A Pretty Good Formatting Pipeline

Anya Helene Bagge and Tero Hasu

Bergen Language Design Laboratory
Dept. of Informatics, University of Bergen, Norway

Abstract. Proper formatting makes the structure of a program appar-
ent and aids program comprehension. The need to format code arises in
code generation and transformation, as well as in normal reading and
editing situations. Commonly used pretty-printing tools in transforma-
tion frameworks provide an easy way to produce indented code that is
fairly readable for humans, without reaching the level of purpose-built
reformatting tools, such as those built into IDEs. This paper presents a
library of pluggable components, built to support style-based formatting
and reformatting of code, and to enable further experimentation with
code formatting.

1 Introduction

Pretty-printing and code formatting are fundamental in the software language
engineering toolbox. There are two main aspects to pretty-printing: creating
textual output from an internal representation, and ensuring that the textual
representation is visually pleasing and/or structurally clear. The ideal code for-
matting results in text that conveys the semantics as clearly as possible within
the constraints of the medium.

In this paper, we will focus mainly on the formatting aspect, rather than on
producing text output from an internal representation. Code formatting must
take into account the syntactic and maybe also the semantic structure of the
code in order to maximise the readability of the output. For example, the treat-
ment of spacing around a minus symbol depends on whether it occurs as a binary
operator (typically spaced on both sides), a unary operator (typically with no
space after), or in some other context. For this reason, the input to the format-
ting must either contain the necessary syntactic and semantic information, or it
must be reconstructed prior to formatting (via lexical, syntactic and /or semantic
analysis).

We may consider several formatting concerns:

— Horizontal spacing. Good placement of spaces can make the details easier
to grasp. For example, an expression such as a+x * y may easily confuse a
casual reader as to the operator precedence, compared to a + x*y or even
the neutrally spaced a + x * y (assuming normal operator priorities).

— Indentation has long been considered important to visual recognition of
scope and nesting structures in program text [12]. This insight goes back
at least to the 1960s [11].

2 Bagge & Hasu

— Line breaking may be necessary to fit the program to the screen or output
medium. Line breaking must trade off efficient use of the human field of vi-
sion against program comprehension concerns such as keeping related things
together and less related things further apart.

— Other processing, such as colourising or highlighting, attaching additional
information such as hover text for HTML output and so on.

This paper describes our pretty good formatter (PGF) and associated exper-
imental formatting components. PGF uses a pipeline of connected components
to format or reformat code, where the various concerns of producing pretty code
are separated into different processors; one for inserting horizontal space, one for
breaking lines, one for adding colour and so on. PGF is designed to be useful for
code generation, reformatting, or just reindenting code — depending on which
components are plugged into the pipeline. PGF provides basic building blocks
for making processing components, and the included components are designed
to be reusable for different languages, with appropriate customisation.

The pipeline architecture itself is reusable for other purposes, and offers sup-
port for processing data concurrently in a pipeline, one data item at a time. Each
processing component has access to a stream of input and a stream of output,
and may specify a desired level of look-ahead and output history, in order to
process based on a sliding window of information.

PGF is implemented as a reusable Java library, with experiments and pro-
totypes in the Rascal meta-programming language [10] and the Scheme variant
Racket [4]. The paper presents a mixture of the library proper, and the associated
experiments. All source code and related content is online.!

The contributions of this paper include:

— Pipeline processing: a pipelined framework for building flexible code format-
ters and rule-based token processors (Section 2);

— Line breaking: a new heuristic line-breaking algorithm, and a reformulation
of two other algorithms to fit our architecture (Section 3).

— Pipeline plumbing: a stream-based plugin architecture for connecting com-
ponents in a pipeline, and a technique for grouping tokens and building
pipelines dynamically (Section 4)

After presenting the contributions, the paper continues with a discussion and
related work (Section 5), and conclusion (Section 6).

2 The Formatting Pipeline

Our formatter is built from a pipeline of token processors. Each processor receives
a stream of tokens, processes them one by one, and feeds them to the next
processor. The pipeline is illustrated in Fig. 1, which shows an input tree, an
output text and two different pipeline arrangements, one doing line breaking and
another one doing colourising and indentation. More details about the pipeline
infrastructure is provided in Section 4.

! http://nuthatchery.org/pgt/

A Pretty Good Formatting Pipeline 3

- Indenter < Colouriser
7

/

Printer S/

™— Line Breaker ~— Spacer -—— Tokeniser

D momoee ®0e0

Fig.1. A PGF pipeline. Starting with a program tree (rightmost), we translate it
to a stream of tokens, then insert spaces, do indentation and line breaking, before
producing program text (leftmost). The alternative path (light blue), adds colour and
does indentation without line breaking. The token stream is shown below each step. In
this example, each token is only one character wide; this is not generally the case.

2.1 Tokens and Categories

Tokens are either data tokens or control tokens. Each data token represents an
atomic piece of source code to be output, while the control tokens (if used) may
convey information about nesting, indentation levels, etc.

Each data token contains a string of characters, and is associated with a
category, and possibly other metadata. The categories are user-definable, but we
have selected a set of default categories (see Fig. 2), in order to aid reusability
of components.

In this paper, we write data tokens enclosed in quotes, optionally followed by
a colon and the category; for example, "if":KEYWORD, " ":WS, "(":LPAR. Control
tokens are marked by a hash character followed by the category and possibly
a list of parameters, e.g., #BEGIN(expr). The PGF library itself uses slightly
different conventions, depending on the implementation language.

Each token has only one specified category, but each category may be a
subcategory of zero or more supercategories, with A <: B indicating that A is
a subcategory of B — implying that any token categorised as A can also be
categorised as B:

t: A A<:B
t: B
We will use A <: B also for the case where A is connected to B through one or more
intermediate steps. Note that, in this case, there may be multiple paths through
the supercategory chain, since each category can have multiple supercategories.

