
Acta Appl Math (2014) 133:113–131
DOI 10.1007/s10440-013-9861-0

On the Formulation of Mass, Momentum
and Energy Conservation in the KdV Equation

Alfatih Ali · Henrik Kalisch

Received: 4 December 2012 / Accepted: 25 November 2013 / Published online: 7 December 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The Korteweg-de Vries (KdV) equation is widely recognized as a simple model
for unidirectional weakly nonlinear dispersive waves on the surface of a shallow body of
fluid. While solutions of the KdV equation describe the shape of the free surface, informa-
tion about the underlying fluid flow is encoded into the derivation of the equation, and the
present article focuses on the formulation of mass, momentum and energy balance laws in
the context of the KdV approximation. The densities and the associated fluxes appearing in
these balance laws are given in terms of the principal unknown variable η representing the
deflection of the free surface from rest position. The formulae are validated by comparison
with previous work on the steady KdV equation. In particular, the mass flux, total head and
momentum flux in the current context are compared to the quantities Q, R and S used in
the work of Benjamin and Lighthill (Proc. R. Soc. Lond. A 224:448–460, 1954) on cnoidal
waves and undular bores.

Keywords KdV equation · Surface waves · Mechanical balance laws ·
Energy conservation · Hydraulic head

1 Introduction

The Korteweg-de Vries (KdV) equation is a model equation describing the evolution of long
waves at the surface of a body of fluid. The KdV equation was derived in 1895 by Korteweg
and de Vries [18], but was already featured in earlier work by Boussinesq [7]. The main
assumptions on the waves to be represented by solutions of the KdV equation are that they
be of small amplitude and long wavelength when compared to the undisturbed depth of the
fluid, that the wave motion be predominantly one-directional, and that transverse effects be
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weak. In dimensional variables, the KdV equation is given by

ηt + c0ηx + 3

2

c0

h0
ηηx + c0h

2
0

6
ηxxx = 0, (1.1)

where η(x, t) represents the excursion of the free surface, h0 is the undisturbed water depth,
g denotes the gravitational acceleration, and c0 = √

gh0 is the limiting long-wave speed.
The equation arises in the so-called Boussinesq scaling regime where wavelength and

wave amplitude are balanced in such a way as to allow the formation of traveling-wave
solutions. Denoting by � a typical wavelength and by a a typical amplitude of the wavefield
to be described, the number α = a/h0 represents the relative amplitude, and β = h2

0/�
2

measures the relative wavenumber. The waves fall into the Boussinesq regime if both α

and β are small, and of similar size. In this case, the KdV-equation arises as a simplified
asymptotic model describing the wavemotion. In other words, solutions of the full water-
wave problem may be approximated on certain time scales by solutions of the KdV equation.
This latter fact can be understood in the sense of asymptotics, but has also been established
by mathematical proof by Craig [9] and Schneider and Wayne [24]. Incorporated in the
arguments of these works are existence results for the water-wave problem in the context
of the full Euler equations in the appropriate scaling. Such results are now also available
independently (see Lannes [19] and Wu [28, 29]). In particular, Alvarez-Samaniego and
Lannes have obtained long-time existence of solutions of the water-wave problem [3] which
can be applied to a number of different scaling regimes. A further significant improvement of
the results of [9, 24] was achieved by Bona et al. [6] who proved more refined convergence
estimates of solutions of the water-wave problem to a family of long-wave systems as well as
to one-directional models such as the KdV equations. Further extensions of this method and
applications to other systems can be found for instance in the work of Lannes and Bonneton
[21].

One of the early drivers of research relating to the KdV equation was the discovery of
elastic overtaking collisions of solitons which in some sense seemed to resemble the dynam-
ics of a linear differential equation. The discovery of this elastic solitary-wave interaction
subsequently led to the discovery of an infinite number of time-invariant integrals (Miura
[23]), and the development of the inverse-scattering method which can be used to provide
exact closed form solutions for a broad class of initial data (Ablowitz and Segur [1], Green
et al. [13]).

Apart from being a paradigm for the use of the inverse-scattering method, the KdV equa-
tion has been used in a large number of studies in the context of wave problems in fluid
dynamics. Various dynamical quantities connected with the KdV equation have appeared
in the literature. However, it is difficult to find definitive expressions for and derivations of
the most important quantities, such as the energy flux. It is our purpose in the present work
to present a framework in which mass, momentum and energy fluxes and densities can be
expressed in terms of the principal unknown η of equation (1.1)

If the equation is given in the dimensional form (1.1), then the first three conserved
integrals are

∫ ∞

−∞
η dx,

∫ ∞

−∞
η2 dx, and

∫ ∞

−∞

(
η3 − h3

0

3
η2

x

)
dx. (1.2)
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The first integral is found to be invariant with respect to time t as soon as it is recognized
that the KdV equation can be written in the form

∂

∂t
(h0 + η) + ∂

∂x

(
c0η + 3

4

c0

h0
η2 + c0h

2
0

6
ηxx

)
= 0, (1.3)

where the quantity appearing under the time derivative is interpreted as a mass density, and
the term appearing under the spatial derivative is the mass flux through a cross section of unit
width due to the passage of a surface wave. Invariance of the second and third integrals is
obtained from similar identities, but the fluxes appearing in these identities do not represent
any concrete physical quantities.

