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The vast majority ofmalignant gliomas relapse after surgery and standard radio-chemotherapy. Novelmolecular
and cellular therapies are thus beingdeveloped, targeting specific aspects of tumor growth.While histopathology
remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the
diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target
area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome.
In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature,
has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging
experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-
modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and
advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve
diseasemanagement and patient care. In this review, we address the challenges of glioma imaging in the context
of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical
imaging techniques that bear the promise of meeting these challenges.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Gliomas are brain tumors that arise from abnormally proliferating
glial cells, which normally provide support and protection of neurons
in the central nervous system. Glioblastoma (GBM), the focus of the
present review, represents the most malignant form of gliomas with a

mean patient survival after diagnosis of about 14 months [1]. Despite
standard treatment involving surgical resection, radiation therapy and
chemotherapy, only very few patients survive more than 5 years [2].
GBMs are highly heterogeneous; when tumors in different patients
are compared, they vary in mutation status [3], in putative glial cell lin-
eage, in epigenetic profiles and in histological appearance. Similarly,
within single tumors, cell clones with different genetic profiles and
even different ploidies co-exist within a microenvironment made up
of varying non-neoplastic stromal cells, immune cells and extracellular
matrix components. This heterogeneity represents a key challenge in
tumor characterization and for the development of effective therapies.
Data from high throughput molecular analyses attempts to define sub-
classes of GBM that differ by their genetic and epigenetic alterations,
gene expression profiles, clinical aggressiveness, prognosis and
response to treatment [4,5]. Although there is some discrepancy in cur-
rently proposed subclasses, the most recent work combines methyla-
tion profiles with specific genetic mutations and patient age group, to
propose a classification into 6 distinct subgroups for pediatric and
adult GBM [6]. Yet, these molecular classifications have so far not led
to a diversification in treatment [7].

Initial diagnosis of GBM is largely based on magnetic resonance im-
aging or computed tomography, indicating the importance of

Key points

• Highgradegliomasareheterogeneousandinfiltrative,causingthemtorelapseafter
conventionalstandardtherapies.Newtreatmentapproachessuchasmolecularand
cellulartherapiesoffertheperspectiveofabetterpersonalizedtreatment.

• To provide clinicians with the appropriate information needed to efficiently deal
with the treatment of gliomas, neuroimaging would benefit from an evolution
from non-specific contrast based protocols to protocols that are oriented toward
disease relevant and treatment specific biomarkers.

• Technologicaladvancesandthecombinationofimagingmodalities,newcontrast
mechanismsandadvanceddataprocessingtechniqueswillassistinaddressingthe
challengesoftumorimaginginthecontextofemergingtreatmentapproaches.
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neuroimaging right from the start. The clinical management of malig-
nant gliomas typically starts with surgical resection or gross total re-
moval, followed by radiochemotherapy. Although a complete
resection of the tumor is usually not achievable because of the infiltra-
tive nature of the disease, the surgical step is critical to reduce the ele-
vated intracranial pressure and for the management of seizures. The
neurosurgeon also collects the tissue for neuropathologists to establish
the definitive diagnosis that will further determine the treatment. Con-
ventional radiotherapy is administered as fractionated external photon
beams, but newer particle therapies, using protons or carbon ions, are
also being investigated for their ability to better target tumor tissue
while sparing surrounding healthy tissue. Concomitant and adjuvant
chemotherapy uses the DNA-alkylating agent Temozolomide. Dosage
and schedule of delivery are based on a protocol developed by the land-
mark study of the EORTC-NCIC [1]. Nevertheless, since all GBMs eventu-
ally recur, the aim of the treatment is palliative at best.

Currently, many alternative experimental protocols for glioma treat-
ment are being investigated. These include small molecule inhibitors
that interfere with aberrant signaling events associated with glioma
growth or its adapted metabolism. Angiogenesis inhibitors, immuno-
therapies, gene and viral therapies, aswell as strategies for local delivery
of therapeutic compounds are also under development or at different
stages of clinical use. These novel therapies were recently reviewed in
a special issue of The Cancer Journal [8], and are summarized in
Table 1, together with results from recent clinical trials. It is currently
unclear if and when these approaches will be implemented in clinical
practice, but the focus is to adopt amore personalized approach and tai-
lor the therapy according to the molecular features of the individual
tumor.

2. Imaging of gliomas in the clinic

Neuroimaging has, over the years, become invaluable in the man-
agement of gliomas. MRI is the preferred modality for glioma imaging,
owing to the variety of soft tissue contrasts available, and its ability to
provide morphological, physiological and metabolic information about
the tumor. MRI is used at all stages of glioma management, from the

detection and localization of the tumor, to the planning of neurosurgery
and radiotherapy and the assessment of treatment efficacy [9]. Positron
emission tomography (PET) can complement MRI by providing access
to molecular targets with high sensitivity. Tracers of proliferation and
metabolic activity are increasingly being used in pre-therapy assess-
ment and in the monitoring of treatment response [10]. CT often pro-
vides the anatomical context in PET studies but can also be used to
detect tumors (after injection of contrast) and in perfusion studies [11,
12]. Other modalities less frequently used include single photon emis-
sion computed tomography (SPECT), an alternative nuclear imaging
technique to PET that uses longer half-life isotopes, which are easier
and cheaper to produce, but provides images of lower spatial resolution.
The use of ultrasound in brain tumor imaging is hindered by the pres-
ence of the skull, limiting its use to specialized applications such as pe-
diatric brain tumors [13] or the assessment of tumor boundaries during
surgery [14]. Table 2 provides an overview of some of the most impor-
tant features of the differentmodalities used for the imaging of gliomas.
The remainder of this chapter presents the MRI and PET protocols that
are most commonly used in the clinic and the challenges faced when
imaging gliomas.

2.1. MRI

A standard MRI study for GBM patients comprises several anatomi-
cal series (Fig. 1A–C): T1 weighted sequences, after the intravenous in-
jection of a gadolinium (Gd) based contrast agent, typically show tumor
as a hyperintense signal as contrast leaks out of impaired blood vessels
and accumulates into tumor tissue (Fig. 1A). T2 weighted sequences
(Fig. 1B) can possibly detect non-enhancing tumors since the prolonged
T2 relaxation time of tumor tissue makes them appear hyperintense in
comparison to normal tissue. T2weightedfluid attenuated inversion re-
covery (FLAIR) sequences (Fig. 1C), in which the signal from the cere-
brospinal fluid has been suppressed, can also be used to delineate
tumors in the vicinity of ventricles or to further highlight areas of non-
enhancing tumor, in particular infiltration zones and edema.

Perfusion weighted imaging (PWI) after bolus injection of contrast
(Fig. 1D) complements these anatomical series by providing access to

Table 1
Molecular and cellular therapies for gliomas.

