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Abstract

The present study investigated production performance of post-smolt Atlantic salmon (Salmo1 

salar L.) subjected to cyclic oxygen reductions (hypoxia) of varying severity. Triplicate 2 

groups (N=955), were kept at constant 80% O2 (control) or subjected to 1 h and 45 minutes of 3 

hypoxia (50, 60 or 70% O2, termed 80:70, 80:60 and 80:50 groups) every 6 h at 16 °C for 69 4 

days. Feed was provided in normoxia. One third of the fish were kept further for 30 days in 5 

normoxia to study possible compensatory growth. Cyclic hypoxia did not alter the oxygen 6 

uptake rates of fish, measured in nighttime. Fish subjected to 50 and 60% O2 reduced feeding 7 

by 13 and 6% compared to the controls, respectively, with corresponding reductions in 8 

specific growth rates. Feed utilization was not reduced. Compensatory growth was observed 9 

in fish from the 80:50 group, but full compensation was not achieved. The main conclusions 10 

were that feeding in normoxia does not fully alleviate negative effects of cyclic hypoxia on 11 

feeding and growth, when oxygen is reduced to 60% or below in hypoxic periods, that feed 12 

utilization is maintained, and that compensatory growth may lessen negative effects.  13 

 14 

Introduction 15 

     16 

Oxygen is the main limiting factor of fish metabolism (Fry 1971), and adequate 17 

oxygen supply is therefore essential for optimal welfare and growth performance in Atlantic 18 

salmon (Salmo salar L.) aquaculture. Any water oxygen saturation that reduces the aerobic 19 

metabolic scope of fish is defined as environmental hypoxia (Farrell & Richards 2009). In late 20 

summer and autumn,  low levels of oxygen (30-70% O2)  has been found to occur in sea cages 21 

in the coastal areas of Western Norway, in cycles that resembles the turns of the tidal water 22 

current (Johansson, Ruohonen, Kiessling, Oppedal, Stiansen, Kelly & Juell 2006; Johansson, 23 

Juell, Oppedal, Stiansen & Ruohonen 2007; Oppedal, Dempster & Stien 2011). The observed 24 
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oxygen levels are below the suggested oxygen minima for maintained growth of salmonids 25 

(70-100% at 16 °C) (Davis 1975; Wedemeyer 1996; EFSA 2008), and may therefore reduce 26 

production performance and impair fish welfare. However, a recent study on Atlantic salmon 27 

subjected to cyclic hypoxia, showed that acclimated fish utilized normoxic periods for feeding 28 

(Remen, Oppedal, Torgersen, Imsland & Olsen 2012), suggesting that negative effects on 29 

growth can be minimized by providing feed in normoxia. In order to establish safe limits for 30 

oxygen, it is necessary to understand how the production performance of Atlantic salmon is 31 

affected by cyclic hypoxic periods, when feed is provided in normoxic periods.  32 

 Reduced feed intake is a well-known response of salmonids subjected to hypoxia (e.g. 33 

Brett 1979; Bernier & Craig 2005; Glencross 2009; Remen et al. 2012), and results in growth 34 

depression if hypoxia is frequent or prolonged (e.g. Brett 1979; Crampton, Hølland, 35 

Bergheim, Gausen & Næss 2003; Glencross 2009). When hypoxia occur in short-term 36 

periods, it has been shown in both Atlantic salmon (Remen et al. 2012) and turbot 37 

(Scophthalmus maximus L.) (Person Le-Ruyet, Lacut, Bayon, Le Roux, Pichavant & 38 

Quemener 2003) that appetite varies with the experienced oxygen saturation. To what extent 39 

appetite is regained in normoxic periods, can be expected to depend on the severity and 40 

duration of hypoxic periods. For example, when fed fish enter hypoxia, digestive processes 41 

may be slowed down according to the depression of post-prandial metabolism, and 42 

compensated for by an extension of the post-prandial period (Jordan & Steffensen 2007). This 43 

response may in turn reduce appetite accordingly due to the prolonged presence of feed in the 44 

intestine (see review by Wang, Lefevre, Huong, Van Cong & Bayley 2009). In severe 45 

hypoxia, both a general stress response (Bernier & Craig 2005; Remen et al. 2012) and 46 

recovery from anaerobiosis (Lewis, Costa, Val, Almeida-Val, Gamperl & Driedzic 2007) may 47 

result in lowered appetite after return to normoxia.  48 
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If growth is reduced as a result of cyclic hypoxia, this effect may be alleviated by an 49 

acceleration of growth when hypoxic periods come to an end (see review by Ali, Nicieza & 50 

Wootton 2003). Such compensatory growth has been observed in turbot and spotted wolffish 51 

(Anarhichas minor O.) after being subjected to long-term, continuous hypoxia (Person Le-52 

