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Abstract

The 2-dimensional discrete random walk is one of the most simple and
most important lattice processes in the plane. It is the well-known that
its scaling limit, as the mesh size approaches zero, is given by the 2-
dimensional Brownian motion. An important property of the 2-dimensional
Brownian motion is its conformal invariance. In statistical physics, how-
ever, there is a number of other important lattice models in two dimen-
sions expected to have conformally invariant scaling limits. Until recently,
describing those limits was considered an extremely challenging task.

In 2000, Oded Schramm combined the Lowner equation, a well-known
tool in the geometric function theory, with stochastic calculus in order to
tackle this problem. This approach was highly successful, and the resulting
2-dimensional process, known today as the Schramm-Léwner evolution,
has since become one of the most researched topics in probability.

The underlying deterministic Lowner equation has also attracted re-
newed interest in the last decade. In particular, the so-called general
Loéwner theory was created, allowing to treat three versions of the Lowner
equation (radial, chordal and dipolar) in a uniform way.

The general theory describes a vast class of evolutions of complex do-
mains. However, several crucial features common to radial, chordal and
dipolar equation were lost in generalization. In this work, we study a
subclass of general Lowner equations preserving those features. In partic-
ular; the evolutions have slit geometry and in the stochastic case lead to
holomorphic stochastic flows.

The thesis is organized as follows. In Section 1.1, we cover most of the
preliminaries in complex analysis and probability beyond the graduate
course level, which are needed for understanding the main results of the
thesis. In Section 1.2 we give a brief introduction to the Léwner theory,
with an emphasis on the general Lowner theory. Section 1.3 describes
the Gaussian free field, a random object through which Schramm-Loéwner
evolution interacts with the conformal field theory (CFT).

We include four research papers, preceded by their brief descriptions.
Paper A deals with geometrical aspects of the deterministic radial and
chordal Lowner equations. Paper B studies a subclass of general Lowner
equations with a “boundary attracting point”, which leads to holomorphic
stochastic flows in the stochastic case. In Paper C we define general slit
Lowner chains and general slit holomorphic stochastic flows. In Paper D
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we look at how the Gaussian free field is related to general slit holomorphic
stochastic flows.
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Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Topics in complex analysis
Riemann mapping theorem and theory of prime ends

Let D be a simply connected open subset of the compactified complex
plane C = C U {oo}, such that the complement C \ D contains infinitely
many points. A classical result in complex analysis, the Riemann mapping
theorem, states that D is conformally isomorphic to the unit disk D = {z :
|z|< 1}, i.e., there exists a holomorphic bijection f : 1D — D. It is usual
to say in this case that D is a simply connected hyperbolic domain.

Let D = DUJD, and D = DUJD. According to the Carathéodory
extension theorem (see [Pom75]), the mapping f can be extended to a
homeomorphism f : D — D if and only if the boundary 9D is a Jordan
curve (i.e., a non-self-intersecting continuous loop).

It is possible, however, to generalize the notion of boundary points in
a way that such a homeomorphic extension of f can be constructed for
any simply connected hyperbolic domain, no matter how complicated its
boundary is. These generalized boundary points are called prime ends,
and they are defined as equivalence classes of so-called fundamental chains
of crosscut neighborhoods. This construction is well-known and can be
found in many sources, for instance, in [Mil06, §17].

We use P(D) to denote the set of prime ends of D, and write D=
DUP(D). Then D can be given a topology such that f : D — D extends
to a homeomorphism f :D — D. The set D endowed with this topology
is called the Carathéodory compactification of D, and D is canonically
homeomorphic to D.

With this terminology in hand we can formulate the following version
of the Riemann mapping theorem.

Theorem (the Riemann mapping theorem). Let D C C be a simply
connected hyperbolic domain, let a € D, and let the prime ends by, b,
bs € P(D) be distinct and ordered anticlockwise. Then there ezists a
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conformal isomorphism
f:D— D,

which can be uniquely extended to a homeomorphism of Carathéodory com-
pactifications

f:D—D.
The map f can be specified uniquely by imposing any of the following three
normalization conditions

1. f(0) = a and f'(0) >0,
2. f(0) =a and f(1) = by,
3. f(=i) = by, f(1) = ba, and f(i) = bs.

Holomorphic semiflows in the unit disk

This section contains a brief overview of the most basic results in the
theory of holomorphic semiflows. Detailed explanations and proofs can be
found, e.g., in [ShoO1].

Let Hol(ID, D) denote the set of holomorphic maps of D into itself, and
let Aut(D) C Hol(ID, D) be the set of holomorphic automorphisms of D.

Definition 1. A family {g¢; };>0 C Hol(D, D) is called a holomorphic semi-
flow in D (or, alternatively, a one-parameter continuous semigroup of
holomorphic self-mappings of D) if

1. go = id]D),
2. Jt+s = Gt © s, for st > OJ
3. limy o+ g1(2) = 2 for each z € D.

These conditions imply that the family g; is continuous in the local uni-
form topology (the topology of uniform convergence on compact subsets
of D). Moreover, for every fixed z € D, the map ¢ — g;(z) is differentiable
for all ¢ € [0, 4+00).

In the case when ¢g; € Aut(D) for all ¢ > 0, the semiflow {g;}+>¢ can be
extended to a flow {g;}ier by setting g_; := g; *.

For every holomorphic semiflow {g; };>¢ there exists a unique holomor-
phic function V : D — C, such that

{&g&z) = Vi(g:(2)),

) t>0,zeD. (1.1)
go(z) = 2

)

The function V is called the infinitesimal generator of the semiflow {g; }+>0.
Infinitesimal generators of flows and semiflows are often called complete
and semicomplete holomorphic vector fields, respectively.
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There is a simple representation formula for semicomplete vector fields.
A holomorphic function V(z) is a semicomplete holomorphic vector field
if and only if it can be written in the form

V(z) =V (0) — zq(z) — V(0) 22, (1.2)

where ¢(z) is a holomorphic function with Reg(z) > 0 . Moreover, V(z)
is complete if and only if ¢(z) = ib, b € R.

By the Schwarz lemma, a map ¢ € Hol(D,D), ¢ # idp, may have at
most one fixed point 7 in . In this case, ¢ is said to be a mapping of
elliptic (or dilation) type. Otherwise, by the Denjoy-Wolff theorem, there
exists a unique point 7 € 9D, such that / lim,_,, ¢(z) = 7, and the angular
derivative @ = /lim,_,, 2Z=T exists with 0 < a < 1. If 0 < o < 1, then

¢ is of hyperbolic type, anzd Tif a = 1, then ¢ is of parabolic type.

In all the three cases, the point 7 is called the Denjoy- Wolff point of ¢.

In a semiflow {g;}:>0, all functions except for gy = idp are mappings
of the same type, and they all have the same Denjoy-Wolff point 7. We
can thus call 7 the Denjoy-Wolff point of the semiflow {g;}i>0.

The notion of the Denjoy-Wolff point leads to another important rep-
resentation formula for semicomplete vector fields, which was found by
Berkson and Porta [BP78]. A holomorphic function V(z) is a semicom-
plete holomorphic vector field if and only if there exists a point 7 € D and
a holomorphic function p : D — C, with Rep > 0, such that

V(iz)=(z2—71)(Tz—=1)p(2), ze€D. (1.3)

This representation is unique if V(z) # 0. The point 7 in this representa-
tion is precisely the Denjoy-Wolff point of the generated semiflow {g;}+>o.
We call the function p(z) the Herglotz function, and the point 7 the at-
tracting point of the field V(z). The term “attracting point” is motivated
by the fact that g,(z) — 7 locally uniformly in I as ¢ — +00, except for
the case when {g; }+>0 is a semiflow consisting of elliptic automorphisms.

Pushforwards of holomorphic vector fields

It is easy to extend the definition of holomorphic semiflows to an arbitrary
simply-connected hyperbolic domain D, which amounts to replacing D by
D in Definition 1.

Let f: D1 — Dy be a conformal isomorphism of two simply connected
hyperbolic domains. If {g} };>0 is a semiflow in Dy, then {g?};>0 = {¢ogio
gzﬁ’l}tzo is a semiflow in Dy. Let Vi and V5 be the infinitesimal generators
of {g} }1>0 and {g?}+>0, respectively. Then we say that the vector fields V;
and V5 are ¢-related, and we call V4 the pushforward of V} with respect to
¢. We write V5 = ¢, V). Explicitly,

1
¢~V (2)

¢ Vi(2) = Vi(o7'(2)).
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Lie derivatives of complex functions

Let f be a C''-smooth complex-valued function in a domain D, and let
z = x +4y. Then it is common to write

o =5 =3 (5 -ig) 4

9:  2\0x 'y
sp 0 _1(0 0
8f822<8x+28y>f'

Let V' be a holomorphic vector field in a domain D. Then V acts on a
complex function f € C'(D,C) according to the rule

[ (Vo+Vo)f.
We denote this operator by Ly, so that
Ly=Vao+Vo.

It is a special case of the Lie derivative. Geometrically, £y represents the
derivative of f in the direction of the semiflow generated by V.
Some of its basic properties are listed below.

