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ABSTRACT 

Background: Disturbances in one carbon metabolism may contribute to carcinogenesis by 

affecting methylation and synthesis of DNA. Choline and its oxidation product betaine are 

involved in this metabolism and can serve as alternative methyl group donors when folate 

status is low.  

Methods: We conducted a case-control study nested within the European Prospective 

Investigation into Cancer and Nutrition (EPIC), to investigate plasma concentrations of the 

methyl donors methionine, choline, betaine, and dimethylglycine (DMG) in relation to 

colorectal cancer (CRC) risk. Our study included 1,367 incident CRC cases (965 colon; 402 

rectum) and 2,323 controls matched by gender, age group, and study center. Multivariate-

adjusted odds ratios (OR) and 95% confidence intervals (CI) for CRC risk were estimated by 

conditional logistic regression comparing the fifth to the first quintile of plasma 

concentrations.  

Results: Overall, methionine (OR: 0.79, 95%CI: 0.63-0.99, P-trend=0.05), choline (OR: 0.77, 

95%CI: 0.60-0.99, P-trend=0.07), and betaine (OR: 0.85, 95%CI: 0.66-1.09, P-trend=0.06) 

concentrations were inversely associated with CRC risk of borderline significance. Among 

women, but not men, high choline concentration was associated with decreased CRC risk 

(OR: 0.62, 95%CI: 0.43-0.88, P-trend=0.01). In participants with folate concentration below 

11.3 nmol/L, high betaine concentration was associated with reduced CRC risk (OR: 0.71, 

95%CI: 0.50-1.00, P-trend=0.02), which was not observed for those having a higher folate 

status. Plasma DMG was not associated with CRC risk. 

Conclusions: Individuals with high plasma concentrations of methionine, choline, and 

betaine may be at reduced risk of colorectal cancer. 
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INTRODUCTION 

Colorectal cancer (CRC) is third most common cancer world-wide [1] and the second most 

commonly diagnosed cancer in Europe with 447,000 estimated new cases in the year 2012 

[2]. In 2011, the World Cancer Research Fund (WCRF) concluded that there is convincing 

evidence of physical activity and dietary fibre intake to protect against colorectal cancer, 

whereas red meat, processed meat, intake of ethanol from alcoholic drinks, as well as body 

fatness and abdominal fatness, are associated with increased colorectal cancer risk [3]. 

 One-carbon metabolism includes donors of methyl groups for DNA methylation and 

DNA synthesis, both of which are involved in carcinogenesis. The B-vitamin folate as well as 

related methyl group donors involved in one-carbon metabolism, are hypothesized to 

potentially affect DNA methylation status and thereby have the potential to prevent 

carcinogenesis [4]. Choline and its oxidation product betaine can not only serve as 

alternative methyl group donors for the remethylation of homocysteine to methionine 

during folate deficiency, but, unlike folate, also provide additional methyl-groups for the 

synthesis of formate in the mitochondria, which subsequently can be used for one-carbon 

transmethylation reactions in the cytosol, including those involved in the production of 

purines and thymidalate. Conversely, during choline deprivation, methyl groups from the 

methyl carrier folate are used [5-7].  

 Only a few studies with inconclusive results have reported on choline and betaine 

status in relation to CRC. One cross-sectional study suggested an inverse association 

between plasma concentrations of methionine and betaine and high-risk colorectal 

adenomas [8]. Dietary methionine intake was associated with decreased proximal CRC risk 

among men [9]. Another study supported a positive association between choline intake and 

colorectal adenoma in women [10]. However, null associations for dietary choline have been 

reported [11], and the majority of prospective cohort studies and population-based case-

control studies on dietary methionine and CRC do not suggest an association [9, 12-19].  The 
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association between plasma folate and CRC risk has been inconsistent in several studies [20-

25].  This relation has previously been investigated in the European Prospective Investigation 

into Cancer and Nutrition (EPIC), but no association of plasma folate with CRC risk was 

observed [26]. 

 We conducted a large population-based case-control study nested within the 

European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. We investigated 

associations between plasma concentrations of methionine, choline, betaine, and 

dimethylglycine (DMG; the product of the enzymatic conversion from betaine), in relation to 

overall CRC risk, and risk of colon and rectum cancer separately. In view of the hypothesis 

that these alternative methyl group donors become particularly important when folate 

status is low, we evaluated whether the associations were different among individuals with 

high or low folate status. 
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SUBJECTS AND METHODS  

Study population  

The methods and design of the EPIC study have previously been described [27]. EPIC is a 

large-scale population based prospective cohort study designed to investigate the relation 

between diet, nutritional and metabolic characteristics, various lifestyle factors and the risk 

of cancer [27]. In brief, the EPIC cohort is based on participants recruited from 23 

collaborating centers in 10 European countries (Denmark, France, Germany, Greece, Italy, 

the Netherlands, Norway, Spain, Sweden and the United Kingdom).  