Ruyet et al. 2003; Foss & Imsland 2002), but has not been studied in Atlantic salmon. 53 

The aim of the present study was to investigate the effect of cyclic hypoxia severity on 54 

feed intake, feed utilization, metabolism and growth of Atlantic salmon. Water temperature 55 

(16 C) and the duration (1 h 45 min) and frequency (every 6 h) of hypoxia were set to mimic 56 

oxygen drops that may occur in sea cages during the turn of tidal currents in late summer and 57 

autumn. Growth was followed for 30 days after cessation of cyclic hypoxia, in order to study 58 

possible compensatory growth. 59 

 60 

Materials and Methods 61 

62 

Fish material and experimental facilities 63 

The experiment was carried out at the Institute of Marine Research, Matre, Norway 64 

using Atlantic salmon post-smolts (Salmo salar L., AquaGen strain) hatched in January 2008. 65 

Out-of-season smolts were produced according to standard procedures. This involves constant 66 

illumination (LL) from first-feeding until smoltification was initiated by a winter signal (6 67 

weeks of L:D, 12:12). The parr-smolt process was completed by another 6 weeks of LL 68 

before sea transfer on September 22nd 2008 (e.g. Oppedal, Juell & Johansson 2007). On 69 

February 9-10th 2009, approximately 1300 post-smolts (209±1 g; mean±SEM) were tagged 70 

with individual Floy® tags and distributed among 12 indoor circular tanks (Ø=3 m, ~5600L) 71 

supplied with 9 ºC sea water (34 g L-1). The temperature was gradually increased to 16 ºC by 72 

March 28th and kept constant throughout the cyclic hypoxia period. Illumination was constant 73 
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and provided by one fluorescent light tube (Philips, TL-D 36W/33-640) per tank. Feed was 74 

distributed by Arvotec feeding units (Arvo-Tec T drum 2000, www.arvotec.fi). Feeding, tank 75 

water flow and temperature were automatically controlled from custom made computer 76 

software (SD Matre, Normatic AS, Nordfjordeid, Norway). Oxygen (Oxyguard 420 probe, 77 

Oxyguard International, Denmark, http://www.oxyguard.dk), temperature (TST 487-1A2B 78 

temperature probes), salinity (Liquisys MCLM223/ 253 probes) and flow (Promag W flow 79 

meters, Endress + Hausser) were measured continuously and a mean for every 5 minutes 80 

recorded at tank level. Oxygen probes were re-calibrated in air every 7 days.  Prior to 81 

experimental start-up, a minimum of 80% O2 was maintained in tank outlets. Oxygen levels 82 

were controlled by managing water inflow rates at all times during the experiment. 83 

 84 

Experimental design 85 

The experiment was divided into two separate periods; the cyclic hypoxia-period (days 86 

1-69) and the post-hypoxia period (days 70-99).  87 

The cyclic hypoxia period was initiated on April 24th 2009 (day 1) using four 88 

triplicate tank groups of individually tagged Atlantic salmon post-smolts (overall initial 89 

weight 383±2 g; mean±SEM, see Table 3). The control group was kept at constant 80% O2 90 

saturation (referred to as 80:80 and “normoxia”). The treatment groups were subjected to 91 

cyclic oxygen reductions (lasting 1 h 45 min, every 6 h), from 80% O2 saturation, to either 92 

50% (80:50), 60% (80:60) or 70% O2 saturation (80:70; all levels referred to as “hypoxia”) 93 

(see Table 1, Fig. 1). During the hypoxic periods, the water current was maintained using a 94 

submerged pump (capacity of 120 L  min-1) varying in supply depending on the amount of 95 

inflowing water. The transition periods between normoxia and hypoxia lasted for 96 

approximately 1 h 10 minutes. Hypoxic periods started at 04:30, 10:30, 16:30 and 22:30 daily. 97 
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The post-hypoxia period (compensation) was initiated on day 70 using one third of the 98 

post-smolts (overall initial weight 791±9 g, see Table 5) randomly taken from two of the 99 

replicated tanks. To avoid extension of possible tank effects, individually tagged fish were 100 

redistributed into 6 experimental tanks, mixing fish from all groups within each tank in a 101 

common garden design. Oxygen was maintained at ~ 90% O2 and temperature at ~17 °C (see 102 

Table 1). 103 

 104 

Feed and feeding 105 

Prior to the experiment, salmon were fed commercial feed (Skretting Nutra 2 and 3, 106 

and BioMar CPK 75 and 200). On March 26th, experimental feed, produced at Nofima 107 

(Bergen, Norway) was introduced. The feed (4.5 mm) was based on high quality fish meal 108 

and fish oil (see Table 2). Whole ground wheat was used as a binder, and yttrium oxide 109 

(Y2O3) was added as an inert marker for digestibility estimation (Austreng 1978; Austreng, 110 

