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1 Introduction

A function between sets can be extended by many different ways! If A,B and C are sets
and A is non-empty, B ↪→ C, then a function f : B→ A, can be extended asf ′ : C → A, by
many different ways. But there is not a canonical or unique way. Besides, if A, B and C
are even groups or Rings or Modules, f can be extended as many different functions. But
it is not same in Category theory, if we have a functor T : M→ A, and M is subcategory
of C and all colimits and limits exist in A, there is ways to find two canonical extension
functors from M to functors L, R : C→ A. These extensions functors are called Left Kan
Extension functor L and Right Kan Extension R. I am going to study here in my thesis
the category which is all colimits exist and the Left Kan Extension between Category
of R-Modules (ModR). I start with the category R[fin], its objects are finite sets and its
hom sets are R-modules. R[fin] is full subcategory of ModR and the Left Kan Extension
of T along the inclusion functor will be found later in the chapter 2.

In the processes of constructing the left kan extension L, some tools are necessary
to use. I have found the co-equalizer, co-product, bi-product diagrams in the category
ModR as my tools. After I define our functor L as co-equalizer digram, the universal
property of co-equalizer diagram gives beautifully the unique natural transformation
between two functors T and L along the full and faithful functor M to C. which is
necessary to prove L is the left kan extension.

Tensor product ( ⊗) is though as another parallel functor with L in here. Tensor
is bilinear as defining property but it is not a linear. As of Kan extension properties,
another parallel functor is not an additive functor, tensor is not linear nor additive, we
need to make a long proof to find the unique natural transformation between functors L
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and ⊗ by using universal property of co-equalizers. I could manage to prove that tensor
product has a quality to use as a parallel functor of the left kan extension.

In the last part of chapter 2, the natural transformation γ between L and ⊗ is proved
as a unique isomorphism. It becomes L ∼= ⊗ and it shows that Tensor product is a kind
of left kan extension.

In chapter (3), I introduce two category CG and BOP , the category of the transitive
G-set of finite group G and Category of finite G-sets. I construct these two categories
with the maps between objects are composing three kinds of maps, the induction, re-
striction and transferring. I am going to use three kinds of functions when I need the
finite g-sets to move between G’s subgroups. Then I prove that CG is full subcategory
of BOP . Being CG is full subcategory and the left Kan extension properties construct
the left induction which is a functor category. This left induction functor category gives
the connection between tensoring and the Grothendicks group representation.

End of chapter three I introduce the tensor induction with our categoriesBOP
H , BOP

K , BH
and BK . If we defining the TensKH to get well adjustment between the two Modules cate-
gories ModR(BH) and ModR(BK), It works and we get the commute diagram with TensKH
as the left kan extension.

2 Tensor product

2.1 Tensor Product is not a additive functor

Definition 2.1 ( Tensor products of Rmodules,
⊗

). : Tensor product is bilinear maps.
For any two Rmodules M and N, there exist a pair (T, g), Rmodules T and Rmordules
morphism g : M ×N → T, with the following property: Given any module P and bilinear
f : M ×N → P, there exists a unique morphism f ′ : T → P such that f = f ′ ◦ g. Every
R-bilinear map on M × N factors through T. Moreover, (T, g) and (T ′, g′) are two pairs
with this property, then there exists unique isomorphism j : T → T ′suchthatj ◦ g = g′.

The modules T constructed above is called the tensor product of M an N, and is
denoted by M⊗RN . It is generated as an Rmodule by the products x ⊗Ry. The elements
xi ⊗R yj generate M⊗RN if xiandyj are families of generators of M and N.

The tensor product is not an additive functor.

Definition 2.2 (Additive functor). A functor T from additive categories U to V with
properties T(f+g)= Tf + Tg for any parallel pair of arrows f, g : u → u′ in U and T
send zero object to zero object of V and binary bi-product diagram in U to a bi-product
diagram in V.

Lemma 2.3. : Tensor product is not additive functor.

Proof. Tensor product is though as a functor as follow: ⊗ : Hom(A,A′) × Hom(B,B′)
−→ Hom (A ⊗ B, A′ ⊗ B′). If we consider our categories A,A′, B,B′=R, then ⊗ :
Hom(R,R) × Hom(R,R) −→ Hom (R ⊗ R, R ⊗ R) is R × R −→ R since Hom(R,R)=
R and R ⊗ R= R.

4



Let ⊗ (a,b) = a.b and f(1)=a6=0 and g(1)=b 6=0 , (a,b) ∈ R × R and (f,g) 7→ f
⊗ g, f,g are morphisms in Hom(R,R). We consider (1, 1) in R × R, (1,1)= (1,0)+
(0,1). (f ⊗ g)(1,1)= ⊗[f(1), g(1)]=⊗(a,b)= ab 6= 0. It is bilinear. But (f ⊗ g)[(1,0)+
(0,1)]=a.0+0.b=0 and (f ⊗ g) [(1,1)] 6= (f ⊗ g) [(0,1) + (1,0)].

Tensor product does not have the property as additive functor. So, Tensor product
is not an additive functor.

2.2 Left Kan extension

In this chapter we are going to study about the left kan extension of the following
diagram:

R[fin]×R[fin] R[fin] ModR

ModR ×ModR

−X−

T

FR×FR

FR

L

⊗

Let L : ModR ×ModR → ModR be a functor together with a natural transformation η
: T → L(FR × FR). I am going to prove that the functor ⊗ together with the natural
transformation β : T → ⊗ ◦ FR × FR is a Left Kan extension of T along FR × FR. Let
γ : L→ ⊗ is natural transformation.

I am proving that the γ such that β = γK ◦η is an unique natural transformation.
That is as follow:

Nat(L,⊗) ∼= Nat(T,⊗ ◦ FR × FR)

γ 7→ (γFR × FR ◦ η) = β.

Definition 2.4 (Left Kan extension). Let T : M → A and K : M → C be functors. In
the diagram,

M A

C

T

K

the left Kan extension of T along K is a functor LKT : C → A together with a natural
transformation η : T → LKT K with the following properties: given any functor S : C
→ A together with the natural transformation β : T → SK, there exist a unique natural
transformation γ : LKT → S such that β = γK ◦η.

Nat(L, S) ∼= Nat(T, S ◦K)

γ 7→ (γK ◦ η) = β

is bijection.
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We illustrate the concept at a left Kan extension in the follwing diagrams category
and functors:

Given two functors T : M→ModR and K : M→ C, then the left Kan extension LKT
= L of T along K exists and L : C →ModR is characterized by a universal property.

M A = ModR

C

T

K L

S

Natural transformations η : T → LK, β : T → SK, and γ : L → S with β = γK ◦η
give the diagram.

T LK

SK

η

β
γK

Now I want to explain a notation γK which I am going to use.

