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Preface 

This dissertation is submitted to the Department of Physics and Technology, Faculty 

of Mathematics and Natural Sciences, University of Bergen in the partial fulfillment 

of the requirements for the degree philosophiae doctor (PhD) and serves as 

documentation of my work during my PhD study. This work summarizes 

experimental work done in laboratories at the University of Bergen and at the 

ConocoPhillips Technology Center in Bartlesville, OK, USA. Numerical work has been 

performed at Lawrence Berkeley National Laboratory in Berkeley, CA, USA, during a 

6-month research term funded by the Fulbright Scholar Program. The work has been 

funded by Statoil, ConocoPhillips’ program for gas hydrates, and the Norwegian 

Research Council as part of the project “In-situ imaging of CO2 flow, storage and 

entrapment in subsurface aquifers and hydrocarbon reservoirs”. The latter project 

included studies of CO2 storage by various mechanisms, but only work related to the 

storage potential in hydrates has been included in the PhD dissertation. 
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Summary 

Focus is shifted towards renewable energy and sources of natural gas as the demand 

for cleaner energy continues to increase with global awareness on anthropogenic 

climate change. Methane (CH4) provides advantages such as high enthalpy upon 

combustion and low carbon imprint compared to other fossil fuels. Natural gas is 

therefore predicted to play an important role as the world moves from coal 

dependency towards a cleaner and more sustainable energy future.  

Natural gas hydrate is a solid state of gas and water, where water molecules 

interconnect through hydrogen bonding to form a cavity which is stabilized by a gas 

molecule through van der Waals interaction forces. This reaction occurs where 

water and CH4 coexist at low temperature and high pressure. In nature, such 

conditions are typically found in permafrost and sub-marine environments. Vast 

energy resources are associated with gas hydrates, where different models suggest 

that hydrates contain 1015 to 1017 m3 CH4 at standard temperature and pressure 

(STP). In comparison, the annual gas consumption in the US is about 7·1011 m3. Gas 

hydrates may therefore become a significant contributor in the future energy mix. 

Current technological challenges are related to in situ characterization for accurate 

saturation estimates, further advances in production technologies and continuous 

improvements of available numerical models through comparison with actual field- 

and core-scale data.  

A synergy between gas production and safe CO2 storage is achieved through CO2 

sequestration in hydrate bearing sediments, where CO2 replaces the existing CH4 

molecule within the hydrate crystal. The process occurs because CO2 offers 

favorable thermodynamic conditions. Salt was observed to impact the hydrate 

formation rate and the amount of excess water in Paper 1. Depressurization and 

diffusion-driven CO2 exchange were compared, where Magnetic Resonance Imaging 

(MRI) was used to monitor production in situ. CO2-CH4 exchange was more abundant 

for high residual brine, and therefore sensitive to initial salt concentration. 

Depressurization was assumed to be limited by permeability and heat transfer. 

Current opinion on geomechanical issues related to hydrate bearing sediments was 

addressed in Paper 2. Hydrate decomposition through depressurization resulted in 

production of associated water with potential loss of structural integrity, as gas 
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hydrates enhance sediment shear strength through mineral interaction. The 

sediment shear strength was assumed to be maintained during the CO2-CH4 

exchange process based on minor intensity variations. 

Depressurization is considered a promising production method for gas hydrates. The 

technology is yet available from the conventional oil and gas industry, and little 

energy is required to promote dissociation relative to thermal stimulation. Empirical 

dissociation data were compared with predictions utilizing TOUGH+HYDRATE in 

Paper 3. Accurate predictions of heat and fluid flow within the sample were 

achieved by discretizing the problem into a significant number of subdomains in a 

Cartesian 2D and a complex Voronoi 3D model. The problem was initialized based on 

MRI saturation data, while temperature measured in the confining fluid was used as 

a time-variable boundary. Empirical decomposition was successfully reproduced 

numerically by employing both the kinetic and equilibrium reaction model. Heat 

transfer was the main controlling mechanism. Kinetic limitations may be present in 

rapid small-scale dissociation tests, and the choice of reaction model should 

therefore reflect the physical geometry of the problem.  

Some of the main conclusions from Paper 1 - Paper 3 were: 

• Heat transfer was the most important mechanism for sustained hydrate 

dissociation during depressurization. 

• Kinetic modeling was required for accurate numerical reproduction of small 

scale dissociation. 

• The sediment shear strength was assumed to be maintained during CO2-CH4 

exchange 

Data logs such as resistivity and acoustics are often acquired during and after drilling 

through hydrate bearing intervals for evaluation of pore fluids. Accurate calibration 

is essential for correct interpretation of data. The complexity of the measurement is 

enhanced by competing processes, where increasing tortuosity increases the 

resistivity, while elevated ion concentration reduces the measured resistivity. These 

issues were addressed in Paper 4. Electrical measurements were compared to 

spatially resolved MRI saturation data for improved interpretation. The standard 

Archie model was insufficient for porosity and saturation estimates, and a dynamic 

empirical function that accounted for variable ion concentration was implemented. 

Changes in effective porosity were accurately described when employing the 
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dynamic function. n varied during growth and was dependent upon the hydrate 

growth pattern. Additional techniques for determining saturation should therefore 

preferentially aid in the resistivity interpretation. 

The CO2-CH4 exchange process was maximized in Paper 5 through constant 

volumetric injection rate in a fractured sample design which provided optimized 

flow conditions and a constant reaction interface. Five consecutive exchange 

sequences demonstrated enhanced exchange efficiency during constant injection, 

where negative effects of CO2 dilution during CH4 release were minimized. Final 

conversion efficiency was a function of saturation, non-uniformities and soaking 

time. 59-83% of the CH4 was replaced by CO2 during 2-5 days of injections.  

Exchange efficiency was further addressed in non-fractured samples, where 

released CH4 was continuously displaced towards the producer. The probability of 

plugging increased, and final mixed gas hydrate compositions were observed. Flow 

issues were addressed through CO2/N2 binary gas injection, which resulted in 

excellent flow conditions. CO2-CH4 exchange was substantiated during binary gas 

injection which was confirmed by in line Gas Chromatography (GC) measurements. 

The overall variation in hydrate saturation was not quantified, but significant 

resistivity decrease indicates partial dissociation or rearrangement of hydrate 

crystals. 

Main conclusions from Paper 4 and Paper 5 were: 

• Interpretation of saturation and porosity estimates during hydrate growth 

was improved by modifying Archie’s resistivity model. 

• 59-83% CO2 was safely stored in gas hydrates through constant CO2 injection 

while benefitting from CH4 production. 

• Binary gas injection (CO2/N2) promoted further exchange while maintaining 

permeability. 

Collaborative experimental effort between the University of Bergen and 

ConocoPhillips resulted in co-injection of CO2 and N2 in a recent field test in Alaska 

(Ignik Sikumi). Several controlled laboratory experiments were conducted in 

preparation of the field test. Extended CO2-CH4 studies and electrical resistivity 

measurements were the main contributions from this work.  
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1 NATURAL GAS HYDRATES 

Gas hydrate is a solid inclusion compound of gas and water. The hydrate stability is 

governed by pressure, temperature and chemical potential of water and guests in 

co-existing phases, and the hydration reaction is commonly described as a pseudo 

reaction by  

CH4 + nHH2O = CH4·nHH2O + heat 

where the hydration number nH is estimated to be 5.99 ± 0.07 for sI gas hydrate 

(Circone et al., 2005). CH4 is typically concentrated by a factor of 164 relative to STP 

conditions.  

There has been a proliferation in hydrate related research, where focus has shifted 

on gas hydrates from flow assurance perspective to potential energy resource. Even 

conservative estimates suggest that energy stored in gas hydrates is within the same 

order of magnitude as the sum of all conventional fossil fuels. The general consensus 

is that the resource is yet producible through existing technology applied in the oil 

and gas sector, but currently not at economic rates. Economic growth and 

development require access to clean and affordable energy. The last decade has 

seen a shift with increased gas hydrate research and several field tests for 

evaluation of production potential. These studies are motivated by the magnitude of 

the resource and the low carbon imprint of CH4 upon combustion. Several 

comprehensive reviews are available on physical properties and challenges related 

to gas hydrates (Sloan and Koh, 2008, Makogon, 1997, Moridis et al., 2008, Waite et 

al., 2009), and  Franks (1972) has given an extensive review of water properties 

which is useful for fundamental understanding of water and hydrate similarities. It is 

not within the scope of this work to give a detailed description of hydrate 

properties, but rather outline essential properties necessary for further discussions.  

1.1 Hydrate structures 

Gas hydrates consists of water molecules that interconnect through hydrogen 

bonding in an open structural lattice, where a hydrophobic guest molecule is 

suspended in the open space as a result of van der Waals interaction forces (also 

known as London dispersion forces). Several molecules are potential guests and will 
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result in different arrangement and structures of the water molecules. The 

polyhedral cavity which encapsulates the guest molecule are comprised by 

pentagonal and hexagonal faces, where pentamer is the most likely structure to 

spontaneously arise in water at different temperatures (Stillinger and Rahman, 

1974). The different faces combine to form different polyhedrons, as illustrated in 

Figure 1. The pentagonal dodecahedron (512), which consists of twelve pentagonal 

faces, is a common polyhedron found in most hydrate structures. Structure I (sI) 

consists of two pentagonal dodecahedra and six tetrakaidecahedra, and is 

preferably stabilized by molecules with diameter ranging between 4.2-6 Å (e.g. CH4, 

CO2, C2H6). CH4 is the most abundant guest molecule in natural gas hydrates (Milkov, 

2005), and also the main target for natural gas production from hydrates. This study 

therefore emphasizes on sI gas hydrate. 

 

Figure 1 – Illustration of the most common polyhedra and hydrate structures. 512 is 
a fundamental building block for all structures, and consists of twelve pentagonal 
faces. The polyhedron connects by sharing faces, and different combinations result 
in different structures. Figure modified from Hester (2007) and Sloan and Koh 
(2008). 
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1.1.1 Guest molecules 

A guest molecule that does not compete or interfere with the already existing 

hydrogen bonding is needed to stabilize the cavity. The preferred ratio of molecular 

to cavity diameter for a guest to stabilize a cavity is at least 0.76; however, this rule 

does not always apply. The cavity size and structure is dependent on the size of the 

guest molecule, where sI is stabilized by molecules with diameters between 4.2-6 Å 

in simple hydrate systems with only one guest molecule per crystal cell.  

Raman and NMR spectroscopy are two common techniques used for identifying 

cavity occupancy. Different experiments (Sum et al., 1997, Lee et al., 2003) have 

demonstrated how empty cages may be present, which is more dominant for 

smaller cavities. Sum et al. (1997) used Raman spectroscopy and reported nearly 

complete filling of large cavities, while fractional occupation of small cavities were 

less than 1 (0.87-0.92, depending on the hydration number). This corresponded well 

with results using a statistical thermodynamic model. They also measured the guest 

occupancy in different cavities and were unable to detect any CO2 in the small 

cavities. CH4 is generally preferred guests in small cavities, but CO2 occupancy is also 

a realistic scenario (Fleyfel and Devlin, 1988). Anderson (2003) reported increased 

CO2 occupancy for higher pressure. 

1.2 Hydrate kinetics 

Fundamental understanding of mechanisms involved on microscopic and 

macroscopic scale during formation dissociation is essential from a production and 

flow assurance perspective. The following sections will outline processes and 

mechanisms involved during growth and dissociation.   

1.2.1 Hydrate formation kinetics 

Three conditions have to be met for gas hydrates to form (Makogon et al., 1999):  

1. it has to be thermodynamically favorable (ΔG<0) 

2. access to hosts (water) and guests (gas) 

3. heat released during the exothermic reaction has to be transported from the 

reaction site 
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The hydrate stability region is restricted to the upper left area in Figure 2, where 

different lines indicate stability for various gas compositions. The driving force, as 

most processes in thermodynamics, is related to Gibbs free energy. The 

thermodynamic potential is related to pressure, temperature and fluid composition. 

Hydrate deposits are therefore limited to permafrost and sub-marine environments 

because of the pressure/temperature restriction. This figure illustrates how CO2 

offers favorable thermodynamic conditions at temperatures below 10 °C from a 

Gibbs free energy point of view. The thermodynamic behavior of gas hydrates are 

described in detail elsewhere (Waals and Platteeuw, 1959). 

If all conditions are met, hydrate growth will initiate as rearrangement of water and 

gas molecules in the water/gas phase once the system is within the hydrate stable 

region. Hydrate nucleation is not deterministic, and persistence of a non-equilibrium 

state (metastability) results in an induction time. This is a time-dependent  

 

Figure 2 – Phase stability diagram for gas hydrate cavities occupied by different 
guest molecules. Experimental conditions were typically maintained at 
temperatures ranging between 0.5-10 °C, while pressure was maintained at 8.38 
MPa during formation. N2 will not be a stable hydrate former at the experimental 
conditions, but is included for comparison. Presence of salt ions would shift the 
hydration pressure and temperature upwards towards the left corner. Data was 
generated without presence of salts through CSMGem (Ballard and Sloan Jr, 
2002). 
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random process, where water and gas molecules rearrange into labile clusters that 

agglomerate by sharing faces. The clusters may grow or collapse until it reaches a 

critical size where the free energy change overcomes the surface energy of the new 

interface (Clennell et al., 1999). The chemical potential will be further reduced with 

increasing nucleus radii, and progressive growth will therefore occur once critical 

size has been achieved. The induction time is dependent upon many variables, such 

as the experimental apparatus, dynamic (agitated) or static systems, presence of 

substrate material, the history of the water, water and gas composition, pressure 

and temperature and the degree of subcooling. The time-delay is a result of 

rearrangement of hydrate interfaces, solid surface effects and mass transfer through 

the hydrate film. The induction time initiates as the system reaches hydrate stable 

conditions, and concludes by the appearance of a detectable hydrate volume, as 

illustrated in Figure 3. Mechanisms involved during growth will be further 

elaborated later in this chapter.  

 

Figure 3 – Gas consumption during time-dependent hydrate formation. The 
induction time initiates as the system reaches hydrate stable conditions and 
concludes as the hydrate volume is detectable, where further growth occurs as a 
function of driving force. Figure modified and inspired from Lederhos et al. (1995). 
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Homogeneous and heterogeneous nucleation 

The nucleation process depends on the physical state of the system and the fluids 

present. Homogeneous nucleation (HON) is a crystallization process occurring in 

absence of impurities, and is therefore not common. It also requires significant 

amounts of gas to be dissolved in the water phase, which is unusual for non-polar 

gases like CH4.  