The mass balance (1.3) appears in the literature (see [15]), and one may ask whether it
is possible to derive expressions for the momentum and energy densities and fluxes which
permit the formulation of balance laws similar to (1.3). This problem has been partially
solved in the case of steady solutions of the KdV equation. Indeed, Benjamin and Lighthill
[4] used the spatial invariance of the mass flux per unit span Q, the momentum flux per
unit span corrected for the pressure force S and the energy per unit mass R in steady Euler
flow to develop a method for deriving a time-independent KdV equation which contains the
quantities Q, R, and S as parameters.

In the case of the time-dependent problem it seems that most of the work dedicated to
questions such as outlined above has focused on the question of conservation of the total
energy. In the full water-wave problem, the total energy of the wave system is given by the
Hamiltonian functional first recorded by Zakharov [30]. As it represents the total energy of
a closed physical system, this Hamiltonian is invariant with respect to time. It was shown
by Craig and Groves [10] that if the derivation of simplified evolution equations such as
the Boussinesq system and the KdV equation is based on approximating the Hamiltonian
function of the water-wave problem, then it is possible to define the total energy of the wave
system in the corresponding approximation. This theory is quite satisfactory if the total
energy is sought, but it yields no information about other quantities such as energy flux or
momentum flux.

The rationale used in the present work is based on requiring mass, momentum and energy
conservation to the same order as the evolution equation is valid. As will be reviewed in
Sect. 2, the derivation of the KdV equation yields the relation

η̃t̃ + η̃x̃ + 3

2
αη̃η̃x̃ + 1

6
βη̃x̃x̃x̃ = O

(
α2, αβ,β2

)
(1.4)

in non-dimensional variables. The KdV equation appears if terms of O(α2, αβ,β2) are dis-
regarded. As the development of the mass balance law associated to the KdV equation in
Sect. 3 will bring to light, if non-dimensional mass density M̃(η̃) and mass flux q̃M(η̃) are
defined appropriately in terms of η̃ and its derivatives, then the relation

∂

∂t̃
M̃(η̃) + ∂

∂x̃
q̃M(η̃) = O

(
α2, αβ,β2

)
(1.5)

will hold. By omitting terms of O(α2, αβ,β2), the approximate mass balance equation is
found, and as it will turn out, this equation is the same as the KdV equation. Following the
same idea, similar balance equations are developed in Sects. 4 and 5 for the approximate
conservation of momentum and energy by defining Ĩ (η̃), q̃I (η̃), Ẽ(η̃), and q̃E(η̃) satisfying

∂

∂t̃
Ĩ (η̃) + ∂

∂x̃
q̃I (η̃) = O

(
α2, αβ,β2

)
, (1.6)
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∂

∂t̃
Ẽ(η̃) + ∂

∂x̃
q̃E(η̃) = O

(
α2, αβ,β2

)
. (1.7)

As a by-product of developing the energy balance law, an expression for the total head in the
context of the KdV approximation can also be found. Since the previous work by Benjamin
and Lighthill [4] on steady solutions of the KdV equation has been a prime motivation for
the present study, a comparison of the relevant quantities is presented in Sect. 6. A natural
question arising from the above discussion is whether the conservation integrals (1.2) can
be meaningfully interpreted in connection with conservation of total mass, momentum and
energy. This question will be addressed in Sect. 7.

The derivations presented in the present work are formal, and there is no rigorous math-
ematical proof of the convergence of these approximations as the small parameters α and β

approach zero. The main advancement of the present work is the identification of the expres-
sions which satisfy the balance laws (1.5), (1.6) and (1.7), and the comparison with previous
asymptotic results. While a proof of the validity of (1.5), (1.6) and (1.7) might proceed along
the lines of the proofs of the validity of the KdV equation as a water-wave model, as shown
in [6, 9, 24], such a study is beyond the scope of the present article.

Before we leave the introduction, let us mention some further related work. In the con-
text of steady solutions one may exploit the conservation of mass, momentum and energy
in the water-wave problem. Examples are the spatial Hamiltonian approach advocated by
Bridges [8], and the work of Longuet-Higgins and Fenton [22] on the solitary wave. A study
which is closer to the spirit of the present article is provided by Dutykh and Dias [12] who
supplemented a Boussinesq system with an energy equation which yields information about
an energy density similar to the quantity appearing in Sect. 5. The present work is related
to a recent study of mechanical balance laws in a family of Boussinesq systems by Ali and
Kalisch [2], and a much earlier attempt to record similar quantities for the single Boussinesq
equation by Keulegan an Patterson [17].

We should also mention the concept of wave action conservation which yields an addi-
tional conservation law in the water-wave problem which can be used in the case of non-
uniform environments, such as background currents and stratifications. This principle which
was pioneered by Whitham [26] and Hayes [16] is based on a Lagrangian description of
the problem, and can also be applied in the context of model equations (Grimshaw [14],
Whitham [27]).

2 Velocity Field and Pressure

The main aim of this section is to establish expressions for the velocity field and pressure in
the fluid in terms of the surface excursion η. These expressions are well known by-products
of the derivation of the KdV equation. Nevertheless, it will be convenient to give a brief
review of this derivation in order to fix ideas regarding the geometric setup and the notation.

