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Abstract
Background: Hox genes are critical for patterning the bilaterian anterior-posterior axis. The
evolution of their clustered genomic arrangement and ancestral function has been debated since
their discovery. As acoels appear to represent the sister group to the remaining Bilateria
(Nephrozoa), investigating Hox gene expression will provide an insight into the ancestral features
of the Hox genes in metazoan evolution.

Results: We describe the expression of anterior, central and posterior class Hox genes and the
ParaHox ortholog Cdx in the acoel Convolutriloba longifissura. Expression of all three Hox genes
begins contemporaneously after gastrulation and then resolves into staggered domains along the
anterior-posterior axis, suggesting that the spatial coordination of Hox gene expression was
present in the bilaterian ancestor. After early surface ectodermal expression, the anterior and
central class genes are expressed in small domains of putative neural precursor cells co-expressing
ClSoxB1, suggesting an evolutionary early function of Hox genes in patterning parts of the nervous
system. In contrast, the expression of the posterior Hox gene is found in all three germ layers in a
much broader posterior region of the embryo.

Conclusion: Our results suggest that the ancestral set of Hox genes was involved in the anterior-
posterior patterning of the nervous system of the last common bilaterian ancestor and were later
co-opted for patterning in diverse tissues in the bilaterian radiation. The lack of temporal
colinearity of Hox expression in acoels may be due to a loss of genomic clustering in this clade or,
alternatively, temporal colinearity may have arisen in conjunction with the expansion of the Hox
cluster in the Nephrozoa.

Background
Hox genes encode transcription factors that contain a
characteristic helix-turn-helix DNA binding domain - the
homeodomain. Hox genes regulate the expression of other
genes during development and their molecular character-
ization and expression patterns indicate that these genes
are involved in specifying regional identities along the

anterior posterior (A-P) axis in a diverse range of bilate-
rian animals [1,2]. Orthologs of the Hox genes are subdi-
vided into anterior, central and posterior classes,
according to their suspected evolutionary ancestry and
their corresponding expression along the A-P axis. Surpris-
ingly, in most, but not all, bilaterians whose genomes
have been sequenced, the Hox genes are organized in a
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contiguous cluster in which the order of genes along the
chromosome is reflected in their expression domains
along the A-P axis, a phenomenon called 'spatial colinear-
ity' [3-7]. Additionally, in some cases the developmental
timing of expression of sequential Hox genes also corre-
sponds to their relative positions in the genome - a phe-
nomenon that has been described as 'temporal
colinearity' [8-10]. Both patterns suggest that spatial and
temporal colinearity might have been present in the
organism that possessed the ancestral Hox cluster [11].

Similar attention has been given to the ParaHox genes, a
group of genes that are also clustered in some animal
genomes (for example, Branchiostoma) and are thought to
be paralogs of the Hox genes [12]. Phylogenetic evidence
from bilaterian taxa suggests that each of the three known
ParaHox gene classes (Gsx, Xlox and Cdx) is more closely
related to a corresponding Hox class than to each other.
This suggests that the Hox cluster and ParaHox cluster
arose by the duplication of a single proto-Hox cluster
prior to the separation of the cnidarian and bilaterian lin-
eages [12-14]. Organized clusters of Hox genes, composed
of anterior class (paralog groups Hox1, Hox2), Hox3, cen-
tral class (Hox4 - 8) and posterior class (Hox9-15) genes,
are present in the annelid Capitella teleta [5], vertebrates
and cephalochordates [15,16], which suggests that Hox
genes were indeed organized in a cluster in the last com-
mon ancestor of protostomes and deuterostomes. How-
ever, it is still unclear how this cluster evolved, how many
Hox genes were present in the 'core'-cluster of the ancestor
before its expansion or how these Hox genes are related to
their evolutionary sisters, the ParaHox genes [11,17-22].

Hox and Parahox Evolution - Insight from Cnidarians and 
Acoels
The diversity of contexts in which Hox genes are utilized
in bilaterian development illustrates the need to examine
the deployment of these genes in broader evolutionary
lineages. For example, it is still not known whether these
genes were used to provide positional specific patterns of
differentiation to all cells or if they were used to pattern
specific compartments of organ systems such as the nerv-
ous system, axial mesoderm or the digestive tract. Further-
more, it is necessary to determine which tissue the
ancestral Hox genes were patterning, since bilaterian Hox
genes are involved in patterning different germ layers in
different lineages [23,24]. In vertebrates, the same Hox
genes are expressed in the neural tube and in paraxial mes-
oderm and have different anterior boundaries. This indi-
cates that these genes were potentially co-opted
independently for their roles in different tissues some-
where in the vertebrate lineage [25,26].

Cnidarians play an important role in unraveling the evo-
lutionary origins of the Hox and ParaHox clusters, since

they form the sister-group to the Bilateria [27] and do not
appear to possess all Hox classes found in protostomes
and deuterostomes. Recent investigations of the Hox gene
complement in cnidarians (for example, corals, sea anem-
ones, and jellyfish) have led to dramatically different
interpretations of Hox/ParaHox gene evolution in the cni-
darian-bilaterian ancestor [17,21,22,28,29]. One reason
for this is the difficulty in establishing clear orthology
assignments of cnidarian Hox and ParaHox genes to those
of the Bilateria. In addition, lineage specific gene duplica-
tions have complicated attempts at reconstructing Hox
gene evolution. Furthermore, studies of the expression
patterns in representatives of the two branches of the Cni-
daria - the anthozoans and medusozoans - suggest that
their developmental function differs in both lineages
[22,28]. However, the emerging consensus is that the last
common cnidarian-bilaterian ancestor had one or two
anterior and one posterior class gene that are clear
orthologs to the bilaterian Hox genes and two ParaHox
genes, namely a Gsx and a proto-Xlox/Cdx gene [22,28].

Since the cnidarian Hox complement appears to be much
smaller than that of protostomes and deuterostomes, and
also shows intra-taxon variation in the gene expression
along the main body axes, bilaterian Hox cluster expan-
sion remains unclear. Similarly, it is not clear when these
genes first became involved in axial patterning and which
structures first utilized Hox genes for their patterning. In
order to gain more insight into the nature of the early bila-
terian Hox genes and their role in body patterning, we
investigated the expression patterns of the Hox gene com-
plement in the acoels - a clade of relatively simple marine
worms that posses an orthogonal nervous system and one
mouth opening but lack an anus to the syncitial gut [30-
33]. Morphological analyses [34] and molecular phyloge-
nies using different genes suggest that acoels form an early
branch in the Bilateria [35-41]. Phylogenomic studies had
difficulty in placing acoels in the animal tree of life
[27,42]. However, a recent phylogenomic study that uses
1487 genes places Acoela and Nemertodermatida - which
together form a clade called Acoelomorpha [43] - as the
sister group to all remaining Bilateria with high statistical
support [44]. Morphological similarities between the
stem cell system of acoels and platyhelminthes [36] are
thus either ancestral traits of their last common ancestor
or convergence [44].