The use of categories is crucial for achieving reusability and language in-
dependence of processors. For example, languages that mostly follow the same
spacing rules can reuse the same processor as long as the language-specific to-
kens are mapped to the same, general categories — possibly with a few additional
language-specific rules.

When customising a processor for a particular language, it may be useful
to have a one-to-one correspondence between token text and category, for in-
stance, in the case of keywords. So, we may have "if":IF and "else":ELSE, with
{IF, ELSE} <:KEYWORD, and a rule stating that we should never break the line
between IF and ELSE.

4 Bagge & Hasu

category { TXT, SPC, CTRL } <: TOKEN;

category { START, STOP, BEGIN, END } <: CTRL;

category { WS, NL, COM } <: SPC; // horizontal, vertical space; comments
category { KEYWORD, PUNCT, ID, LITERAL, OP, GRP } <: TXT; // non—space
category { PAR, BRC, BRT } <: GROUPING; // parens, braces, brackets
category { LPAR, RPAR } <: PAR; // parentheses

category { LPAR, LBRC, LBRT } <: LGROUPING; // left grouping tokens
category { COMMA, SEMI, COLON, DOT } <: PUNCT; // punctuation

Fig. 2. A selection of the default token categories. In the notation, category defines
one or more new categories (left-hand side), listing any supercategories to the right of
the <: sign.

Token processors make their decisions primarily based on token categories,
and not by inspecting token data. The flexible category hierarchy allows several
aspects to be encoded. For example, with a default categorisation of " (" as LPAR,
a left parenthesis token will belong to both its own category, as well as PAR
(parentheses in general), LGRP (left grouping tokens), GRP (groupings in general),
TXT (printable, non-space tokens), TOKEN (any token), and decisions may be made
on the basis of any of these.

2.2 The Tokeniser

The first processor in a pipeline is the tokeniser, which turns the input (whatever
that might be) into a stream of tokens. We envisage three kinds of input:

— a parse tree, containing both structural and lexical information, or

— an abstract syntax tree, containing mostly structural information (maybe
including semantic information), or

— a token sequence from a lexer, containing mostly lexical information.

With an abstract syntax tree, the lexical information must be reconstructed,
for example using a pretty-print table generated from the grammar, or by a
hand-written tokeniser which traverses the AST and outputs appropriate tokens
for each AST node.

Lexer output might be more or less directly usable, possibly with mapping
of the lexer’s token categories to the formatter’s. As we’ve only been using scan-
nerless parsers, we have not explored this option further.

With a parse tree as input, all necessary information for printing and format-
ting should be available, and we can use a generic parse tree tokeniser to obtain
the token stream. We have written such tokenisers that accepts parse trees in
the UPTR and AsFix2 formats.?

2 UPTR is the Universal Parse Tree Representation; it is used by Rascal, and is fairly
similar to its predecessor, AsFix2, which is used by SDF2 and the SGLR and JSGLR
parsers.

A Pretty Good Formatting Pipeline 5

Generic Parse Tree Tokeniser The parse tree tokeniser (available in UPTR
and AsFix2 versions) traverses a parse tree, and produces data tokens for leaf
node; i.e., lexical (corresponding to identifies, numbers and such), literal (corre-
sponding to keywords and punctuation) or layout (corresponding to white space
and comments) nodes. The layout nodes are split into horizontal space (WS), new-
lines (NL) and comments (COM), and literals and lexicals are categorised according
to a customisable scheme:

— the text of each token is checked against a category mapping table (one
for lexicals and one for literals) either by exact string matching or regular
expression matching;

— the parse tree node is checked for a category annotation (such annotations
can be added automatically by a parser); and/or

— all tokens of the same syntactic sort can be mapped to the same category.

Remaining non-space tokens are categorised as the default TXT.

Additionally, control tokens may be emitted for some non-leaf nodes in the
parse tree — for example, indentation may require #BEGIN/#END control tokens
around lists of statements and other parts of the code that should be indented.

Mapping tables for literals, lexicals and sorts are all configurable, allowing
the tokeniser to be customised to a particular language, and having it output
tokens categorised according to a common scheme.

As an example, consider the following Java code input:

if(®) {x=3; }
After parsing it using an SDF2 grammar?®, the AsFix2 tokeniser yields the fol-
lowing token stream:
"if":IF "(":LPAR "b":ID ")":RPAR " ":WS "{":LBRC #BEGIN " ":WS "z":ID
" OMWS "=":EQ " :WS "3":NUM ";":SEMI " ":WS #END "}":RBRC

A further refinement would be to tokenise comments, so they can be refor-
matted as well.

2.3 Token Processors

A token processor accepts a stream of input tokens, and produces a stream
of output tokens. Each processor has a process method which performs one
step of the processor. The pipeline framework will ensure that process is called
whenever there is available input to process.

The processor connects to the overall pipeline through a pipe connector which
provides buffering (if needed), a history of recently outputted tokens (if needed)
and may also provide transparent handling of control tokens for processors that
are only interested in data tokens.

We are free to implement a process in any way, as long as it satisfies the
general interface, but for convenience and performance, we provide a rule-based
framework for specifying processors. This should be suitable for most simple

3 JavaFront — http://strategoxt.org/Stratego/JavaFront

6 Bagge & Hasu

cases; more advanced processors can be programmed in a general purpose lan-
guage. Section 2.4 and Section 2.5 give examples of token processors for adjusting
spacing and breaking lines, respectively. Full versions of the processors and ad-
ditional processors (including a general indenter) can be found in the online
materials.