 Data were collected between 1992 and 1998 and included baseline dietary 

questionnaires, standardized questionnaires on various lifestyle factors and personal history, 

and anthropometric data according to a standard protocol. Anthropometric data were 

measured on almost all subjects, except in the French and Oxford cohorts where these data 

were measured only for a restricted number of participants, but additional self-reports were 

obtained from all individuals. In Norway only self-reports were available [28]. 

 

Collection of blood samples 

Blood samples were collected from 80% of the participants at baseline, and at least 30 mL 

was drawn from each of the participants, either non-fasting or fasting. The samples were 

then transported to local laboratories for processing and aliquoting. During transport they 

were stored at temperatures from 5°C to 10°C and protected from light exposure [29, 30]. 

Exceptions from this procedure were the EPIC-Oxford and EPIC-Norway centers, where 

whole blood samples were transported to a central laboratory via mail. The whole blood 

samples were protected from light, but were exposed to ambient temperatures for up to 48 

hours. As some B-vitamins and related metabolites are unstable under such conditions [31], 
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all EPIC-Oxford (55 cases, 107 controls) and EPIC-Norway (5 cases, 9 controls) samples were 

excluded from the present analyses [29].  

 

Storage of blood samples 

Separation of blood into fractions of 0.5 mL (serum, plasma, erythrocytes and buffy coat for 

DNA extraction) were done in all countries except Denmark and Sweden (constituting 38.4% 

of all participants) because the collection in these countries was initiated many years before 

the common EPIC protocol [32]. The fractions were placed into heat sealed straws and 

stored in liquid nitrogen at a temperature of - 196°C. Half of the samples were stored at 

local study centers and the other half at the EPIC biorepository at the International Agency 

for Research on Cancer (IARC; Lyon, France). Storage conditions in Denmark and Sweden are 

described elsewhere [28, 29].  

 

Follow up for cancer incidence 

Follow up in EPIC is mainly based on national population-based cancer registries (Denmark, 

Italy, Netherlands, Norway, Spain, Sweden and the United Kingdom). Other sources of CRC 

diagnosis were health insurance records, pathology registries or through self-reporting 

(France, Germany and Greece). Self-reported cancer cases were verified through pathology 

reports and physicians, available for at least 95% of the cases. In our study, time between 

inclusion and diagnosis of CRC varied from 3 days to 11.5 years (mean 3.7 years).  

 

Study design and selection of study subjects 

Case definition and selection 

We conducted a nested case-control study within the EPIC cohort. Colon cancer was defined 

as the ICD-10 (The 10th Revision of the International Statistical Classification of Diseases, 

Injury and Causes of Death) diagnosis C18.0-C18.7, as well as tumors that were overlapping 
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or unspecified; C18.8 and C18.9. Overlapping tumors are defined, as malignant neoplasm of 

overlapping sites of colon, were the primary site of the tumor is impossible to define. 

Cancers of the rectum were defined as the diagnosis C19 or C20. CRC is defined as a 

combination of the colon and rectal cancer cases. The present study included 1,367 CRC 

cases (colon n = 965; rectum n = 402).  

 

Control selection 

For each identified cancer case, 1 to 2 controls were randomly selected from all cohort 

members with available blood samples who were alive and free of cancer (except non-

melanoma skin cancer) at the time of diagnosis of the index case. The controls were 

matched by gender, age group (±2.5 years), and study center, except for the Danish cases, 

which were post hoc matched [29]. 

 

Laboratory measurements 

Plasma methionine, choline, betaine, and DMG, were determined by a method based on 

normal-phase liquid chromatography and tandem mass spectrometry [33]. Plasma folate 

was determined by a Lactobacillus casei microbiological assay, adapted to a microtiter plate 

format and carried out by a robotic workstation (Micro-lab AT plus 2; Hamilton Bonaduz AG, 

[34]). In addition, SNPs of genes related to one-carbon metabolism were determined by 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [35]. These 

included methylene-tetrahydrofolate reductase (MTHFR) 677C→T, MTHFR 1298A→C and 

betaine-homocysteine methyltransferase (BHMT) 742G→A. All laboratory analyses were 

performed at BEVITAL AS, Bergen, Norway. 
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Statistical methods 

Because distributions of plasma concentrations were right-skewed, differences between 

cases and controls of the measured one-carbon biomarkers were assessed non-

parametrically by Kruskal Wallis test. Categorical variables were evaluated by χ2 test and the 

remaining continuous variables (age (y), body mass index (BMI, kg/m²), total energy intake 

(kJ) and total meat intake (g/day)) by ANOVA. 

 Multivariate-adjusted odds ratios (OR) and 95% confidence intervals (CI) were 

estimated by conditional logistic regression for CRC risk in relation to quintiles of 

methionine, choline, betaine, and DMG concentrations, taking the lowest quintiles as 

reference categories. Quintile cut-off values were based on the distributions among controls. 