Congruent with their phylogenetic position, acoels appear
to possess only a subset of the Hox genes found in proto-
stomes and deuterostomes, namely one anterior, one cen-
tral and one posterior class gene, as well as an ortholog of
the posterior ParaHox gene Cdx [45]. Nemertodermatida,
the sister group of acoels, seem to have a similar subset of
Hox genes belonging to the same three Hox classes [46]. A
homeodomain survey on nemertodermatids revealed
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that, in addition to the Cdx gene present in acoels, a frag-
ment of an Xlox ortholog has also been recovered [46].
These data suggest that the acoelomorph Hox comple-
ment is close to the predictions that have been made
about the composition of the ancestral Hox cluster before
its expansion in the remaining Bilateria [13,20]. As cni-
darians, the sister group to the Bilateria, have no central
class Hox gene, acoels are the pivotal group for recon-
structing the origin and expansion of the central class
genes and the possible roles of Hox genes in the evolution
of bilaterian complexity.

We cloned orthologs of the three Hox gene classes and an
ortholog of the ParaHox gene Cdx from the acoel Convo-
lutriloba longifissura and investigated the embryonic and
juvenile expression. We describe their deployment in rela-
tion to temporal and spatial collinear patterns and recon-
struct their possible function in germ layer specification in
the stem species of the Bilateria by comparing them with
expression data from other bilaterian lineages.

Results
Gene orthology and composition of the acoel Hox genes
Gene orthology assignments of Hox genes are notoriously
difficult to analyse because of a lack of phylogenetic signal
contained in the 60 amino acids that compose the con-
served homeodomain. The limited information results in
extremely low support values for the basal branches and a
high sensitivity of the tree topology to the methods and
outgroups used in the analysis [17,21,22,28,47]. The
inclusion of the cnidarian Hox and ParaHox gene
sequences has led to distinctly different hypotheses about
Hox and ParaHox gene evolution. Based on their phyloge-
netic position as a sister to protostomes and deuteros-
tomes, acoels can provide an insight into the evolution of
the Hox and ParaHox genes. We performed phylogenetic
analyses of the Hox genes, using the homeodomain and
flanking regions, and analysed the Hox gene composition
of specific motifs that regulate the binding specificity of
Hox genes in other metazoans (Figure 1, Additional file 1:
Figure S1 and Table S1). Our primary goal was to establish
the gene orthology to acoel Hox genes and we found that
maximum likelihood (ML) analyses provided the most
stable results. Tree topology was tested by conducting ML
runs with and without cnidarian sequences (Figure 1,
Additional file 1: Figure S1).

The results from both ML analyses of the acoel Hox genes
were consistent with: one C. longifissura Hox gene group-
ing with the anterior (Hox1/labial); one with central
(Hox4/5); and one with posterior Hox classes (Figure 1,
Additional file 1: Figure S1). We have named these
ClantHox, ClcentHox, and ClpostHox, respectively. The Cdx
ortholog of C. longifissura ClCdx groups with the Cdx
ortholog of the acoel Symsagittifera roscoffensis and other

bilaterian Cdx orthologs (Figure 1, Additional file 1: Fig-
ure S1).

Orthology assignments are consistent in ML analyses,
with or without cnidarian sequences. However, the topol-
ogy of the branching of the individual paralog groups dif-
fers dramatically between both analyses. As in previous
analyses, the basal branches receive no, or minor, support
[17,21,22,28,47]. In the analysis that includes several
hydrozoan and anthozoan Hox genes, the earliest branch
is formed by the ParaHox gene Gsx (Figure 1). The exclu-
sion of these genes led to an early branch of the Hox1 class
genes (Additional file 1: Figure S1). These conflicting
results have also been discovered in previous Hox gene
analyses [22,28].

In neither analyses was the previously observed orthology
assignments of the ParaHox genes Gsx, Xlox and Cdx to the
Hox gene classes Hox1, Hox3 and postHox [12,19], respec-
tively, have not been confirmed. If both gene clusters
arose by a duplication of a proto-Hox cluster, the ParaHox
genes would group as sisters to the corresponding Hox
ortholog. However, this is not the case, since ParaHox
genes either form separate branches (Gsx and Xlox in Fig-
ure 1) or their grouping with other Hox genes differs
between the analyses. The cnidarian Hox and ParaHox
orthologs form either the sister group to their bilaterian
orthologs or form separate branches (Cdx and postHox, see
Figure 1). In our analysis, the scyphozoan Hox gene which
was previously assigned to the posterior Hox class
(CheHox9-14B) groups with the even-skipped orthologs.
We, therefore, cannot confirm that this is gene is a true
Hox ortholog as has previously been stated [28]. The dif-
ferences between these and previous analyses demon-
strate the difficulties of Hox gene orthology assignment of
cnidarian sequences and leave the question of the early
origin of Hox and ParaHox genes unsolved. They do, how-
ever, indicate the significance of the cnidarian lineage for
reconstructing early Hox gene evolution.

As the phylogenetic analyses of the homeodomain alone
did not provide robust insight onto Hox gene orthology,
we also compared motifs in N- and C-terminal flanking
regions including the PBX-binding domain and its dis-
tance from the homeodomain in Hox and ParaHox
orthologs (Additional file 1: Table S1). These motifs have
been shown to play an important role in DNA-binding
specificity and protein-protein interaction of Hox genes
[23,48-51]. The PBX-motif is also present in non-Hox fam-
ily genes (for example, in NK and LIM domain genes) [52]
and is thus plesiomorphic for Hox genes. However, its
presence, diagnostic motifs and distance (length of the
'linker') from the homeodomain has changed during the
evolution of metazoan Hox genes and can thus provide
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Maximum likelihood phylogenetic analysis with cnidarian Hox orthologsFigure 1
Maximum likelihood phylogenetic analysis with cnidarian Hox orthologs. Ingroup cnidarian sequences indicated in 
blue; Hox and ParaHox genes of acoels are indicated in red. The arrowhead points out the Turritopsis 'Xlox' ortholog. Boot-
straps above 60 are indicated in percentages. The alignment includes the flanking regions of Additional Table 1. Cl = Convolutri-
loba; Sr = Symsagittifera; Ip = Isodiametra; Nv = Nematostella; Cly = Clythia; Hyd = Hydra; Cap = Capitella; Tc = Tribolium; Fen = 
Flaccisagitta; Sk = Saccoglossus; Pf = Ptychodera; Bra = Branchiostoma; Chae = Chaetopterous; Tr = Trichoplax; Hr = Haliotis; Es = 
Endeis; Cup = Cupiennius; Xl = Xenopus; Pc = Podocoryna; Xen = Xenoturbella; Sp = Strongylocentrotus.