Consider a fluid contained in a long channel of unit width. Fix a coordinate system by
aligning the x-axis with the undisturbed free surface, and suppose the fluid domain extends
along the entire x-axis. It is assumed that the fluid is inviscid, incompressible and of unit
density, the bottom of the channel is flat, and that wave motion transverse to the x-axis can
be neglected. The geometric setup is illustrated in Fig. 1. The surface water-wave problem
is generally described by the Euler equations with slip conditions at the bottom, and kine-
matic and dynamic boundary conditions at the free surface. The unknowns are the surface
excursion η(x, t), the pressure P (x, z, t), and the horizontal and vertical fluid velocities
u1(x, z, t) and u2(x, z, t), respectively. With the setup described above, the problem may be
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Fig. 1 The free surface is
described by a function η(x, t).
The undisturbed water depth is
h0, and the x-axis is aligned with
the free surface at rest. The fluid
is shown in light gray, and the
bed is shown in dark gray. The
density of the is fluid is assumed
to be unity

posed on a domain {(x, z) ∈R
2|−h0 < z < η(x, t)} which extends to infinity in the positive

and negative x-direction. On this domain, the two-dimensional Euler equations are

ut + (u · ∇)u + ∇P = g, (2.1)

∇ · u = 0, (2.2)

where u = (u1, u2) represents the velocity field, and g = (0,−g) is the body forcing. As sur-
face tension effects are neglected, the dynamic free-surface boundary condition calls for the
fluid pressure at the surface to be equal to atmospheric pressure. In addition, the kinematic
condition requires the normal velocity of the free surface to be equal to the fluid velocity
normal to the surface.

Assuming irrotational flow and using the incompressibility, the problem can be written
in terms of the Laplace equation for a velocity potential φ on the unknown time-dependent
domain. The surface boundary conditions are then given by

ηt + φxηx − φz = 0, on z = η(x, t), (2.3)

φt + 1

2

(
φ2

x + φ2
z

) + gη = 0, on z = η(x, t). (2.4)

In order to bring out the different sizes of the variables, the non-dimensionalization

x̃ = x

�
, z̃ = z + h0

h0
, η̃ = η

a
, t̃ = c0t

�
, φ̃ = c0

ga�
φ

is used. In the following, the standard method of developing the potential φ in an asymptotic
series is employed. Using the Laplace equation and the boundary condition at the flat bottom
shows that the velocity potential takes the form

φ̃ = f̃ − β
z̃2

2
f̃x̃x̃ +O

(
β2

)
, (2.5)

where the function f̃ (x̃, t̃) is chosen in such a way the f̃x̃ represents the horizontal velocity
at the bottom. Following the method explained in Bona et al. [5] and Whitham [27], φ̃ is
substituted into the free surface boundary conditions. First note that (2.4) yields the relation

η̃ + f̃t̃ − β

2
f̃x̃x̃t̃ + α

2
f̃ 2

x̃ = O
(
αβ,β2

)
. (2.6)
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Differentiating (2.6) with respect to x̃, using (2.3) as the first equation, and denoting w̃ = f̃x̃

yields the system

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1

6
βw̃x̃x̃x̃ = O

(
αβ,β2

)
,

w̃t̃ + η̃x̃ + αw̃w̃x̃ − 1

2
βw̃x̃x̃t̃ = O

(
αβ,β2

)
.

(2.7)

Now the KdV equation can be derived from (2.7) by assuming a certain relation between the
horizontal velocity w̃ and the surface excursion η̃. As explained in Whitham [27], a solution
of (2.7) traveling chiefly to the right (+) or to the left (−) will necessitate the relation

w̃ = ±η̃ + αA + βB +O
(
α2, αβ,β2

)
. (2.8)

The functions A and B can be found by substituting (2.8) into (2.7). Requiring both equa-
tions in (2.7) to yield the same equation for η̃, and using the first-order equivalence

∂t̃F (η̃) = ∓∂x̃F (η̃) +O(α,β), (2.9)

where F is a polynomial in η̃ and its derivatives, leads to

A = ∓1

4
η̃2, and B = ±1

3
ηx̃x̃ .

Thus requiring the equations in (2.7) to be consistent leads to the non-dimensional KdV
equation

η̃t̃ ±
(

η̃x̃ + 3

2
αη̃η̃x̃ + 1

6
βη̃x̃x̃x̃

)
= O

(
α2, αβ,β2

)
, (2.10)

while the velocity w̃ is given by

w̃ = ±
(

η̃ − 1

4
αη̃2 + 1

3
βη̃x̃x̃

)
+O

(
α2, αβ,β2

)
. (2.11)

From (2.5), it is plain that the velocity field (φ̃x̃ , φ̃z̃) at any non-dimensional height z̃ in the
fluid column is given by

φ̃x̃ (x̃, z̃, t̃ ) = ±η̃ ∓ 1

4
αη̃2 ± β

(
1

3
− z̃2

2

)
η̃x̃x̃ +O

(
α2, αβ,β2

)
, (2.12)

φ̃z̃(x̃, z̃, t̃ ) = ∓βz̃η̃x̃ +O
(
αβ,β2

)
.

