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Flow vorticity in peripheral high-energy heavy-ion collisions
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Vorticity development is studied in the reaction plane of peripheral relativistic heavy-ion reactions where
the initial state has substantial angular momentum. The earlier predicted rotation effect and Kelvin Helmholtz
instability lead to significant initial vorticity and circulation. In low-viscosity quark gluon plasma this vorticity
remains still significant at the time of freeze-out of the system, even if damping due to explosive expansion and
dissipation decreases the vorticity and circulation. In the reaction plane the vorticity arises from the initial angular
momentum, and it is stronger than in the transverse plane, where vorticity is caused by random fluctuations only.
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I. INTRODUCTION

The strongly interacting quark gluon plasma (QGP) [1] has
raised many interesting questions about the physics of ultra-
dense hot matter produced in relativistic heavy-ion collisions.
Many transport and hydrodynamic models [2] are popular for
analyzing the evolution of the viscous QGP and its properties.
In peripheral heavy-ion reactions, due to the initial angular
momentum, the initial state of the fluid dynamical stage of
the collision dynamics has shear flow characteristics, and this
leads to rotation [3] and even Kelvin Helmholtz instability
(KHI) [4] in the reaction plane for low-viscosity quark-gluon
plasma. This possibility was indicated by high-resolution
computational fluid dynamics (CFD) calculations using the
Particle in Cell (PIC) method. We study the development of
these processes in (3 + 1)-dimensional (3 + 1D) configuration
to describe the energy and momentum balance realistically.

In idealized 2 4 1D model calculations the dissipation due
to 3D expansion is neglected, and thus the dissipation due to
the 3D viscous expansion is also neglected, which results in
unrealistic estimates. The vorticity of the flow is especially
sensitive to such oversimplifications: while in 2+ 1D the
integrated vorticity is conserved in perfect fluid flow, the
decrease of vorticity is essential in realistic 3+ 1D CFD
description.

In Ref. [5], the angular momentum is assumed to have
significant effects on the longitudinal flow velocity and on
its distribution in the transverse plane, so that it gives rise
to vorticity and polarization. The arising polarization is also
studied in Ref. [6], where a laminar shear flow is assumed with
each layer having a different velocity, which is quite similar to
the initial-state velocity profile depicted in Fig. 1. This type of
initial state is described in great detail in Ref. [7]. In our present
fluid dynamical calculation we use this initial-state model,
which is tested in several model calculations in the past decade.
It describes correctly the initial shear flow characteristics. The
initial angular momentum is based on the assumption that
the initial angular momentum of the participants (based on
straight propagation geometry) is streak by streak conserved.
This leads to strong shear flow, as shown in Fig. 2. This
model assumes that the incoming Lorentz contracted nuclei
interpenetrate each other, and the leading charges in each streak
are slowed down by the large string-rope tension. This takes
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about 3-5 fm/c for heavy nuclei, depending on the impact
parameter. Then local equilibration is reached and the fluid
dynamical evolution starts.

In this work we study the development of vorticity in high-
energy heavy-ion reactions, and the development of the above
mentioned specific effects, which may arise in low-viscosity
[8,9] QGP.

We also compare the classical vorticity characteristics,
and the most dominant relativistic generalizations. These
comparisons may provide insight into the possibilities of using
this method for precision studies of the transport properties of
QGP.

It is also important to mention that the shear flow velocity
profile is essential from the point of instability. According to
our initial-state description of the fluid dynamical calculations
(Fig. 4 of Ref. [4]) the velocity profile along the x axis is not
linear but has a x ~ tan(v,) shape (dotted line in Fig. 3), which
may lead to KHI, in contrast to a x ~ arctan(v;) shape, which
does not.

In the following we discuss recent approaches to flow
vorticity in high-energy heavy-ion collisions and present the
vorticity development and its distribution in the reaction plane.

In classical physics for incompressible, perfect fluids vortic-
ity exhibits an impressive conservation law: the conservation
of circulation. In high-energy heavy-ion physics the vorticity
definition must be modified, and the mentioned idealizations
are not applicable to energetic heavy-ion reactions. Still, as
CFD calculations indicate typical flow patterns and instabili-
ties may occur here also. Thus their studies can provide insight
into the properties of the QGP fluid.