Tests for linear trend over quintiles were performed by fitting the ordinal exposure variables 

as continuous variables. These analyses were conducted for overall CRC and for colon and 

rectum cancer separately. To decrease the possibility of reverse causality we also conducted 

an analysis where we excluded the cases (n=163; 11.2%) diagnosed within the first year of 

follow up. We adjusted for potential confounders; Body Mass Index (BMI; kg/m2), smoking 

status (never, former and current), physical activity (inactive, moderately inactive, 

moderately active, and active), alcohol consumption (abstainers, >0 –<30g/day and 

≥30g/day), and dietary intake of fibre, red meat, processed meat, and total energy. 

 We also estimated ORs in analyses stratified for median time from blood donation 

to cancer diagnosis (below and above median follow up time of 3.6 years), sex, and age at 

recruitment (<60 years versus ≥ 60 years). In addition, unconditional logistic regression 

analyses were conducted, in which the matching criteria were included as covariates, in 

order to estimate interactions with sex and age category, and to estimate CRC risk for 

subgroups of median folate concentration (above and below median) among controls (<11.3 

nmol/L and ≥11.3 nmol/L).  
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 It could be expected that serum concentrations are differentially associated with 

cancer risk across the genotypes due to the influence on enzymatic activity. Therefore, in 

addition to previously reported associations of one-carbon genetic variants with CRC risk [26, 

36], we analysed the associations between BHMT (742GA) genotypes and CRC risk, and 

between serum concentrations with CRC risk across BHMT (742GA) as well as MTHFR 

(677CT and 1298AC) genotypes with CRC risk. 

 All statistical analyses were conducted using STATA, version 11. 
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RESULTS 

Characteristics of the study population 

Altogether, 1,367 cases and 2,323 matched controls were included in the analyses. Mean 

age at blood donation was 59.0 years and mean age at diagnosis was 62.7 years. Baseline 

characteristics of cases and controls are summarized in Table 1. BMI, current smoking, 

alcohol consumption, and meat intake were significantly higher among cases than controls, 

whereas fibre intake and the level of physical activity were lower among cases. Plasma 

concentrations of methionine, choline, betaine, and folate were lower among cases than 

among controls. However, genotype frequencies did not differ between cases and controls. 

 All four methyl group donors, methionine, choline, betaine, and DMG, showed 

higher median concentrations in men compared to women among controls (P<0.01). 

Furthermore, median concentrations of methionine were lower, and those of betaine, 

choline and DMG were higher in controls over the age of 60 (P<0.01) (data not shown). 

 

Associations between plasma concentrations of methyl group donors and CRC risk 

Analyses adjusted for BMI, smoking status, physical activity, alcohol consumption, and 

intake of fibre, red meat, processed meat, and energy, revealed that high methionine (OR: 

0.79, 95%CI: 0.63-0.99, P-trend=0.05), high choline (OR: 0.77, 95%CI: 0.60-0.99, P-

trend=0.07), and high betaine (OR: 0.85, 95%CI: 0.66-1.09, P-trend=0.06) concentrations 

were associated with lower CRC risk of borderline significance (Table 2). Exclusion of the 

cases diagnosed within the first year of follow-up modestly attenuated the associations of 

methionine and betaine, whereas choline remained associated with reduced CRC risk (P-

trend=0.05) (data not shown). 

 Choline was inversely associated with colon cancer risk, while we did not observe 

significant associations between the remaining plasma concentrations and risk of colon 

cancer or rectum cancer separately (Table 3). Plasma methionine was associated with 
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reduced CRC risk exclusively in those cases who were diagnosed with CRC within 3.6 years 

after blood collection, and not in those diagnosed at a later time. Choline, betaine, and DMG 

were not significantly associated with CRC risk in either of these groups (data not shown). 

       

Subgroup analysis 

Subgroup analysis (Table 4) revealed an inverse association between choline and CRC risk in 

women (OR: 0.62, 95%CI: 0.43-0.88, P-trend=0.01), but not in men (OR: 1.03, 95%CI: 0.71-

1.50, P-trend=0.87). The inverse associations of methionine and betaine were observed 

among individuals <60 years of age, but not among those ≥60 years. However, the tests for 

interaction, based on unconditional logistic regression models, were not significant for these 

associations. Further, an increased CRC risk for higher levels of DMG in the age group <60 

years was also present, whereas among those ≥60 years no association was observed.  

 In the analyses stratified by folate concentration, plasma betaine was inversely 

associated with CRC risk in the group with folate concentration below the median of 11.3 

nmol/L, but not among those with folate concentration above the median (Table 5). A 

similar, though borderline significant inverse association was observed for high choline 

concentrations among individuals with lower folate status. Neither methionine or choline, 

nor DMG were differentially associated with CRC risk across the categories of folate status. 

 

The polymorphisms and their association with CRC risk 

No associations between the genotypes and CRC risk or of serum concentrations across 

genotypes were observed (data not shown).  
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DISCUSSION  

In this large-scale population-based European nested case control study, we investigated 

plasma concentrations of methionine, choline, betaine, and DMG in relation to CRC risk. 

Overall, plasma methionine, choline, and betaine status were modestly inversely associated 

with CRC risk. Plasma choline was associated with reduced CRC risk among women, but not 

among men. The inverse assocations of methionine and betaine were confined to individuals 

<60 years at recruitment. Finally, we observed that higher betaine concentration was 

associated with a reduced CRC risk among individuals with folate concentration below the 

median of 11.3 nmol/L, but not among those with higher folate status. 

