
ESTIMATING A FITNESS LANDSCAPE
EXPERIENCED BY HIV-1 UNDER SELECTIVE
PRESSURE
Genotypic footprints of drug selective pressure in treatment-naive
patients included in the European SPREAD programme were
quantified using an in vivo HIV-1 fitness function under drug
selective pressure, respectively a function of the protease or reverse
transcriptase enzyme depending on the genomic region investigated.
The two fitness landscapes were estimated similar to the procedure
described in Deforche et al. (2008). Originally, the computational
method described was developed to reverse engineer the selective
pressure of a particular inhibitor on HIV-1, to relate differences in
prevalence of mutations and mutational patterns, between patients
failing treatment and naive patients, with the selective advantage
conferred by these mutational patterns.

Here, however, we modelled a fitness landscape experienced by
HIV-1 under the selective pressure of treatment, irrespective of the
protease or reverse transcriptase inhibitor (PI or RTI) used. The
most recent sequence of patients failing treatment with one or more
PIs or RTIs were considered for this study, incorporating utmost
informative indications of adaptation of the virus to an environment
of drug selective pressure.

To learn a function F (A1, . . . , An), where Ai presents presence
or absence of a mutation, we find a function that fits with the
evolution of the virus in a naive population of patients PN to a
treated populationPT , and is closest to neutrality (minimizing |F−
1|). Estimated fitness was based on the evolutionary principle that
substitutions observed in the consensus sequence of a population
under strong selective pressure are mostly fixed to increase the
fitness of the population. As such, the increase in prevalence of
a particular mutation in the population of sequences after failure,
compared to the population of sequences that were naive, reflects
the consecutive fixation of mutations in a population that acquires
increased fitness under selective pressure. Not only increase in
prevalence of individual mutations was considered, but also of
patterns of mutations since epistatic fitness interactions alter the
fitness impact of mutations depending on a context of other
mutations. An interaction between two mutations is expected to lead
to a different observed prevalence of one mutation depending on
the presence of the other, observed associations in prevalence may
indicate such fitness interactions.

Overall, the fitness function F incorporates interactions indicated
using Bayesian network (BN) learning, and fitness function
parameters are estimated using an iterative procedure where
evolution for PN over the current fitness function estimate is
simulated using an evolutionary model, and compared to PT . What
follows is an overview of the estimation procedure, whith the
construction of a protease fitness landscape as example.

Clinical data
Clinical cross-sectional data was pooled from the Stanford HIV
Drug Resistance Database, from a clinical database maintained
at the Molecular Biology Laboratory of Centro Hospitalar de
Lisboa Occidental and from the University Hospitals in Leuven.
To estimate the protease fitness landscape, we contrasted 8328
sequences obtained from PI naive patients with 3751 sequences

from patients treated with one or more PIs. To estimate the reverse
transcriptase fitness landscape, 3769 sequences from RTI naive
patients were compared with 1736 sequences from patients treated
with one or more RTIs.

As variables, mutations were selected that occurred in more
than 1% (for PI) or than 3% (for RTI) in the respective treated
population, with only considering the first 230 positions in reverse
transcriptase. In total, 104 mutations at 53 positions in protease and
112 mutations at 59 positions in reverse transcriptase were included
in the respective fitness functions (Table 1 and 2). These sequences
were of diverse subtypes (subtype B: 78%, G: 11%, C: 7% and
other).

Fitness function structure
The protease amino acid sequences from the treated population
PT were used to learn interactions between mutations as described
before (Deforche et al., 2006). Briefly, a data set was created
where a boolean variable indicated the presence of each included
mutation. BN structure learning (Myllymäki et al., 2002) on this
boolean data was used to discover relationships between these
mutations that may indicate epistatic fitness effects. By assuming
conditional independencies, the Bayesian network refactors the
Joint Probability Distribution (JPD) in a product of Conditional
Probability Distributions (CPD), leading to a reduction in number of
parameters to model the JPD. Formally, for n variables A1, . . . , An
(representing amino acid mutations), we would write:

P (A1, . . . , An) =

n∏
i

P (Ai|parents(Ai))

with P (A|B) the conditional probability of A given B, and
parents(Ai) the parents in the BN structure of variable Ai. We
denote the most probable network of the amino acid sequences of
the treated population PT with structure ST and CPD parameters
θT as BNT (θT , ST ).

We model the relative fitness function F (A1, . . . , An) in the
same way as BNT (θT , ST ) refactors the JPD:

F (A1, . . . , An) =

n∏
i

F (Ai|parents(Ai))

with parents(Ai) the parents in ST , and F (A|B) the Conditional
Fitness Contribution (CFC) of the presence of A, depending on the
presence of B. The assumption here is that if two mutations are
synergistic for example, they would occur more often together than
not, and a dependency should be visible in the JPD too.