Neglecting terms of second order in α and β , and reverting to dimensional variables, the
KdV equation (1.1) appears in the case of waves propagating mainly to the right. A corre-
sponding equation with different signs appears for waves propagating mainly to the left. It
will be convenient later for purposes of comparison to have available the above expressions
in the case of a moving reference frame. If the problem is put into a reference frame moving
at a velocity U , and the non-dimensionalization U = c0Ũ is chosen, then the KdV equation
and the expression for the horizontal velocity appear as

η̃t̃ − Ũ η̃x̃ ±
(

η̃x̃ + 3

2
αη̃η̃x̃ + 1

6
βη̃x̃x̃x̃

)
= O

(
α2, αβ,β2

)
, (2.13)
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φ̃x̃ (x̃, z̃, t̃ ) = − 1

α
Ũ ± η̃ ∓ 1

4
αη̃2 ± β

(
1

3
− z̃2

2

)
η̃x̃x̃ +O

(
α2, αβ,β2

)
. (2.14)

Note that there is no assumption on the relative magnitude of U , and the scaling of U reflects
the most relevant case U = ±c0. However, the limiting long-wave speed c0 is far greater than
the horizontal velocity of any fluid particle if the amplitude of the surface waves is small.
As a consequence, the velocity of the moving reference frame enters the expression (2.14)
for the horizontal velocity at the order 1

α
.

Attention will now be turned to the computation of the fluid pressure associated with
a given surface wave. In order to find the expression to the correct order, the hydrostatic
pressure needs to be excluded from the calculation. Therefore, we work with the dynamic
pressure defined by

P ′ = P − Patm + gz.

Since the atmospheric pressure is of a magnitude much smaller than the significant terms in
the equation, it will be assumed to be zero from here on. As shown by Stoker [25], P ′ can
be written with the help of the Bernoulli equation in the form

P ′ = −φt − 1

2
|∇φ|2.

Using the non-dimensionalization P̃ ′ = 1
ag

P ′, and substituting the expression (2.5) yields

P̃ ′ = −f̃t̃ + β
z̃2

2
f̃x̃x̃t̃ − 1

2
αf̃ 2

x̃ +O
(
β2, αβ

)
.

As shown in Ali and Kalisch [2], the relation (2.6) may be used to find the dynamic pressure
in the form

P̃ ′ = η̃ + 1

2
β
(
z̃2 − 1

)
f̃x̃x̃t̃ +O

(
αβ,β2

)
.

In line with the previous computation, we use the relations (2.8) and (2.9) to find the expres-
sion

P̃ ′ = η̃ − 1

2
β
(
z̃2 − 1

)
η̃x̃x̃ +O

(
αβ,β2

)
. (2.15)

In the remainder of this article, we use the expression (2.15), and truncate further only when
dictated by the particular balance law.

3 Mass Conservation

In this section, mass conservation properties of the KdV equation are explored. Since the
surface-wave problem is invariant under a change to a moving frame, the computation is
done in the most general form of a reference frame traveling at a velocity U . Using the
incompressibility of the fluid, mass conservation is stated in differential form by (2.2). Using
this equation and the kinematic boundary condition (2.3), one can immediately derive the
relation

∂

∂t

∫ η

−h0

dz + ∂

∂x

∫ η

−h0

φx(x, z, t) dz = 0.
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In non-dimensional form this relation becomes

∂

∂t̃

∫ 1+αη̃

0
dz̃ + α

∂

∂x̃

∫ 1+αη̃

0
φ̃x̃ (x̃, z̃, t̃ ) dz̃ = 0.

Substituting the expression for φ̃x̃ in terms of η̃ given by (2.14), and integrating with respect
to z̃ leads to the approximation

∂

∂t̃
(1 + αη̃) + ∂

∂x̃

(
−Ũ − Ũαη̃ ± η̃ ± 3

4
α2η̃2 ± 1

6
αβη̃x̃x̃

)
= O

(
α3, α2β,αβ2

)
.

One may divide by α to find

∂

∂t̃
η̃ + ∂

∂x̃

(
−Ũ η̃ ± η̃ ± 3

4
αη̃2 ± 1

6
βη̃x̃x̃

)
= O

(
α2, αβ,β2

)
. (3.1)

Therefore, if we denote the non-dimensional mass density by

M̃ = 1 + αη̃,

and the non-dimensional mass flux by

q̃M = −Ũ − Ũαη̃ ±
(

αη̃ + 3

4
α2η̃2 + 1

6
αβη̃x̃x̃

)
,

the non-dimensional mass balance (1.5) is achieved.
Unlike the KdV equation (2.10) or the formula for the horizontal velocity (2.11), the

mass flux contains terms of quadratic order in α and β . However, these terms are necessary
since the mass balance equation (1.5) holds to the same order as the evolution equation
(2.10). Note also that the differential mass balance equation (3.1) is the same as the non-
dimensional KdV equation (2.13), and if terms of order α2, αβ and β2 are disregarded, the
KdV equation is a mass balance equation. In other words, in the approximation which leads
to the KdV equation, mass is exactly conserved.

Using the scaling M = h0M̃ for the mass density and qM = h0c0q̃M for the mass flux
reveals that the dimensional forms of these quantities are

M = h0 + η

and

qM = −U(h0 + η) ± c0

(
η + 3

4h0
η2 + h2

0

6
ηxx

)
. (3.2)

4 Momentum Balance

This section is devoted to finding an approximate expression for momentum density and
flux, which satisfy the relation (1.6). The incompressibility condition (2.2) may be used to
rewrite the first component of the vector equation (2.1), in terms of the velocity potential φ

as

φxt + (
φ2

x

)
x
+ (φxφz)z + Px = 0.
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Integrating over the fluid column and using the kinematic boundary condition (2.3) yields
the relation

∂

∂t

∫ η

−h0

φx dz + ∂

∂x

∫ η

−h0

{
φ2

x + P
}
dz = 0.

