity polymer as more cost-effective 

compared to seawater polymer flooding. 

56 
 



    

Kozaki [90] conducted experiments investigating the effect of low salinity 

polymer injection in sandstone cores. The experimental data showed an increase 

in recovery injecting low salinity brine compared to injecting high salinity brine. 

The low salinity polymer floods were performed in secondary mode and in 

tertiary mode following a high salinity flood. The result in both cases showed a 

reduction in residual oil saturation by 5-10% over that of the secondary high 

salinity waterflood. It was also noticed that the ultimate recovery was achieved 

with less pore volumes of injection than in waterfloods.  

 

Mohammadi & Jerauld [91] demonstrated the benefit of combining polymer with 

low salinity water for enhanced oil recovery. Simulating the effects of low salinity 

polymer injection in secondary and tertiary processes, they demonstrated an 

enhancement in oil recovery and timing of the low salinity waterflood. This 

behavior was attributed to the improvement in fractional flow behavior when 

injecting polymers. Their results also showed a significant reduction in polymer 

consumption when using low salinity brine compared to high salinity brine, 

improving the cost-efficiency of low salinity waterfloods.  

 

Opposed to the previous studies of Mohammadi & Jeruald [91] and Kozaki [90], 

Shiran & Skauge [92] studied the effect of low salinity polymer after establishing 

a low salinity environment in the porous media.  By conducting coreflooding 

experiments on outcrop Berea cores, they experience a very high total oil recovery 

combing low salinity water and polymer flooding. The results were reproducible.  

The oil recovery by polymer injection was improved significantly when the low 

salinity environment had been established at Swi rather than Sor, i.e. low salinity 

brine injected as a secondary mechanism opposed as a tertiary.  The importance 

of the initial wettability was also noticed, as intermediate-wet cores responded 

better than water-wet cores.   
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4 Experimental Procedures and Equipment 
 
4.1 Chemicals, Fluids and Core Material 
 

 Core Material 
 
The cores used in these experiments were Berea Sandstone cores. The 

homogenous nature of the Berea cores neglects the effect of heterogeneities 

caused by sedimentation usually present in reservoir rock cores. The cores are 

therefore ideal for studying physical and chemical aspects of oil production. Cores 

J1-J4 were cut from the same batch while C1-C2 were cut from another batch of 

Berea Sandstone. The measured parameters for the cores are given in Table 5.8.  

 

 
Based on X-ray diffraction data, Churcher et al. [93] studied the mineral fraction 

in different outcrop sandstones. Based on apparent rock properties between the 

Berea sandstone used in this experiment and in Churcher et al. [93], it is possible 

to assume similar mineral composition. 

 
Table 4.1: Mineral fraction in 400 mD Berea Sandstone 400  

 

 

 Quartz Feldspar Dolomite Kaolinite Illite 

Mineral 

fraction [%] 
87 5 1 6 1 

Figure 4.1: Berea cores used in the experiment, C1 and C2 are the two cores to the 
right 
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 Brines 
 

The ionic composition, salinity and ionic strength for each of the brines are given 

in Table 4.2. The brines were put on a magnetic stirrer for a day after mixing the 

salts and distilled water together. It was later filtered through a 0.45 μm vacuum 

filter from the PALL company to remove unwanted particles.    

 

Table 4.2: Brine ion composition and salinity 

 
From now on, SSW and SSW w/o Ca2+ and Mg2+  will be denoted as SW1 and SW2.  

 
 Oil Types 

 

The oil types used in these experiments were Marcol 152, a North Sea crude oil 

and a dilution of the North Sea crude oil (40% octane, 60% Crude oil). The octane 

was from Sigma-Aldrich. 

 

A high viscosity mineral oil, Marcol 152 from ExxonMobil, was used to establish 

Swi. Using a mineral oil with high viscosity (63 cp at 23°C) is favorable when the 

goal is to achieve lowest possible Swi. Aging cores at low Swi increases the impact 

of wettability alteration[31]. The oil was also used to measure the effective oil 

permeability at Swi. 

 Concentration (ppm) 

Ion SSW SSW w/o Ca2+ & Mg2+ 10 % diluted SSW NaCl 

Na+ 11146 11146 1115 1180 

Ca2+ 470 0 47  

Mg2+ 1329 0 133  

Cl- 20136 15424 2014 1820 

HCO3- 139 139 14  

SO42- 2742 2742 274  

K+ 349 349 25  

TDS 36311 29800 3622 3000 

I 

[mmol/L] 
721 522 72 51 
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The crude oil in the study is from a North Sea field. Oil from the same field was 

analyzed by Bøe [94]. In the study the acid number (AN) and base number (BN) 

was analyzed as well as the crude oil composition (SARA analysis). The results are 

given in Table 4.3 and Table 4.4.  

 

Table 4.3: Acid and base number of the crude oil [94] 

 

Table 4.4: Crude oil composition [94] 

Saturate [wt.%] Aromatic [wt.%] NSO [wt.%] Asphaltenes [wt.%] 

55.0 38.0 6.2 0.7 

 

According to Buckley [95], oil with either high AN or high BN, but not both, appear 

to be most active in altering wetting by ionic interactions. As the oil used in this 

experiment has a significantly higher acid number compared to the base number, 

it is expected to be a good wettability altering agent. 

  

  

Acid Number [mg KOH/g oil] Base Number [mg KOH/g oil] 

2.84 

± 0.01 

0.95 

± 0.01 
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 Preparation of Polymer 
 

For polymer injection hydrolyzed polyacrylamide (HPAM) was prepared. Aspects 

which were important to take into consideration under preparation was 

unnecessary exposition to air, iron contamination, shear degradation, sample 

homogeneity and creation of microgels. 

 

First, a stock solution was prepared. The mother solution had a concentration of 

5000 ppm in 0.3 wt. % NaCl. To prepare this, 540 grams of pre-filtered 0.3 wt. % 

NaCl was added to a beaker. The beaker was put on a magnetic stirrer, and the 

speed was adjusted to achieve a vortex extending 75% of the vertical length of the 

beaker. It was important to have a beaker with sufficient wide diameter to achieve 

a good mixing of the polymer solution. 

 

The activity of HPAM is approximated to be around 90%. The final concentration 

in ppm is therefore: 

 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
106 ∗ 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 90
𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 ( 4.1 ) 

 

3 grams of HPAM was added to the NaCl solution. To achieve best possible mixing 

the HPAM was added to the shoulder of the vortex. Addition of HPAM had to 

happen slowly to avoid lumps, which dissolves badly.  After 2 hours of mixing, the 

rotation speed of the magnet was reduced, and kept overnight at low rate. The 

viscosity of the solution was then measured using a cone & plate geometry on a 

Malvern Kinexus rheometer. 

 

It was of interest to find the best suited polymer solution for polymer injection. 

The stock solution was diluted with 0.3 wt.% NaCl to 1000 ppm, 600 ppm, 300 

ppm and 100 ppm HPAM solutions. The solutions were put on magnetic stirrers 

at low rate over night to achieve homogenous distribution in the solution. The 

viscosity of the solutions were then measured using a cone & plate n the Malvern 

Kinexus rheometer. Afterwards, the solutions were filtered, and viscosity 

measured again.  
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 Preparation of Surfactant 
 
The preparation of surfactants was done by mixing 1 wt. % surfactant with 3000 

ppm NaCl low salinity brine. The surfactants used are XOF 25S and XOF 26S, both 

sodium alkyl benzene sulphonate surfactants from Huntsman. The percentage of 

active matter in the surfactants were 25.6% (XOF 25S) and 24.5% (XOF 26S). The 

general molecular structure is given in Figure 3.7 

 

 

To study formation of gels, mixtures containing 50 wt.% surfactant and 50 wt.% 

diluted North Sea oil was made. The samples were left to equilibrate for a couple 

of days. Figure 4.2 shows the oil and surfactant solution in equilibrium. No Winsor 

type III phase was observed in neither surfactant solutions. Viscosity 

measurements were done on pure samples and samples which had been in 

equilibrium with oil. Little difference was observed in viscosity indicating low 

formation of gels.  Formation of gels is unfavourable as it can hinder the transport 

efficiency of the surfactant flood and oil bank through the reservoir [96]. 

Unpublished work at UNI Research CIPR have shown that the surfactants used in 

this experiment are stable up to 2.5 wt.%.  

 

To choose which surfactant to use in the LSSP experiments, interfacial tension 

measurements were done on pure and equilibrated samples. 

 

Figure 4.2: Left: Surfactant samples, XOF 26S (left) and XOF 25S (right) 
Right: Surfactant samples in equilibrium with oil, XOF 26S (left) and XOF 25S (right) 
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4.2 Core Preparation and Waterflooding 
 

 Core Preparation 
 
The length of the six cores in this study was in the beginning measured to calculate 

the bulk volume of the cores. Later the cores were mounted in Exxon core holders 

with a confining pressure of 22 bar. The confining pressure was achieved by 

injecting water on the outside of the sleeve, preventing fluids bypassing the core.  

