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Abstract Deep-sea hydrothermal vents and cold seeps

are biological hot spots with chemolithotrophic bacterial

production sustaining both benthic and pelagic organisms.

Although efforts have been made to understand the diver-

sity and function of the bacterial composition of these

systems, first-level consumers, pelagic single cell hetero-

trophic organisms, which represent an important link

between bacterial production and higher trophic levels,

remain un-described in hydrothermal vents and seeps of the

Nordic Seas. Here, we used a molecular biodiversity assay

to investigate the impact of water masses and hydrothermal

vents on the eukaryotic micro-organisms surrounding two

vents systems, Jan Mayen Vent Field and Loki‘s Castle,

and one cold seep, Håkon Mosby Mud Volcano. The assay

generated a total of 482 operational taxonomic units

(OTUs) based on a 99 % cut-off value, and the OTUs were

grouped according to taxonomic rank. Data analysis using

hierarchical clustering and non-metric multidimensional

scaling with class as taxonomic entries suggested that

water masses followed by depth was the dominant effect on

eukaryotic micro-organism diversity. However, in one of

the vent systems, Loki‘s Castle, the community was dif-

ferent compared to the reference station. Our data suggest

that while the total production of vent systems is higher

than the surrounding waters, the biodiversity of eukaryotic

micro-organisms is more influenced by both water masses

and depth.
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Introduction

Deep-sea hydrothermal vents and cold seep biota are sup-

ported by both aerobic and anaerobic metabolism (Hügler

and Sievert 2011) through chemolithoautotrophic primary

production from prokaryotes (Van Dover 2000; Bennet

et al. 2013). These micro-organisms support diverse

assemblages of eukaryotes (Bennet et al. 2013), which in

turn become the source of energy to higher trophic levels

such as mesozooplankton (e.g. Kaartvedt et al. 1992; Burd

et al. 2002; Olsen et al. 2013). Indeed, vent and seep sys-

tems can have a high productivity, both benthic and pela-

gic, compared to the surrounding water masses (Van Dover

2000; Wakeham et al. 2001; Hügler and Sievert 2011;

Bennet et al. 2013). Hydrothermal vents and cold seeps are

found throughout the world’s oceans, including the Arctic

and the Nordic Seas. Hence, the background for the present

study was the discoveries of hydrothermal vents at the

Arctic Mid-Atlantic Ridge (AMOR) in the Nordic Seas in

2005 and 2008. These were the Jan Mayen Vent Field
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(2005) and Loki’s Castle (2008); in addition, the cold seep

Håkon Mosby Mud Volcano was included based on the

high methane concentrations in the water column (online

resource 2). Since the discovery, several studies (Pedersen

et al. 2005, 2010a; Lichtschlag et al. 2010; Schander et al.

2010; Baumberger 2011; Tandberg et al. 2011; Jørgensen

et al. 2012; Kongsrud and Rapp 2012; Stensland 2013)

have described the geochemistry, benthic fauna and pro-

karyote sediment community of both the hydrothermal

vents and Håkon Mosby Mud Volcano. However, the

protist community in these systems remains largely un-

described despite its importance as a link towards higher

trophic levels.

The vent fields of the Nordic Seas are geographically

located under variable conditions where temperature,

salinity, depth and thus prevailing water mass vary. More-

over, the vents have also distinct different physical char-

acteristics, and the Jan Mayen Vent Field has white smoker

type chimneys with 270 �C fluids, while the black smokers

at Loki’s Castle are emitting 350 �C fluids (Pedersen et al.

2010a, b). Furthermore, the Jan Mayen Vent Field has lower

concentrations of CH4 and H2 compared to the high levels

measured in the non-buoyant plume at Loki’s Castle (Pe-

dersen et al. 2010b; Stensland 2013). Both vent fields have

higher levels of CO2 due the magmatic influence compared

to sea water (e.g. Pedersen et al. 2010b; Baumberger 2011).

At Jan Mayen Vent Field, the concentration varies between

6.2 and 91.7 mmol kg-1, while concentration varied

between 21.52 and 26.01 mmol kg-1 at Loki’s Castle. In

comparison, arctic deep water CO2 concentration was

2.3 mmol kg-1 (Baumberger 2011). The Håkon Mosby

Mud Volcano is a cold methane seep with no temperature

anomaly (Vogt et al. 1999), although the CH4 concentration

is comparable with the hydrothermal vents (online resource

2). Water depth is, nevertheless, the most conspicuous

difference, with Jan Mayen shallow vents at approximately

500 m depth, while the Loki’s Castle vents are at 2,400 m

depth and Håkon Mosby Mud Volcano at 1,300 m depth.