 This study is the largest prospective study on plasma methionine and the first on 

plasma DMG, choline and betaine concentrations in relation to CRC risk to date. The large 

sample size and extensive data collection on modifiable risk factors for CRC allowed 

subgroup analyses. Strength of this study is the nested case-control design, where blood 

samples were taken prior to cancer diagnosis. The mean time between inclusion and cancer 

diagnosis was relatively short (median 3.6 years), which may have led to reverse causality if 

undiagnosed (pre-clinical) cancer has affected exposure status. Although possibly resulting 

from reduced power to demonstrate an underlying true association, the inverse associations 

of methionine and betaine with CRC risk tended to attenuate after exclusion of cases 

diagnosed within the first year of follow up. Nevertheless, the possibility cannot be excluded 

that reverse causation has biased the estimated associations to some extent. Another 

advantage of our study was that the main exposure variables were measured in blood rather 

than obtained from dietary questionnaires [9-11, 17], which rely on subjects´ memory or 

ability in recording dietary intake [27].  

 In the EPIC study, extensive lifestyle factors and other relevant information have 

been collected for each cohort member, which allowed us to address potential confounders 

and assessment of potential effect modification. Potential confounders such as BMI, 
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smoking status, physical activity, alcohol consumption, and dietary intake of red meat, 

processed meat, fibre, and energy were adjusted for, but the results from this adjusted 

analysis were essentially the same as from the crude analyses. 

 The blood samples were collected according to a standardized protocol [27] at each 

study center and all the biochemical analysis were conducted at one laboratory, thereby 

eliminating variability in sampling procedures and assay methods. However, a possible 

drawback of a single blood sample is that it may not have captured long term plasma 

concentrations of each individual, and may therefore not represent lifetime exposure. 

Variations in plasma concentrations over time may occur due to life-style changes and diet 

variation. Further, the measured blood levels may not directly reflect the dietary intake or 

body stores of nutrients.  

Inverse associations between plasma levels or dietary intake of methionine and 

betaine with risk of colorectal adenomas (CRA) or CRC, were previously reported in a cross-

sectional analysis of the Norwegian Colorectal Cancer Prevention (NORCCAP) screening 

study [8] and the prospective Netherlands Cohort Study on diet and Cancer (NLCS) [9]. 

Conversely, a positive association between choline intake and CRA risk was previously 

observed in the Nurses Health Study [10]. However, one would expect high choline to be 

protective against neoplasia, as choline deficiency has the potential to induce DNA damage 

by uracil misincorporation and to alter DNA methylation patterns [37]. For instance, in an 

intervention study, subjects fed a choline deficient diet for 10 days had more subsequent 

DNA damage in lymphocytes compared to when taking the recommended daily intake of 

choline [38]. Furthermore, a recent population-based case-control study in China reported 

that, especially among former and current smokers, dietary choline and betaine intake was 

associated with reduced lung cancer risk [39].  

 Although not associated with overall CRC risk, we observed that high plasma choline 

may protect against CRC in women. This may be partly due to differences in the metabolism 
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of choline between men and women. Choline is not only obtained from the diet, but is also 

synthesized endogenously from phosphatidylethanolamine by the enzyme 

phosphatidylethanolamine-N-methyltransferase (PEMT), the activity of which is increased by 

estrogen [40]. This may explain why postmenopausal women tend to be less resistant 

against choline deficiency compared to premenopausal women [41]. Moreover, results from 

the Long Island Breast Cancer Study suggest that high dietary betaine and choline intakes 

were associated with decreased all-cause and breast cancer-specific mortality [42], and that 

rare variants of the PEMT rs12325817 SNP, which is associated with decreased choline 

biosynthesis, was associated with a 30% increased risk of breast cancer [42]. In our study, 

the majority of the women were postmenopausal, as mean age at inclusion in the EPIC 

cohort was 58.8 years and 58.6 years in cases and controls, respectively. We also observed 

that mean choline concentration was lower among women than among men in our study 

(data not shown), and women may therefore have benefited more from a high choline 

status.  

 When stratifying according to age at recruitment, the inverse associations of 

methionine and betaine were observed exclusively among participants <60 years at baseline 

whereas DMG was associated with increased CRC risk in this age group. These differences 

could not be explained by an underlying difference between the two age categories, with 

respect to the time between cohort inclusion and cancer diagnosis or large differences of 

the main exposure variables (data not shown). However, given that there was no statistically 

significant interaction observed for methionine and betaine, it may be questioned whether 

there has been a true age effect. Nevertheless, although speculative, individuals ≥60 years at 

baseline may have benefited less from higher plasma concentrations of the studied methyl 

group donors possibly partly because they had undiagnosed colorectal adenomas more 

often compared to the younger age group. In this respect, a large screening study of 

individuals 50-64 years of the general Norwegian population revealed that 17.1% of the 
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screened participants had at least one distal CRA [8], and this proportion is likely to increase 

with increasing age.  