The core holders were weighed and later vacuumed until they reached a sufficient 

low vacuum pressure (<1.5 Torr). 

 

 Porosity Measurements 
 
The cores were saturated using a Quizix pump at constant pressure delivery, set 

at five bar. The constant pressure delivery continued until the injected volume 

stabilized and remained constant. The porosities were obtained by two different 

methods. First, by using the Quizix pump it was possible to record the injected 

volume into the cores. Thus, the injected volume is equal the pore volume of the 

cores, as given equation ( 4.2 ) 

 

 𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑤𝑤,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ( 4.2 ) 

 

By recording the weight difference of the core holder with dry core and saturated 

core, the porosity of the cores were determined. The two methods showed 

approximately equal estimations. The cores were then left for a week at ambient 

temperature and pressure to reach ionic equilibrium. 

 

 Permeability Measurements 
 

After the porosity measurements, the cores were flooded with synthetic seawater 

(SW1) at five different rates, measuring the differential pressure over the core for 

each step. The rates were checked twice, to ensure that the flow followed Darcy’s 

law. The cores were flipped to measure the absolute permeability of the rock in 

the other flooding direction. 
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Figure 4.3: Illustration of permeability calculations 

 

As observed in Figure 4.3 the permeability was estimated by plotting the 

differential pressure against injection rate. By knowing the viscosity, length of 

core and cross sectional area in combination with the slope of curve, the 

permeability was calculated. It is possible to use this method using only two 

reference points, but using more points yields a higher certainty of measurement. 

This method was also used for endpoints effective permeabilites later in the 

experiments.  

 

 Drainage 
 

Following the permeability measurements, the core was flooded with Marcol 152. 

This was done to attain initial water saturation. To reduce end effects, the core 

was flooded in both directions. By following the same procedure as in 4.2.3, the oil 

permeability at initial water saturation was given.  
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 Aging (Wettability Alteration) 
 

After drainage, the Marcol 152  was displaced by injecting a North Sea crude oil. 

Before injecting, the crude oil was filtered through a 0.5 μm filter to remove solids.  

Changing oil from Marcol 152 to North Sea crude oil, increases the probability of 

changing the wettability due to the polar components in the North Sea crude oil. 

Afterwards it was attempted to measure the permeability of the crude oil, but this 

was not possible due to lack of stability in the pressure readings. 

 

Before putting the cores in the heating cabinet, the cores were dismounted from 

the Exxon core holders and mounted into Reslab core holders, as seen in Figure 

4.4. To obtain a change in wettability, the cores were put in the heating cabinet for 

a total of four weeks. It was first tried to age cores J1 and J2 for two weeks, but as 

only a little change in the effective endpoint oil permeability was observed, it was 

decided to age for two more weeks. Cores J3 and J4 aged four consecutive weeks. 

 

 
Figure 4.4: Cores in heating cabinet 
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The heating cabinet was then set to 110°C.  To avoid damage to the cores or gas 

precipitating out of the oil, the confining pressure was set to 27 bar. A 

backpressure regulator was used to increase the boiling point of the fluids, to 

preventing boiling during aging.  While in the heating cabinet, the cores were 

refilled with filtered North Sea crude oil each week to accelerate the aging process. 

 

After four weeks, the temperature was gradually reduced. At 50°C the cores were 

flooded with filtered North Sea crude oil to remove potential asphaltene or resin 

precipitation from the cores. At ambient temperature, the core was flooded with 

two pore volumes (PV) diluted North Sea crude oil to obtain a better mobility 

ratio. The diluted oil was injected at different rates, measuring the differential 

pressure over the core to obtain the effective permeability of oil at Swi. This was 

used as measure for wettability alteration. 

 

 Waterflooding 
 
The waterflood experiments consisted of four different flooding sequences, as 

summarized in Table 4.5. 

 
Table 4.5 : Waterflooding sequences 

 Flooding Sequence 
Core 1. 2. 3. 4. 
J1 SW1 SW2  10 % SSW 3000 ppm NaCL 
J2 SW1 SW2 10 % SSW 3000 ppm NaCL 
J3 10 % SSW SW2 3000 ppm NaCl  
J4 10 % SSW SW2 3000 ppm NaCl  
C1 SW1 4.5 % SSW   
C2 4.5 % SSW    

 
The sequence used for J1 and J2 will from now on be referred as sequence 1. The 

sequence used for J3 and J4 will be Sequence 2. The sequences for the cores C1 

and C2 will be name sequence 3 and 4, respectively. The experimental setup was 

as seen in Figure 4.5 
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Sequence 1  

Sequence 1 consists of a high salinity secondary flood, and a low salinity tertiary 

recovery sequence. In the first flood, SW1 displaced the oil. The injection was first 

done at a low rate (0.1 mL/min) until no oil production was observed for 

approximately one PV. When a state of no oil production was reached, the rate was 

increased to 0.5 ml/min and later to 1 ml/min. To minimize end effects, the 

injection rate was increased in steps at the end of each flooding sequence. Before 

each increase in rate, the effective water permeability was measured by reducing 

the rate and measuring the differential pressure. Differential pressure was 

recorded automatically under the whole flooding. At the end of the SW1 

waterflood, effective water permeability was measured. 

 

The tertiary low salinity flood was initiated at Sor, SW1. The low salinity floods were 

executed in a similar manner as for the SW1 waterflood, including permeability 

measurements before every increase in rate.  Collecting the effluent in tubes made 

it possible to do pH analysis with regards to production time. The pH 

measurements were not done in situ. 

 

 

Figure 4.5: Experimental setup  
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Sequence 2 

The experimental setup and procedure was as for sequence 1, but contrary to 

sequence 1 the initial secondary recovery flood was by low salinity brine. Tertiary 

mode is executed in same way as the secondary mode, following the flooding 

sequence given in Table 4.5. 

 

Sequence 3 

The experimental setup was as in Figure 4.5 , but instead of collecting oil in a 

fraction collector an Amott cell was used.   The core was first injected with SW1 as 

a secondary recovery method, injecting at low rate and increasing the rate when 

no production was observed from the core. The production was then continued 

with diluted SSW (4.5%) as a tertiary method, at three different rates. The 

differential pressure was recorded during the whole experiment. 

 

Sequence 4 

The experimental setup was equal to sequence 3. The core was injected with 4.5 

% diluted SSW at low rate (0.1 ml/min) until no production was observed. 

Injection was continued with increased rates of 0.5 ml/min and 1 ml/min. 

Differential pressure was recorded during the experiment. 

 

 Low Salinity Surfactant Polymer (LSSP) Waterflood 
 

The low salinity surfactant polymer (LSSP) waterflood was initiated at Sor,LSW. 

Cores C1 and C2 had prior to the LSSP waterflood been injected with 3000 ppm 

NaCl to achieve similar initial conditions. The experimental setup was equal as for 

the prior experiments, given in Figure 4.5.  The flooding sequence is summarized 

in Table 4.6, with proposed injected volumes of each fluid. During the 

experiments, deviations from the proposed injected volumes for the waterfloods 

occurred as the cores were flooded until no more oil production was observed.  In 

the LSSP experiment for core J4 there was a malfunctioning of the pump, resulting 

in varied injection rate.  
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Table 4.6: LSSP flooding sequences 

 Flooding Sequence 
 1st 2nd 3rd 4th 5th 
Fluid XOF 26S 300 ppm 

HPAM 
3000 ppm 

NaCl 
600 ppm 

HPAM 
3000 ppm 

NaCL 
PV injected 1 1 2 1 2 

 
As seen from table Table 4.6, polymer were injected in two stages with different 

concentration. The polymer was injected to give mobility control, increasing the 

volumetric sweep and therefore the area in which surfactants may act in. 

 
 Volume Estimations 

 

In some cases the produced volumes could be difficult to estimate as they were 

small.  The tubes were also of plastic, thus oil-wet, and the interface between oil 

and water would curve, evidently showing higher produced values compared to 

actual production.  In order to estimate the produced volumes, the volumes were 

compared to reference tubes of known volume. The reference tubes were 

prepared by gravimetric determination. 

 

Preparation was done by first placing a known volume of water into plastic tubes 

and noting the total weight. The tubes were then filled with oil of different 

volumes and by knowing the weight and density of the oil in the tubes, the oil 

volumes could be calculated.  For comparison with the actual production, pictures 

were taken. 

  
Figure 4.6: Illustration of reference tubes 
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4.3 Equipment 
 
In this section the apparatus used during the experiments will be described with 

emphasis on setting, principle, procedure and uncertainties in the apparatus. 

 
 Rheometer 

 

To measure the viscosity of fluids, the Malvern Kinexus rheometer (Figure 4.7)  

was used.  It is a rotational rheometer, which means that it relates the force needed 

to turn an object in a fluid to the viscosity of the fluid. The uncertainty in 

measurements were estimated to be 5% of measured value. For the purpose of the 

experiments, double gap and cone & plate geometry were used.  