1. Ly f is linear in f and V;

2. Lyf = Lyf, and, consequently, Ly Re f = ReLyf, LyImf =
Im Ly f;

3. Ly (0f) = 0Ly f, Lv(Df) = 0Ly f.

This definition of the Lie derivative can be extended to the case of

several complex variables, that is, when V is a vector field in a domain
D cC" and f: C" — C. We write z = (21,...,2,), 0 = (%,..., %),
0= (a%l, e 8%)7 V(z) = (Vi(2),...,Va(2)), and then the derivative of

f along the flow generated by V is given by the sum of dot products
Lyf(z)=(V(2)-0+V(z)-0) f(2). (1.4)

1.1.2 Topics in stochastic analysis

Unless specified otherwise, the detailed formulations and proofs of the
results mentioned in this section can be found in [Dks03] or [RY99].

Stochastic integrals of It6 and Stratonovich

The two most widely used types of stochastic integrals are those of It6 and
Stratonovich. The corresponding constructions are fairly complicated; it
is possible however to give intuitively clear definitions if the integrands
are adapted continuous processes.

Let X; be a continuous process adapted to the filtration {F;};> of the
standard Brownian motion By, and let T" > 0. Then the Ité integral of X,
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with respect to By on [0,T] can be defined as the limit in probability of
the Riemann-Stieltjes sums

T n
/0 Xt dBt = Al%r_r)lo ,21th71 (Btj — Btj—l) 5 (15)
j=

where 0 = o<t <...<t,= T, and At := maszl,_._,n(tj — tj;l).

Similarly, the Stratonovich integral can be defined as the limit in prob-
ability

T n
/O X, 0dB; = Al}s%;xg,;m (B, — Bi,_,). (1.6)

The definitions of the It6 and Stratonovich stochastic integrals can be
extended to more complicated integrands and integrators, but the intuitive
formulas (1.5) and (1.6) will not hold in general.

For a fixed T > 0, the It6 integral fOT X, dB; is a random variable, and
it is defined up to a set of measure zero. If we allow the upper integral
limit vary, then fg X, dB,; may be regarded as a stochastic process. More
precisely, it can be proved that there exists a continuous process Y; adapted
to {F; }i>osuch that

t
IP’(Y;:/OXSdBS> —1 forallt>0.

Similarly, the Stratonovich integral fot X,0dB, with a variable upper limit
also defines a continuous stochastic process.
IfE (fOT X2 ds) < oo for all T > 0, then [} X, dB, is a martingale. If we

relax this condition to P ( fOT X2ds < oo) = 1, then we can only guarantee
that Y; is a local martingale. Moreover, by the martingale representation
theorem, every continuous {F};>o-adapted local martingale M, can be
written as My = My + jg’ X, dB; for some Fy-adapted process X;.

Quadratic covariation

Recall that the quadratic covariation of two processes X; and Y; is defined
as the limit in probability
n

<XT7 YT> = <X7 Y>T = Aligl() Z:l(Xt7 - thfl) ()/t] - Y;jq)
J=

(if it exists). As before, 0 =ty < t; < ... < t, = T, and At :=

max;—1,...n(t; — tj-1).
Suppose that the processes X; and Y; can be represented by

Xi(w) = /Otbl(w,s) ds—b—(/otal(w,s) dB;(w), (1.7)

and
Yi(w) :/Otbg(w,s) ds—i—/otag(w,s) dBs(w),
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where b;(w, t), 0j(w,t), j = 1,2 are F-adapted processes satisfying

P </(;T|bj(w,s)|ds < oo) _1, P </()T]Jj(w,s)|2ds> _1,

for all T'> 0 and j = 1,2. Then the quadratic variation can be conve-
niently written as the following integral

(X, Y)(w) = '/Ot o1(w, 8) o2(w, ) ds.

The notion of quadratic covariation provides a simple formula relating
the two types of the stochastic integral mentioned above:

T T 1
/OXtodBt:/O X.dB, + (X, B)r. (1.8)

Complex Ito formula

Let w; = X! + iX? be a complex-valued process such that the real-
valued processes X/}, X? are of the form (1.7). Let f : C — C be a
twice differentiable complex function. The complex Itd formula [Ubg87]
describes how w; transforms under such functions:

¢ t_ B
Jw) = flwo) + [ 0f (ws) dw, + [ 9f(w,) dw,
Loty Lorto - (1.9)
+5 | Prw)dtw)+ 5 [ 0w, dw),
t
+ | 00f (wy) dw, ).,
which is usually written in the shorter differential form

df (wy) = Of (wy) dwy + O.f (wy) dwy

! o ) (1.10)
+ 5 O f (wy) d(w) + > O f(wy) d(w)e + 00 f (wy) d{w, ).

Suppose w; satisfies the following Stratonovich integral equation
ot n ot &
we=wo+ [ blw)ds+ > [ on(w,) o dBl, (1.11)
0 =0

with holomorphic coefficients b and o, and n independent Brownian mo-
tions B},...,B". A more usual, but formal, way to write (1.11) is the
Stratonovich stochastic differential equation (SDE)

dw, = b(wy) dt + 3 op.(w;) o dBF. (1.12)
k=1
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It can be deduced from (1.8) and (1.10) that (1.12) is equivalent to the
following It6 SDE!

dwt:(

which is shorthand for the It6 integral equation

l\D\'—‘

Z (wy) o (wy ) dt + Y ox(w,) dBY,

k=1

¢ 1 .n
wt:wo—b—(/o (b 52 (ws) akws)) ds+2/akws ydB".

Processes satisfying (1.12) are a special case of diffusion processes. For
diffusion processes with holomorphic coefficients, as in (1.12), the complex
It6 formula can be elegantly formulated using the Lie derivatives notation.
Given a twice differentiable function f : C — C, the process f(w;) satisfies
the following SDE

df () = Ly f(wn) dt + 3 Ly f(wr) 0 dBY
k= ) (1.13)
- (Lb + % Z Lgk:) f(wt) dt + Z Lgkf(wt) dBf.
k=1

k=1

The formula remains valid if the process w; takes values in C*, f is a C?
complex function of n complex variables, and the coefficients b : C* — C,
o : C" — C are holomorphic in each variable.

Stochastic flows in the complex plane

In the deterministic case, the flow (semiflow) {g;};>0 of an ordinary au-
tonomous differential equation

Sl =V, ez ==

describes how the ODE’s solution depends on the initial condition, so
that for a fixed value of ¢, the map g¢;(+) is a certain transformation of the
space on which the ODE is considered. For instance, if the equation is
considered in the unit disk D and V' is a semicomplete holomorphic vector
field in D, then g; € Hol(D, D) for each ¢t > 0, as we have seen above.

In a similar vein, one can study flows of stochastic differential equa-
tions. Let z € D, and let wy(z) denote the solution of (1.12) with the
initial condition wy = z. The family {w;};>¢ solving the problem

{dwt(z) = b(wi(2),t) dt + Sj_, ox(wy(2), 1) o dBY, (1.14)
wo(z) =2, ze€D.

'In this thesis, the prime mark always denotes the derivative of a holomorphic function
with respect to the complex variable, thus, for example, o}, (w) denotes O%Uk(w), and f;(z)
has the same meaning as % fi(2).
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is called the stochastic flow of (1.14). Comprehensive overviews of the
theory of stochastic flows can be found in [Kun84], [Kun97] and [IW89].

For the existence of a unique maximal solution its is sufficient that the
vector fields b(z,t), o1(z,t),...0,(2,t) are C% in z, and C! in ¢ [Kun84,
Theorem I1.8.3].

Analytic properties of stochastic flows

Many analytic properties of a stochastic flow can be deduced from the
analytic properties of the vector fields determining the flow.

Let T'(z) denote the random time when wy(z), the solution to (1.14)
with the initial condition w(z) = z, ceases to exist. T'(z) is usually called
the explosion time or the escape time.

Let D; denote the random set of initial conditions for which the solution
exists at least up to time ¢t > 0, i.e., Dy = {z € D : T(z) > t}. It is easy
to see that Dy, O D, for s < t.

Let R; denote the image of D; with respect to wy, i.e., Ry := wy(Dy).
Then w; : D; — Ry is a homeomorphism for all t > 0 with probability 1
[Kun84, Theorem I1.9.1].

Suppose that the vector field b(z,t) is C* int > 0 and C? in z € D,
and the vector fields o(z,1),...,0,(2,t) are C' in t and C%*! in z. Then
wy : Dy — Ry is a C%diffeomorphism for all t > 0 with probability 1
[Kun84, Theorem 11.9.2].

In particular, if the fields b(z,t), o1(z,t),...0,(2,t) ate C* in t > 0
and C* in z € D, then the w(z) : Dy — Ry is a C*°-diffeomorphism for
all ¢ > 0 with probability 1.

If the vector fields b(z,t), 01(2,1),...0,(2,t) are C! in ¢t > 0 and holo-
morphic in z € D, then the w(z) : Dy — Ry is a conformal isomorphism
for all ¢ > 0 with probability 1 [Kun84, Theorem I11.5.7].

Consider the flow w;(z) of the autonomous SDE

dwy(z) = b(wy(2)) dt + S7_; ox(wy(2)) o dBF, (1.15)
wo(z) =2, z€D, '
where b(z), 01(2),...,0,(2) are C*, complete, time-independent vector

fields. Then wy(z) is a diffeomorphism of D for each ¢t > 0 with probability
1. If the Lie algebra g generated by these vector fields is finite-dimensional,

then wy(z) takes values in the associated Lie group of diffeomorphisms
[Kun84, Theorem IIL.5.1].

