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AB S T R A C T

The development of modern cryptography is associated with the emergence
of computing machines. Since specialized equipment for protection of sensi-
tive information was initially implemented only in hardware, stream ciphers
were widespread. Later, other areas of symmetric and asymmetric cryptogra-
phy were established with the invention of general-purpose processors. In
particular, such symmetric cryptographic primitives as block ciphers, mes-
sage authentication codes (MACs), authenticated ciphers and others began to
develop rapidly. Today various cryptographic algorithms are commonly used
in everyday life to protect private data.

Design and analysis of advanced symmetric cryptographic primitives re-
quire a lot of time and resources. This is related to many factors, mainly to the
cryptanalysis of prospective encryption algorithms under development. Every
year new and modified attacks are published, leading to a rapid increase in
the quantity of requirements and criteria imposed on cryptoprimitives.

Most of this thesis is devoted to analysis and improvement of cryptographic
attacks and corresponding criteria for basic components. Almost all modern
cryptoprimitives use nonlinear mappings for protection against advanced at-
tacks. In connection with that a new method was proposed for the generation
of random substitutions (S-boxes) with extreme cryptographic indicators that
can be used in the next-generation ciphers to provide high and ultra-high
security levels. In addition, several criteria imposed on S-boxes used in block
ciphers were analyzed and their significance for block ciphers was proven.
It is worth mentioning a practical method of testing two vectorial Boolean
functions and a universal tool for checking properties of arbitrary binary
nonlinear components presented in papers gathered in this thesis.

Another part of the thesis is dedicated to the cryptanalysis of hash functions
as well as block and stream ciphers. To be more precise, an algebraic attack
based on a binary decision diagram (BDD) was performed on the reduced
Data Encryption Standard (DES), a scaled-down version of Advanced Encryp-
tion Standard (AES) and extended affine (EA) equivalence problem. Moreover,
an algebraic approach was used to reconstruct an initial representation of
the current Russian hash standard GOST 34.11-2012. Finally, a backward
states tree method has been used to analyze stream ciphers based on the
combination principle of linear and nonlinear feedback registers.
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Introduction

1. TH E S TAT E-O F-T H E-A RT O F S Y M M E T R I C C RY P TO L O G Y

One of the strategic priorities of any country is to adopt comprehensive
measures to protect the national information space [1]. The main feature of
this trend is to increase performance and to improve security in telecom-
munication systems. Fast and secure access to information and computing
resources, most of which are a part of the Internet, may be regarded as one of
the requirements of a developed country.

Information technologies (IT) are an essential part of our daily lives. Ef-
ficiency of application and operation of information systems depend on
their security and reliability. There are many fields where unpredictable or
abnormal operation of telecommunication systems may result in serious con-
sequences. These include management and control systems of water, gas
and energy supply; petroleum and nuclear industries; transport systems, etc.
Over the past few decades the number of publications and projects related to
different aspects of information security has considerably increased.

The emergence of new problems requires improved methods to solve them
[2, 3]. Until recently, cryptographic tools were available only to special state
authorities. Today they are used in everyday life in the process of creating,
sending, receiving, processing, storing and destroying data [3, 4].

Block ciphers play an important role in complex information systems [3, 5].
They are widely used due to their high efficiency and low implementation
complexity. In addition to providing confidentiality, block ciphers realize mes-
sage authentication codes (MACs), hash functions, pseudorandom number
generators (PRNG) and authentication protocols [3, 6]. Thus, block ciphers
are used in most modern symmetric cryptographic primitives. Nonetheless,
special algorithms have many advantages. For example, to provide secure
high-speed transmission of information, especially when the data processing
is in hardware, stream ciphers are used. Due to their structure they are opti-
mized for hardware platforms by default. At the same time their performance
can be ten times better than of block ciphers.

Many international competitions for choosing hash functions, block and
stream ciphers have shown that the task of creating a secure cryptographic
algorithm is rather complicated. For example, all stream ciphers submitted to
the New European Schemes for Signatures, Integrity and Encryption (NESSIE)
were theoretically broken [7]. At the same time, the role of the cryptographic
community should not be underestimated. Every year more and more people
invent new and advanced approaches to solve cryptographic problems.
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In view of the above, the goal of this thesis is to improve the resistance of
modern iterative cryptographic primitives to advanced attacks through the
development of methods and tools of cryptanalysis.

1 .1 . GL O B A L D E V E L O P M E N T O F S Y M M E T R I C C RY P TO G R A P H Y

At the end of the 20th century a number of successful theoretical attacks
allowed the block cipher DES to be broken [8]. A bit later practical imple-
mentations emerged to find the encryption key in a reasonable time [9]. As a
consequence in the USA in 1997, the Advanced Encryption Standard (AES)
competition was launched [10]. The main objective of the competition was the
selection of a new generation block cipher as the standard. After several years
of research the algorithm Rijndael was selected as a winner. This cipher was
became the encryption standard FIPS-197, also known as AES [11]. Rijndael
ranked first due to its high-level resistance against known attacks, simple
description, and high performance on most platforms of that time.

A similar European open competition NESSIE was launched in February
2000 [5, 7]. The main task of the project was the selection of the best cryp-
tographic primitives among submitted candidates from around the world.
Security, performance, and flexibility were offered as the main criteria. After
the competition a recommended list containing block ciphers, hash functions,
MACs and digital signature algorithms for industrial usage was created [7].

Along with other cryptographic algorithms six stream ciphers were sub-
mitted to NESSIE [7]. All of them as mentioned above were theoretically
broken. This led, in November 2004, to a separate project called eSTREAM,
whose main task was to choose one or more stream ciphers for use in the
business sector [12]. It should be mentioned that the stream ciphers were
divided into two separate categories. While the first one consisted of soft-
ware oriented primitives, another contained algorithms adapted for hardware
applications. After four years of research, 4 ciphers were selected for each
category. However, in 2008 the stream cipher F-FCSR-H v2 was excluded from
the list because of vulnerabilities [13].

In parallel with NESSIE a similar research was carried out by the Japanese
government under CRYPTREC [14]. As a result of this analysis the best algo-
rithms were selected for data protection. As of today many cryptoprimitives
have been recommended for use in both government (e.g., AES, Camellia,
KCipher-2, ECDH, SHA-512, HMAC, etc.) and business (e.g., MISTY1, MUGI,
SC2000, PC-MAC-AES, PSEC-KEM, etc.) sectors [15].
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In post-Soviet states the block cipher GOST 28147 is used [16]. It was
adopted in 1989 and has been outdone in performance, usability and other
characteristics by modern ciphers, including AES. In the past few years
theoretical attacks on this encryption algorithm have been successfully carried
out. The complexity of finding the key was reduced from 2256 to 2225 [17, 18].
However, the complexity of 2225 is unachievable for modern computers so
GOST 28147 remains practically secure[19].