 

The double gap geometry (Figure 4.8) was used for the diluted oil, surfactant and 

water samples, as it is ideal for low viscous samples. This is due to the double gap´s 

high surface area, giving high sensitivity in readings. The double gap geometry 

works by placing a pre-defined volume of test fluid into the cup, and measuring 

the torque needed to obtain a certain rotational speed.  The torque is proportional 

to the shear stress in the fluid, and can easily be converted to viscosity. This is 

done by equation ( 4.3 ). 

 𝜂𝜂 =
𝜏𝜏
𝛾̇𝛾

 ( 4.3 ) 

 
Where μ denotes the viscosity, τ is the shear stress and 𝛾̇𝛾 is shear rate.  

Figure 4.7: Malvern Kinexus Rheometer 
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Figure 4.8 Illustration of a double gap geometry (left) and a cone & plate geometry 
(right) [97] 

 

For the polymer, the cone & plate geometry (Figure 4.8) was the best-suited 

geometry. This geometry is ideal, as it only needs small samples and gives a 

constant shear rate along the complete gap. The diameter of the cone used was 40 

mm with an angle of 4°. Equation ( 4.4 ) expresses the viscosity measured in a cone 

& plate geometry [97]. 

 

 𝜇𝜇 =
𝜏𝜏
𝛾̇𝛾

=
3𝑀𝑀𝑀𝑀

2𝜋𝜋 ∗ 𝑅𝑅3 ∗ 𝜔𝜔
 ( 4.4 ) 

 
Where M is the torque, ω denotes the angular velocity, R is the radius and α is the 

cone angle. 

 
Depending on the measurement, the values obtained at low and high shear rates 

may not be accurate or reproducible. This may be related to the sensitivity of the 

geometry chosen, i.e. that the shear stress is too low to measure, or due to 

turbulent flow caused by high shear rates.   

 
As the shear rate during the waterfloods are unknown, apparent viscosities were 

calculated. The apparent viscosity is used in capillary number calculations. 
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 Spinning Drop Tensiometer 
 

The spinning drop method is an experimental method for obtaining the interfacial 

tension between two immiscible fluids.  By injecting drops of the less dense fluid 

into a capillary tube filled with the denser fluid, and spinning the tube at a certain 

rate, it is possible to obtain the interfacial tension (σ) by Vonnegut’s expression 

[98].  

 

 𝜎𝜎 =  
(∆𝜌𝜌)𝜔𝜔2𝑟𝑟𝑚𝑚3

4
 ( 4.5 ) 

 
Where Δρ is the density difference between the liquids, ω is angular velocity and  

rm is the radius. When the length of the drop is much greater than the radius, the 

droplet can be assumed as a cylinder with hemispherical ends. The bigger the ratio 

between the length and the radius, the more correct Vonnegut’s expression is. 

With increased spin the droplet will elongate as the centrifugal forces increases. 

The droplet will stop elongating when the centrifugal forces and the interfacial 

tension reaches equilibrium.   

 

Figure 4.9 Picture of droplet at different angular velocities [99] 

 

73 
 



    

The spinning drop method is an ideal method for measuring the interfacial tension 

in surfactant systems as it is developed to measure very low IFT. The apparatus 

used in the experiment, shown in Figure 4.10, was a Spinning Drop Tensiometer 

SITE100 from Kruss GmbH. 

 

 

Measurements were done using a camera, a spinning drop tensiometer and the 

software DSA2. The camera was connected to a computer, delivering images for 

interfacial tension calculations. Before starting the experiments the camera was 

calibrated using a 0.688 mm wide needle submerged in the tube, filled with only 

the heavy phase. The needle was then removed, and to avoid bubbles in the heavy 

phase, the rotational speed was set to 5000 RPM. 

 

Further the oil was injected into the tube, afore enclosing it and spinning at 

different rates. For each change of rate, equilibrium had to be reached before 

measurements were done. DSA2 required input on the density of the fluids before 

using equation ( 4.5 ). All experiments were executed at 23°C. 

 

The highest uncertainty in the measurements of IFT are found in measurement of 

the radius. This is observed in equation ( 4.5 ), as the radius is cubed. The total 

uncertainty in all the measurements was estimated to be ± 20% of the absolute 

values obtained.  

Figure 4.10: Spinning drop tensiometer 
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 Densitometer 
 

For density measurements, an Anton Paar K.G. DMA 60 Densitometer and a DMA 

602 density-measuring cell were used. The measuring cell was connected to a 

water bath operated by a Heto Birkerød temperature controller.  

 

The densitometer is connected to a hollow tube that is filled with the sampling 

fluid. By oscillating the tube, the frequency of the oscillation is recorded and is 

related to the density of the fluid. The oscillating frequency changes depending on 

the density of the fluid, decreasing with increasing density.  

 

 

 

To execute the experiment, the sampling fluid was injected inside the hollow tube 

with a syringe. The hollow tube was flushed thoroughly with the sampling fluid, 

ensuring that no other fluids were present. While the syringe was held kept in 

position, the other end was enclosed with a rubber plug. When the temperature 

was constant, the time periods were recorded. 

 

Equation ( 4.6 ) was used to calculate the density. Parameters including an * 

denotes a pure solvent. 

Figure 4.11: Densitometer 
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 ( )2*2* TT
A
1ρρ −=−  ( 4.6 ) 

 

Where T is the time period, A  is apparatus’ constant and ρ is the density of fluid. 

 

The apparatus constant can be calculated by measuring the time period for two 

fluids with known density. For simplicity it is convenient to use air and water. 

 

The density of air is given as a function of temperature (T), relative air humidity 

(F) and atmospheric pressure (B). 

 

 3
air 10

T
F0.08987B 0.46464ρ −⋅
⋅−

=  ( 4.7 ) 

 

The apparatus constant is dependent on temperature, thus it is necessary to 

measure an apparatus constant for each temperature measured.  The total 

uncertainty in all of the measurements were estimated to be ± 10-4 g/ml. 
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 pH Measurements 
 
The pH measurements were conducted using a Hach Lange pH-meter with 

accuracy of ±0.01 pH.  Prior to conducting the pH-measurements, the pH-meter 

was calibrated using three fluids of pH 4, 7 and 10. The percent calibration slope 

was 92.8.  

 

After calibration, the probe was placed in the solution. The probe was stirred 

gently, ensuring a homogenous solution during measurements. In between 

measurements, the probe was cleaned with distilled water and dried using fine 

paper. 

 
Figure 4.12: Hach Lange H160 portable pH-meter 

 
An electrochemical cell for pH measurement always consists of 

• An indicating electrode  

• A reference electrode  

• An aqueous sample 

 

While the indicating electrode is directly proportional to pH, the reference 

electrode is independent of pH. If all three parts are in contact with each other, a 

potential can be measured between the indicating electrode and reference 

electrode.  
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The potential is dependent on pH of the sample and its temperature [100]. Nernst 

equation ( 4.8 ) expresses the relationship between the measured potential E 

[mV], pH and the temperature [K].    

 

 𝐸𝐸 (𝑇𝑇) =  𝐸𝐸𝑂𝑂(𝑇𝑇) −  
𝑅𝑅𝑅𝑅
𝐹𝐹

×  𝑝𝑝𝑝𝑝 ( 4.8 ) 

Where R is the molar gas constant, T is the temperature and F is the Faraday 

constant. The Hach Lange pH-meter had a built in thermometer, giving the pH 

directly.  

 

 Other Experimental Equipment 
 
Experimental equipment used: 
 

• Fuji electric FCX-FKC  - The apparatus was used to measure the differential 

pressure over the core. The maximum span limit was 5000 mbar. A voltage 

signal was sent from the apparatus to the computer were the signal was 

converted to pressure readings. The uncertainty of the readings were 

0.04% of full range. (Figure 4.13 A) 

 

• Exxon core holder – The cores were held in rubber sleeves inside the core 

holder, forcing the flow through the core. It was important that the sleeve 

was tight to the core, preventing flow going around the core as well as 

preventing fluid used for confining pressure to invade the core. (Figure 

4.13 B) 

 
 

• Pharmacia LKB-Pump P-500 – The Pharmacia pump delivered constant 

flow rate from 1 ml/h to 500 ml/h. (Figure 4.13 C) 

 

• Back pressure regulator(BPR) –The BPR was used during production and 

aging of the cores. The BPR was set to 8 bar. (Figure 4.13 D) 
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• Foxy Jr. Fraction collector - Was used to collect the effluent during 

production. The time setting of the collector was dependent on the rate. 

(Figure 4.13 E) 

 

• Vacuum ejector from Edwards - Was used to evacuate the air from the 

cores before porosity measurements. To measure the pressure during 

vacuuming a Granville-Philips 275 mini-Convetron was utilized. (Figure 

4.13 F) 

 

• Cellstar collection tubes from Greiner Bio-one – 15 ml tubes were used to 

collect the effluent. It is estimated that the uncertainty in the reading of the 

tube values are 0.25 mL. (Figure 4.13 G) 

 

• Digitron 2004T thermometer – Was used to measure the temperature 

during experiments. The resolution of the thermometer is 0.1° in the range 

of measurements. (Figure 4.13 H) 

Figure 4.13: Experimental equipment 
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5 Results and Discussion 
 
The objective of this research was to study the effect of LSW injection on recovery 

in Berea sandstone cores, concentrating on the effect brines with different ionic 

compositions and salinities had. Following the LSW injection a low salinity 

surfactant polymer (LSSP) flood was executed. 