Therapy paradigm Principle of action Status of development

Inhibition of ‘oncogenic’
growth and proliferation
signaling networks

Interference with the signaling associated with glioma development,
such as inhibition of tyrosine kinase growth factor receptors (e.g. EGFR
and its constitutively activated variant EGFRvIII [176]), or inhibition of
their downstream cellular activity regulators (e.g. mTOR, Akt [177])

Very few of these molecules have demonstrated significant
improvement in terms of time-to-progression or overall survival so far,
whether given as monotherapy or in combination treatment [178], ow-
ing to the complexity of these signaling networks and the versatility of
adaptation mechanisms available to tumor cells.

Angiogenesis inhibition Interference with the formation of new blood vessels initiated by the
tumor. Agents include monoclonal antibody against VEGF-A such as
bevacizumab (Avastin), and tyrosine kinase inhibitors (TKIs) that target
several pro-angiogenic molecules.

Avastin is approved by the FDA for recurrent GBMs. Despite improved
patient condition, likely caused by reduced vessel permeability and
edema, clinical trials in newly diagnosed GBM have not demonstrated
benefit in overall survival, whether given as monotherapy or in combi-
nation with chemotherapy [179–181].

Stress response targeting Strategies include e.g. the targeting of the adapted metabolism of tumor
cells by glycolysis [182] or autophagy inhibitors [183], the targeting of
DNA repair mechanisms to improve the efficiency of DNA alkylating
agents or induce apoptosis [184].

Their use in clinical trials has only demonstrated limited effects so far,
possibly due to lack of specificity and the possible activation of
alternative pathways.

Immunotherapy Immunotherapeutic strategies include passive immunotherapy, in
which immune cells or antibodies are delivered to target tumor cells,
and active immunotherapy whose purpose is to stimulate the response
of the patient's native immune system.

Trials so far have provided mixed results [185]. Vaccines that generate
EGFRvIII specific antibodies resulted in improved progression free and
overall survival [186]. Dendritic cell vaccination provided good clinical
response in early clinical trials [187].

Gene and viral therapies Viruses are being engineered to insert genes that are cytotoxic, tackle
the proliferation capacity or DNA repair mechanisms of tumor cells.
Oncolytic viruses selectively replicate in tumors, with subsequent tu-
mor cell lysis and dispersion within the tumor.

Clinical studies using gene therapy reported improvements in median
survival [188]. Proof-of-concept oncolytic virotherapy studies in glioma
patients have confirmed general safety and showed encouraging long
term survival in some cases [189].

Local therapies Strategies are also being developed for the local delivery of therapeutic
agents, to circumvent the blood brain barrier and achieve greater
efficacy of the administered compound while reducing toxicity.

Drug delivering polymers [190] and cell encapsulation devices [191]
can be implanted during surgical resection. Diffusion of therapeutic
agents can be facilitated by convection enhanced delivery [192],
nanoparticles with high affinity for tumor cells [193], or temporal
disruption of the blood–brain-barrier by microbubble-enhanced fo-
cused ultrasound [194].

100 O. Keunen et al. / Advanced Drug Delivery Reviews 76 (2014) 98–115



physiological parameters such as blood volume, blood flow and possibly
blood vessel permeability. Blood volume positively correlates with
tumor grade [15,16] and has been used to assess treatment efficacy
[17] or differentiate recurrence from post-treatment radiation effect
[18]. Diffusion weighted imaging (DWI) (Fig. 1E), may help in separat-
ing edema from infiltrative tumor cells or distinguish neoplastic regions
from abscesses [19]. Longitudinal changes in themobility of water mol-
ecules has been proposed as an early marker of treatment response [20,
21], correlating with time-to-progression and overall survival [22].
Finally, chemical shift imaging (CSI), a magnetic resonance spectrosco-
py technique, provides access to the spatial distribution of a limited
number of abundant metabolites in vivo (Fig. 1F). Ratios such as
Choline/N-acetylaspartate and lactate/lipids levels can help to distin-
guish tumor types and grades [23], predict survival [24], or separate
tumor recurrence from radiation necrosis [25,26].

2.2. PET

In some clinical centers, MRI is complemented by PET imaging to
visualize molecular processes in gliomas (Fig. 2). PET tracers of cell
proliferation based on amino acid metabolism, such as 11C-
methionine (11C-MET) (Fig. 2A) and 18F-fluor-ethyl-tyrosine (18FET)
(Fig. 2B), are the most commonly applied. For the imaging of gliomas
they are more useful than 18F-fluorodeoxyglucose (18F-FDG)
(Fig. 2A), which produces a high background signal in the brain
(because of high glucose consumption) and has limited sensitivity in

detecting brain tumors [27–29]. 11C-MET and 18FET are superior for
the detection of gliomas and the planning of radio-therapy, including
in regions of infiltrative tumor cells not detected by MRI [30].

For example, it has been shown that radiotherapy planning using
18FET data may lead to larger treatment volumes with more precise
delineation of active tumor tissue and potentially less “out of field”
recurrences [31,32]. Moreover dynamic analysis of the tracer uptake
provides more accurate information about the “aggressiveness” of the
tumor as reflected by the WHO grading [33]. It has been suggested
that with dynamic 18FET tracing, tumors with unfavorable prognosis
can be distinguished even within the same WHO grade [34], and ana-
plastic foci can be identified in otherwise low grade gliomas [35].
18FET also appears to be a powerful tool to distinguish tumor recurrence
from radiotherapy induced changes [36].

Nucleic acid tracers such as 18F-fluorothymidine (18F-FLT) have also
been proposed as markers of proliferation (Fig. 2C). In clinical trials,
they have proved to be superior to 18F-FDG and MRI in differentiating
low-grade from high-grade gliomas, providing a good correlation with
histological proliferation markers [37]. Reduced uptake of 11C-MET,
18FET and 18F-FLT are all promising markers of response to treatment
and predictors of favorable clinical outcome [38–41].

PET also allows the monitoring of tumor hypoxia, an important fea-
ture of high grade gliomas. Hypoxiamay induce resistance to radio- and
chemo-therapy through several mechanisms, including reduced radia-
tion induced DNA damage, poor drug delivery from blood vessels,
slow-down of proliferation, and gene expression changes that enable
cellular rescue from severe damage. PET tracers such as 18F-fluoro-
misonidazole (18F-FMISO) are thus increasingly being considered to
plan and assess the efficacy of radio- and chemotherapy treatment
(Fig. 2D) [42,43].

Neuroimaging is increasingly being used for the planning of surgical
procedures. Anatomical MRI series can be loaded in neuronavigation
systems to establish surgical routes and guide the neurosurgeon during
the procedure (Fig. 3A). If available, additional sequences that provide
information about the physiological and metabolic state of the tumor
can also be included. Advanced sequences such as Diffusion Tensor Im-
aging tractography can be used to visualize the displacement of white
matter tracts that results from the presence of tumors (Fig. 3B), and
functional MRI is used to locate eloquent areas in the brain (Fig. 3C).
Metabolic imaging with PET tracers may help to locate tumor hot
spots that should be targeted by the biopsy (Fig. 3D).