Composition and inversion of stochastic flows

Stochastic differential equations written in the Stratonovich form obey the
transformation rules of classical calculus. The chain rule and related for-
mulas can be written in an especially neat form if we use the pushforward
notation from Section 1.1.1.

Consider the flows

{dwt(z) = b(wy(2), 1) dt + XP_, on(we(2), ) o dBF,

1.16
wo(z) =2, z€D, (1.16)
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and

{dwt(z) = b(@y(2), 1) dt + X, 6x(y(2), 1) 0 dBf, (1.17)

wo(z) =2, z€D,
and let T(z), T(z) denote the corresponding explosion times.
Consider the composite flow {(;}+>0, ¢; := w; o wy. The explosion time
for the composite flow is then given by U(z) := min[inf{t > 0 : w(z) &
Dy}, T(2)], where D; = {z € D : T(2) > t}.
The composite flow satisfies

dGi(2) = [B(G(2), 1) + e b(Ge(2), )] dt

o (1.18)
3 [0(G),0) + @1 u(G(2), )] o dBE,
k=1
see [Kun84, Theorem II1.3.1].
The inverse flow {n; };>0, n; = w; ", satisfies
di(z) = — (e 0) (me(2), 1) dt — 37 (s 0%) (e(2), 1) 0 dBY
= (1.19)
= _ntl(z> b(Z, t) dt — Z ntl(z) O'k(Z, t) o dBtka
k=0

see [Kun84, Corollary I11.3.4].

1.2 Lowner theory

Ninety years have passed since Karl Léwner (Charles Loewner) introduced
his original equation in [Léw23], and today there is at least a dozen of ob-
jects referred to as the “Lowner equation”. There are chordal, radial, dipo-
lar Léwner equations, Lowner’s ordinary and partial differential equations,
forward and backward (reverse) equations, the Lowner-Kufarev equations,
the general Lowner equations etc.

Moreover, there is a rich family of stochastic Loewner equations: chor-
dal, radial and dipolar SLE,, as well as SLE(k, p). Stochastic Léwner
equations are, in fact, the main reason why Lowner theory attracts so
much interest nowadays.

To describe this plethora of equations in a concise way, we take the
following approach. First, we introduce the main notions of the so-called
general Lowner theory, a rather recent framework developed in [BCDMO09],
[CDMG10], [BCDM12] and [CDMG14]. Then we define all the other
equations mentioned above as special cases of the general formulation.

In the simply connected case, the general Lowner theory has been de-
veloped for one (the unit disk) and several complex dimensions (complete
hyperbolic manifolds). In [CDMG13] and [CDMG11] the general Léwner
theory is constructed for the doubly connected one-dimensional case (the
annulus).
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Only the one-dimensional simply connected theory is relevant to the
problems considered in this thesis.

The general Lowner theory has been formulated in two versions, which
reflects the fact that the the numerous Lowner equations fall into two
classes, so-called “forward” and “backward” equations. The reason for this
terminology is that the equations of one class can be obtained as time-
reversed versions of the equations from the other class, i.e., by replacing
the time variable ¢ by —t.

There seems to be a certain degree of disagreement in the terminology.
For instance, the words “backward” and “time-reversed” have opposite
meanings if we compare, for example, [CDMG14] with [Law09], [DS11],
[RZ13]. In this thesis we try to follow the latter convention.

1.2.1 Backward (increasing) general Lowner theory

The equation considered by Lowner in his seminal paper [Low23] belongs
to the realm of the backward Léwner theory (or the increasing Lowner
theory, if we use the terminology of [CDMG14]). Backward theory is
closely related to the theory of semigroups of analytic functions, and to a
certain extent can be regarded as its non-autonomous generalization. In
many cases, backward equations are easier to work with, compared to the
forward equations that we consider in the next section.

The three central objects of the general Lowner theory are evolution
families, Herglotz vector fields and general Lowner chains.

Throughout this section we assume that the evolution families, Her-
glotz vector fields and Lowner chains are defined in the unit disk. This
is merely a convention, and all the results of the general Lowner theory
(except for some representation formulas) translate to the case of an ar-
bitrary simply-connected hyperbolic domain, for instance, the upper half-
plane H = {z : Im 2z > 0} or the infinite strip S ={z: 0 <Imz < 1}. We
call the domain in which the evolution families are defined the canonical
domain.

Evolution families and Herglotz vector fields

Definition 2. An evolution family of order d € [1, 4+00] is a two-parameter
family { s+ fo<s<t<+too Of holomorphic self-maps of the unit disk, such that
the following three conditions are satisfied.

M (bs,s = id]D);
o Qor = Pyt 0 sy forall 0 < s <u <t < +oo;

e for any z € D and T > 0O there is a non-negative function k,r €
L4([0,T],R), such that

00(2) — Gu(2)|< [ b€t (1.20)

foral0<s<u<t<T.
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The condition (1.20) implies that for every fixed z € D, the function
¢s.1(2) is differentiable with respect to ¢ almost everywhere on [s, +00) (by
absolute continuity). An infinitesimal description of an evolution family
is given in terms of a Herglotz vector field.

Definition 3. A (generalized) Herglotz vector field of order d € [1,+o0]
is a function V : D x [0, +00) — C satisfying the following conditions:

o the function [0,4+00) > t +— V(z,t) is measurable for every z € D;

o the function z — V/(z,t) is holomorphic in the unit disk for ¢ €
[0, +00);

o for any compact set K C D and for every T" > 0 there exists a
non-negative function kx.r € L4([0,T],R), such that

V(z1)|< kxr(2)
for all z € K and almost every ¢ € [0,T];

o for almost every ¢ € [0, 400) the vector field V (-, t) is semicomplete.

Theorem 1 ([BCDM12, Theorem 1.1]). For any evolution family {¢s+}
of order d > 1 in the unit disk there exists an essentially unique Herglotz
vector field V(z,t) of order d, such that for all z € D and for almost all
t € [0,+00)

0
Gi0ut(2) = V(0ua(2).1). (1.21)

Conversely, for any Herglotz vector field V(z,t) of order d > 1 in the unit
disk there exists a unique evolution family {¢s+}o<s<t<+oo Of order d, such
that the equation above is satisfied.

Essential uniqueness in the theorem above means that for any other
Herglotz vector field H(z, t) satisfying (1.21), the equality H(z,t) = V (2, t)
holds for all z € D and almost all ¢ € [0, +00).

Lowner chains

Recall that the term “univalent” is shorthand for “injective and holomor-
phic”.

Definition 4. A family {f;}o<t<oo of maps f; : D — C is called a (back-
ward) Lowner chain of order d € [1, +o0] if

1. each function f; is univalent,
2. fs(D) C fi(D) for 0 < s <t < 400,

3. for any compact set K C D and all T > 0 there exists a non-negative
function kg € L4([0,T],R) such that

() = < [ kxr(€)de

forall ze Kandall 0 < s <t <T.
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The domain f;(ID) is called the evolution domain at the time t.

Every Lowner chain {f;};>o of order d generates an evolution family
{¢s.+} of the same order d defined by

Gss = fi ' o fe (1.22)

This correspondence is, however, not one-to one — there may be many
different Lowner chains associated to the given evolution family. For-
tunately, they are unique up to normalization and composition with a
univalent function, as the following theorem states.

Theorem 2 ([CDMGI10, Theorems 1.6-1.7]). For any evolution family
{¢ps.i}o<s<i<too 0f order d, there exists a unique Lowner chain {fi}i>0 of
the same order d, such that

1. ¢t = frlofs forany 0 < s <t;
2. f(0) =0 and f'(0) =1;

3. Q= U0 fit(D) is a disk {z : |z|< R} of possibly infinite radius
R € (0, +o0].

Any other Lowner chain satisfying Condition 1 is of the form {g:}1>0 =
{F o fi}t>0, where F : Q — C is univalent.
The radius R can be calculated explicitly as 1/8y, where

PR 0]

T 5o 1— |¢07t(z)|2'

It was also shown [CDMG10, Theorem 4.1] that every Léwner chain
{fi}+>0 of order d satisfies the generalized Lowner PDE

9

0s
where V(z, s) is the Herglotz vector field generating the associated evolu-
tion famlly {¢s,t}0§s§t<+oo~

fs(2) = =V(z,s)fi(2) (for almost all s > 0), (1.23)

Berkson-Porta representation

Due to last condition in Definition 3, one should be able to represent V' (-, t)
in the form (1.3) for almost every fixed ¢ > 0. In order to describe how the
function p in the representation depends on t, the notion of generalized
Herglotz functions was introduced.

Definition 5. A Herglotz function of order d € [1,+00) is a function
p: D x [0,+00) = C, such that

o the function ¢ + p(z,t) belongs to L{ .([0, +c0), C) for all z € D;

loc

o the function z — p(z,t) is holomorphic in D for every fixed t €
[0, 4+00);
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« Rep(z,t) >0 for all z € D and for all ¢t € [0, +00).

This definition lets us extend the Berkson-Porta representation formula
from the case of autonomous semicomplete fields to general Herglotz vector
fields.

Theorem 3 ([BCDM12, Theorem 1.2]). Given a Herglotz vector field
V(z,t) of order d > 1 in the unit disk, there exists an essentially unique
(i. e., defined uniquely for almost all t for which V (-,t) # 0) measurable
function T : [0,+00) — D and a Herglotz function p(z,t) of order d, such
that for all z € D and almost all t € [0, 400)

Viz,t) = (z—71(t)) (7(t) 2 — 1) p(z, 1). (1.24)

Conversely, given a measurable function T : [0, +00) — D and a Her-
glotz function p(z,t) of order d > 1, the vector field defined by the formula
above is a Herglotz vector field of order d.