The depth could impact the surrounding ecosystem due to

variable vertical transport of organic matter from surface

production while differential pressure could influence taxa

directly, making these three sites fundamentally different as

habitats. Indeed, pressure could influence organisms sig-

nificantly and many taxa cannot maintain their metabolism

at the lower Loki’s Castle depths (Atkins 2000).

The high levels of CO2 at the Jan Mayen Vent Field

from both the chimney fluid and the diffuse venting are of

particular interest and may represent a unique research

opportunity as a natural laboratory to study consequences

of natural CO2 leakage. The concentration of CO2 can be as

high as 90 mmol kg-1 at the base of the plume (Baum-

berger 2011), which is far higher than the observed range in

sea water (81–302 lmol kg-1) (Barry et al. 2010). Several

short-term mesocosm studies on the effect of elevated CO2

levels have demonstrated a limited response of the micro-

bial communities using dissolved CO2 in concentration up

to 3 times the present ocean concentration of CO2 (Paulino

et al. 2008; Riebesell et al. 2008; Troedsson et al. 2013;

Niehoff et al. 2013). Despite that the temporal and spatial

scale of these mesocosm experiments is challenging, and

long-term effects cannot be excluded, the results suggest

that large fractions of the microbial communities are

resilient to sudden elevated CO2 levels. On the other hand,

taxa at higher trophic levels indicate variable and rapid

responses to increased CO2 levels ranging from negative

(Riebesell et al. 2000), negative to neutral (Dupont et al.

2010), or even positive (Troedsson et al. 2013).

The objectives of the present study was to explore and

describe the eukaryote micro-organism diversity by ana-

lysis of water samples from (1) below, (2) within and (3)

above the plume at the two hydrothermal vent systems with

reference stations (control). The Håkon Mosby Mud Vol-

cano was also included and sampled close to bottom as

‘‘below plume’’, at the depth were the methane gas bubbles

was not possible to trace on the echo sounder as ‘‘plume’’

and finally it was sampled above the traces of Methane gas

bubbles. No separate reference station was sampled. Håkon

Mosby Mud Volcano was included in this study because of

the high concentrations of methane and because of the gas

plume that rise several hundred metres above the sea floor.

These features combined with high temperatures in the

sediment contribute to chemosynthesis, which is interesting

in context of secondary consumers like protists. The taxa

composition from all stations will further be analysed in

context of basic physical parameters such as depth, locality

and hydrothermal vent versus reference station (control).

We used a molecular assay in order to characterize the

biodiversity of the pelagic protist community, and based on

the physical differences between the Jan Mayen Vent Field,

the Håkon Mosby Mud Volcano and Loki’s Castle, we

explored how hydrothermal conditions, surrounding water

mass as well as depth may be important factors for the

diversity of the protist community in these systems.

Materials and methods

Study area

The samples were collected during the R/V G. O. Sars

cruises in 2009 (H2DEEP) and 2011. In 2009, we sampled

Lokís Castle (Pedersen et al. 2010a) (73�33.970N and

008�09.510E), Håkon Mosby Mud Volcano (Vogt et al.

1997) (72�00.040N and 014�44.060E) and a reference sta-

tion (73�10.370N and 008�56.520E) with similar depth to

Loki’s Castle. Lokís Castle is a black smoker field with
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fluid temperatures up to 350 �C, while Håkon Mosby Mud

Volcano is a cold-water methane seep. In 2011, we sam-

pled the Jan Mayen Vent Field (71�17.830N and

005�46.370W) (Trollveggen) (Pedersen et al. 2005) with a

reference station (71�17.150N and 006�14.200W). The Jan

Mayen Vent Field consists of several high temperature

white smokers with fluid temperatures of 260–270 �C

(Fig. 1).

In general, the surface water masses of the Nordic Seas

can be split into three categories; the warmer and more

saline Atlantic water that enters the Norwegian Sea from

the south between Iceland and Scotland (Norwegian

Atlantic Current), the less saline and colder Arctic water

from the Arctic Ocean entering the Greenland Sea through

the Fram Strait (East Greenland Current) and finally the Jan

Mayen Current, which is an important part of the Green-

land Basin cyclonic gyre (Skjoldal 2004; Rudels et al.