Rule-Based Token Processors A rule-base processor makes decisions based
on a set of prioritised rules. Each rule consists of a condition and an action. In
our Java library, conditions and actions are built using static methods returning
condition and action objects. Two kinds of conditions are currently supported:

— at(CAT...) true if the next incoming token(s) match CAT... (“looking at”)
— after(CAT...) true if the last emitted token(s) match CAT...

For example, the condition after(A, B).at(C, D) matches if the next tokens
match category ¢ and D, and the last emitted token was a B preceded by an A.*
A token t:C; matches a category C iff ¢, = C or C; <: C.

An action may be arbitrary Java code, or selected from a simple library of
actions:

insert("tzt"”, CAT) — insert a token before the current token
— move — move the current token from input to output

— seq(al, a2, ...) — execute actions in sequence

— drop — delete the current token without producing output

Rules are added to the processor using the addRule method. For example, the
following processing rule deletes all spaces:

addRule(at (SPC), drop);

We’ll see more examples in Section 2.4.

Rule processing is implemented using decision tables, where a pair of cate-
gories are looked up, resulting in an action to be executed. We currently only
support matching with two categories — either a after(A).at(B) pair, or a two
token look-ahead, at(A, B). If only one category is given in a rule, the other is
assumed to be TOKEN, the supercategory of all categories.

Rule Priorities It will often be the case that there is more than one matching
rule in a given situation. The general rule for resolving such ambiguities is that
the more specific rule should apply. In this context, “more specific” means, for a
rule with two categories:

— Assuming we are looking at a token with categories C, D, and we have two
rules r; and ro with conditions involving C7, D; and Cs, Do respectively,
with C <: C1, C <: Cy, D <: Dy, and D <: Da;

4 Tt is useful to think of the tokens as flowing in from the right (or, equivalently, that
the token processor moves left-to-right over the token stream).

A Pretty Good Formatting Pipeline 7

— rule r; is more specific than rule rq if dist(C, Cy)+dist(D, Dy) < dist(C, Cs)+
dist(D, Ds),

— where dist(A, B) is the number of steps in the shortest supercategory chain
A<: ... <: Bfrom A to B.

In addition to this priority rule we may also state that one set of rules should
always have priority over another set of rules. When building a rule processor,
this can be accomplished with the addPriorityLevel method.

Potential conflicts can be determined when the decision table is built, and a
suitable warning will be provided to the programmer.

2.4 Token Processor: Spacer

The duty of the spacer is to process a stream of tokens, and insert spaces as
appropriate. This is used to control horizontal spacing in a document.

Spacing can increase readability, even though many languages do not treat
spaces as significant. A naive pretty-printing may insert spaces between all to-
kens, just to be on the safe side (e.g., preventing identifiers from running into
each other). A more refined approach is to insert spaces according to style rules.

Spacing is readily implemented with a rule-based processor. Since many spac-
ing rules are similar across languages (e.g., “(x, y)” is preferable to “(x ,y)”),
we expect to be able to reuse much of the spacing code for multiple languages.

For a Java or a similar language, some sensible spacing rules might be:

— No spaces on the inner side of parentheses

— Always (or never) space between an if and the parenthesis
— Always space after a comma, never before

— No space before semicolon

— Always space around a binary operator

— Always spaces between any other tokens

We may implement these rules using the code in Fig. 3. The rule set removes
all spaces from the input (highest priority level), and — unless otherwise specified
— adds a new space between all text tokens (lowest priority level).

If we apply the rules to the following Java code:
if(b) {x=3;}else{x=4;}
if(d) x = £ (1,2,3);

we get the following result, with some spaces inserted and some removed:

if (b) { x=3; } else { x=14; }
if (b) x = £(1, 2, 3);

A user-friendly configuration frontend could present customisation choices to
the user, and then select appropriate rules to implement them. Note that it is
also possible to specify certain rules to be followed (e.g., no space before comma,
always after), while not otherwise changing the input.

8 Bagge & Hasu

addRule(at(WS), drop); // delete all incoming spaces
addPriorityLevel(); // rules above have highest priority

addRule(after(LPAR), nop); // mo space after left parenthesis
addRule(at(PAR), nop); // mo spaces before parentheses
addRule (after(IF).at(LPAR), space); // but always between ’if’ and ’(’

addRule (at(PUNCT), nop); // no space before comma, semicolon, etc.

addRule (after(TXT) .at(BINOP), space); // space around binary operators (this
addRule (after(BINOP) .at(TXT), space); // actually follows from the general rule)

addPriorityLevel(); // rules below have lowest priority

addRule (after(TXT) .at(TXT), space); // general rule

Fig. 3. A selection of sample spacing rules. The full spacing code for Java is available
online. The command space inserts a space before the token we’re looking at; drop
deletes the token, and nop keeps the token (used for overriding a more general rule).

2.5 Token Processor: Line Breaker

The line breaker is responsible for turning a token stream into something that is
ready for printing or converting into a string. This means reducing all formatting
related stream content into nothing but text and line breaks. If line breaking is
done, any indentation must be done together with it, since indentation has an
impact on line width (though it is certainly possible to do only indentation in a
pipeline, without line breaking).

Line breaking is easily the most challenging part of code formatting, involving
trade-offs between horizontal and vertical space usage, code clarity and aesthet-
ics. Also, earlier breaking decisions can impact later ones, in terms of how much
space is available on a line — making the ‘wrong’ choice can make it impossible
to achieve a pleasing result later.

We have experimented with three different line breakers. One is experimen-
tal, and based on assigning a ‘breakability’ value to each space (based, e.g. on
how deeply nested an expression is); the higher its value, the more breakable it
is, and the more likely it is that we break the line at that point, particularly as
we get closer to the end of the line (Section 3.2). Another one is a refinement of
an algorithm by Wadler [18]; some extensions have been added, and adjustments
have been made to accept stream-based input in order to fit the pipeline (Sec-
tion 3.3). The third one is a recent algorithm by Kiselyov et al. [9], with a novel
implementation technique, reliant on stream-based processing (Section 3.4).