2.3. Challenges

There are a number of challenges associated with brain tumor imag-
ing in the clinic today. Conventional MRI protocols are mostly nonspe-
cific and don't directly differentiate tumor cells from healthy tissue.
Thismakes it difficult to characterize brain lesions and establish progno-
sis [44], and limits the detection of the infiltrative compartment of the
tumor. Criteria most commonly used in the clinic to assess the treat-
ment efficacy in gliomas were originally established by Mac Donald
and colleagues in 1990 [45]. They are mainly based on the changes in
tumor size over time, assessed from MRI or CT sequences. Imaging
based on T1-weighted sequences acquired after injection of
Gadolinium-based contrast agents suffers, however, from the problems
of pseudo-progression, that is radiation induced necrosis confounding
with recurrent tumors [46], and pseudo-response, that is reduction of
contrast uptake, such as after anti-angiogenic therapy, despite tumor
progression [47]. These difficulties have prompted a group of experts
known as the Response Assessment in Neuro-Oncology (RANO) work-
ing group to propose revised criteria in 2010. The new recommenda-
tions distinguish contrast enhancement within and outside the area of
radiation, and introduce T2 weighted FLAIR to assess edema and
tumor infiltration [48]. Still, imaging of this infiltrative compartment re-
mains a challenge for current imaging modalities, and new techniques

Table 2
Features of modalities used for glioma imaging.

Modality Key features

Magnetic resonance imaging
(MRI)

• Based on the magnetic properties of hydrogen
nuclei placed in a high magnetic field (non-
ionizing radiations)

• Versatile modality with wide variety of soft
tissue contrasts available

• High spatial resolution (0.2–1 mm) and fair
sensitivity (10−3–10−5 mol/l)

• Provide anatomical, functional and metabolic
information

Positron emission tomography
(PET)

• Nuclear imaging technique that uses positron
emitting radionuclides with short half-life iso-
topes such as carbon-11 (20′), oxygen-15 (2′)
or fluorine-18 (110′)

• High sensitivity (10−11–10−12 mol/l) and
limited spatial resolution (5–10 mm)

• Production of radiolabeled isotopes is expen-
sive and requires the proximity of a cyclotron

• Molecular imaging of targets such as recep-
tors, enzymes or protein sites

• Biodistribution of tracers may depend on
blood–brain barrier, trapping of enzyme sub-
strates, cell surface internalization, protein
binding and metabolism

Single-photon emission com-
puted tomography (SPECT)

• Alternative nuclear imaging technique that
uses the direct gamma radiations emitted by
longer half-life radioisotopes such as
technetium-99 m (6 h) or iodine-123 (13 h)

• Well established, widely available and cheaper
than PET

• Good sensitivity (10−10–10−11 mol/l) and
limited spatial resolution (7–15 mm)

• Simultaneously image several radionuclides
(differentiated by their energy)

Computed tomography (CT) • Fast, effective and high resolution technique
based on X-ray attenuation in tissues

• Often used to provide the anatomical context
in PET or SPECT studies

Ultrasound (US) • High temporal resolution technique based on
the reflection of sound waves that allows real-
time imaging, although its use in brain malig-
nancies is impaired by the presence of the
skull.
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for the in situ detection of infiltrating tumor cells in surgical settings
may partially address this issue in the future [49,50].

In the context of novel molecular and cellular therapies to come, the
treatment of glioma patients would greatly benefit from a better insight
into the molecular processes that cause the disease, determining how
these molecular processes are affected by a given therapy, and how
the putativemolecular changes can be detected byMRI and PET. Precise
information on general treatment paradigms such as proliferation,
angiogenesis, inflammation, infiltration, as well as on specific disease
characteristics, such as the presence of receptors, transport proteins or
point mutations, would be useful at crucial decision times during treat-
ment. In the following sections, we will describe key imaging technolo-
gies, currently in experimental and pre-clinical development, that could
assist in addressing these challenges.

3. Experimental approaches to the imaging of gliomas

3.1. MRI contrast strategies

Basic contrast in MRI comes from differences in local water content,
which can bemodulated by regional differences in the longitudinal (T1)
and transversal (T2) relaxation times of the tissues. Although the intrin-
sic contrast achieved can be sufficient to distinguish anatomical regions
and some tissue pathologies, it is often necessary to improve the sensi-
tivity and specificity of diagnosis by the use of exogenous contrast
agents or endogenous contrast mechanisms. MRI is a very versatile
modality in this regard and the mechanisms through which contrast
can be achieved are described in common MRI text books [51]. These

include techniques as diverse as those based on inversion recovery,
magnetization transfer, spin tagging, chemical shift, iron-induced sus-
ceptibility changes, perfusion and water molecule diffusion. In the fol-
lowing paragraphs, we describe how these techniques are being
applied to the study of gliomas. Fig. 4 provides recent examples of
such techniques.

3.1.1. Exogenous contrast agents
Intravenous administration with subsequent accumulation of low

molecular weight contrast agents (b1000 Da) in brain tumors with
impaired blood–brain-barrier has represented the cornerstone of brain
tumor detection in recent decades. Contrast agents reduce the T1 of
tissues in which they accumulate, providing a hyperintense signal in
T1-weighted sequences. Their influence on the T2 and T2* of blood in
which they circulate is also exploited in perfusion applications via the
dynamic susceptibility contrast magnetic resonance imaging (DSC-
MRI) technique. However, concerns with Gadolinium-based contrast
agents are that they are non-specific and can lead to a rare but serious
complication in patientswith renal diseases, known as nephrogenic sys-
temic fibrosis [52].

Next generation contrast agents, including higher molecular weight
agents (N30,000 Da) are thus being investigated to address these chal-
lenges. They are usually based on nanoparticles with an iron oxide
core with a biostable inert polymer coating that improves contrast in
T2- or T2*-weighted sequences by disrupting local magnetic fields.
They are often referred to as superparamagnetic iron oxide nanoparti-
cles (SPIO) or ultrasmall superparamagnetic iron oxide nanoparticles
(USPIO) depending on their size. They can be used in perfusion and
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TumourCSI