BraHox13

CapPost2

CapLox4

Anthox7

EsDef

BraHox11

SrpostHox

NvEve

PfLox1

ChaeHox1

SkMox

PfHox1

ChaeHox2

FenflHox1

EsFtz

PfLox2

ClyEve

ClyGsx

CapCdx

BraHox2

EuXlox

ChaeHox4

TrANTP

ClyHOX1

TriANTP2

Cly914B

CapLab

IpHoxpost

SkHox3

TcLab

TurrXlox

EsScr

SkCdx

Nvanthox2
AmCnox2

SkHox1

BraHox12

CapHox3

FungiaGsx

CapScr

SrcentHox

SkHox2

TriNOT

ClyMox

BraHox8

EsLab

NvHD065

EdCnox5

EsAbdB

BraHox1

Cly914A

SkHox5

NvmoxD

FenflHox5

AntHox8b

Anthox1a

FenMedpo

FenpostA

BraHox3

SpXlox

CapGsx

EsAnt

NvHD117

ClcentHox

SkHox7

BraHox10

SkHox4

PcHox1

PfCdx

BraHox14

CupHox3

PfHox9_10

TtEvx

CapPbx

Trox2

CapPost1

XlHoxA2

NvAntHox6

CapDfd

BfEvx

EsCdx

ClCdx

XenpostHox

IpHox1
SrHox1

FenflHox4

ChaeHoc5

PfHx1113a

Espbc

SkHox9_10

SkHx1113a

IpHox5

ChaeHox3

XlA1

PfHx1113b

FenpostB

Cly914C

PcCdx

PfHox5

SkHx1113b

Bugula4

CapLox2

PfHox6
BraHox7

ClyCdx

BraHox6

SkHx1113c

BraHox4

ClantHox

BraHox5

HydCnox2

EuGsx

FenflHox6

TcPbc

PfHox4

ClpostHox

PfGsx

HrHox1

BraHox9

SrCdx

EsUbx

FenflHox8

CapAnt

CapLox5

PfHx1113c

CapXlox

NvMoxC

SkHox6

NvHD060

62
79

70
64

93

92

73

98

95

81

98 76

70

91

93

80

83
82

78

100
91

96

65
76

98

94

84

98

100

7199

65

98

99

89

90

86

78
64

85

96
70

90
66

79

Cdx

central class

posterior class

Outgroup

Gsx

Hox1

Hox2

Hox3

Xlox



BMC Biology 2009, 7:65 http://www.biomedcentral.com/1741-7007/7/65
phylogenetic information for the identification of Hox
family information [52-57].

Overall, the acoel Hox sequences fit the expected pattern
predicted in a previous study that analysed Hox gene struc-
ture [55]. The anterior Hox orthologs of Isodiametra pulchra,
Symsagittifera roscoffensis and Convolutriloba longifissura
contain a PBX-motif, which is a similar distance to the
homeodomain (28/37/38 amino acids) compared to
other bilaterian anterior class Hox genes (17-55 amino
acids; Additional file 1: Table S1). The N-motif of the
anterior Hox gene is similar to other bilaterian Hox1
orthologs (both share the Na-signature; see Additional file
1: Table S1). However, the C-motif of the anterior Hox
ortholog in acoels is shorter than in all other Hox genes,
with a stop-codon present close to the homeodomain
(Additional file 1: Table S1).

The central class ortholog of acoels contains a PBX-motif
that is close to the homeodomain (2 amino acids), as it is
in the bilaterian orthologs of Hox6/7 (5-8 amino acids),
but its C-motif has greater similarity to the bilaterian
Hox4/5 orthologs. The acoel central class ortholog also
shares similarities with the N-motif of bilaterian Hox2,
Hox3, central class, Gsx and Xlox genes (all have the Nb
motif). The posterior Hox ortholog of C. longifissura shares
the PBX binding domain of ambulacrarian (hemichor-
dates + echinoderms) and cephalochordate posterior Hox
orthologs. The PBX-motif of posterior class Hox genes is
located close to the N-terminal of the homeodomain and
thus lacks the linker sequence found in the more anterior
class Hox genes [52]. The N-motif of acoel posterior Hox
genes also has posterior Hox specific residues (Nbx-motif;
Additional file 1: Table S1).

The cnidarian putative Hox and ParaHox orthologs also
share specific residues with their bilaterian orthologs. In
the cases of the cnidarian anterior Hox and ParaHox (Gsx)
orthologs, the motif pattern is conserved in relation to
that of the bilaterian orthologs. A PBX-motif is present in
the posterior Hox genes Che9-14A and Che9-14C of Clytia
and in the Nematostella Anthox1a, which is located directly
or close (a single amino acid) to the homeodomain which
is similar to the bilaterian posterior Hox class genes. This
supplies additional evidence that, contrary to previous
suggestions, these genes are indeed posterior Hox genes
[17,47]. The recently reported clear Xlox ortholog in the
hydrozoan Turritopsis dohrnii [21] does not exhibit either
the characteristic PBX binding domain or the similarities
in the N-motif of bilaterian Xlox genes. This could be due
to a secondary loss of these motifs in the hydrozoan line-
age. However, an orthology of the gene with Xlox is not
supported in our phylogenetic analysis, where it groups
clearly with the previous described Xlox/Cdx ortholog
(NvHD065) of Nematostella (Figure 1).

Although our phylogenetic analysis clearly assigns the
acoel Hox genes to the anterior, central and posterior class,
the internal grouping remains unclear. The lack of resolu-
tion and the lack of additional Hox genes in acoels cannot
exclude that possibility that the three Hox genes found in
acoels represent ancestral precursors of the bilaterian Hox
cluster as has been suggested [20]. For this reason, we
name the Hox genes according to their class (Clant-,
Clcent-, ClpostHox) and do not make premature assign-
ments to a specific sub-class of an extended bilaterian Hox
complement. Our analysis suggests that a true anterior
and posterior gene has been present in the bilaterian-cni-
darian ancestor and that the central class genes are a nov-
elty of the Bilateria. A Hox3 ortholog has not been found
in cnidarians or acoels, so it appears to have evolved in the
lineage to the common ancestor of protostome-deuteros-
tome.

Expression of Convolutriloba longifissura anterior class 
Hox
The expression of the anterior class Hox gene in C. longifis-
sura (ClantHox) starts after gastrulation when the embryo
is composed of approximately 250 cells. It is expressed in
two bilateral regions in the outermost cell layer in the ani-
mal hemisphere of the embryo (Figure 2a). Later, these
domains of about 10 cells sink below the outermost cell
layer (Figure 2b). Double in situ hybridizations with other
marker genes allow us to determine the region of
ClantHox expression. The acoel ortholog of Six3/6, ClSix3/
6 (Figure 2c, d) is expressed in the future anterior region
of the juvenile [58] anterior to ClantHox expression.
ClantHox expressing cells (Figure 2e) co-express the pro-
neural gene ClSoxB1 which suggests that these cells are
neural with defined anterior-posterior boundaries (Figure
2i, j). Previous cell lineage experiments show that this
domain is largely generated from the second duet micro-
meres [59]. In the juvenile, ClantHox is expressed poste-
rior to the statocyst, extending to the end of the body but
not at the posterior tip (Figure 2g, h). The strongest
expression is found in a bilateral area directly posterior to
the statocyst, which is likely to be comprised of descend-
ants of cells expressing ClantHox during their early devel-
opment (Figure 2c-f).