Heterogeneous nucleation (HEN) occurs either at the interface between two 

different phases (Figure 4) or in presence of impurities such as micro-particles or 

minerals. The substrate, unless complete non-wetting, will increase the probability 

of growth and is therefore favored from a thermodynamic point of view (Kashchiev 

and Firoozabadi, 2002). Fluid interfaces provide abundance of both guests and 

hosts, and therefore increase the probability of growth as well. Nucleation usually 

occurs at the gas side of the interface in a CH4/water system because of the 

inconsistency between hydration number of CH4 hydrate (5.99) and the CH4 

solubility in water (750 moles of water per mole of methane at 4 °C (Lu et al., 2008)). 

The stability of the hydrate film formed at the interface is sensitive to the degree of 

solute saturation in contacting phases (Uchida et al., 1999). Solubility of vapor in gas 

is generally lower than solubility of gas in water, and the hydrate film will therefore 

typically propagate into the water phase. Gases with higher solubility, such as CO2, 

will induce additional nucleation points in water solution. 

 

Figure 4 – Heterogeneous nucleation at the fluid interface, where nucleation and 
growth is more probable because both constituents (hosts and guests) can easily 
be accessed. A thin film will initially form at the interface, which will grow from the 
gas phase into the aqueous phase. Figure from Taylor et al. (2007). 
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Controlling mechanisms during growth 

Limiting mechanisms during growth are related to the three conditions listed earlier 

(1.2.1). The general consensus is that growth limitations are related to intrinsic 

kinetics, mass or heat transfer. 

A semi-empirical kinetic model was proposed by Vysniauskas and Bishnoi (1983) 

based on CH4 formation studies using a semibatch stirred tank reactor. The model 

was later extended to include C2H6 and CO2, and the driving force for the 

crystallization process was described by the fugacity difference (Δf) at experimental 

conditions (fexp) and the three phase equilibrium fugacity (feq) (Englezos et al., 1987a, 

1987b, Malegaonkar et al., 1997). The model is based on crystallization theory 

coupled with two-film theory to describe mass transport across the gas-liquid 

interface. The validity of a kinetic approach has been questioned (Sloan and Koh, 

2008, Skovborg and Rasmussen, 1994), and kinetics may be less significant than 

anticipated during hydrate growth. 

A simplified model was proposed by Skovborg and Rasmussen (1994), where 

hydrate growth was modeled as a mass-transfer-restricted process across the fluid 

interface. Later, heat transfer from the reaction site was suggested to be a 

controlling mechanism during hydrate growth, where subcooling determined the 

evolution of film growth (Uchida et al., 1999, Mori, 2001, Mochizuki and Mori, 2006, 

Freer et al., 2001). Both guest/host accessibility and heat transfer were listed as 

essential mechanisms required for hydrate formation. These processes are therefore 

expected to be more dominant than intrinsic kinetics during hydrate formation. 

1.2.2 Hydrate dissociation kinetics 

Mass transfer 

Rehder et al. (2004) measured the dissolution rate of pure CH4 and CO2 hydrates at 

isothermal and isobaric conditions. Hydrate was exposed to under-saturated water, 

which initiated a decomposition process. Solubility of CO2 in water is one order of 

magnitude higher than that of CH4, which was reflected in the dissolution rate. Their 

data corresponded to a diffusive boundary layer model, thus indicating that 

dissociation was limited by diffusion/mass transfer. This mechanism will be the main 

controlling mechanism for gas hydrate deposits at the seabed and also in high 

water-flux areas such as fractures with high permeability and flow. This study clearly 
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demonstrated how hydrates contacted by under-saturated fluids decompose in an 

attempt to reach equilibrium conditions. 

Intrinsic kinetics 

Bishnoi and coworkers (1987, 2001, 2005) developed an intrinsic kinetic model for 

hydrate decomposition as well. The model and values were measured using a semi-

batch stirred tank reactor with a particle size analyzer. The intrinsic rate was a 

function of particle surface area (AS, surface area active during dissociation) and the 

fugacity difference between vapor and equilibrium pressure. The decomposition 

rate was described by  

 ������� = �	
���� − ����, (1) 

where 

 �	 = �	���� �−
∆�
���. 

 

(2) 

The intrinsic rate (kd
0) and activation energy (ΔE) was estimated to be 3.6E+04 

mol/m2Pas and 81 kJ/mol. The reported activation energy is higher than the 

enthalpy change during the reaction, and the physical interpretation of the model 

has been questioned. Gupta (2007) demonstrated how the data could be fitted 

equally well using a heat transfer model.  

Heat transfer 

The general consensus is that heat transfer is the dominant controlling mechanism 

during hydrate dissociation. In analogy to endothermic ice melting, hydrate 

dissociation also requires additional heat to break the hydrogen bonds. The latent 

heat of dissociation (500 J/g-water1) is higher relative to ice (334 J/g-water), as 

additional energy is required due to van der Waals interaction forces between the 

guest and the host molecules. Heat transfer, either through conduction or 

advection, is therefore necessary to maintain dissociation (Davies et al., 2006, 

Kamath et al., 1984). Hong et al. (2003) concluded in their analytical modeling study 

that dissociation occurs as a result of three driving forces; heat transfer, intrinsic 

kinetics and fluid flow. Initial dissociation was controlled by kinetics, but heat 

                                                   

1 Joules per gram of water 
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transfer was the main controlling mechanism as the system reached the three-phase 

equilibrium line. Gupta et al. (2009) demonstrated how CH4 hydrate decomposition 

followed the equilibrium three-phase curve, thus indicating that heat transport was 

a limiting mechanism. NMR spectroscopy revealed no cavity preference during 

dissociation, and decomposition progressed without presence of an activated state 

(Gupta et al., 2007). This also suggests that intrinsic kinetics does not play a major 

role during decomposition. However, the subject should be approached with 

caution, as different mechanisms may be active on various scales and time scales.  

Presence of a porous medium adds further complexity to the hydrate formation and 

dissociation phenomenon. Physical and chemical properties of gas hydrates residing 

within porous media will be different from those observed in bulk. One evident 

effect is that presence of solid minerals affects the thermal properties of the 

composite system (Selim and Sloan, 1990). Capillary forces may also be described in 

terms of chemical potential (Nitao and Bear, 1996), where surface potential effects 

impact the pore water activity (Figure 5). A conceptual model of hydrate growth 

within porous media demonstrates the importance of capillary forces, where surface 

chemistry and intrinsic physical sediment properties affect the thermodynamic 

state, growth kinetics and spatial distributions of the reactants and products 

(Clennell et al., 1999). Models based on bulk experiments, especially for agitated 

systems, may not always be valid in a porous medium due to additional complex 

interaction forces.  

 

Figure 5 – Illustration of capillary effects on the water activity, where bound water 
has less contribution to reactions occurring within the pore space. Figure modified 
from Clennell et al. (1999). 
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Self-preservation effect 

The “self-preservation” phenomenon, where gas hydrates are preserved for 

extended periods above their hydration temperature, has been reported by several 

researchers (Davidson et al., 1986, Stern et al., 1996, 2001, 2003, Takeya et al., 

2002). Adiabatic cooling effects due to initial dissociation resulted in temperature 

reduction by 3-7 K, but additional temperature-dependent effects were observed. 

Figure 6 illustrates average times for 50% dissociation for a series of experiments. 

Deviation from expected dissociation rates were observed for the thermal regime 

ranging from 242 to 271 K. This may be due to a shielding effect of ice coating on the 

decomposing hydrate surface; however, non-uniform ice distribution was 

documented through X-ray analyses (Stern et al., 2001). Such phenomenon 

complicates the fundamental understanding of participating processes and 

numerical predictions.  

 

Figure 6 – Average time required for 50% dissociation of CH4 hydrate. A thermal 
regime is observed where the dissociation rate deviates from the expected value by 
orders of magnitude (notice the logarithmic scale). Open data points were 
extrapolated, as the samples never converged towards 50% dissociation. Figure 
from Stern et al. (2001). 
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1.3 Gas hydrates in nature 

The last decades have seen a significant increase in hydrate related research with 

focused effort towards gas production from hydrates. A population increase of 2 

billion by 2050 and rapid economic growth in developing countries will likely elevate 

current energy consumption by 50% by 2035 (IEA, 2011). A sustainable energy 

future may be within reach (Chu and Majumdar, 2012); however, current energy 

consumption preserves our dependency on fossil fuels. Gas hydrates offer favorable 

conditions in terms of enthalpy upon combustion and carbon intensity, and may 

therefore be a potential energy resource for the future. Several countries have 

launched ambitious gas hydrate programs to determine the viability of the resource. 

This proliferation in focused gas hydrate research is motivated by the potentially 

vast energy resource, which is especially important for developing countries without 

access to hydrocarbon fuels. There are several challenges and current technology 

needs further refining and maturing; however, some hydrate deposits may yet be 

producible at economic rates with current technology. The following section will 

outline current challenges and opportunities and discuss motivations for hydrate 

related research. 

1.3.1 Hydrate plugging in production and transportation pipelines 

Flow assurance was the main driver for previous gas hydrate research due to 

plugging of production and transportation pipelines (Hammerschmidt, 1934). 

Abundance of water and gas in high pressure/low temperature environments makes 

hydrate formation inevitable. Significant effort is therefore made to avoid such 

temperature/pressure regimes. Hydrate agglomeration will eventually result in 

complete plugging with undesired downtime in production and potential hazards 

during removal. These plugs dissociate radially (Gupta, 2007, Davies et al., 2006), 

and differential pressure may result in high-velocity projectiles up to 300 km/hr as 

the plug becomes unattached from the pipe-wall surface (Sloan, 2003). Flow 

assurance is therefore frequently involved with injection of chemical additives that 

affect the hydrate formation ability through a range of different mechanisms.  

Alcohols and glycols interact with the water molecules due to differences in 

electronegativity, which causes the inhibitors to compete with the hydrate crystal. 

These typically require high concentrations, and other chemicals, such as polymer 



1.3 Gas hydrates in nature 

12 

 

molecules, are therefore generally preferred. Salt, such as NaCl, is also an inhibitor, 

where the salt ionizes and interacts with a much stronger Coulombic bond than both 

the hydrogen bond and the van der Waals interaction forces. This is an efficient 

inhibitor, but issues such as corrosion makes salts unattractive for production and 

separation facilities.  

A statistical mechanical model was developed by van der Waals and Platteeuw 

(1959), which describes the chemical potential of water molecules in hydrate 

cavities. The incipient hydrate formation conditions may be determined through this 

model, and the knowledge is transferred into pipeline and separation 

technology/facilities. The model is also applied in research related to hydrate 

mapping and gas production, and the majority of numerical modeling tools are 

based on the work of van der Waals and Platteeuw. 

1.3.2 Evaluation of resource potential 

Resource potential has been addressed through different models which indicate a 

potentially vast energy resource somewhere in the range of 1015 to 1017 m3 CH4 at 

standard temperature and pressure (STP) (Kvenvolden, 1988, Milkov, 2004, Klauda 

and Sandler, 2005). However, none of these estimates have made any prediction to 

what fraction of the resource is actually producible. The gas hydrate pyramid 

(Boswell and Collett, 2006) illustrated how different geologic features and technical 

challenges affects the potential commercialization. Moridis et al. (2011a) suggested 

that current studies should address issues such as; 1) what is the actual size of the 

resource, 2) what fraction is deposited in permeable high-quality sands, and 3) 

compiling this information with data from field tests and numerical work to enhance 

the quality of the prediction. Several studies have recognized the need for improved 

quality in resource potential assessments (Collett et al., 2008b, Frye, 2008). A range 

of hydrate deposits are located worldwide (Figure 7), but lack of field data makes 

evaluation of production potential difficult.  
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Figure 7 – Illustration of known and inferred gas hydrate deposits in the world. 
Inferred hydrate deposits are identified through indirect measures such as seismic 
reflectors or pore-water freshening in core samples. The distribution of hydrate 
deposits demonstrates how occurrence of hydrates is bound by thermodynamic 
restrictions. Figure from Hester and Brewer (2009). 

A combination of accurate logging methods, geophysical surveys, geological models 

and numerical modeling is necessary for accurate estimates of in situ saturations 

and resource potential. There has been an advancement of technology and accuracy 

of estimations, where state-of-the-art measurements using integrated seismic and 

electromagnetic (EM) methods offer the latest within hydrate predictions (Edwards, 

1997, Weitemeyer et al., 2006, Edwards et al., 2010). A comprehensive review of 

geophysical exploration techniques is given by Riedel et al. (2010) and will not be 

further elaborated here.  

1.3.3 Well logging for saturation estimates 

Logging is either performed as a wireline operation (borehole already exists) or as a 

logging while drilling (LWD) operation for high vertical resolution information about 

physical and chemical properties of the hydrate bearing sediment. Gas hydrates are 

sensitive to temperature, pressure and chemical changes, and LWD is therefore 

preferred as drilling-induced temperature increase or cooling by low-temperature 

drilling muds will corrupt the original state of the reservoir (Goldberg et al., 2010). In 

comparison, wireline measurements suffer from time-delay and data acquired may 

not be representative for the hydrate bearing interval. Common measurement 
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techniques include electrical resistivity logs in combination with supersonic logs for 

assessment of saturations within hydrate bearing intervals. Significant resistivity and 

acoustic velocities are associated with gas hydrates.  Resistivity measurements in 

hydrate bearing sediments have been investigated in this study and will be further 

elaborated in Chapter 1.3.6. 

1.3.4 Hydrate deposits and reservoir classes 

Gas hydrates are deposited in a variety of different reservoir types, such as arctic 

and marine sands, fractured muds, mounds and un-deformed muds. For simplicity, 

the hydrate accumulations are often classified according to the conditions of 

hydrate bearing reservoir (Moridis and Collett, 2003). Class I accumulations have an 

underlying free gas zone, where the gas hydrate/free gas interface may coincide 

with the equilibrium line. Minor temperature or pressure changes will trigger 

decomposition due to proximity to the stability line, and production is further 

enhanced by presence of free gas. Class II deposits are underlain by a mobile water 

phase, whereas Class III is isolated from any mobile fluids. In terms of production, 

properties such as intrinsic permeability and fluid mobility will determine whether 

economic rates can be achieved. The feasibility will also depend on the reservoir 

temperature/pressure, as the entire hydrate interval may be well within the hydrate 

stable region and therefore require significant driving force to promote dissociation. 