Expressing the last relation in non-dimensional variables gives

α
∂

∂t̃

∫ 1+αη̃

0
φ̃x̃ dz̃ + ∂

∂x̃

∫ 1+αη̃

0

{
α2φ̃2

x̃ + αP̃ ′ − (z̃ − 1)
}
dz̃ = 0.

Substituting φ̃x̃ and P̃ ′ as found in Sect. 2 yields the balance equation

∂

∂t̃

(
−Ũ − Ũαη̃ ± αη̃ ± 3

4
α2η̃2 ± 1

6
αβη̃x̃x̃

)
+ ∂

∂x̃

(
Ũ 2 + αŨ 2η̃ + 1

2
+ αη̃

+ 3

2
α2η̃2 + 1

3
αβη̃x̃x̃ ∓ 2αŨ η̃ ∓ 3

2
α2Ũ η̃2 ∓ 1

3
αβŨ η̃x̃x̃

)
= O

(
α3, α2β,αβ2

)
.

Thus denoting the non-dimensional momentum density by

Ĩ = −Ũ − αŨ η̃ ±
(

αη̃ + 3

4
α2η̃2 + 1

6
αβη̃x̃x̃

)
,

and the non-dimensional momentum flux by

q̃I = 1

2
(1 + αη̃)2 + (αη̃ ∓ Ũ )2 + 1

3
αβη̃x̃x̃ + αŨ 2η̃ ∓ 3

2
α2Ũ η̃2 ∓ 1

3
αβŨ η̃x̃x̃ ,

the non-dimensional momentum balance (1.6) is achieved. Using the natural scalings I =
c0h0Ĩ and qI = h0c

2
0q̃I , the dimensional forms of these quantities are

I = −U(h0 + η) ± c0

(
η + 3

4h0
η2 + h2

0

6
ηxx

)

and

qI = c2
0

(
(h0 + η)2

2h0
+ h2

0

3
ηxx + (η ∓ h0

c0
U)2

h0
+ U 2

c2
0

η ∓ 3

2

U

c0h0
η2 ∓ h2

0

3c0
Uηxx

)
. (4.1)

The reader may take note that the momentum density has the same form as the mass flux
(3.2), and that the expression for the momentum flux contains the contribution of the pres-
sure force.

5 Energy Balance

Attention is now turned to the energy balance in the fluid. Using (2.1) and (2.2), an energy
equation can be written in the form

∂

∂t

{
1

2
|∇φ|2 + g(z + h0)

}
+ ∇ ·

{(
1

2
|∇φ|2 + g(z + h0) + P

)
∇φ

}
= 0.
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An integration over the depth of the fluid yields

∂

∂t

∫ η

−h0

{
1

2
|∇φ|2 + g(z + h0)

}
dz + ∂

∂x

∫ η

−h0

{
1

2
|∇φ|2 + g(z + h0) + P

}
φx dz = 0.

Converting to non-dimensional variables transforms the last relation into

∂

∂t̃

∫ 1+αη̃

0

{
α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

) + z̃

}
dz̃

+ α
∂

∂x̃

∫ 1+αη̃

0

{
α2

2

(
φ̃3

x̃ + 1

β
φ̃2

z̃ φ̃x̃

) + z̃φ̃x̃

}
dz̃

+ α2 ∂

∂x̃

∫ 1+αη̃

0
P̃ ′φ̃x̃ dz̃ + α

∂

∂x̃

∫ 1+αη̃

0
(1 − z̃)φ̃x̃ dz̃ = 0.

Substituting the expressions for φ̃x̃ and φ̃z̃ yields

∂

∂t̃

(
1

2
+ αη̃ + α2η̃2 + Ũ 2

2
+ 1

2
αŨ 2η̃ ∓ Ũαη̃ ∓ 3

4
α2Ũ η̃2 ∓ 1

6
αβŨ η̃x̃x̃

)

+ ∂

∂x̃

(
−1

2
Ũ 3(1 + αη̃) − 5

2
α2Ũ η̃2 ± 3

2
αŨ 2η̃ ± 9

8
α2Ũ 2η̃2 ± 1

4
αβŨ 2η̃x̃x̃

− 2αŨ η̃ − 1

3
αβŨη̃x̃x̃ − Ũ ± αη̃ ± 7

4
α2η̃2 ± 1

6
αβη̃x̃x̃

)
= O

(
α3, α2β,αβ2

)
.

Defining the non-dimensional energy density and flux accordingly, the non-dimensional en-
ergy balance (1.7) is achieved. Using the scalings E = c2

0h0Ẽ and qE = h0c
3
0q̃E , the dimen-

sional forms of these quantities are

E = c2
0

(
h0

2
+ η + 1

h0
η2 + h0

2

U 2

c2
0

+ 1

2

U 2

c2
0

η ∓ U

c0
η ∓ 3

4

U

h0c0
η2 ∓ 1

6
h2

0

U

c0
ηxx

)
,

and

qE = c3
0

(
−1

2

U 3

c3
0

(h0 + η) − 5

2h0

U

c0
η2 ± 3

2

U 2

c2
0

η ± 9

8h0

U 2

c2
0

η2

±1

4

U 2

c2
0

h2
0ηxx − 2

U

c0
η − 1

3

U

c0
h2

0ηxx − U

c0
h0 ± η ± 7

4h0
η2 ± h2

0

6
ηxx

)
.

Note also here that the energy flux incorporates the work done by pressure forces. For later
reference in the comparison with the quantity R used in Benjamin and Lighthill [4], we
record that non-dimensional energy per unit mass is given by

α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

)
+ z̃ = α2

2
f̃ 2

x̃ + z̃ +O(α2β).