2005). The topography is also important in the deeper

water circulation (Søiland et al. 2008). It includes conti-

nental shelves, slopes, deep-sea mud flats, seamounts,

fracture zones and ridges. The Arctic Mid-Ocean Ridge

(AMOR), which runs in the central deep parts as an

extension of the Mid-Atlantic Ridge (MAR), separates the

Greenland Sea Basin from the Norwegian Sea Basin. This

topography results in the deep waters of the Greenland Sea

and the Norwegian Sea being cyclonic. However, the

Norwegian Sea deep waters consist mainly of water from

the Greenland Basin (Greenland Sea Deep Water and

Arctic Ocean Deep Water) that enters the Norwegian Sea

through gaps in the AMOR, especially in the Jan Mayen

Fracture Zone (Skjoldal 2004; Voet et al. 2010).

Field sampling

In order to localize the plume water at Loki’s Castle, we

used a redox sensor (Eh electrode by Dr. Koichi Nakamura,

Japan) connected to a CTD. The plume depth at the Jan

Mayen Vent Field was found by temperature anomalies

from the CTD and echo sound images (see also online

resource 2). The water samples were collected using Niskin

bottles. At each vent location, we sampled three depths:

deep (below plume), middle (in the plume) and a shallow

station (above the plume). At Lokís Castle and the refer-

ence station, we sampled at 2,350 m (below the plume),

2,100 m (in the plume) and 450 m (above the plume), and

at Håkon Mosby Mud Volcano, we sampled at 1,250, 450,

and 150 m, while at Jan Mayen Vent Field and the Jan

Mayen reference station, we sampled at 450 m (below the

plume), 250 m (in the plume) and 100 m (above the

plume). For each sample, 5 L of sea water was first pre-

Fig. 1 The map is an overview of the Nordic Seas and the localities from this study
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filter (sieve) and due to practical problems during the

cruise, the 2,009 samples were pre-filtered through a

125-lm mesh sieve, while the 2,011 samples were pre-

filtered through a 63-lm sieve. However, the pre-filter data

did not yield any distinct pattern alone, nor did the data

without pre-filtered sequences, suggesting that the different

pre-sieving filters had minor or no effect on the final results

and interpretation. The water samples were then further

fractionated through 10 and 5 lm pore size 47 mm poly-

carbonate filters (MilliporeTM, Merck KGaA Darmstadt,

Germany). The pre-filter samples were fixated in 96 %

ethanol and stored at -80 �C, while the rest of the filters

were instantly placed in sterile 1.5 mL cryo-tubes and

frozen in liquid nitrogen before storage at -80 �C for

further analysis. The water samples were further filtered

using 0.22-lm SterivexTM filters (MilliporeTM, Merck

KGaA Darmstadt, Germany) to extract prokaryote DNA

(unpublished data), and finally, viruses were analysed and

described in Ray et al. (2012).

DNA extraction, PCR assay and sequencing

Genomic DNA was extracted from the filters using Fast-

DNA� Spin Kit for Soil (MP Biomedicals, Santa Ana,

CA), while the DNeasy Blood and Tissue kit (QIAGEN�)

was used for the pre-filters. Extraction was carried out

according to the manufacturer’s instructions. PCR was

conducted using the Takara Ex HS taq (Takara BIO, Inc.,

Japan) with the universal eukaryotic 18S rRNA gene-tar-

geted primers Univ-1131F-7 (50-AAA CTT AAA GRA

ATT GAC GG-30) and Univ-1428R (50-CTA AGG GCA

TCA CAG ACC-30) bp (Troedsson et al. 2008; Hadziavdic

et al. 2014) generating a *315-bp product. The amplifi-

cation conditions included an initial denaturation cycle

(3 min at 94 �C), followed by 30 amplification cycles (30 s

at 94 �C, 30 s at 57.4 �C and 1 min at 72 �C). The

amplification cycles were followed by a final extension at

72 �C for 5 min. Amplified gene fragments were visualized

by electrophoresis in a 1 % agarose gel. The amplified gene

was then ligated into a pCR4-TOPO vector using the

StrataClone PCR cloning kit (Stratagene, Agilent Tech-

nologies, Inc., Santa Clara, CA) according to the manu-

facturer’s instructions. For sequencing, 96 colonies per

original filter fraction were selected and further regrown in

NunclonTM delta surface 96-well plates (three plates per

depth generating nine plates per locality, in total 45). Each

well in this study was filled with 200 lL agar (imMediaTM

Ampicilin Agar from Invitrogen Corp.) and cooled to room

temperature. The plates were shipped to LGC Genomics

(http://www.lgc.co.uk/) for MTP sequencing (Sanger

sequencing) using the commercial T7 primer. All the

sequences that derived from the same volume of water (i.e.

clone libraries from 5, 10 lm and pre-filters) were pooled

and treated as one sample in the analysis, generating a total

of 15 samples analysed, three depths and five localities.