 Although in the EPIC cohort plasma folate and vitamin B12 were not associated with 

CRC risk [26, 29], inverse associations were observed of plasma concentrations of vitamins 

B2 and B6 with CRC risk [29]. In addition, dietary intake of vitamins B2 and B6 were 

associated with reduced CRC risk in the Women's Health Initiative Observational Study [43]. 

B-vitamins are components of a network with major effects on the transfer of one-carbon 

units, as B-vitamins were more strongly related to plasma tHcy when concentrations of 

other B vitamins were low [44]. Similarly, choline and betaine may serve as alternative 

methyl group donors when folate status is low [7]. Our observation of a possible protective 

role of choline and betaine among individuals with lower folate status may support this 

possibility. 

 Finally, the number of CRC cases identified in the EPIC cohort so far may have been 

insufficient to demonstrate an association, if any, of BHMT genotypes in the current study, 

and of other related one-carbon genetic variants with CRC risk [26, 36]. 

  This study suggests that methionine, choline, and betaine may play a protective role 

in colorectal carcinogenesis and that these methyl group donors should be investigated 

further with respect to CRC risk. Repeated blood samples in order to more accurately reflect 

lifetime exposure could be an important focus for future research. A longer follow-up period 

is also recommendable to exclude the potential problem of reverse causality. 
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Table 1. Baseline characteristics of colorectal cancer cases and matched controls in the European Prospective Investigation 
into Cancer and Nutrition (EPIC) 

 Cases Controls P-difference 

No. of individuals 1,367 2,323  

Sex, female, n(%) 700 (51.2) 1,213 (52.2) 0.55* 

Age at recruitment (years; mean (SD)) 58.9 (7.1) 58.7 (7.5) 0.38§ 

Body Mass Index (kg/m2; mean(SD)) 26.8 (4.3) 26.4 (3.9) 0.005§ 

Smoking status, n (%)   0.05* 

     Never 561 (41.0) 1,025 (44.1)  

     Former 451 (33.0) 775 (33.4)  

     Current 346 (25.3) 510 (22.0)  

     Unknown 9 (0.7) 13 (0.6)  

Physical activity, n (%)   0.05* 

     Active 123 (9.0) 242 (10.4)  

     Moderately active 574 (42.0) 1,019 (43.9)  

     Moderately inactive 423 (30.9) 697 (30.0)  

     Inactive 219 (16.0) 304 (13.1)  

     Unknown 28 (2.1) 61 (2.6)  

Alcohol consumption, n(%)   0.001* 

     Abstainers 172 (12.6) 347 (14.9)  

     >0g/day and <30 g/day 908 (66.5) 1,597 (68.8)  

     ≥ 30 g/day 285 (20.9) 379 (16.3)  

Dietary intakes (mean (SD))    

     Energy (kcal/day) 2176 (710) 2136 (643) 0.08§ 

     Total meat (g/day) 118.3 (69.8) 109.7 (56.4) <0.001§ 

     Red meat (g/day) 53.9 (39.5) 47.5 (35.5) <0.001§ 

     Processed meat (g/day) 38.2 (47.8) 35.3 (32.2) 0.03 § 

     Fibre, mean (g/day) 22.2 (8.2) 22.9 (7.9) 0.003 § 

Plasma concentrations (median (5th-95th percentile))    

     Methionine (µmol/L) 23.7 (16.6-37.0) 24.2 (17.0-37.4) 0.009¶ 

     Choline (µmol/L) 9.3 (6.2-14.2) 9.4 (6.3-14.4) 0.02¶ 

     Betaine (µmol/L) 31.5 (18.4-52.6) 33.0 (18.5-53.8) 0.005¶ 

     Dimethylglycine (µmol/L) 3.6 (2.4-5.9) 3.6 (2.3-6.1) 0.86¶ 

     Folate (nmol/L) 10.9 (5.1-32.1) 11.3 (4.9-34.0) 0.03¶ 

MTHFR 677CT, %    0.86* 

     CC 41.8 42.7  

     CT 46.1 45.8  

     TT 12.1 11.6  

MTHFR 1298AC, %   0.96* 

     AA 45.9 45.8   

     AC 43.0 43.4   

     CC 11.1 10.8   

BHMT 742GA, %   0.45* 

     GG 50.8 48.6  

     GA 41.0 42.5  

     AA 8.2 8.8  

* Chi2-test, unknown category not included 
§ ANOVA 
¶ Kruskal Wallis test 

 

 



 19 

 
Table 2. Conditional logistic regression analyses with corresponding odds (OR) ratios and 95% confidence intervals for 
colorectal cancer, according to quintiles of methionine, betaine, choline and dimethylglycine concentrations 

   OR ** 

Plasma concentration Quintiles (range) * cases/controls Crude analyses Adjusted analyses *** 

Methionine  1 (< 20.2) 335/465 Reference Reference 

(µmol/L) 2 (20.2 –< 22.9) 264/465 0.79 (0.63-0.97) 0.79 (0.63-0.98) 