The classes are illustrated in Figure 8. The more attractive deposits are typically less 

abundant. 
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Figure 8 – Hydrate deposits classified according to properties of the geologic 
medium they reside in. In terms of production, Class I offers favorable conditions as 
only minor energy is required to promote dissociation. The free gas phase 
enhances gas production and the dissociation interface. Class II and III are 
sensitive to properties such as permeability and fluid mobility. 

1.3.5 Hydrate configuration within the pore space 

Most configurations of gas hydrates in unconsolidated sediments fall into the 

following categories (Sloan and Koh, 2008); 

1. Finely disseminated hydrate that may dissociate rapidly 

2. Nodular hydrate of up to 5 cm bulk hydrate 

3. Layered hydrate separated by thin layers of sediment 

4. Massive hydrates as thick as 3-4 m with maximum 95% hydrate saturation. 

This study is mostly concerned with gas hydrates residing within the pore space and 

will therefore focus on mechanisms and forces involved on pore scale. Differences in 

hydrate growth pattern will affect some of the inherent properties. Helgerud (2001) 

measured wave speeds in gas hydrates and suggested four different hydrate growth 

patterns based on his study; 

i. Hydrate preferentially forms at the grain contacts, thus cementing even at 

lower saturations 

ii. Hydrate coats grains more or less uniformly, progressively cementing them as 

the hydrate volume increases 
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iii. Hydrate grows in the interior of the pores with partial support to the frame 

iv. Hydrate grows without significant interaction with the frame 

Several experiments have attempted to determine preferences in growth pattern. 

Ice Ih and gas hydrates exhibit similar properties, and ice growth in porous media 

has therefore been investigated through NMR measurements. These measurements 

indicate presence of a non-frozen water layer between the solid ice and the pore 

walls (Valiullin and Furo, 2002, Kleinberg et al., 2003, 2005). Water will usually be 

the wetting phase in a gas/water system. Experiments have demonstrated bulk 

growth in water wet samples or micro-models as capillary forces inhibit growth in 

the osmotic and bound layer (Clennell et al., 1999, Tohidi et al., 2001). Hydrate 

growth will therefore preferentially occur in larger pores due to extensive capillary 

forces in smaller pores (Torres et al., 2008). This is further enhanced in excess gas 

systems, where large pores have high accessibility of host and guest molecules. 

Crystallization in bulk is a slow process when considering the hydration number of 

CH4 hydrate (5.99) and the solubility of CH4 in water (750 moles of water per mole of 

methane at 4 °C (Lu et al., 2008)). Mass transfer and hydrate growth therefore 

preferentially occur at the interface between the two fluids in the larger pores 

(Kvamme, 2002), where the film propagates into the water phase (Uchida et al., 

1999). Nucleation and growth on adsorbed fluid layers on mineral surfaces is also a 

realistic scenario, but we have to keep in mind that the hydrate nucleus is unable to 

attach to the mineral surfaces due to incompatibility between the surface hydrogen 

bonded water molecules and geometrical structures of partial charges on atoms in 

surfaces of minerals (e.g. theory from (Israelachvili, 2011)). Typically, 4-6 layers of 

water molecules will populate the Stern (or Helmholtz) layer and the diffuse electric 

double layer and separate the hydrate from the mineral surfaces. Presence of such 

layers may be of importance from a thermodynamic perspective, where hydrate can 

potentially be exposed to under-saturated fluids. These layers are also important 

from a mass-transfer perspective (Svandal et al., 2005) and for seismic 

interpretations.  

Hydrate formation in laboratory synthesized samples 

Accurate reproduction of natural processes and mechanisms are important from an 

experimental perspective, as differences in growth pattern will impact physical 

properties of the hydrate bearing sediment. Hydrate growth in laboratory 
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synthesized samples are often approached either through the ice-seeding method of 

Stern et al. (1996), (1998), partial water and gas saturation method (Stevens et al., 

2007, Kneafsey et al., 2007) or by dissolving gas in water that is circulated through 

the sample (Spangenberg et al., 2005). The latter approach is not frequently applied, 

as it is a time-consuming process (up to 55 days was reported for CH4 hydrate). The 

different approaches will impact how fluids are distributed within the pores and 

therefore also the hydrate growth pattern.  

Variations in hydrate growth pattern 

Ebinuma et al. (2005) measured mechanical properties of hydrate bearing sediments 

synthesized through ice seeding and excess gas. Low Swi in the excess gas approach 

typically resulted in enhanced interaction with the mineral framework, as less Sh,CH4 

was required to increase sediment stiffness. Less deviation was observed between 

the ice seeding and excess gas approach at higher Swi because of increasing film 

thickness that separated the fluid interface (gas/water) and grain minerals. 

Imbibition or drainage processes in porous media typically involves more or less 

smooth planar progressions due to interfacial tension between the fluids. Changes 

in hydrate saturation are more complex, both in terms of morphology and in pore 

habitat, as disconnected clusters may grow or decompose at different positions 

within the same pore. Hydrate morphology is important from a mass transfer 

perspective, and may also be important for interpretation of physical properties. 

Several studies have reported protrusion of dendrites or lobes which appear to be 

triggered by presence of saturated fluids (Uchida et al., 1999, Ohmura et al., 1999). 

The hydrate film surface acts as a nucleation site for growth of these geometric 

shapes due to favorable conditions in terms of Gibbs free energy. Growth is 

generally assumed to move in the direction of the water phase, but protrusions into 

the gas phase can also occur as a result of water volume expansion due to hydrate 

formation (Jung and Santamarina, 2012). The topology of lobes increases the 

reaction interface relative to planar progression and may therefore provide 

favorable mass transfer conditions. Additionally, imperfections such as tensile 

discontinuities and voids between polycrystals facilitate mass transport of guest 

molecules through the hydrate film. These mechanisms may be important when 

evaluating CO2-CH4 exchange in hydrates and resistivity measurements.  
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1.3.6 Electrical resistivity measurements for saturation estimates 

Electrical resistivity logs are frequently acquired in combination with acoustic data 

when drilling through hydrate bearing intervals. The approach has been used 

extensively in the oil and gas industry and is well documented (e.g. (Archie, 1942, 

Serra, 1986, Ellis and Singer, 2007, Hearst et al., 2000)). The electrical properties of 

hydrate bearing sediments change with mineralogy, porosity, hydrate saturation, 

brine salinity, and the extent of occluded fluids. Reliable calibration data is therefore 

essential for correct interpretation. An introduction to Archie’s law is given in Paper 

4. 

Resistivity measurements in hydrate bearing sediments 

Several previous studies have documented resistivity logging in hydrate bearing 

intervals (e.g. (Mathews, 1986, Collett, 1998, Torres et al., 2008, Boswell et al., 2012, 

Collett et al., 2012b, Collett, 2001, Shankar and Riedel, 2011, Collett and Ladd, 2000, 

Sun and Goldberg, 2005, Chen et al., 2008, Pearson et al., 1983, Hyndman et al., 

1999, Boswell et al., 2009, Anderson et al., 2008)). Saturation is estimated by 

measuring Ro at intervals below the hydrate stable region, while n=1.9386 (Pearson 

et al., 1983) is frequently applied.  

Several laboratory experiments have attempted to evaluate the accuracy of the 

resistivity method. Pearson et al. (1986) combined acoustics and resistivity 

measurements on THF-hydrate-saturated Berea sandstone and Austin Chalk. 

Resistivity increased two orders of magnitude during growth, and they suggested 

that changes in ion concentration control the apparent resistivity. Ren et al. (2010) 

used similar methodology on CH4 hydrate growth in quartz sand-packs, where 

resistivity dropped at the onset of formation and stabilized around 4 Ωm after 

growth. Similar trends have been reported by others, where values in the lower 1-20 

Ωm range are more abundant (Li et al., 2010, Li et al., 2012). Some exceptions range 

one order of magnitude higher (Spangenberg et al., 2005), which suggest that the 

inherent resistivity is dependent upon intrinsic sediment properties and the 

conditions at which gas hydrates are synthesized. 

Determining n for accurate saturation estimates 

Saturation estimates through Archie’s resistivity index are very sensitive to 

variations in the saturation exponent n, where minor changes result in significant 
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deflections in terms of saturation units (Worthington and Pallatt, 1992). The physical 

interpretation of n is related to interaction from the minerals and intrinsic sediment 

properties such as pore shape, connectivity and wettability. A literature survey 

suggested that n averages around 2 for water-wet samples (Anderson, 1986), and 

the value remains unaffected during drainage. However, the inherent resistivity 

increases as the medium moves from water-wet towards oil-wet conditions 

(Donaldson and Siddiqui, 1989, Worthington and Pallatt, 1992, Anderson, 1986) 

which is reflected in progressive resistivity and increasing n (Sweeney and Jennings, 

1960, Wei and Lile, 1991, Zhou and Stenby, 1997, Morgan and Pirson, 1964). 

Archie’s laws are therefore not valid at these conditions. 

The interpretation of n for hydrate bearing sediments is related to hydrate 

configuration within the pore space, the hydrate geometry during growth and 

extent of interaction with mineral surfaces.  Grain cementing growth yields strong 

resistance to electrical currents, as hydrate located in pore throats will efficiently 

reduce the connectivity of brine pathways. This will be reflected in high n. Hydrate 

growth within the center of the pore space will have less effect on the resistivity and 

therefore yields lower n.   

A theoretical and network modeling study investigated how differences in growth 

pattern impact the intrinsic resistivity of hydrate bearing sediments, as illustrated in 

Figure 9 (Spangenberg, 2001). High capillarity resulted in n ranging between 0.5 and 

4, where significant increase was observed for small variations in saturation units. 

Spangenberg later confirmed his predictions through experimental work 

(Spangenberg and Kulenkampff, 2006), but the majority of well log interpretations 

are still based on the value reported by Pearson et al. (1983). 
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Figure 9 – Model for how various hydrate configuration within the pore space affect 
the inherent saturation exponent. A constant n is anticipated from the oil and gas 
industry, but varying growth pattern may affect the measured resistivity. Figure from 
Spangenberg and Kulenkampff (2006) 

1.3.7 Geomechanical stability and environmental concerns 

The stability and stiffness of unconsolidated sediment is enhanced by presence of 

gas hydrates that interact with the mineral framework and inhibit further 

consolidation. Subsidence due to continued sedimentation may eventually result in 

unfavorable temperature conditions due to the geothermal gradient. Decomposition 

results in locally higher pressure and may induce fractures where gas is vented. The 

hydrate no longer provides support to the under-consolidated sediment, and 

massive submarine landslides may occur. Hydrate decomposition is believed to have 

contributed to the Storegga slide on the Norwegian Continental Shelf (Bryn et al., 

2005, Bugge et al., 1987, Sultan et al., 2004). Such landslides result in displacement 
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of large volumes of water and possible creation of subsequent tsunami (Dawson et 

al., 1988).  

Other apparent disadvantages are release of CH4, which is an aggressive greenhouse 

gas that may further enhance the greenhouse effect (Lelieveld et al., 1998). Gas 

hydrates represent a vast natural gas sink. For comparison, a 10% release of the CH4 

inventory would correspond to a tenfold increase in the global CO2 concentration in 

terms of the Earth’s radiation budget (Archer, 2007). Global temperature increase 

could substantially reduce the CH4 hydrate inventory with accelerated positive 

feedback to global warming (Buffett and Archer, 2004, Kennett et al., 2003). The 

ocean will to some extent oxidize the CH4 and reduce the negative feedback from 

CH4 seeps into the atmosphere. 

1.3.8 Gas production from gas hydrates 

Production through decomposition 

Gas production from natural gas hydrates has typically been approached through 

decomposition, where the physical or chemical conditions in the hydrate bearing 

reservoir are altered to promote dissociation. Figure 10 illustrates the three-phase 

equilibrium curve for CH4 hydrates and the three methods applied for hydrate 

decomposition; depressurization, thermal stimulation and injection of inhibitors that 

compete or interfere with the hydrogen-bonded water molecules in the hydrate 

crystal. Depressurization is generally considered the most promising approach, as 

limited energy is required to promote dissociation (approximately 15%). The method 

is even more attractive for a Class I reservoir, where underlying free gas promotes 

high initial production rates and increases the decomposition surface area. 

Additionally, excess gas may indicate that the bottom of the hydrate deposits 

intersects the three-phase equilibrium line, where negative effects of the 

endothermic reaction are less substantial due to high reservoir temperature and low 

degree of subcooling. 

Thermal stimulation is another method, where heat is added to the reservoir to 

promote dissociation. This approach is energy-intensive, as liquid must be heated 

and transported to the reservoir. The thermal properties of gas hydrates are also 

unfavorable, and the majority of heat will therefore be transferred to the rock 

matrix. Inhibitor concentration will be diluted during dissociation, and this approach 
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Figure 10 – Three-phase equilibrium line for CH4 hydrates at different brine 
concentrations. The figure illustrates the three common approaches for hydrate 
decomposition; depressurization, thermal stimulation and injection of inhibitors that 
reduce the hydrate stable region. 

is therefore not considered for full field stimulation. However, both thermal 

stimulation and inhibitor treatment in the near wellbore region are favorable to 

prevent ice and hydrate formation in the wellbore region due to Joule Thompson 

effects.  

CO2 replacement 

CH4 production from gas hydrates may also be approached through guest 

replacement where the injected gas provides a thermodynamically preferred gas 

hydrate (Svandal et al., 2006, Seo and Lee, 2001). Figure 2 demonstrated how 

different guests have inherently different stability regions, where the stability of CO2 

hydrate extends beyond that of CH4 hydrate at specific temperature regimes. The 

potential energy of the system is reduced during the CO2-CH4 exchange process, 

where excess energy is released in form of heat (exothermic reaction). Liberated 

heat during CO2 hydrate formation (Anderson, 2003) exceeds the requirement for 

CH4 dissociation (Anderson, 2004). Liberated heat will therefore enhance the 

replacement process. Jung et al. (2010) suggested that liberated heat assists in the 
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exchange process for subcooling up to 10 K. However, the enthalpy contribution is 

sensitive to the fluids occupying the pores and the composite thermal conductivity 

of the HBS. Excess gas will reduce heat dissipation, where heat liberation efficiently 

facilitates additional CH4 hydrate decomposition for accelerated exchange. 

Maintained sediment shear strength during exchange is an additional advantage 

(Espinoza and Santamarina, 2011). 