Storebakken, Thomassen, Refstie & Thomassen 2000). Feeding lasted 20 minutes twice daily 111 

during normoxia (starting at 08:20 and 14:20, see Figure 1) with a dose aiming at 20% 112 

overfeeding. Following every meal, uneaten pellets were collected and feed intake estimated 113 

as described by Helland, Grisdale-Helland & Nerland (1996). During the post-hypoxia period, 114 

an overfeeding of 20% was maintained, but feed spill was not recorded. This was not done 115 

because fish from different groups were mixed in each tank, making it impossible to calculate 116 

the feed intake in experimental groups.  117 

Samplings118 

Weights and lengths of individually tagged fish were recorded at start (days -1 to 0), 119 

on days 34-35, at end of the cyclic hypoxia period (days 69-70) and at end of the post-hypoxia 120 

period (day 99). Fish were fasted 24 h prior to sampling. To reduce handling stress, a pre-121 

sedation regime was used in the holding tanks. Water level was reduced to 1/3 and Finquel® 122 
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(Scanaqua, Årnes, Norway, 20 mg L-1) added. Fish were then calmly netted into a full 123 

strength anesthetic bath (Finquel, 60 mg L-1) with oxygen supply prior to identification, 124 

weight and length recordings to the nearest g and 0.5 cm length. Nine fish per group (3 fish 125 

per tank, pooled as three replicates) at start, and 10 fish from each tank (pooled by tank) at 126 

termination of the trial were sampled for analyses of the whole body content of nutrients. 127 

During sampling on day 34-35, 6-9 fish were randomly removed from all tanks to 128 

reduce biomass and to maintain the water flow required for 80% O2 saturation in tanks during 129 

normoxia.  130 

One week prior to the end of the cyclic hypoxia period (day 62), 30 fish per tank were 131 

stripped for faeces (samples pooled by tank) as described by Austreng (1978). To reduce the 132 

risk of empty intestines at faecal sampling, the salmon were fed every six hours during the last 133 

day and night prior to sampling (08:10, 14:10, 20:10 and 02:10 for tank 1). Feeding and 134 

hypoxic periods for each tank were re-set into a staggered manner (15 or 20 minutes delay 135 

from one tank to another), to ensure that the time period between feeding and sampling did 136 

not exceed 6.5 h. Fish were pre-sedated and sampled as described above and returned after 137 

stripping. Faeces were stored at -20 ºC and freeze dried prior to chemical analysis. During 138 

faeces sampling (day 62), some maturing fish were observed. Therefore, gonad weights and 139 

sex were noted at samples thereafter (see Table 2 and Table 3), in order to investigate the 140 

correlation between GSI and growth of fish. 141 

 142 

Chemical analyses 143 

Feed, faeces (freeze dried) and whole body were analysed for crude lipids (Soxtec 144 

HT6, Tecator, Höganäs, Sweden), nitrogen (Kjeltec Auto System, Tecator, Höganäs, 145 

Sweden), ash (550 ºC until constant weight), dry matter (DM) (105 ºC until constant weight) 146 

and energy (Parr 1271 Bomb calorimeter). Feed and faeces (freeze dried) were further 147 
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analysed for yttrium by inductive coupled plasma mass spectroscopy (ICP-OES Optima 148 

5300DV, at Eurofins Fôr og Mat, Moss, Norway).  149 

 150 

Recordings of MO2 during normoxic and hypoxic periods 151 

Oxygen consumption rates (MO2, mg kg-1 min-1) were recorded at 5 min intervals in 152 

each tank throughout the cyclic hypoxia period, using the following formula: 153 

 154 

MO2= ((V × (O2 t-5 - O2 t) 5 min-1) + (F × (O2 in - O2 t) + O2 flux) × BM-1,  155 

 156 

where O2 in is the oxygen concentration (mg L-1) in the tank inlet, O2 t is the oxygen 157 

concentration (mg L-1) measured in the tank outlet at time t (min), V is tank water volume (L), 158 

F is water inflow rate (L min-1), O2 flux is the influx of oxygen (mg min-1) over the tank water 159 

surface and BM is the biomass in the tank (kg; see Calculations). The influx was found 160 

empirically by measuring oxygen influx in the experimental tanks with oxygen-stripped (N2 161 

gas was used) water, and with no fish. The resulting formula was O2 flux= k × (100% - O2 t %) × 162 

S × V × 100-1), where k is the diffusion constant, O2 t %  is the oxygen saturation measured in 163 

the outlet at time t, S is the solubility of oxygen (mg L-1) and V is volume (L).  The diffusion 164 

constant was determined to be 0.00135, by finding the value of k that maximized the 165 

correlation between the observed and modeled increase in oxygen saturation after oxygen-166 

stripping (R2=0.9997).  167 

To calculate MO2 during normoxia and hypoxia in the different groups, and to 168 

estimate the difference in MO2 between normoxia and hypoxia, the mean MO2 was calculated 169 

for 1 h during normoxia (01:30-02:30) and 1 h during hypoxia (05:00-06:00) on a daily basis. 170 