Expression of Convolutriloba longifissura central class 
Hox
The expression of the C. longifissura central Hox class gene
ClcentHox is detected by in situ hybridization shortly after
gastrulation, about the same time as ClantHox (Figure 2a,
3a). Expression begins in the posterior part of the embryo
(Figure 3a) in ectodermal cells surrounding the site of the
closed blastopore (Figure 3b). During later development
the expression domain is internalized and expands anteri-
orly on both sides, forming bilateral bands (Figure 3c).
ClcentHox expression becomes refined to two internal
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bilateral spots of cells in the area lateral to the future posi-
tion of the mouth (Figure 3d, e). The expression pattern is
very similar to that of ClantHox at this stage (see Figure
2b). However, the anterior border of ClcentHox is more
posterior. Like ClantHox, these bilateral cell patches are
approximately the same size and are located below the
epidermal surface. The identity of these expressing cells
could not be determined because the cell types have not
been differentiated at this stage. However, an endodermal
fate can be excluded since the expression is not in the cen-
tre of the embryo, where the digestive syncytium will
develop. The location below the outermost cell layer sug-
gests a mesodermal or neural fate. However, these Clc-
entHox-expressing cells appear to be in the area of ClSoxB1

expression (Figure 2f, 3) which is thought to be involved
in neural development in other animals [60]. This corre-
lation with the expression patterns of 'neural' genes sug-
gests that ClcentHox is expressed in neural precursor cells
rather than mesodermally derived musculature. The pre-
hatched juvenile shows strong expression in two small
bilaterally paired domains that could be nerve cell bodies
contributing to the orthogonal nervous system (Figure 3f-
h).

Expression of Convolutriloba longifissura posterior class 
Hox
The expression of the ortholog of the posterior class Hox
gene in C. longifissura, ClpostHox, starts at the same time as

Expression of ClantHox in embryos and juveniles of C. longifissuraFigure 2
Expression of ClantHox in embryos and juveniles of C. longifissura. (a) ClantHox expression in animal/anterior ectoder-
mal cells in the postgastrula. (b) Bilateral domains of ClantHox expression located more internally in the animal hemisphere of 
the embryo during later development. (c) Double in situ hybridization of ClantHox (purple) with ClSix3/6 (turquoise), black 
arrows indicate the two ClantHox expression domains in the animal hemisphere. ClSix3/6 is found anterior to the ClantHox 
domain. Note that the ClSix3/6 staining is less localized than in (d) due to diffusion of the dye when using only 5-bromo-
4chloro-3-indolyl-phosphate (BCIP) as substrate. (d) ClSix3/6 expression in the animal/anterior hemisphere. (e) Co-localization 
of the expression of ClantHox (area shown by a dotted line) with ClSoxB1 expression in the late postgastrula of C. longifissura 
both visualized with BCIP/nitro blue tetrazolium chloride (NBT). (f) ClSoxB1 expression clone of the same stage as (e). (g) 
Dorsal view on hatched juvenile showing expression of ClantHox. White arrow points at the higher expressing area in the post-
statocyst commissure. (h) Lateral view in a hatched juvenile of C. longifissura with expression of ClantHox in the ectoderm and 
parenchyma. Arrow points at domain of commissural expression. (i) Summary of ClantHox expression is shown in orange, dor-
sal view, (j) lateral view. st = statocyst, ey = eye, mo = mouth opening. (a - f) Animal/anterior pole up; (g - j) anterior to the 
left.
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Expression of ClcentHox in embryos of C. longifissuraFigure 3
Expression of ClcentHox in embryos of C. longifissura. (a) Lateral view on the earliest stage of detected ClcentHox 
expression. Expression is found at the vegetal pole at the site of the closed blastopore (b) Vegetal view at the stage of (a) 
showing that cells that express ClantHox surround the former blastopore. (c) Lateral view on postgastrula stage. The expres-
sion domain is below the ectoderm in two bilateral stripes with a stronger expression in the anterior cells (black arrows). (d) 
Later stage than (c) shows restriction of the expression domain of ClcentHox to a bilateral cluster of about a dozen cells. (e) 
Haematoxylin stained histological section of an embryo showing the ClcentHox expression below the outer ectodermal layer. 
(f) Pre-hatchling with bilateral ClcentHox expression domains that are localized in two separate domains along the anterior-pos-
terior axis. (g) Summary of ClcentHox expression (green) in the juvenile from the dorsal side and left side (h) showing the two 
separate expression domains of ClcentHox on the left and right side. Asterisk indicates the animal/anterior pole of the embryo. 
(g, h) Animal to the left.
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Expression of ClpostHox in embryos and juveniles of C. longifissuraFigure 4
Expression of ClpostHox in embryos and juveniles of C. longifissura. (a) Vegetal view on the site of gastrulation. Clpost-
Hox expression begins at the vegetal pole of the postgastrula stage of C. longifissura. (b) Lateral view on the later embryo with 
the ClpostHox expression in the vegetal hemisphere. Asterisk indicates the animal pole. (c) ClpostHox expression is located in 
the posterior end in all three germ layers of pre-hatchlings. Cellular differentiation is indicated by the appearance of the stato-
cyst (st). (d) Dorsal view on the hatched juvenile with fading ClpostHox expression. Localized centers of expression remain vis-
ible (black arrowheads). (e) Lateral view of a hatched juvenile of C. longifissura showing strong ClpostHox expression in 
individual cells in an area of weaker expression, anterior to the left. (f) + (g) Summary expression of ClpostHox (blue) in juve-
niles. Note that the posterior most tip of the animal is free of expression. Anterior to the left.
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the other two Hox genes that is shortly after gastrulation
(Figure 4a). Initially ClpostHox expression is detected in a
restricted area of about 30 cells in the posterior region of
the embryo, in the outermost cell layer. This domain
extends over the vegetal hemisphere of the embryo (Fig-
ure 4b), which gives rise to the posterior part of the juve-
nile. The anterior border of the ClpostHox expression
domain corresponds to the posterior border of the future
mouth and thus overlaps with the posterior ClcentHox
expressing domains. This expression of ClpostHox later
expands to cells in all three germ layers, including the epi-
dermis. However, during further development, as cell dif-
ferentiation begins (for example. when the statocyst
becomes visible), expression is down-regulated in the epi-
dermis and endoderm (Figure 4c) and becomes restricted
to a smaller lateral area below the outer cell layer with a
weaker expression extending posteriorly (Figure 4d, e).
The expression of ClpostHox persists in the juvenile and is
found in four individual neural cells in a bilateral arrange-
ment (Figure 4d-f). Expression in the hatchling is rather
diffuse. The expression of ClpostHox is similar to that of
the other two Hox orthologs (ClantHox, ClcentHox), sug-
gesting that the gene is involved in neural patterning in
the posterior region of the juvenile, but it may also have
an early role in posterior patterning of all three germ lay-
ers.