The relevant terms in this expression can be identified using the analysis of the energy bal-
ance law. Thus keeping only the terms required to achieve the energy balance, and evaluating
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at the free surface yields the non-dimensional total head as

H̃ = Ũ 2

2
+ α2

2
η̃2 ∓ αŨ η̃ ± α2

4
Ũ η̃2 ∓ αβŨ

(
1

3
− 1

2

)
η̃x̃x̃ + (1 + αη̃).

Using the scaling H̃ = h0H , and multiplying by g, the energy density at the surface corre-
sponding to the quantity R used in Benjamin and Lighthill [4] appears in dimensional form
as

gH = U 2

2
+ gη2

2h0
+ (h0 + η) ∓ gU

c0
η ± 1

4

c0U

h2
0

η2 ± 1

6
c0h

2
0Uηxx. (5.1)

In some cases, it might be preferable to use a different normalization for the potential
energy in order to isolate mechanical energy due to the wave motion. If the potential energy
of a particle is taken to be zero at the undisturbed free surface, and it is required that the
potential energy of the quiescent state be zero, then the energy balance can be defined by
the equation

∂

∂t

{∫ η

−h0

1

2
|∇φ|2 dz +

∫ η

0
gzdz

}
+ ∂

∂x

∫ η

−h0

{
1

2
|∇φ|2 + gz + P

}
φxdz = 0.

In non-dimensional form this equation becomes

∂

∂t̃

{∫ 1+αη̃

0

α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

)
dz̃ +

∫ 1+αη̃

1
(z̃ − 1) dz̃

}

+ ∂

∂x̃

{∫ 1+αη̃

0

α3

2

(
φ̃3

x̃ + 1

β
φ̃2

z̃ φ̃x̃

)
dz̃ +

∫ 1+αη̃

0
α(z̃ − 1)φ̃x̃dz̃

}

+ ∂

∂x̃

{∫ 1+αη̃

0
α2P̃ ′φ̃x̃ dz̃ +

∫ 1+αη̃

0
α(1 − z̃)φ̃x̃ dz̃

}
= 0. (5.2)

Noticing a cancellation in (5.2), using the expression of φ̃x̃ found in (2.12), and performing
an integration with respect to z̃, the equation becomes

∂

∂t̃

(
α2η̃2 + α3

4
η̃3 + α2β

6
η̃η̃x̃x̃ + α2β

6
η̃x̃ η̃x̃

)

+ ∂

∂x̃

(
±α2η̃2 ± 5

4
α3η̃3 ± α2β

2
η̃η̃x̃x̃

)
= O

(
α4, α3β,α2β2

)
.

The common factor α2 can be omitted, and the differential energy balance equation is

∂

∂t̃

(
η̃2 + α

4
η̃3 + β

6
η̃η̃x̃x̃ + β

6
η̃x̃ η̃x̃

)
+ ∂

∂x̃

(
±η̃2 ± 5

4
αη̃3 ± αβ

2
η̃η̃x̃x̃

)
= O

(
α2, αβ,β2

)
.

As a result, the energy density should be given by

Ẽ∗ = α2η̃2 + α3

4
η̃3 + α2β

6
η̃η̃x̃x̃ + α2β

6
η̃2

x̃ ,

and the energy flux is given by

q̃∗
E = ±α2η̃2 ± 5

4
α3η̃3 ± α2β

2
η̃η̃x̃x̃ .
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The dimensional quantities are given by

E∗ = c2
0

(
1

h0
η2 + 1

4h2
0

η3 + h0

6
ηηxx + h0

6
η2

x

)

and

q∗
E = ±c3

0

(
1

h0
η2 + 5

4h2
0

η3 + h0

2
ηηxx

)
.

One may wonder whether there is a relation between the total energy of the surface
wave system and the invariant integrals of the KdV equation (1.2). The formula for E∗
contains terms that look as though they might combine to a such a conservation law, but the
coefficients do not line up in quite the right way. Note that the last computation was done
in an fixed frame of reference in order to reach tidier expressions, and to stay in line with
the initial requirement that the energy of the quiescent state be zero. As it turns out, it is
possible to normalize the potential energy in such a way that the total energy in a reference
frame moving at the speed U = c0 is given by a combination of the conservation laws (1.2).
This issue will be addressed in Sect. 7.

6 Comparison with Q, R and S

In the following, the formulae for qM , qI and gH derived in the previous sections are com-
pared to the corresponding quantities Q, S and R, studied by Benjamin and Lighthill [4]. We
take a periodic traveling wave propagating to the left at a speed c > 0 in an inertial frame. In
a reference frame also moving to the left at the velocity U = −c, the wave becomes steady,
and yields a positive mass flux. The surface excursion can be described by a function ζ(x),
and equation (1.1) reads

(c0 − c)ζ ′ + 3

2

c0

h0
ζ ζ ′ + c0h

2
0

6
ζ ′′′ = 0.