 3 (22.9 –< 25.6) 260/464 0.81 (0.65-1.00) 0.83 (0.66-1.03) 

 4 (25.6 –< 29.6) 249/465 0.77 (0.61-0.96) 0.77 (0.61-0.97) 

 5 (≥ 29.6) 259/464 0.78 (0.62-0.98) 0.79 (0.63-0.99) 

   p-trend=0.04 p-trend=0.05 

     

Choline 1 (< 7.7) 317/460 Reference  Reference  

(µmol/L) 2 (7.7 –< 8.9) 268/472 0.84 (0.68-1.04) 0.83 (0.66-1.03) 

 3 (8.9 –< 10.1) 276/462 0.92 (0.73-1.15) 0.91 (0.73-1.15) 

 4 (10.1 –< 11.7) 254/457 0.86 (0.68-1.09) 0.82 (0.64-1.04) 

 5 (≥ 11.7) 250/472 0.84 (0.66-1.07) 0.77 (0.60-0.99) 

   p-trend=0.26 p-trend=0.07 

     

Betaine 1 (< 24.8) 297/461 Reference  Reference  

(µmol/L) 2 (24.8 –< 30.4) 304/469 1.01 (0.81-1.25) 1.03 (0.82-1.28) 

 3 (30.4 –< 35.3) 282/459 0.94 (0.76-1.17) 0.98 (0.79-1.22) 

 4 (35.3 –< 42.1) 246/468 0.79 (0.63-1.00) 0.84 (0.66-1.06) 

 5 (≥ 42.1) 236/466 0.78 (0.62-1.00) 0.85 (0.66-1.09) 

   p-trend=0.01 p-trend=0.06 

     

DMG 1 (< 2.9) 271/464 Reference  Reference  

(µmol/L) 2 (2.9 –< 3.3) 267/452 1.09 (0.87-1.36) 1.05 (0.84-1.31) 

 3 (3.3 –< 3.9) 288/473 1.15 (0.92-1.44) 1.12 (0.89-1.41) 

 4 (3.9 –< 4.6) 277/467 1.21 (0.96-1.51) 1.13 (0.89-1.42) 

 5 (≥ 4.6) 262/467 1.18 (0.93-1.50) 1.10 (0.86-1.40) 

   p-trend=0.12 p-trend=0.33 

* Quintiles are based on the distribution of serum concentrations among controls 
** Case-control matching factors included sex, age, and study center  
*** Adjusted for BMI, smoking status, physical activity and alcohol consumption 
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Table 3. Conditional logistic regression analyses with corresponding odds (OR) ratios and 95% confidence intervals for colon 
and rectum cancer, according to quintiles of methionine, betaine, choline and dimethylglycine concentrations 

  Colon cancer Rectum cancer 

 
Plasma concentration 

Quintiles (range) * cases/ 
controls 

OR ** cases/ 
controls 

OR ** 

Methionine 1 (< 20.2) 215/294 Reference  97/132 Reference  

(µmol/L) 2 (20.2 –< 22.9) 159/308 0.73 (0.56-0.94) 81/121 0.97 (0.64-1.47) 

 3 (22.9 –< 25.6) 172/305 0.85 (0.66-1.10) 68/121 0.77 (0.50-1.17) 

 4 (25.6 –< 29.6) 149/289 0.76 (0.58-1.00) 75/140 0.77 (0.50-1.19) 

 5 (≥ 29.6) 159/278 0.80 (0.61-1.06) 82/146 0.79 (0.52-1.19) 

   p-trend= 0.18  p-trend= 0.16 

      

Choline 1 (< 7.7) 207/281 Reference  92/140 Reference  

(µmol/L) 2 (7.7 –< 8.9) 158/298 0.79 (0.61-1.03) 82/139 0.95 (0.64-1.42) 

 3 (8.9 –< 10.1) 177/297 0.85 (0.65-1.11) 82/126 1.11 (0.73-1.71) 

 4 (10.1 –< 11.7) 155/299 0.75 (0.56-0.99) 79/124 1.04 (0.66-1.64) 

 5 (≥ 11.7) 156/299 0.74 (0.55-0.99) 67/131 0.87 (0.54-1.40) 

   p-trend= 0.05  p-trend= 0.76 

      

Betaine 1 (< 24.8) 206/291 Reference  73/118 Reference  

(µmol/L) 2 (24.8 –< 30.4) 184/299 0.97 (0.75-1.26) 100/144 1.22 (0.80-1.86) 

 3 (30.4 –< 35.3) 163/305 0.88 (0.68-1.14) 92/124 1.30 (0.85-1.98) 

 4 (35.3 –< 42.1) 152/285 0.86 (0.66-1.14) 69/140 0.81 (0.51-1.28) 

 5 (≥ 42.1) 148/294 0.84 (0.63-1.12) 68/134 0.89 (0.55-1.43) 

   p-trend= 0.16  p-trend=0.18 

      

DMG 1 (< 2.9) 182/292 Reference  74/128 Reference  

(µmol/L) 2 (2.9 –< 3.3) 170/306 1.01 (0.77-1.32) 76/108 1.14 (0.75-1.73) 