The experimental algorithm is implemented in Rascal only, and is not yet
optimised for performance. The Wadler algorithm is implemented in both Rascal
and Racket (with Racket offering decent performance). The Kiselyov algorithm

A Pretty Good Formatting Pipeline 9

is implemented in Racket only, with a present shortcoming denying us the al-
gorithm’s theoretically pleasing performance characteristics. We have no clear
favourite among these line breakers, but with our library of pluggable compo-
nents we aim to avoid “lock-in” to any particular choice — and also to allow
comparison of the different algorithms.

3 Line Breaking

3.1 Nesting and Indentation

Proper indentation relies on information about the current nesting level of the
code. Additionally, one of our algorithms (Section 3.2) relies on nesting for mak-
ing line-breaking decisions.

As we are working on a stream of data rather than a tree where nesting is
explicit, we rely on control tokens to tell us about changes in the nesting level.
The current nesting level can be tracked using a stack.

In addition to the usual increasing and decreasing of indentation levels, our
nesting primitives supports absolute (specified column), relative (to the current
column), and string-based indentation, as well as non-indenting nesting. Abso-
lute indentation is useful for printing #ifdef and other CPP directives starting
from the first column, or Lisp ; ; ; comments. Relative indentation support makes
it easier to align related text appearing over multiple lines. String-based inden-
tation is necessary for pretty-printing “line comments” (e.g., comments starting
with //in C++), if they are to be allowed to be broken over multiple lines.

The available indentation controls are:

— LvInc(n) — increase level by n (negative OK)

— LvStr(s) — append indentation string s

LvAbs(n) — set new indentation level to n

— LvRel(n) — set level relative to current output cursor column

For example, a list of statements in a block may be surrounded by #BEGIN(
LvInc(1)) ... #END, causing the statements to be indented one level more that
the surrounding context. Relative indentation is useful inside parentheses. For
example, the control tokens in the following stream would cause the line breaker
to store the current column ¢, and indent the following line to ¢+ 0 if the line is
broken inside the parentheses:

"(":LPAR #BEGIN(LvRel(0)) ... #END ")":RPAR ...

A plain #BEGIN ... #END is ignored by the indentation code, but may be used
for other purposes, such as the algorithm in Section 3.2.

Our indentation control tokens are similar to Chitil’s [2], who provides Open-
Nest and CloseNest. The difference is that OpenNest takes a function rather than
an interpreted level value. This solution is more flexible than ours in that any
function computing a new indentation level in terms of the current indenta-
tion level and “cursor” column is allowed. However, the function signature only
permits integers, and hence the equivalent of LvStr is inexpressible.

10 Bagge & Hasu

3.2 A New Line-Breaking Algorithm

This line breaking algorithm tries to balance simplicity with the desire to keep
related code on the same line. It is based on assigning breakability factors to
spaces in the document (we’ll assume that we always break lines at a space; if
necessary, an empty space may be used as a break-point). The algorithm assumes
that control tokens are inserted into the stream to indicate nesting, and the
breakability is chosen based on this; the deeper the nesting, the less breakable
a point is. Additionally, breakability can be set directly on space tokens, for
“always break” and “never break”. In our experiments, we’ve used nesting for
each level of declarations, statements and expressions in our parse tree.

The Algorithm

— We keep track of
e the desired line width (W),
e the current breakability level (B) — a number between 0 and 1,
e a stack of indentation levels (I),
e and the current horizontal position, as a fraction of the line (P).
— Furthermore we have
e A queue of processed tokens that have not yet been output
e The last space that seemed like a good place to break (S)
e The desirability of breaking at the last space (D) — computed based on
P and B (based on experimentation, P * B? seems to be a good starting
point). Initially zero, higher is better.
— For each incoming token, we do:
1. e if text: append to queue
e if explicit line break: flush queue, break line, indent, reset variables
e if nesting start: decrease breakability by some factor (e.g., nestFac-
tor=0.75)
e if nesting end: increase breakability again
e if space: we must decide whether this is a better place to break than
our previous candidate. We compute the desirability of breaking at
the current point, if it is higher or equal to D, we:
(a) flush the queue
(b) store this space as the best break point
(c) store the new value of D
Otherwise, the space is added to the queue.
2. If the current position + queue length is larger than W, we:
(a) break line, indent, reset variables
(b) flush queue, reset best break point to empty, D=0.0

The algorithm never examines a token more than once, and has linear time
complexity. In terms of memory, it needs a queue buffer proportional to the
desired line width. Note that we only make the final decision on where to break
when we reach the end of the line. Some tuning is necessary in order to find the
best way to calculate how “desirable” a particular potential break is.

A Pretty Good Formatting Pipeline 11

In the small example below, the algorithm has been applied to a code frag-
ment with nested expressions, with line width 15. Compared to naive breaking
nearest the end of line (right), our algorithm (left) tries to keep the deeper nested
expressions on the same line; in this case, at the cost of using an extra line.

X =ax*xb X =a*xb+c
+c/d >/ d+ (c/ d
+ (c/ d* f) * f) + ¢/ 4d;
+c / d;

3.3 Adaptation of Wadler’s Pretty-Printing Algorithm

Our next line breaker is based on a pretty-printing algorithm described in a
paper by Wadler [18]. We discuss the key concepts and characteristics of the
original algorithm, and present our stream-adapted version and its extensions.

Wadler’s Pretty-Printing Algorithm The original implementation [18] of
the algorithm is Haskell based. The input given to the algorithm is specified
as a document, which can be composed using provided operations. The most
important operations include: nil (empty document), text, line (line break), <>
(concatenation), nest (indented block), and group. The group constructor may
produce a document whose layout involves line-breaking decisions, as the layout
may differ depending on page width w.