These periods were chosen because disturbances such as feeding, cleaning and calibration of 171 

oxygen probes were minimal during these periods. 172 
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 173 

Calculations174 

Feed conversion ratio (FCR) was calculated using  175 

FCR = Feed eaten × weight gain -1. 176 

Specific growth rate (SGR) was calculated according to 177 

  SGR= (eg-1)100,  178 

where g = (lnW2  lnW1) (t2 – t1) 1, and where W1 is the weight at the start of the growth 179 

period (t1) and W2 is the weight at end (t2) (Houde & Schekter 1981). 180 

Condition factor (CF) was calculated by the formula  181 

CF = 100WL 3,  182 

where W is the weight (g) and L is the fork length (cm) of the fish.  183 

Apparent digestibility (ADC, %) was calculated as  184 

ADC=100(a - b) × a-1, 185 

where a is the nutrient to marker (Y2O3) ratio in diet and b is the nutrient to marker ratio in 186 

faeces. 187 

Nutrient retention (R, % of digested) was calculated using the formula  188 

R=100(Nutrient content at end - Nutrient content at start) × Nutrient digested -1, 189 

 with all measurements in grams. “Lipid retention” includes whole-body lipid from non-lipid 190 

precursors. 191 

Tank biomass on days between samplings (BM, kg) was estimated using  192 

BM = BMday-1 + FIday-1 × FCR-1,  193 

where BMday-1 is the biomass on the previous day, FIday-1 is the total daily feed intake (g DM) 194 

during the previous day and FCR is the feed conversion ratio in the period between 195 

samplings.  196 

197 
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Statistics 198 

Statistical analyses were performed using Statistica© (StatSoft, Inc., USA). Effects of 199 

treatments on repeated measurements of individual weights, lengths, condition factors and 200 

specific growth rates were analyzed using MANOVA (Johnson & Wichern 1992). Significant 201 

MANOVAs were followed by a three-way nested ANOVA (Zar 1996), in order to investigate 202 

the effects of treatments, replicates (tanks; nested in treatment) and sex in each growth period. 203 

Non-significant factors were sequentially removed from the analysis. Effects of treatments on 204 

total daily feed intake were analyzed using ANCOVA (Zar 1996), with treatment as 205 

categorical predictor and day number as continuous predictor. Effects of treatments on feed 206 

utilization parameters (FCR, apparent digestibility, retention and whole body composition of 207 

energy and nutrients) were analyzed using One-Way ANOVA. Significant 208 

ANOVA/ANCOVAs were followed by Student-Newman-Keuls multiple comparison tests to 209 

determine differences between groups. Effects of treatments on MO2 in hypoxic and normoxic 210 

periods were analyzed using regression analysis. The effects of treatments on male and female 211 

GSI’s were analyzed using Kruskal-Wallis ANOVA rank test. The correlation between 212 

gonadosomatic indexes (GSI) and specific growth rates of males and females were analyzed 213 

using Spearmans rank order correlation test. A significance level of 5% was used. 214 

 215 

Results216 

217 

Oxygen consumption rates 218 

There were no effects of treatments on oxygen consumption rates (MO2) in hypoxic 219 

periods or normoxic periods (Fig. 2A-B). Similarly, there were no differences in MO2 220 

between normoxic and hypoxic periods within either treatment groups.  221 

 222 
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Feed intake, feed utilization and growth during the cyclic hypoxia period 223 

The negative effect of cyclic hypoxia on feed intake was most pronounced for the first 224 

period (days 1-34, Fig. 3). In this period, feed intakes of fish from 80:50 and 80:60 groups 225 

were reduced by 13% and 10% compared to the controls, respectively. Corresponding, albeit 226 

non-significant, reductions in specific growth rates (SGR) were observed (14 and 11% 227 

reductions in 80:50 and 80:60 groups, respectively, see Fig. 4). During the second period 228 

(days 35-69), fish in the 80:70 group had the highest feed intake (6% higher than in controls), 229 

while fish in the 80:60 group ingested the same amount as controls. For fish subjected to 50% 230 

O2 in hypoxic periods, feed intake remained 13% lower than the controls (Fig. 3). Effects on 231 

SGR were similar, but non-significant (SGR reduced by 13% in fish from the 80:50 group, 232 

see Fig. 4).  233 

Overall, the 68 days of cyclic hypoxia led to significant growth reductions in fish from 234 

the 80:50 group (13% lower compared to controls) and the 80:60 group (6% lower compared 235 

to controls, see Fig. 4). SGR was highly correlated to feed intake (R2=0.83, p<0.01), but not 236 

correlated to feed conversion ratio (R2=0.23, p=0.11). Although not statistically significant 237 