Sequence treatment and statistical analysis

Diversity estimates and taxonomical information based on

primary DNA structure can vary according to (1) cut-off

value used when clustering sequences, (2) target gene (3)

variability of each taxonomical group within the particular

gene fragment used in the study and (4) the quality of the

database used for aligning the new sequences. For each

sample (depth and locality), we used Mega 5.0 (Tamura

et al. 2011) and FinchTV 1.4.0 (Geospiza� Inc.) to inspect

and trim sequences for further analyses. SeqNoise from

AmpliconNoise (version 1.25) software package (Quince

et al. 2011) was used to estimate and remove sequence

errors generated in the PCR, and chimeras were removed

using Perseus. Sequences were further clustered into

operational taxonomic units (OTUs) using the hierarchical

complete linkage-clustering algorithm. In this study, we

used a 99 % cut-off value in the clustering analysis. The

diversity analysis of these samples indicated that we had

several groups with different optimal cut-off values.

Indeed, the 99 % cut-off value will be accurate for some

groups and less accurate for others. However, we chose to

maintain a high similarity in the clustering analysis and

further evaluated each OTU using NCBI (http://blast.ncbi.

nlm.nih.gov/Blast.cgi). Taxa and rank names for all OTUs

were based on the World Register of Marine Species

(WoRMS 2013).

All matrices were [log (x ? 1)]-transformed before the

non-metric multidimensional scaling (NMDS) and hierar-

chal clustering analysis using Bray–Curtis similarity

resemblance using Primer-E V6 (Clarke and Gorley 2006).

Similarity level from the hierarchal clustering analysis was

combined with the NMDSplot to distinguish the clusters.

The data used in the statistical analyses were based on the

raw data with number of reads per OTU.

Results

Sequence data

After cloning samples from five localities, three depths and

three fractions (described in methods), we sequenced a

total of 4,320 colonies. Sequences that were shorter than

300 bp were discarded in addition to those that were

removed after treatment with SeqNoise from the Ampl-

iconNoise (version 1.25) software. After removal, there

were left 3,719 sequences ranging from 233 to 269

sequences per sample depth and locality. Fractions were

pooled after annotation and before further treatment of the
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data since each sample was the same water for all fractions

and thus was considered as the same sample. Clustering the

sequences at 99 % similarity cut-off (3–5 base pair dif-

ference within the clusters) resulted in 482 OTUs. Each

OTU was assigned a full rank allocated into five kingdoms,

32 phyla, 74 classes and 121 orders. It was not possible to

assign a classification to four sequences, and these

remained unidentified. A total of 29 sequences were

assigned as unknown kingdom, and 110 sequences were

assigned to unknown phyla. For each rank, the number of

unknowns increased exponentially (online resource 1).

The number of OTUs ranged from 43 to 83 per sample,

and 94 OTUs were shared between two or more samples,

while 339 OTUs were only found in one sample. Among

those 339 OTUs, 286 were singletons (i.e. only one

sequence in the OTU). However, since the biodiversity was

estimated using a clone library, the overall sequence cov-

erage is rather low compared to, e.g. next-generation

sequencing platforms, and the number of singletons in each

OTU is therefore expected to be higher. Nevertheless,

single sequence OTUs should be treated with caution. We

therefore reduced the number of single sequence taxa

substantially by pooling them into lower ranks using NCBI

and BLAST. At the class level, the number of single

sequence taxa was reduced to 16 singletons (out of 74

classes), i.e. we reduced the single sequence taxa from 60

to 20 %. Similarly, at the level of phylum, we reduced

single sequence taxa to three singletons (out of 32 phyla),

i.e. ca 10 %. Clustering at lower taxonomical ranks also

reduced the proportion of unique taxa (only found in one

sample) from 70 % at OTU, 32 % for class and 16 % for

phylum level.