According to Theorem 1, to every evolution family {¢s,} one can as-
sociate an essentially unique Herglotz vector field V(z,¢). The pair of
functions (p, 7) representing the vector field V' (z,t) is called the Berkson-
Porta data of the evolution family {¢s;}o<s<t<+too-

One of the advantages of representation (1.24) is that it provides geo-
metric intuition about the behavior of the corresponding evolution family.
By analogy with the time-independent case, we call the function 7(¢) the
attracting point of the Herglotz vector field V(z,t) and of the evolution

family {¢s }o<s<t<too-

1.2.2 Forward (decreasing) Léwner theory

The forward Léwner theory is the preferred tool in the study of Schramm-
Lowner evolution (see Section 1.2.7).

Definition 6 ([CDMGI14, Definition 1.9]). Let d € [1,+00]. A fam-
ily {¢s1}o<s<t<too C Hol(D,D) is called a reverse (or forward) evolution
family of order d if it satisfies the following conditions

1. ¢ss = idp,
2. ¢st = Psu 00y forall 0 <s <u<t< oo,
3. for any z € D and any T" > 0 there exists a non-negative function

k.7 € L*([0,T],R) such that

t
90(2) = 0ual2)|< [ ke (€) e,
for all s,¢,u € [0, T] satisfying inequality s < u < t.

Definition 7 ([CDMG14, Definition 1.6]). Let d € [1,+00]. A family
{fi}+>0 C Hol(D, D) is called a forward (or decreasing) Lowner chain of
order d if it satisfies the following conditions:
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1. each function f; : D — D is univalent,
2. fo=1idp, and fs(D) D fi(D) for 0 < s <t < 400,

3. for any compact set K C D and for all T > 0 there exists a non-
negative function kg7 € L4([0,T],R) such that

t
() = FRIS [ k(€
forall ze Kandforall0 <s<¢<T.

Similarly to the backward case, there is a one-to-one correspondence
between forward evolution families and forward Lowner chain. Given a
Lowner chain {f;}:>0, we can obtain the corresponding evolution family
using the following analog of (1.22)

Gsi(2) = [l o fr, 0<s<t<oo (1.25)

And conversely, given an evolution family {¢s;to<s<i<+oo, We can recover
the Léwner chain using the simple formula f;(z) := ¢o,.

Loéwner chains are related to Herglotz vector fields by means of the
forward Lowner ODE. The precise statement is given in the following
theorem.

Theorem 4 ([CDMG14, Theorem 1.11]). Let V' be a Herglotz vector field
of order d € [1,+00]. Then,

1. For every z € D, there exists a unique mazimal solution g(z) € D to
the following initial value problem

2. For every t > 0, the set Dy of all z € D, for which g(z) is defined
at the point t, is a simply connected domain, and the function g.(z)
defined for all z € Dy maps Dy conformally onto D.

3. The functions f, == g;* form a decreasing Lowner chain of order d,
which is the unique solution to the following initial value problem for

PDE
2 1(2) = fi2) V(2,1),
fo = idp.

We call the set D; = g; (D) = f;(D) the evolution domain at the time
t, and the complement K; = D\ D; the Léwner hull at the time ¢. The
family { D, }1>0 is decreasing, and the family { K} };>0 is increasing, i.e., for
0<s<t<oo, Ds D D;and K, C K;.
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1.2.3 Radial Lowner theory

The radial, chordal and dipolar Lowner equations, as well as their prob-
abilistic counterparts, can be obtained from the general Léwner theory
by choosing a particular Herglotz vector field. We call these three cases
classical in contrast to other evolution families and Lowner chains that
can be described by the general Lowner theory.

By the radial Léwner theory we understand the case when 7(t) = 7y
in the representation (1.24) for some 79 € D), i.e., when the attracting
point of the Herglotz vector field is a fixed interior point of the canonical
domain. For simplicity one usually takes 79 = 0. It is also common to
impose the normalization condition p(0,¢) = 1 on the Herglotz function
p(z, ).

Thus, the radial Lowner theory is the study of evolution families and
Loéwner chains corresponding to Herglotz vector fields of the form

V(z,t) = —zp(z,t), p(zt)is a Herglotz function, p(0,¢t) = 1. (1.27)

The radial theory was developed in [Léw23], [Gol39], [Kuf43], [Pom65]
and [Pom66]. During the 20th century only the backward theory was
studied, however, after the introduction of the Schramm-Ldéwner evolution
in [Sch00], the focus shifted towards forward Léwner equations.

The normalization condition p(0,¢) = 1 ensures that backward radial
evolution families have the Taylor expansion

psi(2) =€z 4..., z€eD,
and normalized backward radial Lowner chains have the expansion
filz)=e'z+..., ze€D.

In the forward case the first coefficient in the expansion of normalized
Loéwner chains is different:

filz)=etz2+..., ze€D.

There is an important relationship between backward evolution families
{¢s,t}o<s<t<t+oo and backward Lowner chains { f; };>0, namely

Jlim e ¢o4(2) = fo(z)  locally uniformly.

Radial Lowner theory and slit geometry

In the original paper [Léw23], Léwner was particularly interested in a
special case of (1.27), namely

e® 4 2
eiu(t) — 5’

V(z,t) = —z u(t) is continuous and real-valued. — (1.28)

To distinguish between (1.27) and (1.28), the more general case (1.27)
is sometimes referred to as the radial Léwner-Kufarev theory, because it
was extensively studied in Kufarev’s work [Kuf43].
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Recall that a crosscut of a domain D is an open Jordan arc C' in D
such that C'\ C consists of one or two points on 9D.

Pommerenke [Pom66] gave the following geometric characterization of
backward Lowner chains satisfying (1.23) with a Herglotz vector field of
the form (1.28).

A normalized backward Léwner chain { f; }:>0 satisfies

0 et 4 »

i) =2 S £ (129)
for some real-valued continuous u(t) if and only if f/(0) = €' and for every
€ > 0 there exists a 6 > 0 such that whenever s,t > 0 and 0 <t —s <4,
some crosscut of f;(ID) with spherical diameter less than e separates 0 from
[i(D)\ f5(D). We can refer to this condition as the Pommerenke condition.

A large and important class of backward radial Léwner chains satisfying
this condition are the so-called chains generated by a curve. A backward
radial Lowner chain {f; };>0 with f/(0) = €’ is said to be generated by a
curve I': [0, +00) — C if for every ¢ > 0 the image f;(D) is the connected
component of C\ I'[t, +00) containing 0. We also say that the curve I' is
generated by the chain {f;};>0.

One can check that in this case the Pommerenke condition is fulfilled
and, consequently, all normalized radial chains generated by curves sat-
isfy (1.29) for some continuous driving function u(t). There are, however,
counterexamples, i.e., normalized radial Léwner chains that are not gen-
erated by a curve, but nevertheless satisfy Pommerenke’s criterion and
(1.29) for some driving function u(t). See, for instance, the chain shown
in [Pom66, Figure 3] or the example in [MRO5].

Lowner’s parametric method

The class of univalent functions in the unit disk normalized by the condi-
tions

f(0)=0 and [f'(0)=1

is denoted by S. The class S is compact with respect to the local uniform
topology.

Due to the normalization conditions above, each f € S has a Taylor
expansion

f(2)=z+ay 2> +a3z®+..., zeD.

Bieberbach [Biel6] conjectured that |a,|< n for functions in S. He
prove it for n = 2. He also showed that the equality |as|= 2 is attained
if and only if f(2) = e " k(e 2), where 6 € [0,27) and k(2) is the Koebe
function

k(z):(l_%y:z+222+3z3+..., 2eD.

Loéwner introduced his namesake equation in an attempt to prove the
Bieberbach conjecture, but only succeeded for n = 3. After the conjecture
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had been proved for n = 4,5 and 6 by various mathematicians, de Branges
[dB85] used the radial Lowner equation to prove it for all natural n. In
general, if the equality |a,|= n is attained for some f € S and some n € N,
then, necessarily, f(z) = e k(e?2) for some 6 € [0, 27).

A slit map is a univalent function f € S such that f(D) = C\ I for
some Jordan arc I'. The Koebe function is an important example of a slit
map with I' = (—o0, —1/4].

Lowner’s parametric method is based on the following three observa-
tions proved in [Low23].

1. Slit maps are dense in S with respect to the local uniform topology;

2. Every slit map f can be embedded in a backward radial Lowner
chain {f;}:>0 satisfying (1.29), in such a way that f(z) = fo(2);

3. If {fi}i>0 is a backward radial Lowner chain, and {@s; fo<s<i<too 1S
the corresponding evolution family, then

tle ' do4(2) = fo(z) locally uniformly. (1.30)

Now, suppose F': S — C is a functional on S continuous with respect
to the local uniform topology. Then finding its extrema over S is equiv-
alent to finding its infimum and supremum over slit maps in S, and for
that problem we can use representation (1.30).

One example of such a functional is the absolute value of n-th coefficient
in the Taylor expansion of a function in S. Proving that its maximal value
equals n is equivalent to proving Bieberbach’s conjecture. The method’s
applications, however, are not limited to proving Bieberbach’s conjecture.
In fact, Lowner’s parametric method is considered to be one of the most
powerful techniques in the theory of univalent functions and it leads to
relatively easy, direct proofs of numerous inequalities for the class S.