(p=0.080), weights of fish in the 80:50 and 80:60 groups were reduced by 10 and 6% 238 

compared to the controls, respectively (Table 3). Fish in the 80:70 group were slightly smaller 239 

than the control at start (5% lower weight, p=0.097), and had a growth rate that was higher 240 

than the control during the cyclic hypoxia period (4% increase, see Fig. 4). The negative 241 

effects of cyclic hypoxia on fish lengths were borderline significant (p=0.053), while no 242 

effects on condition factors were observed (p=0.761, see Table 3). 243 

Compared to the control, there were no effects of treatments on feed conversion ratios 244 

(Fig. 5), apparent digestibility coefficients, retentions and whole body contents (WBC) of 245 

nitrogen, lipids and energy (Table 4). There were however significant reductions in the WBC 246 

of energy, and the retentions of energy and lipids, in fish from the 80:50 group compared to 247 
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the fish with highest growth rates; the 80:70 group. WBC of energy was reduced by 8%, 248 

whilst retention of energy and lipids were reduced by 14 and 10%, respectively (Table 4).     249 

Weak, but significant positive relationships between gonado-somatic indexes (GSI) 250 

and growth rates were observed during days 1-34 (R2=0.19 and 0.15 for males and females, 251 

respectively), and negative relationships were observed during day 35-69 (R2=0.35 and 0.30 252 

for males and females, respectively). Growth rates of males were lower than in females in the 253 

latter period (Fig. 4). There were no effects of treatments on GSIs, with one exception: GSIs 254 

were lower in males of the 80:60 group compared to the 80:50 group during days 35-69 255 

(Tables 3 and 5). 256 

 257 

Growth during the post-hypoxia period 258 

One third of the fish used in the cyclic hypoxia period were followed in the post-259 

hypoxia period to in order to study possible compensatory growth. Fish from the 80:50 group 260 

grew significantly faster than the controls (51% higher SGR) during this period, while fish in 261 

80:60 and 80:70 groups displayed SGR’s similar to the controls (Fig. 6). The accelerated 262 

growth of fish in the 80:50 group reduced the weight differences compared to the controls 263 

from 13 to 9% (Table 5). The overall growth rates for the entire experimental period (days 1-264 

99) did not differ between groups (Fig. 6). 265 

266 

Discussion 267 

268 

Data from the present experiment showed that feeding in normoxia is not sufficient to 269 

fully alleviate the negative effects of hypoxic periods on feed intake of salmon post-smolts. 270 

Fish were able to compensate for cyclic reductions in oxygen to 70% O2, but not when 271 

oxygen was reduced to 60 and 50% O2. The more pronounced effect observed in fish 272 
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subjected to 50% O2 agree with an increased limitation of metabolism as oxygen declines (Fry 273 

1971). The depression of appetite in fish subjected to 50 and 60% O2 was lower in the present 274 

experiment (13% and 6% reductions, respectively) than in the study by Remen et al. (2012), 275 

where post-smolts were fed in both hypoxic and normoxic periods  (33 and 9% reductions, 276 

respectively). Thus, it is considered beneficial to provide feed in normoxic periods if cyclic 277 

hypoxia occurs.  278 

The reduced feed intake was not a direct effect of the oxygen level during feeding, as 279 

all fish were fed in normoxic periods (80% O2). Rather, the negative effect on feed intake 280 

reflected inadequate oxygen levels in hypoxic periods. To start with, the oxygen level in 281 

hypoxic periods may not have been sufficient to support post-prandial metabolism. In Atlantic 282 

cod (Gadus morhua L.), a depression of post-prandial metabolism was found to prolong the 283 

post-prandial period (Jordan & Steffensen 2007). This again may reduce the appetite during 284 

following meals due to a prolonged reduction of the metabolic scope and increased presence 285 

of food in the intestine (Wang et al. 2009). Secondly, if oxygen was reduced below the 286 

anaerobic threshold during hypoxic periods, this may have reduced feed intake in normoxic 287 

periods due to stress developed during hypoxia (Bernier & Craig 2005; Remen et al. 2012) 288 

and energy-demanding recovery processes (e.g. lactate removal) upon return to normoxia 289 

(Lewis et al. 2007).  290 

The anaerobic threshold is thought to lie around Pcrit, the oxygen threshold where 291 

oxygen uptake rates of fish goes from being independent of oxygen availability to decrease 292 

with a further reduction in oxygen (Richards 2009). The similar oxygen uptake rates of fish 293 

during hypoxic and normoxic periods, suggest that oxygen was not reduced below Pcrit in 294 

nighttime hypoxic periods. This agrees with results of Barnes, King & Carter (2011), who 295 

found that Pcrit of fasted (12 h) Atlantic salmon parr was ~3.4 mg l-1 at 14 and 18 °C 296 