Taxonomical richness

A representative sequence (the most abundant sequence)

from each OTU was annotated based on BLAST similarity.

A complete taxonomical overview using the World Reg-

ister of Marine Species (WoRMS 2013) including abun-

dance of OTUs within each group from kingdom to class is

given in online resource 1. Orders were included when

assignment was possible. Alveolates (Infrakingdom) was

the most common group and found abundantly in all

samples representing 44 % (range 22–61 %) of the whole

dataset, followed by Metazoa/Animalia 17 % (range

7–26 %), Protozoa 13 % (4–28 %), Rhizaria 12 % (range

3–23 %) and Heterokonta 8 % (range 2–16 %). Overall,

these groups accounted for 94 % of all taxa and defined the

major community compositions in the water column

(Fig. 2).

By looking at higher taxonomical level, Alveolates

(predominantly Peredienea) dominated all localities, sam-

ples and depths. Rhizaria (cercozoans) was relatively more

common at Loki’s Castle, particularly at the deepest sam-

ples with vent-affected water (data not presented). A sim-

ilar trend was found among the protozoans that were also

more abundant in the deepest sample at both Loki’s Castle

stations and the deep sample from Håkon Mosby Mud

Volcano. Samples from the Jan Mayen area indicated

higher diversity, with the exception of the Håkon Mosby

Mud Volcano shallow sample that had similar taxa rich-

ness. The increased diversity was predominantly an

increase in autotrophic taxa, e.g. heterokonts (diatoms)

possibly reflecting a connection to the primary production

of the euphotic zone. There was also a trend of autotrophic

groups in the samples above 450 m, indicating a strong

influence of the euphotic zone on the taxonomic compo-

sition in these samples (Fig. 2).

Using Linnean rankers at levels from, e.g., phylum

showed further that 78 % of all taxa came from seven phyla;

Myzozoa (alveolates) dominated (36 %), while the other six

varied between five and 11 %. Myzozoa was represented at

all stations by the dinoflagellates Peridinea and Syndinea,

the remaining 25 phyla all had low abundances with 1–12

OTUs (0.2–2.4 %) (online resource 1). At the lower clas-

sification ranks, seven classes covered almost 60 % of all

samples, indicating a similar skew compared to phylum

with 16 and three singletons from class and phylum,

respectively. Among the abundant groups the dinoflagellate

Peridinea dominated with 19 %, almost twice as abundant

and diverse as the second most abundant group, which was

the protozoan group Diplonemea.

Animalia was dominated by copepods (Maxillopoda)

represented by three identified and one unidentified order.

Members form the class Maxillopoda was found in all

samples (27 OTUs) (online resource 1). Cnidaria consti-

tuted seven orders (three classes), while Porifera consti-

tuted two classes (Porifera was not possible to distinguish

further due to conservative 18S). Gelatinous plankton was

found in all samples except the Loki’s Castle shallow

sample. Porifera was less common, but found at all local-

ities except for the Håkon Mosby Mud Volcano. Protozoa

had high abundance with 14 % of all OTUs. However, 52

out of 70 protozoan OTUs were classified as Diplonemea,

which has been suggested to be a deep-sea group (Lara

et al. 2009). These were found at 15 stations and accounted

for 74 % of all Protozoa. The number of reads/sequences

cannot be used as a true quantitative measure, but there

were relatively more Diplonemea OTUs at 2,350–1,300 m

compared to 450–150 m (average of 11.4 ± 3.5 and

2.7 ± 1.4, respectively) (Protozoa from Fig. 2 and online

resource 1). The highest Fungi diversity was found in the

eastern parts of the Nordic Seas, but Fungi were also

present in lower numbers in the Jan Mayen system.

Overall, Fungi represented 3 % of all OTUs. The group of

Plantae was a mixture of terrestrial plants and microalgae.
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The latter was only present in the shallow samples closer to

the photic zone. Terrestrial plants on the other hand were

found at a larger depth range suggesting a greater vertical

transport for these particles compared to microalgae, i.e.

detrital particles. Finally, we found a small and recently

described phylum, Picobiliphyta (Not et al. 2007; Moreira

and López-Garcı́a 2014). We found representatives in two

samples in our study.