An application of optimal control theory to the Lowner equation turned
out to be extremely fruitful in solving extremal problems for univalent
functions, also unifying variational methods with Lowner’s parametric
method. This approach first appeared in the PhD thesis of Goodman
[Goo68], and was essentially developed by Friedman, Schiffer, Aleksan-
drov, Popov, Prokhorov and Roth, see [Rot00, Pro90, Pro02] and refer-
ences therein. The main idea is to view the Lowner equation as a control
system, with control u(t). Since the reachable set is dense in S, the Pon-
tryagin maximum principle can be applied directly to finding the extrema
of functionals on S.

1.2.4 Chordal Léwner theory

By the chordal Lowner theory we understand the case when the attracting
point of the Herglotz vector field (1.24) is a fixed boundary point of the
canonical domain, i.e., 7(t) = 7y for some boundary point 7, € D.
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It is possible to study the chordal Lowner theory in the unit disk D
and choose, for example, 1) = —1, so that the Herglotz field takes form

V(z,t) = —(2+1)2p(z, ). (1.31)

From a technical point of view, however, it is more practical to use the
upper half-plane H as the canonical domain, and oo as the fixed boundary
point 7.

The vector field (1.31) can be pushed forward from D to H by the
conformal isomorphism

z 214 ,
142

so that the Herglotz vector field in the half plane becomes

,t) T

21—z

VE(z,t) =dip(=—

=i (B3

where p(z,t) :=4p @Z;j, t) is holomorphic in z € H, measurable in t > 0,
and Rep(z,t) > 0 for z € H.

The simplest Herglotz vector field of order oo with a moving singularity

on the boundary is

1
u(t) — 2’

where u(t) is a real-valued continuous function of ¢, and in this case,

VH(z,t) = (1.32)

1

ﬁ(z7 t) = m7

The first works where the corresponding evolution families were studied
include [Kuf46] and [KSS68].
Today, it is usual to scale the vector field (1.32) by the factor of 2, so

that
2

u(t) — 2

The equation for the forward Léwner chain corresponding to (1.33),

VE(z 1) = (1.33)

o) _ 2
Eft(z) R AGETOR (1.34)
fU(Z) =2z, z € H;

is the most commonly used form of the Léwner equation nowadays. Lawler’s
book [Law05] contains a comprehensive analysis of the properties of chor-
dal Léwner chains.

1.2.5 Dipolar Lowner theory
The study of the dipolar (or strip) Lowner equation was initiated inde-
pendently in [Zha04] and [BB04, BBHO05], where the initial value problem

P _ 1
ahi) = G =om s, (1.35)
fo(z) = 2,
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was considered. Here, as usual, u(t) : [0,400) — R is a continuous real-
valued function (the driving function), and S is the infinite strip {z : 0 <
Imz <7},

To put (1.35) into the context of the general Lowner theory, we rewrite
it in the unit disk, by considering the the family { f; };>0, with f; = ¢o fio
¢!, where ¢ : S — D is the conformal isomorphism given by

ef—1
o(z) '_Zez—i—i'

The map ¢ sends 0 to 1, the prime end —oo to ¢, and the prime end +oc0
to 7.
The forward Lowner chain {f;}i>o satisfies the equation

0(2) =2, z€eD

where
1—iz+e'®(z—1)

Vi(z,t) =
(2,1) i+2z—e'd(1+1iz) <

(1+ 2%

is the pushforward of the vector field

1
~ tanh[(z — u(t))/2]

V(zt) = (1.36)

by ¢.

Note, that V(i,t) = V(—i,t) = 0 for t > 0, hence the points =i
are common fixed points of the family {f;};>0. Neither of these points,
however, is the attracting point of the Herglotz vector field. The attracting
point in this case is time-dependent and is given by

7(t) = —sechu(t) + i tanh u(t).

1.2.6 Geometric properties of the slits

In [Kuf46], Kufarev formulates the following problem: characterize the
geometric properties of evolution families and Lowner chains given the
analytic properties of the driving function u(t). One result proved by Ku-
farev in the same paper is that existence of a uniformly bounded derivative
of u(t) ensures that for the corresponding evolution family {¢s ; }o<s<t< oo,
the domain ¢, (D) is a slit disk for all 0 < s < ¢ < 4-o00. This is equivalent
to the fact that the corresponding Lowner chain is generated by a Jordan
arc.

A quasiarc is the image of [0, 00) under a quasiconformal homeomor-
phism of C. Examples of quasiarcs include, e.g., piecewise-smooth curves
without zero-angle cusps. Marshall and Rohde [MRO05] showed that if a
Lowner chain is generated by a quasiarc then necessarily its driving func-
tion u(t) is Lip(1/2) (i.e., Holder continuous with exponent 1/2). Together
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with Lind [MRO5, Lin05] they also proved that the condition ||u, /s, < 4
is sufficient for the chain to be generated by a quasiarc. Here,

u(t) = u(s)|

>0\tfs\<5 |t — S|

The limit lim M plays an important role for the geometry of
t—s /|t _ S|
the slit generating the chains. In [LMRI10] it was shown how the values
of this limit are related to the angle at which the slit intersects itself. In
[Sch12, WD13] it was shown how in the case of forward Léwner chains
this limit describes the angle at which the slit approaches the boundary

of the canonical domain at the initial moment.

1.2.7 Schramm-Lowner evolution

The terms radial, chordal and dipolar Schramm-Léwner evolution (SLE,)
refer to the forward random Loéwner chains corresponding to the Herglotz
fields (1.28), (1.33) and (1.36), respectively, with the driving function given
by u(t) = \/k B;. Here, as usual, B; is a standard Brownian motion, and
k> 0.

Thus, the radial SLE,; is defined by

5 - eVEB 4 f1(2)
gt/ = 1) GrE oy

the chordal SLE, by

and the dipolar SLE, by

0 2
") = () - A B/

The hulls of the corresponding chains are almost surely generated by
a random curve . The curve « is called SLE,, trace, SLE, curve or, by
abuse of terminology, simply SLE,.

The properties of SLFE traces have been intensively studied since the in-
troduction of the Schramm-Léwner evolution. It is known that, for a fixed
value of k > 0, the laws of radial, chordal and dipolar SLE, are locally
absolutely continuous with respect to each other, see [LSW01, Proposition
4.2] and [ZhaO4, Theorem 2.3.1]. In [RSO05] it is shown that with proba-
bility 1 the random curve + is simple for k£ € [0,4], has self-intersections
for k € (4,8) and is space-filling for x € [8,00). The Hausdorff dimension
of a trace of SLE,, is min (2,1 + x/8) with probability 1, see [Bef08].

fo(z) =2, ze€S.
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Conformal invariance and domain Markov property

From the point of view of statistical physics, the two most important prop-
erties of SLE are conformal invariance and the domain Markov property.
These properties are explained in detail in Paper C, but here we can give
an informal explanation for the case of radial SLFE.

The random radial Léwner chain defined by (1.37) generates a random
non-self-crossing SLFE), curve that begins at 1 and tends to 0. In fact, this
random curve induces a probability measure on the set of non-self-crossing
curves connecting 1 and 0. We can denote this measure by SLE,(ID, 1,0).

Given any other domain D, a prime end a of D and an interior point
b € D, there exists a unique conformal isomorphism ¢ : D — D such that
$(0) = b and ¢(1) = a.

We can define a measure SLE,(D,a,b) = SLEH(QS(D),&(l),qﬁ(O)) on
the family of non-self-crossing curves lying in D and connecting a and b
in a conformally invariant way: if the law of «y is given by SLE.(D, 1,0),
then the law of ¢ o v is given by SLE,(¢(ID), d(1), #(0)).

The domain Markov property means that conditioned on an initial part
of the curve 74[0,¢], the remaining curve has the law SLE, (D, ~(t),b).
Here, D, is the unique connected component of D \ +[0,¢] containing b,
and the measure SLE, (D, v(t),b) agrees with the original law of v in a
conformally invariant way:.

There is a close connection between the domain Markov property and
the fact that equations defining SLE can be reformulated as diffusion
equations. For instance, in the case of the radial SLF,, the change of
variables wy(z) = fi(2)/e’VFP transforms (1.37) into

14+ wy(2)

dwi(z) = w(2) = wi(2)

dt —iv/Ew;odBy, wo(z) =2, zeD.

1.3 Gaussian free field

Standard references on the distribution theory are [AF03] and [Str03].
The Gaussian free field, the most important random distribution in two
dimensions, is covered in detail in [She07], [SS13] and [KM13]. A com-
prehensive treatment of Hilbert spaces, an important tool in the theory of
the Gaussian free field, is [Jan97].

1.3.1 Schwartz distributions in the complex plane

Let D be a simply connected domain in the complex plane. Let C§°(D)
denote the space of infinitely differentiable real-valued functions with com-
pact support in D. A sequence of functions {p,}>°, C C5°(D) is said to
converge in the sense of test functions to the function p € C§°(D) if

(i) there exists a compact subset K such that supp(p, —p) C K for all
n=12,...,
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.. m+ m+ .
(ii) 38175;1!% — %p, as n — oo, uniformly on K for all m,p =

There exists a topology on C§°(D) such that a linear functional 7" on
C§°(D) is continuous if and only if T'(p,,) — T'(p) whenever p,, — p in the
sense of test functions. The space C§°(D) endowed with this topology is
called the space of test functions on D, and is denoted by 2(D).