 3 (3.3 –< 3.9) 176/286 1.16 (0.89-1.51) 83/152 1.01 (0.66-1.56) 

 4 (3.9 –< 4.6) 178/300 1.09 (0.83-1.42) 77/126 1.23 (0.78-1.93) 

 5 (≥ 4.6) 147/290 1.02 (0.76-1.37) 92/146 1.28 (0.84-1.99) 

   p-trend= 0.67  p-trend= 0.25 

* Quintiles are based on the distribution of serum concentrations among controls 
** Case-control matching factors were sex, age, and study center. Adjusted for BMI, smoking status, physical activity, alcohol 
consumption, and intakes of energy, fibre, red meat, and processed meat 
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Table 4. Conditional  logistic regression analyses with corresponding odds (OR) ratios and 95% confidence intervals for colorectal cancer, according to quintiles of methionine, betaine, choline and 
dimethylglycine concentrations, by sex and age 

  Sex Age at recruitment 

  Men Women <60 years ≥60 years 

 
Plasma concentration 

 
Quintiles (range) * 

cases/ 
controls 

OR ** 
cases/ 
controls 

OR ** 
cases/ 
controls 

OR ** 
cases/ 
controls 

OR ** 

          

Methionine 1 (< 20.2) 130/170 Reference  205/295 Reference  165/230 Reference  170/235 Reference  

(µmol/L) 2 (20.2 –< 22.9) 106/190 0.73 (0.52-1.03) 158/275 0.84 (0.63-1.11) 139/257 0.75 (0.55-1.03) 125/208 0.86 (0.61-1.19) 

 3 (22.9 –< 25.6) 127/210 0.86 (0.61-1.21) 133/254 0.80 (0.59-1.07) 146/268 0.76 (0.56-1.04) 114/196 0.87 (0.62-1.22) 

 4 (25.6 –< 29.6) 145/260 0.78 (0.56-1.09) 104/205 0.75 (0.54-1.04) 148/255 0.80 (0.58-1.11) 101/201 0.68 (0.48-0.98) 

 5 (≥ 29.6) 159/280 0.75 (0.53-1.05) 100/184 0.85 (0.62-1.18) 131/267 0.64 (0.46-0.90) 128/197 1.03 (0.74-1.45) 

   P-trend=0.17  P-trend=0.17  P-trend=0.03  P-trend=0.69 

  P-interaction=0.91 *** P-interaction=0.32 *** 

Choline 1 (< 7.7) 110/185 Reference  207/275 Reference  200/312 Reference  117/148 Reference  

(µmol/L) 2 (7.7 –< 8.9) 131/194 1.18 (0.83-1.67) 137/278 0.65 (0.49-0.87) 152/269 0.85 (0.64-1.14) 116/203 0.76 (0.52-1.10) 

 3 (8.9 –< 10.1) 140/228 1.15 (0.81-1.65) 136/234 0.77 (0.57-1.04) 150/255 0.89 (0.66-1.22) 126/207 0.92 (0.64-1.33) 

 4 (10.1 –< 11.7) 138/241 1.06 (0.74-1.52) 116/216 0.67 (0.48-0.94) 116/239 0.73 (0.52-1.02) 138/218 0.93 (0.64-1.34) 

 5 (≥ 11.7) 148/262 1.03 (0.71-1.50) 102/210 0.62 (0.43-0.88) 109/202 0.77 (0.54-1.10) 141/270 0.75 (0.52-1.10) 

   P-trend=0.87  P-trend=0.01  P-trend=0.10  P-trend=0.40 

  P-interaction=0.11 *** P-interaction=0.58 *** 

Betaine 1 (< 24.8) 80/105 Reference  217/356 Reference  174/297 Reference  123/164 Reference  

(µmol/L) 2 (24.8 –< 30.4) 125/180 0.89 (0.60-1.32) 179/289 1.09 (0.83-1.42) 171/249 1.16 (0.86-1.56) 133/220 0.92 (0.65-1.31) 

 3 (30.4 –< 35.3) 148/229 0.90 (0.62-1.30) 134/230 1.01 (0.76-1.34) 155/247 1.01 (0.75-1.37) 127/212 0.92 (0.65-1.30) 

 4 (35.3 –< 42.1) 146/279 0.72 (0.49-1.06) 100/189 0.91 (0.66-1.26) 110/241 0.72 (0.51-1.01) 136/227 0.94 (0.66-1.34) 

 5 (≥ 42.1) 168/317 0.79 (0.54-1.15) 68/149 0.81 (0.56-1.19) 117/243 0.82 (0.58-1.17) 119/223 0.85 (0.58-1.25) 

   P-trend=0.11  P-trend=0.25  P-trend=0.03  P-trend=0.52 

  P-interaction=0.91 *** P-interaction=0.28 *** 

DMG 1 (< 2.9) 90/134 Reference  181/330 Reference  152/308 Reference  119/156 Reference  