Community composition analysis

Using CTD profiles, it was evident that these three different

localities represent different water masses (salinity versus

temperature plot in Fig. 3). However, the water mass origin

are not identified, but distinguished from one another and

used as parameter in further analyses. We used hierarchical

clustering analysis (Bray-Curtis similarity) and non-metric

multidimensional scaling (NMDS) in order to investigate

the effect of (1) water mass, (2) depth or (3) chemistry

(vent activity, online resource 2) on microbial eukaryote

community structure. These analyses were tested at the

level of OTU, order, class and phylum. At class level, it

was possible to identify three clusters according to the

three identified water masses (62 % similarity) (Figs. 3, 4

and 5). The three were (1) Håkon Mosby Mud Volcano in

the east, (2) Loki’s Castle and the reference in the north

and (3) the Jan Mayen Vent Field and the reference station

in the west (Figs. 4, 5). Inspection of the hierarchical

clustering dendrogram in Fig. 4 indicated that the first

cluster splits Jan Mayen and Håkon Mosby from Loki’s

Castle (52 % similarity). The Håkon Mosby and Jan

Mayen cluster were split further, resulting in one cluster

per type of water mass (62 % similarity) (identified from

the CTD data in Figs. 3) (Figs. 4, 5). Within these three

water mass-based clusters, the next split (node) was based

on depth. The two Jan Mayen deep samples (450 m)

clustered together (64 % similarity), but were separate

from the others including the medium (250 m) and shallow

depth (100 m) Jan Mayen samples. Secondly, the Håkon

Mosby deepest sample (1,250 m) was separated from the

two shallower (450 and 150 m) Håkon Mosby samples

(54 % similarity). The Håkon Mosby Mud Volcano sample

did not have a reference station, and no further clustering

was therefore possible. Finally, the Loki’s Castle shallow

samples (450 m) separated from the deep and the medium

samples (54 % similarity). However, the deep (2,350 m)

and medium (2,100) depths from Loki’s Castle sample did

not cluster together according to depth, but according to

Fig. 2 Bar chart of the relative abundance of OTUs from each classification rank at all localities and depths. The ranks illustrated in this figure

are based on a selection of group names used in eukaryote marine micro-organism studies

Polar Biol

123



locality (64 % similarity). We did not see this result in the

Jan Mayen Vent Field samples (Fig. 4). Sea water and

plume chemistry have been investigated thoroughly in

other studies (Pedersen et al. 2005; Sauter et al. 2006;

Pedersen et al. 2010a; Schander et al. 2010; Baumberger

2011; Tandberg et al. 2011; Jørgensen et al. 2012; Kon-

gsrud and Rapp 2012; Stensland 2013), and further dis-

cussion related to chemistry will therefore follow below.

Fig. 3 A CTD plot of salinity and temperature at the sampling

localities. The salinity vs. temperature plots illustrates the three

different profiles that each represents one water mass each. Each

sampling depth and station are indicated in the figure along the CTD

profile. The horizontal dashed line from the Jan Mayen reference

station CTD is due to variation in salinity at the surface

Fig. 4 The dendrogram, based

on class level, shows that

samples from specific water

masses formed groups together.

The water mass clusters are

indicated by ‘‘A’’ and colour

fields, and ‘‘B’’ indicates

separation by depth, and ‘‘C’’

indicates separation by vent and

non-vent conditions
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Five groups dominated the three different water masses

(Alveolata, Rhizaria, Protozoa, Metazoa and Heterokonta),

but the internal proportion within a given sample varied.

Almost 50 % of the OTUs at Loki’s Castle and reference

station were Rhizaria, Protozoa and Metazoa, while these

groups constituted 34 and 36 % within the Håkon Mosby

Mud Volcano and the Jan Mayen Vent Field and its ref-

erence station, respectively. The Loki’s Castle and refer-

ence station and the Håkon Mosby Mud Volcano shared a

large proportion of Rhizaria and Protozoa, but differed

from one another with a large Heterokonta portion as well

as higher proportion of smaller taxa at the Håkon Mosby

Mud Volcano. While the Håkon Mosby Mud Volcano and

the Jan Mayen Vent Field and its reference station shared a

large Heterokonta proportion and a high amount of smaller

taxa, the Jan Mayen Vent Field and its reference station

contained a higher proportion of Metazoa and Alveolata.

Shallow samples, regardless locality, were more dominated

by taxa with phototrophic groups such as Heterokonta,

Plantae (debris) and Chlorophyta; Protozoa was on the

other hand dominating the four deepest stations (Loki’s

Castle and the reference station (Fig. 2).