However, long before the proposed attacks the cryptographic community
and government agencies of these countries began to think about changing
the encryption algorithm. Since 2003 Belarus has used a new standard for
confidentiality and integrity [20]. It includes a block cipher and its modes of
operation, a message authentication code and a hash function.

In order to find an alternative to GOST 28147 the State Service of Special
Communication and Information Protection of Ukraine announced in 2006 an
open competition to design a prototype of a block cipher for the new standard
[21]. One of the main requirements for the prospective cipher was a high-level
of resistance against known and promising types of cryptanalytic attacks. At
the same time, it was necessary to achieve a performance not less than the
previous standard. In practice the designers tried to beat AES. According to
the results of the competition in 2009 the cipher Kalyna was allowed to be
used for protection of nongovernmental information [3, 21]. This cipher with
improvements is now undergoing a formal assessment, and is at the stage of
adoption as the standard [22].

In November 2007 the National Institute of Standards and Technology
(NIST) opened a competition to develop a hash function SHA-3, which would
complement the existing two versions [23]. In analogy with AES, NIST teamed
cryptanalysts and developers from around the world in order to select one
or more additional hash algorithms. In October 2012 it was announced that
SHA-3 will be based on the algorithm Keccak [24]. Two years later a draft
version of a new standard was published [25].

Unlike the USA, Russia did not announce an open competition, and used
the hash function Stribog (Streebog) as a prototype [26–28]. This algorithm is
the only known version of the draft state standard. Since January 1st, 2013
GOST R 34.11-2012 came into effect, replacing the earlier version [29]. Further
development of block ciphers in Russia was presented at CTCrypt’14 [30].
According to the article the current standard GOST 28147 will be used in
hardware, and the new block cipher Kuznechik (Grasshopper) will target
software.
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A similar path has been chosen by Ukraine in the development of the
hashing algorithm. Drawing on the experience gained from cryptanalysis of
block ciphers and considering finished competitions, Grøstl was taken as a
basis for the new hash function. Together with Keccak, Grøstl is one of five
finalists of SHA-3 [24, 31]. The main difference of the Ukrainian hash function
is the usage of Kalyna with 512-bit block and key length instead of AES in the
functions P and Q [31]. As in the case of the block cipher, the hash function is
at the final stage of the standardization procedure.

In recent years the question about improvement of methods providing se-
curity and integrity of transmitted data simultaneously has been increasingly
raised. In connection with this, the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) was organized [32]. Over
the next few years, cryptologists, and software and hardware specialists from
all over the world will select a modern authenticated cipher.

1 .2 . GE N E R A L D E S I G N I D E A S O F C RY P TO G R A P H I C P R I M I T I V E S

1 .2 .1 . BL O C K C I P H E R S

Let E : {0, 1}l × {0, 1}k �→ {0, 1}l be a function which takes a key K of length
k bits, an input message (plaintext) M of length l bits and returns an output
message (ciphertext) E(M, K). For each K let EK : {0, 1}l �→ {0, 1}l be a
function defined by EK(M) = E(M, K). Then E is a block cipher if EK and
E−1

K are efficiently computable and EK is a permutation for every K.
Most modern block ciphers are iterative (Fig. 1). A round function is usually

used multiple times with different parameters (round keys). An arbitrary
iterative block cipher can be mathematically described as follows

EK(M) = PWkr+1 ◦
r

∏
i=2

(Rki
) ◦ IWk1(M),

where R, IW and PW are a round routine, a prewhitening and a postwhitening
routine, respectively. In Fig. 1 the key expansion is an algorithm that takes a
master key K as input and produces the subkeys k1, k2, . . . , kr+1 for all stages
of encryption.

A mixing key routine of a block cipher is an algorithm which injects a round
key into an encryption routine. In the majority of modern block ciphers the
mixing key function is implemented using the XOR operation because of its
low-cost implementation.
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Fig. 1: The general structure of an iterative block cipher

To be an advanced algorithm, a modern block cipher should satisfy the
following requirements [5]

• the complexity of the encryption and decryption has to be commensu-
rate with the current standards;

• be protected against all known and prospective attacks;

• have high performance on widespread platforms.

It is quite challenging to satisfy the last point. Nevertheless, there are many
publications regarding high performance implementations of AES. This is
due to the fact that it is the most widespread block cipher and therefore the
most optimized cryptographic algorithm for variety of platforms. However,
getting into the Internet of things era, where devices communicate with each
other via secure channels, it became necessary to have lightweight primitives.
A lightweight cryptographic algorithm possesses a practical security level
with enough performance in resource-limited settings: clock-cycles, area or
energy [33].
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1.2 .2 . AU T H E N T I C AT E D C I P H E R S

There has been insufficient time to identify the generalized model of authen-
ticated ciphers. There are only general structures such as encrypt-then-MAC,
encrypt-and-MAC and MAC-then-encrypt [34]. Therefore, this section will
focus on the general ideas and issues underlying these algorithms.

As mentioned earlier, in addition to confidentiality of transmitted informa-
tion it is often required to ensure its integrity. Due to limitations of equipment
and large amounts of processed data, the application of asymmetric cryp-
tography for these purposes is not always possible. Therefore, an encrypted
message is processed by a message authentication code to produce a tag [35].
Lots of modern MACs are based on block ciphers. These belong to the group
of symmetric algorithms. Some of them are standardized and widely used in
everyday life [36].

In general MACs only provide data integrity. Moreover, the complexities of
the tag calculation and the message encryption are commensurable. In other
words, to provide both confidentiality and integrity, two transformations of
approximately equal complexity must be performed sequentially. In order
to reduce the amount of transformations and system bandwidth, special
algorithms have been developed [36]. The next generation authenticated
cipher will be chosen after CAESAR.

Most authenticated schemes are nonce-based, i.e. an initialization vector
(nonce) is transmitted together with data [37]. This solution helps to protect
the algorithm against replay attacks and to use a pre-shared key for many
messages. In addition, authenticated ciphers can operate in associated data
mode [38]. This mode allows to encrypt only part of the data while the tag
is generated for the entire message. This property is a useful addition in
many situations where part of the message must be transmitted in plaintext.
An Internet protocol (IP) packet is the most obvious example due to its
widespread distribution. While the body of the packet can contain encrypted
data, service information (e.g., data ports, IP addresses of sender and recipient,
etc) has to be in clear to maximize data transfer speed.

From a security point of view the requirements imposed on authenticated
ciphers include everything from block ciphers and message authentication
codes [39]. Game theory is often used to prove the security of algorithms.
However, all specific attacks applied to block ciphers and MACs can be easily
adapted to authenticated ciphers (see Section 1.3). Security evaluation of
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Fig. 2: The overall structure of a stream cipher

authenticated encryption algorithms therefore is more complex and conse-
quently requires more resources.

1 .2 .3 . ST R E A M C I P H E R S

The main feature of stream ciphers is generation of random numbers (keystream)
based on an initialization vector and key. Further, the plaintext is divided
into chunks and added with the keystream using modulo operations to form
the ciphertext. Since stream ciphers are typically targeted at hardware imple-
mentations, the XOR operation is often used instead of additional modulo
[12, 40, 41].