Definition 2.5. γK: γ is the natural transformation defined as above. γK is the mor-
phism γc : L(c) → S(c) for each object c of C such that c=Km. γKm: L(c=Km) →
S(c=Km). Note that L(Km)=(LK)(m) and S(Km)=(SK)(m). The morphisms γKm for
m in M is a natural transformation from LK to SK, which we call γK. Let α : m→ m′

be a morphism in M and the diagram

L(c) S(c)

L(c′) S(c′)

γKm

LK(α) SK(α)

γKm′

commutes because γ is the unique natural transformation γ : L(c) → S(c) for all c ∈ C.
So, γK is natural too.

Lemma 2.6. : If [L, η : T → LK] and [L′, η’ : T → L′K] are left Kan Extensions,
then there exists a unique isomorphism γ : L → L′ with η′ = γK ◦η.

Proof. By the definition property of left Kan extension unique natural transformations
γ : L → L′ and γ′ : L′ → L. with η′ = γ K ◦η and η = γ′ K ◦η′.

Now γ′ ◦ γ : L → L is a natural transformation, with (γ′ ◦ γ)K ◦ η = γ′K ◦γK ◦η
=γ′K ◦η′ = η as a natural transformation η : T → LK. Also id : L → L is a natural
transformation with η= (idLK) ◦ η, so by uniqueness in the defining property of Left
Kan extensions we have that γ′ ◦ γ = idL.
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Similarly, (γ ◦ γ′)K ◦ η′ = γK ◦γ′K ◦η′ =γK ◦η = η′ as a natural transformation
η′ : T → L′K. idL′ : L′ → L′ is natural transformation with η′= (idL′K) ◦ η′. Again
uniqueness of natural transformation gives γ ◦ γ′ = idL′ .

γ′ ◦ γ = idL and γ ◦ γ′ = idL′ give that γ and γ′ are bijections and one of them is the
inverse of the other.

γ is isomorphism.

2.3 All colimit exist in ModR, then a left Kan extension of T along K exists.

ModR is a cocomplete category by the Theorem 3.13 of the reserch paper named ”
Limits, colimits and how to calculate them in the category of modules over a PID” by
KAIRUI WANG. The theorem states that;

Theorem 2.7 (Theorem 3.13). Cocompleteness Theorem,: A category C is cocomplete
if and only if the coproduct of any set of objects in C exists and the coequalizer between
any two morphisms with the same source and target exists.

Definition 2.8 (Cocomplete category). a cocomplete category is a category where col-
imits over diagrams F with a small source category J exist. F is an object of the categoty
of functors CJ , J is a small category.

Definition 2.9 (Coequlizer).

a b e

c

f

g

u

h
∃!h′

Given in a category a pair of maps f and g with the same domain a and codomain b, a
coequalizer of [ f, g] is a pair (u,e)of a morphism u: b→ e and codomain e such that (1)
uf=ug (2) if h: b→ c has hf=hg then h = h′u for a unique h′ : e→ c.

Definition 2.10 (A map of co-equlizer diagrams). A map of co-equalizer diagrams is a
diagram of the form:

a b e

a′ b′ e′

α

f

g

β

u

γ

f ′

g′

u′ (1)

So that the rows are co-equalizer diagrams and

βf = f ′α, βg = g′α and γu = u′α.
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Lemma 2.11. If in a map of co- equalizers diagrams (1) , the maps α and β are
isomorphisms, then γ is an isomorphism.

Proof.

a b e

c

f

g

u

h
∃!h′

Given diagram, maps f and g are such that : uf=ug and if h: b→ c has hf=hg then
h = h′u for a unique h′ : e→ c.

a′ b′ e′

c′

f ′

g′

u′

j ∃!j′

h is the surjective map and the maps f ′, g′ and u′ are such that : u′f ′ = u′g′ and
ifj : b′ → c′ hasjf ′ = jg′ then j = j′u′ for a unique j′ : e′ → c′. We get the diagram
below:

a b e c

a′ b′ e′ c′

α

f

g

β

u

h

γ

h′

f ′

g′

u′

j

j′

If α and β are isomorphisms, γ must be a isomorphism because in this diagram, we know
that

βf = f ′α, βg = g′α and γu = u′α.

h = h′u and j = j′u′, then c ∼= c′.

Definition 2.12 (co-product diagram).

a a t b b

d

f

i1

∃!µ
g

i2

is a coproduct diagram. i1 and i2 are injectives. If there exists d, f: a → d and g : b →
d , then there always exists unique µ such that f = µ ◦ i1 and g = µ ◦ i2 .
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2.3.1 Prosition

Given diagram of the form,

M A = ModR

C

T

K

a left Kan extension of T along K exists. The functor L : C → A and natural transfor-
mation η : T → LK can be constructed as follows: For c, an object of C, the value L(c)
of L of c is given by the coequalizer of the diagram⊕

Km0→c
⊕

m1→m0
(Tm1) (

⊕
Km→c Tm)

a

b

where the upper map a takes an element

x = (α : m1 → m0, f : Km0 → c, t ∈ Tm1) of
⊕

Km0→c

⊕
m1→m0

(Tm1)

to the element (f ◦Kα, t) of
⊕

Km→c Tm, and the lower map b takes x to the element
(f, T (α)(t))of

⊕
Km→c Tm. The natural transformation η : T → LK takes and element

t of Tm to the element in the co-equalizer LKm represented by the element

[id : Km→ Km, t ∈ Tm] of
⊕

Km0→c
(Tm0).

Proof. First we define L. Given an object c of C, let Lc be the co-equalizer described in
the statement of the proposition. Given h : c → c′,⊕

Km0→c
⊕

m1→m0
(Tm1) (

⊕
Km→c Tm) Lc

⊕
Km0→c′

⊕
m1→m0

(Tm1) (
⊕

Km→c′ Tm) Lc′

h◦

a

b

h◦

µ

∃!Lh

c

d

θ

we define Lh : Lc → Lc′ as follow;

an element x = (α : m1 → m0, f : Km0 → c, t ∈ Tm1) of
⊕

Km0→c

⊕
m1→m0

(Tm1)

will be sent to x′ by composing with h

x′ = (α : m1 → m0, h ◦ f : Km0 → c→ c′, t ∈ Tm1) in
⊕

Km0→c′

⊕
m1→m0

(Tm1).
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And the map c send x′ to (h ◦ f ◦Kα, t) in
⊕

Km→c′
Tm.

The map a sent x to

(f ◦Kα, t) in (
⊕
Km→c

Tm) and it is sent to (h ◦ f ◦Kα, t) in
⊕

Km→c′
Tm.

So,
(h ◦ a)(x) = (c ◦ h)(x)

We get the commute diagram for the upper maps a and c. For maps b and d.

an element x = (α : m1 → m0, f : Km0 → c, t ∈ Tm1) of
⊕

Km0→c

⊕
m1→m0

(Tm1)

will be sent to x′ by composing with h

x′ = (α : m1 → m0, h ◦ f : Km0 → c→ c′, t ∈ Tm1) in
⊕

Km0→c′

⊕
m1→m0

(Tm1)

and the map d send x′ to (h ◦ f, T (α)(t))) in
⊕

Km→c′
Tm

the map b sent x to

(f, T (α)(t)) in (
⊕
Km→c

Tm) and it is sent to (h ◦ f, T (α)(t)) in
⊕

Km→c′
Tm.