Discussion

Cut-off values and data analysis

The species is important as a reference point in studies of

impact (natural or anthropogenic) on an ecosystem (Hey

2009). However, the species definition becomes particu-

larly difficult when using short sequences of genomic DNA

(barcode) as a reference. A primary DNA sequence at a

given similarity cut-off value is therefore regarded as an

operational taxonomic unit (OTU) (Schloss and Handels-

man 2005; Stackebrandt 2011). Nevertheless, there are, as

yet, no universally accepted guidelines to this cut-off value,

which ranges from 90 to 99 % (e.g. Stoeck et al. 2007;

Caron et al. 2009; Marande et al. 2009; Schnetzer et al.

2011; Edgcomb et al. 2011; Orsi et al. 2011). In our study,

we used a modified approach with a highly stringent

clustering cut-off value of 99 %. We then individually

inspected the annotated taxonomical ranks from family to

kingdom using BLAST from NCBI (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). This approach was possible due to the

relatively low number of OTUs generated from our clone

Fig. 5 A non-metric multidimensional scaling (NMDS) plot yielding clustering of samples, based on class level, according to water masses/

localities. The groupings (circles) are based on the dendrogram from Fig. 4
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library approach and further enabled us to produce a

detailed and quality-controlled taxonomy as well as a

consistent organization of the data based on WoRMS

(2013). The high stringency cut-off generated a large

number singleton, which either suggests that the used cut-

off value was too high or that the sequence effort was too

low (low coverage of the true OTU diversity). We

addressed the former by grouping OTUs into higher taxo-

nomic ranks based on the manually quality-controlled

taxonomy (online resource 1). The use of higher ranks

reduces the taxonomical resolution, and this can be con-

sidered to be a weakness of the analysis. However, this is a

commonly used practice in many studies due to the com-

plex nature of the dataset and the lack of a universally

accepted species cut-off (e.g. Edgcomb et al. 2011). To

improve the overall sequence resolution, it is possible to

use next-generation sequencing (NGS) platforms. Previous

studies comparing Sanger sequencing and NGS found only

few differences because the dominant taxa are the same

with the two methods (Edgcomb et al. 2011). The main

difference between these two approaches is that NGS data

generated a higher number of rare taxa. However, it

remains to be determined how the additional sequence

information from NGS will improve our understanding of

biological trends in ecosystems. In our study, we observed

increased noise in the analysis with higher resolution.

Nevertheless, pooling OTUs into higher ranks, regardless

of method, can be considered a taxonomical surrogacy

(Bertrand et al. 2006). We argue that the approach used in

this study is valid since the correct and true species cut-off

for OTU and species definition likely does not exist.

CTD data indicated three distinct water masses (Fig. 3),

which we also found to be the strongest factor affecting the

biodiversity of the eukaryotic micro-organisms. Initial tests

of cut-off values between 97 and 99 % yielded no corre-

lation with these water masses. However, testing higher

taxonomic levels (class level) indicated a connection

between water mass and taxa composition (Figs. 4, 5).

From the 97 % cut-off, we continued to tested family,

order, class and phylum. Hierarchical ranks were possible

because each OTU was annotated and given at the highest

taxonomical level possible. Further, we chose class based

on (1) best fit with present environmental variables, (2) 19

out of 32 phyla were possible to identify further to class,

while in comparison with 58 out of 74, classes could not be

identified further (i.e. maximal resolution at class level),

and (3) number of classes was more double the number of

phyla. The taxonomic level of class corresponds to a cut-

off level of ca 87 % similarity. This is lower than the cut-

off value for most environmental DNA studies (e.g. Caron

et al. 2009). Indeed, previous studies have explored dif-

ferent cut-off levels ranging from 90 to 100 % (Stoeck

et al. 2007; Edgcomb et al. 2011; Orsi et al. 2011;

Hadziavdic et al. 2014), which is necessary for any new

primer set used to amplify a fragment of the 18S rRNA

gene. However, to our knowledge, this is the first study

using the hierarchical rank approach with environmental

DNA data.

Ecological assessment

Although eukaryotic micro-organisms in Nordic Seas

plumes have not been studied before, several other studies

have focused on the effect of hydrothermal plumes from

other parts of the world on both the mesozooplankton

(Berg and Van Dover 1987; Burd and Thomson 1995; Burd

et al. 2002; Vinogradov and Vereshchaka 2005; Olsen et al.