Modern stream ciphers consist of linear and nonlinear feedback shift regis-
ters (LFSRs and NLFSRs), and a filter function to achieve maximum resistance
against advanced attacks. Fig. 2 depicts the overall structure of a stream
cipher.

In most cases, registers do not work independently, and operate in so-called
mutual control mode. In other words, the states of the registers depend not
only on their previous states, but also on other components of the cipher. If
the keystream is generated randomly and without period, then an adversary
cannot even theoretically recover the ciphertext [6, 42]. However, the practical
application of such a scheme is too limited. Therefore, a key of fixed length is
used to generate a pseudorandom sequence satisfying a number of criteria,
including Golomb’s randomness postulates [41].

9



Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Many designers of stream ciphers provide security proofs using a number
of assumptions, which hypothetically could lead to vulnerabilities [12]. As a
consequence the question regarding the theoretical proof of the security of
NLFSRs-based ciphers remains open.

1 .2 .4 . CRY P TO G R A P H I C H A S H F U N C T I O N S

A hash function is a method for mapping data of arbitrary size to a fixed-
length value (hash code or hash value). Cryptographic hash functions are
the subset of hash functions, which are resistant to at least 3 attacks: pre-
image, second pre-image and collision [2, 6]. These criteria are classic and the
most general, i.e. applicable for any cryptographic hash function. However,
the practical application introduces it’s own criteria for these cryptographic
primitives. For example, performance and protection against all known attacks
were the main criteria while selecting functions at the SHA-3 competition
[23].

The existence of one-way hash functions has not been theoretically proven.
It is assumed that the determination of the input message is a time consuming
task. For example, the “birthday paradox” attack allows to find a collision
after about 2

n
2 calls of the hash function with an n-bit length hash code.

Therefore, the hash function has resistance to the collision attack if and only
if there is no algorithm with a complexity less than 2

n
2 [2].

By default (sometimes used as a criterion) it is assumed that a slightest
change (e.g., bit inverse) in the input message leads to significant changes
in the hash value. This criterion is also known as the avalanche effect and
plays a very important role when the hash function is used for generation of
pseudorandom sequences [43].

Modern cryptographic hash functions have three main stages to compute
the hash code (Fig. 3) [24]

• initialization based on IV (IS);

• partitioning the input message (M) into blocks and consistent applica-
tion of a compression function (CF) to each of them;

• final transformations and generation of the output (FS).

Most modern hash functions were constructed using the Merkle-Damgård
scheme [6, 44, 45]. In the last 10 years many undesirable features have been
found in this approach, including the length extension attack [46]. During the

10
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Fig. 3: The high-level scheme of a hash function

SHA-3 competition, a well-proven alternative construction called sponge was
introduced [47]. It can be used to design authenticated and stream ciphers,
message authentication codes, and other symmetric primitives. Moreover, this
method of construction is the basis of the algorithm Keccak, which became
the winner of SHA-3 [24].

1 .3 . ME T H O D S O F C RY P TA N A LY S I S

1 .3 .1 . DI F F E R E N T I A L

Differential cryptanalysis implies the existence of ordered pairs (α, β) such
that a randomly chosen plaintext M and the corresponding value M − α
map to ciphertexts C and C′, respectively [48]. Denote by β = C − C′ the
difference between the ciphertexts, where “−” is the operation inverse to
the mixing key routine. The ordered pair (α, β) is called the differential.
The set of differentials at different rounds for a certain cipher is termed
the differential characteristic [5, 48]. The attack is more effective for higher
differential probability (at the same time not equal to 1). While the most
general case is considered in [49, 50], in this section it is assumed that “−” is
equivalent to XOR.

To apply the attack a difference distribution table is calculated for a given
substitution. The maximum value of the table (MDT) excluding the value of
the first row and first column, is calculated as follows [51]

δ = max
α∈Fn

2 ,α �=0,β∈Fm
2

#{x | S(x)⊕ S(x ⊕ α) = β},

where S is an S-box used in a cryptographic primitive.
During the differential attack an adversary learns how the difference of

plaintexts affects the resulting difference (ciphertexts) [5]. The differential
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propagated with the highest probability is used to find a round key. For
the most modern block ciphers it is enough to break the entire encryption
algorithm.

1 .3 .2 . LI N E A R

Linear cryptanalysis is based on the Piling-up lemma and was first applied to
the block cipher FEAL [52]. Later Nyberg described the concept of the attack
and Matsui has shown a practical example for the block cipher DES [53, 54].
The basic idea of linear cryptanalysis is based on the following statement.
For randomly chosen bits of the key (k), plaintext (m) and ciphertext (c) the
probability of the expression α · m + β · c + γ · k, where “·” denotes the scalar
product, differs from 1

2 [5]. Let S be a substitution with n-bit input and m-bit
output, and λ be the maximum value of an approximation table (excluding
the value of the cell [0,0]) [51]. Then

λ = max
α∈Fn

2 ,α �=0,β∈Fm
2

∣∣∣∣∣#
{

x |
n−1⊕
s=0

(xs · αs) =
m−1⊕
t=0

(S[x]t · βt)− 2n−1

}∣∣∣∣∣ ,

where γj is jth bit of γ. Linear cryptanalysis is more efficient for the greater
value of λ [5].

1 .3 .3 . AL G E B R A I C

Algebraic cryptanalysis exploits algebraic features of cryptographic algo-
rithms. Whilst algebraic attacks on stream ciphers are well studied from both
a theoretical and practical point of view [51, 55–57], for others cryptoprimi-
tives the question remains open. In this connection, the following description
will be based on known results for block ciphers. The same approach can
be applied for other cryptographic primitives such as authenticated ciphers,
hash function, etc.

During an algebraic attack the encryption algorithm is often represented as
a system of equations. To obtain the key it is necessary to solve the system
with respect to all variables. It is believed that the system with a lower degree
is easier to solve [55]. To implement the attack, the following stages must be
performed

• decompose the encryption algorithm into basic components;

• describe each of the elements algebraically;
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• bind each of the output values to the input of other components.

Decomposition is a partition of the encryption algorithm into smaller pieces.
By a basic component in modern ciphers linear and nonlinear transformations
(layers) are understood [5]. An algebraic description is the conversion of the
main elements into a system of equations that holds for all input and output
values of the transformations. The output of these stages is the system of
equations describing the entire encryption (decryption) algorithm including
the key expansion routine.

To date there are many methods for solving systems of equations over F2
such as Gaussian elimination, XL, F4 and Gröbner basis [55, 57]. Moreover,
the complexity of most methods depends on the density of the system. This
allows one to conclude that the density of the system of equations describing
the substitution affects the complexity of the final system.

This method was fist applied to block ciphers by Courtois in the early
2000s [58]. His approach is based on the principle stated above, that is the
description of the substitution by the system of equations with the gradual
expansion for the entire encryption algorithm. Application of this approach
allows to describe AES with a system of equations of degree 2.