(corresponding to 43 and 47% O2, respectively). However, it has been shown that lactate 297 
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starts to accumulate at 60% O2 in fed Atlantic salmon post-smolts kept at 16 °C (Remen et al. 298 

2012), suggesting that Pcrit may be considerably higher in fed fish (Richards 2009).  299 

The lack of effect of cyclic hypoxia on apparent digestibility of nutrients and feed 300 

conversion ratios is in accordance with results of Glencross (2009) and  Pouliot & De La 301 

Noüe (1989), who found that nutrient utilization was not impaired in rainbow subjected to 302 

continuous hypoxia (40 and 56% O2).  It should however be noted that possible early effects 303 

on digestion, and changes in digestive capacity during the experiment, are not picked up by 304 

the digestibility estimation performed on day 62. The reduced deposition of lipids and energy 305 

in fish from the 80:50 group compared to fish in the 80:70 group, can be related to the 306 

difference in feed intake and growth, which was found to be largest between these two groups 307 

(see Ali et al. 2003, for review).  308 

The negative effects of cyclic hypoxia on growth rates of post-smolts were explained 309 

by reduced feed intake, and not reduced feed utilization. This is in accordance with results 310 

from studies on juvenile turbot (Pichavant 2001), spotted wolffish (Foss & Imsland 2002) and 311 

European sea bass (Dicentrarchus labrax L.) (Thetmeyer, Waller, Black, Inselmann & 312 

Rosenthal 1999; Pichavant 2001) subjected to hypoxia. The observed effects on growth show 313 

that the oxygen minimum for maintained growth lies between 60 and 70% O2, when hypoxia 314 

occur in tidal cycles at 16 °C. Thus, it occurs that salmon post-smolts tolerate repeated, short-315 

term reductions in oxygen below suggested oxygen minimums (70-100% at 16 °C) (Davis 316 

1975; Wedemeyer 1996; EFSA 2008), as long as oxygen is not reduced to levels around or 317 

below the anaerobic threshold (~60% O2 in fed fish at 16 °C; Remen et al. 2012). It should be 318 

noted that sexual maturation may have reduced the magnitude of negative effects on growth 319 

in the present experiment, due to increased individual variation and reduced overall growth 320 

(see Fjelldal, Hansen & Huang 2011, for the stimulating effect of continuous light and 321 

elevated temperature on sexual maturation). However, a critical limit for growth between 60 322 
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and 70% O2 is considered trustworthy, due to the close accordance with results from a similar 323 

experiment by Remen et al. (2012). In their experiment, a reduction in oxygen from 70 to 324 

60% O2 entailed an emerging accumulation of lactate, and a change in feeding pattern towards 325 

depressed feed intake in hypoxia and compensatory feeding in normoxia.  326 

The magnitude of growth reduction (13%) in fish subjected to 50% O2 implies that 327 

measures should be taken to avoid frequent reductions in oxygen to such levels. To begin 328 

with, the suboptimal growth represents a cost to the farmer, in terms of reduced slaughter 329 

weights or a prolonged production period in sea cages. But another important reason is that 330 

the health (Wendelaar Bonga 1997) and welfare (Farm Animal Welfare Council 1996) of fish 331 

is compromised due to the oxygen shortage and stress observed at this oxygen level (Remen 332 

et al. 2012). 333 

The marked increase in growth rates of fish in the 80:50 group compared to the control 334 

during the post-hypoxia period, show that compensatory growth occurred. This is a well-335 

known response of fish returned to favorable conditions after a period of suboptimal 336 

environmental conditions and depressed feed intake (see Ali et al. 2003 for review). A period 337 

of 30 days with normoxic conditions were however not sufficient for fish in the 80:50 group 338 

to reach the same weights as fish in the control group. Relying on compensatory growth to 339 

alleviate negative effects of cyclic hypoxia on growth is therefore not considered a favorable 340 

strategy with regard to production efficiency in salmon farming. The present results are in 341 

accordance with accelerated growth observed in turbot and spotted wolffish returned to 342 

normoxic conditions after being subjected to long-term, continuous hypoxia (Foss & Imsland 343 

2002; Person Le-Ruyet et al. 2003).  344 

 345 

Conclusions346 

347 
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The results from the present experiment show that feeding in normoxia does not fully 348 

alleviate the negative effects of cyclic hypoxia on production performance. Such a feeding 349 

strategy is however considered beneficial compared to feeding in both hypoxic and normoxic 350 

periods. Feed utilization was maintained, and growth was reduced according to feed intake. 351 

The oxygen threshold for maintained growth, when oxygen reductions occur in tidal cycles, 352 

was found to lie between 60 and 70% O2. Compensatory growth may lessen negative effects 353 

after cessation of hypoxic periods. 354 

 355 
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Figure legends 

Fig. 1. Schematic overview over the daily fluctuations in oxygen saturation (%) in each of the four experimental 

groups during the cyclic hypoxia period. Shaded areas represent feeding periods and tanks were exposed to 

continuous lighting. Hypoxic periods were introduced every 6 hours throughout the cyclic hypoxia-period and 

fish were fed in normoxic periods only. 