1

Fig. 1.Multiparametric assessment of brain tumors with MRI. Multiparametric MRI provides morphological, physiological and metabolic data on the tumor. In the present case, for a pa-
tient diagnosed with GBM: (A) T1 sequence after injection of Gd contrast showing a necrotic tumor core (red arrow) surrounded by a hyperintense ring of contrast enhancement (white
arrow) caused by a leaky tumor vasculature. (B) T2 sequence showing a large abnormal signal with a hyperintense core. (C) T2-FLAIR sequence providing insight into the extent of edema
(red arrow). (D) rCBVmap showing active tumor cells at the periphery of the tumor (white arrow). (E) ADCmap showing area of abnormalwatermolecule diffusionwhichmay be caused
by a combination of factors including necrosis, edema and hypercellularity. (F) CSI spectroscopy showing the position of the grid of analyzed voxels, spectra corresponding to voxels cor-
responding to healthy brain (white arrow) and tumor tissue (red arrow). Images in panels A–F, courtesy of M Lund-Johansen and R Grüner, Bergen. Gd: gadolinium, ADC: apparent dif-
fusion coefficient, rCBV: relative cerebral blood volume, FLAIR: fluid attenuated inversion recovery, CSI: chemical shift imaging.
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angiography applications where the contrast agent is expected to
remain in the vascular compartment, hence being also referred to as
blood pool contrast agents. Such nanoparticles can also be engineered
for the imaging of molecular targets, where the homing to the target
is achieved by attachingmolecules such as standard antibodies or deriv-
atives to the nanoparticle body (Fig. 4A). In pre-clinical models, this
principle has for instance been applied to the detection and quantifica-
tion of receptors strongly modulated in GBMs such as the epidermal
growth factor receptor EGFR [53], the vascular endothelial growth factor
receptor 2 VEGFR-2 [54] or the cell adhesion receptor integrinαvβ3 [55].
Nanoparticles can also be engineered for combined diagnosis and ther-
apy [56,57].

3.1.2. Magnetization transfer
With chemical exchange saturation transfer (CEST), endogenous

diamagnetic agents such as proteins, glycogens or glucosaminoglycans
can be used to image their own presence, the presence of other
compounds or environmental factors such as pH or temperature. For
example, magnetization transfer of the amide protons (Fig. 4B), has
been proposed to detect brain tumors even in the absence of impaired
blood vessels [58] or to differentiate tumor recurrence from radiation
necrosis [59]. Exogenous paramagnetic agents consisting of lanthanide
complexes, termed paramagnetic CEST agents (PARA-CEST), are also
being developed that allow amore selective activation of ligand protons
and amore pronounced CEST effect. The possibility to design agents that
detect and quantify nearly any biologically importantmetabolite or that

respond to changes in environmental conditions, aswell as the possibil-
ity to monitor several targets simultaneously, make these agents attrac-
tive [60]. Technical challenges associated with elevated energy
absorption and toxicity however have to be addressed before such
agents can be used in clinical application [61].

3.1.3. Spin tagging
Arterial spin labeling (ASL) is used to obtain 3D blood flow maps of

the brain in a short time (Fig. 4C), without the need for exogenous con-
trast agent injection [62]. Technical advances in high magnetic fields
and new sequences could also provide access to permeability parame-
ters within ASL experiments in the future [63]. Blood flow values calcu-
lated with ASL correlate with those obtained by perfusion MRI
techniques that use exogenous contrast such as dynamic susceptibility
contrast MRI (DSC) [64]. Therefore, despite the inherently much lower
contrast-to-noise ratio of the ASL technique, many of the DSC applica-
tions for brain tumors should also be possible using ASL. Clinical studies
have started to show that this technique can be used to differentiate
high grade from low grade gliomas and other malignancies [65,66], or
to distinguish tumor recurrence from radiation necrosis [67].

3.1.4. Functional MRI
Blood-oxygenation level-dependent (BOLD) MRI has been used in

functional brain imaging studies for a number of years. The technique
has now been proposed to image hypoxia [68,69] or to assess vascular

B MRI FET MRI FLTC

A FMISOMRI FDG MET D

Fig. 2.Molecular imaging of brain tumorswith PET. Typical PET tracers used formolecular imaging of gliomas in the clinic (highest PET activity shown in red): (A)Metabolic imaging of an
infiltrating anaplastic astrocytoma patient. Uptake of 18F-FDG is higher in the tumor than in the surrounding graymatter. Uptake of 11C-MET is also higher in the tumor and extends beyond
the area of high FDG uptake. (B) 18FET–PET of a second glioma patient treated with antiangiogenic therapy, showing high tracer uptake despite the absence of contrast enhancement in
MRI. (C) 18F-FLT overlaid onMRI for a third GBM patient, showing high uptake values indicative of high tumor cell proliferation in the tumor compartment infiltrating through the corpus
callosum (red arrow). 50%, SBR and RTL lines denote different segmentationmethods (see ref [208] for details) (D) 18F-FMISO scan of a fourth patientwith a GBM in the left temporal lobe,
showing the accumulation of the tracer in hypoxic regions of the tumor (white arrow). Information in panels A, B, C, D reproduced and adaptedwith authorization from [208,237–239], ©
by the Society of Nuclear Medicine AndMolecular Imaging, Inc. 18F-FDG: 18F-fluorodeoxyglucose, 11C-MET: 11C-methionine, 18FET: 18F-fluor-ethyl-tyrosine, 18F-FLT: 18F-fluorothymidine,
18F-FMISO: 18F-fluoromisonidazole.
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maturity, angiogenesis and response to treatment in mixed oxygen–
carbogen challenges [70,71].

3.1.5. Susceptibility weighted imaging
Susceptibility weighted imaging (SWI) provides contrast based on

the susceptibility differences between blood and tissues. Phase images
are used to detect these differences and enhance the contrast of magni-
tude images, rendering them highly sensitive to venous blood, hemor-
rhages and iron storage (Fig. 4D). SWI has been used to characterize
the angiogenic behavior of tumors [72], micro-hemorrhages after radio-
therapy [73], to grade intracranial gliomas [74], and to assess responses
to therapy [75].

3.1.6. Angiography
Time resolved magnetic resonance angiography (MRA) performed

during contrast-agent injection (Fig. 4E) provides additional informa-
tion for routine examination of brain tumors, such as vascular anomalies
and relationship between lesions and vessels [76].

3.1.7. Specific tissue signal suppression
Double inversion recovery (DIR) sequences nullify the signal associ-

ated with the CSF and thewhite matter simultaneously, allowing better

differentiation between tumor and normal brain tissue in comparison to
FLAIR sequences [77].

3.1.8. Elastography
Access to tissue viscoelastic constants (tumor stiffness) using mag-

netic resonance elastography (MRE) may provide a predictive marker
of tumor malignancy and contribute to the early non-invasive assess-
ment of suspicious cerebral lesions [78].