II. THE VORTICITY

A. Classical flow

In the reaction plane, (xz), the vorticity is defined as
0xV;) (1)

— — — 1
Wy = Wy = —Wzx = E(azvx -

where the x, y, z components of the 3-velocity v are denoted
by vy, vy, v, respectively. In this definition we have already
included the factor % for the symmetrization to have the same
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FIG. 1. The sketch of a collision. Panel (a) is in the transverse
(xy) plane and (b) is in the reaction (xz) plane. The almond shape
in the middle of panel (a) is the participant zone of the event. Right
after the collision, streaks are formed, and the top streaks move along
the z direction while bottom ones move along the —z direction. This
velocity shear may lead to the Kelvin Helmholtz instability, a wave
formation, on the interface between the top and bottom sheets.

magnitude of vorticity as for symmetrized volume divergence
or expansion rate.

Here we study the vorticity in the reaction plane (in the xz
plane), at different times in the CFD development.

In 3-dimensional space the vorticity can be defined as

w=irot v=1Vxu ()

(but this cannot be generalized to four or more dimensions).
The circulation of the flow is the integral of the velocity along
a closed curve, C, with the line element dI. It is defined as

C A

where A is an (arbitrary) surface surrounded by the curve C,
and the normal of its surface element is d A. For rotationless
(potential) flow the circulation vanishes. In peripheral heavy-
ion reactions the flow is rotational. In classical fluid dynamics
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FIG. 2. (Color online) The three-dimensional view of the colli-
sion shortly after the impact corresponding to the situation illustrated
in Fig. 1(a). The projectile spectators are going along the z direction;
and the target spectators are going along the —z axis. We assume that
the participants in the middle form a cylinder with an almond-shaped
profile and tilted end surfaces, where the top side is moving to the
right and the bottom is moving to the left. The participant cylinder
can be divided into streaks, and each streak has its own velocity, as
shown in Fig. 1(b). The velocity differences among the streaks result
in the KHI effect.
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FIG. 3. The velocity along the 7 axis, v,, represented by the dotted
curve is calculated in our CFD model and presented in Fig. 4 of
Ref. [4]. Here we mention that the velocity of the dotted curve will
induce the KHI effect, while the dashed curve will not; see Chap. 8
of Ref. [10].

the circulation is constant in a fluid along the line of motion of
a fluid element if the viscosity of the flow vanishes and flow is
barotropic; i.e., the pressure depends only on the density of the
fluid, P = P(p). These conditions are not satisfied for QGP
in heavy-ion reactions.

In the relativistic case the formulation of fluid dynamics is
more involved, and the formalism must be modified [11,12].
The 3-velocities are replaced by 4-velocities, the derivatives
should take into account the world lines of the particles and
the changes of these with time, and the mass density is
replaced by the energy density where the pressure will have a
non-negligible role. This last modification leads to a modified
relativistic definition of the vorticity and circulation, which
includes the specific enthalpy of the fluid [13]. This would then
extend the validity of the conservation of circulation under the
same conditions. On the other hand, this modified relativistic
vorticity would then have a different dimension and it would
not be conserved anyway in heavy-ion reactions where the
conditions of validity are not satisfied.

Thus, in the present work we intend to keep the possibility
of comparison to the classical vorticity and circulation; in
a relativistic system where the (baryon charge) density and
temperature change violently, the pressure is not negligible
and does not depend on the density only. Still the energy and
momentum (7% and T7°) are strictly conserved, and the total
energy remains constant while the momentum vanishes (in the
c.m. frame).

Keeping in view fluid dynamics with fluid elements, we
introduce a weight proportional to the energy content of the
fluid element. The energy distribution (and thus the local
angular momentum) of the matter is highly nonhomogeneous
in a heavy-ion reaction. To reflect our physical situation better,
we weight the contribution of our fluid cells by the local energy
density in the reaction plane, however, without changing the
average vorticity in the layer of the reaction plane. Thus we
weight with a distribution normalized to unity. We define an
energy-density-weighted, average vorticity as

Q. = w(z, X)w, 3

so that this weighting does not change the average circulation
of the layer, i.e., the sum of the average of the weights over all
fluid cells is unity, (w(z, x)) = 1, both if we consider one y
layer only or if we consider all y layers. This weighting does
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not change the average vorticity value of the set; just the cells
will have larger weight with more energy content, 7%,