Later theoretical results of Courtois were implemented by Weinmann in
practice [59]. He attacked a scale-down version of the AES cipher (MiniAES),
and thus demonstrated the viability of the algebraic attack. Similar results
were obtained by Kleiman in [60]. Unlike Weinmann, she presented a general
algorithm based on a matrix approach for obtaining the system of equations
describing a given S-box. However, to break 4 rounds of the 16-bit version of
AES was not possible, even with enormous computing resources [60]. A few
years ago it was announced that a special case of the Gröbner basis algorithm
can break up to 10 rounds of scaled-down AES [61].

In 2006 Courtois demonstrated an attack on a full version of 6-round DES
[62]. Only one plaintext/ciphertext pair was necessary to find a key (20 bits
of which have been fixed) on a personal computer.

Application of the algebraic attack was also demonstrated for ciphers sub-
mitted to the Ukrainian competition [63, 64]. Many designers have used Ny-
berg’s method, i.e. calculation of the inverse element in the field F2n followed
by an affine transformation, to generate substitutions [65]. This approach
allows to achieve the best known indicators for protection against differential
and linear cryptanalysis. However like in AES, the entire cryptoprimitive
can be described by a system of equations of degree 2 [55, 63]. This is an
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undesirable property that may cause future attacks. As a consequence, the
analysis showed that substitutions used in the ciphers Kalyna and Mukhomor
had a number of advantages over other ciphers [21].

There are other trends in the solution of the system of equations such
as conversion to the SAT problem [57]. Moreover, in Paper I an essentially
different approach to the description of the cryptographic primitive is shown
where the degree of the system does not affect the complexity.

1 .3 .4 . RE L AT E D-K E Y

A related-key attack is a kind of cryptanalysis where an adversary can observe
the input and output of a cipher under the influence of different keys. She
only knows mathematical relations of the keys whilst the exact values are
initially unknown [66].

During this attack it is assumed that the cryptanalyst has no direct access
to the searched key (e.g., the key is stored in a hardware encryption unit).
Nonetheless, the adversary can change in a certain way different pieces of the
key. Due to these limitations, the related-key cryptanalysis is more theoretical
than practical. Nevertheless, it allows one to find the key with the minimal
known complexity [67].

It should be noted that one of the main components of the biclique attack
on AES is a correlation of the round keys [68]. The biclique attack became
widespread after the successful implementation on that cipher. The authors
of [68] have theoretically proved that the encryption key can be found with a
complexity less than exhaustive search.

1 .3 .5 . CO M B I N AT I O N O F T H E M E T H O D S

Nowadays it is almost impossible to apply independent attacks against mod-
ern ciphers. This is due to the fact that the designers take into consideration
all known attacks when a new cipher is created. Differential and linear crypt-
analysis in the form which has been applied to DES is already ineffective
against present-day ciphers. Thereby, modified or combined attacks have
begun to develop rapidly.

Because of the simplicity of the description a lot of attacks based on the
differential properties have been developed during the last 20 years. These
include truncated differential, impossible differential, boomerang, higher
order differential and others attacks [5, 10].
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In 2011 the full version of the cipher GOST 28147 was firstly attacked by
sequential application of fixed points, meet-in-the-middle and brute force
attacks [17]. The same year the first attack on the full version of the cipher
AES was published [68]. This attack consists of a combination of related-key
and brute force attacks with the help of a complete bipartite graph.

Thus, the development and application of combined methods is a priority
area of research in cryptology.

1 .3 .6 . OT H E R D I R E C T I O N S

It is assumed that even weak ciphers can become cryptographically strong
when increasing the number of rounds. However, unlike the others, in slide
attacks an adversary analyzes the key expansion rather than looks for vul-
nerabilities in the encryption routines [69]. This type of attack was firstly
proposed by Wagner and Biryukov in [70]. It is mainly applied to iterative
ciphers, a part of which (usually the round function) is applied sequentially
by using only one key. The important thing in this attack is that the part must
be identical and invertible. Thus, the number of cycles of the algorithm in
this case does not affect the success of its breaking.

In recent years, the number of papers on cryptanalysis which do not con-
sider the internal structure of the cipher is constantly increasing. For example,
in [71, 72] it was shown that if an adversary has access to the session key
management then she could restore a long-term key of the cipher GOST 28147
in a few minutes. Another example in this direction is Isobe’s attack [73]. It
is based on the ratio of the round key lengths to the block size while the
round routine of the cipher is represented as a random function. More gen-
eral theoretical results consist in finding distinguishers for universal schemes
(Feistel, Lai-Massey, SPN and Sponge). The analysis shows advantages of one
construction over another under the condition of the random or permutation
round function. [74].

Side channel attacks should also be mentioned [75]. They use power or
time fluctuations, leakage through electromagnetic or sound media, and other
sources for obtaining information about the master key. Side channel attacks
relate to attacks on implementation. Even theoretically secure encryption
algorithms can be broken due to poor software or hardware implementation.
However, practical experiments show that in some cases it is possible to create
additional criteria to the basic components, thereby increasing the complexity
of certain side channel attacks [76].
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2. BI N A RY N O N L I N E A R M A P P I N G S I N C RY P TO G R A P H Y

Analysis of the latest solutions used in constructions of advanced crypto-
graphic primitives allows to conclude that they largely inherited ideas of the
block cipher AES [10]. Unlike Rijndael, where the substitution was generated
based on Nyberg’s design, new ciphers have one or more randomly generated
S-boxes. Their main advantage is a description by a system of equations of
degree 3 [77].

Substitutions for modern symmetric primitives are usually implemented in
the form of lookup tables. Considering that lots of symmetric algorithms (e.g.,
Rijndael, PRESENT, ARIA, Keccak, etc.) use XOR as the key mixing routine,
S-boxes are the only elements defining nonlinearity of encryption transforma-
tion and the level of resistance against cryptanalytic attacks [5]. Moreover, the
number of encryption cycles is calculated based on cryptographic parameters
of a nonlinear mapping, given in advance.

Aspects of vectorial Boolean functions used in symmetric cryptography as
substitutions and their relevant cryptographic properties are presented in this
section.

2 .1 . DE F I N I T I O N S A N D N O TAT I O N S

Let n and m be two positive integers. Define by Fn
2 a vector space of all binary

vectors of length n, where F2 is the Galois field with elements {0, 1}. Then an
(n, m)-function is a vectorial Boolean function F : Fn

2 �→ Fm
2 . Boolean functions

f1, f2, . . . , fm, such that F(x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
and their linear combinations are called coordinate and component func-
tions of F, respectively. If m = 1 then a vectorial Boolean function has a single
output bit and is called a Boolean function. To find algebraic properties of
(n, m)-functions, a vector space is often induced by a structure of the finite
field F2n .