 

Fig. 2. A-B. Oxygen consumption rates  (MO2, mg kg-1 min-1) of Atlantic salmon post-smolts (Salmo salar) in 

nighttime normoxia (open circles) and following hypoxia (triangles) during days 1-34 (A) and days 35-69 (B) of 

the cyclic hypoxia period. Regression lines are drawn for normoxic periods (lines) and hypoxic periods (broken 

lines) and results from regression analyses are presented in the figures (NS=not significant). Values are tank 

means±SEM (n=34).   

 

Fig. 3. Total daily feed intake (% of biomass) in triplicate tanks of Atlantic salmon post-smolts Salmo salar L. 

subjected to cyclic hypoxia (1 h and 45 min every 6 h) of varying severity (group names indicate percent oxygen 

saturation in normoxia:hypoxia) at 16 °C. Different lower-case letters denote significant differences between 

groups within growth periods. Values are group means±SEM (n=3).  

 

Fig. 4. Specific growth rates (SGR, % of body weight per day) of Atlantic salmon post-smolts Salmo salar L. 

subjected to cyclic hypoxia (1 h and 45 min every 6 h) of varying severity (group names indicate percent oxygen 

saturation in normoxia:hypoxia) at 16 °C. P-values (three-way nested ANOVA) of treatment effect (T), 

replicates nested in treatment (R(T)) and sex (S) are given for each growth period. Different lowercase letters 

indicate significant differences between groups. Values are group means±SEM (n=3). 

 

Fig. 5. Feed conversion ratio (FCR) in triplicate tanks of Atlantic salmon post-smolts Salmo salar L. subjected to 

cyclic hypoxia (1 h and 45 min every 6 h) of varying severity (group names indicate percent oxygen saturation in 

normoxia:hypoxia) at 16 °C, during first 35 days , subsequent 34 days , and overall (days 1-69). 
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Fig. 6. Specific growth rates (SGR, % of body weight per day) of Atlantic salmon post-smolts Salmo salar L. in 

the post-hypoxia period (day 70-99, 90% O2), which followed after 68 days of cyclic hypoxia of varying severity 

(group names indicate percent oxygen saturation in normoxia:hypoxia during the cyclic hypoxia period), and the 

overall SGR during the entire experimental period (day 1-99). P-values (three-way nested ANOVA) of treatment 

effects (T), replicates nested in treatment (R(T)) and sex (S) are given for each growth period. Different lower-

case letters indicate significant differences between groups. Values are group means±SEM (n=2). 

  



Table 1

Temperature (°C), salinity (g L-1) and oxygen saturation (% of air saturation) in hypoxic periods (O2 hypoxia) 

and normoxic periods (O2 Normoxia) in the four different treatment groups (80:80, 80:70: 80:60 and 80:50) 

during the cyclic hypoxia period (days 1-69) and overall values during the post-hypoxia period (days 70-99). 

Values are given as means±SEM (n=3 for days 1-69 and n=6 for days 70-99).  

O2 Hypoxia 

(% of air  saturation) 

O2 Normoxia 

(% of air saturation) 

Temperature 

(°C) 

Salinity 

(g L-1)

80:80 79.8±0.3 79.7±0.2 15.8±0.0 34.8 

80:70 69.6±0.1 79.5±0.1 15.8±0.1 34.8 

80:60 59.9±0.3 79.4±0.2 15.8±0.1 34.8 

80:50 49.6±0.2 78.2±0.4 15.6±0.1 34.8 

Post hypoxia period  89.9±0.1 16.8±0.0 34.8 



Table 2 

Formulation and chemical composition of the feed given as g/kg or MJ/kg. 

Content 

(g/kg or MJ/kg) 

Formulation: 

Fish meal a 515.4 

Wheat gluten b 60.6 

Fish oil c 230.0 

Whole wheat d 170.0 

Vitamin mix e 20.0 

Mineral mix f 4.0 

Yttrium oxide 0.13 

Carophyll Pink (10 %) 0.44 

Chemical composition: 

Dry matter 938.1 

In dry matter: 

Crude lipids        314 

Nitrogen 74.0 

Ash 72.9 

Energy 25.77 

a Norse-LT 94, Norsildmel, Bergen, Norway.

b Amytex 100, Tate & Lyle, Belgium.

c NorSalmOil, Nordsildmel AL, Fyllingsdalen, Norway. 

d Hvete sammalt 0, Norgesmøllene AS, Bergen, Norway.

e 160 mg (3000 I.E) vitamin D3, 160 mg vitamin E (Rovimix, 50%), 20 mg thiamine, 30 mg riboflavine, 25 mg pyrodoxine–

HCl, 200 mg vitamin C (Rovimix Stay C, 35%), 60 mg calcium pantothenate, 1 mg biotin, 10 mg folic acid, 200 mg niacin, 

0.05 mg vitamin B12 and 20 mg menadion bisulphite per kg feed. 

f 500 mg Mg, 400 mg K, 80 mg Zn, 50 mg Fe, 10 mg Mn, and 5 mg Cu per kg feed. 