As we have discretized fluid cells, we study separately
the reaction plane, one y layer, or the whole system, all y
layers. The total energy content of a cell at point (z, x) or the
corresponding i, k is E;; = T%(z, x). The total energy in a y
layer (or in all y layers) is E = ) _;; Eix, while the number
of the cells in a y layer (or in all y layers) is N. Thus
the average energy for for a fluid cell is Eyy/Neey in both
cases. We divide the actual energy of a fluid cell, E;, with the
average fluid cell energy Eio/ Ncen, SO that the vorticity values
on average will remain comparable with the nonweighted
values, but still larger energy cells will have more weight. The
total energy Y a; cens 7°° remains exactly constant in our case
(in the numerical calculation to 107! accuracy). Of course
this is not true for a single layer like the reaction plane.
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FIG. 4. (Color online) The classical (a) and relativistic
(b) weighted vorticity, 2., in units of ¢c/fm, calculated in the reaction
(xz)plane atr = 0.17 fm/c after the start of fluid dynamical evolution.
The collision energy is /syy = 2.76 TeV and b = 0.7 by, the cell
size is dx = dy = dz = 0.4375 fm. The average vorticity in the
reaction plane is 0.1434 (0.1185) c¢/fm for the classical (relativistic)
weighted vorticities respectively.
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Our weight, then, should be proportional with the local
energy density

_ Eix
N (Etot/Ncell) .

Within the reaction plane, at a given moment of time, the
cells carrying larger amounts of energy will get larger weights
than those carrying less energy. The edge cells, carrying less
energy, show stronger fluctuations.

This average vorticity weighted by the cell energy, which
is a conserved quantity for all cells, provides the possibility of
comparing the results to classical systems and their features.

An alternative method to present the relativistic vorticity,
as in Ref. [13], by weighting with the specific enthalpy, which
would provide conserved circulation, I, if the pressure were
exclusively density dependent. As mentioned earlier, this is
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FIG. 5. (Color online) The classical (a) and relativistic
(b) weighted vorticity, €2, (c/fm), calculated in the reaction x z plane
at t+ = 3.56 fm/c. The collision energy is /syy = 2.76 TeV and
b = 0.7 by, and the cell size is dx = dy = dz = 0.4375 fm. The
average vorticity in the reaction plane is 0.04845 (0.07937) ¢/fm for
the classical (relativistic) weighted vorticity respectively.
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FIG. 6. (Color online) The classical (a) and relativistic (b)
weighted vorticity 2., (c/fm), calculated in the reaction xz plane
att = 6.94 fm/c. The collision energy is \/syy = 2.76 TeV and b =
0.7 biax; the cell size is dx = dy = dz = 0.4375 fm. The average
vorticity in the reaction plane is 0.01555 (0.05881) c¢/fm for the
classical (relativistic) weighted vorticity respectively.
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not the case for QGP, so for us this advantage is not realized,
while this weighting changes both the value and the dimension
of the vorticity, so it would make the comparison to classical
results difficult.

The weighted vorticities in the reaction x z plane at different
time steps are shown in the Figs. 4-6.

B. Relativistic flow

We are following the definition in Ref. [12] for the
relativistic case. The expansion rate ® and the vorticity tensor
! are defined as

e = Vuu“ = 8uu", “4)
ol = 3(Voul — Viu,), Q)
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where for any 4-vector ¢g* the quantity V,g" = Ag dpqh =
Al q'y and A*Y = g — u'u”. This leads to

ol = JAMAP(ug 5 — up o)
= %[(avu” — 0%uy) + (W u®dgquy — tyu®dqut)]

= %[(avu“ — 0%*u,) + ("o u, — u, 0 u")],

where d,.u" = u" = u®d,u” is the proper time derivative
of u*.

In our initial state in the middle part of the collision
the streaks are stopped after two Lorentz contracted ions
collide and interpenetrate each other. If the acceleration of
the fluid elements is negligible compared to the rotation,
|0 u"| < |0,u?|, this assumption holds for the initial moments
in our model, which has strong initial shear flow. Thus the
second term can be dropped. This is also the case considered
in Ref. [11], while studying the vorticity in the xy plane instead
of the reaction plane. In this case the relativistic vorticity
is

Wyy = %(avuu - 8;4”1}) (6)
where
3" = (0o, 0y, 3y, 0;), uy =y (1, —vy, —vy, —0;).