For any positive integers n and m, a function F from Fn
2 to Fm

2 is called
differentially δ-uniform if for every a ∈ Fn

2 \ {0} and every b ∈ Fm
2 the

equation F(x) + F(x + a) = b admits at most δ solutions [65, 78]. Vectorial
Boolean functions used as S-boxes in cryptographic primitives must have low
differential uniformity to provide high resistance to differential cryptanalysis
(see Subsection 1.3.1). For the special case n = m differentially 2-uniform
functions are called almost perfect nonlinear (APN). Since δ ≥ 2, they are
optimal regarding this criterion. The notion of APN function is closely related
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to the notion of almost bent (AB) function [79]. The last one can be described
in terms of the Walsh transform for a function F : Fn

2 �→ Fm
2

λ(u, v) = ∑
x∈Fn

2

(−1)v·F(x)+u·x,

where u ∈ Fn
2 , v ∈ Fm

2 and “·” denotes scalar products in Fn
2 and Fm

2 , respec-
tively.

The set {λ(u, v) | (u, v) ∈ Fn
2 × Fm

2 , v �= 0} is called the Walsh spectrum
of F. If n = m and the Walsh spectrum of F consists of {0,±2

n+1
2 } then the

function F is called AB [79]. AB functions exist for n odd only and oppose
an optimal resistance to linear cryptanalysis (see Subsection 1.3.2). Every AB
function is APN but the converse is not true in general (see [51, 80] for a
comprehensive survey on APN and AB functions).

The natural way of representing F : Fn
2 �→ Fm

2 is algebraic normal form
(ANF)

F(x1, x2, . . . , xn) = ∑
I∈P({1,...,n})

aI

(
∏
i∈I

xi

)
, aI ∈ Fm

2 ,

where P(z) denotes the power set of z. The algebraic degree deg(F) of F is the
degree of its ANF. F is called affine if deg(F) is at most 1. An affine vectorial
Boolean function with F(0, . . . 0) = 0 is linear.

2 .2 . CRY P TO G R A P H I C P R O P E RT I E S O F V E C TO R I A L BO O L E A N

F U N C T I O N S

While Boolean functions are adopted mainly as filtering functions in stream
ciphers, vectorial Boolean function are used in block and authenticated ciphers,
and hash functions as substitutions. For theoretical analysis the univariate
representation is one of the best ways to consider cryptographic properties
of the binary mappings. However, field operations are not so well optimized
as operations with Boolean functions in modern computers, especially for
large n. Therefore, it makes sense to represent cryptographic properties of
(n, m)-functions using the set of component functions. All definitions and
indicators are well-known and one can see [51, 80] for more details.

First of all, let’s consider the properties of Boolean functions. A Boolean

function of n variables is called balanced if
2n−1

∑
x=0

f (x) = 2n−1, where x =
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(x1, x2, . . . , xn). The correlation between an arbitrary Boolean function f (x)
and the set of all linear functions is determined by Walsh transformation

W(w) =
2n−1

∑
x=0

(−1) f (x)⊕lw(x),

where lw(x) = w · x = w1x1 ⊕ w2x2 ⊕ . . . wnxn. The nonlinearity is related to
the Walsh values as

NL( f ) =
1
2

(
2n − max

w∈Fn
2 \{0}

|W(w)|
)

.

Autocorrelation of f noted as r f (α) shows how the function differs from
itself shifted on several positions, i.e.

r f (α) =
2n−1

∑
x=0

(−1) f (x)⊕ f (x⊕α),

where α ∈ Fn
2 . For cryptography the maximal value of the function r f (α) is

of interest, and can be found as

ACmax( f ) = max
α∈Fn

2 \{0}

∣∣∣r f (α)
∣∣∣ .

Let σ be the sum-of-squares indicator, then

σ =
2n−1

∑
α=0

r2
f (α).

Let hw(α) be a binary Hamming weight of α ∈ Fn
2 [51]. Then it is said that

f (x) satisfies propagation criterion of order k (PC(k)) if and only if for all
nonzero vectors α ∈ Fn

2 such that 1 ≤ hw(α) ≤ k the following is true

2n−1

∑
x=0

f (x)⊕ f (x ⊕ α) = 2n−1.

The strict avalanche criterion (SAC) corresponds to PC(1).
A Boolean function is correlation immune of order m (CI(m)) if the equation

W(w) = 0 holds for all w ∈ Fn
2 , where 1 ≤ hw(w) ≤ m. If the function is
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balanced and satisfies CI(m) simultaneously, then such a function is called
m-resilient.

The minimum algebraic degree of g(x) �= 0 of the set {g | f (x) · g(x) = 0}
∪ {g | ( f (x)⊕ 1) · g(x) = 0} is called algebraic immunity (AI) of a Boolean
function f .

Using the above definitions let’s describe cryptographic properties of substi-
tutions. Suppose S is the table representation of a vectorial Boolean function
F = ( f1, . . . , fm) from Fn

2 to Fm
2 . Define {hj = j · F | 0 < j < 2m} as the set of

the component functions of F. Then

• nonlinearity of S is

NL(S) = min
0<j<2m

(
NL(hj)

)
;

• minimum degree of S is

deg(S) = min
0<j<2m

(
deg(hj)

)
;

• the maximum value of autocorrelation spectrum of S is

ACmax(S) = max
0<j<2m

(
ACmax(hj)

)
;

• S satisfies strict avalanche criterion if every hj satisfies SAC;

• S satisfies propagation criterion of order k if every hj satisfies PC(k);

• S is correlation immune of order k if every hj is CI(k);

• S is balanced (permutation) if every hj is balanced;

• S is k-resilient if every hj is k-resilient.

Similar properties for vectorial Boolean functions are given in [51].
While the maximum value of the approximation table (λ) can be calculated

directly from the nonlinearity of the S-box as λ = 2n−1 −NL(S), the maximum
value of the differential table cannot be directly evaluated from the component
functions. For the given S-box the indicator δ-uniformity defined in 1.3.1
and 2.1 is equivalent to the maximum value of MDT.

The ways to represent a substitution as a system of equations over F2 are
given in [60, 63]. Define density as the fraction of nonzero elements in a
system of equations. Then, a substitution provides better protection against
algebraic attacks (see 1.3.3) if the system
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• has higher degree;

• has fewer equations;

• is more dense.

Unambiguous theoretical relations between these parameters is an unsolved
problem [81]. Suppose the degree of a system of equations is the maximal
algebraic degree of all polynomials this system consists of. Then algebraic
immunity of the S-box (AI(S)) means the smallest degree of the system
describing this substitution.

2 .3 . EQ U I VA L E N C E O F V E C TO R I A L BO O L E A N F U N C T I O N S

Two functions F, G : Fn
2 �→ Fm

2 are called extended affine equivalent if there
exist such affine permutations A1 = L1(x) + c1, A2 = L2(x) + c2 and an
arbitrary linear function L3(x) such that

F(x) = A1 ◦ G ◦ A2(x) + L3(x).