The replacement technology has been demonstrated in bulk experiments (Lee et al., 

2003, Lee et al., 2004, Park et al., 2008, Ota et al., 2005), in sediments (Graue et al., 

2008, Kvamme et al., 2007, Yuan et al., 2013, Ersland et al., 2010, Jadhawar et al., 

2005) and numerically (Phale et al., 2006, Kvamme et al., 2007, White et al., 2011). 

The exchange process is complex, where several variables complicate evaluation of 

final conversion efficiency.  

Raman and NMR spectroscopy have been applied to measure hydration numbers for 

pure and binary phases. Inherent properties such as guest molecule affinity give a 

theoretical maximum recovery of 75% based on the 3:1 ratio of large to small 

cavities. This is based on the assumptions of complete hydration and replacement 

limited to large cavities. Recovery will increase by presence of empty cages and 

replacement in small cavities (Fleyfel and Devlin, 1988), which is possible from a 

theoretical perspective. Sum et al. (1997) used Raman spectroscopy and reported 

nearly complete filling of large cavities, while fractional occupation of small cavities 

was less than 1 (0.87-0.92, depending on the hydration number). This corresponded 

well with results using a statistical thermodynamic model.  

Uchida et al. (2000) evaluated exchange by Raman spectroscopy and detected a 50-

hour induction period without any reactions. 80% of the CH4 molecules were 

replaced during the following 30 hours, while signal from small cavities disappeared 

completely after 100 hours. Lee et al. (2003) suggested that the bulk recovery was 

limited to 64%, however, exchange kinetics in sediments may not be comparable to 

bulk measurements because of the increased reaction interface area and presence 

of minerals. Chapter 1.3.5 discussed how hydrates and minerals are separated by a 

film with varying thickness. The diffusion coefficient of CO2 and CH4 in water 

(Thomas and Adams, 1965) are several orders of magnitude larger than in hydrate 

(Demurov et al., 2002, Davies et al., 2008). Mass transfer efficiency is therefore 

enhanced by the water layer, which is important from a replacement perspective 
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(Kvamme et al., 2007). Different geometric topologies may also be of importance for 

the exchange efficiency, as they increase the reaction interface. Overall, CO2 

replacement is a promising technological concept with positive feedbacks from 

increased hydrate stability and storage of a potent greenhouse gas. 

1.3.9 Field evaluations and pilot tests 

The last decade has seen an increase in the number of field evaluations and pilot 

tests, primarily driven by international gas hydrate R&D programs. Current national 

programs include India (the Krishna-Godavari basin (Collett et al., 2008a)), China 

(Yang et al., 2008), South Korea (Ulleung Basin(Park, 2008, Moridis et al., 2009)), 

Canada (Grace et al., 2008), and several active projects in the US (Frye et al., 2012, 

Boswell et al., 2012, Riedel et al., 2005). Extensive reviews and reports are available, 

and this section will therefore only give a brief summary of field tests in the open 

literature to demonstrate how the gas hydrate technology has advanced and 

becomes increasingly more focused for each field test.  

Messoyakha 

Messoyakha, located in the eastern Siberian permafrost, is an example of a Class I 

hydrate reservoir that has been produced through conventional depressurization 

since 1967 (Makogon, 1997). The base of the hydrate interval intersected the 

hydrate stable region and dissociation is therefore triggered through minor pressure 

changes. Production of free gas results in minor pressure drops that induce a 

constant gas flux from the hydrate interval. Gas hydrate decomposition may at least 

have contributed to additional 30% production. 

Mallik 

Conventional hydrocarbon exploration in the Mackenzie Delta-Beaufort Sea area 

accompanied by more than 200 wells have resulted in extensive knowledge of gas 

hydrate occurrences in the area. Three dedicated international scientific drilling 

programs have further enhanced the knowledge data base through data logs, 

several production tests, and sections of cored data (Dallimore et al., 1999, 

Dallimore and Collett, 2005, Yamamoto and Dallimore, 2008, Kurihara et al., 2010a). 

The Mallik 2007-2008 test was the most successful, where sustained production 

rates up to 4000 m3/day were recorded (Grace et al., 2008). The production tests 
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provided data sets for calibration of existing hydrate numerical models through 

history matching (Kurihara et al., 2008, Moridis et al., 2004) and was therefore 

essential for evaluation of the model performance. Loss of geomechanical stability 

and sand and water production were obvious limitations during the production test.  

Nankai Trough 

A 16-year gas hydrate program was initiated in Japan in 2001 based on seismic data 

from the Nankai Trough-region. Japan does not have any natural sources of 

hydrocarbons and have therefore initiated a major research effort to assess the 

resource potential and to develop strategies for commercial gas production within 

2018. Resource assessment suggested that a total of 40 tscf may be contained in gas 

hydrates in the Nankai Trough region, where 20 tscf is located in concentrated areas 

(Fujii et al., 2008). Two production tests are planned within 2015 (Masuda et al., 

2009), where the first test was supposed to be initiated early 2013. Temperature 

response during the depressurization test will be monitored through two 

observation wells drilled in 2012 (Yamamoto et al., 2012). The Japanese programme 

is fairly advanced, and their scientists were involved in the Mallik field test. Results 

from Japan will probably not be published within the first years, but it has the 

potential to shape the gas hydrate future. 

Mount Elbert 

The USGS released an assessment of the North Slope gas hydrate potential in 2008 

with a mean estimate of 85 tscf as technically recoverable (Collett et al., 2008b). The 

extensive well-network within the Milne Point-area has identified a range of 

potential hydrate prospects, where Mount Elbert is ranked highest (Collett et al., 

2011). The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was 

drilled in February 2007, where a 17 days joint effort resulted in a comprehensive 

dataset (Hunter et al., 2011). This study featured coring (Rose et al., 2011), 

evaluation of physical sediment properties (Winters et al., 2011, Kneafsey et al., 

2011) and pore fluids (Torres et al., 2011, Stern et al., 2011). A full suite of logging 

tools were applied to determine the hydrate bearing intervals and saturations (Lee 

and Collett, 2011, Sun et al., 2011). The fluid flow potential was measured in four 

open interval flow tests that ranged from 6 to 12 hours each. These datasets were 

evaluated through history matching by several numerical models (Anderson et al., 

2011a, Kurihara et al., 2011, Moridis et al., 2011b, Pooladi-Darvish and Hong, 2011) 
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and provided data for evaluation of potential long-term production (Anderson et al., 

2011b, Collett et al., 2012a, Wilson et al., 2011). The stratigraphic well confirmed 

intervals with 60-75% Sh within reservoir quality sand. 

Ignik Sikumi 

This accumulation is also located on the Alaskan North Shore and was subject to a 

different approach. The University of Bergen developed a technology for gas 

production through CO2 sequestration and CO2-CH4 exchange in the hydrate crystal 

in partnership with ConocoPhillips. A single well was drilled in April 2011 in 

proximity of the Prudhoe Bay Unit L-pad. The unit was chosen due to its low 

geologic risk and presence of multiple potential hydrate intervals. A full suite of 

logging tools were applied (including resistivity) in combination with a series of 

pressure tests (Schoderbek and Boswell, 2011). In 2012, 2609 kg CO2 and 5479 kg N2 

(77/23 mol% N2/CO2) was injected into the Sagavanirktok “Upper C” sand with Sh 

averaging at 75% and a thickness of 30 ft (Schoderbek et al., 2012). Abundance of 

gas and water increases the plugging probability, and the wellbore conditions was 

maintained above 0 °C to avoid further complications by ice formation. Injection 

was initiated at February 15th, and the well was shut in after two weeks of injection. 

Flow-back was initiated March 4th and extended for 30 days, where the pressure 

initially was maintained above the hydration pressure for pure CH4 hydrate. 998 

mscf gas was produced and measured with a GC, which revealed 22 mscf CO2, 155 

mscf N2 and 821 mscf CH4. The final report is yet to come, but the pilot test has so 

far been considered a success (Parshall, 2012).  

The five production tests reveal an evolving technological advance, both in terms of 

characterization and production methods. It also underlines the importance of data 

acquisition for further numerical evaluation and verification of numerical models 

and further refinement of production technologies. 
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2 EXPERIMENTAL DESCRIPTION 

A range of different experiments have been performed during this study as part of 

an ongoing project between the University of Bergen and ConocoPhillips. This 

chapter will describe experimental techniques, setups and procedures for 

experiments performed at University of Bergen and at the ConocoPhillips 

Technology Center in Bartlesville.  

2.1 Core properties and configurations 

Core samples from hydrate reservoirs are rare and often corrupted during the 

retrieval and preservation process (Kneafsey et al., 2011). This study has therefore 

used an outcrop rock as an analogue to the reservoir. Bentheim sandstone is a 

consolidated and fairly uniform rock with 22-23% porosity, 1.1 D permeability and 

pore diameter averaging at 125 microns. The pore size distribution is unimodal, with 

grain density of 2.65 g/cm3. The mineralogy typically showed 95-99% quartz with 

trace of the clay mineral kaolinite.  

The core dimensions used in this study ranged from 6-15 cm in length and 3.81-5.15 

cm diameter, where three different core configurations have been applied (Figure 

11). Some samples had manufactured fractures along the longitudinal axis which 

were maintained open by a polyoxymethylene (POM) spacer. This spacer volume 

could be monitored in situ by MRI to verify CH4 production. The spacer volume also 

increased the reaction area, and prevented flow issues during days and weeks of 

operation. 

 

Figure 11 – Three different core configurations for different experiments. The 
single- and double-fracture designs were used during exchange studies, while non-
fractured samples were used for resistivity, depressurization and additional 
exchange studies.  



2.2 Magnetic Resonance Imaging 

28 

 

2.2 Magnetic Resonance Imaging 

MRI was used to spatially resolve saturation changes in situ, either as 1D, 2D or 3D 

visualizations. This technique was used for all experiments conducted at the 

ConocoPhillips Technology Center, and these experiments therefore provide 

additional information regarding active mechanisms during hydrate growth or 

decomposition. The principles of Nuclear Magnetic Resonance (NMR) are based on 

quantum mechanics and Newtonian physics (Bloch, 1946, Purcell, 1946), and have 

been applied in the oil and gas industry for decades (e.g. (Coates et al., 1999, Dunn 

et al., 2002)). Previous effort has also documented the benefit of MR imaging and 

NMR spectroscopy for gas hydrate related studies (Baldwin et al., 2003, Ripmeester 

and Ratcliffe, 1999, Moudrakovski et al., 2004). 

One of the advantages of MRI is that the signal intensity is proportional to hydrogen 

density and can therefore be used to substantiate presence of water and CH4. 

Hydrogen in hydrate has short relaxation time which is not captured by the standard 

spin-echo sequence (Hahn, 1950). Drop in MRI intensity could therefore be 

quantified as hydrate formation. The magnetization M0 from Curie’s law is inversely 

proportional to temperature. The signal strength will therefore increase during 

cooling processes for hydrate formation. MRI provided spatially resolved in situ 

saturation data during hydrate growth, exchange and decomposition. The MRI 

acquired a full 3D saturation image in 2 hours and 17 minutes and ran continuously 

during days or weeks of operation.  

2.2.1 Processing data from the MRI 

Unprocessed MRI data was structured into intensity averages and intensity profiles 

through an in-house IDL-based software (Husebø et al., 2007). ImageJ, a Java based 

image processing program, assisted in analysis and visualization of MRI data. T3D 

v.1.1.3 (Fortner Research, LLC) was also used for visualization purposes. 

2.3 Experimental setups 

The experimental concepts and techniques are similar for all experimental setups 

used in this study, where high precision equipment is assisted by a cooling system 

that provides temperature control during exo- and endothermic processes. The 
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experimental setup at the ConocoPhillips Technology Center is more complex 

because of the MRI. Five setups are currently available for gas hydrate studies at the 

University of Bergen, including a micro-model and a block setup that are briefly 

described in the Appendix A. 

2.3.1 Experimental setup at ConocoPhillips Technology Center 

The experimental setup took advantage of a superconducting “small body” 

Unity/Inova-Imaging 85/310 spectrometer MRI from Varian. The resonance 

frequency of 87.5 MHz corresponds to a 2 Tesla magnet, where three dimensional 

images were represented as 32x32x128 floating point arrays for the settings used in 

this study. A custom-made core holder with a composite fiberglass and resin housing 

was used, as described in Figure 12. All parts and equipment in vicinity of the MRI 

were made of non-magnetic components to ensure compatibility with the high 

magnetic field. This included titanium end caps, cobalt screws, POM spacers and 

polyetheretherketone (PEEK™) end pieces. 

Two accurate Quizix C-6000-10K-HC-HT high pressure pumps were used for pore 

pressure (CH4, CO2, N2 or binary gas mixtures). The pumps could operate at flow 

rates up to 200 ml/min at maximum 41.4 MPa with a resolution of 13.5 nl (nano-

liters). Paroscientific Digiquartz pressure transducers measured inlet and outlet line 

pressure, while an additional transducer monitored the differential pressure at 

specified time intervals.  

The confining system was combined with the cooling system because of restrictions 

presented by the MRI. Fluorinert FC-40 was used as confining fluid as it contains no 

hydrogen and minimizes RF loss due to its low dielectric properties. The Fluorinert 

was pressurized by a Quizix QX-6000 pump, while a recirculation pump ensured 

circulation of the fluid, as illustrated in the top of Figure 12 and in Figure 13. The 

system temperature was maintained constant at 4.0 ± 0.3 °C by circulating cooled 

confining fluid under pressure in lines inside a low-pressure PVC jacket that worked 

as an additional cooling loop outside the MRI. Antifreeze in the PVC jacket was 

cooled by a Termo Neslab RTE-221 refrigerated bath that provided constant heat 

exchange with the Fluorinert inside the high-pressure tubing. A type-T thermocouple 

was positioned within the cooling fluid, as illustrated in Figure 12, and was logged at 

specified time intervals using a HH506RA data-logger from Omega Engineering. 



2.3 Experimental setups 

30 

 

 

Figure 12 – Illustration of custom made pressure vessel for MRI experiments. All 
components were non-magnetic for compatibility with the magnet. Figure from 
Husebø (2008). 
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Figure 13 – Experimental setup at the ConocoPhillips Technology Center in 
Bartlesville. A combination of accurate high pressure pumps and in situ saturation 
information from MRI makes this setup ideal for investigation of mechanisms 
involved during hydrate growth, decomposition or exchange.  