Expression of the Convolutriloba longifissura ParaHox 
gene Cdx
The expression pattern of ClCdx has been described previ-
ously [58,61] but here we focus on a detailed description
of the anterior expression associated with the acoel nerv-
ous system and its relationship to other Hox gene expres-
sion patterns. ClCdx is expressed in the commissure
posterior to the statocyst (Figure 5) and extends anteriorly
and ventrally, following the paths of nerve tracks. ClCdx is
also expressed in an area surrounding the eyes, which
form direct connections to the brain commissure. The
expression of ClCdx in the juvenile expands laterally to the
posterior end, with a posterior domain in the ventral ecto-
derm that will form the male gonopore [58].

Discussion
Phylogenetic analyses and evolution of Hox genes
Orthology assignments of Hox genes are notoriously diffi-
cult due to the short amino acid sequence of the homeo-
domain. Previous comparisons of the homeodomains of
ParaHox with that of the Hox genes of representative pro-
tostomes and deuterostomes revealed sequence similari-
ties between the anterior, Hox3 and posterior Hox classes
with that of Gsx, Xlox and Cdx ParaHox classes, respectively
[12,19]. These findings led to the hypothesis of a early
duplication of a 'proto-Hox' cluster composed of three or
four proto-Hox genes which gave rise to two separate clus-
ters of three/four Hox and three/four ParaHox genes

[11,12,19]. However, recent analyses that included home-
odomain genes from cnidarians suggest a rather different
evolutionary origin of Hox and ParaHox genes in which a
single 'proto-Hox' gene gave rise to a Hox and paraHox
gene, forming an ancestral Hox1 and Gsx ortholog [22,28].
Tandem duplication events then led to the extension of
Hox and ParaHox gene complement we find in the Bilate-
ria [22]. This tandem-duplication hypothesis rejects the
previously suggested duplication event of a 'proto-Hox'
cluster that contained three, or even four, Hox genes
(including a Hox3 ortholog) into a Hox and paraHox clus-
ter and challenges the evolutionary relationship of poste-
rior Hox to Cdx (posterior ParaHox) genes of Xlox to
paralog group 3 Hox genes.

No study has yet found a bona fide Hox3 ortholog in either
cnidarians or acoels and the recent report of an Xlox gene
in a hydrozoan [21] seems to be an ortholog of the home-
odomain gene NvHD065 in Nematostella (Figure 1). The
finding of a clear Gsx ortholog in cnidarians [62] and Tri-
choplax [63], however, shows that either this ParaHox gene
was lost in the acoel lineage or has not yet been found in
the homeodomain gene surveys. Only whole genome
sequencing can determine how many Hox genes are actu-
ally present in acoels and nemertodermatids.

To gain further insight into the phylogenetic relationships
of acoel Hox genes we included both N- and C-terminus
flanking regions of the homeodomain in our phyloge-
netic analysis and investigated the presence of conserved
domains that have been shown to be responsible for the
binding specificity. As in previous phylogenetic analyses
of acoel Hox genes [5,45,64], the anterior class Hox
orthologs of acoels groups as the sister to all remaining
Hox1/labial genes, the central class Hox gene branches
with Hox4/5 and the posterior Hox with the posterior class
genes Hox9-14. At first glance, this suggests that a Hox6/7
gene has been present in the bilaterian ancestor and been
lost in the acoel lineage. However, it does not exclude a
tandem duplication event in which a proto central class
gene gave rise to Hox4/5 and Hox6/7 and after which the
one descendant (Hox6/7) deviated and became more in
sequence with it than its sister (Hox4/5). The Hox comple-
ment of more basal branching lineages, such as cnidari-
ans, could potentially deliver additional insight for
reconstructing the Hox gene complement of the bilaterian
ancestor.

The findings of the surveys for Hox and ParaHox genes in
cnidarians suggest the presence of two Hox (anterior and
posterior) and two clustered [65]ParaHox genes (Gsx and
proto-Cdx/Xlox) in the last common ancestor of cnidari-
ans and bilaterians. Together with the gene complement
in acoels, the results favour a two-gene model of the evo-
lution of the Hox genes from a proto-Hox cluster followed
Page 9 of 17
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by several duplication events that gave rise to the central
class and expansion within each class to give rise to the
expanded Nephrozoan complement [13].

The Hox orthologs in Convolutriloba longifissura are 
expressed in a spatially staggered pattern along the 
anterior-posterior body axis
Our results show, that the Hox genes of C. longifissura are
expressed in a spatially staggered pattern along the ante-
rior-posterior axis in later embryos and juveniles. As in
most described bilaterians (except for hexapods and some
polychaetes), orthologs of Hox1/labial are the most anteri-
orly-expressed genes of the Hox complement. In chordates
this anterior border corresponds to the hindbrain, while
in Drosophila this border corresponds to the tritocere-
brum. Hox1/labial expression can be either restricted to a
ring-like domain throughout the entire ectoderm (as in
Saccoglossus [66]) or in a domain with a definite anterior
boundary in neuroectodermal and mesodermal tissue

that expands to the posterior end of the body (as in Bran-
chiostoma [67] and vertebrates). In the protostomes inves-
tigated so far, Hox1/labial orthologs are expressed in a
restricted anterior region [5,68-70], starting in two bilat-
eral domains (in the polychaetes Capitella, Nereis, Chae-
topterus), which is similar to the pattern we describe for
ClantHox in C. longifissura. In the juvenile, the most ante-
rior parts of the acoel nervous system anterior to the sta-
tocyst are free of ClantHox expression, which is similar to
the conditions found in protostomes and deuterostomes
(for example, Haliotis, Platynereis, Capitella, Saccoglossus,
Branchiostoma, Drosophila, Chaetopterous). In both proto-
stomes and deuterostomes, the most anterior part of the
nervous system lacks any Hox gene expression but usually
expresses the gene Six3/6 [71], which is also the case in C.
longifissura (Figure 3).