If L3(x) = const, or L3(x) = 0, c1 = 0, and c2 = 0 then F and G are affine, or
linear equivalent, respectively. Moreover, for at least one missing element of
L1(x), L2(x), L3(x), c1, c2 the functions are called restricted EA (REA) equiva-
lent [82].

Any affine function A : Fn
2 �→ Fm

2 can be represented in matrix form

A(x) = K · x ⊕ C,

where K is an m × n matrix and C ∈ Fm
2 . All operations are performed in F2,

thus the above equation can be rewritten as

⎛
⎜⎜⎝

a0
a1
. . .

am−1

⎞
⎟⎟⎠

x

=

⎛
⎜⎜⎜⎝

k0,0 · · · k0,n−1
k1,0 · · · k1,n−1

...
. . .

...
km−1,0 · · · km−1,n−1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

x0
x1
. . .

xn−1

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

c0
c1
. . .

cm−1

⎞
⎟⎟⎠

where ai, ci, xs, kj,s ∈ F2. This representation allows to describe EA-equivalence
in matrix form

F(x) = M1 · G(M2 · x ⊕ V2)⊕ M3 · x ⊕ V1
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where elements of {M1, M2, M3, V1, V2} have dimensions {m × m, n × n, m ×
n, m, n}.

In [83] F and G are considered as GF(x, y) = {{x, y} | y = F(x)}. They are
Carlet-Charpin-Zinoviev (CCZ) equivalent, if for F2(x) = L3(x) + L4 ◦ G(x)
and permutation F1(x) = L1(x) + L2 ◦ G(x) the following equation holds

F(x) = F2 ◦ F−1
1 (x),

where L1(x), L2(x), L3(x), L4(x) are arbitrary affine functions.
CCZ-equivalence is the most general known equivalence of functions for

which differential uniformity and extended Walsh spectrum are invariants.
In particular every function CCZ-equivalent to an APN (respectively, AB)
function is also APN (respectively, AB). EA-equivalence is a special case of
CCZ-equivalence [51]. The algebraic degree of a vectorial Boolean function
is invariant under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence.

3 . SU M M A RY O F PA P E R S

This thesis is based on seven papers. A synopsis of each paper is given in the
following subsections.

3 .1 . PA P E R I

Several approaches which use binary decision diagrams for algebraic attacks
are well-known in open literature. The efficiency of BDD-based attacks is
demonstrated both for general models and for particular cases such as A5/1,
E0 and Trivium [84, 85]. In this paper we extend the previous results on
block ciphers and present new specific strategies and approaches for solving
compressed right hand side (CRHS) systems [86].

Most ciphers use only one nonlinear element, which is usually represented
as a lookup table. Hence, we are interested in finding a BDD that represents
a given S-box mapping Fn

2 to Fm
2 . Let the input and output bits of the S-box

be x0, . . . , xn−1 and y0, . . . , ym−1, respectively. Denote the levels of a binary
tree as {x0, . . . , xn−1, y0, . . . , ym−1}. For each value of substitution create a
path from the source node on top to the sink node (true node) at the bottom,
and all edges direct downwards. If the edges are divided into 0-edges and
1-edges, then we can uniquely represent an arbitrary S-box using a BDD upto
the order of variables.
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Since each level is represented in general as a linear combination of input
and output bits, then a linear layer of a cryptographic primitive does not
add extra variables and as a consequence does not affect the complexity of
the operations performed on the tree [86]. This representation allows to join
several BDDs using adjacent variables on different levels. Thereby, the entire
encryption algorithm can be described as one big BDD or as the set of smaller
BDDs.

Several operations such as swapping and adding levels, and absorbing
linear dependencies are also defined on this special version of BDD. While
joining together many BDDs and absorbing all linear dependencies, the solv-
ing complexity depends heavily on the order the BDDs are joined. Finding
the ordering of BDDs that gives the minimum complexity is probably a hard
problem. During our experiments we have not found a strategy for ordering
that is universally best. However, we described automatic ordering, divide-
and-conquer and order by cryptanalysis strategies for how to join and absorb,
with the aim to keep the complexity down.

We apply the proposed attack on DES with a reduced number of rounds,
MiniAES and the EA-equivalence problem. Our experiments have shown that
6-round DES can be broken in approximately one minute on an ordinary
computer. This is a factor 220 improvement over the best earlier algebraic
attack on DES using MiniSAT [62].

There have been several earlier attempts to break MiniAES [60, 61, 87].
Approaches that exploit the short key in MiniAES (only 16 bits) succeed very
quickly, but the general methods of F4 and XL/XSL failed to solve systems
representing more than one round of MiniAES. The approach we use in the
paper does not exploit the short key, while still solving systems representing
10 rounds of MiniAES using approximately 45 minutes and 8GB of memory.
In addition, the BDD method has shown the advantages compared to a
Gröbner basis and CryptoMiniSat for solving the EA-equivalence problem.

Despite the excellent practical results, a number of unresolved issues still
remain. The main one concerns the theoretical estimates of the complexity of
the BDD attack.

3 .2 . PA P E R II

For most new algorithms evaluation of the resistance to known attacks, such
as differential, linear or algebraic, is provided by the designers. However, an
independent verification of the results is always needed [88]. To conduct such
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Fig. 4: The relationship between the dimension of random substitutions and time of calculation

research, tools for analysis of both basic components and entire encryption
algorithms are required. On the other hand, universal approaches would
also be a useful supplement for the designers of prospective algorithms.
Choosing linear layers is a relatively simple task when only few indicators
are considered [89]. The situation is completely opposite for nonlinear layers
which usually consist of parallel application of substitutions.

As was mentioned in Section 2 vectorial Boolean functions have lots of
cryptographic properties. While for a given S-box some properties are cal-
culated directly from the formula, others require special knowledge (i.e. for
algebraic immunity). Today there are a number of tools that can be consid-
ered a partial solution to the problem [57, 90–93]. However, the cryptographic
community needs a universal approach to calculate indicators for arbitrary
binary mappings. In this paper a tool for generating and analyzing arbitrary
vectorial Boolean functions F : Fn

2 �→ Fm
2 was given.

The proposed library (package) S-box includes methods for calculation of
all indicators described in Section 2. In particular one can find δ-uniformity,
nonlinearity or maximum of the linear approximation table, minimum degree,
algebraic immunity, maximum value of autocorrelation spectrum, correlation
immunity and other cryptographic properties for arbitrary vectorial Boolean
functions. In addition to this, there are implemented several methods for
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Table 1: Comparison of 8-bit S-boxes

Properties AES
GOST R

34.11-2012

STB

34.101.31-2011

Kalyna’s
S0 [21]

Proposed
in [77]

MDT 4 8 8 8 8
NL 112 100 102 96 104

Absolute indicator 32 96 80 88 80
SSI 133120 258688 232960 244480 194944

Minimum degree 7 7 6 7 7
Algebraic immunity 2 3 3 3 3

generating substitutions with predefined properties based on Gold, Kasami,
Welch, inverse and other well-known functions. The library also contains a
number of auxiliary functions such as finding the univariate polynomial or the
system of equations describing the substitution; checking the APN property,
or CCZ- equivalence; generating look up tables based on the user-defined
univariate polynomials and many others.