The CPDs are modeled by specifying the probability for a
mutation Ai given any pattern of parent mutations k, in Conditional
Probability Tables (CPTs): θi,k = P (Ai = 1 | parents(Ai) = k).
Similarly, we used Conditional Fitness Tables (CFTs) to model
the CFCs for each mutation Ai, which specify a different fitness
contribution of the presence of a mutation Ai for every pattern of
parent mutations: φi,k = F (Ai = 1 | parents(Ai) = k).

Example of Bayesian network and corresponding Fitness
landscape structure
A hypothetical Bayesian Network structure shown in the Figure
refactors the JPD describing presence of three mutations (30N, 88D,
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Additional file 1: Estimating a fitness landscape experienced by HIV-1 under selective pressure

Table 1. Protease mutations included in the fitness function

pos wildtype mutations pos wildtype mutations pos wildtype mutations pos wildtype mutations

10 L I,F,V 35 E D,G,N 58 Q E 74 T A,S
12 T A,P,S 36 M I,L,V 60 D E 77 V I
13 I V 37 N A,D,E,H,S,T 61 Q E,H,N 82 V A,F,I,T
14 K R 39 P S 62 I V 84 I V
15 I V 41 R K 63 P A,C,H,L,T,Q,S,V 85 I V
16 G E 43 K R,T 64 I L,M,V 88 N D,S
17 G E 45 K R 65 E D 89 L I,V,M
18 Q H 46 M I,L 66 I F 90 L M
19 L I,P,T,Q,V 47 I V 67 C E,S 92 Q K,R
20 K I,M,R,T,V 48 G V 69 H K,Q,R,Y 93 I L,M
24 L I 53 F L 70 K R 95 C F
30 D N 54 I V 71 A I,T,V
32 V I 55 K R 72 I L,M,T,V
33 L I,F,V 57 R K 73 G S

wildtype and mutations at protease positions included in the study. The most prevalent amino acid at each position was considered the wildtype, which
corresponded mostly to the consensus subtype B sequence. Presence of the wildtype amino acid was not included as a separate variable, but was indicated
by the absence of any of the included mutations. The fitness function was modelled based on presence of each of the mutations.

Table 2. Reverse transcriptase mutations included in the fitness function

pos wildtype mutations pos wildtype mutations pos wildtype mutations pos wildtype mutations

6 E D 67 D G,N 123 A E,G,N,S 190 G A
11 K T 68 S G 135 I L,T,V 196 G E
20 K R 69 T D,N 138 E A 200 T A,E,I
21 V I 70 K R 142 I T,V 202 I V
28 E K 74 L I,V 151 Q M 203 E D,K
35 V I,L,M,T 83 R K 158 A S 207 Q A,D,E,G,K
36 E A 90 V I 162 S A,C,Y 208 H Y
39 T A,E,K 98 A G,S 165 T I 210 L W
40 E D 100 L I 166 K R 211 K R,S
41 M L 101 K E,Q 169 E D 214 F L
43 K E,Q,R 102 K Q,R 173 K A,I,R,S,T 215 T F,S,Y
44 E D 103 K N,R 174 Q K,R 218 D E
48 S T 104 K R 177 D E 219 K E,N,Q
49 K R 106 V I 178 I M,L 221 H Y
60 V I 108 V I 179 V I 228 L H,R
62 A V 118 V I 181 Y C
64 K R 121 D H,Y 184 M V
65 K R 122 E K,P 188 Y L

wildtype and mutations at reverse transcriptase positions included in the study. The most prevalent amino acid at each position was considered the
wildtype, which corresponded mostly to the consensus subtype B sequence. Presence of the wildtype amino acid was not included as a separate
variable, but was indicated by the absence of any of the included mutations. The fitness function was modelled based on presence of each of the
mutations.

and 90M) as follows:

P (30N, 88D, 90M) = P (30N)P (88D|30N)P (90M)

The corresponding relative fitness function F (30N, 88D, 90M) is
then:

F (30N, 88D, 90M) = F (30N)F (88D|30N)F (90M)

where F (30N) represents a fitness contribution of mutation 30N,
and F (88D|30N) represents a fitness contribution of mutation 88D

depending on presence of mutation 30N. Thus, mutations 30N
and 90M contribute independently to fitness, while the fitness
contribution of 88D is dependent on the presence of 30N. The values
of these contributions are not simply based on the parameters of the
Bayesian Network, but instead estimated taking also into account
the prevalence of mutations in treatment naive patients and a model
of evolution during treatment.
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Fig. 1. Hypothetical Bayesian network for a data set with three mutations:
30N, 88D and 90M. The network structure indicates that 90M occurs
independently from 30N or 88D, and a conditional prevalence of 88D on
30N.