Posterior to the bilaterally restricted patches of ClantHox
expression, similar domains of the central class Hox gene

ClCdx expression in the juvenile nervous system of C. longifissuraFigure 5
ClCdx expression in the juvenile nervous system of C. longifissura. (a) Dorsal view ClCdx expression in the juvenile 
head region. (b) Infra red-reflection microscopy of deep layers of the anterior part of the juvenile seen in (a). The outline of 
the animal is indicated with the dotted line. The white arrowheads indicate expression in the connectives extending to the 
anterior neural region. ey = eye, st = statocyst. (c) Frontal view of the image stack of (b). (d) Ventral view of the ectodermal 
expression of ClCdx. Expression flanks the latero-ventral nerve chords. The black arrowhead indicated the ectodermal expres-
sion in the region of the future gonopore. Mouth denoted by dotted circle (e) Dorsal view of a juvenile stained with anti-tyro-
sinated-tubulin antibody (red) showing a subset of the anterior commissures and connectives leading to the sensory cells 
surrounding the tip of the animal. (f) Nile-Blue stained histological cross section through the area anterior to the mouth, 
where ClCdx is expressed. White arrowheads point to nerve strands surrounding the gland cells of the frontal organ (fo) and 
extending nervous tissue in the ventral fold.
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(ClcentHox) are expressed in the acoel embryo. Behind
these ClcentHox expressing patches of cells, the expression
domain of the single posterior class Hox ortholog, Clpost-
Hox begins and it extends to the posterior end of the
embryo. This indicates that the spatial colinearity of Hox
gene expression was present in the last common ancestor
of the Bilateria and that the system that regulates the spa-
tial colinearity was maintained, despite the expansion of
the Hox cluster during bilaterian evolution.

The boundaries of expression of the three Hox genes in the
un-segmented body of the acoel do not correspond to any
overt morphological boundaries as is found in the seg-
ments of arthropods, annelids and in the vertebrae of
mice. However, the anterior border of the ClantHox
expression corresponds to the 'brain' commissure behind
the statocyst and the patch-like expression of ClcentHox
and ClpostHox seem to correspond to specific neural pre-
cursors in the orthogonal nervous system (Figure 2, 3, 4).
The mouth opening in acoels is formed late in develop-
ment [72] and its position corresponds to the border just
anterior to the expression of the posterior Hox ortholog
(Figure 4).

Expression of Hox orthologs in Convolutriloba 
longifissura begins simultaneously after gastrulation and 
shows no temporal colinearity
Our study of the early expression patterns of the Hox gene
complement of C. longifissura shows that all three Hox
genes are expressed almost simultaneously at a time after
gastrulation when the embryo is composed of about 250
cells (Figure 6). Our observations suggest that there is lit-
tle temporal colinearity in this acoel species, although we
cannot exclude a slightly temporal staggered expression of
one or two cell cycles. We interpret our findings as a lack
of temporal colinearity of expression, unlike that present
in animals which have an intact, organized Hox cluster,
such as vertebrates [8], cephalochordates [67], the poly-
chaete Capitella teleta [5], and some insects [73]. Those
examples in which the Hox cluster has been dispersed,
split or disorganized, such as in Drosophila ([74], C. elegans
[75], Ciona [76], Saccoglossus [66], Oikopleura [77] and
Strongylocentrotus [78], lack temporal colinearity of Hox
expression. Thus, temporal colinearity of Hox expression
seems to be associated with a functionally intact Hox clus-
ter [10].

The lack of dramatic temporal staggering of the Hox gene
expression in acoels can be interpreted in two ways. Given
the consensus view of the presence of a complete Hox clus-
ter with temporal and spatial colinearity at the base of the
Bilateria, the lack of temporal colinearity in acoels would
suggest that an ancestral Hox cluster has dispersed in the
acoel lineage. The reasons for a possible Hox cluster dis-
persion in acoels are not particularly clear. Explanations
used in other taxa (for example, Drosophila, nematodes,

Oikopleura) such as rapid development, short generation
time or the emergence of a rigid stereotyped cleavage pat-
tern with precocious specification of cell fates [4] do not
appear to be applicable in acoels. Although acoel develop-
ment displays a stereotyped cleavage programme, it is not
particularly rapid (occurs in 4-5 days) and the embryos
and adults show a high degree of regulative capacity [79].
Most adult acoels are long lived, capable of regeneration
and can even reproduce asexually.

Assuming the presence of an integrated Hox cluster in the
last common ancestor of these animals, it has been sug-
gested that the concerted mechanism that controls the
temporal expression prevents the ancient cluster from its
evolutionary dispersion [10,18,80,81]. Recent evidence
shows, that the temporal and spatial patterning of Hox
expression is controlled by distinct mechanisms [82-84],
which might explain why spatial colinearity is maintained
even during cluster disintegration [77].

Since the expression of the Hox genes in acoels are turned
on simultaneously, another explanation for the lack of
temporal colinearity could be that the elements that con-
trol a temporal staggered expression has evolved in the
nephrozoan lineage in combination with the expansion
of the cluster. The temporally staggered regulation of Hox
clusters would then be linked by the expansion of the
cluster to a larger number of genes and/or a larger
genomic region in the course of the Hox cluster evolution
of the protostome-deuterostome ancestor [85]. However,
a recent analysis using sequencing of bacterial artificial
chromosome libraries and fluorescent in situ hybridiza-
tion in an acoel species suggests a dispersed cluster of Hox
genes [86].

The Hox gene expression in acoels is correlated with 
neural development in an axial fashion
Our results suggest, that the Hox genes in the acoel C.
longifissura might play a major role in the axial patterning
of the nervous system. The simultaneous onset of the Hox
genes in the ectoderm followed by the internalization of
the expressing cells reflects the internal migration of puta-
tive neural precursor cells and is consistent with the
results of fate mapping that showed that the nervous sys-
tem is formed by descendants of the first, second and
third duet ectodermal micromeres [59]. The co-expression
of ClantHox with the Convolutriloba ortholog of the bilate-
rian proneural gene SoxB1 [87] is consistent with the pre-
viously described patterns in other bilaterians and
suggests that ClantHox is responsible for the patterning
anterior subsets of the nervous system. The overlapping
expression of ClcentHox with ClSoxB1 also suggests a func-
tion of ClcentHox in the formation of neural precursor
cells in the mid-body region. In contrast, ClpostHox
expression is found in a broad posterior domain that
includes ectodermal, endodermal and, possibly, mesoder-
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mal cells suggesting that it may be involved in patterning
more than just the nervous system. However, ClpostHox
expression in the juvenile seems to be more restricted to
cells that contribute to the nervous system.

The strong correlation of the acoel Hox gene expression
with the nervous system development supports the idea of
the ancestral role of Hox genes in the anterior-posterior
patterning and regionalization of the central nervous sys-
tem. This has been hypothesized since the discovery of
Hox gene expression in protostomes (leech [88-91], C. ele-
gans: [92]Drosophila: [93]) and deuterostomes [24,94,95].
Recent studies in the polychaete annelids Capitella [5],
Chaetopterus [69], nereids [70], the molluscs Haliotis
[68]Euprymna [96] and the deuterostomes Saccoglossus

[66], Branchiostoma [67]Ciona [97,98] and Oikopleura [77]
all found that Hox genes are expressed in neural tissue
[99]. As the nervous system plays such important part in
the body plan organization in bilaterians, the ancestral
Hox gene expression in the central nervous system may
have been co-opted for the more complex patterning of
additional tissues along the anterior-posterior axis, such
as paraxial mesoderm, paired appendages and genitalia
[100].