 
An explanation of the flooding sequences is given in 4.2.6 . 
 
5.1 Fluid and Rock Properties 
 

 Density Results 
 
All densities measured are given in appendix A.4 and only densities used during 

experiments are given in Table 5.1. The density measurements showed as 

expected [5] a decreasing tendency with increasing temperature.  In addition, the 

density of diluted North Sea crude oil (NSCO) and the low salinity brine were as 

expected lower than their respective mother solutions. The densities were used 

as inputs in the IFT measurements.  

 
Table 5.1: Density measurements, with uncertainty ± 0.001 

T (°C) ρNSCO 

 [g/ml] 
ρdiluted NSC 

 [g/ml] 
ρSW1  

[g/ml] 
ρ3000 ppm NaCL 

[g/ml] 
23 0.8999  0.8115 1.024 0.9986 

 
 

 Interfacial Tension  
 
IFT measurements were done for surfactants XOF 26S and XOF 25S in contact with 

diluted North Sea crude oil. Experiments were done on pre-equilibrated and pure 

samples of surfactant. As observed in  The uncertainty is estimated to be 20% of 

measured value. 

 

Table 5.2 and Table 5.3, surfactant XOF 26S gave the lowest interfacial tension and 

was chosen to be used in the LSSP experiment. The uncertainty is estimated to be 

20% of measured value. 
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Table 5.2: First contact interfacial tension  

T [°C] σXOF26S [mN/m] σXOF25S [mN/m] 
23 2.4*10-2 ± 0.005 5.8*10-2 ± 0.012 

 
The interfacial tension was also measured on samples of surfactant and oil which 

had been pre-equilibrated. 

 
Table 5.3: Interfacial tension of pre-equilibrated surfactant-oil system 

T [°C] σXOF26S [mN/m] σXOF25S [mN/m] 
23 1.6*10-2 ± 0.003 4.7*10-2 ± 0.009 

 
 Viscosity Results 

 
The viscosity of brine, surfactant and oil samples were measured with constant 

shear rate, while for polymer solutions the shear dependency was checked. 

Besides the polymer solutions, all values are measured at 100s-1.  The apparent 

viscosity was calculated for the polymers, and the viscosity generated is given at 

16-18s-1. It was chosen to use 300 ppm and 600 ppm HPAM in the LSSP 

experiment. 

 
Table 5.4: Viscosity of different brines, the uncertainty is 5% of measured value 

T [°C] μSW1 SW1 [cp] μ1/10 SSW [cp] μSW2 [cp] μ3000 ppm NaCl [cp] 
23 1.01 ± 0.05 1.04 ± 0.05 0.99 ± 0.05 0.93 ± 0.05 

 
Table 5.5: Viscosity of oil used in experiment, DC was collected as effluent at Swi, the 
uncertainty is 5% of measured value 

Core T [°C] μDC [cp] μCO [cp] μMarcol 152 [cp] 
J1 23 2.64 ± 0.13 33.31 ± 1.67 63.12 ± 3.16 
J2 23 2.69 ± 0.13 33.31 ± 1.67 63.12 ± 3.16 
J3 23 3.34 ± 0.17 33.31 ± 1.67 63.12 ± 3.16 
J4 23 3.31 ± 0.17 33.31 ± 1.67 63.12 ± 3.16 

 
Table 5.6: Polymer (HPAM) viscosity at different concentrations, the uncertainty is 
5% of measured value 

T [°C] μp,100 ppm  [cp] μp,300 ppm  [cp] μp,600 ppm  [cp] μp,1000 ppm  [cp] 
23 2.26± 0.11 5.25 ± 0.26 11.64± 0.58 22.02± 1.01 

 
Table 5.7: Surfactant viscosity, the uncertainty is 5% of measured value 

T [°C] μXOF 26S  [cp] μXOF 26S equil [cp] μXOF 25S [cp] 
23 1.16 ± 0.09 1.20 ± 0.09 1.18 ± 0.09 
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 Rock Properties 
 
Table 5.8: Rock properties 

 
From Table 5.8 it is observed that both porosity and absolute permeability 

measurements differs between the core. The range of the absolute permeability 

measurements are in the range of 300-400 mD, and for cores J1-J4 it seems like 

there is some consensus between the porosity and measured permeability values. 

Due to leakage during porosity measurements of C2, it is assumed that cores C1 

and C2 have equal porosity as they are cut from the same batch. 

 

5.2 Production Profiles 
 
Production profiles for all waterflood experiments are given in Figure 5.1 to 

Figure 5.6. Important production parameters for secondary water injection mode 

are summarized in Table 5.9, Table 5.10 and for tertiary mode in Table 5.13. More 

detailed experimental data is found in the appendix. 

 

Pressure was measured continuously and recorded every second. The pressure 

data has later been averaged to simplify the input in the curves. The averaging has 

been done in the add-on TDMS Reader in MATLAB Compiler Runtime. Abrupt 

changes in the pressure profiles are due to changes in rate. Three rates have been 

used; 0.1 ml/min, 0.5 ml/min and 1 ml/min. 

Core 
ID 

Length 
[cm] 

Diameter 
[cm] 

Bulk 
Volume 

[cm3] 

Pore 
volume 

[cm3] 

Porosity 
[%] 

Absolute 
Permeability 

[mD] 

Swi 

[%] 

 ±0.01 ±0.01 ±0.2 ±0.2 ±0.2  ±0.1 
J1 6.38 3.83 73.59 18.16 25.53 414 ± 20 26.2 
J2 6.34 3.83 74.04 16.94 23.19 374 ± 15 21.9 
J3 6.32 3.83 72.69 17.01 23.39 370 ± 15 24.0 
J4 6.30 3.83 72.53 16.59 22.87 331 ± 13 24.1 
C1 6.29 3.79 71.05 15.59 21.90 367 ± 15 23.7 
C2 6.48 3.80 73.34 16.06 21.90* 309 ± 12 22.7 

*It is assumed that C1 and C2 has equal porosity   
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Figure 5.2: Oil recovery curve obtained from coreflood experiments in Berea core 
J2. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 

Figure 5.1: Oil recovery curve obtained from coreflood experiments in Berea core 
J1. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 
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Figure 5.3: Oil recovery curve obtained from coreflood experiments in Berea core 
J4. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 

Figure 5.4: Oil recovery curve obtained from coreflood experiments in Berea core 
J3. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 

 

0

50

100

150

200

250

300

350

400

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

dP
 [m

ba
r]

O
il 

Re
co

ve
ry

 [%
 O

O
IP

]

Volume Injected [PV] 
Oil Recovery Pressure

10% diluted SSW SW2 3000 ppm NaCl

0

50

100

150

200

250

0

10

20

30

40

50

60

0 5 10 15 20 25

dP
 [m

ba
r]

O
il 

Re
co

ve
ry

 [%
 O

O
IP

]

Volume Injected [PV] 
Oil Recovery Pressure

10% diluted SSW SW2 3000 ppm NaCl

85 
 



    

   

Figure 5.5: Oil recovery curve obtained from coreflood experiments in Berea core 
C1. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 

Figure 5.6: Oil recovery curve obtained from coreflood experiments in Berea core 
C2.. The blue curve represents the differential pressure over the core, while the 
green curve represents the total recovery of OOIP 
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5.3 Secondary Mode Waterflooding 
 

 Secondary Synthetic Seawater (SW1) Waterflood  
 
Three cores were flooded with SW1, whereas two of the cores (J1-J2) were aged 

and the other unaged (C1).  The waterfloods were executed in accordance with 

sequence 1 and 3 in 4.2.6.  The purpose of the SW1 injection is to establish a 

conventional waterflood in which low salinity flooding can be investigated in 

tertiary mode. Important experimental data is summarized in Table 5.9. 

 
Table 5.9: Experimental data from SW1 secondary mode 

 
 Secondary Low Salinity Waterflood (LSW)  

 
For LSW in secondary mode, two aged cores (J3-J4) and one unaged core (C2) was 

investigated. Studying the effect of LSW injection contrary to SW1 injection in 

secondary mode may give an indication on which stage in production LSW may be 

most beneficial. The flooding procedures in sequence 2 and 4 in 4.2.6 were 

followed in these experiments. Important data gathered is summarized in Table 

5.10. 