The Haskell-based algorithm operates on primitive document types, which
are: NIL, :<> (concatenation), NEST, TEXT, LINE, and :<|>. All except :<|> have a
direct counterpart in the list of operations given above. The :<|> primitive sig-
nifies a union (or choice) of two possible sets of layouts, and any line-breaking
sensitivity within documents (including those produced by group) must ulti-
mately be expressible in terms of unions. The semantics of a union is that the
left choice is taken if and only if it (fully, or up to any LINE break) fits on the
line (i.e., the line width will not exceed w characters).

Use of the union primitive easily results in huge documents due to combina-
torial explosion. For performance it is crucial for implementations of Wadler’s
algorithm to: (i) never inspect more than w characters per choice, and to (ii) not
build (parts of) documents that are not inspected. Together these two measures
achieve the property of boundedness [18] (of a pretty-printing algorithm), which
Wadler defines as not looking at more than the next w characters in making
line-breaking decisions. Measure (ii) is implementable by means of lazy evalua-
tion, which one gets “for free” in Haskell as it is the default semantics. Laziness
leads to a kind of co-routine computation [2], and it is also possible to encode
sufficient laziness in strict languages [19].

Our Adaptation of the Algorithm Our layout algorithm is the same as
Wadler’s in the sense that the same primitive document types are supported.
They may appear somewhat different, however, due to our requirement for a
stream-based interface; NIL, for example, is simply represented as the empty

12 Bagge & Hasu

stream, whereas any two consecutive tokens in a stream can be thought to have
been composed by :<>. Another difference to the original algorithm is that we
chose to extend the NEST primitive to support the indentation controls of Sec-
tion 3.1, for additional flexibility. The extension adds expressive power without
taking anything away or affecting the general performance characteristics of the
original algorithm.

We have implementations in both the Racket and Rascal languages. These
bear little resemblance to the original Haskell-based implementations, both due
to Haskell’s different evaluation semantics (lazy vs strict) and the different “doc-
ument model” (objects vs streams).

Complexity Bounding Measures In the original implementation Haskell’s
need-driven evaluation automatically takes care of the bounding measures re-
quired for good performance. Rascal and Racket are both strict languages, and
we had to implement both of the measures explicitly.

To account for measure (i) we implemented the actual layout algorithm in a
strict manner, making state and modifications to it explicit. All state is stored
in structures, and no recursion is used by the algorithm proper. This makes the
evaluation order and control flow clear, and no information enabling early prun-
ing of fruitless search paths is “hiding” somewhere up the call stack. Decisions
about whether or not to backtrack are made as soon the right margin is crossed
when examining a choice (of a union). Backtracking is implemented by switching
to an older, stored state, which is possible as state updates are purely functional.

Measure (ii) is more externally visible as documents are provided as input,
and operations for constructing documents, whether lazily or otherwise, must be
made available to the user. In many cases the required laziness can be hidden by
accepting reasonably-sized (and complete) “instructions” for building documents
as arguments to operations, and then performing the construction lazily within
said operations as appropriate. The on-demand construction in a stream setting
is enabled by defining a lazy (functional) stream type. Many of our document
construction operations return such lazy streams, conforming to the “even” style
of laziness [19].

While we do expose our Union primitive and the lazy stream API to al-
low for full document building flexibility, a variety of typical layouts can be
achieved using the higher-level operations that we provide. These operations in-
clude flatten, group, and £ill, as documented by Wadler [18]: flatten replaces
each line break (and its associated indentation) by a single space; group adds
a flattened form of a document as the preferred choice; and £ill takes a list
of documents and creates a fill layout for them, so that whenever there are two
or more documents left, the first two are laid out flattened and a single space
between them if they fit on the line, and otherwise the first document is laid out
unflattened and followed by a line break.

A Pretty Good Formatting Pipeline 13

3.4 Kiselyov et al’s Pretty-Printing Algorithm

We have also made a Racket port of the linear-time, backtracking-free, bounded-
latency pretty-printing algorithm by Kiselyov et al [9]. The algorithm is faster
than Wadler’s, and operates on a token stream, after any initial tokenisation.
The set of supported formatting operations is like Oppen’s [14]. The algorithm
is particularly interesting for us as it suggests a potentially convenient way to
organise a pipeline with interleaved operation of token processors, similar to our
own formatting pipeline.

The Kiselyov algorithm itself has an internal token pipeline making use of a
yield construct similar to what one finds in Ruby and many other languages [7].
Kiselyov’s implementation of yield however does not require first-class delimited
continuations (such as created by Racket’s call-with-continuation-prompt), but
rather is based on much lighter-weight simple generators. Their idea is to bind
each token processor’s yield target in the dynamic environment as a function.
Our implementation of yield uses Racket’s built-in support for dynamic binding
(i.e., “parameterization”), which is semantically equivalent to the original Haskell
implementation’s use of the Reader (or “environment”) monad.

Our initial impressions of using the simple generator style of co-routines for
building pipelines are positive. One can just write “regular” Racket functions
that may invoke yield to emit tokens, and the bindings can be established only
once composing the pipeline. Processors requiring state may simply retain it in
their closure.

The one problem with our current implementation is that one of its auxiliary
data structures does not have all of the required stringent algorithmic proper-
ties. We are currently using an implementation of Okasaki’s banker’s deque [13],
which does not enable concatenation and iteration with the required properties.
The pipeline itself requires no explicit data structure, thanks to the yield-based
approach of immediately passing tokens from one processor to another, without
any pipe data structure in between.

4 Plumbing

4.1 Java Pipeline Design

We have so far described the details of token processors and formatting compo-
nents, we’ll now go into the details of the pipeline itself and how components
are coupled together — the plumbing.