The staggered spatial expression of Hox genes in proto-
stome and deuterostome centralized nervous systems, has
also been used to homologize neuroanatomical structures
(for example, the tritocerebrum of Drosophila with the
hindbrain of chordates) [101,102]. However, our results

Evolutionary scenario of Hox gene expression evolution in the BilateriaFigure 6
Evolutionary scenario of Hox gene expression evolution in the Bilateria. The two gene model of Hox gene evolution 
is hypothesized and its stepwise extension in the evolution of the Bilateria. The cnidarian-bilaterian ancestor possessed two 
clear Hox genes which are expressed ambiguously in the taxon cnidaria. One major branch, the Anthozoa, express the anterior 
ortholog in the pharynx and the posterior orthologs along the oral-aboral axis. The other major branch (Medusozoa) the pos-
terior ortholog is expressed in the oral pole, while the anterior ortholog is expressed at both ends of the body. Based on the 
data of Hox gene expression of the acoelomorph C. longifissura, the three Hox genes are expressed in a spatial staggered pattern 
along the anterior-posterior axis. The expression is switched on simultaneously in the acoel, which excludes temporal coline-
arity. The spatial staggered expression however, is ancestral for the Bilateria lineage. The protostome Hox expression is repre-
sented by the annelid Capitella teleta [5], the deuterostome expression by the hemichordate Saccoglossus [71]. The acoel 
expression shares the blastoporal expression of the central and posterior class orthologs in Saccoglossus, the anterior ortholog 
is not expressed.

anterior central posterior
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from the acoel show that a similar staggered anterior-pos-
terior expression of Hox genes was already present in the
nervous system of the last common bilaterian ancestor
with a much simpler neural organization. This indicates
that metazoan animals appeared to have a general molec-
ular blueprint for axial organization that did not specify
the distinct morphological complexity of the final struc-
tures. Therefore, the homologization of more complex
brain structures between protostomes and deuterostomes
on the basis of Hox gene expression is inappropriate. This
interpretation is supported by broad comparative studies
utilizing the diversity of animal taxa, many of which lack
complex brains but possess a similar arrangement of Hox
expression, such as the hemichordate Saccoglossus
[66,103] and the annelid Capitella [5].

Early blastoporal expression suggests an early role of Hox 
genes in ectodermal patterning of acoels
Two of the three Hox genes of C. longifissura - the central
and the posterior class Hox gene - are expressed at the site
of gastrulation. The early onset of ClcentHox at the area of
the former blastopore is similar to that found for Hox5 in
the hemichordate Saccoglossus [66] and Branchiostoma [67]
and for Hox4 and Hox5 in the polychaete Nereis [70] and
Chaetopterus [69]. It remains unclear how the specific cell
divisions and expression pattern correlates to the spatially
very restricted position of ClcentHox expression in two
bilateral clusters lateral to the position of the future
mouth during later development. Both ClcentHox and
ClpostHox are first expressed in the posterior ectoderm in
an overlapping manner, before becoming restricted to
neural cell fates when the staggered pattern of the expres-
sion is established at later stages of development. This
restriction is first observed in the expression pattern of
ClcentHox followed by the restriction of ClpostHox expres-
sion. However, the early expression of these two Hox
genes at the blastopore suggests a different function from
the later neural expression. A similar biphasic temporal
expression is also found in chick development, where the
early function of the Hox genes seems to be in axial speci-
fication of the gastrulating cells at the primitive streak
[104]. Perhaps the Hox genes are involved with chromatin
modification, which creates a 'memory' for the future
fates, even when the gene is no longer expressed [104]. A
similar mechanism could be present in the acoels, poly-
chaetes and hemichordates and needs further investiga-
tions.

The expression of the ParaHox Cdx ortholog in C. 
longifissura
The role of Cdx expression in acoels, in hindgut evolution
and the expression along the anterior-posterior axis in dif-
ferent germ layers have already been discussed [58,61].
The expression of ClCdx in the anterior brain-commis-
sures and connectives that extend to the ventral fold and

the anterior sensory cells is very similar to the expression
pattern found in the brain of the polychaete Capitella teleta
[105]. Interestingly, Cdx does not seem to be expressed in
the brain of nereid polychaetes [106,107] which indicates
intra-taxon variability. However, other bilaterians investi-
gated also lack Cdx expression in the anterior neural struc-
tures but show Cdx expression in neural and endodermal
tissue [108]. Thus, it remains unclear how far the brain
expression in Capitella teleta reflects evolutionary ancestry
with the acoel neural expression.

The findings that, in several bilaterians, ParaHox genes are
expressed associated with the digestive system led to the
hypothesis that Gsx, Xlox and Cdx are responsible for the
AP patterning of a through gut in the hypothetical Urbila-
terian [109]. However, this pattern is not consistent
throughout the Bilateria [reviewed in [105]]. The expres-
sion of Cdx in the posterior ectoderm in most bilaterian
lineages, which often forms the ectodermal hindgut,
seems to be highly conserved [110]. In the acoels and
nemertodermatids the posterior ectoderm forms the male
gonoduct of the adult, which is also composed of at least
a part of ectoderm. This suggests that the posterior ecto-
dermal expression was co-opted for hindgut formation in
different animal lineages [58,111].

Our survey of Hox and ParaHox genes in the acoel C. longi-
fissura did not reveal any ParaHox genes other than Cdx.
This could indicate a loss of additional paralogs or highly
divergent homeodomain sequences which could not be
recovered with our degenerate polymerase chain reaction
(PCR) approach. The fact that an ancestral epithelial
digestive system, as it is present in nemertodermatids and
cnidarians, has been reduced the to a syncytium in the
acoel lineage [33] could explain a loss of these genes from
the genome. Since the sister group Nemertodermatida
possesses an epithelial gut and an Xlox ortholog, expres-
sion studies of these genes in these worms may indicate
that there was an ancestral role of the other ParaHox genes
in bilaterian gut patterning.

Conclusion
Our results of the study of the embryonic expression pat-
terns of the Hox genes in a representative of the likely ear-
liest branch of the Bilateria, the acoelomorphs, show that
the small Hox gene complement is expressed in a stag-
gered pattern along the anterior-posterior body axis (Fig-
ure 6). This suggests that the spatial expression was
regulated by an ancestral regulatory system in the last
common ancestor of all bilaterians. However, the simul-
taneous initiation of Hox gene expression in the acoel
shows a lack of the temporal colinearity that is present in
some bilaterian lineages, perhaps due to a breakdown of
genomic clustering. Our description of the biphasic
expression of the Hox genes in the embryo of the acoel C.
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longifissura not only suggests a early function during gas-
trulation but that the later co-localization with pro-neural
genes indicates the ancestral role of the Hox genes in nerv-
ous system patterning which was co-opted for the pattern-
ing of other tissue layers and organ systems later in the
bilaterian evolution.