(h ◦ b)(x) = (d ◦ h)(x)

So we get commute digram for both of the pairs of maps a and c and b and d. It gives the
commuted diagram below and the defined properties of Lc gives the unique morphism
Lh from Lc to Lc′ which gives the commute diagram as (Lh ◦ µ)(t) = (θ ◦ h)(t), for all
follow t ∈ (

⊕
Km→c Tm) .

L is defined for all map h in C.
We are going to show that L is a functor L : C → ModR and η is a natural transfor-

mation. We have proved that Lh is exist in ModR for all h in C. In C, there exists Idc :
c→ c in C. Composing with Idc to x and get the commute diagram below and get IdLc.⊕

Km0→c
⊕

m1→m0
(Tm1) (

⊕
Km→c Tm) Lc

⊕
Km0→c

⊕
m1→m0

(Tm1) (
⊕

Km→c Tm) Lc

id

a

b

id ∃!L(Idc)=IdLc

a

b
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IdLc = L(Idc) exists .
If g: c′ → c′′ in C, g ◦ h : c → c′′ will induced a unique map Lg ◦Lh : Lc → Lc′′ as

follow:

⊕
Km0→c

⊕
m1→m0

(Tm1) (
⊕

Km→c Tm) Lc

⊕
Km0→c′

⊕
m1→m0

(Tm1) (
⊕

Km→c′ Tm) Lc′

⊕
Km0→c′′

⊕
m1→m0

(Tm1) (
⊕

Km→c′′ Tm) Lc′′

h◦

a

b

h◦ ∃!Lh

g◦

c

d

g◦ ∃!Lg

u

v

x = (α : m1 → m0, f : Km0 → c, t ∈ Tm1) of
⊕

Km0→c

⊕
m1→m0

(Tm1)

is sent same as above by map a, b, c and d. Again, sent x′ to x′′by composing with g.

x′′ = (α : m1 → m0, g ◦ h ◦ f : Km0 → c′′, t ∈ Tm1) in
⊕

Km0→c′′

⊕
m1→m0

(Tm1).

We get
(g ◦ h ◦ a)(x) = (u ◦ g ◦ h)(x) = (g ◦ h ◦ f ◦Kα, t)

and
(g ◦ h ◦ b)(x) = (v ◦ g ◦ h)(x) = (g ◦ h ◦ f, T (α)(t))

and the commute diagrams with the unique map

Lh : Lc′ → Lc′′.

Again, we consider map L(g ◦ h), we get

⊕
Km0→c

⊕
m1→m0

(Tm1) (
⊕

Km→c Tm) Lc

⊕
Km0→c′′

⊕
m1→m0

(Tm1) (
⊕

Km→c′′ Tm) Lc′′

g◦h◦

a

b

g◦h◦ ∃!L(g◦h)

u

v

This diagram works same way and get the same equations above,

(g ◦ h ◦ a)(x) = (u ◦ g ◦ h)(x) = (g ◦ h ◦ f ◦Kα, t)
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and
(g ◦ h ◦ b)(x) = (v ◦ g ◦ h)(x) = (g ◦ h ◦ f, T (α)(t))

So,
L(g ◦ h) = Lg ◦ Lh.

L is a functor.
Then we are going to show that η is natural transformation. The morphisms

ηm : Tm→ LKm

is such that:
t 7→ L(idKm)(ηmt) = ηmt.

and for any t ∈ TM and morphism f ,

(f : Km→ c, t) 7→ (L(f ◦Kα)(ηm1t)).

Then the diagramas

Tm1 Tm0

L(Km1) LKm0 Lc

Tα

ηm1 ηm0

LKα Lf

Any element t in Tm1 is sent by map (LKα ◦ ηm1)

(f : Km→ c, t) 7→ (L(f ◦Kα)(ηm1t))

t is sent by map (Tα ◦ ηm0)

(f : Km→ c, t) 7→ (L(f)ηm0(T (α)t))

(L(f ◦Kα)(ηm1t)) = (L(f)ηm0(T (α)t)).

It makes the previous diagram commute. And η is natural.
Let S is the another functor C → ModR together with β : T → SK. I am going to

prove that there is a unique natural transformation γ : L → S such that β = γK ◦η,

M A = ModR

C

T

K
L

S

12



The morphisms βm : Tm → SKm induces a morphism
⊕

Km→c Tm→ Sc

[f : Km→ c, t ∈ Tm)] 7→ S(f)(βmt).

And it gives a commute diagramas ;

Tm1 Tm0

S(Km1) SKm0 Sc

Tα

βm1 βm0

SKα Sf

Any element t in Tm1 is sent by map (SKα ◦ βm1)

(f : Km→ c, t) 7→ (S(f ◦Kα)(βm1t))

t is sent by map (Tα ◦ βm0)

((f : Km→ c, t)) 7→ (S(f)βm0(T (α)t))

(S(f ◦Kα)(βm1t)) = (S(f)βm0(T (α)t)).

It gives a commute diagram and the map φ as follow;⊕
Km0→c

⊕
m1→m0

(Tm1) (
⊕

Km→c Tm) Sc
a

b

φ

By universal property of coequalizer , we get a uniquely determined morphism γc : Lc→
Sc ⊕

Km0→c
⊕

m1→m0
(Tm1) (

⊕
Km→c Tm) Lc

Sc

a

b

ψ

φ ∃!γc

for any modules c in C such that φ = γc ◦ ψ. Then we get the unique natural trans-
formation γ : L→ S, ∀c ∈ C. It holds for any free module of finite set m in M, so we
get γKm : LKm → SKm. We have defined βm : Tm → SKm which gives φ in above
co-equalizerby composing with f: Km→ c and ηm : Tm→ LKm which gives ψ in above
co-equalizerby composing with f: Km → c . The composite of γKm and ηm is

βm = γKm ◦ ηm : Tm→ SKm, ∀m ∈M.
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We can express it as
β = γK ◦ η.

and the diagram is ,

T LK

SK

η

β
γK

So defining functor L as coequqlizer and unique natural transformation γ as above
make the L is left Kan extension.

Definition 2.13. : R[fin] is the category with finite sets as objects and the hom set in
R[fin](X,Y ) is Rmodules generated by maps between two finite sets X and Y .∑

i

aifi, ai ∈ R, fi ∈ hom(X,Y ).

.

Definition 2.14 (Full subcategory). : We say that S is a full subcategory of C when
the inclusion functor T : S → C is full. If every function T(c,c′) : hom (c,c’) → hom
(Tc, Tc’), for all pair (c, c’) of C, is surjective, T is full.

Definition 2.15. : Let X and Y are finite sets. FR is a full embedding functor which
makes a finite set to a free R modules.

FRX =
⊕
x∈X

R.

Every map of R[fin](X, Y) is sent the map in map(X,FRY ) as follow:

R[fin](X,Y )→ map(X,FRY )

(
∑
i

aifi) 7→ (x 7→
∑
i

aifi(x)),

and every map α in (X0, FRY ) will send to a map in ModR(FRX,FRY ) as follow:

map(X,FRY )→ModR(FRX,FRY ).