3.2. Advances in physiological imaging

3.2.1. Perfusion
Dynamic susceptibility contrast MRI (DSC-MRI) is the most com-

monly used method for perfusion imaging in the clinic, due to its ease
of implementation, short duration and readily accessible biomarkers
such as blood volume, bloodflowand transit time. It is based on changes
in T2 or T2* relaxivity, induced by the first pass of a contrast agent bolus
injection. High-speed acquisitions are needed to maintain a good tem-
poral resolution, which can only be achieved at the expense of reduced
spatial resolution and signal-to-noise ratio. The accumulation of the
contrast agent in tissues at the end of the perfusion series can be
exploited afterwards to acquire high-resolution anatomical images. By
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B

D TEP-TEFIRMf

DTI

Fig. 3. Pre-operativeMRI and neuronavigation. (A) 3D anatomicMRI series are used in neuronavigation systems to plan the surgical resection route or to select target biopsy spots in brain
tumor patients. (B) DTI-based tractography shows thedisplacement ofwhitematter tracts causedby a tumor located in the frontal lobe. (C) Integration of fMRI detects relevant areas of the
motor cortex (overlaid in green), located in the vicinity of a low grade glioma. (D) Integration of 18FET–PET imaging selectively detects anaplastic glioma tissue presenting as ‘hot-spot’
target for biopsy (red arrow). Images in panels A and B, courtesy of M Lund-Johansen and R Grüner, Bergen. Images in panels C and D, courtesy of JC Tonn, Munich. DTI: diffusion tensor
imaging, fMRI: functional magnetic resonance imaging, 18FET: 18F-fluor-ethyl-tyrosine.
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using dynamic contrast enhancedMRI (DCE-MRI), an alternative meth-
od based on changes in T1 relaxivity induced by multiple passages of a
contrast agent, it is possible to obtain additional parameters related to
blood vessel permeability [79]. This however requires longer scan
time and more complex pharmacokinetic modeling. The additional pa-
rameters obtained can, for example, be used to investigate the vascular
changes induced by anti-angiogenic therapies [80]. Recent develop-
ments have focused on integrating both methods in dual echo se-
quences [81,82] and on optimizing the models used to derive
quantifiable perfusion parameters [83,84].

3.2.2. Diffusion
Diffusion weighted imaging (DWI) suffers from confounding factors

in that increased cellularity (due to tumor cell infiltration) reduces
water-molecule diffusion, while vasogenic edema and necrosis increase
it. It has therefore been proposed that by using a multidiffusion time
acquisition sequence, a technique called Restriction Spectrum Imaging
(Fig. 4F), the separation of hindered and less restricted water compart-
ments is possible. This makes it easier to visualize the infiltrative tumor
cell compartment [85], interpret tumor response following anti-
angiogenic therapy [86], and improve the reconstruction of white
matter tracts in regions of peritumoral FLAIR hyperintensity [87].

Also, conventional MRI methods used to assess the apparent diffu-
sion coefficient (ADC) employ relatively long diffusion times and are
thus sensitive to diffusion restrictions at the length scale of cellular
dimension. Using oscillating gradient diffusion techniques at moderate

frequency, it is possible to detect diffusion restrictions at lower length
scales, smaller than the diameter of a single cell, resulting in greater sen-
sitivity to sub-cellular structures. Application of this technique to assess
the chemotherapeutic-treatment response in animal models of gliomas
suggests that early changes in microstructures, such as the reduction in
mean nuclear size, can induce diffusion changes that can be detected
much earlier than changes in cellular density [88]. Clinical applications
have so far been limited to optimizing the technique, and demonstrat-
ing its ability to visualize microstructures within the brain [89].

3.3. Advances in magnetic resonance spectroscopy

Single voxel magnetic resonance spectroscopy (MRS) and chemical
shift imaging (CSI) are spectroscopy techniques used to detect the
presence of metabolites in vivo. In comparison to nuclear magnetic res-
onance (NMR) of metabolites in solution, proton MRS on conventional
clinical systems suffers fromhigh background noise and shimming chal-
lenges, which limits the spectral resolution and the sensitivity of detec-
tion to a small number of abundantmetabolites. Advanced spectroscopy
techniques are thus being introduced to address these challenges.

3.3.1. Spectral editing
To improve the separation of overlapping resonances, techniques

that have long been used in NMR, such as spectral editing and 2D
NMR, are now being investigated in vivo as well. This has for instance
been used for the detection of lactate and other metabolites in
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Fig. 4.AdvancedMR contrastmechanisms. Examples of clinical andpreclinical sequencesmaking use of newMRcontrastmechanisms: (A)Accumulation of RGD-lipoCEST nanoparticles in
cells expressing integrin αvβ3 receptors (white arrow), for a mouse bearing a U87MG induced intracerebral tumor. (B) APT of a diffuse glioma showing high intensity in the tumor (red
arrow) compared to normal brain tissue. (C) ASL blood flowmap of a recurrent GBMpatient displaying elevated blood flow at the tumor periphery (white arrow). (D) SWI of astrocytoma
grade II postsurgery, showing blood products in both tumor and surrounding tissue (red arrow) whichmay be postsurgical or tumor-induced, as well as iron rich structures such as basal
ganglia (white arrow) and red nuclei (black arrow). (E) TOF-MRA of a case of angioma performed during contrast agent injection displaying tumor vasculature (red arrow) (F) RSI of a
GBM showing histopathologically confirmed bevacizumab-induced coagulative necrosis. (G) Accumulation of 2-HG in a glioma bearing mouse after injection of hyperpolarized a-
ketoglutarate, reflecting the presence of IDH mutation, an important prognosis factor. (H) UTE showing multiple angiomas (white spots, red arrows) and possibly gliosis (white
arrow) in the rim surrounding cavity after glioma resection. Information in panels A, B, C, D, E, F, G, and H adapted from references [240], [235], [241], [242], [76], [243], [105], [149], re-
spectively, with permission. RGD: arginylglycylaspartic acid, CEST: chemical exchange saturation transfer, APT: amide proton transfer, ASL: arterial spin labeling, SWI: susceptibility
weighted imaging, TOF-MRA: time of flight-magnetic resonance angiography, RSI: restriction spectrum imaging, 2-HG: 2-hydroxyglutarate, IDH: isocitrate dehydrogenase, UTE: ultrashort
echo time.
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astrocytomas [90], and for the detection of 2-hydroxyglutarate in
isocitrate dehydrogenase (IDH) mutated gliomas [91].

3.3.2. Multinuclear spectroscopy
Non-proton spectroscopy can also be used to supplement the meta-

bolic information provided by proton spectra. 31P-MRS has for instance
been used to assess pH and analyze intracellular energy storage in ma-
lignant gliomas [92], and to evaluate response to therapies [93]. The
tracing of 13C-labeled molecules and their metabolites is finding appli-
cations in preclinical and clinical studies of glucose metabolism [94]
and drug biodistribution [95]. Additional hardware, such as coils tuned
formultinuclear spectroscopy, is required although typically not includ-
ed as part of the standard configuration of clinical MR imaging systems.