The performance and arbitrary dimension of binary nonlinear mappings
were the main criteria for the S-box library. Calculation of some indicators
are based on known results [94, 95], while others (i.e. cyclic properties or
algebraic immunity) were optimized during the research and experiments.
Fig. 4 shows the time complexity of several frequently used methods for
n = m.

From a practical point of view, Sbox can be used to analyze nonlinear com-
ponents of the existing or prospective cryptographic primitives. An example
of the substitution comparison is given in Table 1.

In conclusion, the library includes lots of functions for computing the
properties of permutations and methods of generation. Despite this, there are
many directions for improvement and development. The library is designed to
facilitate extension of its functionality quite easily, for instance by combining
to optimize methods for calculation of indicators such as minimum degree or
autocorrelation, or by realizing a native integration with Sage and creation of
a universal test environment.
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3.3 . PA P E R II I

Since substitutions are one of the main components that determine the secu-
rity of modern cryptographic algorithms, many cryptographic criteria must
be considered for a new cryptographic primitive. Taking into account the
large number of existing indicators, their controversy and partial interdepen-
dence, it is most likely impossible to generate a substitution that satisfies all
known requirements. This became a reason to use a substitution satisfying
only mandatory criteria essential for a particular symmetric algorithm. Such
substitutions are called optimal [10, 51, 80]. Optimality criteria may vary
depending on which cipher is considered.

After investigation of existing and prospective attacks the following criteria
were highlighted as significant

• maximum value of minimum degree;

• maximum algebraic immunity with the minimum number of equations;

• absence of fixed points (cycles of length 1);

• substitution must be bijective (permutation);

• minimum value of δ-uniformity and maximum value of nonlinearity
limited by parameters listed above.

In particular, for n = 8 an optimal permutation has algebraic degree 7,
algebraic immunity 3 and 441 equations, δ-uniformity under 8, nonlinearity
over 100 and without fixed points.

The majority of theoretical methods for generation of vectorial Boolean
functions have extreme characteristics of δ-uniformity and nonlinearity, but
at the same time do not possess other properties (i.e., high value of algebraic
immunity) which are necessary for next-generation symmetric cryptographic
primitives.

The first and most obvious solution is to generate random permutations
and check them on optimality. After 12 hours of cluster operation (4096 cores)
there were found 27 optimal permutations with NL = 100. Four of them were
CCZ-inequivalent. After 48 hours (22 years on 1 core) the program run on
the same cluster didn’t find any substitution with NL ≥ 102.

A counterexample was found in STB 34.101.31-2011 [20]. The optimal sub-
stitution has NL = 102. Thus we found another way to generate substitutions
with NL ≥ 100. Instead of trying to find a random permutation or apply the
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hill climbing technique, it was decided to solve the problem from the other
side. We started with the best known permutation and modified it (swapped
values) until the expected result was achieved. As was proven in [96] one
swap does not much influence nonlinearity and δ-uniformity.

Before presenting our result at the conference we found another algorithm
which produces the same result [97]. The performance comparison (Fig. 5)
shows that our proposed method is 10 times faster then Tesař’s [97].

After 107 hours of cluster operations, that are equivalent to 50 years on
a single-processor computer, there were not found better substitutions. The
practical results of both methods show that there are no optimal substitutions
with nonlinearity greater than 104. However, there are permutations with
nonlinearity 106 and algebraic immunity 2, in which the number of equations
is small (e.g. 1). Hereby, the question about existence of optimal substitutions
with nonlinearity more than 104 remains open.

Four substitutions used in the new Ukrainian block cipher and hash func-
tion were generated by the proposed method. An additional criterion which
the substitutions must satisfy is belonging to different CCZ-equivalent classes.
Details stated in Paper V.
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3.4 . PA P E R IV

In 2010 at the RusCrypto’10 conference a prototype of the prospective hash
function also known as Stribog (Steebog) [27, 98] was presented. Two years
latter this hash function was accepted as the governmental standard GOST
R 34.11-2012 [29]. The description of the hash function available in public
literature was only algorithmic. To prove some cryptographic properties it is
necessary to have a common mathematical representation as has been made
in this paper.

The core of the hashing algorithm is the L ◦ P ◦ S transformation. Trans-
formation of the state into an 8 × 8 byte matrix gave a general idea of each
transformation. Further investigations showed that S and P transformations
have analogues in AES. While S is identical to the SubBytes routine, P is
similar to ShiftRows. Unlike ShiftRows, P transposes the state instead of
shifting it by a constant number positions. The most difficult task was to
identify the L transformation, which is a multiplication by a 64 × 64 binary
matrix.

In summary, the main issue was to find the irreducible polynomial which
gives the representations of transformations over F28 that produce the same
outputs. Based on the assumption that the matrix used in L possesses the
MDS property, the polynomial f (x) = x8 + x6 + x5 + x4 + 1 was found. Using
this polynomial all basic components of the hash function were described in
AES-like form.

This representation allows to use the wide trail strategy to prove the
resistance of the hash function to differential and linear cryptanalysis. At the
same time, the existing attacks can be easily adapted to GOST R 34.11-2012
[99]. Additionally, this gives access to well-known optimization techniques for
increasing performance on a variety of platforms [10]. Using a table approach
a fast cross-platform implementation of Stribog was proposed [100, 101].

3 .5 . PA P E R V

As stated before, the choosing of essential properties for new substitutions
is not a trivial task. In this paper an analysis of the absence of fixed points
criterion is given. If one considers the round function instead of a single
substitution, then even for the AES S-box fixed points can be achieved.

The investigation is based on the fact that a cipher has lots of isomor-
phic (equivalent) representations. For AES the ShiftRows, MixColumns and
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AddRoundKey routines are linear transformations with respect to XOR. Ma-
nipulations with these transformations give different representations [55]. It
is shown that at least one fixed point can be found for the AES substitution
in case of using XOR operation in AddRoundKey.

Applying the same model the advantages of additional modulo 2n were
shown. A mixing key routine based on the modulo operation adds more
nonlinearity and as a result reduces the number of possibilities for adversaries.
The analysis shows the necessity of additional requirements for multiple
substitutions used in one cryptographic primitive.

Proposition 1. Substitutions S1, S2, . . ., Sl used in a nonlinear layer must belong
to different classes of equivalence.

Since CCZ-equivalence is the most general case of known equivalences,
it makes sense to check whether substitutions belong to different CCZ-
equivalence classes.

The more practical result was achieved independently for Zorro [102]. The
core of that attack has the same principles that were described in this paper.