Our generic pipeline framework for Java is built on three concepts:

— processors that manipulate a stream of objects;

— pipe components that control the processors, and are connected together in
a pipeline; and

— pipe connectors that connect processors to pipe components, and provide
buffering and various utility services.

14 Bagge & Hasu

The framework is designed to support (optional) concurrency with each proces-
sor running in its own thread. The framework takes care of transporting the
information through the pipeline, without the processor implementer having to
worry about locking or concurrency issues (unless the processor accesses non-
local information). Streams may be of any kind of object — in our PGF formatting
framework the objects are tokens.

Pipe components supports a connect method for connecting the output to
another component, put for sending an object into the component, end for sig-
nalling the end of a stream, and restart for resetting any internal state and
preparing for a new stream of data. In a concurrent setting, the pipe component
will take care of managing a processing thread.

Each pipe component connects to its processor through a pipe connector.
The connector can provide input and output buffering, and can also maintain
histories of the last seen or last output data items. The buffering is useful to
provide look-ahead for the processor, and also to reduce the amount of locking
in a concurrent setting. Multiple connectors may be layered to provide filtering
or translation of the data stream (for example, processing control tokens).

Each processor has a process method, which is called by the pipe component
whenever there is input available through the pipe connector. The processor may
inspect or get objects from the input buffer, and also send objects to the output.
The processor can state the amount of look-ahead and output history needed,
and also how the start and end of the stream should be signalled.

Activity is driven by putting objects into the pipeline; put calls to the first
component will propagate calls through the entire pipeline; the output from
one processor triggering a put to the next component which triggers the next
processor, and so on.

4.2 Grouping and Dynamic Processors in Racket

The pretty printer adaptation in Section 3.3 is designed for pipelining, in the
sense of contributing to a result as input becomes available. For example, the
formatting of a nested range of tokens can proceed before the end marker of the
range has been seen. The nesting construct is easy to handle in a stream setting
as any tokens within a nested range may be processed unconditionally. This is
unfortunately not the case with union primitive.

As mentioned in the subsection on complexity bounding measures, it is im-
perative for performance not to inspect (or even build) all the content of “large”
unions. Hence such content should not appear within the stream in a “flat” form,
as then it would be necessary to scan through any union contents just to get
past them. We are forced to “unnaturally” express a union as a token containing
the left and right choices as embedded streams. These nested streams can then
be inspected to the appropriate extent.

Alternative and lazy constructions may not be natural within a token se-
quence, but often such constructions are just the low-level expression of what
really is a concrete sequence with some associated semantics. For instance, con-
sider the group function, defined in Racket as shown below, involving the Union

A Pretty Good Formatting Pipeline 15

primitive and a lazy flatten operation. In the (commented out) example group
expression, we essentially just have the word sequence of “a” followed by “b”,
with the semantics that the words should be laid out horizontally if they fit on
a line, and vertically otherwise.
;; E.g. (group (tseq "a" br "b"))
(define (group ts) ;; tseq — tseq

(Union (flatten ts) ts))

tseq is our token sequence datatype in Racket: empty-tseq is an empty sequence,
tseq is a constructor, and tseq-put appends a token, with functional update.

As can be seen from the listing, implementing group as a function in terms
of other operations is trivial when the full token stream ts to be grouped is
available. We want to retain this ease of implementation, but would still like
to allow groups to be emitted incrementally, token by token, as is fitting for a
stream setting. Chitil, in his pretty printer [2], enables this specifically for group
by supporting Open and Close tokens for delimiting the contents of a group. To
a similar and more general effect we want to be able to “encode” the argument
value for group as a sub-sequence of tokens, and then have the result of invoking
group with that argument used as input for the actual layout algorithm.

To allow for such encoding, we introduce a grouping mechanism, which dy-
namically inserts a processor into the pipeline, along with a substream of tokens
to be processed. While this kind of preprocessing happens to be particularly es-
sential for Wadler’s algorithm (unlike e.g. for Kiselyov’s and our own), we have
implemented the grouping processor in a fairly general way, and might find useful
applications for it elsewhere within our token pipeline.

In a general sense the grouping facility makes it possible for “foreign language”
(e.g., arguments to a function) to appear within an input stream, provided that it
is known where the “foreign expression” begins and ends, and that a translator
(to “native” language) is provided — for example, doing special formatting of
comments. The former condition is met with opening and closing control tokens
indicating the foreign range. The latter condition is met in an open-ended way
by specifying a translator in the opening Begin token. A translator must conform
to the Grouping abstraction, which includes functions for managing state for the
delimited token range.

Below we define XML-inspired group/ and /group delimiters, and use tseq-put
to cache arguments for the group function. We then have group called with its
entire cached argument upon seeing an End token. In this example the result is
a single Union token, and hence there is no possibility of returning result tokens
incrementally. The Union token may be lazily constructed, however. Here the
specified #:end operation produces the full result (as a stream), which indeed is
lazily constructed. The #:put operation is expected to receive and incorporate
both new input as well as the results of any contained, nested groupings.
(define group-grouping ;; Grouping

(make-grouping ’group
#:new (thunk empty-tseq) ;; create fresh state
#:put tseq-put ;; incorporate token into state

16 Bagge & Hasu
#:end group)) ;; finalise by calling ’group’ with state

;5 E.g. (tseq group/ "a" br "b" /group)
(define group/ (Begin group-grouping))
(define /group (End group-grouping))

A grouping implemented in such a manner (i.e., call a function to get the
result) may cause prohibitive space consumption for some applications, as de-
pending on grouping semantics one may have to first buffer the entire input and
then the entire result, and these can generally be of arbitrary length. However,
depending on the grouping it may be possible to reduce space consumption by:
(i) having “argument” tokens incorporated into a (small) result as they are read,
without having to buffer them (cf. a hash function); and/or (ii) returning the
result as a (small) lazy stream which will compute the full result sequence one
token at a time (cf. a generator).