(α : X → FRY ) 7→ [(
∑
i

λixi) 7→
∑
i

λiα(xi)].

In this chapter I am going to prove that R[Fin] is full subcategory of ModR by using
the left kan extension as co-equalizer.
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Definition 2.16 (-X-). :R[fin] × R[fin] → R[fin], -X- is a functor which makes pair
of two finite sets to a Cartesian product of two finite sets.

(X,Y ) 7→ X × Y

and morphisms

(
∑

aifi,
∑

bjgj) 7→
∑
i,j

aibj(fi, gj).

Definition 2.17 (T and η). : T is a functor of composition of two functors FR ◦ −×-,

T (X,Y ) =
⊕
X×Y

R,

with a natural transformation

η : T → ⊗R ◦ FR × FR.⊕
X×Y

R→ FRX ⊗ FRY

∑
(x,y)

c(x,y)(x, y) 7→
∑
(x,y)

c(x,y)(x⊗ y).

Theorem 2.18. In the diagram (1) if there is a functor ⊗ : ModR ×ModR → ModR
and an natural transformations β : T → ⊗◦FR×FR , then there exist a unique natural
isomorphism γ : L→ ⊗ such that β = (γFR × FR ◦ η) : T → S.

R[fin]×R[fin] R[fin] ModR

ModR ×ModR

−X−

T

FR×FR

FR

L

⊗

(2)

Lemma 2.19. There is a natural isomorphism

LM ∼= M

15



Proof. Let
α : LM →M

such that: we have co-equalizer diagram

⊕
FX0→M

⊕
X1→X0

(FX1) (
⊕

FX→M FX) LM
a

b

ψ

an element x = (g : X1 → X0, f : FX0 →M, t ∈ FX1) of
⊕

FX0→M

⊕
X1→X0

(FX1)

will be sent to x′ by map a

x′ = (f, F (g)(t)) of
⊕

FX→M
FX

an element x = (g : X1 → X0, f : FX0 →M, t ∈ FX1) of
⊕

FX0→M

⊕
X1→X0

(FX1)

will be sent to x′′ by map b

x′′ = (f ◦ Fg, t) of
⊕

FX→M
FX.

An element
y = (f : Km0 →M, t ∈ FX) of

⊕
FX→M

FX

will be sent to (f(t)) in M by map φ in diagram below .⊕
FX0→M

⊕
X1→X0

(FX1) (
⊕

FX→M FX) LM

M

a

b

ψ

φ ∃!α

In above diagram ψ is surjective and we get the unique α according to the universal
properties of Co-equalizer. It is factor out the map φ such that φ = α ◦ ψ, (α ◦ ψ)(y) =
f(t).

Case 1. If M is a free Rmodules : M= FY, Y is a finite set.
Let

α : LM →M

[f : FX →M = FY, t ∈ FX] 7→ f(t),

16



and
β : M → LM

m 7→ (id : FY →M,m ∈ FY ),

we consider

α(β(m)) = α(id : FY →M = FY,m ∈ FY ) = id(m) = m

⊕
FX0→M

⊕
X1→X0

(FX1) (
⊕

FX→M FX) LM

(M = FY ) (M = FY )

a

b

ψ

f=φ ∃!α

(α◦β)=id

β

and

β(α(f : FX →M = FY, t ∈ FX)) = β(f(t)) = (id : FY →M,f(t) ∈ FY )

we know that, in LM,

(f : FX →M = FY, t ∈ FX)) = (id : FY →M,f(t) ∈ FY )

because t ∈ FX will be sent to f(t) ∈ FY by f and f(t) ∈ M=FY will be to itself by idFY .
Both elements are in the same equivalence class of LM. So, we have prove LM ∼= M for
M, any finitely generated FREE module.

Case 2. If
M = ⊕x∈XR,

for X is an infinite set. Let
αM : LM →M

[f : FX →M, t ∈ FX] 7→ f(t).

Let any m ∈ M,m =
∑
mx[x], only finitely many mx are not zero. Let Y= [ x ∈

X/mx 6= 0 ]. So we can express m as m=
∑
λy[y].

L is left adjoint functor. Then we get the diagram below,

LM L(⊕x∈XR) ⊕x∈XL(R)

M ⊕x∈XR ⊕x∈XR.

=

αM

∼=

αM (⊕αR)=∼=

= =

17



We have ⊕x∈XL(R) is isomorphic to ⊕x∈XR. Then we get

L(⊕x∈XR) ∼= ⊕x∈XL(R) ∼= ⊕x∈XR

and an isomorphism
αM : L(⊕x∈XR)→ ⊕x∈XR.

LM ∼= M.

Case 3. If M is any Rmodule: we can write M as a co-equalizer of free Rmodules

K = ker(⊕m∈MRm→M)∑
m∈M

am[m] 7→
∑

amm.

Get a surjective map
⊕k∈KRk → K

We have exact sequence

⊕k∈KRk ⊕m∈MRm→M → 0
β

Thus,

⊕k∈KRk ⊕m∈MRm M
0

β (3)

is an coequalizer sequence. We get coequalizer sequence with L too as L is left adjont.

L(⊕k∈KRk) L(⊕m∈MRm) LM
L0

L(β) (4)

As the lemma 2.11, these two co-equalizers diagram 3 and 4 have the same universal
property of co-equalizer. We get commute diagram as follow:

L(⊕k∈KRk) L(⊕m∈MRm) LM

⊕k∈KRk ⊕m∈MRm M

α⊕Rk=∼=

L0

Lβ

α⊕Rk=∼= αM

0

β

18



αM works same as above in case2. It is an isomorphism. Therefor

α : LM →M

is isomophism for all mordules M ∈ ModR and

LM ∼= M.

2.4 Defining L, the left kan extension and a co-equalizer

Let functors - × -, product of sets. × (X,Y)= X×Y, FR is a functor which makes free
modules of finite sets, FR(X × Y ) = ⊕X×YR and L : modR × modR → modR be a
co-equalizer functor of modules. T is a functor of composition of two functors FR ◦−×-
, T (X,Y ) = ⊕X×YR.

R[fin]×R[fin] R[fin] ModR

ModR ×ModR

−X−

T

F×F

F

L (5)

In the diagram 5, Let L is a coequalizer such that:

⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1 F (X0 × Y0)

⊕
FX→M,FY→N F (X × Y )

L(M,N)

u v

ζ
(6)
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Lemma 2.20. There is a coequalizer diagram in 5 as follow:⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1 FX0 × FY0

⊕
FX→M,FY−→N FX × FY

M ×N

u′ v′

ζ′
(7)

Proof. We have shown in 2.19 that LM is isomorphic to M and we have the co-equalizer
diagram:

⊕
FX1→M

⊕
X0→X1

(FX0) (
⊕

FX→M FX) M

M ′

a

b
h

ψ

!ξ

(8)

h works
(h ◦ a)(x) = (h ◦ b)(x),∀x ∈ (

⊕
FX1→M

⊕
X0→X1

(FX0)), h = ξ ◦ ψ.