Let us expand Eq. (6) in four dimensions:

doy —doyuxr —0doyvy —doyv;
wv — l 8xy _8xyvx _axyvy —O0xYU;
L) dyy —Oyyux —0dyyv, —dyyu;
dy  —d;yuy _azyvy —3d;yv;
doy 0y dyy 9:y

. —3ol/vx —O0x Y Uy —3yJ/Ux _8zyvx

—dyvy —dyvy —dyyv, —dyvy ’
—doyv, —0yyU; _ayyvz —d;Yv;

)

and we see that the vorticity is an antisymmetric tensor. Here
for the vorticity development in the reaction plane we calculate
wo4:

w, = _a)zx = %(azyvx — 0yYvy)

= 1y(@.v; — 3,v.) 4+ S(v,:0.y — v.0:y). (®)

The fluid cells are weighted the same way as in the nonrela-
tivistic vorticity estimate. Due to the fact that the relativistic
vorticity includes the relativistic y factor, Eq. (8), the vorticity
increases, especially at the edges where the cells have larger
flow velocities.

The weighted relativistic vorticity distributions in the
reaction xz plane at different time steps are shown in the
Figs. 4-6. At the last time step presented, in the reaction plane
we have already an extended area occupied with matter. In
case of peripheral reactions the multiplicity is already small,
and thus the fluctuations in the reaction plane are considerable.
In the relativistic case the outside edges show larger vorticity
and the random fluctuations are still strong.
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III. WEIGHTED VORTICITY DISTRIBUTIONS

The relativistic vorticity distributions have increased am-
plitudes compared to the classic ones, due to the relativistic y
factor and its derivatives in the relativistic expression. This is
especially visible at the edges where the flow velocities are the
largest.

The amplitude of weighted vorticity decreases with time
as the matter expands. Random fluctuations are apparent at
late times for the dilute matter, especially at the edges, and
particularly for the relativistic vorticity, which has enhanced
amplitudes.

With increasing time the fluid expands, and outside a more
dense shell develops with aless dense central zone. This feature
is also apparent in the vorticity distribution of the mater in
the central reaction plane, where the central part has smaller
weighted vorticity amplitude.

FIG. 7. (Color online) The classical (a) and relativistic (b)
weighted vorticity calculated for all xz layers at t = 0.17 fm/c. The
collision energy is \/syy = 2.76 TeV and b = 0.7 by, the cell size
is dx = dy = dz = 0.4375 fm. The average vorticity in the reaction
plane is 0.1971 (0.19004) c/fm for the classical (relativistic) weighted
vorticity respectively.
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The noncentral, parallel layers, at increasing y values, have
similar positive weighted vortices, Q2J;. These outside layers
have steeper boundaries in the x direction, which fall into the
outside zone of the expanding matter.

We can average the weighted vorticity distributions over
all layers parallel to the reaction plane. This compensates for
the low-density central zone in the reaction plane and leads
to a more uniform, layer-averaged distribution, with higher
positive peak amplitudes and smaller negative values. The
last presented time step at around r = 7 fm/c is still strongly
fluctuating for the relativistic case. The weighted vorticity
averaged over all layers parallel to the reaction xz plane at
different time steps are shown in Figs. 7-9. The dominant
effect of the relativistic treatment is visible the most in Fig. 9.
By comparing Egs. (2) and (8), the role of the relativistic
y factor is apparent. As discussed after Eq. (8), the large
peripheral velocities make the vorticity large at the external

(a)

<

z (fm)

FIG. 8. (Color online) The classical (a) and relativistic (b)
weighted vorticity calculated for all xz layers at t = 3.56 fm/c.
The collision energy is \/syy = 2.76 TeV and b = 0.7 by, and the
cell size is dx = dy = dz = 0.4375 fm. The average vorticity in the
reaction plane is 0.0538 (0.10685) c/fm for the classical (relativistic)
weighted vorticity respectively.
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FIG. 9. (Color online) The classical (a) and relativistic (b)
weighted vorticity calculated for all xz layers at t = 6.94 fm/c.
The collision energy is /syy = 2.76 TeV and b = 0.7 by, and the
cell size is dx = dy = dz = 0.4375 fm. The average vorticity in the
reaction plane is 0.0159 (0.05881) c/fm for the classical (relativistic)
weighted vorticity respectively.

surfaces of the expanding system. At these external regions
the matter density is small and the relative density fluctuations
are large, so the fluctuations of the surface region vorticities
are large.