The group function gives us (ii), but (i) appears impossible, and we are still
left with worst-case linear space consumption for our grouping implementation.
We presently have no solution to avoid such overhead for all groupings, and to
begin to achieve that we suspect that our grouping mechanism would have to be
made less generic, more closely integrated with the algorithm proper, or both.
As shown by Chitil and Swierstra [2, 17], achieving theoretically pleasing layout
performance can be challenging and intricate.

The grouping support mechanism is implemented by maintaining grouping
state within token sequences to ensure correct ordering as tokens flow in and out
of grouping processing. Multiple groupings may nest, and groupings may output
groupings; there is no guarantee of termination. No token reaches the layout
algorithm proper before any grouping processing concerning it is complete; the
algorithm proper is unaware of groupings.

5 Discussion

5.1 Plumbing Considerations

The concept of organising a code formatter as a pipeline is appealing. It offers
four benefits, as far as we can tell:

— a clear separation of concerns,

— flexibility in that components can be plugged together to achieve different
effects (e.g., indent only; spacing + indentation; line breaking + indentation),

— ease of prototyping and experimentation, since multiple interchangeable ver-
sions of one component can be tried,

— a possibility for fairly simple concurrent processing.

There are different ways to achieve pipelining. Our Java library uses a series
of interconnected objects to achieve fairly straight-forward pipelining in Java.
The technique of Kiselyov et al [9] uses the yield language construct to achieve
“native” pipelining in languages that support it, without having to manage the

A Pretty Good Formatting Pipeline 17

pipeline as a data structure. The grouping construct of Section 4.2 is designed
for use in a surrounding pipeline, but also provides a way to dynamically build a
more complex pipeline based on the control tokens in the incoming token stream.

Our Java version has advantages in the relative ease of doing buffered look-
ahead and concurrency; a yield-based pipeline offers relative simplicity for lan-
guages that have it or where it can be added. Overall, we feel the choice comes
down to the preferred (or required) implementation language.

5.2 Performance

Although performance may be of some importance in an interactive setting, it
is of less concern than the quality of output, as long as “decent” performance
is offered. In our experiments with our Java implementation of PGF, the most
time consuming part of formatting is the tokenisation of parse tree — but even
this is dominated by the time spend on parsing. Formatting a 2 MiB file of Java
source takes around 6s (excluding parsing) on our workstations, which is a bit
slower than Eclipse’s Java formatter, but not much.

5.3 Quality and Reusability of Processors

We had an expectation that the various processing components that make up
the formatting pipeline should be fairly easy to adapt to different languages,
provided that the tokenisation has been customised for the particular languages.
Our results so far are promising; generic spacing, indentation and line-breaking
processors do a fair (but by no means perfect) job of formatting Java and Mag-
nolia code. Producing high quality output requires careful tuning, and will of
course also have to take into account styling preferences. Examples of output
can be found in the online materials.

More work is needed on composing and combining rule sets of rule-based
processors; extending a generic processor with rules for a particular language
has a tendency to result in rule conflicts or unexpected behaviour.

5.4 Related Work

Oppen’s pretty printer [14] is also stream oriented. Unlike Wadler’s, it exploits
streams to allow two communicating sequential processes to coordinate their
work. This results in performance characteristics of time O(n) and space O(w),
with input length n and page width w. In comparison, the worst case time
complexity of Wadler’s algorithm is O(nw) [2], i.e. superlinear if w is considered
variable.

While Oppen’s solution is unbeaten in performance, it is also monolithic. The
constructs of his layout language only exist as part of a whole, without a mean-
ingful description in isolation [5]. The variety of parameters for Oppen’s blank
tokens add expressiveness to the language. For example, consistent and incon-
sistent blanks loosely correspond to group and f£ill, respectively. The variable

18 Bagge & Hasu

offset of blanks has the same motivation as the LvRel parameter we introduced
in Section 3.1.

Hughes’ pretty printer [5] is based on algebraic design, and served as a major
influence for Wadler’s. The Union operator, for instance, has its origins in Hughes’
algebra, and indeed in the set theoretical U operator. Hughes’ layout operator
set is expressive, able to express some layouts that Wadler’s cannot [18], but also
such that a bounded implementation is impossible [18].

Chitil [2] managed to devise a purely functional pretty printer with Oppen-
level efficiency. In it he also opts to represent documents as token sequences
rather than trees, due to sequences appearing more amenable to efficient pro-
cessing.® Chitil maintains context information in explicit data structures, and
notes that this is important for achieving high efficiency. Our implementation
of Wadler’s algorithm shares these two design choices, though for reasons of
architecture and clarity.

Swierstra’s and Chitil’s joint work on a pretty printer [17] resulted in two
linear-time implementations that are simpler and clearer than Chitil’s earlier
work. They provide the insight that such solutions can be achieved by utilising
two mutually recursive processes running asynchronously, but that such solutions
are hard to express in purely algebraic style. Wadler’s algorithm was derived
based on algebraic techniques.

Kiselyov et al. found a still simpler and clearer way to implement a linear-
time, bounded-latency solution to the pretty printing problem [9]. Their algo-
rithm, discussed in Section 3.4, is similar to Swierstra and Chitil’s second solution
in that instead of relying on Haskell’s lazy evaluation to interleave processing,
a co-routine style approach is used; Swierstra and Chitil’s approach is more
heavyweight in that it involves building and storing “continuation” functions.
Kiselyov et al. point out a sometimes overlooked [16] corner case in the process-
ing of groups, offering normalisation of document trees as the solution. We believe
such normalisation cannot be done efficiently on token streams, meaning that
bounded look-ahead is lost unless we can ensure that earlier token processors
only produce normalised output.