 
Table 5.10: Experimental data from LSW secondary mode 

Core ID WBT 
[PV] 

WBT 
 [% OOIP] 

LSW 
Recovery  
[% OOIP] 

Sor,LSW 

[% PV] 
Krw 

(Sor,LSW) 

 ± 0.01 ± 2.0  ± 2.0  ± 1.0 ± 0.01 
J3 0.41 43.49 53.16 35.58 0.14 
J4 0.62 55.89 58.72 31.31 0.29 
C2 0.52 55.65 57.78 31.75 0.12 

 
  

Core ID WBT 
[PV] 

WBT  
[% OOIP] 

SW1 
Recovery 
[% OOIP] 

Sor,SW1 

[% PV] 
Krw 

(Sor,SW1) 

 ± 0.01 ± 2.0  ± 2.0  ± 1.0 ± 0.01 
J1 0.66 60.40 65.86 25.17 0.16 
J2 0.61 58.39 62.25 29.04 0.19 
C1 0.54 57.54 59.64 30.78 0.10 
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 Observations 
 
Based on the waterfloods done in secondary mode, indications of wettability 

alteration on the aged cores may be observed. Studies of waterflood 

characteristics such as production profiles, water breakthrough (WBT) and 

endpoint water permeabilities may indicate to which degree the wettability has 

been altered [82]. These characteristic may only serve as an indication of the 

wettability state. 

 

Summarized from 2.9, oil-wet systems have earlier breakthrough and longer tail 

production compared to water-wet systems. A comparison of the aged and unaged 

cores, for both SW1 and LSW, shows little difference in WBT saturations, except 

for J3. As expected, it is notable that the aged cores have higher tail production 

compared to the unaged cores. It is of interest that the aged cores injected with 

SW1 has the longest tail productions. This can be observed in Figure 5.7.  A 

comparison of endpoint water relative permeabilities in Table 5.9 and Table 5.10 

shows an increase in water permeability for aged cores compared to unaged cores.  

This is in accordance with previous studies [4] stating that the affinity for water 

decreases with increased oil wettability, increasing the water permeability. 
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Based on Skauge & Ottesen [17], it is expected that the Sor will be reduced towards 

a neutral-wet state. This is illustrated in Figure 2.11. Based on Sor values in Table 

5.9 and Table 5.10, only the aged rocks in the SW1 flood reduced its Sor values 

compared to the unaged core. 

 

Comparing the relative oil permeability before and after aging may also give 

indications of wettability alteration [101]. As the core shifts towards a more 

intermediate-wet state it is expected that the oil permeability will be reduced due 

to the increased oil affinity of the rock. This is also the case in this experiment, as 

seen from Table 5.11. 

 
Table 5.11: Permeabilities before and after aging 

 
Based on these observations it is hard to conclude if any significant wettability 

alteration has occurred in J3 and J4 during aging. Although some parameters show 

an alteration of wettability, others show no different behavior than for the water-

wet system. It is possible that some alteration towards oil-wet has occurred in J3 

and J4, but not in a significant order. The cores J1 and J2 seems to have an 

alteration towards more oil-wet, as many of the parameters show a shift towards 

a more oil-wet behavior.  

 
The most interesting and important observation in the secondary mode floods is 

the difference in oil recovery between SW1 and LSW. From literature (3.1) it was 

expected that LSW would give higher recoveries compared to SW1.  One 

explanation to this could be that the SW1 waterflood was performed under more 

neutral-wet conditions. This would lead to an increased production compared to 

more water-wet conditions. The importance of the initial wettability state of the 

porous medium before LS injection has been stated by Shaker Shiran [92].  

 

Core ID Absolute 
Permeability [D] 

Kro (Swi) 
Before aging 

Kro (Swi) after 
aging 

J1 414 1.16 0.94 
J2 374 1.05 0.91 
J3 376 1.17 0.74 
J4 331 1.28 1.12 
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Table 5.12: Endpoint mobility ratios for secondary mode flooding 

Core ID M0LSW 

J1 0.44 
J2 0.56 
J3 0.61 
J4 0.83 
C1 0.32 
C2 0.36 

 

The endpoint mobility ratios in Table 5.12 show that all the displacements are 

favorable and fingering is not expected to affect the displacing front. Although the 

values are low, there is some extent of deviation between the different cores. It is 

noteworthy that the cores flooded with low salinity brine has higher endpoint 

mobility ratios compared to the other cores. This may be the reason for the poor 

result with low salinity brine in secondary mode. 

 
Assuming that the aging process has yielded equal intermediate wettability states 

for all the aged cores, it can be argued that the low salinity brine has induced a 

shift in wettability towards a more water-wet state. This has been reported by 

multiple authors [26, 29, 30, 35, 44, 64, 66, 67].  The composition of the connate 

water is equal to SW1 and injecting SW1 into the cores is not expected to change 

the wettability. This is due to cores already being in equilibrium with SW1. Cores 

flooded with SW1 will therefore maintain its intermediate wetting. In the cores 

injected with 10 % diluted SSW a change in wettability is possible, as the connate 

water and injection water is not initially in equilibrium. While equilibrium is 

achieved a change in wettability may occur. An alteration towards more water-

wet, may explain the reduced production by LSW. 

 

Observations of less recovery with LSW compared to SSW injection has been 

observed earlier. Hamouda et al. [102] performed secondary flooding 

experiments on aged Bentheimer sandstone cores at 70°C.  In their experiments 

the effect of LSW (4 wt.% diluted SSW) showed a 9% OOIP less production 

compared to the SSW flood, resulting in a 22% OOIP total production. 
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Winoto et al. [38]  also experienced reduced secondary production from outcrop 

sandstone cores injected with LSW compared to SSW. In the experiment the 

composition of the injected brine and the connate brine were the same, i.e. in the 

LSW flood the connate was low saline.  Reduced production (2-5% OOIP) was 

observed in two of six injected sandstone cores.  

 
The execution of the experiments of Hamouda et al. [102] and Winoto et al. [38]  

are not similar to the experiments in this thesis, comparison of the results should 

therefore be done with caution due the complexity of crude oil/brine/rock (COBR) 

interactions. In spite of this, results obtained in the secondary flood in this thesis 

and in the work of Winoto et al. [38] and Hamouda et al. [102] emphasizes the 

importance of studying the COBR interactions prior to field implementation.  
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5.4 Tertiary Low Salinity Waterflood 
 
All cores, except for C2, were tested for LSE in tertiary mode. The procedure was 

in accordance with sequence 1, 2 and 3 in 4.2.6 for the respective cores. The LSW 

flood continued in tertiary mode in J3 and J4 with brines of different ion 

composition and salinity compared to the secondary mode. Cores J1, J2 and C1 had 

previously been injected with SW1 and were to be exposed to low salinity brine 

for the first time, injected at Sor,SW1. 

 

 Oil Recovery from LSW 
 
Important experimental parameters are summarized in Table 5.13. The table 

shows the response to low salinity brine after all the tertiary low salinity floods.  

Response for tertiary mode LSW was observed in two of five cores.  

 
Table 5.13: Experimental data from tertiary LSW  

Core ID LSW 
incremental 

Recovery 
[% ROIP] 

Total 
Recovery 
after LSW 
[% OOIP] 

Sor,LSW ΔSor,LS 

(Sors,SW1 -
Sor,LSW) 

Krw 

(Sor,LSW) 

 ± 1.0 ± 2.0 ± 1.0 ± 0.1 0.01 
J1 0 65.86 25.17 0 0.08 
J2 4.81 64.06 28.03 1.42 0.25 
J3 9.36 57.50 32.28 3.29 0.19 
J4 0 58.72 31.31 0 0.32 
C1 0 59.64 30.78 0 0.08 

 
The effect of injecting low salinity brine in tertiary mode with different salinity 

and ion compositions is given in Table 5.14 . The flooding sequences for each core 

are given in Table 4.5. 

 
Table 5.14: Experimental data from tertiary floods 

 Incremental recovery (% ROIP) 
Core ID 1st flood 2nd flood 3rd flood 

 ± 0.50 ± 0.50  
J1 0 0 0 
J2 2.61 2.26 0 
J3 6.78 2.66 - 
J4 0 0 - 
C1 0 - - 
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 Observations 
 
The cores that showed a positive response to LSW injection in tertiary mode were 

the aged cores that had the least response to the secondary mode flooding (Table 

5.9 and Table 5.10).  For both cases, production in tertiary mode is observed for 

brine of two different ionic compositions and salinities. 

 
The production in J2, as seen in Figure 5.3 and Figure 5.8, is experienced after 

changing the injection fluid from SW1 to SW2. Production of oil occurs in two 

stages during the flood, in the start, at 0.1 mL/min, and in the end of the flood. In 

the end, the production is observed when the rate is increased to 1 ml/min. 

Further reduction in salinity, injecting the 10 % diluted SSW, increases the 

production at low rates. Increasing rates and changing the injection brine to 3000 

ppm NaCl does not further increase oil recovery. No pressure buildup or fines in 

the effluent were observed, indicating that microscopic flow diversion is not a key 

contributor to the increased oil recovery. This is in accordance with previous work 

done by Boussour et al. [103] and Cissokho et al. [104]. 

 

 
Figure 5.8: Tertiary mode production profile for J2 
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Incremental oil recovery in J3 also occurs in two stages, as observed in Figure 5.4 

and Figure 5.9. The first increase in production is seen when injecting SW2. This 

flood goes up in salinity and ionic strength compared to the preceding 10 % 

diluted SSW injection. The production ceases fast, and no production is further 

observed for this flood. When changing to injection of 3000 ppm NaCl, a small 

incremental recovery is observed. As for J2, no pressure buildup or fines in the 

effluent were discovered. 