3.3.3. Hyperpolarization
Hyperpolarization, a magnetic labeling technique used to enhance

the signal of exogenous compounds for detection by MRI, currently
does not have the sensitivity and the wide range of metabolic tracers
that PET has. Yet, it benefits from a number of features that are appeal-
ing for the future of metabolic imaging in the clinic. These include the
simultaneous detection of a precursor and its metabolites, the absence
of radiation, and fast acquisitions that open new avenues to real-time
metabolic imaging [96]. Some of the metabolic processes currently
under investigation include the conversion of pyruvate to lactate and al-
anine to assess glycolysis and response to therapy [97–99], or the con-
version of fumarate to malate proposed as a marker of cell necrosis
[100]. Hyperpolarized compounds for the analysis of extra- and intra-
cellular pH [101], redox state [102], glutaminolysis [103], choline kinase
activity [104] and more recently IDH status [105] have also been intro-
duced in experimental settings (Fig. 4G). The simultaneous hyperpolar-
ization of several compounds is possible, enabling for instance the
assessment of metabolism, pH, necrosis and perfusion in a single acqui-
sition [106]. However, technical challenges have to be met before
hyperpolarized compounds can be deployed in the clinic. The short
half-life of the hyperpolarized compounds currently limits their use to
fast occurring processes, and specialized sequences and standardized
data analysis tools are required to facilitate the implementation of this
technology.

3.4. Advances in molecular imaging

In Section 2.2, we have introduced PET tracers that are used in the
clinic today. While proliferation and metabolic activity are often the
first subject of investigation, other molecular features of glioma that
are relevant for their treatment can also be imaged. PET remains the
most popular modality for molecular imaging, owing to its very high
sensitivity and the large number of tracers available. In comparison,
SPECT tracers have typically suffered from poor spatial resolution that
renders quantification difficult. Nevertheless, new technical advances
in data reconstruction techniques that allow improved spatial resolu-
tion and quantification, associated with the lower cost and longer
half-life of SPECT tracers, as well as the possibility to use several tracers
simultaneously, could herald a rebirth of this technology. MRI tracers
that use nanoparticles are also gaining acceptance because of their
non-invasive profile and the prospect of combining molecular imaging
with anatomical and physiological imaging in a single modality. In this
section, we review key molecular features that are important for the
treatment of gliomas and describe some of the approaches that are
being developed for their imaging in vivo.

3.4.1. Proliferation and metabolic activity
In addition to the tracers described in Section 2.2, other radiolabeled

amino acid tracers are actively being investigated. For example,
Fluorodopa (18F-FDOPA), a PET amino acid tracer to detect intracerebral
dopamine, appears to be superior to 18F-FDG PET and MRI in detecting
recurrence especially in low grade glioma [107–109], and in predicting

survival in recurrent glioma treated with bevacizumab [110]. SPECT
tracers, such as 131-iodine-alpha-methyl tyrosine (131I-IMT), also an
amino acid based agent, and 99mTc-glucoheptonate (99mTc-GHA), a
glucose analog, have been investigated to plan radiotherapy treatment
and differentiate tumor recurrence from radiation induced necrosis
[30,111–113].

3.4.2. Cellular death
PETmolecular tracers have also been used for the selective detection

of apoptosis in vivo. They include radiolabeled derivatives of Annexin V,
a naturally occurring ligand specific for the membrane protein
phosphatidylserine expressed by apoptotic cells, as well as molecules
targeting caspases, the proteolytic enzymes activated in apoptosis to
cleave intracellular proteins [114,115].

3.4.3. Tumor vasculature
Various strategies have been developed for the imaging of the

deregulated vasculature of tumors. These include the imaging of the
VEGF/VEGFR signaling pathway, which plays a pivotal role in regulating
angiogenesis [116], and the imaging of integrins, the transmembrane
receptors involved in regulating the attachment of cells to the extracel-
lular matrix. Integrinαvβ3 is up-regulated in the tumor vasculature but
not by quiescent endothelial cells [117] and its expression correlates
with tumor aggressiveness [118], making it a natural target for drug
delivery and imaging by nanoparticles labeled for PET or MRI
[119–121]. Other peptides and monoclonal antibodies targeting recep-
tors involved in the signaling associated with angiogenesis have also
been radiolabeled for PET or SPECT imaging. They have been used to
assess the expression of targets such as Ephrin, c-Met and PDGFR in
pre-clinical studies on gliomas [122–124]. Changes in transverse
relaxivity after injection of blood-pool contrast agents have also been
used to determine indexes of vessel size and changes in vascular mor-
phology caused by tumor angiogenesis [125–127].

3.4.4. Immune response
Evidence points at a role of microglia/macrophages in the immuno-

suppression and promotion of glioma growth [128]. Translocator pro-
tein, an outer mitochondrial membrane protein, has been used as a
marker of microglial activation. The radiolabeling of its ligand for PET
imaging bears potential as a cancer biomarker, correlating with disease
progression and survival [129]. MR imaging of phagocytosis, mainly
mediated by microglia and brain macrophages, may also be possible
following an intravenous injection of iron oxide nanoparticles [130].

3.4.5. Molecular targets and pathways
PET tracers for a number of receptor tyrosine kinases and major

downstream signaling components relevant for glioma development,
such as endothelial growth factor receptor (EGFR), Akt, p53, and hypox-
ia inducible factor-1 (HIF-1), are also being tested in preclinical settings.
Theymay have a role in the stratification of patients and the assessment
of treatment efficacy in future clinical applications [131].

3.4.6. Drug delivery
New combinatorial formulations are being developed to improve

the biodistribution of systemically administered therapeutic agents.
Examples include liposomes, polymers, micelles, nanoparticles and
antibody systems carrying therapeutic loads, which can be supplement-
ed by contrast agents for imaging the homing of the drug to the tumor
[132]. The (pre)clinically most relevant applications of these techniques
relate to the validation and optimization of drug delivery and the pre-
screening of patients on the basis of predicted treatment efficacy
[133]. Examples of techniques for labeling therapeutic drugs to trace
their biodistribution in vivo, include the radiolabeling of Temozolomide
for PET detection [134] or its labelingwith 13C for detection byMRS [95].
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3.4.7. Other molecular imaging approaches
Although nuclear medicine, and to some extent nanoparticles

engineered for MRI detection, are at the forefront of molecular imaging,
other techniques based on sound and light waves are being investigated
for specific applications. Despite not having the sensitivity, tomographic
capacity, and depth of penetration of PET and MRI, they provide the
benefits of cost and time efficiency, without the need for ionizing radia-
tion. Optical imaging and ultrasonography have, for example, been
applied to pediatric tumor imaging [13], intra-operative delineation of
tumor margins [14], postoperative detection of residual tumors [135],
and the assessment of tumor perfusion [136]. Photoacoustic and
thermoacoustic imaging are also being investigated for the functional
or molecular characterization of cancer tissue, with potential applica-
tions in cancer detection, diagnosis and treatment guidance [137].

While some of these imaging markers are still under development,
others are making their way to clinical trials and routine practice.
Table 3 provides an overview of the PET/SPECT tracers and MRI proto-
cols most commonly investigated in clinical trials to provide novel
molecular and metabolic insight.

4. Technological advances

Recent advances in hardware and data analysis techniques are likely
to contribute to the advancement of neuroimaging. Imaging features
such as resolution, speed of acquisition, contrast and specificity of
tracers will continuously improve, and the combination of multiple
information sources should enable the establishment of composite
markers that will provide better insight into aspects of the disease
that are relevant for its treatment.