IV. THE PROPERTIES OF VORTICITY
AND CIRCULATION

In Sec. II we introduced the classical vorticity and circu-
lation with the conservation laws for the circulation in case
of certain conditions. These can be extended to the relativistic
case if we define the relativistic circulation [13] (Chap. 14.3) as

re) = lf wutdx
=9 s

where the weight, w, is the specific enthalpy, ¢ + P, over the
baryon number, 7, and m is the effective mass per net baryon.
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Applying the Euler equation for perfect fluids results in

ar(c) 1 " P 1
= — 8xy + — @ wurdu,, ®
at mJec n m Jc

where the last term vanishes along the flow stream line because
u*du,, = 0. Thus, if the pressure P depends on the density n,
only the second term for a closed loop integral also disappears,
and the circulation remains constant just as in the classical case.

In our problem these conditions are not satisfied, so we used
the same weighting as in the classical case and evaluated the
circulation with the weighting as in the classical case to enable
the comparison; see Fig. 10. We performed the integral over
the x z surface for the weighted relativistic vorticities averaged
over all y layers.

Let us take the surface area of the reaction plane, which is
filled with fluid, and take the bounding curve at the outside
edges of the fluid in this plane. This curve expands with
the fluid. In our case in rapidly expanding and nonperfect
fluid the circulation as well as the vorticity in the xz reaction
plane are both decreasing.

For us the rate of this decrease is important to see if we can
still detect the vorticity and circulation at freeze-out. Notice
that we calculated only the 2,, component of the weighted
vorticity distributions. Due to the close to spherical expansion,
the direction of vorticity may develop into different directions.
This also contributes to the decrease of the circulation.

We calculated and presented the weighted vorticity dis-
tribution in the reaction plane, calculated it for all the xz
layers at different y values, and took the average of these
vorticity distributions; see Figs. 7-9, 11(b), and 12(b). The
overall vorticity is positive, this originates from the initial shear
flow configuration. It decreases with time, not only because the
weight of the reaction plane decreases due to the expansion but
also because of the viscous dissipation in the 3D expansion.

The examples above are for the configuration where the
KHI is predicted to occur in heavy-ion collisions at the Large
Hadron Collider (LHC).

We also studied how the vorticity and circulation change
with increased (numerical) viscosity and for more central
collisions, where the occurrence of KHI is not predicted by
the CFD model; see Figs. 11(a) and 12(a).

In Ref. [4] it was suggested that the KHI leads to an
increased v;(y) peak. We search for other, preferably more
sensitive and more specific experimental methods to identify
rotation and KHI and possibly also to separate the two effects.

The vorticity is also strikingly different for the configura-
tions which are adequate for KHI and for those which not, and
show only rotation. The initial and intermediate time stages
are compared for two different configurations where KHI may
and may not appear.

The primary reason of the difference with KHI is that in
the highly peripheral reactions the profile height is smaller but
the asymmetry between the target and projectile contributions
is larger at the edges, and thus the shear in the matter is
considerably larger. Consequently both the maximum value
of vorticity and the average are larger for the more peripheral
configuration: The initial average vorticity is almost three
times larger in the more peripheral configuration favorable
for KHI than in the less favorable one.
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FIG. 10. The time dependence of classical circulation, I'(¢), in units of (fm c), calculated for all xz layers and then taking the average of
the circulations for all layers. The collision energy is /syy = 2.76 TeV and b = 0.7 by, and the cell size is dx = dy = dz = 0.4375 fm
(left). For comparison another initial-state configuration was also tested for the same collision energy with b = 0.5 b,,,; the cell size is
dx =dy = dz = 0.585 fm (right). This configuration shows also the rotation, but due to its less favorable parameters it does not show the
KHI. Although at this impact parameter, which is less peripheral, the reaction plane has a larger area filled with matter, the initial classical
circulation nevertheless is less by about 15%. For the more peripheral case with smaller numerical viscosity the circulation decreases with time
faster and the circulation for the two cases becomes equal around ¢t = 8-10 fm/c.

At the later time, ¢+ = 3.56 fm/c, the difference is still large,
and the KHI formation leads to a vorticity, which is larger by
about a factor of two; see Fig. 12.

This, strong dependence on impact parameter arising in
low-viscosity matter is very promising from the point of view
of the observability of the effect.

The possibility for observation mentioned in Ref. [4], by
the position of the rotated v;(y) peak, is also visible in Fig. 12,
where the vorticity peak position is seen in the two configura-
tions. This peak position may be coupled to the peak position
of the earlier mentioned v; peak. Here in the configuration
favorable for KHI the forward rotation angle of the peak is
37°, while in the less favorable configuration it is 33°. Thus,
the KHI arising only in low-viscosity matter leads to a special
increase in the rotation and vorticity. The observability via
finding the motion of the collective (y-odd) v;(y) peak is
not easy in present LHC experiments because the initial-state
fluctuations contribute to large longitudinal c.m. fluctuations,
apart from azimuthal fluctuations in the transverse plane [3].