Model of evolution
A model of evolution was implemented that describes evolution
in a finite population over a fitness landscape modeling a specific
selective pressure. The evolutionary model is based on the Wright-
Fisher model of evolution. The Wright-Fisher model describes
evolution in a finite population by assuming discrete generations and
that the probability for an individual to give offspring in the next
generation is proportional to its fitness. After selection, a Poisson
process is assumed for mutation at each locus. In addition, we
assumed a constant population sizeNe (the effective population size
of the HIV-1 intra-host population).

The fitness function F (N) that is used by the model, describes
fitness of a nucleotide sequenceN only as a function of the encoded
amino acid sequence, even though the model implements evolution
of nucleotide sequences. The implemented model does not detail
evolution for each individual virus in the population separately, but
considers only evolution of the population as a whole, and models
fixations of single nucleotide mutations in the consensus nucleotide
sequence N of this population. The model allows to obtain a
sample m1, . . . ,mn of n consecutive nucleotide fixations, from
the distribution P (M1, . . . ,Mn|N0) of n consecutive nucleotide
substitutions that are expected given a population with initial
consensus sequences N0. Furthermore, the model assumes that
fixation of the next mutation only depends on the current nucleotide
consensus sequence, and not on previous states. Therefore,

P (M1, . . . ,Mn|N0) = P (M1|N0)P (M2|N1) . . . P (Mn|Nn−1)

with Ni = Mi(Ni−1), the nucleotide sequence obtained after
substitution of mutation Mi in the sequence Ni−1.

At each step, the Wright-Fisher model was used to sample from
P (M |N), the distribution of the next expected mutation M given
the current consensus sequence N assuming a fitness function F .

The computation uses (1) the fitness of the current consensus
sequence, F (N), and of the K sequences F (mk(N)) which
are in the one-nucleotide sequence neighbourhood of the current
consensus sequence; (2) µk, the nucleotide mutation rate for
each mutation mk; and (3) Ne, the effective population size (see
Figure 2). The nucleotide mutation rate is the rate at which new
mutations arise during each replication cycle, which is independent
of the selective pressure (Deforche et al., 2007). From F (N) and
F (mk(N)), the selective advantage sk for each mutation mk was
computed:

sk =
F (mk(N))

F (N)
− 1.

In the real intra-host HIV-1 population, each of these mutations
will be generated at rate µk simulateneously and all K alleles

mk(N) compete with each other and with the current consensus
sequence N for fixation. Unfortunately, the problem of determining
the distribution of fixation probabilities for the K-allele problem
is mathematically intractable (Ewens, 1979), and simulation
prohibitively time consuming. Instead, the K-allele problem was
approximated by considering K times a 2-allele problem. For
each mutation mk, a sample tk was drawn from the distribution
of population 50% fixation times T50(Ne, sk, µk) (in number
of generations) of an allele with mutation mk, starting from a
population with 100% N alleles, where mk(N) was generated
(and lost) at rate µk. The mutation k with the minimum sampled
50% fixation time tk was used as an approximation for a sample
drawn from the distribution of mutations that reached 50% fixation
in the K-allele problem. No mathematical expression is known for
T50(Ne, s, µk), the time until the frequency of a mutant allele rises
to 50% for the two-allele problem (Wang and Rannala, 2004). We
found that this distribution could be reasonably approximated by a
shifted log normal distribution

P (t; a, µ, σ) =
1

(t− a)σ
√
2π
e−(ln t−a−µ)2/2σ2

with parameters a, µ and σ obtained by fitting to 50% fixation times
obtained from simulating the Wright-Fisher model with mutation
and selection (see Figure 3). We could not use the 100% fixation
time, since in presence of a non-zero mutation rate, back-mutation
prevents fixation up to 100%. A threshold of 50% was chosen
instead since the HIV-1 sequence datasets are obtained through
population sequencing which can detect mutations if present at 50%.

Given our fitness function model, which allows variation in fitness
based only on a subset of the full set of 20 amino acids at all
positions, only mutations resulting in the evolution over this fitness
landscape were considered: synonymous nucleotide mutations, or
nucleotide mutations that resulted either in an amino acid change
represented in the fitness function or a reversion to the wild type
at that position were considered by the evolutionary model. Other
nucleotide mutations were not considered, as if they were lethal.

(1) for k in mk(N) :
(1.1) sk ← F (mk(N))

F (N)
− 1

(1.2) tk ← draw from T50(Ne, sk, µk)
(2) k ← arg mink (tk)
(3) M ← mk(N)

Fig. 2. Algorithm to obtain a sample nucleotide sequence M from the
stochastic evolution and fixation of a single nucleotide mutation in the
population consenses nucleotide sequence N over a fitness landscape F .
mk(N): every possible nucleotide mutation applied to sequenceN ; µk: the
nucleotide mutation rate for mutation k; and Ne: the effective population
size of the population.