Resistivity setup 

Slight modifications were made to the experimental setup to accommodate 

resistivity measurements. Silver filter papers were contacting the trans-axial core 

faces, as illustrated in Figure 14. A POM spacer was added to provide space for the 

wire attached to the silver paper. The paper and wire were held in place by the POM 

spacer. A pass-through fitting connected the electrodes to an external LCR meter 

through the PEEK end pieces. Resistivity and phase angle were measured with a HP 

4263A LCR meter at specified time intervals for frequencies ranging between 100 Hz 

and 100 kHz.  
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Figure 14 – Silver filter paper, contacting both trans-axial core faces, were used as 
electrodes in the MRI system. A POM spacer was positioned on top to provide 
space for the wire, which was connected to a LCR meter through a pass-through 
connection.  

2.3.2 Experimental setups at the University of Bergen 

The main concept of experimental setups at the University of Bergen is illustrated in 

Figure 15. These setups are less complex in terms of imaging, which increases the 

overall flexibility as there is no magnetic field to take into consideration (e.g. time-

delay in effluent profile was reduced from 5 to 0.3 hours as the GC could be 

positioned in proximity to the pressure vessel). RCH-Hassler type core holders with 

aluminum housing were provided from Temco (Figure 16). Chemical resistant 

sleeves (Nitrile rubber/Buna-N) were used to extend the lifetime during injection of 

reactive CO2. The end-pieces were made of SS-316 with three NPT connection ports 

for each distribution plug. These were either connected to high pressure tubing for 

pore pressure or thermocouples that measured temperature at the core surface 

and/or within the sample. Accurate high pressure pumps (either Quizix C-5000-2.5K-

HC, Teledyne Isco 100 DM or 260 D, or Sanchez Technology Stigma 300, 500 or 1000 

pumps) were used for pore pressure (gas or water). Custom designed Druck UNIK 

5000 pressure sensors were monitoring differential, inlet and outlet line pressure 

(0.04 % FS). Pressure was recorded at specified time intervals by an in-house built 

Labview program. Quizix QX, C-5000-10K-SS or air-driven Haskel MS-71/MS-188 

liquid pumps in combination with gas-loaded accumulators were used for constant 

overburden pressure.  

The core outlet could be routed through a complex effluent-evaluation loop 

consisting of several elements. Two back pressure regulators were put in series for 

improved flow control. Line pressure was first reduced from 8.38 MPa by a gas-

loaded Hastelloy Equilibar EB1ZF1 Zero Flow Precision back pressure regulator 

equipped with Hastelloy diaphragm and Merkez Z1602 o-rings for chemical 
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compatibility. The line pressure was reduced to 0.1 MPa by the second pressure 

control unit, a spring-loaded Swagelok KLF High-Sensitivity back pressure regulator. 

The gas composition could then be determined by an in line Agilent 3000A Micro GC 

with a TCD detector at one minute time resolution. This setup has recently been 

modified with an additional mass flow meter in combination with a large gas 

accumulator for improved interpretation accuracy.  

Cylindrical cooling jackets were designed and built in-house, where cooled 

antifreeze was circulated in a low pressure cooling system for heat exchange with 

the core holder and sample. Temperature was measured using T-type 

thermocouples which were logged at specified time intervals using a HH506RA data-

logger from Omega Engineering (0.1 °C resolution).  

 

Figure 15 – Description of main principles of the three experimental setups at the 
University of Bergen. The core outlet (right side) was either routed to a receiving 
pump (lower) or through an in-line GC for evaluation of gas composition.  
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Figure 16 – Illustration of Hassler-type core holder used at the University of Bergen. 
Two pressure ports were available for confining pressure, while six connections 
were available for temperature readings and pore pressure control. Figure from 
Husebø (2008). 

Resistivity setup 

A Temco EHCH four-electrode core holder was used to bypass the contact 

impedance between the current electrodes and sample. Four-electrode setups have 

been detailed elsewhere (Bona et al., 2008). The core holder was equipped with a 

floating distribution plug which allowed radial and axial confining stress, as 

illustrated in Figure 17. The inner end piece faces were coated with a high 

conductivity silver layer contacting the trans-axial core faces. Two circular electrodes 

were embedded in a Buna-N sleeve with 2.54 cm spacing. These were connected to 

a HP 4262A LCR meter that measured resistivity between the electrodes using 1 kHz 

and 1 V. Dielectric fittings were used to avoid bypass during measurements. The 

core holder was equipped with a cylindrical cooling jacket where cooled antifreeze 

was circulated by a Thermo Neslab RTE-17 refrigerated bath. 



2.4 Experimental procedures 

35 

 

 

Figure 17 – Four electrode core holder used for hydrate resistivity experiments. The 
electric potential was measured across the two electrodes embedded in the sleeve. 
Figure from Odland (2009). 

2.4 Experimental procedures 

2.4.1 General procedures at ConocoPhillips Technology Center 

Each sample was evacuated and saturated with a NaCl concentration ranging 

between 0.1 and 5 wt% ranging from fully saturated (1.0) to partial water saturation 

of 0.3. The core was assembled between two POM spacers and PEEK end pieces, 

which were held in place by Teflon shrink tubing. Figure 18 illustrates the saturation 

process for an assembled sample, where water imbibes from right. Partial vacuum 

assisted in distributing the water. The sample was positioned inside the composite 

core holder and centered inside the MRI. Fairly homogeneous longitudinal water 

saturation was confirmed through 1D profiles. The pore- and overburden pressure 

was then increased in a stepwise manner to 8.38 MPa and 10.44 MPa, respectively. 

The system was cooled to 4 °C while 3D MRI data were acquired continuously every 

2 hours and 17 minutes.  



2.4 Experimental procedures 

36 

 

 

Figure 18 – Demonstration of core assembly and saturation process, where a water 
front is moving from right towards left. A single POM spacer is located at the left 
side for this specific test. The Teflon shrink tubing is confining all parts and isolating 
the sample from the confining fluid. 

2.4.2 General procedures at the University of Bergen 

The samples were saturated through spontaneous imbibition by positioning each 

sample horizontally in contact with a thin water film. Bentheim has a fairly high 

spontaneous imbibition potential, and samples were typically evacuated post 

saturation to achieve desired saturation. MRI has confirmed that this induces 

relatively uniform saturation conditions. The sample was positioned between two 

circular open-volume POM spacers and mounted into the core holder, where pore- 

and overburden pressure was increased in a stepwise manner to 8.38 MPa and 

10.44 MPa, respectively. The system was then cooled to 4 °C. 

2.4.3 Experimental procedure for resistivity measurements 

The silver paper or end-pieces were saturated with brine prior to assembly to 

minimize contact impedance. This was the only deviation from the general 

procedure. 

2.4.4 Experimental procedure during depressurization 

The pressure was reduced at constant volumetric rate once no further changes in Sh 

were detected. Pressure was maintained above the hydration pressure, and the 

system was given time to equilibrate. The pore pressure was then further reduced 

and maintained below the hydration pressure, where dissociation was quantified 
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through volume changes (pump log) and changes in Sw (MRI). Two experiments were 

performed at three sequential pressure steps (3.96, 3.89 and 3.82 MPa), where the 

pore pressure was reduced once no further decomposition was detected. A third 

experiment was performed at 3.2 MPa, where gas hydrate decomposed at a single 

pressure step. 

2.4.5 Experimental procedure for CO2 exchange 

The sample was wrapped in several layers of heavy duty plastic wrapping and 

aluminum foil (Bergen) to minimize negative effects of carbonic acid that forms 

during CO2 injection. Two different approaches were then applied. 

Huff and puff 

CO2 was injected through the open spacer volume to displace excess CH4 while the 

effluent was evaluated in situ by the in line GC. The system outlet was isolated once 

only traces of CH4 were observed, and the inlet was maintained at constant pressure 

for days or weeks of CO2 soaking. CH4 production and accumulation in the spacer 

volume was monitored and quantified by the MRI. A sequential flush displaced the 

produced CH4 and replenished CO2 once minor intensity changes were observed. 

This procedure was repeated for the second flush. 

Constant volumetric injection 

The sample was isolated after hydrate formation commenced. Inlet and outlet lines 

were evacuated and pressurized by CO2. Sample valves were opened 

simultaneously, and injection was initiated at 0.033 ml/min. The in line GC measured 

composition of the produced gas at specified time intervals. 

2.4.6 Depressurization for determining hydration pressure 

The intrinsic hydration pressure is dependent upon the guest composition, as 

illustrated in Figure 19. Variations in dissociation pressure can therefore be used for 

evaluation of guest composition if we assume that the hydrate and gas phase are in 

equilibrium. This concept was applied in this study, where hydrate dissociation was 

quantified through changes in MRI intensity or pump volume data. The approach is 

susceptible to variations in free gas composition and is therefore only valid as an 

approximation towards final conversion efficiency. This method was used to 
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evaluate mixed hydrate composition in a joint experimental study to address CO2-

CH4 exchange kinetics (Hester et al., 2011), which will be elaborated in Chapter 

4.4.3. 

The depressurization process was initiated by CH4 injection to displace excess CO2 

and thus limit reformation during decomposition. The flush continued until only 

traces of CO2 were observed in the effluent. The depressurization sequences were 

performed in a stepwise manner, where pressure was reduced in 0.07-0.21 MPa 

steps while monitoring pump data and MRI. Pressure was then maintained constant 

during the next two consecutive MRI acquisitions (4 hours and 34 minutes) where 

decomposition was quantified through volume and intensity changes.  

 

Figure 19 – Gas and guest composition in a P-x diagram at 4°C. Increasing CO2 
concentration in hydrate cavities efficiently reduces the three-phase equilibrium 
pressure. Data generated using CSMGem (Ballard and Sloan Jr, 2002). 
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3 NUMERICAL METHODS 

Mathematical solutions for complex systems are often approached by discretizing 

space and time into a finite number of reasonable subdivisions where coupled 

equations describe the conditions of each subdomain. Elements may be discretized 

through options such as the finite element method (FEM) and the finite volume 

method (FVM), but the finite difference method (FDM) is the most common 

approach in the oil industry. Physical and chemical processes are described through 

sets of coupled, non-linear partial differential equations that describe fundamental 

properties such as fluid and heat flow within the reservoir. These coupled equations 

are solved at discrete points (nodal points) at each time step. The accuracy of the 

prediction depends on how well defined the problem is, the mathematical solution 

method (direct or iterative), knowledge of parameters  that describe heat flow, 

chemical interactions and fluid flow, and also the availability of field or laboratory 

data that can verify the validity of the numerical models.  

3.1 Numerical modeling of hydrate bearing sediments 

Numerical studies of gas production from hydrates have advanced since the first 

efforts to evaluate production potential (Holder and Angert, 1982, Burshears et al., 

1986, Yousif et al., 1991). A range of numerical models are currently available, 

where international effort has been made to compare (Wilder et al., 2008) and 

verify the performance of the different models (Anderson et al., 2011a, Anderson et 

al., 2011b). Models are generally limited to case studies due to limitations in field 

studies (Moridis, 2003, Hong et al., 2003, Kurihara et al., 2005, Moridis and 

Kowalsky, 2005, Moridis et al., 2007, Moridis and Reagan, 2007). Several studies also 

take advantage of field-specific parameters for evaluation of possible production 

potential (Moridis, 2004, Moridis et al., 2009, Moridis et al., 2011b, Moridis et al., 

2010, Kurihara et al., 2010b, Anderson et al., 2011b, Uddin et al., 2011, Myshakin et 

al., 2012, Chejara et al., 2013). The common denominator is that most of these 

models are based on assumptions of phase transitions based on thermodynamic 

equilibrium, intrinsic kinetic descriptions or minimization of Gibbs free energy.  
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3.2 TOUGH+HYDRATE  

TOUGH+HYDRATE v1.2 (T+H) is a FORTRAN95/2003 code for subsurface simulation 

of multi-component, multiphase fluid and heat flow (Moridis, 2003, Moridis et al., 

2012). 26 different phase combinations are available, where phase transitions are 

described by equilibrium and kinetic reaction models. Elements are space 

discretized using integral finite difference method (IFDM) (Edwards, 1972, 

Narasimhan and Witherspoon, 1976), thereby removing any reference to a global 

coordinate system which is beneficial for spatial irregular discretization such as the 

Voronoi tessellation. The model stability is increased by fully implicit time 

discretization combined with upstream interface weighting of flux terms. The set of 

strongly coupled nonlinear algebraic equations are solved using Newton-Raphson 

iterations, where number of iterations required depends on the problem and preset 

convergence tolerance. Several linear equation solvers are available for solving the 

Jacobian (either direct solvers or conjugate gradient solvers such as DSLUCS and 

DLUSTB (van der Vorst, 1992, Sleijpen and Fokkema, 1993)). The properties of the 

real gas mixtures are computed using the Peng-Robinson EOS (Peng and Robinson, 

1976) while implementing interaction parameters from Søreide and Whitson (1992) 

to account for the effect of salts. Phase relations are preferentially described by a  

combination of the Pe/Te derived by Moridis (2003) from data reported by Sloan and 

Koh (2008) while enthalpy changes are described by Kamath et al. (1984) instead of 

the Clausius-Clapeyron equation. 

3.2.1 The kinetic model 

The kinetic model in TOUGH+HYDRATE is based on Kim et al. (1987) and Clarke and 

Bishnoi  (2001), where fugacity is included to describe the rate at which formation 

and/or dissociation occurs. The mass accumulation term is given by 
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where K0 is the intrinsic hydration reaction constant [kg/(m2Pas)], ΔEa is the 

hydration activation energy [J/mol], R is the universal gas constant [8.314 J/(molK)], 

T is temperature [K], FA is an area adjustment factor to correct for irregularities in 

grain shape and differences in hydrate shape and distribution, A is the active 

reaction surface area [m2], feq is the fugacity [Pa] at equilibrium at temperature T 
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and fv is the vapor fugacity [Pa] at temperature T. The intrinsic rate, activation 

energy and surface area was determined by Moridis et al. (2005) based on 

experimental results (Kneafsey et al., 2007) and inverse modeling. They concluded 

that the intrinsic rate was 1.78E+06 [mol/m2/Pa/s] and the activation energy was 

8.97E+04 [J/mol]. The area factor was varied between 0.0832 and 0.1091 to match 

the experimental data. It is likely that all of these parameters will change as hydrate 

forms or dissociates, as the pore geometry and reaction interface vary with Sh. 