2013) and the microplankton (Atkins 2000; López-Garcı́a

et al. 2007; Bennet et al. 2013). While hydrothermal vents

clearly contribute to increasing the available metabolic

energy, how this increased energy affects the biodiversity

remains unclear. Atkins (2000) suggested that flagellate

protozoans could maintain metabolism within the extreme

conditions of hydrothermal vents with high concentrations

of, e.g., sulphide in the water column. This conclusion is

strengthened by the high protistan diversity described in

López-Garcı́a et al. (2007). Bennet et al. (2013) also found

an increase in total organic carbon (TOC) compared to

surrounding waters. These studies suggest that vents can be

positive for protists, possibly due to increased food avail-

ability our data on vent systems in the Nordic Seas did not

clearly identify any effect on the microplankton commu-

nity. Instead, our results suggest that water masses had the

strongest effect on the genetic diversity and support the

concept that the microplankton community is resilient to

hydrothermal fluid venting (Figs. 4, 5). However, one need

to view these results with caution due to lack of time series/

replicates that reduce the robustness and due to few sam-

ples may affect the analysis. Still, hydrological conditions

have also been found to be an important factor in the

structuring of mesozooplankton (Dvoretsky and Dvoretsky

2013), but also among protists (Yu et al. 2014). Indeed,

water depth was identified in our study to affect the

microplankton community as the Jan Mayen Vent Field

and reference site samples could not be separated. Depth

also seemed to be a factor for the microplankton commu-

nity at Loki’s Castle and the Håkon Mosby Mud Volcano.

At Jan Mayen, depth was the only factor affecting micro-

plankton diversity, while at Loki’s Castle, there was also an

effect from the vent, since vent and reference samples

separated into two distinct clusters. It is not clear why there

was an observed difference between the Loki’s reference

and vent samples, but this was not observed at Jan Mayen.

However, the depth range was less at Jan Mayen and the

phototrophic production, ‘‘surface signature’’, may be

Polar Biol

123



higher and therefore have a greater influence on the bio-

diversity signature above 500 m depth compared to what

has been seen below 2,000 m (see Loki’s Castle) (Fig. 2).

At the depths of Loki’s Castle, a much smaller fraction of

the surface production reaches the bottom (and the deeper

water layers), and therefore, the gradient between vent and

non-vent was stronger at Loki’s Castle compared to Jan

Mayen. The plume chemistry can also have been a factor

since Loki’s Castle had higher concentrations of energy-

rich compounds such as CH4 and H2, compared to the Jan

Mayen Vent Field (Stensland 2013). The lower CH4 and H2

concentrations at Jan Mayen combined with the influence

of surface production could mask any potential effects of

the vent signals on the genetic diversity. However, our data

indicated that Jan Mayen Vent Field and the reference

clustered according to depth alone, suggesting limited

effect of the elevated gas levels, including CO2 even

though it was not tested. This supports the concept of

resilience of the eukaryotic micro-organism communities

(e.g. Paulino et al. 2008; Troedsson et al. 2013), but still

both resilience and CO2 needs further attention in the

future.

Conclusions

Based on our data and multivariate analyses, the signal

from the prevailing water mass is stronger than both depth

and plume water. Previous studies suggest that the vents

have an effect and contribute to increased carbon produc-

tion (Atkins 2000; Wakeham et al. 2001; Hügler and Sie-

vert 2011; Bennet et al. 2013). However, the effect of vent-

specific biodiversity has remained largely unexplored.

Motile and migrating plankton can move towards food

sources such as hydrothermal plumes. Microplankton on

the other hand cannot control their position in the water

column and depend on the food source present in the water

masses. It is, however, possible that the increased available

energy through chemosynthesis induces increased growth

in the vent community compared to that at the reference

station. The time spent in the vent water with increased

metabolic energy (effluent layer) may be important to how

much the microeukaryote community potentially will be

different from the surrounding water masses. It has also

been suggested that, e.g., parasitic organisms can be linked

to vents explicitly during their free-living stage (Moreira

and López-Garcı́a 2003) suggesting that some organisms

are vent specific. The observed effect of the vent at the

Loki’s Castle deep samples supports the former hypothesis.

Our study demonstrates that research of vent systems needs

to integrate oceanographic, physical and chemical water

properties as well as geological and biological features in

order to understand these complex ecosystems.
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