The two maps work such that : en element x in FX0 is send to different element in FX
as follow:

x = (α : FX1 →M,f : FX0 → FX1, t ∈ FX0) 7→ (α, f(t))

by map a and

x = (α : FX1 →M,f : FX0 → FX1, t ∈ FX0) 7→ (α ◦ f, t)
by map b. But these two different elements in FX are sent to same elements f(t) of M
by ψ.

There is a co-equalizer in FY too such that:⊕
FY1→N

⊕
FY0→FY1(FY0) (

⊕
FY→N → FY ) N

N ′

a′

b′

h′

ψ′

!ξ′

(9)
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h’ works

(h′ ◦ a′)(y) = (h′ ◦ b′)(y),∀y ∈ (
⊕

FY1→N

⊕
Y0→Y1

(FY0)), h′ = ξ′ ◦ ψ′.

y = (β : FY1 → N, g : FY0 → FY1, s ∈ FY0) 7→ (β, g(s))

by map a′ and

y = (β : FY1 → N, g : FY0 → FY1, s ∈ FY0) 7→ (β ◦ g, s)

by map b′ . But these two different elements in FY are sent to same elements g(s) of N
by ψ′.

The co-product of co-equalizer diagrams is a co-equalizer diagram.
In our category R[fin] there are objects which co-product of its object, finite set. So

these coproduct objects will be the
coproduct of 8 and 9 gives the following equation

⊕
FX1→M ⊕FX0→FX1(FX0)

⊕
⊕FY1→N ⊕FY0→FY1 (FY0)

(⊕FX→MFX)⊕ (⊕FY→NFY )

M ⊕N

u⊕u′ v⊕v′

ψ⊕ψ′

This is equal to

⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1(FX0 × FY0)

⊕
FX→M,FY→N (FX × FY ) (M ×N)

u×u′

v×v′

ψ×ψ′

Since we have co-product diagram:

(
⊕

FX→M FX) (
⊕

FX→M FX)
⊕

(
⊕

FY→N FY ) (
⊕

FY→N FY )

M ⊕N

M ′ ⊕N ′

h

ψ

i1

ψ⊕ψ′

h′

ψ′

i2

∃!ξ⊕ξ′
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and get unique map ξ⊕ξ′ such that h= (ξ⊕ξ′)◦ψ and h’= (ξ⊕ξ′)◦ψ′, we get co-equalizer
diagram:⊕

FX1→M,FY1→N
⊕

FX0→FX1,FY0→FY1(FX0 × FY0)
⊕

FX→M,FY→N (FX × FY ) (M ×N)

M ′ ×N ′

u×u′

v×v′
h⊗h′

ψ×ψ′

!ξ×ξ′

(10)

Lemma 2.21. The bilinear map

φ̂ : FX × FY → F (X × Y )

φ̂(
∑
i

λixi,
∑
j

µjxj) =
∑
i,j

λiµj(xi, yj)

induces a map of coequalizer diagrams and the map

φ : M ×N → L(M,N).

Proof. We have defined the co-equalizer diagram 6 as follow⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1(F (X0 × Y0)

⊕
FX→M,FY→N F (X × Y ) L(M ×N)

a

b

ζ

and I have got a co-equalizer in the lemma 2.20⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1(FX0 × FY0)

⊕
FX→M,FY→N (FX × FY ) (M ×N)

u×u′

v×v′

ψ×ψ′

From the commute diagram of the two co-equalizer diagrams, get a map φ as follw:⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1(FX0 × FY0)

⊕
FX→M,FY→N (FX × FY ) (M ×N)

⊕
FX1→M,FY1→N

⊕
FX0→FX1,FY0→FY1 F (X0 × Y0)

⊕
FX→M,FY→N F (X × Y ) L(M,N)

⊕φ̂

u×u′

v×v′

⊕φ̂

ψ×ψ′

φ

a

b

ζ
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In the diagram, ∀ finite set X and Y,

φ̂ : FX × FY → F (X × Y )

(
∑
i

λixi,
∑
j

µjxj) 7→
∑
i,j

λiµj(xi, yj).

Proposition 2.22. φ is bilinear.

Proof. φ inherit bilinearlity from the bilinear φ̂ such that: Given x0, x
′
0 and y0, choose

x, x′, y such that
ψ(x) = x0, ψ(x′) = x′0, ψ

′(y) = y0.

We define φ̂ is bilinear map, then

φ̂(x+ x′, y) = φ̂(x, y) + φ̂(x′, y)

(ξ)((φ̂)(x, y) + φ̂(x′, y)) = (ξ)(φ̂)(x, y) + (ξ)(φ̂)(x′, y)......(∗),

since ξ is bilinear too. In the above commute diagram

(ξ)(φ̂)(x, y) = (φ)(ψ)(x), (φ)(ψ′)(y) = φ(x0, y0).

In the (*)

(ξ)((φ̂)(x, y) + φ̂(x′, y)) = (ξ)(φ̂)(x, y) + (ξ)(φ̂)(x′, y) = φ(x0, y0) + φ(x′0, y0).

We have

(ξ)((φ̂)(x, y) + φ̂(x′, y)) = φ((ψ(x) + ψ(x′), ψ′(y)) = φ(x0 + x0, y0)

φ(x0 + x′0, y0) = φ(x0, y0) + φ(x′0, y0).

φ is a bilear map.

Proposition 2.23. There is a homomorphism φ̄ : M ⊗R N → L(M,N)

Proof: Universal properties for defining tensor product(this is the unique natural
morphism γ).

Lemma 2.24. The maps FX → M and FY →N induces a homomorphism ψ̄ : L(M,N)
→ M ⊗R N
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proof:

FX ⊗R FY M ⊗R N

F (X × Y )

θ=(ψ⊗ψ′)

∼=
ψ

F (X × Y ) (FX ⊗R FY )

L(M ×N) M ⊗R N

∼=

ψ
ξ θ=(ψ⊗ψ′)

ψ̄

Lemma 2.25. ψ̄ ◦ φ̄ = id[M⊗R N]

Proof. Tensor is bi-linearity, so θ and ξ are mordules homomorphisms and conjugacy of
upper horizontal maps give the identity map ψ̄ ◦ φ̄.

⊕FX→M,FY→NFX ⊗R FY ⊕FX→M,FY→NF (X × Y ) ⊕FX→M,FY→NFX ⊗R FY

M ⊗R N L(M,N) M ⊗R N

∼=

θ

∼=

ξ θ

φ̄ ψ̄

Lemma 2.26. φ̄ ◦ ψ̄ = id[L(M , N)]

Proof.