Intra-host population parameters
For the HIV-1 simulation model, a constant intra-patient effective
population size Ne = 104 was assumed, a value previously
estimated from in vivo observations during treatment (Nijhuis et al.,
1998; Rouzine and Coffin, 1999), and an average mutation rate µ =
2.17 × 10−5 mutations/site/generation (Mansky and Temin, 1995)
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Fig. 3. Example of the density function T50(Ne, s, µ), time for a mutant
with selective advantage s = 0.01 and mutation rate µ = 10−6 to reach
a prevalence of 50% in a finite population with effective population size
Ne = 104 obtained from simulations. The density function was fit by a
shifted log normal distribution with (a = 59, µ = 4.1, σ2 = 0.47).

was used. Furthermore, we used base-dependent mutation rates
µi = µ(bfrom, bto) that were estimated from in vivo longitudinal
data (Deforche et al., 2007). For the estimation, we used Gmax =
200, corresponding to about a year of evolution, given an estimated
generation turnover time of ±1.5 days; LE = |PE | = 10 × |PT |
and ε = 10−7.

Iterative Algorithm for the Estimation of Fitness
Function Parameters
The parameters φi,k of the function F are estimated so that
evolution over the fitness landscape of a naive population PN
resembles the treated population PT . Therefore, evolution is
simulated for sequences sampled from the naive population PN
using the fitness function, to obtain an evolved population PE . The
difference between the sequence populations PE and PT , which
must thus be minimized, is measured by comparing the parameters
of BNT (θT , ST ) of the treated data set, with BNE(θE , ST ), a
BN estimated from the simulated population using the structure
that was learned from the treated data set. Thus, we measure and
minimize the difference in prevalence of each mutational pattern
that is modeled by the BN, and for which the fitness function
specifies a separate fitness contribution.

Fitness function parameters φi,k = F (Ai = 1 | parents(Ai) =
k) were estimated by an iterative algorithm. The algorithm searches
for values φi,k so that the difference between a population evolved
over the landscape, PE , and the treated population PT is
minimized.

The algorithm is illustrated with pseudo-code in Figure 4. Starting
from a flat fitness landscape, by initializing all φi,k to 1 (Figure 4:
1), parameters were adjusted using an iterative procedure. A
population PE was computed by sampling LE sequences from the
naive population, and evolving them over the current estimate of the
fitness landscape (Figure 4: 2.1 – 2.2). To compare this population
PE with PT , the Bayesian network structure ST was trained with
data from the evolved population PE to obtain BNE(θE , ST ).
In this way, for every pattern k of parents for mutation Ai, each
parameter θTi,k (probability of mutation Ai given that pattern in the
treated population) has a corresponding parameter θEi,k (probability

in the simulated population) and a fitness landscape parameter φi,k
(fitness contribution for mutationAi given that pattern). Each fitness
landscape parameter φi,k was then adjusted using the difference
between θEi,k and θTi,k (Figure 4: 2.4.1): an increase of φi,k for
a too low prevalence of Ai in the simulated population compared
to the treated population, and vice-versa. Uncertainty on these
parameters was taken into account by using the sufficient statistics
SSi,k (Myllymäki et al., 2002) instead of θi,k. Depending on
the sign of the difference di,k, φi,k was adjusted with a small
multiplicative adjustment factor δi,k (Figure 4: 2.4.2). The values
δi,k were dynamically adjusted depending on the convergence of
the corresponding φi,k: when di,k changed sign compared to the
previous iteration, δi,k was decreased, while when the sign of di,k
did not change for a number of consecutive iterations, δi,k was
increased. Convergence was assessed when all δi,k, which were
initialized to a small number ε, dropped below that ε.

initialization as flat landscape:
(1) for all i, k:
(1.1) φi,k ← 1

iteratively update parameters φi,k of landscape F :
(2) repeat until all δi,k < ε:
(2.1) PE ← ∅
(2.2) repeat LE times:
(2.2.1) N ← sample naive nucleotide sequence
(2.2.2) g← sample from P (GT )
(2.2.3) N ′← evolve N up to g generations over F
(2.2.4) PE ← PE ∪ {N ′}
(2.3) compute BNE(θE , ST ) from PE and given structure ST

(2.4) for all i, k:
(2.4.1) di,k ← SSTi,k/|PT | − SSEi,k/|PE |
(2.4.2) φi,k ← φi,k(1 + δi,k)

sign(di,k)

(2.4.3) adjust δi,k

Fig. 4. Algorithm to estimate the parameters in the fitness landscape by
simulating evolution of treatment naive sequences over a current estimate
F and adjusting the fitness function parameters φi,k so that the difference
between an evolved population and a treated population is minimized.
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