3 .6 . PA P E R VI

The behavior of nonlinear feedback shift registers is poorly understood, which,
in turn, results in a lack of criteria for selecting parameters that directly affect
security. To achieve this, designers of stream ciphers often combine linear and
nonlinear registers. MICKEY is an example of such ciphers.

In several papers the theoretical weaknesses of MICKEY were presented
[103–106]. It was shown in particular that choosing constants in the wrong
way may lead to security problems. The shared idea of all these attacks
is the construction of a backward states tree. After collecting the results
from all previous papers it became possible to evaluate theoretically the
probabilities of all possible branches in the tree. We proved both theoretically
and practically that in key/IV load mode the expectation value of degree
approximately equals 2. The analogous value for preclock and key-generation
mode is approximately equal to 1. Thus, knowing the internal state of registers
it is always possible to perform reverse steps to acquire the state after key
initialization function. However, the inverse key/IV load modes produce a
complete binary tree.

The other parts of the paper describe some practical observations. First, it
is noted that each reverse step increases the probability of subtree cutting off
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Table 2: Complexities for Solving REA-equivalence Problem

# Restricted EA-equivalence Complexity G(x)
1 F(x) = M1 · G(M2 · x) O

(
n2 · 2n) P

2 F(x) = M1 · G(M2 · x ⊕ V2)⊕ V1 O
(
n · 22n) P

3 F(x) = M1 · G(x ⊕ V2)⊕ V1 O
(
22n+1) †

4 F(x) = M1 · G(x ⊕ V2)⊕ V1 O
(
n · 23n) A

5 F(x) = G(M2 · x ⊕ V2)⊕ V1 O (n · 2n) P
6 F(x) = G(x ⊕ V2)⊕ M3 · x ⊕ V1 O (n · 2n) A

7 F(x) = M1 · G(x ⊕ V2)⊕ M3 · x ⊕ V1 O
(
22n+1) ‡

8 F(x) = M1 · G(x ⊕ V2)⊕ M3 · x ⊕ V1 O
(
n · 23n) A

P - permutation; A - arbitrary;
† - G is under condition {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) where G′(x) =
G(x) + G(0);
‡ - G is under condition {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) where G′(x) =
G(x)⊕ LG(x)⊕ G(0).

with all previous states. This property exists since there is a high probability
of orphan states. Therefore, in some cases key bits could be found uniquely.
Second, since the functions used for different modes are the same, it allows
to generate key-streams shifted by a fixed number of bits for different pairs
of key and IV. However, the conditions imposed on the use of keys and IVs
stated in the MICKEY’s specification do not give the opportunity to apply
the attack in the real world. In the end, the meet-in-the-middle attack based
on the backward states tree is proposed.

Taking into consideration everything mentioned above, the proposed method
for analysis of MICKEY-like ciphers allows to justify the choice of the encryp-
tion algorithm parameters based on the estimation of branch points degree
probabilities.

3 .7 . PA P E R VII

In [91] Alex Biryukov et al. have shown that in the case when given functions
are permutations of Fn

2 , the complexity of determining their linear and affine
equivalence equals O

(
n2 · 2n) and O

(
n · 22n), respectively. In Paper VII we
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Table 3: Practical Comparison of Solving REA-equivalence Problem

#
n=6 n=8 n=10 n=12 n=14

ES KM ES KM ES KM ES KM ES KM

1 69 12 125 14 197 17 285 20 389 22
2 81 15 141 19 217 24 309 28 417 32

3 13 17 21 25 29
4

47
21

79
27

199
34

167
40

223
46

5 47 12 79 14 199 17 167 20 223 22
6 48 9 80 11 120 14 168 16 224 18

7 13 17 21 25 29
8

83
21

143
27

219
34

311
40

419
46

consider the conditions under which the complexities of checking vectorial
Boolean functions F, G : Fn

2 �→ Fm
2 on REA-equivalence can be reduced.

Matrix form is used for EA-equivalence representation in both presented
and [91] methods. This approach allows to prove a number of propositions.
Most of them are summarized in Table 2. The first two rows present the
complexities from [91].

Proposition 2. Any linear function L : Fn
2 �→ Fm

2 can be converted to a matrix
with complexity O(n).

Since the considered functions have different REA-equivalent representa-
tions, the complexities can not be directly compared to each other. Therefore,
Table 3 presents the comparison of known methods (KM) with exhaustive
search (ES) based on the calculated complexities (in binary logarithm form)
for most interesting values of n.

It is easy to see that for some of the above cases the complexity takes poly-
nomial time. Obtained results give a practical method for checking arbitrary
vectorial Boolean functions on REA-equivalence.

4 . CO N C L U S I O N S

The research conducted solved a number of current important scientific tasks
related to improving methods of cryptanalysis and developing of new require-
ments for advanced symmetric cryptoalgorithms. In particular, backwards
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states cryptanalysis of the stream cipher MICKEY, and BDD-based algebraic
attacks on DES and MiniAES show that even well-studied ciphers may have
weaknesses. Consideration of these attacks at the design stage of new primi-
tives enables to create better and more secure cryptographic algorithms.

In the post-AES era many cryptoprimitives providing high-level security
have random substitutions. The main filtering criteria are balancedness,
absence of fixed points, δ-uniformity, minimum degree, algebraic immunity
and nonlinearity. At the same time, promising algebraic cryptanalysis is not
yet fully understood, and the boundaries of its application are not clear.

A new heuristic method for generating S-boxes has been proposed based
on the gradient descent method for generation of Boolean functions. It allows
to generate substitutions with the best properties known to date at low
cost resources. In particular, for n = 8 case the application of the method
gives permutations with absence of fixed points, and indicators δ-uniformity
8, nonlinearity 104, minimum degree 7 and algebraic immunity 3. These
substitutions surpass analogues used in standards STB 34.101.31-2011, GOST
R 34.11-2012 and in the draft standard of the new Russian block cipher.

Advanced design approaches of symmetric cryptographic algorithms in-
troduce additional requirements for S-boxes. One such requirement is that
all permutations used in a nonlinear layer belong to different equivalence
classes. Satisfying this reduces the number of weak isomorphic representa-
tions of an encryption algorithm. As a consequence, it becomes necessary
to find equivalent transformations that can be used to construct isomorphic
representations.

Several new methods for checking the equivalence of two binary nonlinear
mappings have been proposed. These methods are based on the conversion
of a linear function defined over a field F2n to the matrix form. Under certain
conditions the complexity can be reduced to polynomial. The approaches
used in proving of the proposed methods can be additionally applied to find
original high-level representations of cryptographic primitives such as GOST
R 34.11-2012.

The main practical result is the designed software for effective generation
and calculation of indicators of arbitrary nonlinear binary mappings. This
allows one to create and analyze arbitrary nonlinear components used in
symmetric cryptographic primitives. Besides this, a patch for OpenSSL based
on a cross-platform implementation of GOST R 34.11-2012 noted in Paper IV
was created by Dmitry Olshansky [107]. Most of these results have also been
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used in one of the Ukraine’s leading companies that provides services in the
field of information security.
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