 

 
Figure 5.9: Tertiary mode production profile in J3 

  

Observations of oil production when removing divalent ions from the injection 

water has been observed by  Cissokho et al. [105], Ligthelm et al. [64], and Zhang 

et al. [30].  All experiments used NaCl brine of different salinities, experiencing 

increased production (10-13% OOIP) when reducing salinity of the injected brine. 

As Ligthelm et al. [64] and Zhang et al. [30]  had preflushed the cores with a higher 

salinity NaCl brine, the cores  only contained Na+, and no cation exchange or 

stripping effects were expected to occur. Nevertheless, production was observed , 

which Ligthelm et al. [64] attributed to double layer expansion. 
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In the first tertiary flood in J2 the salinity is reduced compared to the preceding 

flood and no divalent ions reside in the injection water. In theory this will increase 

the double layer, inducing a possibility for wettability alteration. It may also 

induce an increase in production as sites containing divalent ions will be 

exchanged with monovalent ions in an effort to reach equilibrium, detaching oil 

adhering to these sites.  In the next flood the salinity is further reduced and the 

double layer is expected to further expand, inducing higher recoveries. As there is 

no significant pressure increase or increase in pH, enhanced recovery by fines 

migration, clay swelling and/or pH increase is not  expected to be the cause. 

 
In the first tertiary flood (SW2) in J3 it is hard to determine the behavior of the 

double layer. As the salinity of the injected brine(SW2) is increased it is expected 

that the double layer will decrease, but simultaneously the divalent ions are 

removed which would have induced an expansion of the double layer.   Without 

knowing which mechanism is prevailing, a conclusion on the behavior of the 

double layer is hard to determine. However, oil adhering to clay sites by cation 

binding may be removed, resulting in increased production. In the 3000 ppm NaCl 

flood, initial conditions are similar to those experienced by Ligthelm et al. [64] and 

Zhang et al.[30], where divalent ions are removed from the core. By reducing 

salinity of the injected brine compared to the residing water, it is expected that 

the double layer will expand. As all divalent ions are removed from the core, no 

cation exchange nor stripping effect are expected to occur. It is therefore possible 

to assume as Ligthelm et al. [64]; double layer expansion may be the cause of the 

increased production in the 3000 ppm NaCl flood. 

 

Observed in Figure 5.1 and Figure 5.10, an increase in pressure occurs during the 

first tertiary flood on J1. When increasing the rate from 0.1 ml/min to 0.5 ml/min, 

a gradually increasing trend in the pressure is observed, but no oil is recovered. 

Since it was of interest to conduct comparable experiments, and no oil was 

produced for 2 PV, it was decided to increase the rate. This lead to a new gradually 

increasing trend in pressure that starts to stabilize after 2 PV of injection. As no 

oil was recovered in this step either, it was decided to continue the experiments 

by injecting the next brine.  
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Figure 5.10: Production profile for SW2 in J1, with gradually increasing pressure. 
The oil recovery is expressed as % OOIP, no oil production is observed. 

 

The pressure increase may have come as a result of fines migration or clay 

swelling in the core.  This reaction is only seen during the flood that had the 

divalent ions (Ca2+ and Mg2+) removed from the injection water.  By removing the 

divalent ions from the injection water, destabilization of the clay may occur as Na+ 

ions intrude into the clay structure, releasing clay particles.  From Figure 5.11, it 

is observed that endpoint permeability is reduced to half, as the differential 

pressure over the core has increased.  This may indicate blockage of pores.   

 

This phenomena has been reported by multiple authors [52, 106-111], where it is 

experienced that removal of divalent cations, as calcium and magnesium, from the 

injection water leads to a decrease in permeability. The decrease in permeability 

is suggested to be a result of fines migration or clay swelling blocking pore throats. 

This behavior is also experienced to occur when salinity contrast between the 

injected brine and the formation brine is high, resulting in a salinity shock through 

the porous medium [106, 112, 113].  
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Zhang & Morrow [29] experienced a similar pressure increase when injecting 

distilled water into comparable Berea cores relative to those used in this 

experiment. No production of oil was observed, ascribing the pressure increase to 

permeability damage caused by salinity contrast.  Boussour et al. [103] also 

experienced an increase in pressure when reducing the salinity of the injected 

brine on a reservoir core. The brine was free for divalent ions and no increase in 

production was observed. During the experiments fines production was observed, 

giving indication of migration being the reason for the increased pressure. 

 

As Berea sandstone consist of little to no amount of expanding clays, like 

montmorillonite or bentonite [58, 114],  the author believes that the pressure 

increase may be an effect of fines migration. Although this may be an explanation, 

no fines were observed in the effluent. Despite the fact that no oil was produced 

due to the pressure buildup, one may argue that the oil may have been 

redistributed in the core before being capillary trapped again.  
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In Figure 5.1, it is observed that the following floods for J1 exhibit stable pressures, 

indicating that possible fines migration have been stabilized. This happens when 

injecting 10 % diluted SSW that contains divalent ions. It is known that divalent 

ions stabilize clay by lowering the Zeta potential, resulting in lowering of the 

repulsive force [115, 116].  

It is noteworthy that although no production is seen in J1, there is still an increase 

in endpoint relative water permeability, as seen in Figure 5.11 and Figure 5.12.  

This behavior may be attributed to redistribution of oil in the reservoir, could 

imply a change in wettability towards a more oil-wet system or it may be a result 

of the stabilization of fines.  A change towards more oil-wet conditions may also 

happen as a consequence of stabilization of fines, as oil may adhere to the clay due 

to cation exchange.  

 

An increase in endpoint relative water permeability is observed in J4, as the 3000 

ppm NaCl flooding increases the permeability without reducing the Sor. This may 

indicate an alteration of wettability or redistribution of the oil, as for J1.  Although 

J3 and J4 shows an increasing trend in endpoint relative water permeability, Sor is 

also reduced, making it difficult to conclude on any wettability alteration 

occurring.  
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The pH measurements were done post-experimental on cores J1-J4 (Figure 5.13).  

The pH varies between 6.5 and 8, thus no significant pH change is observed during 

flooding. Single pH curves are given for each core in Appendix A.5.  

 

Lack of response to pH has been reported by multiple authors [39, 43, 48, 85]. It 

is also important to point out that the cores that produced under tertiary mode 

have same trends in pH as the cores that did not produce. As pH don’t vary much 

and the acidity of the effluent is nearly neutral, pH is not seen as a factor for 

increased recovery in these experiments. 

  

Figure 5.13: pH measurements of the effluent  
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5.5 Low Salinity Surfactant Polymer flooding (LSSP) 
 
Following the LSW injection, the cores were injected with a LSSP flood. The 

procedure was similar for all cores, given in 4.2.7. The production curve for each 

core is given in Appendix  A.9. Summarized production data is given Table 5.15. 

 
Table 5.15: Experimental results (LSSP) 

Core 
ID 

LSSP 
incremental 

Recovery 
[% ROIP] 

LSSP 
incremental 

Recovery 
 [% OOIP] 

Total 
Recovery 

after 
LSSP  

[% OOIP] 

Sor, 

LSSP 
ΔSor,LS 

(Sors,SW1 
- Sor,LSW) 

Krw 

(Sor, 

LSSP) 

 ± 2.0 ± 2.0 ± 3.0 ± 1.0 ± 0.1 ± 0.01 
J1 26.47 9.04 74.90 18.51 6.66 0.09 
J2 30.52 10.97 75.04 19.48 8.56 0.08 
J3 19.31 8.21 65.71 26.05 6.23 0.10 
J4 19.06 7.87 66.59 25.35 5.97 0.17 
C1 9.90 4.62 63.84 27.57 3.52 0.08 
C2 31.86 13.10 71.98 21.63 10.12 0.13 

 
Table 5.16: Capillary number after each chemical flood 

Core ID Nvc, surf Nvc, 300 ppm HPAM Nvc, 300 ppm HPAM 
 ± 0.3E-05 ± 0.3E-05 ± 0.3E-05 

J1 5.78E-05 2.67E-04 5.98E-04 
J2 5.79E-05 2.63E-04 5.83E-04 
J3 5.80E-05 2.64E-04 5.86E-04 
J4 5.79E-05 2.60E-04 5.71E-04 
C1 5.90E-05 2.65E-04 5.84E-04 
C2 5.37E-05 2.42E-04 5.33E-04 

 
 Observations 

 
It is observed from Table 5.5 that combining a low salinity environment with 

chemical additives, such as surfactants and polymers, results in an enhanced oil 

recovery of 10-32% ROIP.  