3.2.2 Heat conductivity 

Heat transport is believed to be a controlling mechanism during formation and 

decomposition, and it is therefore important to describe heat transport within the 

porous media as accurately as possible. The heat flux term in T+H accounts for 

advection, conduction and radiative heat transfer. Several attempts have been 

made to measure the thermal conductivity of gas hydrate, and values have been 

reported to range between 0.25-0.7 (Gupta et al., 2006, Waite et al., 2009, 

Warzinski et al., 2008, Carrol, 2009). This study has used both 0.45 and 0.57 W/m/K 

which did not result in significant variation in the mass accumulation term.  

3.2.3 Operating the code 

The code is operated in a flexible manner, where the user specifies the problem 

geometry, initial conditions and boundaries, sinks and sources, physical properties 

of the system and also the computational parameters through one or several ASCII 

input files. Some sections of the file are free-format, while other sections require 

fixed format for backward compatibility with the TOUGH2 code (Preuss et al., 2012). 

The system grid construction (MESH) is generated using an independent FORTRAN 

program (MeshMaker.f95). 
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4 EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Hydrate formation 

Gas hydrates were formed repeatedly at varying saturations and salinities using the 

excess gas approach (Chapter 1.3.5). The pore space configuration depends on 

saturation, where higher Swi is likely to trigger growth in the middle of the pore 

space at the gas/water interface. This is believed to be the natural growth habitat 

for gas hydrates as gas-saturated water migrates through the hydrate stable zone.  

4.1.1 Mass balance data 

Similar response during hydrate formation was generally observed, as illustrated in 

Figure 20. Hydrate formation was detected as sudden increase in CH4 delivery from 

the pumps, as the CH4 density increases in the hydrate crystal. This resulted in a 

pressure drop, and the pump compensated by injecting gas to maintain constant 

pressure. PVT (Pressure, Volume and Temperature) data were therefore monitored 

for all experiments. The time required for hydrate formation depended upon ion 

concentration and Swi, as discussed in Paper 1, where the formation time was 

increased for higher initial concentrations. The fraction of crystallized water was 

reduced for higher salinities because of increased ion interaction with the formation 

water, as illustrated in Figure 21. Fill fraction was defined as (mol CH4/mol H2O)*nH, 

where the hydration number nH was set to 5.99 based on measurements from 

Circone et al. (2005). An experimental nH=5.99 would therefore induce Fill 

Fraction=1. CSMGem predict inhibition at 14 wt% NaCl brine at the experimental 

conditions, illustrated by the red dashed line. The fraction of hydrated water will 

therefore be less abundant for higher initial ion concentration, and fill fraction is 

assumed to follow the red theoretical line. Over-estimated fill fraction could indicate 

lower hydration number (higher degree of cage filling), a small leak, or less salt 

impact for lower ion concentrations. However, the overall correspondence with 

predictions from CSMGem is good. The experiments in Figure 20 have been further 

discussed in Paper 5, while some data in Figure 21 have been previously published in 

(Husebø et al., 2009). 
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Figure 20 – Comparison of hydrate formation for three experiments at the same 
sample with Swi=0.3 and 0.1 wt% NaCl brine composition. Higher saturations and 
higher salinities increased the time required for hydrate formation. 

 

Figure 21 – Salinity impacts during growth appear more pronounced for higher salt 
concentrations. Fill fraction was defined as the inverse experimental hydration 
number multiplied by the theoretical hydration number. Hydrate formation is 
inhibited at 14 wt% ion concentration, and the fill fraction was therefore expected to 
follow the red dashed line. 
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4.1.2 MRI saturation data 

Hydrogen spin in solid hydrate has short lifetime, as discussed in Chapter 2.2. 

Hydrate formation was therefore quantified based on loss of signal. Good 

agreement between mass balance data and MRI was generally observed, as 

illustrated in Figure 22. The experiment has been further discussed in Paper 5. Phase 

transitions and variations in hydrate growth patterns were spatially resolved using 

the MRI. Figure 23 shows a sequence of MRI images during growth for a sample at 

Swi=0.98. Limited guest molecule access restricted initial growth to the transaxial 

core faces. Hydrate growth progressed at the outer radii, thus indicating that initial 

growth was limited both by mass and heat transport. The experiment (2-1) has been 

further described in Paper 4.  

 

Figure 22 – Comparison of CH4 consumption and MRI intensity during hydrate 
formation for an experiment with Swi=0.6 and 0.1 wt% NaCl brine. Mass balance 
data correspond well with data from MRI, plotted on inverse axis. 
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Figure 23 – Spatial 3D saturation data during growth is useful for monitoring 
differences in growth pattern. Initial growth was focused close to the end pieces and 
at the outer radii, but progressed in a uniformly manner despite high Swi. 
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4.1.3 Variations in hydrate growth pattern 

Frontal advancement in Paper 4 was assumed to be a dominating factor for the 

observed resistivity progression. Growth was initiated at the left core surface in 

Figure 24 and converged towards the middle section of the core. Slightly non-

uniform saturation distribution was observed in the first image, which may provide 

favorable growth conditions at the left side. Frontal movement may have induced a 

high-salinity water bank at the hydrate formation front which inhibited further front 

advancement after 110 hours. However, both heat liberated at the formation front 

and increased ion concentration result in less favorable growth conditions from a 

thermodynamic perspective. The piston-like growth pattern therefore appears as an 

unfavorable growth process. 

Similar behavior was observed in a previous single spacer configured experiment, 

where a piston-like growth pattern emerged after 8 hours (Figure 25). The growth 

behavior was assumed to be related to variations in initial saturation in Paper 1. Yet, 

the growth process appeared insensitive to the locally lower saturation in the left 

part of the core and progressed from both directions. Hydrate growth is generally 

assumed to be heat- or mass transfer limited, as discussed in Chapter 1.2.1. The 

observed growth behavior in this study was not merely a result of saturation 

variations, and further evaluation is necessary to fully understand mechanisms 

involved during hydrate growth in porous media. Variations in hydrate growth 

pattern will be reflected in physical properties such as geomechanical contribution 

(Paper 2) and electrical resistivity (Paper 4), and evaluation of such properties 

should therefore preferably be supported by in situ imaging. 
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Figure 24 – Frontal advancement was observed from left towards the middle of the 
core, with minor intensity variations in the remainder of the core. It was assumed 
that growth was triggered at the left side because non-uniform saturation 
distribution resulted in more favorable growth conditions. 

 

Figure 25 – Frontal advancement was observed in the two core halves, where 
hydrate growth converged towards the middle section in both core halves. This 
behavior was initially assumed to be a result of increased reaction interface due to 
variations in saturation; however, the growth pattern appeared unaffected by global 
saturation differences. Legend indicates time (hours) for the different images. 
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4.2 Resistivity measurements 

Resistivity is frequently applied to determine saturation in hydrate bearing intervals, 

but there is a current lack of calibration data. The robustness of the technique was 

evaluated through a series of experiments that are summarized in Paper 4 and in an 

additional paper (Birkedal et al., 2011). The following section will therefore only 

highlight specific results and provide further discussion on selected subjects. 

4.2.1 Preliminary Ro measurements 

The sediments response to elevated salinities was determined through a series of 

preliminary tests, and at the same time served as Ro measurements that were to aid 

in the resistivity interpretation. Variations in salinity have generally been neglected 

in the majority of resistivity studies. Salt is excluded during hydrate formation, as 

there is no space to accommodate salt ions. The local salt concentration is therefore 

elevated during formation, which enhances the conductivity of the remaining 

formation brine. An empirical relationship that describes the sediments resistivity 

response to variations in ion concentration was acquired through regression analysis 

of Ro measurements. This was implemented in the standard Archie resistivity model, 

and will be referred to as the dynamic model when applied in this study. 

4.2.2 Initial resistivity response 

An initial resistivity drop was observed for all experiments in Paper 4 as hydrates 

started forming. This has generally been assumed to be a result of adiabatic heating; 

however, the experiments revealed only minor temperature variations at the 

initiation of growth (typically <0.5 °C). The thermocouple is positioned at the core 

surface, and the temperature amplitude may therefore be higher within the porous 

media. Regression analysis from Ro experiments suggests that a 0.5 °C temperature 

deflection is not sufficient to explain the overall resistivity drop observed at the 

initiation of growth. Elevated ion concentration at the water/hydrate/gas interface 

was assumed to be the main reason for the observed resistivity response in Paper 4. 

The effect is most likely a combination of several physical processes, such as 

temperature, ion elevation, variations in hydrate morphology related to driving 

force (i.e. extrusion of needle-like crystals or smooth surface (Servio and Englezos, 

2003)) and differences in hydrate growth pattern. As an analogy, ice growth kinetics 
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is influenced by salinity, where lake ice (low salinity) is characterized by planar 

progression, while dendrite topologies are observed for sea ice growth (e.g. (Petrich 

and Eicken, 2010)). The net charge travel length would increase by protrusion of 

such geometric shapes into the water phase, thus neutralizing the effect of elevated 

salinity for higher initial salinities. 

4.2.3 Effective porosity from Archie 

Porosity may be determined through Archie’s formation factor, where variations in 

hydrate saturation have to be accounted for through reduced effective porosity. 

Changes in salt concentration during hydrate growth should also be accounted for to 

avoid overestimating the fraction of mobile pore space. Changes in effective 

porosity (φeff=φ(1-Sh)) and Rw were determined through MRI intensity variations. 

MRI porosity is compared with Archie porosity through static Rw and the dynamic 

approach in Figure 26. The effective porosity was overestimated by a factor of 2 

when neglecting to address growth-induced salinity changes. In comparison, 

dynamic estimates remained within 1.7 % in porosity units during hydrate growth.  

 

Figure 26 – Comparison of effective porosity from MRI and Archie for different 
cementation exponents. The static model over-estimated the actual porosity by a 
factor of 2. 

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25

E
ff

e
ct

iv
e

 p
o

ro
si

ty
 [

fo
rm

a
ti

o
n

 f
a

ct
o

r]

Effective porosity [MRI]

m=2.01 (dynamic)

m=1.92 (dynamic)

m=2.01 (static)

Reference porosity



4.2 Resistivity measurements 

51 

 

4.2.4 Comparison of data for evaluation of saturation 

Determining the accuracy of resistivity-based saturation predictions was the main 

motivation in this study. Trends in resistivity, CH4 consumption and MRI intensity 

were therefore compared in Paper 4. Saturation predictions based on resistivity are 

compared with MRI data and CH4 consumption in Figure 27. Resistivity-based 

saturation was estimated through three different approaches; 1) dynamic Resistivity 

Index (RI) with n=1.9386 (Pearson et al., 1983), 2) dynamic RI with average n during 

hydrate formation (2.16), and 3) static RI with n=1.9386. Final saturation was 

underestimated by 11% for the static approach, compared to 2.5% with n=1.9386. 

Impact of variations in n will be further elaborated in the next section. 

 

Figure 27 – Comparison of saturation estimates through different methods. 
Accurate resistivity-based estimates required implementation of a dynamic model 
that accounted for variable ion concentration. 
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4.2.5 Variations in saturation exponent n during growth 

The curve trajectory in RI plots in Paper 4 was highly variable, which is reflected in 

dynamic progression of n in Figure 28. Experiment 2-2 exhibited trends consistent 

with expectations for a water-wet sandstone, while 4-3, 2-4 and 2-5 showed 

deviating trends. Complex pore geometries combined with capillary bound water at 

the grain surface were documented to result in similar behavior in the oil and gas 

industry (Worthington et al., 1989, Sen, 1997). The observed trends are also similar 

to predictions from Spangenberg (2001), where the observed peak was a result of 

non-cementing growth combined with capillary forces and preservation of a 

conductive water layer at the mineral surface. In such case, the hydrate bearing 

sediment may progress into a bi- or multi-modal sediment, where the pore space 

between the hydrate crystal and mineral surface corresponds to micro-fractures. 

Dynamic resistivity trends during hydrate formation coincide with higher 

concentration formation brine, which indicates that salinity impacts the hydrate 

morphology within the pore space. In analogy, 10-40% ion retention in microscopic 

layers between ice structures was observed for sea ice growth (high salinity) while 

lake ice (low salinity) growth progressed in a planar manner (Petrich and Eicken, 

2010). Electrical properties of poly-crystal hydrate separated by microscopic 

conductive brine layers in inter-granular pore networks may be similar to bi-modal 

sediments with conductive micro-fractures. These layers will maintain conductivity 

as the bulk water content is reduced, which may explain the dynamic behaviors in n. 

In comparison, low salinity brine may induce planar progression and only small 

variations in n. Global variations (i.e. piston like advancement) will also impact the 

inherent resistivity and n. 

Saturation interpretation for systems with dynamic n is complicated, as illustrated in 

Figure 29. The initial saturation was over-estimated by more than 10 saturation 

units for average n (3.25), while a good agreement was observed for lower Sw. There 

is a current need for further evaluation and understanding of mechanisms involved 

in this process.   
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Figure 28 – Variations in saturation exponent during growth for a selection of 
experiments. The increase in n for lower Sw is similar to observations for sediments 
with bimodal pore size distribution. This behavior was interpreted as a result of 
variations in growth pattern in Paper 4 . 

 

Figure 29 – Comparison of MRI Sw and predictions based on resistivity for 
experiment 2-4. Significant variations in n during growth complicated the saturation 
interpretation, where extensive deviations were observed. 
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4.3 Hydrate depressurization 

Depressurization data from previous studies (Husebø et al., 2008, Birkedal, 2009) 

were further analyzed and discussed in Paper 1, Paper 2 and Paper 3. Permeability 

was initially assumed to be a controlling mechanism, where hydrate dissociation was 

restricted to specific core segments and only occurred at the bulk hydrate surface. 

Film persistence of water at the mineral surface will ensure pressure propagation 

even at medium high Sh. Permeability was further enhanced by excess gas in this 

study. Heat transport was established as the main controlling dissociation 

mechanisms based on extended analysis, as illustrated in Figure 30. The dissociation 

rate was sensitive to variations in overburden temperature induced by endothermic 

reactions within the core. Sufficient heat transport is necessitated by the 

endothermic reaction. Boundary temperature at deflection points corresponded 

well with statistical equilibrium data from CSMGem, as illustrated in Paper 3. The 

fugacity difference (the driving force) was low, and the system was therefore 

susceptible to minor temperature variations. Immediate temperature increase after 

dissociation was observed for Test 1, which corresponds well with previous 

observations (Kamata et al., 2005, Gupta et al., 2009). Increasing dissociation driving 

force reduced the temperature sensitivity in both Test 1 and Test 2. Dissociation at 

higher driving force was therefore employed for Test 3, which will be further 

elaborated in Chapter 5.2.2. 