⊕FX→M,FY→NF (X × Y ) ⊕FX→M,FY→NFX ⊗R FY ⊕FX→M,FY→NF (X × Y )

L(M,N) M ⊗R N L(M,N)

∼=

ξ

∼=

θ ξ

ψ̄ φ̄

Tensor is bi-linearity, θ and ξ are mordules homomorphisms and conjugacy of upper
horizontal maps give the identity composing φ̄ ◦ ψ̄.
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Lemma 2.27.
ψ̄ : L(M,N)→M ⊗R N

is a natural isomorphism

Proof :Lemma 2.26 and2.27 give that both φ̄ and ψ̄ are natural isomorphism. And
the unique natural morphism γ of diagram 1 is

γ = ψ̄ : L(M,N)→M ⊗R N

Conclusion is our two functor are isomorphic.

L ∼= ⊗

Theorem 2.28. Let R[fin] be the category of finitely generated free R-modules (2.13).
Let FR : R[fin]→ ModR be the full embedding from (??) and T : R[fin]×R[fin]→ ModR
is a composing of FR and − × −, T (X,Y ) = FR(X × Y ), as (2.17). Let L be the left
Kan Extension of T along FR × FR,

L : ModR ×ModR → ModR

with the natural transformation η : T → L ◦ FR × FR, and the another functor ⊗ with
the natural transformation β : T → ⊗ ◦ FR × FR, then there exist a unique natural
isomorphism

γ : L→ ⊗

such that
β = (γFR × FR ◦ η).

R[fin]×R[fin] R[fin] ModR

ModR ×ModR

−X−

T

FR×FR

FR

L

⊗

3 Tensor induction

3.1 Constructing the category Bop

I am going to start with the category of G-sets. The category B+ will be constructed
with objects of the category of G-sets but maps are only some kinds of G-maps we need.
Then I will get the B from B+ by Grothendieck construction. It is an additive category.
Then a contra-variant functor will give the category of Bop which I am going to study.

There are two different categories of ”Mackey functors” but I use the original one
defined by Dress.
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Definition 3.1 (A Mackey functor). Mackey functor is an additive functor from an
additive category BOP to Ab catigory ModR. We work with Mackey functors over a
commutative ring R. A Mackey functor over R is a functor

M : BOP → ModR

Definition 3.2 (Additive Category). Additive category is an Ab Category which has a
zero object and a bi-product for each pair of its objects.

Definition 3.3 (Bi-product diagram). Bi-product diagram for the objects a, b ∈ A is a
diagram

a c b

i1

p1 p2

i2

So that,

a c b
p1 p2

is a product diagram and

a c b
i1 i2

is a co-product diagram since

p1i1 = 1a, p2i2 = 1b and i1p1 + i2p2 = 1c

Definition 3.4 (G-set). : Let G is a finite group. A left G-set is a set and a group
homomorphism

f : G×X → X,

(g, x) 7→ gx ∈ X,

such that the following conditions hold:
1) if g,h ∈ G and x ∈ X, then g.(h.x)= (gh)x,
2) if 1G is identity element of G then 1G.x=x.

Definition 3.5 (G-equivariant map or G-map). If G is a group and X and Y are left
G-set, a morphism of G-sets from X to Y is a map f : X → Y such that f(gx)= g f(x),
for any g∈G and x ∈X. Such a map is called G=equivariant map from X to Y and the
set of such a map is denoted by HomG(X,Y ).
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B+ is constructed from category of G-sets by taking all objects, G-sets, a,b, c,d..etc
and G-maps which are able to be written by the composition of induction, transfer and
restriction maps in representation ring. For example: a map f from a to b of B+ we can
describe such that

a c b
f1 f2

f1 get from f ′1, a G map from c to a. f1 is from a to c rather than c to a. f1

and f2 are G equavarience maps. f1 the map with dotted arrow in B+, correspond to
induction maps with indentity or a transfer maps in the familier makey functors like
representation ring and so are called transfer. f2 induces the restriction maps and are
called restrictions. The hom set of B+ are commutative monoids ( semi group with
identity).

If two maps are determin the same map in B+, then there is an inner isomorphism
of c and d as shown in diagram;

c b

a d

f2

∼=
f1

g1

g2

Composition of two maps f and g is

a c b e d
f1 f2 g1 g2

and this compositions of two maps are given by the following pullback diagram:

h e

c b

P2

P1
g1

f2

c h e
P1 P2

We get the composition map a to d in B+ is as follow:

a h d
(gf)1 (gf)2
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g ◦ f : a→ d.

In B+ zero set is the initial and terminal object. Disjoin union of sets, in the B+, get
from the direct sum and direct produce of each map as follow’:

a u

a t b u t v c

b v

This is a pair of maps out of a t b and it is coproduct diagram in B+ and

u a

c u× v (a× b)

v b

the above is a poduct diagram in B+

Category B is obtained from with B+. They have same objects, finite G-sets but
hom set are free abelian group. An abelian monoid, set of homomorphism of B+ is
quotient by the subgroup generated by the elements of the form

[f t g]− [f ]− [g],

f and g are g-maps in of B+ , [f] denotes the isomorphism class of f and f t g is disjoint
union of f and g. So, objects of B are finite G-sets same as B+ objects and the morphisms
of B are formal differences of maps inB+. That’s why hom sets in B become abelian
groups. There is an obvious functor from B to it’s opposite category BOP .

3.2 The category CG

G is a finite group. I am going to construct the CG from category C(G) and C(G) is
constructed from category C. C is the same category C in the book Biset Functors for
Finite Groups of Serge Bous. It is the biset category of finite groups. Objects of the C
are finite groups and morphism from finite groups G to H are

HomC(G,H) = B(H,G).
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Definition 3.6. B(H,G) B(H,G), the Grothendieck group of the category (H, G) bisets,
is defined as the quotient of the free abelian group on the set of isomorphism classes of
finite (H,G)-bisets by the subgroup generated by the element of the form,

[X t Y ]− [X]− [Y ],

where X and Y are finite (H, G)-bisets, [X] is an isomorphism class of X and X t Y is
disjoint union of X and Y.

Definition 3.7. (H,G) biset If H and G are finite groups and X is (H, G)-biset. (H,G)-
biset is a left H-set and right G-set, such that

∀h ∈ H,∀x ∈ X,∀g ∈ G, (h.x).g = h.(x.g)inX.

In C, The every morphism between finite groups G to H can be factored as the
composition of IndHD ◦ InfDD/C ◦ Iso(f) ◦DefBB/A ◦Res

G
B. f is isomorphism from B/A to

D/C. B and D are sub groups of G and H, A and C are normal subgroups of B and D.

HomC(G,H) = B(H,G)

We have fundamental bisets in C(G) which connected with the three types of maps
we are having in the category C(G). Let H is a subgroup of G.

1. G is an (H,G)-biset for the actions given by left and right multiplication in G and
it is denoted by ResGH .

2. G is an (G,H)-biset for the actions given by left and right multiplication in G and
it is denoted by IndGH .

3. If f : B → D is a group isomorphism, then the set D is an (D,B)-biset, for the
left action of D by multiplication, the right action of B given by taking image by f, and
then multiplying on the right in D. It is denoted by Iso(f).