Methods
Material
Gravid adult acoels of the hermaphroditic species Convo-
lutriloba longifissura were collected from the sea water
tables of the Kewalo Marine Laboratory (Oahu, Hawaii)
and reared in glass fingers bowls of filtered seawater in
constant light. Egg clusters composed of 25 - 70 zygotes
were harvested the morning after collection. The culture
of this and related Convolutriloba species has been
described elsewhere [112]. Embryos were staged and
grown in petri-dishes in 0.22 μm Millipore filtered seawa-
ter. Convolutriloba longifissura embryos develop directly to
juvenile adults with no larval phase, hatching 4 - 5 days
after ovoposition at 25°C.

Gene amplification
We used standard degenerate primers F: 5-GARYTNGA-
RAARGARTT-3 (ELEKEF) and R: 5-CKNCKRTTYT-
GRAACCA-3 (WFQNRR) for Hox gene amplification from
Convolutriloba longifissura genomic DNA. The search was
extended with primers against specific Hox and ParaHox
genes (F1cHOX 5-MGNACNMGNACNGCNTA-3,
F2cHOX 5-ACNGCNTAYACNMGNTTY-3, GsxF1 5'-ATG
YCG CGW TCW TTT YTS RTG GA-3', GsxF2 5'-TTT YTS
RTG GAT TCN YT-3', XloxF1 5-GAYGARAAYAARMG-
NACNMGNAC-3) and sequencing of 325 clones only led
to the three Hox and one ParaHox gene. ClSoxB1 frag-
ments were amplified from cDNA of mixed embryonic
stages using the degenerate primers SoxBF1 5'-
GTNAARMGNCCNATGAAYGC-3', SoxBF2 5'-GGNCAR-
MGNMGNAARATG-3', SoxBR1 5'-TTNGKYTTNCK-
NCKNGG-3', SoxBR2 5'-TAYTTRTARTCNGGRTGYTC-3'.
Gene ends were recovered using RACE PCR (BD Smart
RACE kit, Clontech) in both 5' and 3' direction. For all
fragments pGEM-T-easy (Promega) was used as the clon-
ing vector. The gene sequences are deposited in GeneBank
with the following accession numbers: ClSoxB1:
GQ487528, ClantHox GQ487529, ClcentHox GQ487530,
ClpostHox GQ487531.

Phylogenetic analysis
To determine gene orthology of the ClSoxB1 gene, phylo-
genetic analysis using Bayesian inference was conducted
(mixed model option and 3,000,000 generations sampled
every 1000 generations and 4 chains). A maximum likeli-
hood analysis using the software PhyML [113] with 3000
bootstraps was conducted in order to analyse the gene
orthology of the Hox genes amplified in this analysis,

along with published sequences from the acoels Symsagit-
tifera roscoffensis and Isodiametra pulchra. In addition to the
homeodomain, 5' and 3' flanking regions were incorpo-
rated in the alignment, including the PBX domain when
present (see Additional file 1: Table S1). The software
MUSCLE [114] was used for the alignment and corrected
manually. The best protein evolution model (RTRev) was
determined with the software Protest. Extended Hox class
genes [115] were used as outgroup. [The nexus files are
available on request at andreas.hejnol@sars.uib.no].

Fixation
Embryos of known developmental stages were fixed in
3.7% formaldehyde in seawater for 3 hours at 4°C.
Embryos were washed in PTw (PBS + 0.1% Tween 20)
with several changes for at least 2 hours to dissolve the red
pigment. After a 5-minute wash with distilled water to
remove salt, embryos and juveniles were dehydrated by
several washes in 100% methanol. Hatchlings and
embryos were stored in separate tubes at -20°C for several
months and rehydrated for whole mount in situ hybridi-
zations.

Whole mount In situ hybridization
In vitro transcribed (Ambion Megascript T7 or SP6 kit)
DIG-labelled antisense in situ probes were made from
PCR amplified gene fragments (ClCdx 1155 bp, ClcentHox
855 bp, ClantHox 1006 bp, ClpostHox 900 bp, ClSoxB1
1450 bp). The whole mount in situ hybridization protocol
has been previously described and is available online
(http://www.natureprotocols.com/2008/09/18/
in_situ_protocol_for_embryos_a.php). Double in situ
hybridizations were carried out using both DIG-labelled
and fluorescein-labeled riboprobes. DIG-labelled ribo-
probes were detected colourimetrically with NBT/BCIP
substrates. After the first colour reaction, the alkaline-
phosphatase of the anti-DIG antibody was heat-inacti-
vated by incubation for 30 minutes at 60°C, followed by
incubation with 0.1 M glycine-HCl (pH 2.2). Fluorescein-
labelled riboprobes were detected using only 5-bromo-4-
chloro-3-indolyl-phosphate (BCIP). However, this precip-
itate is more diffuse than the product of the reaction using
nitro blue tetrazolium chloride (NBT)/BCIP as a substrate.
Additional comparisons of the expression patterns of
both genes were made using NBT/BCIP simultaneously
for both probes.

Embryos were mounted in 70% glycerol and the expres-
sion patterns were documented using an Axiocam high
resolution camera on an Axioscope mot2 plus with Axio-
vision (Zeiss, Inc, VA, USA) software. The precipitate of
the NBT/BCIP reaction reflects infrared light and stacks of
expression patterns for three dimensional reconstructions
were imaged using NBT/BCIP IR reflection microscopy
with a Zeiss LSM 510 confocal microscope [116].
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Histology
Embryos were embedded in glycol methacrylate (Techno-
vit® 7100) after in situ hybridization according to the man-
ufactures (Heraeus Kulzer, Germany) protocol, and
sectioned with a microtome with glass knives at the Pacific
Biosciences Research Center (University of Hawaii, Hono-
lulu) microscopy facility or with a sliding microtome at
the Institute for Biology (Humboldt-University Berlin).
Sections were stained with haematoxylin or nile blue
using standard histological protocols.

Immunohistochemistry
To label the serotonergic nervous system we used an anti-
body against tyrosinated-tubulin (Sigma, USA) raised in
mouse in a concentration 1:200 using a standard neural
antibody staining protocol [117] and visualized using a
Cy3 labelled anti-mouse secondary anti-body (Jackson
Laboratories, USA).

Abbreviations
A-P: anterior-posterior; ML: maximum likelihood; PCR:
polymerase chain reaction; BCIP: 5-bromo-4-chloro-3-
indolyl-phosphate; NBT: nitro blue tetrazolium chloride.
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