V. CONCLUSIONS

An analysis of the vorticity and circulation development
is performed for peripheral Pb 4 Pb reactions at the CERN
LHC energy of \/syy = 2.76 TeV. The initial peak vorticity
is more than 10 times larger (exceeding 3 c/fm) than the
one obtained from random fluctuations in the transverse
plane, about 0.2 ¢/fm [11]. The reason is in the high initial
angular momentum arising from the beam energy in noncentral
collisions.

Although the vorticity and circulation decrease rapidly due
to the explosive expansion of the system, still at 4 fm/c
after the beginning of fluid dynamical expansion the peak
vorticity is above 3 ¢/fm in favorable configurations with KHI
development and it reaches up to 1 ¢/fm at the same time for
less favorable configurations.

This makes it promising to observe the consequences of
this rotation and its sensitivity to turbulent configurations. Not
only does the peak vorticity exceed earlier estimates from
random fluctuations, but also the predicted average vorticity
is substantial; it reaches 0.2 c/fm at favorable initial con-
figurations with KHI, while the average vorticity originating
from random fluctuations is vanishing [11,14]. The estimated
angular deflection arising from this random origin “chiral
vortaic effect” (CVE) [14] is small: cos(8¢)) ~ 1073, The effect
arising from the initial angular momentum of a peripheral
collision is bigger. This improves the observability of the
average vorticity compared to CME and CVE predictions.

In this work we repeat the earlier mentioned observable
signatures related to the (rapidity odd component) of the
directed, v; flow, which is a promising possibility for the
observations [15]. The time sequences of the results show
that the maximum of vorticity in the side regions rotates; with
time it moves forward on the top and the maximum reaches
the positive z side for the latest times presented. The even flow
harmonics are much less sensitive to this change. The rapidity
width of the v,(y) may be effected weakly. Other methods in
different correlation observables are more directly connected
to rotation in the flow and will be addressed in forthcoming
publications (e.g., Ref. [16]).
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FIG. 11. (Color online) The weighted relativistic vorticity cal-
culated for all xz layers at + = 0.17 fm/c. The collision energy
is svy =2.76 TeV, b =0.5b,,x for panel (a) and b=
0.7 bmax for panel (b). Configuration (a) does not favor KHI
while configuration (b) does. The cell size is dx =dy =dz =
0.585/0.4375 tm. The average weighted vorticity in the reaction
plane is 0.07241/0.19004 c/fm for the two cases respectively. Notice
the different color coding scales for panels (a) and (b).

The question arises of how the surface energy influences the
rotation and the KHI. The external surface of the expanding
QGP is significant, as in the interior the quark gluon fluid has
weak interaction (asymptotic freedom) and small viscosity.
However, the surface energy has the strongest effect on the
hadronization of QGP as first described in Ref. [17]. On the
other hand, the collective flow as well as the KHI develops
primarily in the early QGP phase as the approximate quark
number scaling indicates. At RHIC and LHC energies at this
early stage, the surface energy is negligible compared to the
energy of the collective flow, and it primarily hinders the early
emission of low-energy hadrons from the plasma but does not
hinder the rotation. In the KHI the situation is more involved.
In the cases where the KHI develops between two fluids (e.g.,
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z (fm)

FIG. 12. (Color online) The weighted relativistic vorticity cal-
culated for all xz layers at t = 3.56 fm/c. The collision energy is
JSvy =276 TeV, b = 0.5 by, for panel (a) and b = 0.7 by, for
panel (b). Configuration (a) does not favoring KHI while configu-
ration (b) does. The cell size is dx = dy = dz = 0.585/0.4375 fm.
The average vorticity in the reaction plane is 0.05242 and 0.10685
¢/fm for the two weighted vorticities respectively. Notice the different
color scales.

water-air or oil-air) the large surface tension (e.g., between oil
and air) can hinder the development of KHI, as has been well
known to sailors for centuries. If the KHI develops within one
fluid (like in air or QGP), due to the large shear between the
two fluid layers, there is no surface tension in the conventional
sense, but the layer with the high shear may have extra energy
and can lead to an effective surface tension, which can weaken
the development of KHI. See estimates in Ref. [18].
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