Table 3 

Weights (g), lengths (cm), condition factors, total number(N) and gonado-somatic indexes (GSI, % of body 

weight) in triplicate groups of Atlantic salmon post-smolts at start (days-1- 0) and end (days 69-70) of the cyclic 

hypoxia period  (group names indicate percent oxygen saturation in normoxia:hypoxia). Values are given as 

means±SEM (n=3). P-values from statistical analyses of treatment effects at start/end are presented, and 

significant differences between groups are indicated by dissimilar superscript lower-case letters.

Group Weight 

(g) 

Length 

(cm)

Condition factor GSI at end 

(% of BW) 

N

Start End Start End Start End   

80:80 391±5 808±12 32.5±0.2 40.2±0.2 1.12±0.02 1.23±0.00 0.22±0.01 2.1±0.1b 225 

80:70 371±4 786±13 32.0±0.2 39.5±0.2 1.12±0.03 1.26±0.01 0.19±0.01 1.9±0.3ab 231 

80:60 389±6 766±32 32.4±0.0 39.4±0.5 1.12±0.02 1.24±0.01 0.18±0.01 1.6±0.2a 251 

80:50 390±7 728±27 32.3±0.1 38.9 1.13±0.02 1.23±0.03 0.31±0.10 2.6±0.2b 248 

P-value 0.097 0.080 0.200 0.053 0.926 0.761 0.148 0.003  



Table 4

Apparent digestibility coefficient (%) retention (% of digested) and whole body composition (MJ/kg) of 

nitrogen, lipids and energy in Atlantic salmon post smolts at start, and in triplicate groups after 62 days of cyclic 

hypoxia of varying severity at 16 °C. Group names indicate percent oxygen saturation in normoxia:hypoxia. 

“Lipid retention” includes lipids synthesized from non-lipid precursors. Values are given as means±SEM (n=3). 

P-values from the analysis of treatment effects (One-way ANOVA) are given, and significant differences 

between groups are indicated by dissimilar superscript lower-case letters.

Apparent digestibility 

coefficient

(%) 

Retention 

(% of digested) 

Whole body content 

(MJ/kg) 

Nitrogen Lipids Energy Nitrogen Lipids Energy Nitrogen Lipids Energy 

Start       2.9 9.6 8.1 

80:80 89.9±0.2 96±2 88±1 59±3 63±1ab 57±1 3.0±0.1 12.5±0.4ab 9.2±0.1ab

80:70 90.5±0.3 97±0 89±0 56±2 67±1a 58±1 2.9±0.1 13.0±0.3a 9.4±0.0a

80:60 90.6±0.3 97±0 89±0 55±2 62±1ab 57±1 2.9±0.1 12.3±0.2ab 9.2±0.1ab

80:50 90.2±0.4 97±1 88±1 58±1 58±3b 54±2 3.0±0.0 11.7±0.7b 9.0±0.3b

P-value 0.079 0.828 0.286 0.558 0.039 0.167 0.310 0.046 0.048 



Table 5 

Weights (g), lengths (cm), condition factors and total number (N) of Atlantic salmon post-smolts at start (day 70) 

and end (day 99) of the post-hypoxia period, and gonado-somatic indexes (GSI, % of body weights) at end. 

Group names indicate percent oxygen saturation in normoxia:hypoxia during the foregoing cyclic hypoxia 

period. Values are means±SEM (n=2). Results from statistical analyses testing the effects of treatment are 

presented.  

Group Weight 

(g) 

Length 

(cm)

Condition factor GSI at end 

(% of BW) 

N

Start End Start End Start End   

80:80 864±44 975±55 40.8±0.7 42.4±0.9 1.26±0.00 1.26±0.01 0.54±0.11 2.6±0.2 83 

80:70 788±1 901±1 39.4±0.2 41.3±0.1 1.27±0.02 1.25±0.01 0.35±0.04 3.1±1.1 76 

80:60 756±22 867±31 39.2±0.4 41.2±0.2 1.24±0.01 1.23±0.02 0.41±0.11 2.9±0.4 80 

80:50 749±43 892±32 39.4±0.0 41.4±0.2 1.21±0.07 1.24±0.02 0.33±0.03 2.7±0.4 75 

P-value 0.170 0.270 0.134 0.297 0.745 0.326 0.397 0.334  
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