The standard procedure of integrating, multiplying by ζ ′, and then integrating again leads to

gh3
0

3

(
dζ

dx

)2

+ gζ 3 + 2c0(c0 − c)ζ 2 +Aζ + B = 0, (6.1)

where A and B are constants of integration. This differential equation has the solution

ζ(x) = ζ2 + (ζ1 − ζ2)cn2

(√
3(ζ1 − ζ3)

4h3
0

x;m
)

, (6.2)

which is given in terms of the Jacobian elliptic function cn with modulus m = ζ1−ζ2
ζ1−ζ3

. The
numbers ζ1, ζ2 and ζ3 are the three roots of the cubic polynomial appearing in (6.1), arranged
in the order ζ3 < ζ2 < ζ1. The constants of integration in (6.1) can be written in terms of the
roots as A = g(ζ1ζ2 + ζ1ζ3 + ζ1ζ2) and B = gζ1ζ2ζ3. The wavespeed is given by

c = c0

(
1 + ζ1 + ζ2 + ζ3

2h0

)
, (6.3)
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Fig. 2 A cnoidal wave with h0 = 1.0631, ζ1 = 0.4369, ζ2 = −0.1631, and ζ3 = −0.1731 (all in m), and the
associated functions M , qM , I , qI , E and qE

and the wavelength is

λ = K(m)

√
16h3

0

3(ζ1 − ζ3)
, (6.4)

where K(m) is the complete elliptic integral of the first kind. In the current setup, ζ1 repre-
sents the wave crest, ζ2 is the wave trough, and ζ3 is a parameter which has influence only on
the wavelength λ and wavespeed c. In the traveling reference frame, the quantities M , qM ,
I , qI , E and qE can now be computed as functions of x, and these are plotted in Fig. 2 for a
particular case. Note that the mass flux qM is constant since the KdV equation features exact
mass conservation. Moreover, the momentum density I is also constant since it is equal to
the mass flux. The momentum flux is nearly constant, but features small variations which
are visible when plotted at a finer scale.

We now turn to the comparison of qM , qI and gH defined for the evolution problem
with the corresponding quantities Q, S and R defined for the steady problem. In order to
facilitate the comparison, let us briefly recall the development presented by Benjamin and
Lighthill [4]. Steady periodic traveling waves are considered in a moving reference frame,
in which the mass flux Q is positive, and the momentum flux S and energy per unit mass R
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are also given. In this case, the steady KdV equation appears as

1

3
Q2

(
dξ

dx

)2

+ gξ 3 − 2Rξ 2 + 2Sξ − Q2 = 0, (6.5)

where ξ is the total flow depth. Using the same method as above, the solution is found as

ξ(x) = ξ2 + (ξ1 − ξ2)cn2

(√
3(ξ1 − ξ3)

4
(
Q2/g

) x;m
)

,

where the constants Q,R and S are given by

Q = (gξ1ξ2ξ3)
1
2 ,

R = g

2
(ξ1 + ξ2 + ξ3),

S = g

2
(ξ1ξ2 + ξ1ξ3 + ξ2ξ3),

(6.6)

and ξ3 < ξ2 < ξ1 are the roots of the cubic polynomial gξ 3 − 2Rξ 2 + 2Sξ − Q2.
Now since ζ represents the deflection of the fluid surface from rest while ξ is the total

flow depth, the solutions of (6.1) and (6.5) must be related by

ζ = ξ − h0.

By the same token, the solution parameters are related by

ζ1 = ξ1 − h0, ζ2 = ξ2 − h0, and ζ3 = ξ3 − h0. (6.7)

Moreover, by comparing the coefficients of the equations, it appears that h0 = (Q2/g)1/3,
and the total head R can be expressed in terms of the wavespeed as

R = c0

(
c0

2
+ c

)
.

One may now freely choose ξ1, ξ2, and ξ3 and calculate Q, S and R from (6.6), and
then use (6.7) and (6.2) to compute the corresponding values of qM(ζ ), qI (ζ ) and gH(ζ )

as defined in the previous sections. For example, in Fig. 3, ξ1 = 1.4 m , ξ2 = 1 m and
ξ3 = 0.95 m are chosen which give h0 = 1.1 m, ζ1 = 0.3 m, ζ2 = −0.1 m and ζ3 = −0.15
m. The wavelength is λ = 10.04 m, and the wave amplitude is a = 0.2 m. Besides showing
the wave profile, Fig. 3 features a comparison of the quantities qM , qI and gH as defined
by (3.2), (4.1) and (5.1), respectively with the corresponding parameters Q, S and R. As
can be seen, the difference between Q and qM(ζ ), the difference between S and qI (ζ ),
and also the difference between R and gH(ζ ) are all reasonably small. In order to further
quantify these differences, waves with various combinations of the parameters ξ1, ξ2, and
ξ3 are computed, and the differences in the above quantities are plotted as functions of the

two small parameters α = a
h0

and β = h2
0

λ2 . For comparison of different values of α and β , it
appears most convenient to keep the water depth h0 constant. Then the mass flux Q = c0h0

is also constant. The first equation in (6.6) implies that ξ3 = h3
0

ξ1ξ2
so the problem now depends

only on the wave crest ξ1 and the wave trough ξ2. The condition ξ3 < ξ2 < ξ1 leads to

h3
0

ξ1ξ2
< ξ2 < ξ1. (6.8)
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Fig. 3 The surface excursion ζ is plotted in panel (a). Panel (b) shows the mass flux qM vs. Q, panel (c)
shows the momentum flux qI vs. S, and panel (d) shows the energy per unit mass gH vs. R. The values
h0 = 1.1, ζ1 = 0.3, ζ2 = −0.1 and ζ3 = −0.15 (all in m) were chosen

It is easy to see from (6.8) that wave crest is always larger than the water depth (ξ1 > h0)

and the wave trough is bounded below by ξ2 > h0

√
h0
ξ1

. Consequently, the total head R will

be restricted as 3g

2
h3

0
ξ2

1
< R <

3g

2 ξ1, while the momentum flux will be bounded as 3g

2
h6

0
ξ4

1
< S <

3g

2 ξ 2
1 .
The top panels of Fig. 4 show the error between qM and Q. The center panels of Fig. 4

show the error between qI and S. The lower panels of Fig. 4 show the error between gH and
R. These errors are plotted as level curves with respect to the small parameters α and β with
Q held fixed. It can be seen clearly in all cases that the error diminishes with decreasing
values of α and β .