 

The general trend observed in the production curves is an increase in the 

differential pressure when injecting surfactants. This is due to the formation of an 

oil bank induced by the decreased interfacial tension between oil and water.  The 

decrease in interfacial tension may influence the oil production by mobilizing oil 

that has been trapped, as mentioned in chapter 2.4, or by invading the smaller 
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uncontacted pores due to more favorable capillary pressure.  Little production is 

experienced during the first pore volume of injection. Further injection of 

polymer, i.e. increasing the viscous forces, enhances the differential pressure and 

production is detected in all cores.  After one PV of injected polymers the core is 

flushed with a 3000 ppm NaCl solution until a stationary state of no more oil 

production is reached. The following polymer flood increases the differential 

pressure, and production is again seen from the cores.  NaCl is then injected until 

no production is observed from the core.  Previous studies [117]  have shown 

production of fines during surfactant flooding. No fines were observed in these 

experiments, and fines migration or clay swelling is not seen as a cause for the 

pressure buildups experienced during LSSP.  The slug sizes of the surfactant and 

polymer injection were decided to be one PV, as it is of economical interest to 

achieve highest possible recovery with least possible injection costs [118]. Slug 

optimization was not performed, as it was not part of this thesis.   

 

Comparing the different recoveries divulges a higher total recovery for J2 and C2 

compared to the other cores. 

 

Figure 5.14: Incremental recovery of residual oil after LSW waterflood 
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Studying Figure 5.14, the effect of the LSSP flood is better understood. Figure 5.14 

illustrates the incremental recovery of residual oil after the LSW waterfloods. 

Similar to previous floods, cores J1 and J2 responds well to the injected fluid, and 

has a high production of oil early in the flooding sequence.  

 

The core that responded best to the LSSP flood was C2. From Figure 5.14, it is 

observed that the unaged cores, C1 and C2, have almost equal response to the 

injection fluid until the 600 ppm HPAM flood. In the latter flood, C2 experiences 

an increase in incremental production of 20% OOIP, resulting in the highest 

recovery of all tested cores. A reason for this behavior could be that the retention 

is satisfied after 300 ppm HPAM injection, leading to little retention during the 

600 ppm HPAM injection.   

 

Disregarding the effect of 600 ppm HPAM on C2, the cores that responds best to 

the LSSP are the aged cores. This has previously been reported for surfactants by  

Alagic [82] and Solbakken [117] . The behavior was explained by Alagic [82] to be 

due to less water-wet cores containing more unstable oil layers, with larger degree 

of continuous oil. The effect of using surfactants was therefore thought to be more 

an effect of avoiding re-trapping of oil at low capillary pressure, than oil 

mobilization due to higher capillary numbers. 

 

From literature [119], the critical capillary number for water-wet and 

intermediate-wet Berea sandstone are ~10-5 and ~10-4, respectively. From Table 

5.16 it is observed that the capillary number for the surfactant flood is in the 

critical area of the capillary desaturation curve for Berea sandstone.  This is also 

illustrated in Figure 5.15. This may be an explanation for the low response 

observed early in the LSSP. Another explanation may be that not sufficient 

amounts of surfactants were injected. In the work of Alagic [82]  the majority of 

enhanced production by low salinity surfactant flooding was observed after 1 PV, 

it could therefore been beneficial to inject larger surfactant slugs. It is important 

to emphazise that optimization of the surfactants have not been done, and that the 

surfactant system chosen has only been chosen based on interfacial tension 

measurements. Optimization of the surfactant system could enhance the effect of 
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the surfactant flood.  Increasing the viscous forces, injecting 300 ppm HPAM, the 

capillary number gets more favorable, and increased production is observed in all 

cores.  When adding polymers to the injection water, the efficiency of oil banking 

is improved as a result of more favorable mobility ratio, thereby increasing the 

displacement efficiency. It is assumed that the polymer does not influence the 

interfacial tension between the oil and brine. Further increase in the viscous 

forces increases the production from the cores. 

 

 

 

From Figure 5.15 it is possible to analyze the capillary numbers obtained in these 

experiments, showing some deviation compared to literature values.  One 

explanation to this could be that the slug sizes chosen were too small. It is believed 

that bigger slug sizes, either of surfactants or polymers, could have given higher 

recovery, as production was still occurring when the slugs sizes ended.  This 

would have given higher reduction in Sor, and give more correct values compared 

to literature.  Unpublished work by Al-Ajmi [120] confirm this, observing 

increased recovery with increased surfactant slug sizes. 
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Retention of surfactants during flooding at residual oil saturation can be expected 

due to (i) adsorption onto the rock surface, (ii) trapping in immobile hydrocarbon 

phases and (iii) precipitation with divalent ions [73]. No precipitation is expected, 

as the cores are free for divalent ions. Presuming that cores J1 and J2 are more oil-

wet compared to the cores J3, J4, C1 and C2, may explain the recovery behavior 

during LSSP. It is believed that anionic surfactant retention in water-wet systems 

are higher compared to more oil-wet systems. This is especially thought to be the 

case in a Winsor type I system, where the surfactants resides in the brine.  As the 

surfactant is in the aqueous phase and is in less contact with the rock, due to the 

rock`s increased affinity for oil, the retention is believed to decrease.  As less 

retention is experienced, the effect of the surfactant is believed to increase. 

Although the phase behavior in these experiments is not know, this may be an 

explanation for the better response in more oil-wet cores. 
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6 Conclusion 
 
In literature, the potential for enhanced recovery with LSW has shown to be 

beneficial. Through this study, the potential for low salinity brine in secondary and 

tertiary mode, as well as in combination with a low salinity surfactant polymer 

(LSSP) waterflood, has been investigated. 

 

The results of these experiments shows a lower production (1-12% OOIP) by 

injecting low salinity brine compared to injecting synthetic seawater in secondary 

mode.  These results are in contradiction to most results reported in the literature. 

One possible explanation is that the results can be attributed to different 

wettability states in the cores. This can have been induced by poor wettability 

alteration during aging and/or wettability alteration during LSW flooding towards 

more water-wet state. 

 

In tertiary mode enhanced production (5-9% ROIP) was observed in altering ion 

composition or reducing totalt salinity. The extra oil production was observed in 

some of the cores, but seems not to be reproduced in all parallel experiments. No 

significant change in pH was observed during the LSW injection and no fines were 

found in the effluent. These mechanisms are therefore not considered to cause 

increased recovery.  

 

Flooding core J1 with water lacking divalent ions showed a pressure increase 

without enhancing the oil recovery. This is consistent with prior studies, and 

neglects fines migration or clay swelling being the primary mechanism for the low 

salinity effect. This is also supported by the previous mentioned enhanced oil 

recovery in tertiary mode. 

 

A significant response to LSSP (11-32% ROIP) was observed in all cores. It is 

experienced that less water-wet systems respond better to LSSP than water-wet 

cores. 
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7 Further Work 
 
Although the interest in low salinity waterflooding is increasing, there are still 

many aspects which needs to be further investigated.  

 

Most importantly, it should be prioritized to understand the mechanisms 

prevailing during LSW floods. To achieve this, it would be beneficial to adapt a 

basic setup for research on COBR interactions, making it easier to compare the 

different results. Also, obtaining basic information about the cores and corefloods 

by using CT scanning, XRD diffraction, ICP analysis and electron micrographs 

would enhance the information available. 

 

Another aspect which would be interesting to investigate is the impact of LSSP on 

reservoir cores. It has been observed that reservoir cores respond better to LSW 

than outcrop cores, and investigating if this also applies for LSSP would be 

beneficial. Additionally, this can be extended with studies of the effects of pH, 

wettability, pressure and temperature on LSSP. 

 

It would be of interest to study the impact of LSW in secondary mode, especially 

to understand why there is observed different trends in results with respect to oil 

recovery.  A lot of studies have been made on LSW in tertiary mode, and it would 

be beneficial to quantify the process improvements by LSW in secondary mode.  

This could be further extended to study the effects of LSW on different wettability 

systems in secondary mode.  
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A Appendix 
 
A.1 Fluid Properties 
 
Table A.1: Summary of fluid properties at ambient temperature 

Fluid Density  [g/cm3] Viscosity [cp] pH 

SSW (SW1) 1.02 1.01 7.70 

3000 ppm NaCl 1.00 0.92 5.90 

1/10 SSW - 1.04 6.96 

1/22 SSW - - - 

SW w/o Ca2+ & Mg2+ 

(SW2) 

- 0.99 7.97 

North Sea Crude oil 0.90 31.5 - 

North Sea Crude + 

40% octane* 

0.81 3.31 - 

North Sea Crude + 

40% octane** 

0.81 2.71 - 

Marcol 152 - 63.3 - 

XOF 25S 0.99 1.38 9.34 

XOF 26S 0.99 1.16 4.66 

1000 ppm HPAM - 11.2 6.42 

600 ppm HPAM - 6.92 6.30 

300 ppm HPAM - 3.58 6.18 

100 ppm HPAM - 1.77 6.14 
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A.2 Measured rock properties 
 

 Length 
 [cm] 

Average 
length [cm] 

Diameter 
[cm] 

Average 
diameter [cm] 