The dual space endowed with the weak-star topology is denoted by
2'(D), and its elements are called (Schwartz) distributions.

Let A denote the area measure on D, and let (-, -) denote the L*(D, A)
inner product, so that

(0.a):= [ p()a(z) dA(2),

for real-valued functions p and q.

Let L},.(D, A) denote the so-called space of locally integrable functions
in D. By definition, a function h belongs to L},.(D, A) if h € L*(U) for
every open set U with its closure U lying in D. The space Lj,.(D) is quite
rich, and the inclusion LP(D, A) C L},.(D, A) holds for any p > 1.

Let h € L} .(D,A). Even though it is not true in general that h €
L*(D, A), the inner product (h,p) is well-defined for any test function

p € 2(D). Moreover, h defines a continuous distribution on D by

p—(hp), pe2D),

and with this identification we can write L},.(D) C 2'(D).

Not every Schwartz distribution on D can be represented by a locally
integrable function as above. Nevertheless, by abuse of notation, we al-
ways denote by (h,p) the result of action of a distribution h on a test
function p.

1.3.2 Green’s function

By the Riemann mapping theorem, given a hyperbolic domain D, for each
w € D there exists a unique conformal isomorphism f, : D — D, such
that f,(w) =0, and f] (w) > 0. The Green’s function of D is defined as

Gp(z,w) = —log|fu(2)]-

The Green’s function is symmetric and harmonic in both variables.
It is easy to check that for the unit disk, Gp(z,w) = log |1=%=

Z—w
Z—Ww

for the upper half-plane Gg(z, w) = log ’sz )
For a test function p € 2(D), Green’s third identity implies

1
- g/DGD(z,w) Ap(w) dA(w) = p(2). (1.38)
We can rewrite this identity using the formal language of distributional
(weak) derivatives (see [AF03]) in the following form
—AyGp(z,w) =2m0(z —w), z€ D,
Gp(z,w)=0, ze€0dD.

, and

(1.39)
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One can use (1.39) as an alternative definition of Green’s function.

The Laplacian A is an injective linear operator in 2(D) (because
ker A = {0} in 2(D)), and (1.38) yields the following formula for the
inverse of A

Alp(z) = —%/DGD(z,w)p(w) dA(w). (1.40)

1.3.3 Dirichlet energy and electrostatic potential energy

We use three different inner products on the space (D). One of them,
the L?(D, A) inner product, has already been mentioned. We denote it
by (-, -), or, when the domain is not clear from the context, (-, -)r2(p ).
For two functions p,q € 2(D),

(b.a) = [ p(z)a(2) dA(2).

The Dirichlet inner product of two functions p,q € 2(D) is defined as

(b a)v = [ Vp(2)- Va(z) dA(2).

Yet another inner product on 2(D) that we frequently use is

(P, 9)epy = /

DxD 2 GD(Zl, 22) p(Zl) Q(ZQ) dA(Zl) dA(ZQ)

The following formulas relating the inner products introduced above
to each other, can be easily deduced from Green’s identities. In all of the
formulas, p,q € 2(D).

(p.0) = 1 (-2, e, (1.41)
(p.q)v = (—=Ap, q), (1.42)
(p,a)v = ﬁ(Ap, Aq)e(n)- (1.43)

The inner products induce the following norms on Z(D).

Ipll:=v(pp) lpllv=V(p,p)v,  lIpllen):= v/ (b P)ew)-

The norm |[|p||v is called the Dirichlet energy of p, and the norm ||p||¢(p)
is sometimes referred to as the electrostatic potential energy of p.

1.3.4 Definition of Gaussian free field

Let (Q,F,P) be a probability space. By a random distribution (or, more
precisely, a random Schwartz distribution) on D we mean a measurable
map ¢ : Q — 2'(D).

A random distribution @ is called a Gaussian free field (GFF) on D if
for every test function p € 2(D) the random variable (®,p) is a centered
Gaussian with variance [[p[|3p)-
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By polarization, it follows that the covariance satisfies

Cov ((®,p), (P, 9)) = (p, 9e(p)-

Below we explain how one can construct Gaussian free fields explicitly.

Let H(D) denote the Hilbert space completion of 2(D) with respect to
(-, +)v. The Hilbert space H(D) is separable, and H(D) C L*(D,A) C
LL.(D) € 7/(D).

Let {e,}>°, be an orthonormal basis in H(D), and let {a,}22; be a
sequence of independent standard Gaussian random variables. Consider
the formal series

o
2V ay ey, (1.44)
n=1

The series (1.44) diverges almost surely, but nevertheless for any test
function p € 2(D) the series

2ﬁr§an(p,en) (1.45)

converges in L?(),P). In fact, by a result from the theory of Gaussian
Hilbert spaces [Jan97, Example 1.25], the series (1.45) is a centered Gaus-
sian with variance

||2ﬁ 21 7)) (p7 671)”%2(9,1?): dr Zl(pa en)27

if the series on the right hand-side converges. But by (1.42), Parseval’s
identity and (1.43),

A Y (pyen)? = dm 3 (A7 p,en)y = 4| A7 p[IT= [Pl (p) < oo,
n=1 n=1

which shows that (1.45) indeed converges for every p € 2(D), and that
(1.44) is a Gaussian free field. Moreover, one can show that every Gaussian
free field ® on D can be represented as ® = 27w 3°° | v, €,,, where {e, }22;
is an orthonormal basis for H(D), and {«, }52; is a sequence of standard
Gaussian random variables.

1.3.5 Gaussian free field on a subdomain

Let B C D be a simply connected subdomain of D. The space H(B) is
a closed subspace of H(D), and we denote its orthogonal complement by
Harm(B), so that H(D) can be decomposed orthogonally as follows

H(D) = H(B) ® Harm(B).

We denote by Pppy and Pyamp) the orthogonal projections onto the
corresponding closed subspaces.
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By definition

feHarm(B) < (f,g)v =0 for all g € H(B)
< (f, Ag)r2p,ay = 0 for all g € H(B).

Functions satisfying the last condition are called weakly harmonic on B (or

harmonic in the sense of distributional derivatives), but by Weyl’s lemma

[Wey40], weak harmonicity is equivalent to harmonicity. Hence, Harm(B)

consists precisely of those elements of H(D) that are harmonic on B.
Let &5 be a Gaussian free field on B. It may be written as

@B = Qﬁ Z [07% fn
n=1

where { f,,}°, is an orthonormal basis of H(B), and {a, }22 is a sequence
of independent standard Gaussian variables. It turns out that ® may be
treated as a random distribution on the whole of D, such that for a test
function p € 2(D), (g, p) is a centered Gaussian with variance HpH%(B).

Indeed, for a p € (D),
n=1
= Qﬁ Z 7% (fnv —Aflp)v
n=1

= Qﬁ Z Qo (fm PH(B)(7A71P)>V7
n=1
which shows that (®p,p) is a centered Gaussian with variance

Ar|| Py (—A7'9) 1= |APr () (= A7) I35
= [|APy(5)(—A7"'P) + APigarm(s) (—A'D)E 5= [I9F(5)-

1.3.6 Modifications of GFF

Every harmonic function h in D is locally integrable, and hence, h €
2'(D). We can define the GFF with mean h as the sum of distributions
éD = ®p+h. We also refer to such distribution as modifications of GF'F.

By Fatou’s theorem (see [Hof88, Chapter 3]), every bounded harmonic
function can be represented by the Poisson integral of a bounded measur-
able function hy on 0D. In this case we can call P p the Gaussian free field
with Dirichlet boundary condition hy. If h is only bounded from above or
from below, then the Herglotz representation theorem implies that it can
be represented as the Poisson integral of a signed measure py, on 9D.

Let B C D be a simply connected domain, and let the area A(D\ B) be
zero. Let & = ®p+h be a modification of GFF on B, and let p € 2(D).
As we have seen in the previous section, g defines a distribution on D.
Even though h is only defined on B, the inner product

(heP)rzo.a) = [ h(=)p(=) dA(2)
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is still well-defined, hence ®p defines a random Schwartz distribution on
the whole of D.

1.3.7 Pullbacks of distributions and conformal
invariance of GFF

Let ¢ : Dy — Dj be a conformal isomorphism, and let ¥ € 2'(Dy). The
pullback ¥ o ¢ of ¥ with respect to ¢ is the distribution on D; defined by
the formula

(Tog,p)= (T, [(6~)Pp(67"), pe (D).

If U is an L}, (D) function, then this definition corresponds to the change
of variables in the formula

S, O p(2) dAG) = [ W(w) (67 (w)) [ p(6™ () dA(w).

The Gaussian free field is conformally invariant, meaning that the pullback
®p, o ¢ of a Gaussian free field on D5 has the same law as GF'F in D;.

1.3.8 SLE and GFF

One of the possible formulations of the conformal field theory (CFT) is
from the point of view of random fields, in particular, the Gaussian free
field. The mathematical aspects of this formulations are well-understood,
see [KM13].

The fact that the Gaussian free field is closely related to SLE,; was
first realized in [SS05], and since then a lot of progress has been made in
this direction. Connections between GFF and SLE, for other values of
r have also been established [Dub09, Shel0].

Below we describe the simplest example of connection between SLE
and GFF (chordal SLE}y), see the details in [SS09], [Shel0] and [SS13].