4.1. Next generation imaging modalities

4.1.1. High field magnets
In MRI, the strength of the magnetic field determines the amplitude

of the net magnetization and the maximum signal strength that can be
achieved and used for either improved image quality or reduced scan
time. However, higher field magnets come with a higher price and are
subject to some limitations. Field homogeneity is difficult to achieve,
causing more pronounced susceptibility artifacts and distortions in
fast imaging techniques. Sequences have to be re-designed to achieve
the same contrast as with lower field magnets and to limit the radio-
frequency power deposition in patients. Nevertheless, the improved
image quality obtained at these higher fields using diffusion and perfu-
sion techniques appears to enable better diagnostic accuracy in brain
tumors [138]. Improved susceptibility weighted imaging may also
prove useful to predict responses to anti-angiogenic therapy [139].
Arterial spin labeling (ASL) perfusion imaging may benefit from an
increase in signal-to-noise ratio and blood T1 relaxation time available
at these higher fields, although counterbalancing effects of increased
field inhomogeneity and reduced T2 will have to be considered as
well [140]. The physiological effect of a higher field on patients and
staff will have to be properly accounted for too.

4.1.2. Parallel imaging
Parallel imaging, using phased array coils and multiple transmitter

and receiver channels, has become an integral part of modern clinical
MRI. Sequences have been adapted to integrate spatial encoding using
an increasing number of read-out channels, allowing for a reduction of
scan time and/or an increase in image resolution and quality [141].
With parallel imaging, anatomical series can benefit from a reduction
of scan time and associated patient discomfort. Alternatively parallel
imaging can provide increased spatial resolution that allows for the
detection of smaller lesions, better characterization of larger tumor
content (calcification, blood products, cysts) and better delineation of
tumor boundaries, important for differential diagnosis and treatment
planning [142]. Physiological series, especially those based on fast Ta
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acquisition techniques such as Echo Planar Imaging, also benefit from
the improved speed of acquisition, image quality and resolution. These
include perfusion MRI [143,144], fMRI and DTI [145,146] and spectro-
scopic imaging [147,148].

4.1.3. Fast imaging protocols
New sequences are being developed that allow faster acquisitions

and new contrast establishment. Ultrashort echo time sequences
(Fig. 4H), for example, using non-conventional k-space sampling strat-
egies, make it possible to image structureswith very short T2 relaxation
times, such as gliosis, hemorrhage, angiomas, and the loss of short T2
components in the white matter surrounding gliomas [149]. Com-
pressed sensing techniques accelerate acquisitions by randomly
undersampling k-space data to exploit the sparsity in MR images [150].

4.1.4. Hybrid systems
Hybrid PET/CT systems have become an integral part of the imaging

of non-cranial tumors. Whole body 18F-FDG PET/CT has, for instance,
proven to be an invaluable tool for the detection of metastatic lesions.
In the context of the brain, with MRI being the preferred modality
over CT, it is expected that the recently introduced PET/MRI hybrid sys-
temswill also play amajor role in the future. Immediate benefits for the
patient include increased comfort and convenience (by performingMRI
and PET exams in a single session) and reduced exposure to radiation in
comparison to PET/CT. The simultaneous acquisition of PET andMRI also
provides advantages such as improved reconstruction of PET data using
anatomical information and motion correction and improved arterial
input function characterization (obtained from MRI) for PET kinetic
modeling [151]. Improved delineation of tumor extent, by adding
FET–PET or MET–PET to MRI physiological imaging, will benefit
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Fig. 5. Conceptual framework for brain tumor data management. The use of imaging and non-imaging data to support the management of brain tumors can be envisaged as a multi-step
process. First, anatomical images of the brain obtained by MRI are completed by images that represent the spatial distribution of physiological parameters related to perfusion, metabolic
activity or the level of molecular targets, assessed byMRI, PET and possibly other imaging modalities. The second step is the combination of this multi-parametric data with non-imaging
data coming from the histological and molecular analysis of biopsies and body fluids, possibly compared to historical and external reference data when available. Advanced information
processing techniques used at this stage may include image features extraction, biological network analysis, pharmacokinetic and tumor growth modeling, advanced data discovery and
presentation techniques. The ultimate goal of the analysis is to provide the physician dealing with the patient a set of validated disease relevant biomarkers, that will be used when key
decisions are to be taken, such as to establish diagnosis and prognosis, to stratify patients to therapy, to plan treatment and monitor its efficacy.
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treatment planning and assessment of tumor recurrence [152,153]. The
combination of blood flow, vessel permeability, diffusion and metabo-
lite data provided by MRI/MRS with PET tracers for hypoxia, prolifera-
tion and necrosis, as well as the development of bimodal tracers,
would also enable a more complete assessment of tumor status and
an earlier assessment of response to treatment. These unique applica-
tions, when clinical experience is established, are expected to drive
the wider acceptance of hybrid systems in the future.

4.2. Advances in data analysis

New developments in computer hardware and software promise to
continue revolutionizing the field of medical imaging. The same
advances in high throughput calculations that havemade possible com-
puted tomography of X-ray based scanners and the reconstruction of
MR images from signals acquired in k-space, can also be used for the
post-processing of acquired raw data and the computation of derived
biomarkers that can assist clinicians in the management of gliomas.

4.2.1. Quantitative biomarkers
Clinical standards such as T1-weighted, T2-weighted or FLAIR proto-

cols provide images of tissue contrast that are used for the qualitative
assessment of brain tumors. Yet, a quantitative assessment of tumor
morphological and physiological parameters could lead to more accu-
rate tumor grading, by avoiding the sampling error that can result
from biopsy tissue selection processes. A precise quantitative assess-
ment of tumor spread would also benefit radiotherapy planning and
the assessment of the efficacy of treatment [44].

Tissue contrast, in commonly used anatomical scans, depends on the
tracer used, the acquisition parameters of the protocol, the hardware
used, and the ability of the contrast agent to reach targeted sites,making
the delineation of borders of infiltrative tumors challenging in gliomas.
Biomarkers derived from physiological scans can be of assistance in this
respect, such as those derived from perfusion andwatermolecule diffu-
sion sequences, absolute concentrations of abundant metabolites and
standard uptake values of PET tracers, which are quantitative in nature
[154]. Biomarker determination often requires offline processing of the
acquired raw data, possibly using complex pharmacokinetic models to
account for exchange of tracers between vascular and extra-vascular
compartments [155]. Standardization of the mathematical models and
algorithms used will be needed to enable inter-institution comparisons
of quantitative biomarkers and end points derived from such studies.

4.2.2. Composite biomarkers
As MRI protocols based on new contrast mechanisms are imple-

mented and complemented with information from other imaging
modalities, a growing number of parameters will be made available
that can be combined to increase our ability to image relevant features
of brain tumors and assess critical treatment information. Computer-
based image analysis of such multi-parametric datasets can be used to
classify brain tumors by type and grade [156], predict survival [157],
detect early progression [158] or identify infiltrated tissue likely to
result from tumor recurrence after resection [159]. Computational
methods used may include machine learning, multi-parametric
segmentation and biophysical modeling of tumors [160].