Category C(G) can be constructed from C by taking a fixed finite group G. C(G) has
objects the group G and its subgroups H, K, A, B, C, D... ect. The morphisms in C(G)
can be shown as composition of only three types of maps, induction map (Ind) , inner
isomorphism (Iso) and restriction map(Res). Any Map from H to K can be factored as

IndKD ◦ Iso(f) ◦ResHB ,

induction maps from subgroup D to K (IndKD) , inner isomorphisms from B to D (Iso(f))
and restriction maps from H to B (ResHB ). For any objects of C(G) H and K,

HomC(G)(H,K) ( HomC(H,K)

ModC(G) is not equivalent to the category of ModBOP due to the Theorem A of
Mackey Functors and Bisets, Hambleton, Taylor and Williams.

Then CG the category I aim, will be constructed from C(G) by a functor.

F : C(G)→ CG.

The paper of Hambleton, Taylor and Williams, I mention above, gives such a functor,
where CG is full subcategory of BOP with objects G/H where H is a subgroup of G.
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3.3 BOP and CG

Category CG is full subcategory of BOP . All maps of CG is in BOP since maps are
composition of Induction, inner Isomorphism and restriction maps. There is a functor

i : CG ↪→ BOP .

Definition 3.8 (Ab). Ab is the category which whose objects are all small (additive)
abelian groups and morphisms are all homomorphisms of abelian groups.

Definition 3.9 ( Left Induction LIndB
OP

CG
). The Left Induction functor is from the book

named Biset Functors for Finite Groups by Serge Bouc .
Let the functor i : CG ↪→ BOP ,

G/H 7→ iH = G/H

In the diagram

CG Ab

BOP

F

i
L

LIndB
OP

CG
is a functor of Ab categories . It sends from ModCG to ModBOP . Let A is the

A b category.

ModBOP = [BOP → A] and

ModCG = [CG → A]

LIndB
OP

CG
: ModCG →ModBOP

F is a functor in The functor category ModCG , F : CG → Ab.

LIndB
OP

CG
(F )(iG/H) =L IndB

OP
CG

(F )(G/H)

LIndB
OP

CG
works as follow,

LIndB
OP

CG
(F )(G/H) = [

⊕
K∈S

HomBOP (G/K,G/H)
⊗

F (K)]/I.

S is set of representative of objects of C(G), set of subgroups of G. I is the submodule
generated by the elements

(u ◦ α)⊗ f − u⊗ F (α)(f),

For any elements J and K of S, any morphism α ∈ HomCG(G/J, G/K), any f ∈ F(G/J),
and any u in ∈ HomBOP (iG/K, iG/H). J, K and H are subgroups of G.

i* ◦L IndBOPCG
sends F (G/H) 7→

⊕
K∈S

HomBOP(iG/K, iG/H)
⊗

F (G/K)/I.
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Let f ∈ F(G/H), Then H ∈ S and HomBOP(G/H,G/H)
⊗
F (G/H)/I. So, f 7→ [idG/H

⊗
f ]

Any map v in HomBOP , v : iG/K → iG/J, the map

LIndB
OP

CG
(F )(v) :L IndB

OP
CG

(F )(iG/K)→L IndB
OP

CG
(F )(iG/J)

is induced by composition on the left in BOP .

Theorem 3.10. There is an equivalence of categories ModBOP to ModCG.

Proof. Let every objects of BOP is finite sum of objects of CG.

Claim 1. The functor i* :ModBOP → ModCG is full and faithful.
Proof for claim 1,

ModBOP = [BOP → A],

A is the Ab category, and
ModCG = [CG → A]

Let functor i: CG ↪→ BOP . Every object H in CG,

i(G/H) = G/H ∈ ob(BOP).

Let isomorphism f : G/B −→ G/D in CG (D = gBg−1). i sent Iso(f) to

G/D G/B G/B
f

id

For IndKD (D ⊂ K) , IndCG : G/K → G/D will be sent

G/K G/D G/D
f1

id

For ResHB (B⊂ H), ResCG : G/B → G/H will be sent to

G/B G/B G/H
id

f2

ModBOP = [BOP → A],

if we pre-compose i to any functor F ′ of ModBOP , we will get the

i ◦ F ′ : CG → A
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i* : ModBOP →ModCG .

If any pair of objects in ModBOP are exist in ModCG , every morphism between these

objects will exist in ModCG too. So, i* is full and faithful.
Claim 2.

i : CG ↪→ BOP .

i is a full and faithful functor from CG to BOP .
proof for claim 2,
Every object of CG are exist in BOP since every object in BOP is the finite sum

objects of CG. Any pair of objects of CG are exist in BOP as I showed above. So, i is a
full and faithful functor from CG to BOP .

Let the functor LIndB
OP

CG
: ModCG → ModBOP .

CG A

BOP

T

i
L

Both BOP and A are addictive categories. There exists Left Kan extension L of T
along i. L is an addictive functor and pair with the natural transformation ε : T → Li.
It is a functor of the functor category LIndB

OP
CG

. I give a short name

i′ =L IndB
OP

CG
.

According to the Corollary 3, Section X.3 of Categories for the Working Mathematician
by Mac Lane, if the functor i is full and faithful, then the universal arrow η : T → Li
for Functor L along i is a Natural Isomorphism η :T ∼= Li. But I know

Li = i′T and i* ◦ i′T = i′T.

By the adjunction, there is a natural bijection map

(T i* ◦ i′T ) (i′T i′T )
ηT bijection

There exists id ∈ [i′T → i′T ]⇐⇒ id ∈ [T → i* ◦ i′T ]

Then, get i* ◦ i′ ∼= idModCG
On the other hand, the Theorem 1 of adjunction, chapter IV.1 of Saunders Mac

Lane, gives a natural map

(i′ ◦ i*L L) (i*L i*L)
εL bijection
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There exists id ∈ [i*L→ i*L]⇐⇒ id ∈ [i′ ◦ i*L→ L]

i* ◦ i′ ◦ i*L i*L

i*L

i*◦ε

id
i*◦η

The two isomorphisms i* ◦ η and id are give that i* ◦ ε is isomorphism in the naturally
commute diagram. And the following proposition 3.11 gives that ε is isomorphism for
all L of ModBOP .

i′ ◦ i*L Lε

i′ ◦ i* = IdMod
BOP

So, If every objects of BOP is finite sum of objectives of CG, then The functor i*

:ModBOP → ModCG is equivalence of categories.

Proposition 3.11. For every additive functor M : BOP → A, the natural map M(a ⊕
b) → M(a) × M(b) is an isomorphism.

Proof. Inmage of disjoint union of Gsets, a
⊔
b in BOP is M(a

⊔
b) in A.

Claim. M(a
⊔
b) is isomorphic to M(a) × M(b).

Due to definition of Additive functor 2.2, M send the bi-product diagram to a bi-
product diagram in A.

According to the Theorem 2 of the section VIII.2, Categories for working Mathemati-
cian of Mac Lane, for any two objects a and b in an Ab category A, A has bi-product
of them if and only if A has product of them.