J1 

6.38 
6.38 

± 0.01 

3.835 
3.8325 
± 0.01 

6.38 3.835 
6.38 3.83 

6.385 3.83 

J2 

6.345 
6.34 

± 0.01 

3.83 
3.82875 

± 0.01 
6.345 3.825 
6.34 3.83 

6.345 3.83 

J3 

6.32 
6.33 

± 0.01 

3.825 
3.825 
± 0.01 

6.325 3.825 
6.33 3.83 

6.325 3.82 

J4 

6.25 
6.3 

± 0.01 

3.83 
3.238 
± 0.01 

6.30 3.825 
6.30 3.83 
6.35 3.83 

C1 

6.29 
6.29 

± 0.01 

3.79 
3.79 

± 0.01 
6.295 3.80 
6.30 3.79 
6.29 3.79 

C2 

6.47 
6.48 

± 0.01 

3.79 
3.80 

± 0.01 
6.48 3.8 
6.48 3.8 
4.48 3.79 

 
 
A.3 Salts 
 
 
Table A.2: Salt manufacturers 

Salt 
 

Manufacturer 

NaCl Sigma-Aldrich 
Na2SO4 Sigma-Aldrich 
NaHCO3 Fluka-Chemika 

KCl Fluka-Chemika 
CaCl2 * 2H2O Sigma-Aldrich 

MgCl2 * 6 H2O Fluka-Chemika 
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A.4 Density Measurements 
 
 
Table A.3: Density measurements, with uncertainty ± 0.001 

T (°C) ρNSCO  
[g/ml] 

ρdiluted NSC 
[g/ml] 

ρSW1 

 [g/ml] 
ρ3000 ppm NaCL 

[g/ml] 
21 - 0.8227 1.042 - 
23 0.8999 0.8115 1.024 0.9986 
25 0.8982 0.8084 1.021 0.9984 
27 0.8977 - - 0.9976 
29 0.8963 - - 0.9964 

 
 

Table A.4: Density measurements of surfactant and oil in equilibrium, uncertainty  
± 0.001 

T (°C) ρdiluted NSC  

[g/ml] 
XOF 25S 
 [g/ml] 

ρdiluted NSC 

[g/ml] 
XOF 26S  

[g/ml] 
23 0.8087  0.9987 0.8098  0.9961  
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A.5 pH measurements 
 

 
 
 

0

1

2

3

4

5

6

7

8

9

0.00 5.00 10.00 15.00 20.00 25.00

pH

Volume Injected [PV]
pH

SW1 SW2 10% diluted SSW 3000 ppm NaCl

Figure A.1: pH measurements on J1 waterfloods 
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Figure A.2 pH measurements for J2 waterfloods 
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Figure A.3:  pH measurements for J3 waterfloods 

Figure A.4: pH measurements for J4 waterfloods 
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A.6 Viscosity Data 
 

 
Table A.5: Viscosity of HPAM solutions at different shear rates 

HPAM Concentration 
[ppm] 

Shear rates [s-1] 
1 10 100 1000 

100 4.85  
± 0.24 

2.35 
± 0.12 

1.77 
± 0.09 

3.62 
± 0.18 

300 8.89 
± 0.44 

5.97 
± 0.30 

3.61 
± 0.18 

6.29 
± 0.31 

600 29.96 
± 1.50 

13.96 
± 0.70 

6.29 
± 0.31 

10.56 
± 0.53 

1000 80.35 
± 4.202 

26.99 
± 1.35 

11.2 
± 0.56 

11.71 
± 0.59 
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Figure A.5: Shear dependency of HPAM solutions 
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A.7 Interfacial tension 
 
Table A.6: Interfacial tension measurements for XOF 25S 

T [°C] Rotational 
velocity [RPM] 

σo/w  
[mN/m] 

 

σo/w, average 
[mN/m] 

 
23 2400 0.05859  

0.04746 
± 0.009 

23 3400 0.04457 
23 3900 0.04097 
23 5600 0.04572 

Pure Sample 

23 5600 0.05831 0.05831  
± 0.009 

 
 
Table A.7: Interfacial tension measurements for XOF 26S 

T [°C] Rotational 
velocity [RPM] 

σo/w 
[mN/m] 

 

σo/w, average 
[mN/m] 

 
23 2400 0.01487  

0.01554 
± 0.002 

23 2800 0.01348 
23 3400 0.01828 

Pure Sample 

23 4000 0.02931 0.02931 
± 0.002 
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Figure A.6:  Interfacial tension measurements for different rotational velocities on 
equilibrated  XOF 25S 
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Figure A.7: Interfacial tension measurements for different rotational velocities on 
equilibrated XOF 26S 
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A.8 Experimental Production data 
 
 
Table A.8: Experimental data obtained during waterfloods in J1 

 
  

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil volumes 
from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

  ± 0.1  ± 0.1  ± 2.0   
SW1  

0.1 0.655 8.085 60.40 WBT 
0.1 3.040 8.435 63.02   
0.5 6.570 8.775 65.56   

1 8.355 8.815 65.86   
SW2  

0.1 10.49 8.815 65.86   
0.5 13.1 8.815 65.86   

1 15.86 8.81 65.86   
10 % dilution SSW 

0.1 17.84 8.815 65.86   
0.5 20.99 8.815 65.86   

1 23.32 8.815 65.86   
3000 ppm NaCL 

0.1 25.47 8.815 65.86   
0.5 27.59 8.815 65.86   

1 29.6 8.815 65.86   
LSSP 

0.1 39.31 10.015 74.90  
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Table A.9: Experimental data obtained during waterfloods in J2 

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil 
volumes 

from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

 ± 0.1  ± 0.1  ± 2.0  
SW1  

0.1 0.61 7.72 58.39 WBT 
0.1 2.79 8.16 61.72  
0.5 4.68 8.23 62.25  

1 5.93 8.23 62.25  
SW2  

0.1 7.75 8.29 62.70  
0.5 9.27 8.29 62.70  

1 12.03 8.36 63.23  
10 % dilution SSW 

0.1 15.89 8.47 64.06  
0.5 18.13 8.47 64.06  

1 19.67 8.47 64.06  
3000 ppm NaCL 

0.1 21.20 8.47 64.06  
0.5 23.08 8.47 64.06  

1 25.25 8.47 64.06  
LSSP 

0.1 33.20 9.92 75.03  
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Table A.10: Experimental data obtained during waterfloods in J3 

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil volumes 
from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

 ± 0.1  ± 0.1  ± 2.0  
10 % dilution SSW 

0.1 0.41 5.62 43.49 WBT 
0.1 3.89 6.87 53.16  
0.5 6.25 6.87 53.16  
1 7.92 6.87 53.16  

SW2 
0.1 9.76 7.28 56.34  
0.5 11.44 7.28 56.34  
1 12.80 7.28 56.34  

3000 ppm NaCL  
0.1 14.83 7.43 57.50  
0.5 16.18 7.43 57.50  
1 17.85 7.43 57.50  

LSSP 
0.1 26.99 8.49 65.61  
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Table A.11: Experimental data obtained during waterfloods in J4 

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil volumes 
from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

 ± 0.1  ± 0.1  ± 2.0  
10 % dilution SSW 

0.1 0.62 7.04 55.89 WBT 
0.1 4.51 7.30 57.97  
0.5 8.05 7.39 58.72  
1 9.76 7.39 58.72  

SW2 
0.1 11.74 7.39 58.72  
0.5 13.41 7.39 58.72  
1 14.88 7.39 58.72  

3000 ppm NaCL  
0.1 17.05 7.39 58.72  
0.5 19.05 7.39 58.72  
1 21.05 7.39 58.72  

LSSP 
0.1 29.40 8.38 66.59  

 
Table A.12: Experimental data obtained during waterfloods in C1 

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil volumes 
from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

 ± 0.1  ± 0.1  ± 2.0  
SW1 

0.1 0.55 6.7 55.90 WBT 
0.1 4.04 7.1 59.64  
0.5 6.92 7.1 59.64  
1 9.81 7.1 59.64  

4.5 % dilution SSW  
0.1 13.59 7.1 59.64  
0.5 16.76 7.1 59.64  
1 18.98 7.1 59.64  

LSSP (inc. NaCl preflush) 
0.1 28.44 7.65 63.85  
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Table A.13: Experimental data obtained during waterfloods in C2 

Rate 
[ml/min] 

Total Injected 
brine [PV] 

Produced Oil volumes 
from core [mL] 

Oil 
Recovery 
[% OOIP] Comments 

 ± 0.1  ± 0.1  ± 2.0  
4.5% diluted SSW 

0.1 0.75 7.1 57.27 WBT 
0.1 3.78 7.2 58.07  
0.5 6.09 7.2 58.07  
1 9.56 7.3 58.88  

LSSP (inc. NaCl preflush) 
0.1 18.07 8.93 71.98  
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A.9 LSSP Production Curves 

 

 

Figure A.8: LSSP waterflood J1 

Figure A.9: LSSP waterflood J2 
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Figure A.10: LSSP waterflood in J3 

Figure A.11: LSSP waterflood in J4 
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Figure A.12: LSSP Flood for C1 including NaCl preflush 

Figure A.13: LSSP Flood for C2 including NaCl preflush 
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Figure A.14: Residual oil saturations during LSSP 
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