4.2.3. Computer-assisted decision making
Expert systems are information systems that make decisions based

on a complex set of information and rules. They can assist in establishing
diagnosis based on symptoms. Neural networks systems, for example,
create interaction models that reproduce the type of connections that
occur in the brain. After a training period during which parameters
that describe the connections are established, new cases are presented
to the model for classification. Such techniques have often proven to
be superior to conventional manual approaches for the analysis of
multi-parametric MR images, in applications such as the classification

of brain neoplasms [161,162], glioma cell population discrimination
[163], prediction of survival [157], distinction of pseudoprogression
from tumor recurrence [164] or assessment of responses to anti-
angiogenic therapy [165].

4.2.4. Tumor growth modeling
During the last two decades, a number ofmathematical models have

been developed to simulate tumor growth. These models may be useful
to plan and predict the efficacy of treatment and to develop and test
hypotheses that can lead to a better understanding of the biological
process involved in tumor development [166,167]. Acquired MRI series
can be registered to a brain atlas to help identify abnormal signals in
these sequences, or to serve as a basis for growth simulation accounting
for cell proliferation and tissue deformations [168].

4.2.5. Visualization
Visualization refers to the rendering ofmeasurements for human in-

terpretation, with the goal to generate insight and develop knowledge
beyond the simple display of raw data. In this context, data might take
the form of spatially distributed single scalars (such as pixel intensity,
blood volume, amino acid uptake …), vectors or tensors (water mole-
cule diffusion anisotropy), spectroscopic measurements or even biolog-
ical ‘omics’ data such as gene expression, signaling pathways, protein
interaction networks, etc.

The pathway from data to insight involves several technologies,
including computer graphics and display technologies (2D/3D/4D,
representations of colors, multimodality image fusion) as well as
human vision and perception (viewing angle, image luminance, glare,
reflection, ambient light) that can all affect diagnostic accuracy [169].
A number of features of visualization pipelines are important to facili-
tate the navigation through the data, and the search, qualification and
quantification of relevant features. They include pre-processing steps
for de-noising and elimination of artifacts, registration of images
acquired on different modalities and/or at different time points,
segmentation and the classification of tissue types for emphasis of rele-
vant objects. Transfer functions can then be used to map data to visual-
ization parameters such as gray value or opacity. Other visualization
techniques include surface and volume rendering, data manipulation
for multiplanar slice selection, rotation and scaling of 3D volumes,
clipping and virtual resection functions (to interactively remove sub-
volumes from subsequent visualizations), and illumination to enhance
the ability of humans to distinguish objects and their properties.

The most common of these features are available in commercial
software provided by imaging modality manufacturers, while some of
the most advanced ones exist only in specialized software and have
been used in other areas of medical imaging [170]. In the context of
brain tumor imaging, applications of these visualization techniques
could include diagnosis, treatment planning and education [171].

4.2.6. Virtual and augmented reality
Virtual reality is a computer-based technique used to simulate real-

world environments. The simulated graphical environment can be
rendered on a computer screen or through stereoscopic displays to
enhance the visual experience. The technique is for instance used for
the training of neurosurgeons [172]. Augmented reality extends this
concept by superimposing computer-generated graphics to real world
images in real time. Its use in the operating room is appealing as it
could provide the neurosurgeon with an interactive atlas of the patient
brain, reconstructed from pre-operative images [173]. This could be
used to locate in situ tumor infiltrated tissue as well as eloquent areas
of the brain that have to be spared during surgery.

4.2.7. ‘Omics’ data enrichment
Omics data, such as DNA, RNA, proteins and metabolite data, gener-

ated through high throughput analysis of body fluids and tissue
extracts, provides insight into the molecular changes induced in a
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given tumor phenotype or by a specific treatment. Although such tech-
niques typically provide limited information on the spatial distribution
of these molecules, they complement and enrich the image biomarkers
by providing novel genetic classification tools and important molecular
biomarkers such as 1p/19q co-deletion, MGMT methylation and IDH
mutation, which have clinical relevance in diagnosis, prognosis and
establishment of treatment strategies [174,175].

Altogether, these technical advances in datamanagement and image
processing techniques could be used in a data management framework
designed to provide physicians with the information needed to support
the decision process during the course of glioma management (Fig. 5).

5. Perspectives

Given the large volume of ongoing cancer research, one may hope
for a better outlook for glioma patients in the near future. New treat-
ment approaches may target the specific features of individual tumors,
and this requires neuroimaging to evolve, in particular, by making use
of multi-modal imaging techniques, molecular probes and quantitative
biomarkers of the disease. MRI is expected to remain the modality of
choice because of the versatility in providing soft tissue contrasts. PET
and possibly SPECT will also continue to contribute due to their func-
tional and molecular imaging capabilities, and superior sensitivity.

The integration of data coming from different imaging modalities
and the use of novel and improved contrast by labeling endogenous
and exogenous molecules will provide access to consolidated disease-
relevant biomarkers. The combination of PET tracers targeting amino
acids and cell metabolismwithMRI techniques, such as diffusion, perfu-
sion, spectroscopy, and hyperpolarization techniques, could, for
instance, be used to provide an integrated view of cellular proliferation
and metabolic activity of the tumor. The same imaging markers would
also be used for a precise delineation of the tumor extent prior to treat-
ment, or for the identification of the most relevant targets for biopsies.

Watermolecule diffusion, changes in vascular structures, metabolite
ratios, protein content detected by magnetization transfer, and nano-
particles homing to infiltrating cells, could all contribute to the assess-
ment of tumor cell invasion in the future. Molecular imaging
techniques, using PET tracers or nanoparticles loaded with MR
reporters, could be used to probe pathologically modulated levels of
receptors, cytokines, growth factors and related signaling pathways.
Together with histology, immunohistochemistry and molecular
‘omics’ analyses of tumor biopsies and bodyfluids, thiswould help strat-
ify patients to the treatment providing the best prognosis. The availabil-
ity of disease relevant biomarkers such as proliferation, efficiency of
drug delivery, cell death, changes inmicroenvironment, tumor cell inva-
sion, and immune system responses, wouldmake the global assessment
of treatment efficiencymore precise thanwith the non-specific contrast
protocols used today.

Some of the markers described in this review have been in clinical
use for a number of years, but others will require further (pre)clinical
validation before being adopted in routine practice. How many of
these will be used depend on finding the right balance between several
factors, including completeness of information, scan time, patient
discomfort and overall cost. Given the growing number of information
sources and the need to integrate them, advanced computerized data
analysis and presentation techniques will be required, ultimately
providing physicians with a set of validated imaging and non-imaging
markers, needed tomake properly informeddecisions during the course
of the disease.
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