Let &y a Gaussian free field in the upper half-plane, and consider the
following modification of ®y:

i)Hzil)H—\anrgz.

In fact, CTJH is a Gaussian free field with the boundary condition CTJH =0
on the positive real axis, and g = 7 on the negative real axis.

Let B; be a Brownian motion independent of CfDH, and let {w;}i>0 be
the corresponding chordal SLFE, stochastic flow, so that

dwi(z) = ——dt —2dB;, wo(z) =2, z€H.

wi(z)

The interesting connection between the modification dy and the flow
of chordal SLE}, is that for any deterministic time 7" > 0, the random
fields & and Py o wr have the same law.

In Paper D we explain this relationship in detail and investigate whether
similar result may be true for other slit holomorphic stochastic flows.



Chapter 2

Main Results

In this chapter we give an overview of the new results introduced in this
thesis. The structure is as follows: Sections 2.1-2.4 are summaries of each
of the research papers included in the thesis, and in Section 2.5 we outline
possible directions for further research.

2.1 Non-slit and singular solutions to the
Lowner equation

Let us return to backward radial Léwner evolution families {¢; ¢ }o<s<t<-+oo
satisfying

P eiu(/,) si(z
%és,t(z) - _¢s,t(z) el“(”tim’ (21)
bss(2) =2, z€D,

and the corresponding backward Lowner chains { f;}i>0, which satisfy

0 etut) 4 »

o fi(z) = th/(z)m

T o folz) = tlgglo etqﬁ(),t(z). (2.2)

Recall that the evolution family corresponding to the Léwner chain { f }1>0
is given by ¢, = f; ' o fs (see (1.22)).

Suppose that the driving function is such that {f;};>¢ is generated by
a Jordan arc (i.e., a homeomorphic image of [0,400)). Then it is easy to
see that ¢,4(D) in this case is a slit disk, meaning that D\ ¢s:(D) is a
Jordan arc 7.

Lowner proved that for any slit disk D\ v containing 0, it is possible to
find a driving function u(t) generating D\ . In other words, it is possible
to find u(t), such that for the evolution family solving the Léwner ODE
(2.1), the equality ¢g, (D) =D \ 7 holds for some ¢y > 0.

If the driving function u(t) is such that the corresponding Lowner chain
is generated by a curve with self-intersections or by a closed curve in (@,
then ¢,(ID) is in general not a slit disk. Lowner knew that such driving
functions exist, and an explicit example was given later by Kufarev in
[Kuf47].
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We use the geometric considerations above to construct a family of non-
slit solutions to (2.1), for which the driving functions u(t) are Lip(1/2) and
their norms ||u(t)]1,, take all values in the interval (4,00). This should
be compared with the results cited in Section 1.2.6. Similar results for the
chordal case had been earlier constructed in [KNKO04].

In second part of the paper we study the chordal equation, and prove, in
particular, that the driving term of an analytic orthogonal slit is Lip(1/2),
and [[u(t)||1/2,,,= 0. This result was later generalized in [WD13].

2.2 Lowner evolution driven by a stochastic
boundary point

The classical Lowner equation played a crucial role in the study of two-
dimensional conformally invariant stochastic processes. After the general
Loéwner theory had been formulated, a natural question was whether the
general theory can have similar stochastic applications.

We suggest that the first step in this direction may be analyzing the
evolution families corresponding to the Herglotz vector field

V(t,2) = (z = 7(t)(r() = = ) p(z. 1),

where 7(t) = e* B k>0, ie., it is a Brownian motion on the unit circle.

In order to acquire geometric intuition we first work with the simpler
deterministic counterpart 7(¢) = e'¥5 k € R, and study the backward
evolution family

{;;f(bt() 1_ % p(¢(2). 1), L eD. (2.3)

First, we note that if the Herglotz function can be written in the special
form p(z,t) = p(z/7(t)), where p(z) : D — C is a holomorphic function
with non-negative real part, then the change of variables ¢y (z) = ¢T‘((tz))

leads to the initial-value problem

{ Di(2) = (Wu(2) — 1)* Bu(2)) — i k(2),
to(2) = 2.

In other words, {t¢:}:>0 is a holomorphic semiflow, and we can use the
well-developed theory of holomorphic semiflows to investigate {1 };>¢ and

{¢t}e=0.
We prove that {¢;}>0 C Aut(D) if and only if p(z,t) = p(z/7(t)) with

142
1—2

p(z)=A +Bi, A, BeR.

The type of the corresponding semiflow of automorphisms ; depends
on the radial velocity k of the attracting point 7(¢): it is
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o hyperbolic, if 2 (—Imp(0) — |p(0)]) < k& < 2 (—Imp(0) + |p(0)|),
« parabolic, if 2 (—Imp(0) — [p(0)]) < k < 2 (—Imp(0) + |p(0)]),
o elliptic, if £ < 2 (—Imp(0) — |p(0)|), or k& > 2(—Imp(0) + [p(0)]).

In the case of elliptic automorphisms, the trajectories ¢;(z) are curves
similar to the beautiful rose (rhodonea) curves. The trajectories are closed

if and only if \/ﬁ is a rational number.

The semigroup {1 }+>0 becomes elliptic for sufficiently high radial ve-
locities of the attracting point also in the general case of holomorphic
endomorphisms, no matter what Herglotz function $(z) we choose.

In the stochastic case, Herglotz functions of the form p(z,t) = p(z/7(t))
also turn out to play an important role. The change of variables w;, =
#¢/e'F Bt now leads to a time-homogeneous It6 diffusion
{dwt = (—%2 Wy + (wt — I)Qp(wt)) dt — zk‘wt dBt, (24)

wo(z) = 2.

This has two important implications. First, the Markov property of the
stochastic flow {w;};>0 leads to a version of the domain Markov property
for the domain family {¢;(D)};>0. Second, one can use the rich machinery
of stochastic calculus, such as Kolmogorov equations, to study the process.

We have thus found a new type of the general Lowner evolution (in
addition to the already known radial, chordal and dipolar equations), that
leads to a time-homogeneous diffusion equation in the stochastic case.
Can we find more such types of the general Léwner evolution? Can we
characterize them all? Can they have slit geometry similar to the classical
SLE cases? If yes, will the random slits be similar to the classical SLE
curves?

These questions are answered in the next paper.

2.3 General slit Lowner chains

Holomorphic stochastic semiflows

We start by considering the stochastic flow
{dwt(z) = b(wi() dt +o(wi(z) 0B, D, 25)

wo(2) = 2,

in a simply connected hyperbolic domain D, and ask what conditions
should be imposed on the functions b and o, so that w; € Hol(D, D) for
all t > 0.

It is known from the work of Kunita quoted in Section 1.1.2 that if

the coefficients b and ¢ are complete holomorphic vector fields, then w; €
Aut(D) for all ¢t > 0.
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We use the general Lowner theory to study the case when b(2) is semi-
complete. First we consider the auxiliary flow

{dHt(z) =o(Hz)edB,  _p (2.6)

Ho(z) ==z

of automorphisms of D. In fact, {H;};>0 is related to the deterministic

flow
Dhi(z) = o(hu(2)),
{Zo( )=2, z€D 2.7)

by the formula H; = hp,.
By (1.18) and (1.19), the composite flow {g; }+>0, where g, := H; ‘ow; =
hp' o w, satisfies

do(z) = (hg,0) (@2 dt, w(z) == zeD.  (28)

It is easy to check that (h;}*b) is a Herglotz vector field of order oo,
implying that {g:};>0 C Hol(D, D), which is equivalent to {w:}i>0 C
Hol(D, D).

Thus, if b is a semicomplete holomorphic vector field and o is a com-
plete holomorphic vector field, then the flow (2.5) consists of holomorphic
endomorphisms of D.

In the preceding paper we used mostly the backward (increasing) frame-
work. In this paper, thanks to the appearance of the work [CDMG14],
we were able to direct our attention towards the forward (decreasing)
framework, the main tool of the SLE theory.

Using the forward Lowner theory, we study the solutions to

{dwt(z) = —b(w(2)) dt + o(wy(z)) o dva 2 €D, (2.9)

wo(z) = z,

where b is a semicomplete holomorphic vector field and ¢ is a complete
holomorphic field. We denote

D, = {z € D : wyz) is defined at least up to time ¢},
and using the forward Lowner theory prove that wy : D; — D is a confor-
mal isomorphism for all ¢ > 0 with probability 1. Similarly to the case of

(2.5), the crucial step here is to note that the composition g, = H; Lowy
satisfies

dgi(z) = (hBL*b> (9:(2))dt,  go(2) =z, =z€D, (2.10)

and hence {g;}:>0 is a forward Lowner chain of order oco.
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Slit vector fields and Virasoro generators

The next question is what conditions should be imposed on the vector
field b to ensure that the generated Léwner chains have slit geometry, as
in the classical SLFEs. From the geometrical point of view, the natural
necessary condition is to require that the field b is tangent to the boundary
of the canonical domain at all boundary points but one.
A precise formulation of this condition in D is that
lim Reb(re”) re " = 0 (2.11)

r—1
for all €’ € 0D except, perhaps, for one point €. Without loss of
generality we may assume e’ = 1. We call such fields slit vector fields in
D. In the autonomous deterministic case such vector fields indeed generate
semiflows having slit geometry.