According to the definitions of bi-product 3.3 and co-product 2.12,

M(a) M(a t b) M(b)

M(a)×M(b)

i1

i1

∃!α
i2

i2

there is the unique map between M(a ⊕ b) and M(a) × M(b) and the unique map α
should be an isomorphism since

α ◦ i1 = i1 and α ◦ i2 = i2

M(a⊕ b) ∼= M(a)×M(b)
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3.4 Tensor induction of representations

Let R is a commutative ring, then the tensor product M ⊗R N of two R-modules is itself
an R-module (by functoriality). This allows us to iterate the tensor product construction.
In particular, we can consider⊗

x∈X M = M ⊗RM ⊗RM ⊗R ........⊗R M
This construction can also be considered as a left Kan extension : F is functor for

making free modules and L(M)=
⊗

x∈XM ∈ModR, L is a functor of left Kan extension.
Let a finite set X is fixed. In the following diagram

R[fin] R[fin] ModR

ModR

map(X,−)

F

F

L

map(X,−) : R[fin]→ R[fin]

Y 7→ map(X,Y ).

The functor map(X,−) sends the maps fi : Y → Y ′ ∈ R[fin] and ai ∈ R,∑
i=1,..n

aifi 7→ φ = [
∑

i:X→1,..n

(
∏
x∈X

ai(x))fi] 3 R[fin].

Map
fi : map(X,Y )→ map(X,Y ′)

is given by the formula fi(k)(x) = fi(x)(k)(x) for k ∈ map(X,Y) and x ∈ X. We can
show the previous diagram as a commute diagram as follow too,

Y ∈ R[fin] R[fin] 3 map(X,Y )

FY ∈ ModR ModR 3 F (map(X,Y )

map(X,−)

F F

M 7→⊗x∈XM

The total number of maps in map(X,Y) is|Y ||X| maps and when we make the free
module

F (map(X,Y )) ∼=
⊕

f∈map(X,Y )

R = R|y|
|X|
.

and FY = ⊕y∈YR. So,

⊗x∈XFY = ⊗x∈X(⊕y∈YR) = R|y|
|X|
.
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F (map(X,Y )) ∼= ⊗x∈XFY.
We define the functor L, left induction functor,

LM =
⊗
x∈X

M = M ⊗RM ⊗RM ⊗R .....⊗RM

as a co-equalizer⊕
FY1→M

⊕
FY0→FY1 F (map(X,Y0))

⊕
FY→M F (map(X,Y )) LM

a

b

u

(11)
In equation 11, the element

x = (α : FY1 →M,f : FY0 → FY1, t ∈ map(X,Y0)) of
⊕

FY1→M

⊕
FY0→FY1

F (map(X,Y0))

will be sent by map a to (α ◦ f, t) ∈ (
⊕

FY→M F (map(X,Y ))) and it will be sent to
an element Lm ∈ LM by u. The element x will be sent by map b to (α, f(t)) ∈
(
⊕

FY→M F (map(X,Y ))) and it will be sent to the same element Lm ∈ LM by u.

Lemma 3.12. There is a coequalizer diagaram as follow:⊕
FY1→M

⊕
FY0→FY1 map(X,FY0)

⊕
FY→M map(X,FY ) map(X,M)

a′

b′

u′

(12)

In equation 12
Two parallel morphisms a′ and b′ send en map to two different maps of

⊕
FY→M map(X,FY )

but coequalizer u′ make both of them send to same maps in map(X, LM) in In equation
11.

Let the element

x′ = (α : FY1 →M,f : FY0 → FY1, a ∈ map(X,FY0)) of
⊕

FY1→M

⊕
FY0→FY1

map(X,FY0)

send by map a′ to (α◦f, a) ∈ (
⊕

FY→M map(X,FY )) and then we get the map (α◦f◦a) ∈
map(X,M) by map u′.

Let x′ send by map b′ to the (α, f(a) ∈ map(X,FY )) and get (α◦f ◦a) ∈ map(X,M)
by u′.

Proof. The proof for this lemma is the same with case of Lemma 2.20 if the the fix set
X has the only two elements. If X has more than two elements we can use the induction
method to prove it is right for all finite set X. I will omit this detail proof here in my
thesis.
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Definition 3.13 (The tensor induction in the diagram). The formula for the tensor
induction of representations. Let G and H be finite groups and let X be a left H, right
G -set which is free as an H -set. F is functor of free modules. We define a functor
mapH(X,−) from HR[fin] to GR[fin] taking an object Y to mapH(X,Y ).

HR[fin] G− Set R[G]−Mod

R[H]−Mod

mapH(X,−)

F

F

TensGH

It takes a H-morphism f =
∑

i=1,..n aifi, fi : Y → Y ′ and ai ∈ R, to

φ = [
∑

I:H\X→[1,..n]

(
∏

u∈H\X

aI(u))fI◦p] 3 GR[fin],

where p : X → H\X is the projection and given J : X → [1, ..., n], the map

fJ : map(X,Y )→ map(X,Y ′)

is given by the formula fJ(k)(x) = fJ(x)(k(x)) for k ∈ map(X,Y) and x ∈ X. It is
straight forward to check that

φ(gk) = gφ(k)

for every g ∈ G. Using that H acts freely on X, f is an H-morphism we can verify that
if k is a H-map, then φ(k) ∈ F (mapH(X,Y ′). This means that we have a G-morphism
φ : map(X,Y )→ map(X,Y ′). We define

map(X,−)(f) := φ.

Here in the diagram, TensGHM is the tensor induction functor, R[G]-Mod is R module
with an action of G. That is

⊗
(M) = TensGHM ∈ R[G]- Mod. There is an isomorphism

of R-modules

TensGHM
∼=

⊗
G/H

M.

3.5 Tensor induction with the category of BOP
G

Let H and K are subgroups of G and H ⊂ K. We construct two categories BOP
H and

BOP
K from H and K. Then the Mackey functors give ModR(BH) and ModR(BK) and we

can have TensKH as a functor between two categories of modules.

R(BOP
H ) R(BOP

K ) ModR(BK)

ModR(BH)

PKH

FH

T

FK

TensKH

(13)
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in the diagram ModR(BH) is the category of the functors from RBH to ModR, and the

functor PKH = map(K,−). Let X,X ′ and Y are objects of RBOP
H , PKH takes a map in

RBOP
H

X c Y
f1 f2

(14)

where X, Y and c are H-set, to

map(K,X) map(K, c) map(K,Y )
f ′1 f ′2

FH takes the map X to X ′ of R(BOP
H )

X c′ X ′
f ′′1 f ′′2

to RBH(X,−). For any Y in ob(BOP ), there is RBH(X,Y ). The map (X,X ′) in RBOP
H

induces RBH(X ′, Y ) by Yoneda embedding lemma as follow:

X ′ c′ X
g1 g2

inRBH ,and

X c Y
f1 f2

give by composing and having pull back

X ′ e Y
h1 h2

Yoneda embedding : RBOP
H → [ModRBH = (RBH ,ModR)]

Another functor FK is working same as FH . If we define Tensor induction TensKH similar
as previous section, we get the functor which makes commute the diagram 13.
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