(µmol/L) 2 (2.9 –< 3.3) 115/187 0.99 (0.68-1.46) 152/265 1.06 (0.80-1.41) 137/266 1.09 (0.80-1.47) 130/186 0.97 (0.67-1.41) 

 3 (3.3 –< 3.9) 142/232 1.05 (0.72-1.51) 146/241 1.17 (0.87-1.57) 151/268 1.19 (0.88-1.62) 137/205 1.08 (0.74-1.56) 

 4 (3.9 –< 4.6) 156/261 0.99 (0.69-1.44) 121/206 1.24 (0.91-1.69) 149/226 1.51 (1.10-2.07) 128/241 0.81 (0.56-1.19) 

 5 (≥ 4.6) 164/296 0.98 (0.67-1.42) 98/171 1.23 (0.87-1.74) 138/209 1.60 (1.14-2.24) 124/258 0.78 (0.53-1.15) 

   P-trend=0.89  P-trend=0.12  P-trend=0.001  P-trend=0.11 

  P-interaction=0.93 *** P-interaction=0.001 *** 

* Quintiles are based on the distribution of serum concentrations among controls 
** Case-control matching factors included sex, age, and study center. Adjusted for BMI, smoking status, physical activit, alcohol consumption, and intakes of energy, fibre, red meat, and processed meat 
***P-values for interaction are based on unconditional logistic regression with case-control matching factors modeled as co-variates, adjusted for BMI, smoking status, physical activity, alcohol consumption, and 
intakes of energy, fibre, red meat, and processed meat 
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Table 5. Logistic regression analyses with corresponding odds (OR) ratios and 95% confidence intervals for colorectal cancer, 
according to quintiles of methionine, betaine, choline and dimethylglycine concentrations, for low (under median of 11.3 
nmol/L) and high (above median) folate concentrations 

   
Folate <11.3 nmol/L 

 

 
Folate ≥11.3 nmol/L 

 
Plasma concentration 

Quintiles 
(range) * 

cases/ 
controls 

OR * 
cases/ 

controls 
OR * 

Methionine 1 (< 20.2) 170/218  Reference 165/245 Reference  

(µmol/L) 2 (20.2 –< 22.9) 139/228 0.76 (0.57-1.03) 125/235 0.81 (0.60-1.09) 

 3 (22.9 –< 25.6) 132/239 0.79 (0.55-1.01) 128/225 0.87 (0.64-1.17) 

 4 (25.6 –< 29.6) 133/239 0.73 (0.54-0.98) 116/225 0.79 (0.58-1.08) 

 5 (≥ 29.6) 147/232 0.76 (0.56-1.02) 112/232 0.76 (0.56-1.04) 

   P-trend=0.07  P-trend=0.11 

  P-interaction=0.85 

Choline 1 (< 7.7) 195/245 Reference  122/213 Reference  

(µmol/L) 2 (7.7 –< 8.9) 129/250 0.64 (0.48-0.86) 139/221 1.08 (0.79-1.48) 

 3 (8.9 –< 10.1) 148/227 0.80 (0.60-1.08) 128/234 0.95 (0.69-1.31) 

 4 (10.1 –< 11.7) 125/219 0.71 (0.52-0.96) 129/237 0.91 (0.66-1.26) 

 5 (≥ 11.7) 124/215 0.71 (0.52-0.96) 126/257 0.81 (0.58-1.13) 

   P-trend=0.07  P-trend=0.12 

  P-interaction=0.13 

Betaine 1 (< 24.8) 182/266 Reference  115/193 Reference  

(µmol/L) 2 (24.8 –< 30.4) 176/256 0.98 (0.75-1.30) 128/213 1.03 (0.74-1.42) 

 3 (30.4 –< 35.3) 147/232 0.89 (0.66-1.20) 135/225 1.01 (0.73-1.40) 

 4 (35.3 –< 42.1) 123/214 0.80 (0.59-1.09) 123/254 0.83 (0.60-1.16) 

 5 (≥ 42.1) 93/188 0.71 (0.50-1.00) 143/277 0.99 (0.67-1.30) 

   P-trend=0.02  P-trend=0.37 

  P-interaction=0.86 

DMG 1 (< 2.9) 141/243 Reference  130/219 Reference  

(µmol/L) 2 (2.9 –< 3.3) 133/213 1.06 (0.78-1.44) 134/238 0.93 (0.68-1.27) 

 3 (3.3 –< 3.9) 155/241 1.10 (0.81-1.48) 133/231 0.98 (0.71-1.34) 

 4 (3.9 –< 4.6) 151/208 1.25 (0.92-1.71) 126/259 0.78 (0.57-1.07) 

 5 (≥ 4.6) 141/251 0.93 (0.68-1.28) 121/215 0.90 (0.65-1.25) 

   P-trend=0.94  P-trend=0.29 

  P-interaction=0.28 

* Quintiles are based on the distribution of serum concentrations among controls 
**Unconditional logistic regression with case-control matching factors sex, age, and study center modeled as co-variates, 
adjusted for BMI, smoking status, physical activity, alcohol consumption, and intakes of energy, fibre, red meat, and processed 
meat 