We prove that b is a slit vector field in D if and only if

1
b(z)=a—z (zﬂ—O—le)—azQ, z €D, (2.12)
-z
for some o € C, f € R and v > 0.
The vector fields

H(2) = 2" neZ zcH,

are called the Virasoro generators for the upper half-plane. Using the
pushforward operation, the generators can be defined for any simply con-
nected hyperbolic domain D by the formula (2 := ¢,¢%, where ¢ : H — D

n?
is a conformal isomorphism. This definition of /£ depends on the choice

of ¢.

For the unit disk, we choose ¢(z) = —Z%Z, and get

EE(Z) = —9gn-1 (—Z)n (z — 1)n+1 (z + 1)—71—0—1.

For the infinite strip S = {2 : 0 < Im 2z < 7} with /() = Log 3% we get

E’SL(Z) = 9, (H(2) = —2" sinh(z) tanh” (g) )

An interesting fact is that the space of complete holomorphic vector
fields in D is given by spang{¢?,, (5, (P}. What is even more interesting
for us, is that we can use /2, n = —2,...,1 to represent slit vector fields
in D. A vector field b is a slit vector field in D if and only if it can be
represented in the form

b(z) = b o £P(2) +b_1 1%, (2) + b £2(2) + by £P(2), (2.13)

with b_y > 0 and b_1, by, b1 € R.
We can then define slit vector fields in an arbitrary simply connected
hyperbolic domain D by replacing (2 ~ (2 in (2.13).
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Definition of slit Lowner chains

Let D be a simply connected hyperbolic domain D. Let ¢ be a complete
vector field in D, and b be a slit vector field in D, so that

b(Z) = b*2 692(2)_‘_8)*1 6?1(2)+b0 gOD(Z)—i_bl ng(Z)a b*? Z OJ b*l; bOJ bl S Rv
and
o(z) = o_lﬁj_jl(z) + o9 EOD(Z) +o1ty, o_1,00,00 €R, 0.1 #0.

Let u; : [0,400) — R be a continuous function. The slit Lowner chain
driven by b, o and u; is by definition the forward Lowner chain {f;}i>0
corresponding to the Herglotz vector field

V(t,2) = (hy,'.b) (2),

where {h;}4>0 is the flow of automorphisms of D generated by o.
Without loss of generality we may impose the normalization conditions

b,2:2, o_1 = 1,

and we call Lowner chains satisfying these conditions normalized slit Léwner
chains.

Our general definition of normalized slit Lowner chains includes the
classical radial, chordal and dipolar Lowner chains as special cases:

Loéwner chain type b o
Chordal 20_o 04
Radial 20_o + %60 0_1+ iél
Dipolar 2672 - %fo 671 - %51

If uy = /KBy, k > 0, then, as we discussed earlier, the change of
variables w; = h VB, O Gt leads to the diffusion

dw(z) = =b(wy(2)) dt + Vi o(wi(2)) o dBy, wo(z) =2, z€D.

We call {w;}i>0 the slit holomorphic stochastic flow driven by b and o.

Properties of the hulls

At least for small times, it is possible to describe the hulls generated by an
arbitrary slit Lowner chain in terms of a radial Lowner chain. The radial
driving function is related to the driving function of the original chain by
means of a differential equation.

In the deterministic case this relationship allows us to translate the
well-known results about the properties of the driving function and the
corresponding hulls to the case of general slit chains.

In the stochastic case this allows us to prove that the law of the hulls of
a general slit holomorphic stochastic flow is locally absolutely continuous
with respect to the radial SLFE hulls with the same value of .

In particular, we prove that the hulls of a general slit holomorphic
stochastic flow are almost surely generated by a curve. Analogously to
the classical cases, the curve is simple for x € [0, 4], has self-intersections
for k € (4,8) and is space-filling for s € [8, 00).
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Non-classical example: ABP SLE

If, combining the chordal and the radial cases, we choose b = 2¢_5 and
o=0_1+ %17 the equation for the forward Léwner chain in the unit disk
is given by

0 1 e 4+ f,(2))3

. fi(2) = iu(t) ( iu(t) ) :

ot 4e erult) — fi(2)

This is an example of a Léwner chain with an attracting boundary point
(see Paper B). In the Berkson-Porta representation for the corresponding
Herglotz vector field, 7(t) = —e™(®), p(z) = 1 1=,

The process obtained by putting u(t) = \/k By, k > 0, can be called
provisionally ABP SLE (ABP standing for “attracting boundary point”).

In contrast to chordal, radial and dipolar Léowner chains, the family of
conformal maps { f; };>0 does not have common fixed points neither inside
the canonical domain, nor on its boundary. This facts complicates the
study of the process quite a bit. Simulations show that SLE ABP curves
terminate at random points in the unit disk. Not much else, however, is
known about their long-term behavior so far.

2.4 Slit holomorphic stochastic flows and
Gaussian free field

Let {w;}4>0 be a normalized slit holomorphic stochastic flow driven by
b and o, with kK = 4. For technical reasons, we prefer to work in the
half-plane. The flow {w;};>¢ then satisfies

dwi(z) = =b(wi(2)) dt + 20 (wy(2)) o dBy, wp(z) =2, 2z € H.

Let @y denote a Gaussian free field in H independent of B;. We address
the following problem. For what b and o is it possible to find a harmonic
function h in H, such that for the modified Gaussian free field Py =
Py + h(z),

the field ®g 0wy has the same law as &y for any T > 07 (2.14)

This is a natural question in view of the works [Dub09, Shel0, SS13]
where similar relationships of GF'F with classical SLFEs were discovered.
In particular, this is a reasonable first step in constructing a conformal
field theory for general slit holomorphic stochastic flows.

An important role in proving (2.14) is played by the equation

dGa(wi(z1), wi(z2)) = —%<h(wt(21)), hwi(2))), (2.15)

where Gy denotes the Green’s function of H, and z1, 29 € H, 21 # 2. If
(2.15) holds, then we can adapt the techniques used in [SS13] to prove
that (2.14) also holds. The only theoretical difficulty we face is that in
[SS13] the uniform boundedness assumption of h was crucial, which is,
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unfortunately, too restrictive for us. We relax this assumption and require
only that h(w(z)) is bounded by a deterministic continuous function not
depending on t.

After identifying flows that are closely related to each other, we arrive
at six one-parameter families. Below we list those families together with
the corresponding harmonic functions k. For simplicity, we always assume
that the canonical domain is the upper half-plane.

1. Chordal SLE, driven by 2 B; — at, @ € R (i.e., Brownian motion
with drift —act).

b(z) = 73 —a, o=-1, h(z)= % Imz—+2argz (2.16)
b(z) = —g — Bz BeR, o=-1, h(z)=—V2argz. (2.17)

3. Dipolar SLE, driven by 2 B; — at, a € R.

b(z):—;—oﬁ-g—i-%zQ,
1—a 1+« (2.18)
h(z) = 7 arg(2—z)—\/iargz—b—ﬁarg@—kz).
4.
2 1 1B
o ==S41-(3-g)e-(5-5)Aser
h(z):ﬂarg@fz)fﬂargz,
5.

oL (1o () sen o
h(z) = V2arg(2 + z) — V2arg z,

6. Radial SLE, driven by 2 B; — at, a € R.

2 2
b(z):—f—a—i—o/i a€R,

: 24 ) (2.21)
h(z) = —v2a Imarctan = — V2 argz + —= arg(4 + 22),
z

V2

The modifications of GFF for cases 1, 3, and 6 with a = 0 (i.e.,
radial, dipolar and chordal SLE, without drift) were known previously.
In the case 6, the function h is multivalued, which leads to multivalued
modifications of GF'F addressed in [KM12].
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2.5 Further work

Below we formulate several questions that arose during the work on this
thesis. They are quite interesting and may provide a basis for further
research.

How can we apply control theory techniques to general slit Lowner
chains? What are the reachable sets of univalent functions corre-
sponding to various combinations of b and ¢?7 Can this have appli-
cations in the theory of univalent functions?

Classical radial and chordal SLEs were introduced in an attempt
to describe analytically the scaling limits of several conformally in-
variant lattice models in statistical physics. Is it possible to define
analogous lattice models that converge to non-classical slit holomor-
phic stochastic flows, e.g., ABP SLE?

In general, ABP SLE seems to be particularly difficult to work with.
Any results about its properties, such as, e.g., long term behavior,
are interesting.

In Paper D, we found a way to connect the Gaussian free field with
chordal, dipolar and radial SLFEs with drift, which is a natural first
step in constructing the related conformal field theories. From the
theoretical point of view, these cases are somewhat more challenging
than the cases without drift, considered in [KM12, KM13, KT13],
and constructing the CFT for these cases is of interest.

In Paper D, we gave a classification of general slit holomorphic
stochastic flows that may be related to the Gaussian free field with
Dirichlet boundary conditions in such a way that the property (2.14)
holds. Can we perform a similar classification for other bound-
ary conditions, such as Neumann or Riemann-Hilbert (see [Kanl3,
1K13])?

Another framework which allows to treat radial, chordal and dipolar
SLE in a unified way was introduced by Schramm and Wilson in
[SWO05]. They extend the definition of the so-called SLE(k;p) evo-
lution [LSWO03] and show that in this case the classical SLE's become
special cases of SLE(k; p).

In SLE(k;p) one uses the usual chordal Léwner equation, but em-
ploys a complicated stochastic process as a driving term. Our ap-
proach is the opposite: we consider various versions of the differential
equation, but always use the Brownian motion as the driving term.
A natural question is whether one of those approaches can be reduced
to the other.
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