7 Exact Conservation

In the following, we address exact conservation of mass, momentum and energy in KdV
evolution. It is assumed that solutions are smooth, and that the wave motion is localized
in the sense that the function η(x, t) describing the free surface decays rapidly enough as
x → ±∞ so that all integrals appearing here are defined. First of all, total mass can only
be defined on a finite interval, so that the most preferable form to state mass conservation is
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Fig. 4 The absolute errors in the approximations of Q, R and S, in terms of the model parameters α and β

(left), and in terms of the wave crest ξ1 and wave trough ξ2 (right)

(1.3). However, one may define excess mass by
∫ ∞

−∞ η dx, and it clearly follows from (1.3)
that this quantity is constant with respect to t .

Second, in an inertial frame with U = 0, and for a localized surface disturbance, the total
horizontal momentum

I =
∫ ∞

−∞
I dx = c0

∫ ∞

−∞
η dx + 3c0

4h0

∫ ∞

−∞
η2 dx
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can be defined, and it follows from the first two invariant integrals in (1.2) that I is con-
served.

Finally, let us discuss conservation of total energy. We use the expression for the horizon-
tal velocity in a moving frame of reference provided by (2.14), and normalize the potential
energy as in the second case in Sect. 5, so that the energy density is given by

∫ η

−h0

1

2
|∇φ|2 dz +

∫ η

0
gzdz.

Focusing on waves propagating to the right and requiring (1.7), an analysis along the lines
of the argument shown in Sect. 5 yields the following expression for the non-dimensional
energy density in the moving reference frame:

Ẽ∗
U = 1

2
Ũ 2 + α

2
Ũ 2η̃ + α2η̃2 + 1

4
α3η̃3 − αŨ η̃ − 3

4
α2Ũ η̃2 + 1

4
α3Ũ η̃3

− 1

2
− 1

6
αβŨ η̃x̃x̃ + 1

6
α2βŨη̃η̃x̃x̃ + 1

6
α2βη̃η̃x̃x̃ + 1

6
α2βη̃2

x̃ .

Working now in a reference frame moving at the limiting long-wave speed, we have U = c0,
so that Ũ = 1. In this particular case, the energy density is given in dimensional form by

E∗
c0

= c2
0

(
−1

2
η + 1

4h0
η2 + 1

2h2
0

η3 − h2
0

6
ηxx + h0

3
ηηxx + h0

6
η2

x

)
.

The KdV equation in the reference frame moving at the speed c0 is

ηt + 3

2

c0

h0
ηηx + c0h

2
0

6
ηxxx = 0,

and we note that this equation has the same conserved integrals (1.2).
The total mechanical energy of a localized surface wave is given in terms of the dimen-

sional energy density E∗
c0

by E = ∫ ∞
−∞ E∗

c0
dx. Substituting the expression for E∗

c0
yields

E = −1

2
c2

0

∫ ∞

−∞
η dx + 1

4

c2
0

h0

∫ ∞

−∞
η2 dx − 1

6
c2

0h
2
0

∫ ∞

−∞
ηxx dx + 1

2

c2
0

h2
0

∫ ∞

−∞

{
η3 − h3

0

3
η2

x

}
dx.

After observing that the third integral in the expression above vanishes, it becomes plain that
the three invariant integrals in (1.2) guarantee that the total energy in the KdV approximation
is exactly conserved in this case.

8 Conclusion

In this article, expressions for mass, momentum and energy densities and fluxes which are
valid in the KdV approximation have been found. The quantities have been compared to
the quantities Q, R and S which were previously derived by Benjamin and Lighthill in the
steady case [4]. It has also been shown that exact conservation of total mass, momentum and
energy holds in special cases. For the exact conservation, the mathematical formulations of
the first three conservation laws (1.2) have been used. The main result of the paper is the
identification of the quantities M , qM , I , qI , E and qE in the context of the KdV approx-
imation. However, as already mentioned in the introduction, the method used in this paper
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is a formal one, and the results presented here should be understood as a first step towards
a mathematical procedure which will give a definite proof that the balances (1.5), (1.6) and
(1.7) are valid to the same order and over the same time scales as the KdV equation (1.4) it-
self. In order to provide such a proof one might follow the procedure pioneered by Craig [9],
and recently refined by Bona et al. [6]. In this latter work, the Hamiltonian formulation of
Zakharov and a careful analysis of the Dirichlet-Neumann operator, such as defined by Craig
and Sulem [11] play a prominent role. The general procedure has been further extended and
applied to the justification of a variety of simplified model equations and systems, and the
recent monograph by Lannes [20] contains a large variety of different cases.

While the methods for a mathematical justification of the derivation of many model equa-
tions are available, it is not entirely clear how to apply them to the justification of the asso-
ciated balance laws treated in the present article. Such a study will be an interesting topic
for future work.
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