The Box [1, 3, 8] formatting model is based on composing two-dimensional
boxes of code. This produces good quality output, but the complexity of the algo-
rithm is high, leading to poor performance on large documents (often dominating
the other processing steps in a source-to-source transformation). Additionally,
some forms of indentation are difficult to express.

Jackson et.al. [6] provide an efficient, stable peephole pretty-printing algo-
rithm, suitable for use in an interactive editor. The peephole property means
that it is capable of pretty-printing just a part of a program, corresponding
to an editor view. The running time of the pretty-printer is thus independent
of the full length of the program—only the size of the editor’s view (or peep-
hole) matters. The algorithm is stable, in that it gives the same result as if the
entire program was pretty-printed, avoiding reformatting artefacts as the user

5 Swierstra has shown that a tree representation does not preclude Oppen-level effi-
ciency [16].

A Pretty Good Formatting Pipeline 19

scrolls the editor view. The stable peephole is achieved by identifying anchors
in the program; places where the indentation level is the same, no matter which
choices are made by the formatter. The line-breaking algorithm itself is a variant
of Wadler’s [18].

Our new line breaker has (we believe) fewer choices than the Wadler algo-
rithm, so it should be easier to identify anchors, and provide stable peephole
functionality. However, peepholing may not work so well with a pluggable archi-
tecture. We need to explore this more.

Reiss [15] has shown that given samples of existing source code in the desired
style, machine learning can be used to deduce formatting rules for the style. This
approach should also apply to deducing rule tables for our spacer engine, for
example.

6 Conclusion

PGF is a general framework for code formatting, based on a flexible pipeline of
formatting components. We aim to use the framework as a basis for further ex-
perimentation into customisable, language-independent formatting components.
The flexibility of offered by pluggable components seems useful for conducting
such experiments. We provide both a rule system for implementing components,
and support for using general purpose languages.

We have built components for spacing, indentation and three variants of line
breaking, as well as tokenisers accepting parse trees in UTPR and AsFix2 format.
Although we are implementing PGF as a Java library, we also perform experi-
ments and prototyping in Rascal and Racket. This has allowed us to rapidly try
out various techniques, including three different line breaking algorithms.

The general pipelining framework should be reusable for other purposes than
just code formatting — it is built to be independent of the type of data processed.
We have applied the PGF formatter to the Java and Magnolia languages, so far
with promising results, though further tuning is needed to produce high quality
output, and to determine the level of code reuse possible when implementing
formatters for multiple languages.

Online materials are available at http://nuthatchery.org/slel3/

Acknowledgements Thanks to Eivind Jahren, who has helped us understand
unfamiliar Haskell concepts. This research has been funded by the Research
Council of Norway.

References

1. van den Brand, M.G.J., Visser, E.: Generation of formatters for context-free lan-
guages. ACM Transactions on Software Engineering and Methodology 5(1), 1-41
(January 1996)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bagge & Hasu

Chitil, O.: Pretty printing with lazy dequeues. ACM Trans. Program. Lang. Syst.
27, 163-184 (January 2005)

. Coutaz, J.: A layout abstraction for user-system interface. SIGCHI Bull. 16(3),

1824 (Jan 1985), http://doi.acm.org/10.1145/1044201.1044202

Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010),
http://racket-lang.org/trl/

Hughes, J.: The design of a pretty-printing library. In: Advanced Functional Pro-
gramming. pp. 53-96. Springer-Verlag (1995)

Jackson, S., Devanbu, P., Ma, K.L.: Stable, flexible, peephole pretty-printing. Sci-
ence of Computer Programming 72(1-2), 40 — 51 (2008)

James, R.P., Sabry, A.: Yield: Mainstream delimited continuations. In: First Inter-
national Workshop on the Theory and Practice of Delimited Continuations (TPDC
2011) (May 2011)

de Jonge, M.: A pretty-printer for every occasion. In: Ferguson, 1., Gray, J., Scott,
L. (eds.) Proceedings of the 2nd International Symposium on Constructing Soft-
ware Engineering Tools (CoSET2000). pp. 68-77. University of Wollongong, Aus-
tralia (Jun 2000)

Kiselyov, O., Peyton-Jones, S., Sabry, A.: Lazy v. yield: Incremental, linear pretty-
printing. In: 10th Asian Symposium on Programming Languages and Systems
(APLAS). pp. 190-206 (Dec 2012)

Klint, P., van der Storm, T., Vinju, J.: Rascal: A domain specific language for
source code analysis and manipulation. In: SCAM ’09: Proceedings of the 2009
Ninth IEEE International Working Conference on Source Code Analysis and Ma-
nipulation. pp. 168-177. IEEE Computer Society, Washington, DC, USA (2009)
McKeeman, W.M.: Algorithm 268: Algol 60 reference language editor. Commun.
ACM 8(11), 667-668 (Nov 1965)

Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indenta-
tion and comprehensibility. Commun. ACM 26(11), 861-867 (Nov 1983)

Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1999)

Oppen, D.C.: Prettyprinting. ACM Trans. Program. Lang. Syst. 2, 465-483 (Oct
1980)

Reiss, S.P.: Automatic code stylizing. In: 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). pp. 74-83. Atlanta, Georgia (Nov
2007)

Swierstra, S.D.: Linear, online, functional pretty printing (corrected and extended
version). Tech. Rep. UU-CS-2004-025a, Department of Information and Computing
Sciences, Utrecht University (2004)

Swierstra, S.D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(1), 1-16 (2009)

Wadler, P.: A prettier printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming. Cornerstones of Computing, Palgrave Macmillan (Jun 2005)
Wadler, P., Taha, W., Macqueen, D.: How to add laziness to a strict language
without even being odd. In: Workshop on Standard ML. Baltimore, Maryland
(Sep 1998)