3D images from the Test 2 depressurization sequence are summarized in Figure 31. 

Hydrate growth was retained in a core segment despite significant subcooling for 

180 hours. Variations in MRI intensity in Figure 32 suggest that this water was active 

during the decomposition process. Mobilization of under-saturated water or water 

with elevated salt concentration may explain this behavior, where hydrate 

decomposes in order to reach equilibrium conditions. This corresponds with 

observations made by Rehder et al. (2004). Continued decomposition was mainly 

controlled by heat transfer, as discussed in Paper 3. One unique feature in Figure 31 

was the loss of signal in the middle core segment between 176.5 and 190.3 hours. 

Limited heat transfer resulted in reformation while decomposition continued at 

favorable heat transfer sites adjacent to the end pieces. This behavior was 

consistent with the sudden temperature drop in Figure 30 (170 hours).  
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Figure 30 – Changes in MRI intensity and confining temperature during 
depressurization. Hydrate was decomposed at three pressure steps, where lower 
pressures increased the dissociation driving force. Decomposition was sensitive to 
temperature variations, where 0.2-0.3 °C variations shifted the sample into the 
hydrate stable region after 170 hours. 

Release of associated water is one of the inherent limitations with depressurization, 

and may constitute a significant fraction of the produced fluids. Sample and spacer 

intensities for Test 2 are compared in Figure 33. Intensity of a CH4 filled spacer was 

approximately 0.05, and higher intensities therefore indicate water production into 

the spacer volume and lines. Water in the front spacer was more abundant, as the 

pressure drop induces fluid flow towards the producer. Heat transport efficiency will 

be enhanced by presence of free water in the spacer volume due to favorable 

thermophysical properties relative to CH4. Further decomposition may therefore be 

promoted in vicinity of the end pieces for PT conditions outside the hydrate stable 

region. Production of excess water has additional environmental consequences, and 

further reduces the geomechanical stability of the hydrate bearing sediment. 
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Figure 31 – Depressurization sequence at 3.96, 3.89 and 3.82 MPa. 
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Figure 32 – MRI profiles at 3.96 MPa show decomposition focused in the vicinity of 
the excess water. Mobilization of suppressed water may trigger dissociation if the 
chemical composition (solubility of CH4 or NaCl) results in non-equilibrium 
conditions. Legend title indicates time in hours. 

 

Figure 33 – Sample and spacer intensity variations during decomposition.   
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4.4 Guest molecule replacement through CO2 injection 

Previous experimental efforts have demonstrated the CO2-CH4 exchange feasibility 

in a single-spacer core configuration, where CH4 release and accumulation in the 

spacer volume were monitored in situ by MRI (Husebø, 2008, Ersland, 2008). Similar 

configuration has been applied in this study, but with slight modifications in 

methodology. Results have been discussed in Paper 1, 2, 4 and 5, and the following 

will therefore only outline the overall conclusions and main contributions. 

4.4.1 Salt effects during exchange 

NaCl is a hydrate inhibitor, and therefore affects both growth and exchange 

performance. The extent of crystallization in Figure 21 was sensitive to higher 

salinities, especially when exceeding 4 wt% NaCl brine. The extent of excess water is 

therefore related to brine salinity, which is important from a mass transfer 

perspective due to higher diffusivity. Abundance of NaCl results in less favorable 

conditions in terms of solubility (Duan and Sun, 2003), but the net transportation 

contribution from NaCl is positive. The intrinsic hydrate stability is also affected by 

varying salt concentration. CH4 hydrate formation is inhibited at 14 wt% NaCl (three-

phase equilibrium line at 4 °C and 8.38 MPa). In comparison, CO2 hydrate is more 

susceptible to variations in salinity, and formation will be retained for lower 

salinities, as illustrated in Figure 34. This is beneficial from a mass transfer 

perspective, where excess water crystallization is partially suppressed as the CO2 

advances and diffuses through the high-salinity water film. The importance of a 

continuous film that coats the mineral grains has been discussed in Paper 1, Paper 

2, Paper 4 and Paper 5. 
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Figure 34 – Hydrate three-phase equilibrium lines at varying salinities for CH4 and 
CO2 guest molecules. CH4, represented by the solid line, is less susceptible to 
variations in ion concentration than CO2. Data generated through CSMGem (Ballard 
and Sloan Jr, 2002). 

4.4.2 Geomechanical stability during exchange 

Paper 2 reviewed current opinion on gas hydrates and geomechanical stability, 

which concluded that gas hydrates significantly enhance sediment stiffness and 

shear strength. Minor intensity variations have been observed during CO2 injection 

and CO2-CH4 exchange, and it was therefore assumed that the overall sediment 

geomechanical stability was maintained during the solid-liquid-solid transition. This 

has later been confirmed through P-wave measurements (Espinoza and 

Santamarina, 2011), but should be further addressed in geomechanical tests. 

4.4.3 Addressing limitations in driving force 

The efficiency of diffusion-driven CO2 transport and CO2-CH4 exchange driving force 

are both related to the CO2 composition in the gas/liquid phase, and will therefore 

be sensitive to dilution during CH4 release. Initial CO2 transport into the core 

segments was not necessarily a slow process, but dilution may have inhibited 

transport to radially more distant positions, as illustrated in Paper 5. This limitation 
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was targeted in a series of six experiments, where CO2 was injected at constant rate 

to maintain high CO2 concentration. Limitations in exchange kinetics were addressed 

by varying saturation and exposure time. 

Shifting hydration pressure for varying guest composition was used to determine the 

final hydrate composition, as discussed in Chapter 2.4.6. Exchange results from one 

non-fractured (w1) and six single-spacer (c1-c6) experiments are compared in Figure 

35, where changes in dissociation pressure are reflected in guest composition (mol% 

CO2). The MRI intensity is normalized, where 1 indicates no hydrate.  

The CO2-CH4 exchange efficiency was enhanced through constant CO2 injection and 

required less soaking time relative to the huff and puff approach (c1). The exchange 

efficiency ranged between 59-83% for uniformly saturated samples, where final 

conversion was related to soaking time (between 2-5 days). Recovery was enhanced 

by 10% by extending injection from 2 to 3 days. The exchange was also slightly more 

efficient for lower Sh, as illustrated by differences between c3 (Swi=0.3) and c6 

(Swi=0.6) in Figure 35. 

CO2 mass transport in c2-c6 was maximized by continuous CO2 injection, as the 

diffusive flux in Fick’s law relates to concentration. The mass transfer process may 

be envisioned as a counter-current flow process, where CO2 diffuses from the spacer 

while CH4 diffuses from the sample. In theory, favorable mass transportation may be 

achieved through constant injection in a non-fractured sample where CO2 displaces 

released CH4 while advancing towards the producer. The CO2-CH4 exchange driving 

force is maximized by abundant CO2 concentration as the guest composition relates 

to the gas composition (e.g. Figure 19). The exchange efficiency in w1 (sample 2-4) 

was inefficient because of non-uniform saturation distribution. Reduced CO2-CH4 

exchange efficiency and multi-compositional hydrate structures were generally 

detected for non-fractured samples due to anisotropic flow conditions and plugging. 

These problems will be further elaborated in Chapter 4.4.6. However, exchange in 

non-fractured samples should be further addressed. 

Spatial variations in hydrate composition 

Swi was increased to 0.6 for c4-c6 by injecting a specified brine volume into the 

spacer. c4 was characterized by non-uniform saturation distribution, as illustrated in 

Figure 36, where local Swi exceeded 80-90%. Diffusivity of CO2 in bulk hydrate is 

approximately three orders of magnitude slower than diffusivity in water (Chapter 
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1.3.8). Exchange performance is facilitated by presence of a non-frozen water layer 

that coats mineral grains, but mass transfer in bulk hydrate necessitates extended 

soaking times. A multi-compositional hydrate with varying hydration pressure was 

reflected by the six pressure steps that were required for hydrate decomposition. 

Exchange kinetics was assumed to be limited by mass transfer, as initial dissociation 

in c4 was focused in areas characterized by high Swi and subsequent high Sh.  

Volume expansion during decomposition redistributed the water phase and 

generated a uniformly saturated sample for the remaining two cycles. The 

conversion efficiency difference between the uniformly (c6) and non-uniformly (c4) 

saturated sample was in the 30-40% range, and mass transport is therefore believed 

to be a dominating mechanism.  

 

Figure 35 – The overall exchange efficiency was dependent upon soaking time and 
continuous replenishment of CO2. Mass transfer was retained by local saturation 
variations, which were observed for experiment c4. The results demonstrate how 
mass transfer is a limiting mechanism in exchange kinetics. Legend explanation: 
c1, 30% 9d = cycle 1, Swi=0.3, 9 days soaking. 3.5 wt% NaCl was used for w1, and  
pressures on the secondary x-axis does therefore not apply for this experiment. 
Figure inspired by Hester et al. (2011). 
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Figure 36 – c4 was characterized by non-uniform initial saturation distribution, as 
illustrated in the left part of the figure. The upper images are sagittal slices of the 
sample, while the lower circular images show transverse slices at different positions 
along the core length. The bottom section of the core was characterized by 
consistently higher water saturation, where saturation in local areas exceeded 80-
90%.The right section of the figure shows initial dissociation focused in areas 
characterized by high Swi. 

4.4.4 Temperature effects 

Heat liberated at the reaction site will facilitate further CO2-CH4 exchange because 

of net positive enthalpy change during exchange. Some PT regimes may provide 

favorable exchange conditions as the heat liberation effect is dependent upon the 

degree of subcooling. This was investigated in Paper 5 through a series of 

experiments at temperatures between 0.5 and 10.4 °C, but data were inconsistent 

in terms of final conversion because of varying flow conditions. The experiments 

were mainly conducted on non-fractured samples, and were therefore susceptible 

to heterogeneities in fluid distribution.  
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4.4.5 Excess water and flow control 

The native hydrate state of the sample in Figure 24 included a section with 

significant excess brine, and therefore offered a unique opportunity for investigating 

potential wellbore effects during CO2 injection. CO2 injection from right resulted in 

immediate plugging, which was reflected in both resistivity and differential pressure 

(see Paper 4). The hydrate film at the core interface ruptured as the differential 

pressure exceeded 0.8 MPa, and CO2 advanced through the sample. A non-uniform 

final hydrate composition was illustrated in the depressurization sequence in Figure 

37, where high concentration CH4 hydrate decomposed at the left end. Poorly 

consolidated hydrate reservoirs limit the injection pressure, and plugging can 

therefore have severe consequences in a reservoir-scale production test.  

4.4.6 Remediation of plugged samples 

Plugged samples were treated through thermal stimulation, injection of chemical 

additives and binary gas injection (75/25 mol% N2/CO2). The last approach was most 

efficient, and may offer favorable conditions in terms of continued exchange for 

specific gas mixtures (Park et al., 2008). Our findings in Paper 4 suggest significant 

rearrangement of hydrate crystals due to non-equilibrium with subsequent partial 

decomposition. A softening sediment response and enhanced permeability were 

observed during co-injection (77/23 mol% N2/CO2) in a CH4 hydrate saturated sand-

pack (Kneafsey et al., 2013), which corroborates observations from this study. 

However, changes in effluent composition were monitored in situ by an in line GC in 

Paper 5. The CO2 mol fraction was consistently lower than the injected mol fraction 

which indicates a CO2 sink within the sample. CO2 hydrate formation is therefore a 

reasonable assumption. The overall change in hydrate saturation was not quantified 

due to lack of imaging possibilities, but results from this study and from the Ignik 

Sikumi field test indicate that binary CO2/N2 injection is favorable in terms of 

sustained flow and CO2-CH4 exchange. 
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Figure 37 – Depressurization sequence for experiment 2-4 revealed significant 
spatial differences in terms of hydrate composition. The left core half was 
characterized by abundance of CH4 hydrate, while the right core half was mainly 
composed of CO2 hydrate. 
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4.4.7 Effluent evaluation during CO2 injection 

The gas effluent was continuously sampled through an in line GC to prepare for 

exchange, depressurization and to evaluate exchange efficiency. Effluent profiles 

during CO2 injection for CO2-CH4 exchange are illustrated in Figure 38. The CH4 peak 

was delayed due to excess line volume between sample outlet and GC. A steep 

increase in CH4 and N2 composition were observed after approximately 0.3 hours. 

The samples were not fully evacuated prior to saturation, and N2 therefore serves as 

a tracer for production of free gas. Temperature increase at the core outlet in a 

previous experiment indicated CO2 breakthrough after 5.2 hours of injection. This 

corresponds well with trends observed for this experiment. The CH4 composition 

was low (~1 mol%) for the remaining injection period.  

The results have not been quantified in terms of conversion efficiency due to 

variations in volumetric flow rates. This short-coming has recently been addressed 

through implementation of a mass flow meter and additional volume control units 

for improved control of produced gas. However, GC measurements have been an 

important part of the experimental work and necessary during gas injection. 

 

Figure 38 – Gas composition of produced gas. The production delay is a result of 
line volume between the sample and in-line GC. N2 is a tracer for production of free 
gas. The CH4 peak was high (87 mol%), but was quickly reduced after 
breakthrough.
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5 NUMERICAL RESULTS 

Numerical tools have aided in the interpretation of empirical trends and increased 

the understanding of mechanisms involved during hydrate dissociation. The 

following section will outline the work and summarize conclusions based on T+H, 

which are further described in Paper 5. 

5.1 Discretization and initial conditions 

The numerical mesh was discretized according to sediment intrinsic properties (i.e. 

geometry, porosity, permeability, thermal conductivity and specific heat capacity) 

for experiments described in Chapter 4.3. MRI saturation data were implemented 

and used as initial condition for the numerical model. A time-variable temperature 

boundary was defined based on empirical observations.  

5.1.1 Cartesian 2D model 

The 2D model was discretized according to a 2D sagittal MRI slice, as illustrated in 

Paper 5. Accurate predictions of heat and fluid flow within the sample were 

achieved by discretizing the problem into 8765 subdomains for well-defined heat 

conductivity towards the constant temperature boundary. Material specific heat 

properties (specific heat capacity and thermal conductivity) for the pressure vessel 

and end-pieces were implemented in the model. The gas saturated spacer volume 

was initialized with linear relative permeability and no capillary pressure to define 

capillary discontinuity across the core surface. A sink/source was positioned inside 

the spacer volume, which maintained constant pressure without any heat transfer. 

5.1.2 Voronoi tessellation 

Irregular Voronoi tessellation was required to fully take advantage of MRI data and 

maintain well-defined boundaries. The tessellation process has been described in 

Paper 5, and Figure 39 visualizes a quadrant section of the tetrahedral Voronoi 

mesh. 137,054 elements with 537,331 connections reproduced the physical system 

as accurately as possible. 
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Figure 39 – The hydrate sample is represented by rectilinear mesh corresponding 
to MRI voxel elements, while cylindrical rings surrounding the sample were used as 
tessellation generation points for a pseudo-cylindrical region outside of the sample. 
Figure generated by Matt Freeman. 

5.2 Numerical reproduction of empirical results 

The overall objective of the numerical study was to investigate the quality of 

predictions and to enhance our understanding of empirical behaviors. Similar trends 

were observed in two identical experiments, where gas hydrates appeared to re-

form during the dissociation process. Numerical modeling was conducted in an 

attempt to reproduce these processes and aid in the interpretation of empirical 

data.  

5.2.1 Temperature dependency during decomposition 

Inherently strong temperature dependency was observed in a series of preliminary 

equilibrium simulations with varying boundary temperature conditions, where 

decomposition time was increased from 13 to 27 hours for temperatures 4.2 and 

4.15 °C. Small temperature variations in vicinity of the three-phase equilibrium line 

were therefore expected to significantly impact the decomposition time. 
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For Test 2, empirical behaviors were accurately reproduced at all pressure steps by 

implementing and applying temperature variations from Figure 30 as a time-variable 

temperature boundary. Deflection points in decomposition rate were reproduced, 

which demonstrates how decomposition was limited by heat transfer. Temperature 

variations were not employed for Test 3, but empirical data demonstrated how 

temperature variations affected decomposition rate even for higher driving force. 

Immediate temperature response was observed in numerical predictions in Figure 

40, in close agreement with empirical results. The sensitivity analysis included 17 

different combinations of kinetic parameters, where the two combinations 

illustrated in Figure 40 resulted in overall good correspondence at all pressure steps. 

Similar temperature response was observed for the two sets of kinetic parameters, 

but fluctuations were amplified at higher intrinsic rate. 

 

Figure 40 – Comparison of experimental and numerical results at 3.96 MPa for the 
experiment in Figure 31. Dissociation performance was affected by small 
temperature variations, which were reflected in all three datasets. The numerical 
results apply two different sets of kinetic parameters and therefore exhibit slightly 
different trends.  
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Predictions were more sensitive to variations in kinetic parameters than anticipated. 

Minor short-term variations between the equilibrium and kinetic reaction model on 

reservoir scale became more pronounced on a rapid small-scale (1.5m) test in a 

previous study (Kowalsky and Moridis, 2007). Test 1 and 2 had limited driving force, 

and was therefore not as susceptible to deviations between the two reaction 

models. Differences between the reaction models were substantiated through a 

third dissociation test at higher driving force in order to evaluate the simulator 

performance. The experimental design and procedure were based on preliminary 

numerical predictions. 

5.2.2 Equilibrium and kinetic predictions at higher driving force 

Empirical trends were reproduced by both reaction models at 3.96 MPa in vicinity of 

the equilibrium line, as illustrated in Paper 5. Differences between the reaction 

models were more pronounced at 3.2 MPa, where decomposition occurred over 30 

hours. The equilibrium decomposition time was six times less than experimental 

observations in Figure 41. Empirical trends were consistently reproduced with 

kinetic combinations 4-0, and resulted in excellent agreement for Test 3. The 

equilibrium model required extensive number of iterations to solve the problem, 

and was therefore computationally more demanding than the kinetic model. The 

physical geometry of the problem should therefore be decisive for the choice of 

reaction model, where rapid small-scale decomposition requires kinetic modeling.  

5.2.3 Limiting mechanisms during decomposition 

Fluid flow, heat transfer and intrinsic kinetics may all be controlling mechanisms 

during decomposition. In Figure 42, decomposition was initially controlled by 

pressure propagation (fluid mobility). Convective heat flow impacted further 

dissociation as cooled fluids from the middle core segment were mobilized and 

advanced towards the sink. Finally, heat conductivity controlled the dissociation 

trend. Favorable thermophysical properties of the POM spacer and Teflon shrink 

tubing relative to CH4 resulted in less abundance of gas hydrates adjacent to corner 

elements. Heat transfer and kinetic limitations were assumed to be controlling 

decomposition mechanisms in this study based on observations in Figure 40 and 

Figure 41. 
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Figure 41 – Empirical and numerical decomposition at 3.2 MPa. The decomposition 
time was reduced by an order of magnitude, which corresponded well with the 
numerical predictions from k4-0. 

 

Figure 42 – Variations in Sw during dissociation. 
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5.3 Upscaling to small reservoir 

A simple 2D Class III reservoir (10m*1m*40m) was designed in order to remove 

boundary effects from the core holder and investigate the decomposition response 

at larger scale. The reservoir was initialized with hydrostatic pressure (9.795 kPa/m) 

and a high temperature gradient (0.05 °C/m) with SH=0.5. The sand interval was 

confined by non-permeable shale sections. Only the lower section of the hydrate 

interval was perforated, and initial decomposition was therefore focused adjacent 

to the sink, as illustrated in Figure 43. Dissociation preferentially progressed in the 

horizontal direction, which is a result of favorable heat transport conditions and high 

permeability. These trends therefore correspond well with heat limiting behavior 

observed in the laboratory. Kinetic limitations were less dominant on larger scale. 

 

Figure 43 – Reservoir scale depressurization corresponded with trends observed 
on smaller scale, where heat transfer is one of the main controlling mechanisms for 
hydrate dissociation kinetics. 
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6 CONCLUSIONS 

Improved understanding of controlling mechanisms during hydrate growth was 

targeted through a series of hydrate formation experiments while preparing for 

subsequent lab-scale production tests. Consistent trends in terms of CH4 hydrate 

growth rate and patterns were confirmed through PVT data and corroborated by in 

situ MRI measurements. Relatively uniform growth patterns were observed for the 

majority of experiments, which is consistent with previous measurements. 

The robustness of Archie’s resistivity model for gas hydrates was determined 

through a series of resistivity experiments. A resistivity drop was detected at the 

onset of hydrate formation for all experiments. Resistivity increased for continued 

growth due to increased tortuosity. The effective porosity and saturation 

interpretation was improved by employing an empirical Ro function which accounted 

for the sediment response to elevated ion concentration.  

Differences in growth pattern within the pore space were reflected in the saturation 

exponent n, which ranged between 1.36 and 3.25 in this study. Variations in hydrate 

morphology, inter-granular micro-layers of brine, and capillary forces may explain 

these differences. Improved accuracy in saturation estimates was generally 

observed for low concentration brine. 

Gas hydrates were dissociated through depressurization at a series of consecutive 

pressure steps (3.96, 3.89 and 3.82 MPa) or at a single pressure step of 3.2 MPa. 

Dissociation time was reduced by an order of magnitude at lower pressure. Heat 

transfer was a controlling mechanism in these experiments, where minor 

temperature variations shifted the dissociation rate. 

Empirical trends were reproduced numerically, which confirmed that temperature 

variations at the core boundary were decisive for observed variations in dissociation 

rate. Both reaction models were employed, where the kinetic model was preferable 

in terms of accuracy and CPU time. Kinetic limitations may be present in short-term 

small scale dissociation, as deviations between predictions for the reaction models 

were more pronounced at higher dissociation driving force. The validity of the T+H 

code for core-scale depressurization was demonstrated in this study. 
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Spontaneous CO2-CH4 exchange occurred during CO2 injection, thus creating a 

synergy between energy production and safe CO2 storage with reduced negative 

feedback from CH4 seepage. CO2 concentration in the gas/liquid phase affected the 

rate of exchange kinetics, where higher concentrations provided favorable 

conditions in terms of diffusion and exchange driving force. Exchange efficiency was 

related to soaking time and hydrate saturation. Continuous CO2 flow induced a 

binary gas hydrate consisting of 59-83 mol% CO2 guests for uniformly saturated 

samples. The replacement efficiency was improved for continuous injection relative 

to huff and puff. Frequent plugging was observed when employing constant CO2 

injection in non-fractured samples. In comparison, excellent flow conditions were 

achieved through binary gas injection (75/25 mol% N2/CO2). CO2-CH4 exchange was 

sustained, but the overall change in hydrate saturation was unknown.  

Some of the main conclusions from this study were: 

• CO2-CH4 exchange efficiency was enhanced through constant CO2 injection, 

which maximized the mass transfer and exchange driving force. 

• CH4 was produced while 59-83% CO2 remained stored within hydrate cavities. 

• Kinetic modeling was required to reproduce empirical small-scale 

dissociation. Kinetic limitations may therefore be present in laboratory 

studies. 

• An empirical Ro function improved the resistivity interpretation accuracy. 

• Differences in hydrate growth were reflected in variable n. Neglecting to 

account for these deviations will induce errors in saturation estimates. 

Experiments in this study have been part of a joint effort towards a pilot test in 

Alaska. Improved understanding of coexisting processes during exchange and 

resistivity measurements have been addressed in order to acquire data and prepare 

for the field test. Ignik Sikumi validated the CO2-CH4 exchange technology on 

reservoir scale, where CO2 and N2 were injected through huff and puff with 

subsequent depressurization and flow-back after 5 days of soaking. Initial reports 

suggest that approximately 60% of the injected CO2 remained stored within the 

hydrate bearing sediment while benefitting from CH4 production. The CO2-CH4 

exchange technology may therefore hold promise of a cleaner energy future. 
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7 FUTURE PERSPECTIVE 

Improved understanding of mechanisms that affect hydrate growth, resistivity 

progression, hydrate dissociation and exchange should be targeted through further 

micro-scale experiments. Preliminary studies have been initiated where time-lapse 

photography combined with microscopy may provide insight into salt-dependent 

variations in hydrate morphology. This setup should also be assisted by resistivity 

measurements in order to further address resistivity trends observed at the onset of 

hydrate growth and variations in n. 

Improved understanding of mechanisms at larger scale is also necessary for 

validation of production technology on larger scale. A block-scale setup has been 

designed and built as part of this thesis. Boundary effects will be reduced on this 

setup, which could have significant impact on processes occurring within the pore 

space. Up-scaling is important in order to further compare diffusion-driven CO2 

transport and constant injection for CO2-CH4 exchange, and also to acquire 

decomposition data for further evaluation of numerical tools. 

Paper 2 concluded that CO2 exchange is preferable to depressurization from a 

geomechanical perspective. This assumption was based on lack of intensity increase 

during exchange, and assumed that the solid-liquid-solid transition is short-lived. 

Sediment stability should be addressed through simple compaction tests for pure 

and mixed compositions in future geomechanical studies. This is assumed to be one 

of the main advantages with CO2-CH4 exchange, but quantitative results are needed. 

Exchange kinetics for varying temperatures should be further investigated. The 

single-spacer configuration offers favorable flow conditions, and could be utilized to 

minimize contribution from unknown parameters such as flow pattern.  

Future studies should further investigate the impact of binary gas injection, 

preferentially supported by in situ imaging to verify potential phase transitions. 

Furthermore, other gas fractions may provide favorable conditions, which should be 

approached through an extended study.
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NOMENCLATURE 

Ap   Surface area of particle [m2], active reaction surface 

Å   Angström, 10-10m 

ΔE=ΔEa  Activation energy for gas hydrate decomposition [J/mol] 

FA   Area adjustment factor 

Δf   Fugacity difference [Pa] 

feg   Fugacity at equilibrium conditions [Pa] 

fexp   Fugacity at experimental conditions [Pa]  

fg
v   Fugacity of hydrate former in the gas phase [Pa] 

ΔG   Gibbs free energy 

Kd   Decomposition rate constant [mol/m2*Pa*s] 

Kd
0=K0   Intrinsic decomposition rate constant [mol/m2*Pa*s] 

M0   Magnetization, from Curie’s law 

n   Saturation exponent 

nH   Hydration number 

&'(')*�=
'+
') =QH Decomposition rate  

Pe   Equilibrium pressure [Pa] 

R   Universal gas constant, 8.314 [J/molK] 

Ro   Resistivity of fully water saturated sample 

Sh   Hydrate saturation 

Sh,CH4   Hydrate saturation 

Sw   Water saturation 

Swi   Initial water saturation 

T   Temperature [K] 

Te   Equilibrium temperature [K] 
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ф   Intrinsic porosity 

фeff   Effective porosity 
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ABBREVIATIONS 

EM   Electro Magnetic 

FDM   Finite Difference Method 

FEM   Finite Element Method 

FVM   Finite Volume Method 

HEN   Heterogeneous Nucleation 

HON   Homogeneous Nucleation 

IFDM   Integral Finite Difference Method 

LWD   Logging While Drilling 

MRI   Magnetic Resonance Imaging 

MSCF   Thousand standard cubic feet 

NMR   Nuclear Magnetic Resonance 

PEEK   Polyetheretherketone 

POM   Polyoxymethylene 

PVT   Pressure Volume Temperature 

RI   Resistivity Index 

sI   Structure I hydrate cavity 

STP   Standard Temperature and Pressure 

TCD   Thermal Conductivity Detector 

THF   Tetrahydrofuran hydrate 

TSCF   Trillion standard cubic feet 
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Appendix A –   Additional Experimental Setups 

A microscopy setup combined with time-lapse photography has been slightly 

modified to prepare for hydrate formation tests, as there is a current need for 

enhanced understanding of mechanisms involved on pore-scale. This setup may be 

able to provide information related to hydrate growth pattern and impact on 

resistivity and exchange efficiency.  

 

Figure I – Etched silicon wafer micro model partially saturated with water and CH4. Grey 
indicates minerals, while lighter grey is water and bright color is CH4. Water occupies 
smaller pores and occluded sections, such as the middle left section. This was bypassed 
during drainage because of extensive capillary pressure. 
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A second setup was designed and built in an attempt to minimize contribution from 

boundary effects and to prepare for up-scaling. The block setups is compatible with 

large blocks (20cm*10cm*6cm) or sand-packs (up to 5.4 l), which will be used for 

continued evaluation of exchange efficiency. A combined resistivity and seismic 

evaluation study is currently planned.  

 

Figure II – A high pressure vessel has been designed and built. The larger volume and 
additional connections are useful for up-scaling of future gas hydrate experiments. 

 



 

99 

 

                           Scientific Papers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


